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Erster Gutachter: Prof. Dr.-Ing. Klemens Böhm
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Zusammenfassung des Inhalts

Der Themenkomplex Privatheit und Datenschutz rückt zunehmend in das Bewusstsein der
Gesellschaft. Im Zuge dessen wurden nicht nur strengere Gesetze erlassen, sondern Privatheit
spielt auch in der öffentlichen Wahrnehmung eine immer größere Rolle. Aufgrund einer Vielzahl
neuer Technologien, werden auch immer mehr Zeitreihen persönlicher Daten gespeichert. Beispiele
dafür sind GPS Messungen von Mobilgeräten, oder auch zeitlich hochauflösende Stromverbrauchs-
daten gemessen von Intelligenten Stromzählern. Im Allgemeinen gibt es zwei sich widersprechende
Anforderungen an die Daten: Zum einen ist es von hohem allgemeinen Interesse die Daten zu
veröffentlichen um gesellschaftliche Ziele zu erreichen, dem gegenüber steht der Schutz der Pri-
vatheit einzelner.

Zeitreihen persönlicher Daten haben die Eigenschaft, das sie sowohl Informationen enthalten
aber auch selbst identifizierend sind. Ein einfaches Entfernen der direkten Identifikatoren wie
zum Beispiel des Namens oder der Adresse ist nicht ausreichend um die Privatheit der betroffenen
Personen zu schützen. Mit Hilfe von Hintergrundwissen können Datensätze re-identifiziert, d.h.
trotz fehlender Identifikatoren einzelnen Personen zugeordnet werden. Folglich müssen die bedeu-
tungstragenden Daten selbst modifiziert werden um einen ausreichenden Schutz der Privatheit zu
bieten. Im Folgenden werden Verfahren, die die Daten modifizieren ‘Methoden zum Schutz der
Privatheit’.

Abhängig vom Datenbestand können sich die Privatheitsanforderungen einzelner stark unter-
scheiden. Die Anwendung einer allgemeinen Methode zum Schutz der Privatheit hat den Nachteil,
dass nicht alle persönlichen Informationen entfernt oder verfremdet werden.

Nach der Modifikation der Daten durch eine Methode zum Schutz der Privatheit, muss untersucht
werden, welchen Einfluss die Modifikationen auf die resultierende Datenqualität hatten. Nur eine
hinreichende Datenqualität stellt sicher, das die Anwendungen die auf den Daten basieren noch
möglich sind und verlässliche Ergebnisse liefern. Abstrakten Maße, wie zum Beispiel der L1-
Norm, hat den Nachteil, das der tatsächlich Einfluss der Modifikationen auf Anwendungen nur
ungenügend reflektiert wird. Beispiel: Die Anwendung berechnet den Durchschnitt der Messwerte
über ein bestimmtes Zeitintervall. Absolute Distanzen der Messwerte sind genau dann nicht von
Relevanz, wenn der Durchschnitt trotz der Modifikationen durch die Methode zum Schutz der
Privatheit erhalten bleibt. Somit geben abstrakte Abstandsmaße nur unzureichend Auskunft über
die resultierende Datenqualität.
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In dieser Arbeit werden Anwendungsspezifische Methoden zum Schutz der Privatheit und Spez-
ifische Maße zur Bewertung der Datenqualität entwickelt und untersucht. Im Speziellen, werden
sowohl Methoden als auch Maße im Kontext des sehr wichtigen und populären Szenarios des Strom-
netz der Zukunft (‘Smart Grid’) untersucht.

Die Einführung des Smart Grid führt zu dem bereits vorhin erklärten Widerspruch von
berechtigten Interessen: Es ist von gesellschaftlichem Interesse das Stromnetz zu erneuern und eine
zuverlässige und umweltverträgliche Stromversorgung in der Zukunft sicherzustellen. Darunter
zählt neben der Reduktion der CO2 Emissionen auch die Einführung von neuen Anwendungen
beispielsweise das intelligente Laden einer großen Zahl von Elektroautos. Eine Vielzahl von Geset-
zen treibt die Einführung voran: Darunter fällt auch die Einführung von Intelligenten Stromzählern
(sogenannten ‘Smart Meter’) in Privathaushalten. Sie erlauben die bi-direktionale Kommunikation
und die automatische Übertragung von zeitlich hochauflösend gemessenen Stromverbrauchsdaten.
Der Zugriff auf diese Daten ist nützlich für die erwähnten Anwendungen. Diese Daten fallen jedoch
unter das Datenschutzgesetz, da sie persönliche Informationen enthalten. Privathaushalte haben
somit ein berechtigtes Interesse daran, ihre Daten vor dem Zugriff Dritter zu schützen. Dieses In-
teresse steht im Widerspruch zum allgemeinen gesellschaftlichem Interesse der Weiterentwicklung
des Stromnetzes.

Als allgemeingültiger Ansatz wird angenommen, das die Stromverbrauchsdaten mittels
Veröffentlichung Dritten zur Verfügung gestellt werden. In diesem Fall ist keine vertrauenswürdige
Instanz notwendig die den Datenzugriff regelt und der Zugriff der Anwendungen ist un-
eingeschränkt. Wie schon erläutert, werden die Daten zum Schutz der Privatheit verändert. Als
Extremfall wäre vorstellbar alle Stromverbrauchswerte durch ‘0 kWh’ zu ersetzen, jedoch schränkt
das natürlich die Benutzbarkeit der Daten für Anwendungen stark ein.

Um beiden Anforderungen, also sowohl dem Schutz der Privatheit als auch das berechtigte In-
teresse Dritter für den Datenzugriff gerecht zu werden wird folgendes benötigt: Eine Methode zum
Schutz der Privatheit deren Ziel es ist, private Informationen vor der Veröffentlichung zu entfernen.
Zusätzlich, um die Nützlichkeit der Daten für Dritte bewerten zu können, ist ein Anwendungsspez-
ifisches Maß für die veränderte Daten notwendig.

Die in dieser Arbeit vorgestellte Methode zum Schutz der Privatheit erlaubt Einzelnen die Spezi-
fikation von Privatheitsbedürfnissen, sogenannten Geheimnissen. Unter bestimmten Voraussetzun-
gen wird die Entfernung dieser Geheimnisse auch beweisbar garantiert. Geheimnisse betreffen meist
bestimmte Gerätenutzungen die Rückschlüsse auf persönliche Verhältnisse zulassen: Ein Durch-
lauferhitzer der in Betrieb ist, erlaubt zum Beispiel den Schluss, das ein Bewohner des Haushaltes
gerade duscht. Typischerweise hat ein sich in Betrieb befindender Durchlauferhitzer Auswirkungen
auf eine bestimmte Menge von Messwerten in einer Zeitreihe. Um trotzdem systematisch und be-
weisbar die Privatheit zu schützen ist zunächst eine Transformation der Zeitreihe in eine abstrakte
Darstellung notwendig. Dadurch ist es möglich, einzelne Informationen die ‘versteckt’ werden
sollen zu isolieren und entsprechend zu verfremden. Um die allgemeine Anwendbarkeit auf typis-
che Geheimnisse zu zeigen, wird die Methode mit Hilfe einer Menge von Geheimnissen die durch
zwei populäre Anwendungen zur Informationsexktraktion aus Stromverbrauchsdaten definiert wer-
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den getestet. Die Methode ist auch in anderen Domänen nutzbar, wenn gewisse Vorausetzungen
erfüllt werden.

Das Anwendungsspezifische Maß erlaubt die Quantifizierung, zu welchem Grad die durch die
Method zum Schutz der Privatheit veränderten Daten noch nutzbar sind. Genauer gesagt wird
ein lokaler Energiemarkt implementiert. Hier wird Energie auf Basis von Zeitreihen von Ver-
brauchsdaten gehandelt. Vergleicht man das Marktresultat bei Benutzung von nicht-modifizierten
Daten mit dem Resultat bei modifizierten Daten, erhält man ein Maß über die Auswirkungen der
Veränderung. Theoretische Ergebnisse zeigen, das der Marktmechanismus wichtige Eigenschaften
unter bestimmten Voraussetzungen wie die Anreizkompatibiltät, trotz systematischer Modifika-
tion der Daten erhält. Die Veränderung der Daten hat Einfluss auf die Erlöse bzw. den Er-
folg am Markt einzelner und unterschiedliche Methoden haben naturgemäß auch unterschiedliche
Auswirkungen. Das vorgestellte Anwendungsspezifische Maß erlaubt den Vergleich der Methoden
anhand von Real-Welt Daten. Auch wenn das vorgestellte Maß Anwendungsspezifisch ist, erlauben
die Ergebnisse Rückschlüsse auf die Nutzbarkeit von Daten die durch Methoden zum Schutz der
Privatheit modifiziert wurden im Allgemeinen: Das Maß zeigt, das sowohl Privatheit als auch
Nutzbarkeit der Daten, unter bestimmten Voraussetzungen, erfüllbar ist. Da verschiedene Param-
eter des Energiemarkts und der Marktteilnehmer anpassbar sind, können allgemeine Rückschlüsse
gezogen werden. Beispiele dafür sind die einstellbare Nachfrageflexibilität auf Haushaltsseite, die
Abweichungen zwischen original und modifizierter Zeitreihe unterschiedlich in das Maß einfließen
lässt.

Speziell für das Stromnetz der Zukunft zeigen die Ergebnisse das Methoden zum Schutz der Pri-
vatheit in einem lokalen Energiemarkt angewendet werden können, mit akzeptablen Auswirkungen
auf die Anwendungen. Der Markt ist nach wie vor aus wirtschaftlicher Sicht effizient und ver-
ringert den CO2 Ausstoß selbst wenn strenge Anforderungen an die Privatheit gelten und somit
starke Modifikation der Daten notwendig ist.

Die Ergebnisse dieser Arbeit zeigen, das mit Hilfe von Methoden zum Schutz der Privatheit die
widersprüchlichen Interessen zur Veröffentlichung der Daten auf der einen Seite und zum Schutz
der Privatheit auf der anderen Seite vereint werden können. Da Datenbestände aus Zeitreihen von
Stromverbrauchsdaten hinreichend komplex bezüglich dem Informationsgehalt und der Vielzahl
der möglichen Anwendungen sind, liegt der Schluss nahe, das die gewonnenen Erkenntnisse auch
in anderen Domänen gelten.
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Chapter 1

Introduction

In the last few years, privacy concerns of individuals has become more important. More detailed
and rigorous laws have been passed and the general awareness of privacy has risen in the society [15,
33, 36, 78]. With a vast amount of new technologies, personal sensitive information in time series is
recorded especially more frequently. For instance, the time series of GPS data and the time series
of energy-consumption data are measured by smart meters. Such data of individuals are subject to
privacy legislation if they can be assigned to a single individual with little effort [15, 33]. If this is
the case, such data sets require special treatment: Arbitrary access to the data is forbidden unless
individuals accept disclosure. Judging from the general rising awareness for privacy, individuals
will keep their data as private as possible. Additional effort is necessary to ensure security and
limited access to stored data. However, such kinds of data are necessary to achieve important
goals for the benefit of society. General speaking, the availability of data is beneficial to foster
innovations [73]. This leads to two competing factors: First, the common interest of publishing a
data set containing personal data for the general benefit of society, and second, the protection of
individual privacy needs.

Although privacy and common access to important data for innovations is a general problem for
time series of personal data, we explain our concepts in the context of one popular and important
example scenario, the ‘electricity network of the future’ also known as the smart grid [50]. Modern-
izing the electricity-providing infrastructure toward the smart grid is a major concern for reducing
CO2 emissions and guaranteeing the security of supply at affordable prices. However, the modern-
ization involves the collection of a huge amount of personal data, which is an inhibiting factor for
the smart grid. In this scenario, two legitimate interests compete: The demand for establishing
the smart grid and the privacy concerns. In this chapter, we will see that both are required by
law. The concept for a smart grid to reduce emissions and guarante the security of supply is of
national interest. In contrast, privacy laws restrict access to temporal fine-grain consumption data
that smart meters collect. Further, we will elaborate on the contributions of this work, with the
overall goal to fulfill both, privacy for individuals and access to data for the benefit of society.
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1.1. SMART GRID: THE ELECTRICITY NETWORK OF THE FUTURE

In this chapter, we discuss the motivation of the smart grid (Section 1.1), including technical
details about the smart meter (Section 1.1.2) and the legislation (Section 1.2). In addition to
the technical details, the discussion also includes privacy concerns (Section 1.2.2 and 1.1.4). We
conclude this chapter with an elaboration of the contributions in this work (1.3).

In the following, most of the explanations will be about the electricity network in Europe or
in Germany. However, similar developments regarding liberalization, legislation, system architec-
ture, and introduction of the smart grid are applicable to almost all countries that are striving to
modernize the electrical grid.

1.1 Smart Grid: The Electricity Network of the Future

Despite some minor improvements, the current electricity network has not changed since the In-
dustrial Age: Electrical energy is produced at central, large-scale power plants and distributed
through a high-voltage system over large distances. The whole system is controlled centrally and
designed to deliver high-quality electrical power to all consumers, even during peak times [49, 55].
The components of the system are mostly isolated and rather static: Despite the centralized source,
it is difficult to inject energy. Consumers participate only passively, receiving only a monthly or
yearly bill as feedback. Moreover, real-time monitoring is only limited to generation and transmis-
sion [41]. However, the existing network cannot answer the challenges of recent developments [31]
concerning primarily energy prices, CO2 emissions, and a rising demand. Prices for fossil fuels, e.g.,
coal and oil, keep rising [104]. Increasing energy costs conflict with the national interest of keeping
the economy globally competitive [72]. Using fossil energy sources leads to a huge amount of CO2
emissions, e.g., 87% of U.S. coal production is used for electricity generation [55] and therefore is a
major contributor to greenhouse gases. Statistics show, that the electric power generation accounts
for approximately 40% of the human-caused emissions of CO2 [72]. Rising CO2 emissions endanger
keeping the climate targets [31], e.g., European road maps aim to reduce CO2 emissions by 80%
by 2050 [32].

Forecasts expect a rising energy demand in the next decades [93]. Furthermore, the electrification
of the vehicle fleet will lead to additional load for the electrical grid [80]. Without any general change
in the current grid and the generation of electricity, this will lead to higher prices and additional
greenhouse gas emissions.

The smart grid is here, to challenge these issues. ‘It can be defined as an electric system, that uses
information, two-way, cyber-secure communication technologies, and computational intelligence in
an integrated fashion across the entire spectrum of the energy system from the generation to the
endpoints of consumption of the electricity’ [41]. In particular, among other measures, this points
to the installation of smart meters at the house connection. Smart meters allow (almost) real-time
meter readings and establish a bi-directional communication channel between the energy supplier
and consumer. For technical details of a smart meter, see Section 1.1.2. Using information and
communication technology in the electrical grid is advantageous when dealing with fluctuating
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renewable energies, as explained subsequently.
Renewable sources like wind or solar energy reduce CO2 emissions and cost for the energy

production. However, these sources are different compared with a traditional power plant and
difficult to coordinate. First, they are volatile by nature and the amount of energy produced cannot
be controlled; it is only predictable. Second, they are usually distributed, e.g., solar panels on roofs
of several private households, and therefore not centrally controllable. Communication technology
enables real-time monitoring of supply and demand and allows for planning and distribution of
renewable energy. This reduces the CO2 footprint and the production costs [71].

Demand-side management is only possible if there is a communication channel to consumers.
For example, [80] states that the current power grid infrastructure has spare capacity to support
the penetration levels of hybrid vehicles ranging from 30 to 70% if they are charged during off-peak
times. [81, 98] show that demand-side management is a powerful instrument in reducing peak loads
and CO2 emissions.

Using the smart-meter infrastructure allows the creation of dynamic tariffs. In the current grid,
electricity costs a consumer mostly the same price per kWh throughout the whole day. Excep-
tions are only special tariffs with cheaper off-peak electricity and special contracts with industrial
consumers. With smart meters, energy consumption is measured in real time and thus can also
be accounted for differently for any time a day [111]. Dynamic tariffs, with high prices during
peak hours, will encourage consumers to shift electrical load to off-peak hours and help to reduce
emissions [38, 46].

1.1.1 Architecture of the Electrical Grid

The electrical grid is usually divided into three different parts: generation, transmission network,
and distribution network. [4] The generation includes all entities that produce power, which is trans-
ported over large distances through a high-voltage transmission network. The distribution network
delivers the electric power from the transmission network to the consumer and is a medium/low-
voltage network.

In this system we distinguish among the following involved parties. The utility company is
responsible for power generation and insertion into the transmission network. We call the parties
entrusted with transmission and distribution the transmission system operator and the distribution
system operator. Additionally, the metering service provider measures the consumed energy and
is responsible for the accounting at the consumer level. The consumers actually consume the
transported electricity.

1.1.2 Smart Meter

A smart meter (see Fig. 1.1b) is typically installed at the house connection and replaces the ‘Fer-
raris meter’ (see Fig. 1.1a). The Ferraris meter, named after the Italian physicist Galileo Ferraris,
is only capable of measuring the aggregate electricity consumption in an electromechanical way
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1.1. SMART GRID: THE ELECTRICITY NETWORK OF THE FUTURE

(a) Ferraris meter [67] (b) Smart meter [66]

Figure 1.1: Comparison of electrical meters

and is read manually, such as once a year. In contrast, a smart meter is considered to be ‘smart’
for reasons [66, 111] explained in the following. The core components of a smart meter are an
electronic measurement device that includes a processing unit and a communication device. The
electronic measurement enables (almost) real-time monitoring of the consumed energy in a house-
hold, and integrates the power-producing sites like photovoltaic panels. Communication devices
may differ regarding the available networks, e.g., GSM, powerline communication, or integration
into the households’ internet connection. The communication device enables the smart meter to
automatically transfer the measured consumption data to the metering service provider, and to
receive external information and commands. This includes the limitation of throughput resulting
from the shortage of supply and demand-side management like starting to charge an electric vehi-
cle. Most smart meters also have the capability to integrate other meters, e.g., water and gas, and
forward the measurements through the communication device.

1.1.3 Current State of Development

In general, the smart grid is currently in the state that necessary preconditions are being established.
There is a growing smart meter infrastructure that is necessary to provide most of the envisioned
smart grid functionality.

For instance, in Germany, estimations predict that 30% of the total meters are smart meters
until the year 2016 [13], whereas in 2009 the percentage was approximately 5% [85]. In Europe,
the deployment of smart meters is very heterogeneous, e.g., in Italy and Spain, 95 − 100% of the
installed meters have already been smart meters since 2009.

As a parallel development, pilot projects implementing specific parts of the smart grid ideas have
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already started. For instance, in Germany there is the E-Energy project1 that includes six model
regions. The government funds this project and there are a total of 140 Mio.e available for the
model regions. The regions follow different strategic orientations within a common set of goals for
the whole project: In addition to energy efficiency, e-mobility, and the integration of renewable
energies, these goals include IT architecture, security, and privacy.

The SmartGridCity is a technology pilot in the United States2, specifically in Boulder, Colorado.
The project deployed more than 23,000 smart meters. The main goals of this project are to increase
efficiency and to develop a plan for a large-scale rollout.

In summary, the smart grid rollout is still in the beginning stages; however, the fraction of smart
meters and thus smart grid–enabled technology will grow quickly in the next decade.

1.1.4 Technical Perspective of Privacy Concerns Regarding the Smart Grid

From a technical perspective, highly aggregated power consumption data, known from the tra-
ditional Ferraris meter and collected only once a year, does not indicate much about individual
behavior. However, some information, like the number of people living in the household or whether
a household uses inefficient devices, may still be observable. Power consumption data collected in
short time intervals by smart meters contain a large variety of indicators for personal habits [78].
We discuss in greater detail which and how information can be extracted from such data in Chap-
ter 2. [78] states that individuals might underestimate the possible privacy threats of their smart
meter data and may even use opt-in services like the Google Power Meter3, which helps to save
energy but requires fine-grain data. Similar risks are that it is difficult to distinguish between
sensitive and nonsensitive information in smart-meter data. Parts of the data may not be deemed
sensitive and then disclosed [95]. For instance, legislation for the previously mentioned technical
pilot ‘SmartGridCity’ (see Section 1.1.3) is a patchwork of different laws that may allow disclosure
to an nonspecific degree for billing and load reporting [95].

Currently, the overall penetration of smart meters is relatively low, but it is possible that unsolved
privacy problems may stall the smart grid [73]. One possible measure to increase privacy protection
would be to explicitly define which kind of information is really required for the performance of
applications like system balancing, demand reduction, and distribution network operation and
planning [79]. In this thesis, we introduce a method for removing specific private information in such
data. Additionally, we introduce an application-specific measure—the local energy market —and
quantify the negative influence of privacy-enhancing methods on the market. Those contributions
are further explained in Section 1.3. From a technical perspective, the interest of a large-scale
rollout competes with the privacy issues in the smart grid. In the next section, we discuss the
juridical perspective, including the legislation for establishment of the smart grid, as well as the
privacy legislation.

1http://www.e-energy.de/
2http://smartgridcity.xcelenergy.com/
3http://www.google.com/powermeter/about/
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1.2. LEGISLATION

1.2 Legislation

Legislation related to the smart grid that are relevant for this work basically cover two aspects:
First, because the introduction of the smart grid is a goal of national interest, several laws and
edicts have been introduced to foster its development (Section 1.2.1). Second, the data collected
by smart meters are subject to privacy legislation (Section 1.2.2).

1.2.1 Legislation Fostering Smart Grid Development

The first step in establishing a smart grid is the liberalization of the electricity market. This allows
different parties to access the grid and fosters competition. In the European Union, the Directive
96/92/EG [34] claimed the detachment of electricity companies to multiple division according to
the grid architecture (see Section 1.1.1) in production, transmission, and distribution. In Germany,
this directive led to the Renewable Energy Act (EnWG [26]) in 1998. Modifications to this law
in the following years introduced even more liberalization, e.g., the liberalization of the measuring
in 2008. This includes that law requiring the installation of smart meters for newly constructed
or majorly refurbished buildings at the beginning of 2010. Energy suppliers have to offer tariffs,
depending on the load or daily times to consumers.

In addition to fostering liberalization, the EU brings the development of the smart grid forward
with research road maps and initiatives: The European Strategic Energy Technology Plan (SET-
Plan [30]) is an industrial initiative to increase the fraction of renewables in the electricity grid
up to a completely decarbonized electricity production in 2050. The European Technology (ETP)
SmartGrids was set up in 2005 and created a research agenda for 2020 [31]; the goals were renewed in
2012 [32]. The documents contain research topics and priorities to reduce emissions and guarantee
the security of supply in the near future (2020 and 2035). These initiatives foster the development
and the research of smart grid technology in the European Union.

In the United States, the policy in the 42 United States code ch. 152, sub chapter IX §17381
is relevant for the smart grid legislation. It establishes a Smart Grid Advisory Committee and a
Smart Grid Task Force. Their goal is to develop smart grid technologies, define standards, and
plan a transition of the existing U.S. electricity grid to a smart grid.

Legislation fosters the development and deployment of smart grid technologies in Europe and
as in the United States. Although measures may differ, the goals are the same: Communications
technology should enhance the integration of renewable energy sources for a reduction of emissions
and for guaranteeing the security of supply.

1.2.2 General Privacy Legislation

Privacy is a fundamental right of natural persons. It is motivated by the so-called freedom ‘to
contribute to economic and social progress, trade expansion and the well-being of individuals’ [33].
The right of privacy is not only covered by European legislation; because [33] is a directive, it
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has also found its way to national legislation of the EU members, such as the German Privacy
Act [15]. There is similar jurisdiction in the United States, such as the 19th Annotation to the
First Amendment [110].

For the sake of simplicity, we explain the German Privacy Act [15], which carries out the EU
directive [33], in greater detail and omit details of other state-specific legislation. Privacy legislation
in different states is mostly distinguishable in the integration in the law system. For instance,
privacy legislation in the United States is an annotation of the first amendment, whereas laws in
the EU fulfill directives.

Data are personal and subject to privacy legislation if they reflect the living conditions of indi-
viduals [15]. This includes wealth, working hours, and leisure activities. Additionally, information
like the number of people present in a household may also be personal if it reflects the relation-
ships of an individual. Furthermore, the information has to concern an identified or an identifiable
person [15, 33]; identified information usually contains names or addresses. A person is considered
as identifiable if data can be linked to an individual with reasonable means, e.g., combinations of
zip code, age, and sex may be enough to re-identify a person without having any available direct
identifier. Processing and working with personal data have the following consequences: Access to
and use of personal data have to be legitimated. The individual needs to confirm whether his or
her data can be used for a specific purpose. This permission only holds for that purpose and only
for the data required to process this specific purpose, e.g., if aggregated data can be used, the
access to fine-grain data is not allowed [15]. These principles are called data minimization and
data avoidance. The so-called direct survey principle is also important for the smart grid scenario:
This principle basically regulates by law that personal data can only be collected if the individuals
participate directly in this process.

Privacy Legislation in the Smart Grid

The consumers (households), the utility company, and the metering service provider are the im-
portant parties when considering privacy laws in the smart grid. The privacy of the consumers is
protected, the metering service provider collects the private data, and the utility company needs the
data for accounting. In addition to the German Privacy Act, laws relevant for the individual’s pri-
vacy are the Renewable Energy Act (EnWG [17]) and the metering access ordinance (MessZV [26]).
These laws cover the installation of smart meters in private households and implement the terms in-
troduced in the German Privacy Act. Because of the principle of direct survey, the metering service
providers have to explicitly ask the consuming private households for permission to automatically
access the data from the smart meters. The principles of data minimization and avoidance require
that the smart-meter data that are forwarded to the utility company have to be aggregated ac-
cording to the tariffs. For instance, if a private household has a tariff with prices changing every
hour, the utility company is only allowed to get access to hourly aggregated data from the metering
service provider [17, 26, 63]. Furthermore, according to the German Privacy Act, the data can only
be used for the purpose of accounting.
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1.3 Contributions

We evaluate the proposed methods and measures within the smart grid scenario. As already
explained, the modernization of the existing electricity grid is of common interest to fulfill CO2
goals, e.g., by integrating renewable energy or by introducing intelligent charging for a large number
of electrical vehicles [32]. Thus, there are a number of reasons to promote the expansion of the
smart grid. A central role of the smart grid is the introduction of the smart meters. Smart
meters collect the time series of electricity consumption from private households in short time
intervals [66]. Such data are necessary for further development of the smart grid, but contain
private and sensitive information [83]. Smart meters enable two-way communication and transfer
of consumption and production data among all participating parties, including private households.
Special treatment of such data is necessary if it can be assigned to individuals with little effort.
Personal identifiers such as names or addresses directly link data to individuals. Such identifiers
can be replaced with pseudonyms. However, we show that it is still possible to assign data without
personal identifiers with minimal effort to individuals. This process is called re-identification and
is our first contribution.

C.1 Method and features to re-identify the time series of smart-meter data: We
systematically analyze the identifying degree of features for the time series of smart-meter data.
Results show that, depending on the data set, the identifying degree of features differs. Further-
more, we propose a method that allows the re-identification of households to time series with little
effort (Chapter 2).

The effort in computational time is in many cases below 1 min on current standard hardware.
We also see that the probability re-identification depends on the data size considered. The more
time series that are involved, the more likely are similar features of consumption records. This
reduces the re-identification rate. However, we show that re-identifying households by their smart-
meter data is possible and by an order of magnitude better than random guessing. Consequently,
it is possible to reference the time series of smart-meter data to individuals, making such a data
set subject to data-protection legislation. The proposed features are possible information that an
individual wants to remove before disclosure to hinder re-identification [11].

Legitimate privacy interests compete with the common interest of introducing a modernized elec-
trical grid. The core of privacy legislation is the so-called right to informational self-determination
of each individual: Each individual has the right to decide who and for which purpose one has
access to certain personal information [15]. Numerous approaches exist for extracting different
information from the time series of smart-meter data. In addition to the features proposed in the
re-identification method, smart-meter data also reflect the presence of individuals, which appli-
ances are active, and in which state (i.e., which TV program the household watches) [43]. Privacy-
enhancing methods generally modify a given data set with the objective to preserve the privacy in a
data publishing case. In particular, for smart-meter data, this requires removing information that
individuals deem sensitive. In turn, with the help of such a method, individuals determine which
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information is provided for applications leading to the benefit of society. We contribute PACTS, a
privacy-enhancing method for the time series of smart-meter data.

C.2 PACTS provable privacy method: We contribute a privacy-enhancing method for
a time series that allows each individual to define the privacy requirements. Each time series
is handled and published in isolation, as privacy requirements may differ. The method provides
provable guarantees for the removal of the specified information.

State-of-the-art approaches for providing provable guarantees usually focus on relational or ag-
gregate data [5, 29], whereas PACTS focuses on the privacy enhancement of individual time series.
Challenges for such a method is that the information deemed sensitive usually cannot be referenced
to a single time-value pair, but is a sequence or set of values. PACTS proposes a general method
for using abstracted representations to isolate private information. PACTS is capable of hiding
private information that is required by the proposed re-identification method to reference time
series to households and the extraction of appliance states by a recent non-intrusive-appliance-load
monitoring approach [8].

Privacy-enhancing methods, including PACTS, modify the provided data set. It is questionable
whether the modified data are still useful for applications. An extreme example is that all the
electricity consumption values are set to zero at each point of time. Although this will obviously
preserve privacy, the data quality is low and the applications cannot provide any benefit for society.
Thus, we require a measure for determining the influence of privacy-enhancing methods on data
quality. In particular, for the time series there are abstract measures to reflect the distance between
the original and the privacy-enhanced one [115]. However, abstract measures do not reflect the
actual effect on applications for a specific scenario. For example, the L1 norm reflects absolute
distances, but does not judge the data quality for an application requiring correct averages. Addi-
tionally, resulting numbers give a rather abstract idea of the actual impact. In contrast, we develop
an application-specific measure that is meaningful in the smart grid scenario and returns intuitive
understandable measures. This allows us to gain insight into the effects of privacy methods and
their parameters and allows for the comparison of different approaches.

C.3 Local energy market: Application-specific data-quality measure: We integrate
privacy-enhancing methods in a local energy market. The comparison of market outcomes with
privacy-enhanced and unmodified data results in intuitively understandable measures such as wel-
fare and CO2 emissions.

Measuring the data quality with the help of local energy markets is challenging: It requires a
design of local market, that is aware of privacy-enhancing methods and includes the integration
in the remaining power grid. Simulations require models for supply and demand, including prices
and valuations of participants.

The local energy market depends on the smart-meter time series provided by individuals. The
market outcome is useful as an intuitive measure for the impact of privacy-enhancement methods.
In the scenario itself, antagonism exists between privacy and benefit to society. Local energy mar-
kets are a powerful tool for the automatic distribution of renewable generated electricity. However,
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they are a threat to participating individuals because they require publication of the electricity
demand. Modifying the time series to protect the privacy decreases allocation efficiency and influ-
ences the theoretical properties of such markets. To understand the influence of privacy-enhancing
methods, we investigate the interplay in detail in our fourth contribution [12, 57].

C.4 Impact of privacy enhancement on electronic markets: We evaluate the theoretical
and numerical effect of privacy-enhancing methods on electronic markets by example of the local
energy market. We will prove theoretically that the market mechanism keeps important properties
like incentive compatibility. The conducted numerical evaluation shows that the overall impact on
measures like welfare is low and controllable, and that storage systems are capable of mitigating
the negative effects of privacy enhancement.

In addition to PACTS, several other privacy-enhancing methods exist. To derive theoretical
results, we need to define properties that are general enough to cover a number of such methods
and specific enough to have a meaning for these markets. Numerical evaluation requires real-world
data to implement models of supply and demand. The investigated scenario is integrated into
the smart grid context; however, the results are applicable to time series in general: Utility and
privacy enhancement do not exclude each other. Applying an application-specific measure allows
the comparison of enhancement methods. The results hold for other applications as well, if the effect
of changes in the time series have comparable consequences for the utility. For instance, increasing
or decreasing time series values may have a different impact. Furthermore, the local energy-market
measure is adaptable to various configurations, e.g., if there is undersupply, decreasing time series
values may have no impact on the revenue at all.

For the smart grid scenario itself, the results clearly show that privacy-enhancement methods
are applicable to a local energy market with acceptable consequences: The market is still efficient
in economic terms and reduces CO2 emissions even with strict privacy requirements.

1.3.1 General Applicability of Contributions

Within the smart grid scenario we evaluate the proposed methods and measures. However, the
contributions are general applicable in the context of privacy for time series of personal information:
The proposed re-identification method for time series (C.1) is independent of the features consid-
ered. Thus, it is very likely that such features can also be found for a different data set consisting of
time series of personal information, e.g., GPS trajectories. The same considerations can be applied
to contribution C.2. Information deemed sensitive might be distributed amongst several points
of time. An abstracted representation can be used to isolate certain information and to provide
provable guarantees according to PACTS. Contributions C.3 and C.4 show in particular, that it
is possible to ensure privacy of individuals and provide useful data for applications in a real-world
scenario. The results indicate, that this is also possible for applications dependent on different
time series and might even be applicable to privacy methods for any personal data. Respecting
the privacy of individuals will lead to a lot more data and information publicly available fostering
research as well as applications for the benefit of society in many fields.
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Chapter 2

Re-identification and Privacy Threats

Various devices record and store the time series of individuals. Popular examples are GPS devices,
smart meters, or self-tracking devices that measure the body functions. Data that are subject
to privacy legislation require special treatment: Access is limited to contractually established,
predefined purposes and parties. Data fulfilling the following two properties (see Section 1.2.2)
make it subject to privacy legislation:

1. The data have to be personal in that it reflects the living conditions of individuals.

2. The information has to concern an identified person or is identifiable with minimal effort.

Smart-meter data reflect personal details (‘living conditions’) because information about habits
and running appliances can be extracted. This is not straightforward and requires the help of
complex models, such as appliance load signatures. However, the extraction of such information is
possible and we explain the approaches from related works in Section 2.1.1. Figure 2.1 illustrates
the information extracted from a time series of smart-meter data.

To be relevant for privacy legislation, data also have to concern an identified or identifiable
person. Identifiable means that it is possible to reference a data set to an individual. Usually,
this is straightforward under the presence of identifiers like the name or the address. We will
show that the reference to individuals is possible even without the presence of such identifiers.
Consequently, the time-series data itself is identifying. In Section 2.2 we show how re-identification
can be achieved, with the help of external knowledge concerning features of the consumption, and
is illustrated in the following example:
Example 1 (Re-identification example): A network operator works with energy-
consumption data from a certain area. Because the operator is not involved in billing or cashing, it
does not know the identity of the households from where the data are extracted. However, an em-
ployee of the operator knows that his or her neighbor typically uses the coffee machine at 7.15 a.m.
and the microwave at 1.30 p.m.. Suppose that only one time series from the consumption data has
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Figure 2.1: Example smart-meter data with extracted information on activities [83]

these characteristics. In this case, the employee could find out which consumption data belong to
his or her neighbor, and explore the neighbor’s entire consumption history. ◻

This example illustrates that the re-identification and information extraction are orthogonal to
each other. Even if it is impossible to re-identify smart-meter data, it could still be possible to
extract sensitive information, and vice versa. Consider a set of two identical time series: It is not
possible to compute pseudonyms that distinguish both time series, but information such as the
daily routines could be extracted.

In this chapter, we analyze to what extent anonymous energy-consumption records are prone to
re-identification and fulfill contribution C.1. In particular, we are interested in the effectiveness
of simple statistical measures to this end. Furthermore, we investigate which features of the en-
ergy consumption of the households are particularly well-suited to re-identify consumption data.
Our findings indicate, that privacy obligations apply to smart-meter data stripped from personal
identifiers. Our study is based on the observation that almost all daily activities, from making
breakfast to relaxing with a game console, influence the energy consumption. Because the daily
routine is influenced by many aspects of the household, e.g., employment status, hobbies, or the
number of persons, features of the energy-consumption data should be inherently identifying for
many households. Furthermore, we consider features like the aggregated consumption per day or
the time of the first peak demand in the morning, and we analyze to what extent we can use
these features for re-identification. Instead of striving for complete sets of features or sophisticated
algorithms, we are interested in finding out whether straightforward features and simple statistical
measures are sufficient for re-identification of consumption data. Our goal is to show that poten-
tial for misuse of smart-meter data is high. With simple measures, non-experts would be able to
perform re-identification. Straightforward features that could be estimated or observed by anyone
would increase the privacy threat even more.
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In particular, for C.1 we contribute the following:

1. We identify and analyze a number of energy-consumption features, and we quantify to what
extent they can be used for re-identification;

2. We describe an analytical framework for the re-identification of energy-consumption data ac-
cording to the consumption features; and

3. We measure to what extent it is possible to systematically re-identify households based on
consumption features.

The remainder of this chapter is structured as follows: We begin with the discussion of related
works covering information extraction and re-identification (Section 2.1) and continue with our
re-identification approach (Section 2.2) before we conclude (Section 2.3).

2.1 Related Work

In general, we distinguish between information extraction and re-identification. Given a record of
personal data, information extraction means to infer personal information from that data record.
This term summarizes all kinds of information extraction, including probabilistic cases that extract
information and a corresponding probability, i.e., the confidence that a certain device is actually
running. Re-identification, in turn, refers to the process of re-assigning data without an identifier
like a name or an address to an individual. Data that contain personal information and are referable
to individuals are subject to privacy legislation.

2.1.1 Information Extraction

One popular class for extracting information from smart-meter data are the so-called non-intrusive
appliance-load monitoring (NIALM) methods. The term was first introduced in [45], summarizing
methods that take an aggregated power consumption value and then return information about
running devices and their states. In contrast to intrusive load monitoring, it does not require
placing measurement devices on individual appliances. As a first approach [45], trains finite state
models and signatures of appliances as external knowledge. The recent INDiC approach [8] improves
the original method [45]. Depending on the actual appliance, the state guessed up to 89% of the
cases as being correct. Compared with other approaches, it is simple and it detects appliances
accurately. In Chapter 3 we use INDiC as a generality test for the proposed privacy-enhancing
method. Thus, we explain [8] in greater detail. INDiC assumes that each appliance has a number
of states with different extents of power consumption, and an appliance can only be in one state at
a time. In this case, disaggregation is a combinatorial optimization problem, namely, finding the
optimal combination of appliances in different states while minimizing the error. INDiC requires a
special data set for training. It consists of the total power consumption of the household, usually
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measured by a smart meter at the mains’ connection, and the consumption of single appliances in
question. The test data set for the NIALM approach only consists of the mains’ time series. For
example, the REDD data set (see Section 3.6) qualifies as training and a test data set because it
contains the main power consumption in addition to appliances in isolation. INDiC conducts the
following steps:

1. Initialization/Preprocessing: The temporal resolution of the power measured at the mains and
the appliances may differ; so, in the first step, INDiC harmonizes the time series by, e.g.,
downsampling;

2. Training phase: INDiC conducts a clustering step of the appliance data to extract the typical
states of an appliance. For example, a ‘light bulp’ has two states: It consumes no electricity
when switched off and a fixed amount when switched on. Furthermore, the mapping of ap-
pliance states to the main power consumption is calibrated, because the household may have
additional devices that are not monitored in isolation; and

3. Combinatorial optimization on test set: The last step is the actual NIALM step. INDiC solves
a combinatorial optimization problem, in which the sum of all appliance state consumption
values have to be equal to the total consumption at a specific point in time.

NIALM is also possible without the training step and is called unsupervised disaggregation [42,
61, 83]. For example, the methods proposed use Hidden Markov [61] models to detect appliances
or to label activities in the household [83]. Numerous approaches exist; see [121] for an overview.
Obviously, using appliances reflects living conditions and gives insight into the typical activities of
the household.

These approaches can detect whether a household has the TV switched on. Additionally, [43]
can extract which program is running. It is a well-known fact that current televisions require less
power when displaying dark or black images compared with bright ones, because the backlight is
dimmed in dark scenes. This leads to an identifiable signature of the current running program [43].

Thus, the time series of power consumption data as measured by smart meters is personal.
Combined with further external knowledge, like the times of church services in communities nearby
compared with the presence or absence in a household on Sundays, the smart-meter data provide
insight into the private lives of individuals.

2.1.2 Re-identification

It is well-known that personal data, even without containing identifiers like the name or the address
of a person, can be re-identified with the help of external knowledge. For example, a study from
1986 shows that 63% of U.S. citizens are identifiable by the combination of the date of birth, gender,
and ZIP code [22]. A succeeding study from 1997 was conducted on the voting list for Cambridge,
Massachusetts, and contained the demographics on 54,805 voters [107]. 97% of the individuals are
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identified by the full postal code and the birth date, and still 69% with only a birth date and a
5-digit ZIP code (the full ZIP code consists of 6 digits). In the following, we refer to attributes
that do not contain identifiers but help in re-identifying records quasi-identifiers [108].

The construction of these quasi-identifiers give way to re-identifying records that contain personal
information. In [108], external knowledge from a publicly available voter list was combined with
a public data set of health records, leading to a re-identification of a governor of Massachusetts.
Re-identification is also an issue for other data sets like the published AOL search records [7]: The
published data set contained only the searched terms combined with a unique key that did not
qualify as a personal identifier. With the help of a fraction of the searched terms, the adversary
was able to infer the address of an individual and re-link all of the searched terms. The remaining
terms that were also linked to that person gave insight into her personal life, e.g., ‘numb finger’,
‘60 single men’, and ‘dog that urinates on everything’.

[39] proposed a method for securely computing pseudonyms for smart meters without requiring
a trusted third party. Such a party may facilitate re-identification by combining unique network
addresses with pseudonyms. However, the method proposed in this work does not rely on any
information in addition to consumption-related external knowledge.

The time series of GPS trajectories are known to be identifying [86]. In particular, regular
locations in the morning usually refer to the home of an individual and the first route usually ends
at the workplace. The time series of smart-meter data [53] introduce a way for re-identification
with the help of two attack vectors using anomaly-detection-behavior pattern matching. [53] used
a rather complex solution that is fixed to specific attacks. It is difficult to argue that these attacks
still require only minimal effort. In contrast, the proposed method is a general one, applicable to
a number of intuitive features and can be easily extended to new features.

2.2 Re-identification Approach

In this section, we introduce our re-identification approach [11]. The concept of re-identification has
already been shown for several other data sets. We will show that the time series of smart-meter
data can be re-identified by an adversary with a high probability with simple statistical measures.
We extract different features of the energy consumption data, e.g., the first or the last peak of
the day, and provide an analytical framework to quantify how well these features can identify
households. If an adversary has external knowledge of a feature, a household can be re-identified.
Some features are easily obtainable by others, e.g., the time of the first peak is related to the time
that a household gets up and some others require more knowledge about the consumption over a
specific period of time.

Depending on the assumed external knowledge, we are able to re-identify up to 80% of the tested
households. High re-identification rates are possible within 10 s of computational time on current
hardware. We will show, that adding complexity does not necessarily increase re-identification
rates by much.
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2.2.1 Common Notation

For the sake of consistency, we introduce a small set of common notations for definitions used in
this chaper as well as throughout the whole dissertation. This covers the notation of time series,
the relevant domains, and individuals to whom the time series belong.
Notation 1 (Time domain T ): The time domain T is a countable infinite set and contains
all points of time t that defines a time series.
Notation 2 (Value domain V): A time series assigns a value v to each point of time in T ;
the set V contains all possible values v.
Notation 3 (Time series): A time series f(t) maps points of time t ∈ T to values v ∈ V.
Notation 4 (Individuals): In this work, time series are always data from individuals (respec-
tively their households); each time series f represents the data of an individual.

Note: to ease our presentation, we summarize the term ‘individual’ as a single person and a
small group of persons who are still relevant for privacy concerns, e.g., a household.

2.2.2 Study Methodology

This section provides the theoretical background of our study. To investigate the identifying degree
of energy-consumption data, we analyze real-world smart-meter readings with different periods. We
take a set of time series F with the time domain T measured by smart meters of n = ∥F∥ individual
households I. Our goal is to show that having certain external knowledge K is enough to identify
an individual p ∈ I. In the following, we refer to this data set as the ‘test data’.

Distinguishing the energy consumption of households with extremely different characteristics
tends to be rather simple: For instance, a single-person household has a significantly lower energy
consumption than a multi-person household, or daytime employees will have different peaks than
shift workers. Instead, we will show that it is still possible to re-identify households with similar
energy-consumption developments. This challenging setup requires an analytical framework that
uses a combination of consumption features for re-identification. Re-identification, while having
precise knowledge of the actual data, is not challenging. Thus, we assume that an attacker has
external knowledge K from any source, but not from the test data. We will show instead, that for
most of situations, re-identification is possible with only imprecise information.

In our model, external knowledge K consists of several feature values that describe power con-
sumption properties (see Definition 1), a tolerated error that determines possible imprecision (see
Definition 3), and the importance of each feature to the others, which we subsequently call ‘weight’
(see Definition 2). Features from external knowledge may differ from the features of the test data
even if both belong to the same individual. For example, the first peak in the morning may differ
a few minutes each day. Taking this into account, the adversary also knows the tolerated error,
which is the maximal difference that a feature for the same household for different periods of time is
assumed to have. Each weight determines the identifying degree of a certain feature in comparison
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to the others in a data set. For example, if the adversary assumes that the total power consumption
distinguishes the households better than the time of the first peak, the weight of the total power
consumption will be higher.
Definition 1 (Feature φ): A feature is a calculation rule describing a certain, possibly
identifying property of an individual’s electricity consumption. The value of a feature φf refers to
an actual result of the calculation for time series f . ◻

Definition 2 (Weight ωφ): The weight ωφ is a factor discriminating the importance of feature
φ in relation to other features of a data set. ◻

Definition 3 (Tolerated Error δφ): The tolerated error δφ quantifies the maximum distance
of two features to be considered from the same individual. ◻

Definition 4 (External Knowledge K): The external knowledge of an adversary consists of
a set of features Φ, a set of weights Ω, and a set of tolerated errors ∆.

K = {Φ,Ω,∆}

◻

To mimic an adversary having external knowledge, our approach includes a training phase. In
this phase the re-identification framework learns the weights for each feature with the help of a
training data set. The training data set is fully known. More specifically, our framework conducts
the following steps:

1. Training:

• Feature and Distance Computation: We divide the training data set into two distinct
periods. Based on the features described in Section 2.2.2, we compute the feature values
of each time series in the first and second period of the training data set. Additionally,
we compute distances between the features in both periods. The calculated distances in
combination with the feature values of the known households allow the computation of
weights.

• Weights Computation: Features may vary in their spread of values: A high spread is more
likely to differentiate individual households than a low one. Thus, features should have
different weights for the final re-identification. We use a static, linear optimization and
an integer linear optimization approach in addition to determine weights. We investigate
whether higher computational complexity increases the re-identification performance (see
Section 2.2.2).

2. Re-identification:

• The final step is to calculate the weighted distance between the precalculated features of
a household in combination with the results of the training phase as external knowledge

17



2.2. RE-IDENTIFICATION APPROACH

Absolute Difference Relative Difference
Consumption Overall Consumption Maximum Consumption

Minimum Consumption Standard Deviation
0.9-Quantile Frequency of Mode

Consumption Dur- Consumption M–F, 4 a.m.–8 a.m. Consumption M–F, 10 a.m.–4 p.m.
ing Time Interval Weekend Consumption Consumption M–F, 9 p.m.–2 a.m.
Time Average Wakeup Hour

Average Bedtime Hour

Table 2.1: Electricity-consumption features

and an anonymous consumption record. A household is re-identified if the distance to
the correct household is lower than the distance to any other one.

The rest of this section is structured as follows: First we introduce the features we use for
re-identification and then describe the necessary algebraic framework.

Determining Features

Based on the insights of Section 2.1.1, we assume that the electricity consumption of a household
reflects the daily routine. In the following, each defined feature covers a certain aspect of the routine.
Features that are best suited for re-identification have the following properties: First, because we
prefer features that tend to be identifying, a feature should not change as long as the household
keeps the daily routine. For example, the ‘average wakeup hour’ will not change permanently unless
the individuals of the household change their way of life significantly. Additionally, for different
time periods of the same household, the value of the feature should stay the same, whereas it differs
from values of the same feature for other households. Second, it is possible for an adversary to
guess the value of the feature by observing the household’s way of living. In particular, estimating
the feature value does not necessarily require access to the electricity consumption data of the
household in question.

In general, we assume that there are no limits regarding the external knowledge of an adversary.
Thus, every possible feature could be contained in the adversary’s knowledge. Still, the proposed
features cover a large variety of different aspects, including intuitive, easy-to-determine external
knowledge.

In the following, we define the features for re-identification. Features can take three different
combinations of time-series properties into account: the consumption values solely, the consumption
during a time interval, and the time. These three properties form a categorization of features.
Table 2.1 summarizes the defined features. For the sake of exposition, we refer to f ∈ F as the time
series and T as the time domain by which a feature is defined.
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Consumption These features rely on the measured consumption values of individuals only.
Definition 5 (Overall Consumption (OC)): The overall consumption is the sum of all
consumption values:

φOCf = ∑
∀t∈T

f(t)

◻

Definition 6 (Minimum Consumption (MinC)): The minimum consumption is the lowest
of all consumption values in the time domain:

φMinC
f =min (∀t ∈ T ∶ f(t))

◻

Definition 7 (Maximum Consumption (MaxC)): The maximum consumption is the highest
of all consumption values in the time domain:

φMaxC
f =max (∀t ∈ T ∶ f(t))

◻

Definition 8 (Standard Deviation (SD)): The calculation of the standard deviation requires
the mean value of the time series. Let N = ∥T ∥ be the number of time-series values, then the mean
f is

f =
∑∀t∈T f(t)

N

The actual feature value is calculated as follows:

φSDf =

¿
Á
ÁÀ

1
N
∑
∀t∈T

(f(t) − f)2

◻

Definition 9 (0.9-Quantile): The quantile is a statistical measure representing a threshold
that divides the ordered sequence of consumption values in predefined fractions. The 0.9-quantile
φ0.9Q
f is the threshold that divides the consumption values of f in the upper 10% and lower 90%.
◻

Definition 10 (Frequency of Mode (FOM)): To determine the frequency of mode, we
calculate the number of each unique value f(t). The frequency of mode φFOMf is the number
of occurrences of the most frequent consumption value, i.e., the highest value of the conducted
calculation. ◻
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Consumption during time interval: These features consider consumption and the point of
time when the electricity was consumed.
Definition 11 (Consumption Mo-Fr h1-h2 (MF)): This feature is the sum of all consumption
values during the hours h1 and h2 on a weekday, i.e., between Monday and Friday. For the sake of
simplicity, we first filter the time domain and get the points of time in question. Let isWeekday(t)
return true if t is on a day of the week and false otherwise. Furthermore, let hour(t) return the
hour of a day represented by t:

T ′
= {t ∈ T ∣isWeekday(t) ∧ h1 ≤ hour(t) ≤ h2}

The feature value is the sum of all consumption values during the already filtered time span:

φ
MF (h1,h2)
f = ∑

∀t∈T ′
f(t)

As features, we consider time intervals on weekdays between 4 a.m.–8 a.m., 10 a.m.–4 p.m., and 9
p.m.–2 a.m. ◻

Definition 12 (Weekend Consumption): Similar to the consumption during the weekdays,
this feature represents the complete weekend consumption. Let isWeekend(t) return true, if t is
on a Saturday or a Sunday and false otherwise.

T ′
= {t ∈ T ∣isWeekend(t)}

The feature value is the sum of all the consumption values at t ∈ T ′:

φ
MF (h1,h2)
f = ∑

∀t∈T ′
f(t)

◻

Time These features determine points of time when energy consumption increases or decreases.
Definition 13 (Average Wakeup Hour (WH)): The average wakeup hour is the average
time of day when the first significant increase in electricity consumption occurs. The calculation
considers only weekdays, as wakeup times on weekends may vary. A single wakeup hour is h in
two cases: First, if the consumption in hour h is 30 W higher than the consumption in the hour
before; second, if the sum of consumption during the hour h and the hour before h − 1 is 40 W
higher than the consumption in the second to last hour before (h− 3). The feature φWH

f = h is the
average value of all calculated wakeup hours h. ◻

Definition 14 (Average Bedtime Hour (BH)): In turn, the average bedtime hour is the first
significant decrease in power consumption in the afternoon after 4 p.m. The hour h is the bedtime
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hour if the energy consumption is 30 W lower than in the hour before. The feature φBHf = h is the
average value of all calculated bedtime hours h. ◻

The list of features is obviously not complete; one can easily think of other features related to
the lifestyles of individual households. However, the goal of this study is not to provide a complete
list of possible features, but rather to show that re-identification is possible with simple means.

Algebraic Framework

Remembering that the goal of this study is to re-identify an individual’s time series in a set of
time series with any identifier. The algebraic framework precisely describes the way we calculate
a score for each of the time series in question and the procedure of ‘guessing’ the right time series.
The computed score is a weighted distance between the features calculated in a training period
as simulated external knowledge and the features of a time series in question. We determine the
weights in three different ways, allowing a comparison between the computational effort and the
re-identification performance.

In the following, let I be the set of individuals p ∈ I in question. fp denotes the time series that
belongs to p. Furthermore, we distinguish between the set of time series in the training period Fα

and the re-identification period Fβ. The time series in both sets are defined as T α respectively
T β, whereas T α ∩ T β = ∅ holds. For each time series fαp ∈ Fα we know the individual p ∈ I. In
turn, for each time series fβp′ ∈ F

β we want to determine whether fβp′ is from the same individual,
i.e., p = p′.

We consider absolute and relative distances of these features. Relative distances might be more
informative than absolute ones, e.g., if the maximum consumption is 90 W , the relative distance
to 120 W is as significant as the distance from 3000 W to 4000 W . The distances of feature φ for
time series fαp and fβp′ are defined as follows:
Definition 15 (Absolute distance dabs): We define the absolute distance between fp and
f ′p′ as a difference of the feature values φ:

dφabs(f
α
p , f

β
p′) = ∣φfαp − φfβ

p′
∣

◻

Definition 16 (Relative distance drel): In turn, the relative distance between fp and f ′p′
depends on the average of feature φ for both time series:

dφrel(f
α
p , f

β
p′) =

RRRRRRRRRRRRRR

φfαp − φfβ
p′

(φfαp + φfβ
p′
)/2

RRRRRRRRRRRRRR

◻
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Each feature is used either with the relative or the absolute distance (see Table 2.1). The category
of each feature depends on the meaning. For instance, the deviation of the maximum consumption
feature has to be considered in relation to the actual value. For households with a high maximum
consumption value, small absolute differences may not be significant.

To re-identify a consumption record, we compare the feature value calculated on the known
household φfαp with the feature value of the record in question φ

fβ
p′

by means of the absolute
or relative distance. Because inaccuracies may occur even for the same household, we say that
two feature values are equal if their distance is below a certain threshold δφ. To determine this
threshold, we conduct the following steps: For each feature φ and each individual in I = {p1, . . . , pn}
we calculate a set of distances Dφ = {dφ(fαp1, f

β
p1), . . . , d

φ(fαpn, f
β
pn)}. This set may contain outliers,

e.g., an individual may go on vacation, leading to a huge difference in the consumed energy. To
diminish the influence of outliers on the threshold, we take only the ‘smallest’ 90% of the values
in Dφ, we call D0.9

φ subsequently. In particular, ∥D0.9
φ ∥ = 0.9 ⋅ ∥Dφ∥ holds. We choose the following

implementation of δφ.
Definition 17 (Implementation of δφ): Let avg(X) be the average value of set X, and
SD(X) the standard deviation of the sample X. For each feature φ, the implementation of the
tolerated error δφ is calculated as follows: δφ = avg(D0.9

φ ) + SD(D0.9
φ ). ◻

Finally, we are able to define the score assigned to two time series fα and fβ depending on
feature φ.
Definition 18 (Score for feature φ): The score Scoreφ(fα, fβ) is the similarity between the
time series fα and fβ with respect to feature φ and is calculated as follows:

Scoreφ(f
α, fβ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if dφ(fα, fβ) < δφ
dφ(fα,fβ)−δφ
SD(D0.9

φ
) otherwise

◻

The more similar two time series are with respect to a certain feature, the smaller is the score.

Weights Computation

An adversary is able to take a set of features Φ into account. A feature may be of higher importance
than another for the specific data set. To support that case weights Ω are also considered for each
feature. The resulting total score is calculated as follows.
Definition 19 (Score for set of features Φ and weights Ω): The score of two consumption
records for a set of features is the sum of all normalized feature scores. We calculate the score as
follows:

ScoreΦ(fα, fβ) = ∑
∀φ∈Φ

ωφ ⋅ Scoreφ(f
α, fβ)
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◻

Our goal is to re-identify households by their consumption records in comparison to a training
consumption record with known identity. Intuitively, to increase the re-identification performance,
the weight for a distinct feature should be high and low for a less-distinctive feature. In total, we
explain three different ways of determining these feature weights. They differ in their computing
complexity. Thus, we investigate whether investing more computing time helps in improving the
re-identification performance.

Static Approach: This is our baseline approach; all features are weighted equally with 1:

∀φ ∈ Φ ∶ ωφ = 1

LP Approach: This approach uses linear optimization to determine weights that fulfill the
following properties: Distances to other individuals should be maximized, whereas distances to
the individual’s own record should be minimized. We use linear optimization to maximize a term
that iterates over each individual p ∈ I and totals the differences of the correctly re-identified record
and the next closest individual p′:

∑
∀p∈I

∣minp′∈I∧p′≠p(Score(f
α
p , f

β
p′)) − Score(f(p)

α, fβp )∣

Obviously, this solution is not optimal with respect to the training data set: Maximizing the
difference considering all individuals may still lead to a suboptimal solution for a single individual.
In particular, maximizing that difference does not guarantee that the score to the individual’s own
record is the smallest.

ILP Approach: The ILP approach follows a similar intuition as the LP approach. The resulting
score considering the data of the same individual has to be smaller than the score to any other.
In contrast to the LP approach, we guarantee that the score to the individual’s own record is the
smallest if a valid solution is found. The binary variable xp ∈ {0,1} indicates the following for
p, p′ ∈ I, p ≠ p′:

xp =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ∃p′ ∶ Score(fαp , f
β
p′) ≤ Score(f

α
p , f

β
p )

0 otherwise
xp is 0 if the score for the correct identification is smaller than for an incorrect one, and 1

otherwise. Thus, we have to minimize the following sum to get an optimal solution:

∑
p∈I

xp

To do so, we use linear optimization to determine the fitting weights.
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2.2. RE-IDENTIFICATION APPROACH

Household Size Fraction
1 40%
2 25%
3 20%
4 10%
5 5%

Table 2.2: Distribution of household sizes

2.2.3 Used Data Sets

To provide meaningful results, we base the evaluation for this chapter and throughout this thesis
on real-world data. This section summarizes and explains contents of two data sources, used for
this and for subsequent evaluations.

Electricity Customer Behavior Trial

The Irish Social Science Data Archive (ISSDA) publishes the ‘Electricity Customer Behavior Trial’
data set from the Commission for Energy Regulation (CER) in Ireland. The CER conducted a
study with 5,000 Irish homes of different sizes between 2009 and 2010 [51]. The households were
equipped with a smart meter that measured the power consumption every 30 min. The data also
included questionnaire results; however, in this work only the consumption data and the number
of people living in a household are considered.

Distribution of Household Sizes

For the efficient computation of results, we usually consider only a fraction of the households in a
huge data set. In particular, we define a town or a district by the total number of people living
there. To (randomly) extract a representative set of household sizes, we require a distribution.
National statistics offices publish such data, i.e., we took the data from the German Office to
represent central Europe. Table 2.2 summarizes the statistics published [106].

2.2.4 Study Results

The goal of the study is to show that households can be re-identified with the help of rather simple
features. Thus, the results are divided in two parts: First, we investigate the identifying degree of
the features used; and second, the actual re-identification performance. Both results are computed
on the CER data set. We vary the number of total individuals living in households of different sizes
following a typical distribution (Both data sources are described in the previous Section 2.2.3).
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Identifying Degree of Features

We consider a feature as identifying if the feature value itself is unique for the known period
and if the difference to the same feature for the same individual in the re-identification period is
low (optimally zero). More precisely, regarding the standard deviation of the feature values and
differences, the following holds: A feature is identifying if the feature values have a ‘high’ standard
deviation and the differences have relative ‘low’ value. As a first step, we investigate the features
proposed on their identifying degree. For the evaluation, we take a set of households with 500
persons living in them. Figures 2.2–2.12 show the results represented as histograms. Table 2.3 lists
the standard deviation of the feature values and the feature value differences.

R.1 Features differ in the identifying degree. Features differ in the standard deviation of
the feature values and its differences. For instance, the feature ‘standard deviation’ has a lower
deviation in the values than in the differences (Table 2.3). In turn, the feature ‘overall consump-
tion’ has a 2.5-times higher deviation of the values compared with the differences. Thus, ‘overall
consumption’ is more identifying than ‘standard Deviation’. The histograms (Figs. 2.2 and 2.7)
confirm the results in the table.

The actual identifying degree of a single feature may also change when considering a different
data set. However, the features are defined independently of an actual data set and thus are general.

R.2 The features proposed are suitable for re-identification, i.e., they are sufficiently identifying.
Judging from the standard deviations in Table 2.3, there are a number of features with the deviation
of values being a multiple of the differences. Large fractions of households having low differences
and being well distributed over the range complement this fact. For example, this is the case for
the feature ‘Consumption M–F, 9 p.m.–2 a.m.’ (Fig. 2.5). Because we consider a set of features for
re-identification, the chosen features are sufficiently identifying.

We discuss the actual identifying degree in the next section, including further experimental
analysis.

Re-identification Performance

To test the actual re-identification performance, we conducted experiments with the following
varying parameters:

• We vary the total number of people distributed over the households among 100, 500, and
1,000. This results in 32, 158, and 314 households, respectively. Half of the households are for
training purposes (Fα), and the other half for testing the re-identification performance (Fβ).

• The considered timespan is 14, 21, and 28 days. The feature values of the first half of these
timespans is used as external knowledge.

• For each configuration, we used the static as well as the LP approach for the weights compu-
tation. Calculating the weights with the ILP approach was, as a result of the computational
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Standard Deviation of Feature Values Differences
Overall consumption 71.90 25.55
Maximum consumption 2.45 1.93
Minimum consumption 0.15 0.032
Consumption M–F, 9 p.m.–2 a.m. 14.98 0.41
Consumption M–F, 4 a.m.–8 a.m. 9.50 5.04
0.9-Quantile 1.09 0.47
Standard Deviation 0.43 1.44
Frequency of Mode 15.41 0.54
Weekend Consumption 0.06 0.058
Average Wakeup Hour 2.32 1.72
Average Bedtime Hour 5.72 3.39

Table 2.3: Standard deviation of feature values and differences
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Figure 2.2: Analysis of the ‘Overall Consumption’ feature
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Figure 2.3: Analysis of the ‘Maximum Consumption’ feature
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Figure 2.4: Analysis of the ‘Minimum Consumption’ feature
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Figure 2.5: Analysis of the ‘Consumption M–F, 9 p.m.–2 a.m.’ feature

0%

5%

10%

15%

20%

25%

0 20 40 60
Consumption M–F, 4 a.m.–8 a.m. of 1st Period (kWh)

F
ra

ct
io

n 
of

 H
ou

se
ho

ld
s

(a) Distribution

0%

10%

20%

30%

40%

0 10 20 30 40 50
Consumption M–F, 4 a.m.–8am Differences (kWh)

F
ra

ct
io

n 
of

 H
ou

se
ho

ld
s

(b) Differences Distribution

Figure 2.6: Analysis of the ‘Consumption M–F, 4 a.m.–8 a.m.’ feature
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Figure 2.7: Analysis of the ‘Standard Deviation’ feature
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Figure 2.8: Analysis of the ‘0.9 Quantile’ feature
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Figure 2.9: Analysis of the ‘Frequency of Mode’ feature
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Figure 2.10: Analysis of the ‘Weekend Consumption’ feature
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Figure 2.11: Analysis of the ‘Average Wakeup Hour’ feature
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Figure 2.12: Analysis of the ‘Average Bedtime Hour’ feature
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effort, only possible with 100 persons (32 households, respectively).

• Because the households are randomly selected, we repeat the training and the re-identification
process for each configuration 10 times.

We measure the relative number of re-identified households, training, and test times for the
different weighting functions. In particular, we calculate the re-identification rate.
Definition 20 (Re-identification Rate): The re-identification rate is the fraction of house-
holds of a test data set that can be re-identified. For the re-identification, we assume external
knowledge K (according to Definition 4). ◻

R.3 Re-identification rate decreases with the number of test households. In general, if house-
holds have similar habits, they also have a similar power consumption. This makes re-identification
more difficult. The larger the set of tested households, the more likely it is to have similar power
consumption values (Fig. 2.13).

R.4 Re-identification rate increases the longer the tested timespan. The longer the tested
timespan, the longer the timespan weights are trained. That leads to a more precise external
knowledge, e.g., this reduces the probability that a feature is calculated on an atypical set of power
consumption values for a household. Thus, the re-identification rate increases the longer the tested
timespan (Fig. 2.13).

R.5 Re-identification rate does not change much when using weights computed with the LP
approach. In theory, the LP approach tries to determine weights that increase the re-identification
performance (Section 2.2.2). However, experiments show that the use of static weights is as good
as using LP computed weights. Computing weights on the training data set Fα gears the weights
to exactly this data set, but this does not necessarily increase the re-identification rate on the test
data set Fβ.

R.6 The ILP approach has a higher re-identification rate compared with the LP approach, but
a similar rate compared with the static approach. The ILP and the LP weights computation
approaches strive to increase the re-identification performance. However, we cannot guarantee that
because the training and test data set may have varying characteristics. In Result R.5 we have
already shown that the LP approach cannot compete against static weights. The ILP approach
results in higher re-identification rates than the LP approach, but is head-to-head with the static
approach (Fig. 2.14).

In addition the re-identification rate, we investigate whether investing additional computational
effort in the training phase with the LP or ILP approach increases re-identification success. We
measure execution times on a machine with a Dual-Core AMD Opteron 2218 Processor at 2,600
MHz and 28 GB RAM. The code is implemented in Java and runs on a Java VM 1.7. For the
equation solving (LP and ILP approach) we use the lp solve1 5.5 library.

1http://lpsolve.sourceforge.net/
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Figure 2.13: Re-identification rate for different tested timespans, different weight computation
approaches, and different household sizes

R.7 The training time of the the LP is at least an order of magnitude longer than for the static
approach. The training phase of the static approach includes only the computation of the
tolerated errors δφ. The training phase of the LP approach additionally includes the computation
of weights following the required properties. Solving these equations naturally consumes time. The
measured times (Fig. 2.15) show that the training time of the LP approach takes at least 10 times
longer. The differences in the execution times also increase with the number of training households.

R.8 The ILP approach requires longer computation time than the LP approach. Because of
the computational complexity, we were only able to conduct experiments with the ILP approach
covering the 100 persons (32 individual households, respectively) scenario (Fig. 2.16). The average
training time of the ILP approach is a few seconds longer than the one of the LP approach. However,
improvements compared with the performance of the static approach are rather small. Thus, the
additionally invested time does not lead to a significant increase in performance.

The increased complexity is acceptable if in turn the re-identification rate increases. However,
at least for the investigated data sets, this is not the case.

R.9 The additional computational effort for the LP and the ILP approach does not lead to a
similar significant increase in the re-identification rate. Results R.5 and R.6 show that the
LP approach may lead to worse re-identification rates, whereas the ILP approach may increase the
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Figure 2.14: Re-identification rate for the different tested timespans and different weight compu-
tation approaches including the ILP approach for 32 households

re-identification performance in certain situations. However, the small increase in re-identification
is not proportional to the increase in computation time.

Summarizing all the findings in the context of re-identification, we come to the final result.
R.10 Smart-meter data can be re-identified. With a minimal computational effort it is

possible to re-identify up to almost 80% of the households in the test data set (Fig. 2.13). For
certain data sets it is even possible to increase the re-identification rate by investing more in the
training time, i.e., using the ILP approach (Fig. 2.14). Shorter tested timespans and a larger
number of households decreases the performance; however, the re-identification rate never drops
below 30% on average. Keeping this in mind, without the proposed re-identification method, one
may simply guess the right household. This would lead to re-identification rates ranging between
0.3% for 1,000 individuals up to 3% for the scenario with only 100 individuals. The achieved rates
are by an order of magnitude higher, so we can conclude that households can be re-identified.

2.3 Conclusions

In this chapter, we have seen that the time series of smart-meter data contain different personal
information that reflects the living conditions. Depending on the actual frequency of measurements,
different details about the household habits can be extracted from such time series up to the running
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Figure 2.15: Training time for different tested timespans and different weight computation ap-
proaches

TV program. The conducted study clearly shows that it is possible to re-identify households while
having certain external knowledge. Thus, the data can be referenced to individuals and are subject
to privacy legislation. In particular, the whole approach—including feature extraction, training,
and re-identification phase—requires minimal computational effort and minimal personal effort as
well. Re-identification of smart-meter data threatens the privacy of a rising share of the population.
As explained in Section 1.2.1, legislation and national interests foster the deployment of smart
meters. Additionally, smart grid applications process such data.

To protect the individual right of informational self-determination while still providing appli-
cations with personal data, we require a method for removing information deemed private before
publication. The proposed features for re-identification and the extractable information using meth-
ods explained in Section 2.1.1 might be an indication of the kind of information that is private.
In the following chapter, we explain our second contribution, a privacy-enhancing method for the
time series of smart-meter data.

The proposed features and evaluation is geared toward smart-meter data. This is necessary to
have reliable evaluation results. However, with different feature definitions, the proposed method
is applicable to other kinds of time series as well. From an intuitive perspective, it is very likely
that there are periodic events or repeating patterns in personal time series, regardless of the actual
data source, because daily life regularly follows periodical routines. Thus, the conclusions drawn
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Figure 2.16: Training time for different tested timespans and different weight computation ap-
proaches including the ILP approach for the 100 persons/32 households scenario

in this chapter are also applicable to time series in general.
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Chapter 3

Privacy-Enhancing Methods

In many domains the disclosure of personal data is important to facilitate innovations. Hence, it
is of common interest to provide access to these kinds of data to achieve social goals. In contrast,
individuals require privacy protection. This antagonism holds for the smart grid (see Chapter 1).
In particular, the smart grid strives to reduce CO2 emissions and to guarantee reliable supply
at affordable prices. To achieve both goals it is necessary to integrate renewable energy sources
into the electrical grid. In contrast to traditional energy power plants, most of the renewable
sources cannot provide a steady and controllable supply. The installed smart meters in private
households play a major role in the integration. They allow a two-way communication between the
producers and consumers, thus improving the coordination of supply and demand. Applications
like demand-side management, flexible tariffs, or the local energy market improve the efficiency
of the power distribution. All of these examples have in common that they require access to the
power consumption data of individual households.

Smart-meter data contain a variety of different personal information. ‘Personal’ in a privacy
context means that it reflects the living conditions of individuals (see Section 1.2.2). In general,
personal information is subject to privacy legislation and requires protection as long as the data
can be referenced to a single individual. However, power-consumption data is easily identified, as
we have seen in Chapter 2. Additionally, applications like demand-side management require data
with identifiers. A complementary approach is to remove the information that an individual deems
sensitive, which we refer to as ‘secrets’ subsequently. If such information is removed, individuals
might be willing to publish their data because their right of informational self-determination is
respected.

In this chapter, we focus on the time series of smart-meter data. However, most of the ideas are
also applicable to time series in general. For a discussion, see Section 3.5. The contents of this
chapter are published in [58].
Example 2 (Bob’s electric flow heater): Bob has a smart meter and heats his showering
water with an electric flow heater. Bob will accept the disclosure of his smart-meter data if certain
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private information is removed. In particular, he wants to keep private the time of when he is
showering on the weekends and during the weekday mornings. An adversary with access to the
published data should not be able to learn whether the flow heater is starting or stopping between
8:00 and 11:00 on a weekday by inspecting the (disclosed) smart-meter time series. On weekends,
the consumption data should be so noisy that the probability of inferring the exact time when the
heater is working is sufficiently low. To do so, one has to know how the time series reflects the
flow-heater use and hide this on a weekday and then detect when the flow heater starts and stops
on a weekend. The noise should not be excessive, i.e., to preserve utility, the data should still
contain information that Bob does not explicitly want to hide. ◻

Smart-meter data contain a lot of different personal information, as stated in Chapter 2. Thus,
secrets may differ for each individual and respecting the privacy preferences means giving cer-
tain guarantees to which extent the information is actually removed or hidden. The well-known
Pufferfish privacy framework [60] supports the definition of individual and understandable privacy
preferences and their semantics. It also covers correlations within the data set, which is sometimes
necessary to guarantee privacy while keeping utility. Differential privacy in turn leaves aside such
correlations.
Example 3 (Correlations in the data): Let f(A), f(B), f(C) be the smart-meter time series
of Alice, Bob, and Carl’s household. f(A)[t] is the total power consumption of Bob’s household at
time slot t. Differential privacy approaches [5, 99] publish the privacy-enhanced sum at each time
slot of the households considered, i.e., f(B)[t]+f(A)[t]+f(C)[t]+ . . . : If there are no correlations
about the consumptions of Bob, Alice and Carl, an adversary cannot infer the actual consumption of
any one of them. However, there also are correlations when looking at each time series in isolation:
Suppose that Alice, Bob, and Carl each have a flow heater (for the shower) and bath lighting.
f(B)1[t] is Bob’s flow heater consumption and f(B)2[t] the one of the bath lighting. f(B)[t] is
the sum of all appliances in Bob’s household: f(B)[t] = f(B)1[t] + f(B)2[t] + . . . . Privacy cannot
be guaranteed in the same way as for the sum of f(B)[t], f(A)[t] and f(C)[t]: The flow heater
and the bath lighting obviously have correlations that differential privacy does not address [59]. ◻

Certain sensitive information is guaranteed to be removed from the data set. Pufferfish is an
abstract framework that has not yet been applied to smart-meter data. Thus, a qualitative evalua-
tion of the resulting data set is also missing. The application requires challenging conceptual work:
We require an abstracted representation of private information in a time series of smart-meter data
to perturb the data set according to abstract Pufferfish guarantees. All of the approaches have to
be general enough to cover arbitrary privacy preferences. We need to measure the utility of the
resulting privacy-enhanced data set. In the following, we elaborate more on these challenges.

Representation of Private Information Because of the nature of smart-meter data, the ag-
gregated power consumption of the running devices is reflected. For the sake of simplicity, ‘devices’
in this context summarizes all electric power-consuming appliances, including lighting. We assume
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that certain activities are related to a set of running devices. Running devices, such as the flow
heater in Example 2, result in a sequence of power-consumption values. These values may vary
because devices may have a slightly different power-consumption characteristic each time they run.
The exact consumption development may depend on external factors like the temperature. Ad-
ditionally, the smart meter may measure the aggregated power consumption of several running
devices. The first challenge is to find an abstracted representation that is flexible enough to cover
the explained uncertainty, and precise enough to have meaning for the secrets in question. In
the following, we refer to a single value of such an abstracted representation as ‘coefficient’. Fur-
thermore, we require the abstraction to have clear-cut semantics and the transformation must be
well-defined. We explain the requirements in more detail in Section 3.2.1. The overall goal of the
transformation is to have a representation of the time series in which each coefficient has a meaning
pertaining to a certain secret. This is in contrast to the natural time-based representation, in which
each coefficient has a meaning for a point of time.
Example 4 (Bob’s flow heater, abstraction, and coefficients): In Example 2, Bob wants
to hide the activity of his flow heater. Thus, the coefficients have to allow conclusions regarding
the flow heater operation. Suppose that the flow heater consumes 25 kW when running, and 0 kW
otherwise. A starting flow heater will lead to a difference between the power consumption at point
of time t and at t+ 1 of 25 kW . Such a difference indicates when Bob starts showering, and this is
subject to his privacy requirement. An abstracted representation in which each coefficient reflects
this kind of change is appropriate for the flow heater example. In general, running appliances lead
to more complex developments. For instance, a washing machine has different cycles with changing
electricity demand. If this is relevant to someone’s privacy, this information must be abstracted
and then hidden. ◻

Perturbing Smart-Meter Data Pufferfish provides precise guarantees for user-defined secrets.
Usually privacy is achieved through perturbation. Applying noise to the time series of smart-meter
data, however, is not straightforward: Such data are usually an aggregate of several appliances
and require a decomposition on a conceptual level. Next, we must take into account that different
appliances in the decomposed representation may have correlations. Our objective is to deal with
such time series individually.

Generality Secrets require a specific abstracted representation to achieve Pufferfish privacy. It
is challenging to find abstracted representations for a wide range of privacy requirements.

Evaluation Quantifying the usefulness of data is also not obvious. First, the data quality rating
requires a meaningful set of privacy requirements. In this chapter, we provide an objective on a
realistic source of such requirements. Second, we require an application-specific measure to quantify
the actual effect. We will discuss the measure in Chapter 4, and the results in Chapter 5.
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Contributions We contribute PACTS (Contribution C.2), a provable privacy-enhancing method
for time series. PACTS addresses these challenges as follows: The variety of possible secrets is
broad. To cover them we carefully select different abstracted representations and their transforma-
tions. To illustrate the whole method, we use the wavelet transformation as an example; it already
covers different secrets. To ensure privacy according to ε Pufferfish privacy, PACTS decomposes
the abstracted aggregated smart-meter signal into several channels on a conceptual level. This
decomposition allows the application of ε Pufferfish privacy-conform noise. Before publishing the
time series, it is transformed back into the natural, time-based representation. Thus, the published
privacy-enhanced and the original time series have the same format.

To ensure generality, we have to show that the transformation step is capable of covering a
wide range of objective privacy requirements. To do so, we take recent information-extraction
methods as an objective source of possible secrets. In particular, we define secrets covering re-
identification [11] (Chapter 2) and a non-intrusive-appliance-load monitoring [8] approach for in-
formation extraction.

The structure for the remainder of this chapter is as follows: First, we discuss several funda-
mentals (Section 3.1), including related privacy-enhancing approaches and the requirements for
the proposed PACTS approach (Section 3.2). We evaluate the effectiveness against information
extraction as well as re-identification (Section 3.4) before we conclude (Section 3.5).

3.1 Fundamentals

First we define a common notation in Section 3.1.1 and then we review recent privacy approaches
(Section 3.1.2). PACTS relies on the Pufferfish privacy framework, which we introduce in detail
in Section 3.1.2. Throughout this chapter, we use the wavelet transformation as an example in
PACTS. Thus, we introduce wavelets in Section 3.1.4. Please not that, PACTS is not limited to
this single transformation.

3.1.1 Notation

One of the key elements of this approach is the transformation of a time series in an abstracted
representation. For the sake of an intuitive illustration, we have chosen a vector-based represen-
tation in the context of this chapter. Vectors are elements of a vector space. The coefficients of
each vector are defined on a basis and express a linear combination of the vectors contained in
the basis. This basis defines the meaning of the vector coefficients. The standard representation
of a time series is still related to certain points of time and a value domain, i.e., the measured
power-consumption values. In general, time series are infinite sequences of measured values related
to an also infinite number of points of time. The support of vectors with infinite length requires the
definition of an infinite basis. However, handling infinite bases and vectors makes the illustration
of the transformations and abstracted representations unnecessarily complex. Thus, we make the
nonrestrictive assumption that the basis of the considered vector spaces are finite. The proposed
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notation of the time domain (Notation 1) and the time series (Notation 3) includes an infinite
number of measurements. Thus, we redefine both.
Notation 5 (Finite Time Domain): T̂ is the standard time domain. We assume that it is
discrete and of finite length: ∥T̂ ∥ <∞.
Notation 6 (Time Series in Vector Representation): A time series in vector representation
is an n-dimensional vector with basis B referred to as fB. If we specifically refer to coefficient t we
denote that as fB[t].

As previously mentioned, the standard basis is still the canonical time basis. To easily distinguish
between the standard and the abstracted representation, we denote the standard basis as E, defined
as follows.
Notation 7 (Time Series Standard Basis): The basis E is the standard basis for time series
in vector representation. Consequently, if the basis of a time-series vector is not explicitly given, it
is the standard basis: f = fE

The standard basis E maps the time domain T̂ to a time-series vector as follows. Let [t1, . . . , tn]
be the ordered list of all elements ti ∈ T̂ , then fE[ti] = f

⊺
E ⋅ ei is the power consumption at time

slot ti. For a given T̂ , the basis vector ei represents the ith ordered element. Consequently, the
standard basis is E = {ei∣i = 1 . . . n}. Additionally, we assume that the measured time series is
discrete and the intervals between the measured points are of equal length.
Notation 8 (Vector Space): VB is the vector space containing all linear combinations of the
basis elements in B.

The presented and related approaches define a privacy mechanism. In general, those mechanisms
are defined as follows:
Definition 21 (Privacy Mechanism Mp): A privacy mechanism Mp(Data) takes a data
set Data and a parameter set p and returns a privacy-enhanced representation of Data. ◻

3.1.2 Privacy Protection Approaches

Privacy-preserving data publishing has been intensively studied in literature. To give an overview,
we group similar approaches in different categories. In terms of privacy enhancement, we distinguish
between anonymization and perturbation. Anonymization approaches strive to hinder an adversary
from linking data to individuals. Without this connection, the data are not longer personal (see
Section 1.2.2). Perturbation, in turn, hides specific privacy-relevant or sensitive parts of the data,
usually by adding systematic noise. Records in the resulting privacy-enhanced data set may still
refer to single individuals, but ideally do not contain the sensitive information anymore. We assume
that there is a trustworthy third party, if necessary, for the computation of the privacy-enhanced
result. Instead of focusing on the privacy-aware aggregation of several measurements, like in [40],
we assume that privacy enhancing can be computed without any threat.

For the data quality measurements (Chapter 4) and the evaluation (Chapter 5) we choose one
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Name ZIP Code Date of Birth Disease
Paul 76131 7.30.1975 bronchitis
Martin 76351 10.13.1978 angina
Albert 76131 1.17.1970 leg fracture
Alice 68159 9.8.1987 breast cancer
Vanessa 68159 10.13.1980 cough
Bob 10115 5.2.1964 cold

Table 3.1: Non-anonymized patient records

representative, related method for each class. For the anonymization approach we choose [86], and
for the perturbation approach we choose [88]. We explain both methods in greater detail in the
following.

k-Anonymity and Extensions Based on the finding that removing direct identificators is not
sufficient to guarantee anonymity [22], Sweeney et al. defined the notion of k-anonymity [108].
In a data set, we distinguish between identifiers, like names, quasi-identifiers which may lead to
identification if an adversary has external knowledge and the sensitive part of the actual data. A
data set is k-anonymous if at least k records have the same quasi-identifier. An adversary having
external knowledge on the quasi-identifier cannot distinguish the actual individual being searched
for among k. k-Anonymity usually is achieved by suppressing or generalizing quasi-identifiers. For
example, the patient records in Table 3.1 consist of the ‘Name’ as an identifying attribute, the
‘ZIP Code’ and the ‘Date of Birth’ as quasi-identifiers, and the ‘Disease’ as a sensitive attribute.
First, we remove the ‘Name’ column to strip the identifiers. However, an adversary having external
knowledge regarding the residence or the age of an individual can easily re-identify a single record.
In turn, Table 3.2 lists the k = 2 anonymous representation of the patient records. An adversary
with the same external knowledge cannot single out a record because at least two records are
indistinguishable with respect to the quasi-identifiers. However, attacks are still possible. First,
the process of building groups of k records does not consider the content of the sensitive attribute.
In our example this may lead to k records having the same ‘Disease’. An adversary that is able
to link an individual to such a group can easily reveal the disease. l-Diversity [74] takes care of
this attack by requiring different values of the sensitive attribute in a k-group. Another attack is
possible if the distribution of the sensitive attribute within the k-group differs much compared with
common knowledge, e.g., if all records in a k-group have a different but very seldom lung disease.
This allows an adversary to gain knowledge even though the actual disease cannot be extracted,
i.e., that the individual in question has a seldom lung disease. To overcome this, t-closeness [69]
matches the distributions of common knowledge with the distributions inside a k-group.
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ZIP Code Date of Birth Disease
76*** 197* bronchitis
76*** 197* angina
***** 19** leg fracture
68*** 198* breast cancer
68*** 198* cough
***** 19** cold

Table 3.2: k = 2 anonymous representation of 3.1

k-Anonymity Derivatives on Time Series The k-anonymity principle also got attention in
the context of time series. In a relational data set such as the patient records example (Tables 3.1
and 3.2), the distinction between quasi-identifiers and sensitive data is clear. However, in the
context of time series, a common case is that the quasi-identifiers and the sensitive attribute are
the same. Remember the re-identification approach in Chapter 2: Features of the time series itself
lead to re-identification. Thus, building groups of k individual records requires the modification
of sensitive data. In particular, each time series has to be indistinguishable compared with k − 1
others. Being indistinguishable means that points of time and the actual values are the same.
For example, the canonical solution would be to compute the average values of all elements in a k
group. However, the data can also be generalized to a certain range or outliers could be suppressed.

Similar to hiding trajectories of moving objects, a number of approaches exists that implement
k-anonymity on such time series. The considered time and location dimensions allow different
optimization of creating a k-anonymous data set. [1] tries to preserve information on the location
dimension, whereas the successor [2] focuses on the time dimension. Instead of generalization, the
data can also be suppressed [20] or randomized [86] to achieve k-anonymity. Depending on the
assumptions regarding the external knowledge of an adversary, the quasi-identifier definition is not
straightforward and may result in possible privacy breach. A different model, that is geared toward
moving object data is presented in [120]. From a data-mining perspective, it is often necessary to
extract the patterns present in such time series. Approaches like in [105] explicitly strive to protect
these patterns. All of these approaches create a publishable data set. [44, 82] propose a trustworthy
third party that ensures k-anonymity for specific user queries, e.g., [82] makes sure that the use of
location-based services is anonymized to the service provider. An approach geared toward smart-
meter data [56] tries to preserve as much information as possible by allowing the user to define an
upper bound for information exposure. The upper bound is a number of points of time that an
adversary is allowed to infer, and at all the other times a time series is indistinguishable among
k − 1 others.

The common goals of all k-anonymity-based methods are to modify the values of time series so
that the sequence of time/value pairs from one individual is identical to sequences of k − 1 others,
and the anonymized time series is as similar to the original one as possible. An example of a
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similarity measure is the L2 norm:

dist(fp, f
′
p) =

¿
Á
ÁÀ∑

t∈T
(fp(t) − f ′p)

2

Because creating a k-anonymous database with minimal changes is NP-hard [6], we present
Algorithm 1, which relies on a well-known heuristic [86]: First, it randomly selects a time se-
ries fp from one individual. Next it chooses k − 1 time series from other individual that has
the smallest distance to the first time series, e.g., in terms of the L2 norm. In particular,
method selectGroup(k, p,I) computes a set of individuals P so that P ⊆ I, p ∈ P, ∣P ∣ = k,
and maxi∈P(dist(fp, fi)) ≤ minj∈(I/P)(dist(fp, fj)). The algorithm repeats until fewer than k
time series are not assigned to a k-group. They are assigned to existing k-groups by method
findGroup(K, p), which returns a k-group J from a set of k-groups K so that J ∈ K and
maxj∈J (dist(fp, fj)) ≤ mini∈(⋃(K/J ))(dist(fp, fi)). Finally, the algorithm replaces fp(t) with the
group average for each point of time.

Algorithm 1: Mk Implementation for k-Anonymity
Data: k,Time domain T ,Set of individuals I, Set of time series F
Result: Anonymized set of time series F ′

1 Set kGroups = ∅;
// create groups of k similar time series

2 while ∣I ∣ ≥ k do
3 Individual p= I.getRandomly();
4 Set s = selectGroup(k, p, I);
5 I.subtract(s);
6 kGroups.add(s);
7 end

// assign the remaining time series
8 foreach p ∈ I do findGroup(kGroups, p).add(p) ;

// anonymize value for each k-group
9 foreach kGroup ∈ kGroups do

10 foreach p ∈ kGroup, t ∈ T do
11 f ′p(t)=

∑j∈kGroup fj(t)
kGroup.size() ;

12 F ′.add(f ′p(t));
13 end
14 end

The described k-anonymous derivatives have the following major drawbacks. First, considering
a specific time series, the anonymized result is influenced by the user-defined parameters and the
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Algorithm 2: Mσ Privacy-Enhancement Method Using Wavelet Transformation [88]
Input: Privacy Parameter σ
Input: Set of time series F
Result: Privacy-Enhanced time series F ′

1 foreach fp(t) ∈ F do
2 f̃p(l, t) =DWT (fp(t)) //Wavelet transform;
3 Il = {t ∶ ∣f̃p(l, t)∣ ≥ σ};
4 foreach level l do
5 K = ∑lKl //coeffs exceeding l;
6 p = ∣N ∣ /K //Noise ‘density’, N is number of coefficients;
7 foreach detail f̃p(l, t) do
8 if t ∈ Il then
9 f̃p(l, t)+ = GaussRnd(0, σ√p);

10 end
11 end
12 end
13 f ′t(=)InvDWT (f̃p(l, t));
14 F ′ = F ′ ∪ {f ′t()};
15 end
16 return F ′;

remaining data set. For example, if all time series are similar, the resulting generalized time
series will not differ much from the originals. Hence, we cannot guarantee that a certain piece of
information described by the time-series development is removed or not. Second, the parameters,
i.e., the k, require a global definition for the whole data set. Individually defined parameters
are not applicable. Thus, in a scenario that requires custom-definable privacy requirements with
guarantees, those methods are not suitable.

Perturbation Approaches To support individual privacy preferences, one possibility is to add
systematic noise to time series in isolation. Uncorrelated noise applied to a time series is easily
filtered out by means of wavelet-based filtering [27, 28]. To circumvent this, we need to apply noise
that is dependent on the wavelet or fourier representation of the actual time series [88]: Let K
be the number of wavelet coefficients exceeding σ, and N the total number of wavelet coefficients.
Next, noise with the standard deviation of σ ⋅

√
N/K and the mean value is the current coefficient if

it is greater than or equal to σ. See Algorithm 2 for a pseudo code implementation of the wavelet-
based perturbation. According to [88], this method ensures that only a small percentage of noise
can be removed.
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However, the data owners cannot decide what exactly is perturbed. Information may unneces-
sarily be perturbed and sensitive information may still be present.

Smart Meter–Specific Approaches Protecting the privacy of individuals in smart-meter data
transferred to the utility company is possible with the help of a rechargeable battery: Consuming
power directly from the house connection results in smart-meter data that contain possible sensitive
information. Taking electricity instead from a locally installed rechargeable battery, leads to smart-
meter data that reflect load cycles only [54, 96, 112]. An additional power router decides which
source of electricity is chosen, guarantees security of supply, and is responsible for the battery
management. However, privacy is bound to the battery capacity, e.g., if a specific activity requires
more power than the battery currently can provide, the system is unable to hide this.

Provable Privacy Approaches Differential privacy [29] is an abstract and strict notion of
guaranteed privacy for statistical databases, defined as follows: Adding or removing the data from
a single individual from the data set does not significantly change the output. In other words, the
record of a single individual has limited influence on the output. In turn, an adversary cannot
gain information about a single individual. It has been applied to smart-meter data [5] and time
series [99]. Example 3 illustrates the limitations. Additionally, it is especially challenging to provide
utility and provable privacy guarantees, because in many cases the resulting data are not useful
for applications anymore [75]. [118] shows that using wavelet transformation in combination with
differential privacy preserves utility of range queries on a relational data set. Instead of applying
noise to each entry, [118] perturbs the wavelet-transformed frequency matrix, thus reducing noise
for count queries while still preserving individual privacy. However, this method is specifically
geared to range queries on a relational data set and thus is not applicable to time series in general.

Theoretical results show that providing both provable privacy guarantees and utility is only
possible if assumptions regarding the external knowledge of an adversary and the original data are
made [59]. The Pufferfish framework [60] supports such assumptions in an abstract way and lets
individuals define their privacy preferences. It has not yet been implemented and evaluated on
smart-meter data. PACTS is such an implementation. Thus, we explain Pufferfish in greater detail
in Section 3.1.3.

3.1.3 ε-Pufferfish Framework

The ε-Pufferfish framework [60] is a generalization of differential privacy [29], providing provable
privacy guarantees while preserving utility. It is based on the theoretical ideas in [59]. In contrast
to differential privacy, Pufferfish allows us to make assumptions regarding the adversary. To do so,
probability distributions called data evolution scenarios D describe external knowledge on how the
data were created. Furthermore, the set of potential secrets S describes which information can be
hidden, but does not necessarily have to. S is a domain for Spairs that contains pairs of secrets
describing how a piece of information should be hidden.
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Examples of secrets contained in S for the relational model are ‘Bob has cancer.’ There is no
limitation for the abstraction level of such secrets, e.g., ‘The record of individual i is in the data
set’ is also a possible secret. Secrets are facts that an individual wants to hide. However, a single
secret s does not define ‘how’ the specific information should be hidden. Spairs is a subset of S ×S,
which defines what an adversary should not be able to distinguish. A canonical example in Spairs
would be (‘Alice has cancer.’,‘¬Alice has cancer.’). Pufferfish allows arbitrary pairs (si, sj) to specify
precisely the information to be hidden. Continuing our example, Alice may only require hiding
which kind of cancer she has. In that case the discriminative pair is (‘Alice has lung cancer.’,‘¬
Alice has stomach cancer.’). This is advantageous because hiding specific secrets like the kind of
cancer tends to require less noise than hiding general secrets like having cancer at all. The only
requirement for discriminative pairs is that they have to be mutually exclusive but not necessarily
exhaustive, i.e., at most, one is true but both can be false.

Data-evolution scenarios D contain assumptions on how the data have been generated. This is
external knowledge of an adversary. It is a set of probability distributions over possible database
instances that quantify how likely a certain fact is. For instance, the probability that a certain
patient has cancer is higher for a hospital that is a cancer center compared with the data set of a
general hospital. Each distribution d ∈ D corresponds to the external knowledge of an adversary
on how the data have been generated. For example, P (Data = {x1, ..., xn} ∣df) = p(x1) ⋅ ... ⋅ p(xn) if
the probabilities of each record in I are independent. P (Data = {x1, ..., xn} ∣dp) is the conditional
probability that Data is {x1, ..., xn} under dp.

Furthermore, a privacy mechanism M is a method for transferring a data set Data into a privacy-
enhanced representation M(Data) (see Definition 21). It guarantees ε-Pufferfish privacy if it fulfills
the following definition [60]:
Definition 22 (ε-Pufferfish privacy): Given a set of Secrets S, a set of discriminative
pairs Spairs, data-evolution scenarios D, and a privacy parameter ε > 0, a privacy mechanism
Mε satisfies ε-Pufferfish(S,Spairs,D)-Privacy if, for all outputs of M, all pairs (si, sj) ∈ Spairs and
all distributions d ∈ D the following holds:

P (Mε(Data) = o∣si, d) ≤ eε ⋅ P (Mε(Data) = o∣sj , d)
P (Mε(Data) = o∣sj , d) ≤ eε ⋅ P (Mε(Data) = o∣si, d)

P (Mε(Data) = o∣sj , d) is the probability that the output of Mε is o if sj holds, and the data
distribution is d. ◻

At first glance, this definition seems complicated. However, we take the equations from Defini-
tion 22 and directly compute a more intuitive representation:

e−ε ≤
P (si∣Mε(Data) = o, d)
P (sj ∣Mε(Data) = o, d)

/
P (si∣d)

P (sj ∣d)
≤ eε

We compare the knowledge of an adversary before (apriori) and after (aposteriori) investigating
the data set to gain information. If the adversary apriori thinks si is α times as likely as sj , then
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after having access to the privacy-enhanced data set Mε(Data), the adversary aposteriori only
believes that si is at most eεα and at least e−εα as likely as sj . Note that Pufferfish [60] itself does
not require a specific perturbation method, as long as the guarantees of Definition 22 are fulfilled.

3.1.4 Wavelet transformation

As already explained in the beginning of Chapter 3, it is challenging to specify a representation of
private information, which we call secrets, in smart-meter data. Throughout the chapter we will
use the well-known wavelet transformation as a sample representation for secrets. Additionally, we
explain further transformation methods in Section 3.3.
Definition 23 (Wavelet): A wavelet w[t] is a finite time series with the following properties:
∫
+∞
−∞ w[t] = 0 and ∫

+∞
−∞ w[t]2

= 1. ◻

Definition 24 (Wavelet Transformation): A wavelet transformation is an orthonormal
basis transform to a wavelet basis. Each element of the wavelet basis is a development over time.
◻

Figure 3.1 contains four sample wavelets that fulfill Definition 23 in the time domain. For
our part, we focus on the so-called Haar wavelet (Fig. 3.1a). for the explanation of the wavelet
transformation. Definition 23 holds because the area under the curve is of the same size as the
area above.

In general, the wavelet transformation is often used for time-series processing. According to
Notation 6, the time series is intrepreted as n-dimensional vector with ‘time’ as a basis. Each basis
element represents a time slot, and each vector entry f[t] is the power consumption at time slot t.
Wavelet transformation constructs an orthonormal basis, consisting of vectors of time shifted and
stretched wavelets. Transforming the time series means changing the basis. Let h be the Haar-
wavelet basis for vector f . Then, each element in fh[x] is relative to the Haar wavelet. The form
of the Haar wavelet (Fig. 3.1a) indicates that elements in fh[x] represent ‘changes’ in consecutive
points of time. In other words, fh[x] represents the ‘Haar pattern’. This intuitive explanation leaves
the fact aside that the wavelet as is does not cover the whole vector space because it is naturally
considered to be ‘short’. Covering the vector space is necessary to provide invertibility. To do
so, the wavelet transformation results in multiple levels. Each level corresponds to a horizontally
stretched version of the wavelet, and within each level the wavelet is time shifted. The number of
levels depends on the length (i.e., dimensionality) of the time series.

As explained previously, the first level always represents the wavelet ‘as is’. The higher the level,
the more stretched the wavelet itself becomes. For instance, in the second level, a representation
with a Haar basis represents the change between, e.g., f[t], f[t + 1] and f[t + 2], f[t + 3]. The last
level is responsible for the absolute level (in y-dimension) of the time series and does not correspond
to the wavelet itself. In the case of the Haar wavelet, the last level does not correspond to any
change. In signal processing terms, the lower levels contain the high frequencies, and the higher
levels the low frequencies. In contrast to other transformation mechanisms, such as the Fourier
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Figure 3.1: Sample wavelet functions

transformation [117], each coefficient of the wavelet-transformed representation corresponds to a
fixed number of coefficients in the time-based representation. The wavelet transformation keeps
the time location.

PACTS is not limited to the wavelet transformation. We define properties that a transformation
has to fulfill for its application in PACTS in Section 3.2.1, and show that several popular trans-
formations can be applied (Section 3.3). For a better understanding, we extend the flow heater
example to Haar wavelet coefficients.
Example 5 (Haar wavelet transformation and flow heaters): Reconsider Example 4. The
starting flow heater leads to a sudden increase in the power consumption. Figure 3.2 illustrates the
time-based consumption of a flow heater with the sudden increases. Transforming this time series
in the Haar wavelet representation (Fig. 3.4) leads to coefficients smaller than zero for an increase
in power consumption and coefficients greater than zero for a decrease in power consumption.
Depending on the actual position of the increase or the decrease, this influences coefficients of
level one or two. Relevant for hiding Bob’s secret are coefficients in fh, reflecting an increase or
decrease of 25 kW . The wavelet representation allows a distinction of whether the flow heater
is switched on or off. Thus, it is a suitable way to represent the information that Bob wants to
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Figure 3.2: Flow heater power consumption in a time-based representation

hide. Depending on the wavelet coefficient level, different values can be relevant (see Fig. 3.3 for
an illustration). Although the Haar wavelet represents switch-on or switch-off events well, other
wavelets (see Fig. 3.1) represent different patterns. In conclusion, a similar approach is possible for
different discriminative pairs. ◻

3.2 PACTS: Provable Privacy for Smart-Meter Time Series

In this section, we explain PACTS, an instantiation of the Pufferfish privacy mechanism Mε for
smart-meter data. Mε(f) transfers time-series f into one that guarantees ε-Pufferfish privacy with
respect to the given parameters. More precisely, Mε conducts the steps illustrated in Figure 3.5.
To ease the presentation, we assume a single discriminative pair of secrets spair in the following.
This does not restrict the generality of our approach, because each spair ∈ Spairs is handled in
isolation. For further explanation, see Algorithm 3, which contains the pseudo-code implementation
of PACTS for arbitrary sets of discriminative pairs and time series. Specifically, we explain in the
following steps the loop body of Algorithm 3.

Step 1. In the first step, we transform the time-series f into an abstracted representation fB.
We use such representations to isolate information on a user-defined discriminative pair to single
coefficients. Reconsider Example 4: In the Haar wavelet–transformed representation, certain single
coefficients determine whether the flow heater starts or stops. We elaborate more on the technical
details in Section 3.2.1.

Step 2. In the abstracted representation fB, we perturb the time series according to user-defined
preferences. The resulting abstracted time series guarantees Pufferfish privacy. Among others, this
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Figure 3.3: Sample mapping of Haar wavelet coefficients to a starting/stopping flow heater

49



3.2. PACTS: PROVABLE PRIVACY FOR SMART-METER TIME SERIES

−15

0

15

160 200 240
Index

V
al

ue

(a) Level 1

−20

0

20

80 100 120
Index

V
al

ue

(b) Level 2

−25

0

25

40 50 60
Index

V
al

ue

(c) Level 3

−40

0

40

20 24 28 32
Index

V
al

ue

(d) Level 4

Figure 3.4: Haar wavelet–transformed representation of the flow heater power signal
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Step 1:
Transfor-
mation

time-series f discriminative
pair spair

abstracted representation fB

Step 2: Perturbation

Time series with privacy guarantees f ′B

Step 3: Inverse Transformation

Privacy-enhanced time series f ′

Figure 3.5: Privacy preserving for a single discriminative pair spair

step requires the determination of the noise distribution. Section 3.2.2 explains the details.

Step 3. In the last step, we transform the (privacy-enhanced) time series back to the time-based
representation f ′ (Section 3.2.3).

3.2.1 Step 1: Transformation

In this step we transform a given time-series f to an abstracted representation fB. Each coefficient
fB[t] carries a specific meaning for secrets and not necessarily to a point of time anymore. Secrets
require a transformation to specify relevant coefficients. Thus, we define and specify the transfor-
mation mechanism before formulating secrets and discriminative pairs for smart-meter data.

Transformation Mechanism

Representations of time series in an abstracted manner are numerous. Fourier and wavelet transfor-
mations are well-known, but there are several others [23]. The right choice depends on the required
discriminative pair. To keep the approach general, we define properties that each transformation
has to fulfill to be applicable in PACTS.
Definition 25 (Transformation Mechanism): Let E be the standard basis and B a
different basis of vector space VB. A transformation mechanism CB is a function of type VE → VB
that converts a time series from the standard basis fE to an abstracted representation fB and
fulfills the following properties:
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Algorithm 3: PACTS-Pufferfish Privacy Mechanism Mε for Smart-Meter Data
Input: time series f
Input: Set of discriminative pairs Spairs of secrets S, (Inverse) Transformation Mechanism

CtransB , ICB and basis B
Input: Data evolution scenarios D
Input: Privacy parameter ε
Result: Time series with privacy guarantees f ′

1 foreach spair ∈ Spairs do
2 // Step 1: Transformation;
3 fB = CtransB (f);
4 // Step 2: Perturbation;
5 Determine Nε to fulfill ε-Pufferfish Privacy based on D and spair;
6 Set pcoeff according to spair;
7 f ′B = P(fB,Nε, p

coeff);
8 // Step 3: Inverse Transformation;
9 f ′ = ICB(f ′B)

10 end
11 return f ′;

1. The transformation is invertible, i.e., there exists an inverse of CB that we refer to it as ICE .
We precisely define the inverse in Section 3.2.3; and

2. CB has to be an endomorphism for the +-operator. Let f, g be the time series defined on the
same basis E, then CB(f + g) = CB(f) + CB(g).

◻

The endomorphism is an important property because of the following reason. Assume that a
time series is an aggregate of different power consumptions. If a smart meter records time series,
this is the natural case, because all appliances are connected together to the main power supply.
The endomorphism property simplifies the perturbation conducted in Step 2 (Section 3.2.2). Noise
can be added to the aggregate and to certain parts of the aggregate in the exact same way.

The invertibility property implies the following: An abstracted representation of a time series
fB, which is invertible, obviously has to contain all the information present in f . In other words, no
information is lost during transformation. Additionally, invertibility requires well-defined semantics
of every element in fB. Those clear semantics also hold for the definition of secrets, i.e., each
coefficient has a specific meaning in relation to a secret.

Definition 25 does not restrict the dimensionality of the transformed time series. The trans-
formation output fB might have a higher or a lower dimensionality compared with fE . Usually,
the dimensionality of fB will be at least as high as the dimensionality of the nontransformed
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representation to ensure invertibility.

Haar-Wavelet Transformation for PACTS The wavelet transformation introduced in Sec-
tion 3.1.4 satisfies Definition 25. In particular for the ‘Haar’ wavelet, we show in Lemma 1 that the
transformation is invertible and an endomorphism for addition. Thus, it is applicable in PACTS.
Additionally, the wavelet transformation keeps the time location. In other words, each coefficient
fh[x] corresponds to specific entries in fh[t].
Notation 9 (Haar Wavelet Transformation CWave

h ): CWave
h denotes the wavelet transfor-

mation with the Haar basis in PACTS.

Lemma 1: The Haar wavelet transformation is invertible and an endomorphism for the +-operator.
Proof: The Haar wavelet transformation defines an orthonormal basis for any vector with 2n, n ∈

N coefficients [24]. Thus, this basis forms an orthonormal basis transformation matrix H that
changes the basis of a vector as follows:

f ⋅H = fh

For each orthonormal matrix, an inverse H ′ exists that is also orthonormal. Letting I be the
identity matrix, the following holds: H ⋅H ′ = I. With the help of H ′, it is straightforward to show
invertibility:

fh ⋅H
′
= f ⋅H ⋅H ′

= f ⋅ I = f

It is well known that the matrix vector multiplication is distributive:

f ⋅H = (f1
+⋯ + f i) ⋅H = f1

⋅H +⋯ + f i ⋅H

Thus, the Haar wavelet transformation is also an endomorphism for the +-operator. ◻

Secrets in Smart-Meter Data

Secrets S are the core of user-defined-privacy requirements. They express the information deemed
sensitive. Such requirements range from relatively simple ones like ‘The dishwasher is running’ to
rather complex ones involving several appliances like ‘There is cooking activity’. Other examples
might be ‘There is activity in the kitchen’, ‘The fridge is running’ or ‘Someone is watching a certain
TV program in the morning’. A secret involving several appliances is more complex because their
power consumptions may overlap differently each time the secret is true. Additionally, secrets may
also be relevant only for certain periods, i.e., an individual deems an activity only during a certain
time sensitive.

The power-consumption data of individual households are usually monitored by a smart meter
installed at the main power connection. Thus, the smart-meter data are an aggregate of all appli-
ances. However, following the intuition of the presented examples, only parts of this aggregate are
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typically relevant for a secret. Hence, it is important to be able to examine parts of the smart-meter
time series in isolation. Regarding the time series as a signal, it is the aggregate of several channels.
For example, the consumption of the television can be considered as one channel f1[t], whereas
the dishwasher is another one f2[t].
Definition 26 (Signals and Channels): A signal is the total power consumption measured
at the smart meter of the household, and is represented as vector f[t]. A channel is part of the
mentioned signal, referred to with a superscript, e.g., f i[t]. Consequently, a signal is the sum of n
channels.

f[t] = f1
[t] +⋯ + fn[t]

◻

The channels isolate relevant appliances from others. Still, a sequence of consumption values is
required in many cases to gain information. The fact that a sequence of time-value pairs identifies
appliances and their state is well known from non-intrusive appliance load monitoring (NIALM)
approaches [42, 45, 68, 83, 121], and appliances tend to be detectable in the signal.

Even in the abstracted representation, the relation between the intuitive secret description and
coefficients is not straightforward. The following definition allows us to specify these relations.
Definition 27 (Description of a Secret): A description of a secret is a triple

s = (sBase, sTrans, sCoeff)

where sBase is the basis for the transformation mechanism sTrans according to Definition 25. sCoeff
is the formal description of the coefficients in the abstracted representation fB (sBase = B), which
make s true. fB[t] ∈ sCoeff denotes that coefficient t of the transformed time series makes the
secret true. ◻

The definition does not require a formal specification of the language describing sCoeff . However,
the description has to be nonambiguous.

The description of secret s only reflects what should be hidden, but not how. To ensure Pufferfish
privacy, PACTS requires discriminative pairs of secrets describing the ‘how’. Intuitively, it makes
a difference to hide which kind of appliances are running compared with hiding different running
states. Hiding the running states usually tends to require less noise instead of hiding the kind of
appliance running. The following definition formalizes the description of discriminative pairs in
PACTS.
Definition 28 (Description of a Discriminative Pair of Secrets): A description of a
discriminative pair of secrets spair is a pair of description of secrets spair = (s1, s2), so that the
following holds:

• The base and the transformation method are the same, i.e., sBase1 = sBase2 and sTrans1 = sTrans2 ;
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• The secrets do not need to be exhaustive, i.e., there may exist values in the range of a coefficient
that neither makes s1 nor s2 true; and

• The secrets are mutually exclusive, i.e., at least one is true. Thus, the coefficients in question
for s1 and s2 are non-overlapping: sCoeff1 ∩ sCoeff2 = ∅.

◻

To distinguish whether a secret of a discriminative pair is true, typically only parts of the entire
signals are relevant. We explicitly call those channels ‘relevant’.
Definition 29 (Relevant Channel): For a given discriminative pair spair = (s1, s2), we
call the channel that contains all of the relevant information, whether s1,s2 or none is true about
the relevant channel r. If the signal f consists of i ∈ [1 . . . n] channels, we refer to the relevant
channel as r and to the corresponding vector as f r. According to Definition 26, the decomposition
partitions the whole signal:

f[t] = f1
[t] +⋯ + f r[t] +⋯ + fn[t]

◻

The data contained in different channels may be statistically independent or not. The following
example shows that this depends on the considered discriminative pair and the assumptions of
an adversary. According to the Pufferfish privacy framework, the required distribution of noise
depends on these assumptions. Assumptions regarding statistical distributions and dependence
result in data-evolution scenarios. We will elaborate more on these assumptions in Section 3.2.2.
Example 6 (Statistically Dependent and Independent Channels): Assume that channel
f1 contains the TV only. Thus, typically f1 is uncorrelated with channel f2, which contains
the dishwasher. If the discriminative pair in question only refers to the TV, and the running
dishwasher does not influence the TV, both channels are statistically independent. In turn, think
of a discriminative pair containing the secrets ‘The household is cooking.’ and ‘The household is
not cooking’. In this case, there are most likely correlations among several devices in the kitchen
such as appliances like the oven and the kitchen lighting. However, the lighting is not part of
the relevant channel, as cooking does not directly relate to light in the kitchen. However, kitchen
lighting indicates activity in that room and is not statistically independent of the appliances. ◻

Reconsider Example 2: After having defined secrets and discriminative pairs in smart-meter data,
we can provide proper descriptions for PACTS. The following example illustrates the description
of secrets and of the corresponding discriminative pair.
Example 7 (Transformation and Instantiations of Secrets for the Flow Heater): Bob
wants to hide whether the secret s1 ‘The flow heater is starting/stopping’ or secret s2 ‘The flow
heater is not starting/stopping’ is true. We have already seen that the wavelet transformation with
the Haar basis reflects ‘switch on’, respectively ‘switch off’ events, well (see Example 4), and is a
suitable transformation for the discriminative pair spair = (s1, s2) in PACTS. For both secrets we
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choose the Haar-wavelet transformation: sTrans1 = sTrans2 = CWave
h . For the sake of simplicity, we

assume that the flow-heater power consumption is a rectangular shape over time, as illustrated in
Figure 3.2. We generated the consumption with the model of [100]. Figure 3.4 contains CWave

h (f)
of the time series illustrated in Figure 3.2: The x-axis in the transformed representation (Fig. 3.4)
shows the time location and the y-axis the ‘intensity’ of the Haar basis. Coefficients in Levels 1 and
2 reflect the starting and stopping of the flow heater according to the explanation in Section 3.1.4.
To include small inaccuracies, we define sCoeff1 to contain coefficients of Level 1 if their value is
[13,17] or [−17,−13], and Level 2 if their value is [18,22] or [−22,−18]. In turn, sCoeff2 contains
all values of coefficients on Level 1 except [13,17] and [−17,−13] and Level 2 except for [18,22] or
[−22,−18]. Obviously, sCoeff1 ∩ sCoeff2 = ∅ and sTrans1 = sTrans2 . Thus, spair = (s1, s2) qualifies as a
description of a discriminative pair according to Definition 28. Furthermore, in this example the
relevant channel contains only the flow-heater consumption values. ◻

For different bases or transformations, the determination of the coefficients works similarly.
Different ways of transforming time series cover different privacy requirements. We will discuss
further transformations in Section 3.3.

3.2.2 Step 2: Perturbation

In this section, we explain how PACTS ensures the ε-Pufferfish privacy principle in the time series of
smart-meter data. One common method is to apply additive noise following the Laplace distribution
to aggregates [60]. As explained previously in Section 3.2.1, the smart-meter signal is the aggregate
of the household’s appliances. Discriminative pairs are usually limited to the relevant channel.
Thus, noise is only required for some channels. Identifying these channels, and the distribution of
the noise applied, is not obvious. In this section we explain the necessary steps in PACTS to apply
noise.

Perturbation Mechanism for Time Series

We explain how PACTS perturbs the time series of smart-meter data in the transformed repre-
sentation. Naturally, this requires a noise distribution Nε. We refer to the discriminative pair
spair with both secrets having the same basis sBase = B and the same transformation mechanism
sTrans = CB. We refer to the perturbed time series as f ′B. In addition, the perturbation also requires
the selection of coefficients to be noised. This leads to the following definition.
Definition 30 (Perturbation Mechanism for a Discriminative Pair): A perturbation
mechanism P is a function that takes a time series fB in the abstracted representation, the applied
noise Nε that is dependent on the privacy parameter ε and a formal definition of the coefficients to
be perturbed pcoeff . It returns the privacy-enhanced time series in the abstracted representation,
referred to as f ′B.

f ′B = P(fB,Nε, p
coeff

)
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◻

Noised Elements

pcoeff specifies the elements of the abstracted time series fB to be perturbed. As in the definition of
the secret description, we do not require a formal language for selecting these coefficients. However,
we provide a classification. Depending on the actual transformation mechanism, not all kinds of
coefficients are possible.

• All: This is the most simple strategy. Additive noise is applied to all coefficients.

• Trigger dependent: As already seen, coefficients in a certain range have a defined meaning.
A discriminative pair might require the addition of noise only if a coefficient corresponds to a
certain meaning.

• Time dependent: The user specifies coefficients to be perturbed if they correspond to a
certain time interval in the time-based representation. In comparison to the trigger-dependent
approach, the value of the coefficient does not play a role. However, this only works if the
transformation mechanism keeps the time location.

• Trigger and time dependent: The combination of both is obviously also possible.

Noise Distribution

P used with noise according to the Pufferfish privacy principle and to the discriminative pair
spair = (s1, s2) will guarantee privacy. The following lemma proves this for PACTS.
Lemma 2: Let f be a time series of smart-meter data, spair = (s1, s2) the information that an
individual wants to hide, CB the transformation mechanism suitable for spair, and P a perturbation
mechanism. A distribution of noise Nε exists for P such that f ′B = P(fB,Nε, p

coeff) satisfies the
ε-Pufferfish privacy definition.
Proof: In PACTS, secrets (Definition 27) and discriminative pairs (Definition 28) are defined
according to the Pufferfish framework [60]. Assume that the data evolution scenario D defines
the distribution of values on each channel of the whole signal fB, including the relevant channel
r for spair f rB. Because the transformation mechanism is an endomorphism for the +-operator,
applying additive noise (even to single channels) is possible regardless of the actual representation
and even if only the signal (and not the whole decomposition) is available. If we apply noise Nε

for spair = (s1, s2) so that the following holds, ε-Pufferfish privacy is guaranteed:

P (Mε(Data) = o∣s1, spair) ≤ e
ε
⋅ P (Mε(Data) = o∣s2, spair)

P (Mε(Data) = o∣s2, spair) ≤ e
ε
⋅ P (Mε(Data) = o∣s1, spair)
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According to [60], a suitable distribution of additive noise can be found for every fixed D depen-
dent on ε. ◻

The following example illustrates how to choose appropriate noise for the starting flow heater.
Example 8 (Hiding the start of the flow heater): Reconsider Example 7: Bob wants
to hide the the discriminative pair spair = (s1, s2) where s1 = ‘Flow heater is starting’ and s2 =

‘Flow heater is NOT starting’. Note: This example covers the case when the flow heater is starting.
Hiding the stop of a flow heater is similar, i.e., the wavelet coefficient for a switch-off event is the
same as for the switch-on events with an inverted sign. To do so, we carry out the transformation
from Example 5 with the wavelet transformation CWave

h and the Haar basis h. Let f r be the relevant
channel for spair. To ease the presentation, suppose that the channels are statistically independent.
According to Example 7, the coefficients in question for s1 or s2 correspond to nonoverlapping
intervals by definition. For instance, let fh[x] be a value of Level 1 of the wavelet-transformed
representation. If f rh[t] ∈ [y − k, y + k], s1 is true for y = 15 with an imprecision interval of k = 2,
otherwise s2. For Level 2 s1 is true for y = 20 and k = 2. Bob wants to prevent an adversary from
learning the value of f rh[x] by accessing the privacy-enhanced signal f ′h. [60] shows that adding noise
drawn from the Laplace(4k/ε) distribution with density function ε

8ke
−ε∣x∣/4k guarantees ε-Pufferfish

privacy for an aggregate as follows: An adversary cannot distinguish whether the value of a single
channel is between y−k and y+k or one of the neighboring intervals [y + k, y + 3k) or [y − 3k, y − k).
Let X be a random variable drawn from the Laplace(4k/ε) distribution and t the coefficent to hide.
We then generate the privacy-enhanced aggregate f ′h[x] as follows:

f ′h[x] = f
r
h[x] + f

i
h[x] +⋯ +X

◻

In this case, adding noise does not require the decomposition of the signal into several channels,
i.e., f ′h[x] = fh[x] +X. Adding noise to the signal already ensures Pufferfish privacy; however, the
definition of the distribution requires knowledge about the relevant channel, respectively, about
consumption patterns that are present there.

With the wavelet transformation, time location is also possible. Following Example 2 we add
noise for weekdays between 8:00 and 11:00 only. On the weekends, we add the noise defined for
the whole day.

3.2.3 Step 3: Inverse Transformation

Before disclosure, the last step transforms the abstracted and perturbed representation f ′B back to
the time-based representation f ′.
Definition 31 (Inverse Transformation): An inverse transformation mechanism ICB is a
function that takes a time series in abstracted representation fB and returns the same time series
in the time-based representation f . ◻

58



Dissertation of Stephan Kessler Karlsruhe Institute of Technology

Because Definition 25 requires invertibility, an inverse transformation mechanism ICB exists for
each CB.

3.3 Transformations

Until this point we have introduced PACTS as a way of guaranteeing ε-Pufferfish privacy on the
time series. However, there are still issues worth discussing. First, we have illustrated in several
examples that the Haar wavelet transformation is applicable to hide the switch on and off events
of a flow heater. Because the Haar wavelet reflects (sudden) increases and decreases of the power
consumption, this transformation is also applicable for other single-switching events. We discuss
expressiveness and limitations of the Haar-wavelet transformation in Section 3.3.2. Second, other
secrets may require completely different transformations. We discuss alternatives to the Haar-
wavelet transformation for PACTS in Section 3.3.2.

3.3.1 Expressiveness of the Wavelet Transformation

We have already introduced the so-called non-intrusive-appliance-load monitoring (NIALM) ap-
proaches in Section 2.1.1. Their common goal is to extract information about the running state
of appliances by inspecting the aggregated power consumption. During the detection process, a
major role is the switch on and off events that can be seen in the aggregated consumption as sudden
increases. Running appliances corresponds to different specific activities in the household. Thus,
it is promising to completely hide these events to protect the privacy of individuals. Furthermore,
one feature for re-identification is the Wakeup (Definition 13), respectively the Bedtime-hour (Def-
inition 14), also corresponding to a sudden increase or decrease in the power consumption. In the
evaluation (Section 3.4), we will define the secrets that hinder the INDiC NIALM approach to
detect appliances, in addition to the mentioned features of re-identification.

However, the Haar-wavelet transformation also has two limitations: First, the Haar basis is of
length two and can therefore only transform time series of length 2n. Second, it is not trivial to find
another basis that describes other patterns. Remember that each wavelet has to fulfill Definition 23.
Modified wavelet transformations and completely different approaches are introduced in the next
section.

3.3.2 Transformation Mechanism

If a transformation fulfills Definition 25, it can be used in PACTS to hide discriminative pairs of
secrets. One promising way is to take the exact same transformations that an adversary will use
to extract information on the discriminative pair. For instance, such approaches are part of the
NIALM approaches (see Section 2.1.1). However, this usually requires additional effort to ensure
the required properties for a transformation mechanism in PACTS. There are numerous other well-
known transformations that could be used instead of the presented ones without modifications. We
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will see in the evaluation (Section 3.4) that the provided transformations are general enough to
cover a wide range of secrets.

Decomposed Wavelet Transformation

The wavelet transformation is capable of transforming a time series if its length is 2n. In general,
this is not the case, but we can decompose the signal: The decomposed wavelet transformation
splits the original signal into different disjoint sub-sequences and applies the wavelet transformation
to each one. This allows independent modification of different periods of the signal. A popular
decomposition is the ancient Egyptian decomposition [19]. This decomposition finds the largest
power of two less than or equal to the length of the time series in question. This forms the first
sub-sequence and the total length is reduced by this number. This step is repeated until the whole
signal is decomposed into sequences, each with a length of the power of two.
Lemma 3: The decomposed wavelet transformation fulfills Definition 25, i.e., is invertible and an
endomorphism for the +-operator.
Proof: In Lemma 1 we have already shown that a wavelet transformation fulfills the necessary
requirements. The decomposed transformation processes distinct parts of the time series and is
also invertible and an endomorphism. ◻

Wavelet-Packet Transformation

The wavelet-packet transform is another wavelet transformation. In contrast to the transformation
already proposed, it does not require a specified basis such as the Haar basis. In particular, with the
help of a time series representing the pattern of a secret, the packet transform is able to compute
a suitable basis. The resulting basis is matched to the given time series [21]. The advantage of
the packet transform is that it can be used to flexibly create wavelet bases that match patterns
well. Such a precomputed basis is used to transform the signal, respectively the channels, following
the standard wavelet transformation. Although the wavelet-packet transformation provides further
flexibility, we do not use it in our evaluation in Section 3.4, as other transformations suffice to deal
with the secrets featured there.
Lemma 4: The wavelet-packet transformation fulfills Definition 25, i.e., is invertible and an
endomorphism for the +-operator.
Proof: The wavelet packet transformation chooses a custom base for the transformation as a
composition of orthonormal bases. Thus, it is invertible. Because the transformation applies the
same basis to all of the channels, the addition of the coefficients is well-defined and thus is also an
endomorphism for the + operator. ◻
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Discrete Fourier Transformation

Oscillations in the power consumption are periodically repeating power demands, e.g., appliances
running at fixed times. Oscillations are also a characteristic of the state of appliances, e.g., the
frequency of power peaks of a television corresponds to the TV program. The discrete Fourier
transformation (DFT) [92] converts a sequence of samples (this is the time series) to a frequency-
decomposed representation of the described oscillations. Thus, this transformation allows one to
hide periodical events.
Lemma 5: The discrete Fourier transformation fulfills Definition 25, i.e., is invertible and an
endomorphism for the +-operator.
Proof: Each coefficient in the Fourier-transformed representation corresponds to certain well-
defined frequencies. Thus, there exists an inverse transformation [117]. Furthermore, the value of
each coefficient is the amplitude of a certain frequency. A sum in the time domain of two time
series equals the sum of all frequency amplitudes. The DFT is also an endomorphism for +, and
conclusively fulfills Definition 25. ◻

Codebooks and Multiresolution Analysis

Individuals might have a certain pattern in mind that they want to hide and then use a
multiresolution-codebook representation such as [114] to search for this pattern. In a nutshell,
a codebook is a map from keys to patterns (sequences of power-consumption values). The ab-
stracted time series is represented by a sequence of these keys, and each value corresponds to the
pattern described by code words in the codebook. In general, there may be a small difference be-
tween the codewords and the actual patterns. Usually these differences are neglected [114], leading
to an inaccurate inverse. Invertibility requires recording these differences. Patterns can also be cre-
ated by compression algorithms [18, 119] such as LZW, which extract similar sequences. Whether
such transformations fulfill the requirements of Definition 25 depends on the actual algorithm. A
codebook is invertible because it is a unique map. It is also an endomorphism for + if the addition
of two keys results in a key that represents the addition of the patterns in the time domain.

3.4 Evaluation

Evaluating PACTS has two main goals: generality and utility. First, an individual should be able
to hide arbitrary information as discriminative pairs. Second, the privacy-enhanced data should
still be useful even while guaranteeing privacy to the extent specified.

Regarding generality, to evaluate in an objective way whether PACTS is general enough to cover a
broad range of privacy requirements, we need a reliable and objective source for such requirements.
However, such a source is difficult to find. Studies like [36] indicate that statements of individuals
regarding privacy are rather contradictory. To the best of our knowledge, a source containing
individually defined privacy requirements for smart-meter data does not exist. However, recent

61



3.4. EVALUATION

00:00 06:00 12:00 18:00 00:00
0

1000

2000

3000

4000

5000

6000

7000

TimeRofRDay

W
at

ts

Lighting
Electronics
Refrigerator
BathroomRGFI
Dishwaser
Microwave
KitchenROutlets
WasherRDryer

Figure 3.6: REDD data disaggregation example [62]

approaches have extracted various kinds of information about individuals from smart-meter data.
In turn, the information that these approaches try to extract can be perceived as information that
is worth protecting, i.e., formulated as privacy requirements. We show that it is possible to define
discriminative pairs that are suitable for these requirements. The approaches explicitly considered
are INDiC [8], a NIALM approach, and the re-identification introduced in Section 2.2. In total,
we have identified over 13 categories of secrets. We will show that guaranteeing Pufferfish privacy
with PACTS makes information extraction with these methods significantly more difficult. The
NIALM approach requires data from smart meter as well as from individual devices. We chose the
REDD data set as described in Section 3.4.1.

The issue of utility is the second important evaluation dimension. Abstract time-series-distance
measures do not allow for meaningful conclusions regarding the utility of a privacy-enhanced time
series. We elaborate on this and introduce an application-specific measure in Chapter 4 by means
of a local electricity market.

3.4.1 Reference Energy Disaggregation Data Set (REDD)

The Reference Energy Disaggregation Data Set (REDD) [62] is a publicly available smart-meter
data set. Its main purpose is to provide a benchmark in the field of energy disaggregation, which
is the task of determining which and to what extent appliances influence the measured aggregate
electricity signal. The evaluation of disaggregation methods against REDD allows the comparison
of such methods. To have a ground truth, the data set contains the electric power consumption that
is measured at the main power supply (aggregated) and the consumption at a number of outlets.
Figure 3.6 illustrates a sample disaggregation.

In particular, smart meters were installed in six houses. The installation included the main
power connection, which was divided into two channels, and up to 24 outlets were mapped to
specific appliances. The smart meter recorded the data for several months. REDD contains ‘low
frequency’ measurements every 1 or 3 s and ‘high frequency’ measurements at 15 kHz. In this
work, only the measurements with low frequency are of relevance.
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3.4.2 Generality: The INDiC NIALM Approach

As a first step in evaluating generality, we assume that individuals want to hide whether a specific
appliance is running. NIALM approaches allow the extraction of running appliances from the
aggregated smart-meter signal. Although the different NIALM methods are numerous, we choose
INDiC [8], a refinement of one of the first methods [45]. For a detailed explanation, see Section 2.1.1.

Evaluating how well secrets hinder information extraction with INDiC requires a ground truth.
It contains whether INDiC is successful when extracting information on running devices. Thus,
the creation of the ground truth requires the smart-meter signal and individual channels of devices
to compute success rates. We use the publicly available REDD data set [62], which contains the
total power consumption of different households divided into two ‘main’ signals (smart meter) and
a number of isolated channels (electricity outlets) monitored in parallel. A detailed explanation
of the data set is provided in the previous Section 3.4.1. The disaggregation, together with the
subsequent evaluation, consists of the following steps:

1. The data set (including both main and appliance channels) is divided into a training and a
test set;

2. For each appliance channel available, INDiC determines the possible different states by clus-
tering the power-consumption values of the training set;

3. Based on the states identified, the main channels in the test data set are disaggregated; and

4. To evaluate the success of the disaggregation, the computed results are compared with the
actual appliance-usage data available from the other channels.

Application of PACTS

When defining the secret descriptions, we require knowledge of devices: Table 3.4 lists the results of
the training for all provided appliances. As a result of the training, INDiC comes up with different
states of appliances by finding frequent power-consumption levels. Each level corresponds to a
specific state, and the number of states may vary contingent on the kind of appliance. The states
with the corresponding power level are the external knowledge of an adversary trying to gather
information by inspecting the aggregated power consumption time series f . INDiC determines
running appliances by attributing the total power consumption to states.

In this part of our evaluation, we assume that an individual wants to keep INDiC from de-
termining the states that appliances are actually in. Without loss of generality, we choose three
discriminative pairs, with secrets corresponding to the same appliance being in two different states.
In the following we describe the application of the discriminative pair regarding the ‘light’ appli-
ance. Choosing another pair only requires the use of other power-consumption levels in the secret.
We summarize the evaluated pairs and the necessary parameters in Table 3.3.
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s1 s2 k

‘Light is in State 2’ ‘Light is in State 3’ k = (153 W − 113 W )/2 = 20 W
‘Refrigerator is in State 2’ ‘Refrigerator is in State 3’ k = (423 W − 214 W )/2 = 104.5 W
‘Microwave is in State 2’ ‘Microwave is in State 3’ k = (1740 W − 822 W )/2 = 459 W

Table 3.3: Discriminative pairs spair = (s1, s2) for the INDiC generality evaluation

The intuitive description of the ‘light’ secret is s1 = ‘Light is in State 2’ and s2 =

‘Light is in State 3’. INDiC works without modifying the representation of the time series. Hence,
we modify the time series as follows: sTrans1 = sTrans2 = id, and the base is sBase1 = sBase2 = E.
According to Table 3.4, light is in State 2 if 113 W is not attributed to another appliance and in
State 3 if 156 W is not attributed elsewhere. sCoeff1 contains coefficients that result in 113 W , and
sCoeff2 contains coefficients that result in 156 W of unaccounted power. Then the discriminative
pair is spair = (s1, s2). INDiC assumes that all appliances have the same probability to be in a
specific state, i.e., we can assume that D is evenly distributed when adding noise. Because the
secrets considered do not specify a time span, we set pcoeff to f . In summary, an adversary should
be unable to distinguish whether the unaccounted power is approximately 113 W or 156 W . Ac-
cording to Example 8, we choose Laplace(4 ⋅k/ε) and k = 153−113

2 noise perturb the interval between
both values. Furthermore, we assume that the individuals require to achieve ε-Pufferfish privacy
with ε = 0.1.

Known Limitation: Note that Laplace noise can also yield negative values. Depending on the
noise applied and the actual total power consumption, values lower than zero are possible. If neg-
ative values occur, we set them to zero to ensure that the resulting data are valid. However, this
clearly influences the noise distribution required to hide discriminative pairs in PACTS. Theoret-
ically, one may not be able to guarantee privacy when large differences between states shall be
hidden. However, this is not specific to Pufferfish or to PACTS. Instead, this is a general problem
of information-hiding approaches; perturbing information that is a significant part of an aggregated
value requires noise with a large variance. The actual effects of this measure can be seen in the
results (Section 3.4.2).

Results

To quantify the error resulting from the noise, we conducted an INDiC disaggregation on the test
data set with and without noise applied. We determine the loss of accuracy and the change in
uncertainty, whether the appliance considered is in a state of secret s1 or secret s2. To examine
the results of the INDiC disaggregation, we choose confusion matrices as proposed in [8]. The
rows represent the predicted state of the appliance, and the columns the actual state determined
from ground truth data. Thus, the element at m × n represents the frequency when the mth state
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outlet/appliance State 1 State 2 State 3
dishwasher 0 W 260 W 1,195 W
kitchen 5 W 727 W
kitchen2 1 W 204 W 1,036 W
light 9 W 113 W 156 W
microwave 9 W 822 W 1,740 W
refrigerator 7 W 214 W 423 W
stove 0 W 373 W

Table 3.4: States of appliances

was detected while the state was actually n. We consider absolute and relative frequencies. After
applying noise as described in Section 3.4.2, we expect the results to get worse.

R.11 The INDiC approach determines the states of appliances well. For the ‘refrigerator’
and the ‘microwave’ appliances, the INDiC determines in more than 75% accuracy (Figs. 3.9a
and 3.11a). Assuming that each of the seven appliances with 19 possible states are equally dis-
tributed, the INDiC results are significantly better than random guessing. For the ‘light’ appliance,
the results are worse: State 3 is correctly determined only in 46% of the cases, State 1 is correctly
determined in 94%, and State 2 in 60%. Because the difference in the consumption levels of ‘light’
between State 2 and State 3 are relatively low (c.f., Table 3.4), it is difficult to distinguish between
them both. In summary, the results show that INDiC is able to determine the states of appliances
well, so it is a possible approach for information extraction. In turn, INDiC can be used to evaluate
the applicability of PACTS. We expect PACTS to significantly decrease the achieved disaggregation
performance.

R.12 PACTS has a significant influence on the INDiC disaggregation for the ‘light’ appliance,
i.e., PACTS is able to keep INDiC from extracting information. First, we inspect the result of
applying noise for the discriminative pair spair = (‘Light is in State 2’, ‘Light is in State 3’). After
applying noise, the INDiC disaggregation results get worse (Fig. 3.8): Because spair should hide
the distinction between States 2 and 3, we are particularly interested in the results covering the
probabilities of both. An adversary having either State 2 or State 3 in mind obviously has difficulties
in distinguishing which state is true: Guessing the right state is only 4% more likely than guessing
the wrong one. The accuracy drops by 40% regarding State 2 and 23% regarding State 3, compared
with the original INDiC results (Fig. 3.7). The results show that an adversary using INDiC can
extract significantly less information regarding the ‘light’ appliance if PACTS is applied.

R.13 PACTS has a significant influence on the INDiC disaggregation for State 2 of the ‘refrig-
erator’ and ‘microwave’ appliance, i.e., PACTS is able to keep INDiC from extracting information
on that State. However, INDiC is still able to determine State 3 correctly in many situations.
Hiding the ‘Refrigerator’ State 2 and 3 leads to slightly different results: Determining State 2 is
only correct in 6% of the cases. Guessing State 3 dropped by 36% but is still correct in 39% of the
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(a) Confusion matrix
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State 1 0.94 0.04 0.02
State 2 0.16 0.60 0.24
State 3 0.48 0.06 0.46

(b) Predicted states vs. true states (relative)

Figure 3.7: INDiC results of ‘Light’

cases. Hiding the ‘microwave’ appliance leads to similar results. Although hiding State 2 works
well, State 3 is still guessed correctly in approximately 52% of the cases (Fig. 3.12), with a drop of
41% compared with the data without noise (Fig. 3.11). In addition, guessing State 2 or 3 increases
when State 1 was correct. This is an effect of the limitation discussed in Section 3.4.2 regarding
consumption values lower than zero.

R.14 PACTS is able to cover secrets induced by the INDiC approach. Creating discriminative
pairs for all appliances in Table 3.4 works similarly to the example in Section 3.4.2. Thus, PACTS
is applicable when hiding information regarding the states of running appliances. Leaving the
limitations regarding possible negative values aside, PACTS can cover all of the secrets induced by
INDiC.

3.4.3 Generality: Re-identification

Re-identification, as introduced in Section 2.2, means linking personal data that do not contain
any direct identifiers (e.g., name, address) to individuals. Reconsider that for the re-identification,
an adversary has features regarding the individual power consumption as external knowledge. The
distance (similarity) between the features of the time series in question and those in the external
knowledge are computed. If the features are similar, i.e., the distance is ‘low’ the time series belongs
most likely to the individual in the external knowledge.

Features of the consumption help to re-identify time series of power-consumption values. Chang-
ing such features in the published time series should prevent re-identification. We first analyze
whether PACTS covers all of the features proposed by our re-identification method and then focus
on the effects of hiding specific features. In particular, we focus on the following four features: over-
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Figure 3.8: INDiC results of ‘Light’ with PACTS spair = (‘Light is in State 2’, ‘Light is in State 3’)
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Figure 3.9: INDiC results of ‘Refrigerator’
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Figure 3.10: INDiC results of ‘Refrigerator’ with PACTS spair =

(‘Refrigerator is in State 2’, ‘Refrigerator is in State 3’)
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Figure 3.11: INDiC results of ‘Microwave’
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Figure 3.12: INDiC results of ‘Microwave’ with PACTS spair =

(‘Microwave is in State 2’, ‘Microwave is in State 3’)

all consumption (Definition 5), maximum (Definition 7) and minimum consumption (Definition 6)
for a time interval, and average bedtime hour (Definition 14).

Coverage of the Re-identification Features

Table 3.5 lists the necessary transformations and relevant coefficients for each feature of the re-
identification. In this section, we explain in greater detail our decisions regarding the transforma-
tions.

Overall, Minimum, and Maximum Consumption: The sum and the minimum or maximum
value of the position of the whole time series is in the y-dimension (consumption). The absolute
height is reflected by the scaling coefficients of the wavelet-transformed representation. We explain
the instantiation of secrets for these features in Section 3.4.3.

Standard Deviation and 0.9-Quantile: Both features depend on the spread of values in a
time series. Applying noise to the Fourier-transformed representation changes the amplitudes of
the contained frequencies. Obviously, the standard deviation and the 0.9-quantile also change.

Frequency of Mode: Applying noise to the contained frequencies in a signal also changes the
frequency of each unique value.
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Feature Transformation Coefficients Concerned
Overall Consumption (Def. 5) Haar-Wavelet Scaling Coefficient
Minimum Consumption (Def. 6) Haar-Wavelet Scaling Coefficient
Maximum Consumption (Def. 7) Haar-Wavelet Scaling Coefficient
Standard Deviation (Def. 8) Fourier All
0.9-Quantile (Def. 9) Fourier All
Frequency of mode (Def. 10) Fourier Significant Frequencies
Consumption Mo-Fr h1-h2 (Def. 11) Decomposed Wavelet Relevant Scaling Coefficient
Weekend Consumption (Def. 12) Fourier Frequencies Reflecting Fraction
Average Wakeup Hour (Def. 13) Haar-Wavelet Level 1/2
Average Bedtime Hour (Def. 14) Haar-Wavelet Level 1/2

Table 3.5: Feasible transformation for re-identification features

Consumption Mo-Fr h1 −h2: The decomposed wavelet transformation has to be applied in an
aligned way to cover this feature. The part of the signal containing the consumption between h1
and h2 has to be transformed with the wavelet transformation in isolation. If the distance between
h1 and h2 does not consist of 2n values, this part also has to be decomposed. Applying noise to
the scaling coefficients between h1 and h2 will change the consumption in the timespan in question
analogue to the overall consumption.

Weekend Consumption: This feature considers the consumption during the weekend in rela-
tion to the consumption during the week. In the Fourier transformed representation this relation
is covered by frequencies having the highest amplitude value during weekends, and their lowest
amplitude value during weekdays. If noise is applied to those frequencies the relation between both
consumptions change.

Average Wakeup and Bedtime Hour: The wakeup hour is the first significant increase in the
morning and the bedtime hour the significant decrease at night. This is similar to the flow heater
(see Example 5) and is reflected by the first and second level of the Haar wavelet–transformed
representation.

In the following, we will elaborate on how the ‘Overall’, ‘Maximum’ and ‘Minimum Consumption’,
and ‘Average Wakeup Hour’ and ‘Bedtime Hour’ features can be hidden with PACTS. We have
chosen these features because they have the same structure as almost half of the features listed in
Table 3.5.
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Implementation of Secrets for Overall, Maximum, and Minimum Consumption

To implement secrets, we have to take a closer look at the feature definition in combination with
PACTS. The overall power consumption of a time period is the sum of all channels i ∈ [1, . . . , n]:

∑

∀t∈T̂
f[t] = ∑

∀t∈T̂
f1[t] +⋯ + ∑

∀t∈T̂
fn[t]

An adversary having external knowledge of the power consumption and trying to re-identify a
record has to take inaccuracies into account, i.e., he or she typically does not know the total power
consumption for sure, only within a certain range. Thus, we partition the channels into a known
one, such as the relevant channel r, and the ones not known. The unknown channels are responsible
for the difference between the known channels and the total consumption at each point of time.

∑

∀t∈T̂
f[t] = ∑

∀t∈T̂
f1[t] +⋯ + ∑

∀t∈T̂
fr[t] +⋯ + ∑

∀t∈T̂
fn[t]

Based on the sum ∑∀t∈T̂ f[t], the adversary has to decide whether the known channel is consistent
with his or her knowledge. Adding Laplace noise in line with ε-Pufferfish privacy leads to uncer-
tainty regarding ∑∀t∈T̂ fr[t]. Re-identification is successful if an adversary is able to single out the
true individual record. In particular, this is relatively easy if the feature values of individuals are
spread over a wide range and are rather unique. Thus, individual privacy requirements depend on
assumptions regarding other individuals in the data set. Describing a suitable secret is deciding
which interval is sufficient to hide ∑∀t∈T̂ fr[t] amongsother channels. We use the following notation:

sk = ‘Known power consumption is in interval [y-k, y+k]’

The discriminative pairs can be of the form spair = (sk, s3k). One way to determine k is to look at
the distribution of a known data set. Figure 2.2a indicates that k = 5 kWh is sufficient to hide a
single household among more than 10 others for a large fraction of households. These considerations
also hold for the ‘Minimum’ and ‘Maximum’ features.

Applying Noise to the Scaling Coefficient: Applying noise to the scaling coefficient is special,
compared with other coefficients. In particular, the scaling coefficient is normed. It represents the
overall, minimum, and maximum consumption, and is calculated as follows: ∑∀t∈T̂ f[t]√

∥T̂ ∥
. Thus, the

additive noise Laplace(4k/ε) is also normalized: ∑∀t∈T̂ f[t]√
∥T̂ ∥

+
Laplace(4k/ε)√

∥T̂ ∥
.

Implementation of Secrets for Average Wakeup and Bedtime Hour

According to Definition 14 the bedtime hour is when a household switches off certain de-
vices, e.g., the light or the television, right before going to bed. The devices do not nec-
essary have to be the same for different households as long as they are usually switched off
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right before going to bed. We consider switch-off events only between 4 p.m. and 2 a.m.
Some appliances may still run, but only the change in power consumption is of interest. An
adversary trying to re-identify a household is interested in deciding whether the devices are
switched off. Thus, an individual wants to hide the discriminative pair spair, which con-
sists of the following secrets: s1 = ‘Household switches off devices before bedtime’ and s2 =

‘Household does not switch off devices before bedtime’. The relevant channel r includes the de-
vices mentioned for spair:

fh[x] = f
r
h[x] + f

1
h[x] +⋯ + fnh [x]

The switch-off causes a decrease in the power consumption of 0.5 kWh on f rh[x]. Thus, we apply
Laplace((4 ⋅ 0.5)/ε) noise on Level 1 and Laplace((4 ⋅ 0.5√

2)/ε) noise on Level 2 during 4 p.m. and
2 a.m. Hiding wakeup hours is similar.

Results

The evaluation of PACTS as a way to hinder re-identification has two goals: First, we investigate
whether PACTS is generally applicable, i.e., if we are able to formulate secrets regarding the features
of re-identification. Second, we test how re-identification rates change if PACTS is applied, i.e., how
effective PACTS is in hiding features from an adversary. The first result summarizes the general
applicability.

R.15 PACTS is able to hide all of the features used to re-identify households. Section 3.4.3
explains how we are able to find an appropriate transformation for each of the proposed features.
Thus, PACTS is able to express privacy requirements regarding re-identification.

To quantify effectiveness, we look at the relative decrease in accuracy, i.e., the number of house-
holds re-identified with and without applying noise. Although re-identification makes use of a
combination of features to increase performance, to isolate the effects of hiding specific secrets we
take only features relevant for the secret. In particular, we considered the following feature sets Φ
grouped by different secret definitions: For secrets leading to noise on the scaling coefficient (Sec-
tion 3.4.3) we choose {φMaxC}, {φMinC}, {φOC}, and {φMaxC , φMinC , φOC}. For secrets regarding
the wakeup and bedtime hours, we use {φWH}, {φBH} and the combination of both {φWH , φBH}.
In total, we tested sets of 100, 500, and 1,000 persons living in 32, 158, and 314 households from
the CER data set (see Section 2.2.3) and set ε = 0.1. The parameters are similar to the ones chosen
in the evaluation of the re-identification performance (see Section 2.2.4).

Choosing only a limited set of features reduces the number of re-identified households. This
is the case both with and without applying noise, so this current evaluation is still conclusive.
However, the effect of PACTS on the re-identification rate is difficult to quantify and is influenced
by random effects when the rate is low on the unmodified data set. To isolate the effect of PACTS,
we relax the re-identification condition in the following way: We deem a household as re-identified
if the time series of the same household receives at least the nth lowest score. We choose n = 1
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Figure 3.13: Re-identification rate for feature sets {φMaxC}, {φMinC}, {φOC}, and
{φMaxC , φMinC , φOC}, n = 1

as the standard re-identification case and n = 5 as the relaxed case. Re-identification rates are
significantly higher for n = 5 and for the combination of the features considered (Fig. 3.13–3.16).

Our measurements of the decrease in accuracy yields the following results:
R.16 The accuracy decrease is more than 50% on average for features {φMaxC}, {φMinC},

{φOC}, and their combination. Applying PACTS significantly reduces the re-identification rate
for n = 1 and n = 5 (Figs. 3.17 Figure 3.18), from at least 50% up to almost 100% on average. Thus,
the proposed PACTS application is effective, as expected.

R.17 The accuracy decrease is lower for feature sets consisting of φWH , φBH compared with
feature sets consisting of φMaxC , φMinC , φOC . The lowest average re-identification rate drop for
the wakeup and bedtime hour features approximately 25%, and the highest approximately 80%.
This is lower than the decreases in Result R.16 (see Figs. 3.19 and 3.20). The reason for the
lower decrease is because the re-identification rate without applying PACTS was also lower. If the
features of a number of households is similar, the algorithm starts to ‘guess’ the correct household.
Consequently, a small number of households can still be re-identified by random guessing, leading
to a lower decrease if the reference rate was also low.

We expected a decrease in re-identification performance as presented in Results R.16 and R.17.
However, the data also show some anomalies, which we will discuss in the following.

R.18 Re-identification rate increases when applying PACTS in rare cases; however, this is not
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Figure 3.14: Re-identification rate for feature sets {φMaxC}, {φMinC}, {φOC} and
{φMaxC , φMinC , φOC}, n = 5
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Figure 3.15: Re-identification rate for feature sets {φWH}, {φBH} and {φWH , φBH}, n = 1
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Figure 3.16: Re-identification rate for feature sets {φWH}, {φBH} and {φWH , φBH}, n = 5

a limitation on the effectiveness. Reconsider the discussion of Result R.17: Random guesses
are still possible and do not influence the general effectiveness of the proposed privacy-enhancing
method. Additionally, in our evaluation, we have assumed the same discriminative pair for all
households. However, for outliers in particular, e.g., a household consuming a lot of electricity and
thus being easy to re-identify, discriminative pairs should differ. In particular, the k of the interval
must be larger. A larger n and a lower re-identification rate are beneficial for the importance of
(correct) random guesses and the influence of outliers to our results.

In summary, PACTS allows the definition of suitable secrets to hinder re-identification. Even
with secrets designed in a straightforward way, without considering outliers, the accuracy decreases
significantly.

3.5 Conclusions

Disclosure of data plays a significant role in the context of the smart grid. However, time series
of smart-meter data contain sensitive information, which is represented in many different ways.
Individuals may not allow access to the data as long as sensitive information based on individual
privacy preferences is not removed, i.e., they require respect for their right to informational self-
determination. Pufferfish is a state-of-the-art approach to hide specific information. However,
application-specific work is required when applying it to smart-meter data and carrying out an
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Figure 3.17: Drop in re-identification rate for feature sets {φMaxC}, {φMinC}, {φOC} and
{φMaxC , φMinC , φOC}, n = 1

evaluation that is conclusive. PACTS as a provable privacy approach for time series that include
the definition of how sensitive information is represented, how data-evolution scenarios can be
applied, and how the information can be perturbed to give Pufferfish guarantees. Next, it is
challenging to evaluate the general coverage of secrets. Our evaluation has addressed this point:
The evaluation has shown that PACTS can indeed shield personal information from information
extraction or re-identification approaches. The potential of an adversary to gain information from
the disclosed data set has dropped significantly.

PACTS can be applied to time series in general if the following holds: First, for the secrets
in question, an abstracted representation with meaningful coefficients can be found. Within the
abstracted representation, application of noise guarantees Pufferfish privacy, e.g., because smart-
meter data are always an aggregate of several appliances, and additive noise is applicable. Similar
structures can be found in other time series, e.g., time series of GPS trajectories. Reaching a certain
location is the sum of several ‘sub-movement’ trajectories. For example, going to work involves a
number of sub-movements because the individual uses several means of transportation.

With the help of privacy-enhancing methods such as PACTS, individual privacy preferences can
be respected. However, all approaches have in common that the sensitive data are modified. This
puts utility of the data at risk. To investigate whether the data are still useable, we require a
measure for privacy-enhancing methods. We introduce such a measure in the next chapter.
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Figure 3.18: Drop in re-identification rate for feature sets {φMaxC}, {φMinC}, {φOC} and
{φMaxC , φMinC , φOC}, n = 5
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Figure 3.19: Drop in re-identification rate for feature sets {φWH}, {φBH} and {φWH , φBH}, n = 1
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Figure 3.20: Drop in re-identification rate for feature sets {φWH}, {φBH} and {φWH , φBH}, n = 5
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Chapter 4

Local Energy Market:
Application-Specific Data Quality
Measure

Privacy-enhancing methods (see Chapter 3) have in common that they modify the actual time-
series data. All methods strive to remove personal information to publish data without setting
the privacy of individuals at risk. For example, a privacy-enhancing method for smart-meter time
series modifies the power-consumption values. Methods differ in modifications of the data set, and
stricter privacy guarantees require greater modifications of the data.

However, those modifications have a negative impact on the quality of the published data. This
affects legitimate applications using such data sources. These applications provide results for the
benefit of society. For instance, applications in the smart grid domain may improve reliability of
supply or reduce emissions. From an application perspective, the ideal case is accessing unmodified
data to provide the highest utility and thus the most benefit for society. Because the individual
privacy interests compete with the common and legitimate interests of society, it is worthwhile
investigating the tradeoff between privacy and utility [70].

Utility measures quantify the impact on data quality. We distinguish between abstract and
application-specific utility measures. Abstract measures generally quantify the ‘change’ of the
privacy-enhanced data in comparison with the original data. Popular examples are distance mea-
sures like the Euclidean distance. However, such measures do not necessarily quantify the actual
effect on an application. We illustrate this in the following example.
Example 9 (Abstract Utility Measure): Suppose that a time series is perturbed two times.
Furthermore, with the second perturbation, the Euclidean distance of the resulting series to the
original one is twice as large as the first one. This does not necessarily mean that the utility is
halved. For example, it may still be possible to identify outliers in the time series. ◻

Application-specific measures, in turn, quantify the effects of data modifications on concrete
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applications. The impact is quantified by the different results that an application yields on privacy-
enhanced data in comparison with the unmodified data. Such measures allow a prediction of the
influence that a privacy-enhancing method has on a specific application.
Example 10 (Application-Specific Utility Measure): Assume that the application in
question is calculating the average of a time series. A specific measure for this application is the
absolute difference between the average of a privacy-enhanced time series and the true average. In
turn, this result does not allow inference on the Euclidean distance between the privacy-enhanced
and the original time series. ◻

Challenges for a data-quality measure for privacy-enhancement methods are as follows:

Comprehensible: The PACTS (Section 3.2) privacy approach assumes that the individuals spec-
ify their privacy requirements. Furthermore, if their privacy is respected, individuals are willing to
provide access to their data. Studies like [47] have shown that monetary incentives have a positive
effect on disclosure. Thus, privacy requirements may change if individuals can understand the
impact of privacy enhancement on utility and have an incentive to provide more accurate data.
Consequently, our first challenge is that the resulting impact measures are comprehensive, i.e., the
results of an impact measure for privacy-enhancement methods are intuitively understandable.

Discriminative for Applications: The goal of impact measurements is to provide insight on
how well applications of the specific domain work with privacy-enhanced data. This is also impor-
tant for an individual when an application accessing the privacy-enhanced data leads to a benefit.
Thus, our second challenge is to express this correlation: The results of a utility measurement are
discriminative for an application, i.e., they quantify the performance decrease and imply an order
for different privacy-enhancement methods and parameters.

We propose an application-specific utility measure in the smart grid scenario based on an elec-
tronic local energy market. The proposed measure is both comprehensible and discriminative for
applications. In particular, we investigate the impact of privacy-enhancing methods on an (elec-
tronic) local energy market (C.3). In a nutshell, it is an electronic marketplace for energy that is
de-centrally produced. Privacy-enhancement methods that modify the bids of consumers lead to
less efficient allocations. With the proposed market we can explore the economic effects of different
privacy-enhancement methods and their parameters. As such, it offers a concrete application sce-
nario to evaluate the actual impact of recent privacy-enhancement methods. Economic effects can
be quantified in a comprehensive manner and units, making the proposed measure understandable.

To underline the validity of the proposed utility measure, we also contribute an in-depth analysis
of privacy-enhancement methods that are applied in local energy markets in Chapter 5. The
remainder of this chapter is structured as follows. We begin by discussing related impact measures
(Section 4.1) and continue with the description of the local energy market as an application-specific
utility measure (Section 4.2). We introduce our proposed model of such a market in Section 4.3
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and describe our instantiation in Section 4.4. Section 4.5 concludes the chapter. The contents of
this chapter are published in [12] and [57].

4.1 Related Impact Measures

In this section, we give a brief review of existing related impact measures for privacy-enhancing
methods. We describe statistical measures, information theoretic approaches, and application-
specific measures.

The standard deviation is a measure for uncertainty, i.e., a high standard deviation indicates that
the considered values have a large difference to the reference point. [88] uses a standard deviation
that considers the modified time-series value f ′(t) in comparison to the original value f(t) as a
reference point for each time slot. Differential privacy approaches for time series of smart-meter
data also use the standard deviation (or related measures like the Root Mean Square error) of the
error quantifying utility [5, 99]. This measure is only discriminative for applications if the result is
entirely based on the deviation.

Privacy-protecting approaches using a rechargeable battery [54, 96, 112] use mutual information
to quantify privacy and utility. Mutual information measures the information theoretic dependence
between two variables. If there is a correlation between the original and the privacy-enhanced time
series, the mutual information between both series is large. This indicates that the utility is also
large. However, to understand this measure, a information theoretic background is necessary. Thus,
it is not intuitively comprehensible.

Approaches for the time series of trajectory data use distance measures of time series such as
the log cost metric and the Euclidean distance [86, 94]. As shown in Example 9, such measures
do not necessarily discriminate applications. Regarding trajectory data, one common information
need are range queries that result in objects nearby a specific query point. [1, 2, 120] quantify
utility with range query distortions. [20] follows a similar approach, but with different queries
regarding frequent sequences and doublets. Because such queries are commonly used, they are
comprehensible and discriminate applications. However, they cover only a specific fact in isolation.
The proposed measures in the local energy market (Section 4.2) are influenced by a combination of
different ‘queries’ covering the supply and the demand side. This allows more general conclusions
on the utility of smart-meter data. To our knowledge, an application-specific-utility measure in the
smart grid with similar complexity does not exist.

4.2 Application Specific Impact Measure: An Electronic Local
Energy Market

Historically, the electricity grid is tailored to a centralized generation structure. At its core are a
few large power plants that generate electricity for a large number of consumers [37]. However,
reducing the CO2 emissions of the energy production requires the integration of renewable sources,
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4.2. APPLICATION SPECIFIC IMPACT MEASURE: AN ELECTRONIC LOCAL ENERGY MARKET

such as photovoltaic sites and micro-combined heat and power plants. These sources are volatile
and distributed. Compared with a large power plant, each of them produces only a small amount
of power and cannot be controlled centrally. Because of their variability, integration of renewables
remains a big challenge for today’s power system. See Section 1.1 for more details.

Smart grids [77], the ICT-enabled electricity networks of the future, facilitate new operational
paradigms [41, 97]. A case in point is the establishment of local energy markets, which provide a
way to match regional energy demand and renewable supply [48, 65]. More ‘local’ (i.e., in spatial
proximity of generation) energy consumption can help to improve integration of renewables and
minimize transmission losses [4]. To work efficiently, local energy markets rely on truthful power-
consumption information revealed by the participants, e.g., private households. In such markets,
customers cover their energy needs by bidding for the required energy amounts over short time
intervals. Consequently, a customer’s consumption behavior is encapsulated in these bids.

We have seen in Chapter 2 that fine-grain power consumption data contain a vast variety of
different personal information. Consequently, electronic market systems in smart grids should
strive to preserve privacy properties [78]. We have introduced privacy-enhancement methods in
Chapter 3. Their common ground is the distortion of sensitive values, i.e., energy consumption
levels. In doing so, they are able to retain a certain level of privacy despite personal data being
revealed to the market.

However, distorted bids are likely to induce less efficient allocations. Depending on the nature
of the distortion, more or less energy than actually needed may be allocated. Hence, privacy
enhancement may lead to additional costs for consumers. As an utility measure, we quantify these
privacy costs in a local energy market with demand-side flexibility and storage.

To understand the relationship of privacy enhancement and local energy markets, we model
a smart grid marketplace with privacy-enhancement methods together with a customer demand
model. We characterize customer-bidding behavior and determine formal characteristics of the
interplay between components of our model. In particular, we provide the following:

• The personal data flows for a local electricity market based on a double-sided auction;

• A model for the supply and demand of electricity in a low-voltage circuit in the near future
based on realistic data;

• An investigation on how privacy-enhancing approaches can be applied to order books and
ensure the privacy of participants; and

• A characterization of customer-bidding behavior under different assumptions. We also include
different pricing schemes, that reflect traditional and ‘smart grid’-enabled utility of consumers.

4.2.1 Related Work Considering Local Energy Markets

In this section, we review related local energy market approaches, market transparency issues
including cryptographic approaches, and encompass our approach for using storage systems with
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existing privacy protection approaches.

Local Energy Markets Renewable sources for electricity generation are distributed and volatile
by nature. The efficient use of such sources is an important part of the smart grid vision. Local
energy markets efficiently coordinate the decentralized generation of electricity [48]. Generators
of renewable energy and consumers participate in such local markets and trade energy over short
time intervals, e.g., 30 min or less. Local markets for renewable energies have a number of positive
effects: Community-based funding models increase the acceptance and accelerate the installation
of renewable power plants [52, 122]; local markets seamlessly fit into the distributed structure of
renewable power generation [48]; and finally, because the price of renewable energy is falling below
that of conventional energy, private and shared consumption are becoming more important [101].

Transparency and Disclosure Obligations Transparency obligations like the EUC 543/2013
mandate the publication of comprehensive market data. Market transparency is key to ensure
market liquidity and hence market efficiency [76, 87]. To cope with the over- and undersupply of
renewable energies, distribution system operators and plant operators must be able to forecast the
energy demand and the production of renewable sources [113]. Thus, the production and allocation
of renewable energy sources should be openly known.

Cryptographic Auctions Cryptographic auctions encrypt the bids and provide verifiability of
the correctness. However, they do not allow ex-post access to the information, which limits market
transparency. Furthermore, they do not facilitate repeated and parallel market interactions as they
are designed for a single seller [10], or preserve secrets only until the end of an auction [89].

Storage and Privacy Privacy protection approaches like [54, 96, 112] rely on the use of energy
storage. See Section 3.1.2 for more details. In both cases, a stationary storage is used to com-
pletely mask the load signatures of the underlying household appliances. However, these results
are primarily anecdotal and rely on an arbitrarily large storage system. In the proposed local
energy market we follow the general idea by investigating the economic interplay between privacy
enhancement and a fixed storage system with limited capacity. This allows us to compare the
previously orthogonal dimensions of storage costs and privacy.

4.3 Model

In this section, we specify our theoretical local energy market model and the corresponding privacy-
enhancement methods. This includes details on the bidding process and definitions of the market-
performance measures.
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Figure 4.1: Architecture of our privacy-aware electronic local energy marketplace

4.3.1 Technical Architecture

Before discussing the proposed market model, we clarify how such a market can be realized. Local
renewable energy sources such as photovoltaic roof installations are connected to the power grid
on the level of low-voltage (below 1500 Volts) distribution circuits. Typically, a low-voltage circuit
distributes electricity in an urban district or in a village [50]. Because a step-up transformation to
higher voltages for long-distance lines would decrease energy efficiency, the local low-voltage circuit
specifies the participants for our local energy market [49]:

• Distribution System Operator (DSO) In our market, the DSO balances over- and under-
supply of locally renewable energy. For example, if the photovoltaic installations cannot meet
the demand at night, the DSO transfers energy from the higher voltage grid levels. In the case
of oversupply, the DSO exports surplus energy.

• Energy Producer (EP) Each EP offers an amount of energy for a future period of time.
Because larger sources, e.g., wind turbines, are usually connected to higher-voltage grids,
we consider only micro-combined heat and power plants (CHP) [25] and small photovoltaic
sites (PV) [91].

• Energy Consumer (EC) The EC places bids for energy at certain time intervals. The typical
ECs on a low-voltage circuit are private households. This is realistic, as large enterprises are
connected to the higher-voltage grid.
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• Local Market Operator (LMO) The LMO matches the demand of the ECs with the supply
from the EPs. To do so, the LMO manages an order book containing the bids from the ECs
and EPs. The order book is public for all market participants and the DSO. To ensure privacy,
the LMO applies privacy-enhancement methods to the bids of the consumers.

Figure 4.1 depicts our architecture. Each EC predicts its future energy demand. Likewise, the
EPs predict their energy production, e.g., based on the weather forecast. The ECs and EPs then
place bids for a certain amount of energy at a certain period of time. The LMO computes the
outcome of the auction and communicates this information to the EC, EP, and DSO. Each EP
feeds all energy from its plant to the local low-voltage circuit.

Considering a real-world scenario, situations with over- and undersupply have to be handled.
The DSO is capable of importing and exporting electricity from higher voltage grids, guaranteeing
security of supply. Each EC is charged for electricity that is provided locally and for conventional
energy drawn from the DSO. In summary, local energy markets are applicable in a real-world
scenario. In the following we specify the market model from an economical perspective.

4.3.2 Market Structure

We want to study the effects of applying privacy-enhancement techniques on such a local energy
market with the help of a model. Following the market engineering paradigm [65, 116], an appropri-
ate model of a marketplace requires specifying the participants and their behavior (agent behavior),
the transaction object, the market mechanism (market microstructure), and market performance
measures (market outcome). We further describe the integration of privacy-enhancement methods
in such a structure.

Market Participants Notation 10 (Market Participants): A is the set of participants
in our local energy market. C denotes the set of consumers, and G the set of producers.

Each participant (actor) a ∈ A is either a consumer c ∈ C or a producer (generator) g ∈ G, i.e.,
we assume C ∩ G = ∅. We do not consider prosumers (producer and consumer) as they give rise to
new strategic considerations by acting on both sides of the market.

Consumer energy demand varies over time. We model the time domain as a set of time inter-
vals T (see Notation 1). For each t ∈ T , a consumer’s maximum consumption level, referred to as
the saturation level, is given by xc(t). The trajectories of saturation levels form a set of time series:
X = {xc(t)∣t ∈ T , c ∈ C}. The purchasing behavior of a consumer is governed by individual utility
as specified in Section 4.3.3. Given temporally varying electricity needs xc(t), optimal bidding re-
quires customers to dynamically determine quantity-utility mappings. The notation in the market
context follows the common notation in Section 2.2.1.

The set of producers consists of local generation units (PV, CHP) and a balancing party. This
party is run by the DSO and reflects energy imports from the superordinate grid. Producers
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participate in the market by selling electricity. Individual rationality requires them to at least
cover their marginal generation costs. Their capacity limits their bid quantities.

Transaction Object Our market instantiation follows traditional wholesale electricity markets
in that electrical energy supply and demand commitments are traded. A bid contains the issuing
market participant and its type (buy or sell order), the amount of energy procured (in kWh), and
the reservation price plim. In the case of a sell order, the latter specifies the minimum price; in the
case of a buy order, it is the maximum price. Individual actors can submit several bids to reflect
nonlinear customer utility and generator cost functions.
Notation 11 (Order): An order oa of market participant a is a triple containing the quan-
tity (q), the limit price (plim), and the actual allocated amount (qalloc): oa = (q, plim, qalloc). If we
specifically address an element of this triple, we refer to it as oa[q],oa[plim] and oa[qalloc]. Because
we omit prosumers, oc is necessarily a buy order and og a sell order.

Privacy-Enhanced Bidding As noted previously, a customer c will formulate his or her bid
at time t to reflect his or her current energy-demand saturation level xc(t). Consumers will place
a collection of bids reflecting their utility function under xc(t). In the presence of privacy en-
hancement, the bidding process slightly changes: Consumers report xc(t) to the privacy protection
system, which in turn determines a modified demand report x̃c(t) that is communicated to the
market.

There are two distinct elements in the report that a consumer could strategize about: quantity
and price. As private information is embedded only in the quantity component, we rule out that
consumers will modify their demand report as this could open a side channel that undermines
the privacy-enhancement technique. Consequently, we assume that the privacy protection system
receives the true initial demand reports of the consumers. For the valuation, we do not make this
assumption but show that in specific cases privacy-aware auctions are incentive compatible with
respect to prices and consumers, and thus will optimally report their true valuation to the system.
See Lemma 10 for further discussion. Bidding with and without a privacy-enhancement method is
illustrated in Figure 4.2.

Market Mechanism Because electricity is a homogeneous good, double-sided auction formats
can achieve a high level of market liquidity and efficiency [49, 98]. Following previous research
on local energy markets, e.g., [65], we select the discrete time double auction (also referred to
as periodic call auction or call market) as the market mechanism. Here, market clearing is not
continuous but occurs in repeated time slots t ∈ T . For each time slot, the market mechanism
determines the allocation and clearing price for the submitted bids and asks. It does so by first
constructing demand and supply curves and subsequently determining the intersection of the two.
All of the necessary orders are contained in the order book. Formally, we denote the order book
the following way.
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Step 1
determine satura-
tion levels xc(t)

Step 2
strategic price determination,

total amount bid on: xc(t)

Step 3
allocation: xc(t) ∈ [0, xc(t)]

Step 1
determine satura-
tion levels xc(t)

Step 1a
privacy enhancement
of saturation levels

x̃c(t)

Step 2
strategic price determination,

total amount bid on: x̃c(t)

Step 3
allocation: xc(t) ∈ [0, x̃c(t)]

Figure 4.2: Auctions without (left) and with (right) privacy enhancement

Notation 12 (Order Book): The order book Ot contains all orders for time slot t. We refer
to the sell orders as Os

t and to the buy orders as Ob
t . Furthermore, the order book Õ contains the

same orders, but the bids of the consumers are replaced by their privacy-enhanced bids.

Orders match if the limit price of the sell order is lower than the one of the buy order, and if the
quantity is not completely allocated. The double auction mechanism determines the clearing price
pt for each time slot by the limit prices of the last matched orders. We use a uniform pricing scheme
(k-pricing) in which the clearing price is between the limit prices of the last matched orders. We
set k = 1

2 and the clearing price is the average of the limits. Algorithm 4 contains a pseudo-code
implementation of the double-sided auction, and Figure 4.3 illustrates the sample order book in
Table 4.1. For a more detailed description of the call market, we refer to [90].

Market-Quality Measure To assess the economic outcome of our local marketplace, we analyze
the market’s allocative efficiency. Consequently, we use social welfare as an application-specific
measure for the effect of privacy-enhancement mechanisms.

Definition 32 (Social Welfare): Social welfare is the sum of consumer surplus (difference
between willingness to pay and clearing price) and producer surplus (difference between clearing
price and costs):
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Algorithm 4: Discrete Time Double Auction with k-pricing (k = 1
2)

Input: Order book for time slot t: Ot = Ob
t ∪Os

t

Result: Allocation for time slot t and clearing price pt
1 List sellOrders = sortAscendingByLimit(Os

t );
2 List buyOrders = sortDescendingByLimit(Ob

t );
3 Order og = sellOrders.first();
4 Order oc = buyOrders.first();

// stop if orders do not match
5 while og[plim] ≤ oc[plim] do

// match the remaining order volumes
6 volume = min(og[q] - og[qalloc], oc[q] - oc[qalloc]);
7 og[qalloc] = og[qalloc] + volume;
8 oc[qalloc] = oc[qalloc] + volume;

// fetch next unmatched orders if necessary and possible
9 if og[q] == og[qalloc] then

10 if not sellOrders.hasNext() then break;
11 og = sellOrders.next();
12 end
13 if oc[q] == oc[qalloc] then
14 if not buyOrders.hasNext() then break;
15 oc = buyOrders.next();
16 end
17 end

// compute price from last matching orders

18 pt =
og[plim]+oc[plim]

2 ;
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Trader Sell Limit Buy
PV2 3 kWh 0.250 e/kWh
PV1 5 kWh 0.210 e/kWh
CHP2 3 kWh 0.190 e/kWh
PV3 4 kWh 0.160 e/kWh
HH1 0.240 e/kWh 3 kWh
HH2 0.235 e/kWh 5 kWh
HH3 0.230 e/kWh 1 kWh
HH4 0.220 e/kWh 6 kWh

Table 4.1: Order book for single time slot

W = ∑
∀c∈C

CSc + ∑
∀g∈G

PSg

◻

To ease the comparison of different simulation runs, we rely on the relative welfare.
Definition 33 (Relative Welfare): Let W be the welfare achieved in a local energy market
without privacy enhancement. Furthermore, let W̃ be the welfare achieved in the same market (con-
cerning supply and demand), but in the presence of a privacy-enhancement method that modifies
the bids of consumers. Relative welfare W ′ is then given by

W ′
=
W
W̃

◻

We posit that higher relative welfare is an indication that a privacy-enhancement method that
retains a higher data quality in the application scenario under consideration.

Local energy markets strive to reduce CO2 emissions. Locally traded energy is renewable and
does not produce emissions. If consumers demand energy from the higher grid level, emissions
depend on the mix of primary sources at a specific time of the day. The definition of CO2 intensity
enables us to quantify the saved emissions.
Definition 34 (CO2 intensity): The CO2 intensity is the amount of CO2 emitted per
consumed kWh for a specific time slot t. We denote that as ω(t). Intensity is measured in gCO2

kWh .
◻

Intuitively, the saved emissions is the demand fulfilled locally instead of by requesting electricity
from higher grid levels, respectively the balancing party.
Definition 35 (Saved Emissions): Assume that the order book O contains all orders and
allocated amounts. Let D(c, t,Ot) be the total fulfilled demand of consumer c at time slot t, defined
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Figure 4.3: Illustration of a double auction

as follows:
D(c, t,Ot) =min(xc(t), ∑

∀oc∈Ot
oc[qalloc])

The total sum of the allocated electricity can exceed the saturation level, as privacy enhancement
may lead to a higher saturation level x̃c(t). Then the saved emissions Ω(O) are defined as follows:

Ω(O) = ∑
∀t∈T ,∀c∈C

D(c, t,Ot) ⋅ ω(t) − ∑
∀t∈T

{ob[qalloc] ⋅ ω(t)∣ob ∈ Ot ∧ b ∈ G is balancing party}

◻

As a market-quality measure, we quantify the relative saved emissions. Because privacy-
enhancement allocative inefficiency leads to additional emissions, the higher the relative saved
emissions, the more successful the market.
Definition 36 (Relative Saved Emissions): Let order book O contain all orders and
allocated amounts. Furthermore, let Õ be the corresponding order book based on the privacy-
enhanced bids. The additional emissions Ω′ are defined as follows:

Ω′
(O, Õ) =

Ω(Õ)

Ω(O)

◻
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4.3.3 Customer Model

The key element in modeling customer interactions (i.e., bidding behavior) with the market is the
underlying utility model. Although electricity traditionally is subject to billing and is considered a
homogeneous good, the smart grid includes differentiated energy services [102], and we follow this
notion. To this end, we propose an analytical customer model similar to [9].

Customer Utility A costumer c can place a number of orders for a timeslot. Depending on
the supply and limit prices on the market, not all orders may be completely fulfilled. The total
allocated amount for a consumer is denoted as follows.
Notation 13 (Consumer’s Allocated Electricity for Time Slot t): For time slot t a
customer has allocated xc(t) electricity in total. This is the sum of allocations of the orders:

xc(t) = ∑
∀oc∈Ot

oc[qalloc]

The definition of the customer’s utility completes the model.
Definition 37 (Utility): The customer utility is a nondecreasing concave function, defined
for each customer c ∈ C and for each time slot t ∈ T .

Uc,t ∶ R+ ↦ R+

Furthermore, we assume a demand saturation level xc(t) beyond which customers no longer
obtain any utility from additional electricity consumption. In other words,

Uc,t(xc(t)) = Uc,t(xc(t)) = U c,t ∀xc(t) ≥ xc(t).

If the saturation level does (not) affect marginal utility, we refer to the utility function as
saturation-level-dependent (independent). ◻

This customer model reflects the smart grid rationale of customers adapting consumption to
current system conditions. Following standard economic theory, marginal utility of additional
consumption is assumed to decrease, as most valuable use forms are activated first. At some point
the customer will not be able to put additional energy allocations to any meaningful use. In our
analysis, we make the following nonrestrictive assumptions: A (realistic) market will not allow
orders of infinitesimal small quantities of electricity. Thus, the quantities are discretized.
Notation 14 (Discretization Granularity D): The allowed order quantities are discretized
with granularity D. Consequently, D is the smallest quantity that a costumer can bid on.

The admissible xc(t)-values are also discretized: xc(t) ∈ {n ⋅D∣n ∈ N}. Similarly, we discretize
the xc(t) values. To model the temporal pattern of the energy-usage behavior of customers, the sat-
uration levels xc(t) fluctuate over time in tune with a representative energy-demand profile. When
considering families of utility functions, we interpret the concavity of each function as differing
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Figure 4.4: Illustration of utility: xc(t) dependent

levels of load flexibility. In the case of a linear utility function, marginal utility from consumption
is constant; hence load shedding has a constant cost. Conversely, for a very concave function,
shedding utility losses at high load levels are limited. In the following, φ denotes the demand
flexibility.
Notation 15 (Flexibility Level φ): The symbol φc denotes the demand flexibility of customer
c. Higher φ values indicate more flexible demand.

Bidding Behavior Because Uc,t provides a mapping from allocation to utility space, we can
express a customer’s optimal bidding behavior under this utility function using the marginal utility
U ′
c,t: Instead of placing a single price-quantity bid, a rational customer will rather place a continuum

of bids with infinitesimal quantity and decreasing bid price to match his or her marginal utility
function. Under our market discretization scheme, customers will place up to n =

xc(t)
D bids with

quantity D each. The corresponding optimal bid prices are then U ′
c,t(i ⋅D) with i = 1...n.

We distinguish between utility functions that are increasing constantly, dependent or indepen-
dent of the saturation level xc(t). The constant utility reflects a customer having a fixed valuation
for electricity. In the constant case, a customer will place a single bid with his or her constant
valuation as a limit price and the saturation level as quantity. In the dependent case, the sat-
uration level affects a customer’s (marginal) utility value over the complete range of allocation
quantities. In contrast, for saturation-level independency the (marginal) utility is independent of
the saturation level over the interval [0, xc(t)]. Figs. 4.6, 4.4, and 4.5 illustrate examples of utility
and corresponding marginal utility functions.

The constant utility reflects valuation in the traditional grid. In the smart grid practice, the
utility of a household is a combination of saturation-level dependency and independency. The
analysis of the polar cases allows us to better structure our results.
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Figure 4.5: Illustration of utility: xc(t) independent
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4.4 Model Implementation

The actual privacy costs depend on a large number of possible influence factors. This includes
different privacy preferences and fluctuating supply and demand patterns. To derive meaningful
results we conduct simulations based on real-world data. Additionally, simulations require an
instantiations of all model components theoretically described in Section 4.3. In this section, we
describe all of the details for conducting simulations.

4.4.1 Demand Model

To perform a numerical evaluation of our scenario, we need a concrete instantiation of the utility
model. We study three alternatives: the constant increase of utility, one featuring dependency of
marginal utility on the saturation level, and one with independence.

Let C be the constant valuation for each unit of electricity. The constant increase in utility is
then defined as follows:

UC(xc(t), xc(t),C) = C ⋅min{xc(t), xc(t)}.

In the remaining two cases we have a parameter φ that represents load flexibility (i.e., concavity).
To improve comparability, we normalize the utility functions with a scalar, which represents a
maximum saturation level A.

Denoting the allocation by xc(t), the saturation level by xc(t), and the flexibility level by φ, the
function with saturation level dependent marginal utility (superscript D) is given by

UD(xc(t), xc(t), φ) =
xc(t)

A

φ

√
min{xc(t), xc(t)}

A
.

For saturation-level-independent marginal utility (superscript I), we have

U I(xc(t), xc(t), φ) =
φ

√
min{xc(t), xc(t)}

A
.

By taking the first derivative with respect to xc(t) constancy, dependence and independence are
easily verified: Leaving the minimum function aside, because it only reflects the upper border of
the utility, the derivative of UC consists of the constant factor C only. The derivative of UD is
dependent on xc(t), and the derivative U I is not.

Consumption in the simulation is based on the CER smart-metering data set (see Section 2.2.3
for more details). This data set consists of approximately 5,000 Irish homes with different num-
bers of inhabitants, measuring electricity consumption every 30 min over more than 1 year. For
our simulations, we create a set of households in which sizes follow the distribution explained in
Section 2.2.3.
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4.4.2 Market supply

We assume that there are three types of generators in the local market, namely, PV sites, CHP
units, and conventional backup generation by the DSO (balancing party). PV and CHP sites are
the most popular sources that feed into the low-voltage grid. We first explain our supply model
and then discuss pricing schemes. Despite the tremendous amounts of technologies developed (see
Section 1.1) for a ‘smarter’ grid, the transformation of the currently running power system has only
begun [50, 84]. We evaluate how the local energy market performs in a rather traditional and a
smart grid–enabled scenario. This affects the pricing schemes: The traditional model adopts prices
from the current grid, whereas the smart grid–enabled model assumes different flexibility levels and
strategic price determinations.

Photovoltaic Sites Supply The energy output of PV sites depends on the peak capacities, the
real electricity production depending on the weather, and a spread that reflects the fact that PV
sites on roofs have different angles to the sun.

The peak capacity is the maximal capacity of a PV site, and depends on the number and
the quality of the solar modules installed. Figure 4.7b shows the distribution of peak capacities
considered for PV sites with a range below 50 kW [109]. In our simulation, PV panel sizes are
distributed according to recent German installation data censored at a maximum of 11 kWp.
The used capacity is the average percentage of the peak capacity per time interval that is actually
achieved under real weather conditions. To compute this, we have used our data set from the energy
production of a photovoltaic site (see Fig. 4.7a). Finally, we have to consider a spread resulting
from the fact that on-the-roof sites are mounted at different angles to the sun. For example, a PV
site on a roof that is mounted eastward produces most energy in the morning, and a smaller amount
of energy during the rest of the day. Accordingly, a site that is oriented westward produces most
energy in the afternoon. We simulate the different mounting positions relative to the insulation
angle by random shifts in the ‘time’ and ‘produced energy’ dimensions. We determine the random
shifts with uniform distributions with parameters 0 to 0.1 for the ‘produced energy’ dimension, and
0 to 0.3 for the time dimension.

Combined Heat and Power Units Supply CHP sites are bound to the heating demand (CHP
sites are ‘heat led’). The demand depends on various parameters, e.g., the capacity of the heat
storage and isolation of the house. If the heating of a house is activated, CHP sites produce a
fixed amount of energy per time interval. If heating is deactivated, a CHP site consumes a small
amount of energy for internal operations (see Fig. 4.8). For the sake of simplicity, we simulate
a CHP site with a rectangular-shaped electricity production without consuming electricity when
not operational. Generation availability is driven by heating demand and thus depends on heat
storage or insulation but not on market parameters. From our data sources, we have also extracted
the probability distribution of starting times and durations. We use this distribution to randomly
generate start and stop times for a large set of small CHP sites with a capacity below 1 kW .
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Figure 4.9: CO2 intensity measurements

Balancing Party Supply As illustrated in the technical architecture, the DSO has access to
the higher grid levels and thus is assumed to be able to provide electricity for all possible demand.
However, electricity consumed from the balancing party produces CO2 emissions. Depending on
the mix of primary energy sources at a specific time of the day, intensity may vary. Our data
source is the European Energy Exchange1. We model the emissions per kWh at time slot t as ω(t).
Figure 4.9 illustrates sample data on CO2 intensity.

Traditional Pricing Scheme Buy Orders: The limit price of a buy order is the upper bound
for the price for energy that an consumer is willing to pay. If a local producer requires a price
above the limit of the buy order, a rational consumer could simply buy his or her supply from the
balancing party. Thus, the price of the balancing party is the upper bound of the market price. In
2013, German households could buy electricity from energy providers at a price of approximately
0.26 e

kWh [35]. End-consumer electricity prices increased slightly in the last few years; Hence, we
assume a price of 0.27 e

kWh in our future market scenario. Consequently, each consumer valuates
electricity with the utility function UC and C = 0.27 e

kWh .
Prices for balancing party supply: The ‘traditional’ energy provider charges 0.27 e

kWh for con-
sumed electricity. This is consistent with the current electricity supply with a uniform price.

The limit of a sell order is the lower bound for the compensation that a local producer demands
from the consumer. In particular, PV and CHP prices are assumed to follow recent regulations.

Prices for PV supply: The compensation fee for German PV sites has been regulated in the
German Renewable Energy Act [14]. As Figure 4.10 shows2, the costs depend on the year of

1http://www.eex.com (European Energy Exchange)
2The German Renewable Energy Act distinguishes among PV sites with different peak capacities. However,

because only small sites directly feed into low-voltage circuits, we only have to consider one price.
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Figure 4.10: Compensation for PV sites

construction and degrade annually. The costs from 2013 to 2016 are predicted [64] (Fig. 4.10). To
assign limit prices to different numbers of PV sites, we use the following model: We assume that
no PV sites have been constructed before 2012, as prices would not be competitive. For each year
between 2012 and 2016, one-fifth of PV sites are constructed, which offer energy with the limit
prices shown in Figure 4.10.

Prices for CHP supply: In Germany, the compensation price for electricity produced by small
CHP sites is fixed to 0.11 e

kWh for 10 years by the CHP Act [16]. If an consumer required a lower
limit, a CHP site operator could simply sell its energy to the DSO at 0.11 e

kWh .

Smart Grid–Enabled Pricing Scheme Buy orders: Limit prices of the orders follow the
marginal utility expressed in UD, respectively U I . The utility functions require the specification
of φ and A; we provide concrete values in our evaluation.

Prices for CHP and PV supply: The electricity output from PV sites has no marginal generation
costs, consequently, a zero asking price is quoted. Under heat-led operation, all operational costs
can be attributed to heating demand with electricity output arising as a byproduct. Consequently,
CHP output is also bid into the local market at a zero limit price.

Prices for balancing party supply: A standard economic assumption for modeling conventional
backup generation is a convex cost function [98]. This reflects the technological heterogeneity on
the supply side (merit order dispatch). A quadratic cost function is a simple example of such a
supply curve [103]. We follow this rationale and assume that the balancing party quotes a bid price
of p(x) = α ⋅ x2 for the xth unit of output.
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4.4.3 Energy Storage

Because of increased uncertainty on the supply side, energy storage is expected to play a more
important role in future smart grids. Storage operators can capitalize on the expected price fluc-
tuations. This energy arbitrage motive has been investigated in the recent literature [98]. Our
analysis adds a new economic perspective of active storage management. We investigate to what
extent energy storage can mitigate the welfare loss resulting from privacy-enhancing methods in
local energy markets. For the sake of generality, we assume that each customer owns a generic
energy store with capacity Bc (in kWh), fill level Bc(t) ∈ [0, ..Bc], and efficiency level L < 1.3

Departing from an economic storage operation paradigm, we posit a simple strategy. Denoting
the deviation from the current saturation level xc(t) by ξ, the following cases are possible:

1. ξ > 0 — Whenever privacy enhancement results in an upward distortion, the amount min{L ⋅

ξ,
Bc−Bc(t)

L } is transferred to the storage unit; and

2. ξ < 0 — In case of an allocation shortfall resulting from high market prices or a downward
distortion, customers withdraw the amount min{ξ,Bc(t)} from the energy store.

This policy could be improved, e.g., by adopting dynamic threshold levels. However, by focusing
on this rather näıve policy, we can isolate interactions between privacy enhancement and the
presence of storage capacities.

4.5 Conclusions

The proposed local energy market is a meaningful application-specific data-quality measure for the
effects of privacy-enhancement methods on time series. The provided measures are comprehensible:
Welfare, respectively relative welfare, reflects the savings of individuals when participating in the
market. Saved CO2 amounts can be compared with other efforts for reducing emissions. The local
energy market is a popular application that is investigated in the smart grid context. Thus, the
results are discriminative at least for this specific application. However, welfare loss and emissions
depend on typical effects in the smart grid: For example, allocative inefficiency resulting from
privacy enhancement has a stronger impact on the measures the more renewable energy is available,
or the higher the CO2 intensity is. Because of the nature of renewable sources, more electricity
is available during the day and less during the night. Consequently, perturbation of consumption
values during the night have a different effect on the market results than during the day. This
suggests, that the results of the local energy market are also discriminative for other smart grid
applications. Configurations of supply or demand could also be altered to reflect the behavior of
the application in question, e.g., changing peak hours of the supply or demand side.

3For the sake of exposition, we only account for losses during charge. Furthermore, we do not explicitly consider
indirect storage options (e.g., hot water storage, electric vehicles). Such alternative storage systems would not alter
the general results obtained.
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However, it is still questionable how privacy-enhancement methods such as PACTS or others
actually affect market performance or emissions. In addition, applying privacy-enhancement meth-
ods may also influence theoretical properties of such markets. We evaluate both in the following
chapter.
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Chapter 5

Impact of Privacy Enhancement on
Electronic Markets

In the previous chapter, we have seen that the local energy market scenario, as an electronic
market, is a comprehensible and discriminative utility measure for privacy-enhancement meth-
ods. The resulting welfare and CO2 emissions rate the decrease of data quality induced by the
data modifications of privacy-enhancement methods. The measure exploits the fact that privacy-
enhancement methods reduce allocative efficiency of such markets. In turn, this gives insight into
the question of whether electronic markets are still effective under the presence of such methods.
We contribute a detailed analysis of different privacy-enhancement approaches applied to local en-
ergy markets in real-world scenarios (C.4). This includes the definition of general properties of
privacy-enhancement methods. Furthermore, we show that a privacy-aware auction retains incen-
tive compatibility with respect to valuations if the privacy-enhancement method is monotonic and
marginal utility is independent of the demand level.

Because of the large number of possible influence factors (e.g., customer privacy preferences,
demand-side flexibility, and supply and demand patterns), it is difficult to fully characterize the
welfare loss an saved emissions in a general fashion. For instance, realistic supply and demand
patterns are complex random processes, and the applied privacy-enhancement methods add com-
plexity as well. A general model covering all of these details would lack expressiveness. Therefore,
we instantiate a numerical evaluation using empirical load and generation data. Using simula-
tions, we quantify the costs and the emissions of privacy enhancement. Specifically, we assess the
economic effect of varying numbers and types of generators, demand properties, and storage en-
dowments. The experiments illustrate the relationship between privacy enhancement and welfare
loss, respectively emission increase. Furthermore, we can quantify the positive effect of storage in
the presence of privacy-enhancement methods. Small-scale electricity storage can reduce privacy-
induced welfare loss by 70%. Our findings underline the validity of the proposed utility measure,
as the effects of privacy enhancement are controllable and maintain important market properties
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like incentive compatibility. In particular, we provide the following:

• We determine formal characteristics of the interplay among components of our model. This
includes the the definition of general properties of privacy-enhancement methods;

• We show that privacy-aware auctions retain important properties like incentive compatibility
on a theoretical basis; and

• In our numerical evaluation we quantify the costs of privacy enhancement. We assess the
economic effects of varying numbers and types of generators, demand properties, and storage
endowments. The numerical evaluation also quantifies the effects of privacy enhancement on
CO2 emissions.

The numerical analysis complements the utility measure introduced in Chapter 4 with a com-
parison of different privacy-enhancing methods and parameters. The remainder of the chapter
is structured as follows: First, we need to define the general properties of privacy-enhancement
methods (Section 5.1) before proving theoretical properties on the impact on electronic markets
(Section 5.2). We complement the theoretical results with a numerical evaluation (Section 5.3) and
conclude (Section 5.4). The contents of this chapter are published in [12] and [57].

5.1 Properties of Privacy-Enhancement Methods

A privacy mechanism M takes a data set, e.g., a set of time series F and parameters p, and
returns a privacy-enhanced representation, i.e., F ′ = Mp(F). In our smart grid scenario, the
time series are given by consumers’ saturation levels: F = {xc(t)∣t ∈ T , c ∈ C}. The parameter
p is a method-specific parameter that determines the level of privacy achieved. The privacy-
enhancement method modifies the values of the time series, in our case the saturation level values:
F ′ = M(F) = {x̃c(t)∣t ∈ T , c ∈ C}. Various methods exist with different approaches for preserving
privacy in a set of time series (see Section 3.1.2 and PACTS in Section 3.2)). To derive theoretical
results independent of an actual method, we need to come up with the general properties of privacy-
enhancing methods.

A central distinction is the one between deterministic and randomized privacy-enhancement
methods.
Definition 38 (Deterministic): A privacy-enhancement method is deterministic if the results
of several runs are the same with the same input: F ′

1 =Mp(F) ∧F ′
2 =Mp(F)⇒ F ′

1 = F ′
2. ◻

Definition 39 (Randomized): The privacy-enhancement method depends on random calcu-
lations, and this may lead to different results if the method is run several times. The probability
that the method returns a certain privacy-enhanced set F ′, P (Mp(F) = F ′), is the same for each
run. ◻
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The rationale behind the following notions is to further characterize the effect of different privacy-
enhancement methods.
Definition 40 (Balanced Modifier): Let F ′ = M(F). M is a balanced modifier, if the
following holds for all consumers c ∈ C:

∑
∀t∈T

x̃c(t) − xc(t) = 0

A randomized privacy-enhancement method is a balanced modifier if the expected value of the
sum of these differences equals zero. ◻

Definition 41 (∪-homomorphism): Assume that F1 and F2 is an arbitrary partitioning of
the time series in F :

F = F1 ∪F2 ∧F1 ∩F2 = ∅

A deterministic privacy-enhancement method is a homomorphism of ∪ if the following holds:

M(F1) ∪M(F2) =M(F)

A randomized privacy-enhancement method is a homomorphism of ∪ if the following holds:

P (M(F1) ∪M(F2) = F ′
) = P (M(F) = F ′

)

◻

In the following, we show that a privacy-enhancement method, which is a homomorphism of ∪,
will modify the time series independently of each other.
Lemma 6: Let F ′ =M(F). If M is a ∪-homomorphism, the modifications of time series x̃c(t) ∈ F ′

are independent of the time series of any other consumer c′ ≠ c ∶ xc′(t)
Proof: Let F1 = {xc(t)} and F2 = F/F1. By definition, F1 and F2 are partitions of F . Because
M is a ∪-homomorphism, M(F1) ∪M(F2) equals M(F). In particular, the resulting x̃c(t) is
independent of possible other time series in F . ◻

For instance, k-anonymity [108] usually does not have this property: The output of most im-
plementations depends on the groups created. In turn, adding symmetric random noise is a ∪-
homomorphism.

The privacy parameters p influence the privacy enhancement. In the following we define an order.
Definition 42 (Order of Privacy Parameters (p1 > p2): Let p1 and p2 be different
parameters for privacy method Mp. p1 is greater than p2 if Mp1(F) provides a better privacy
protection than Mp2(F) in terms of the definition of Mp. ◻

Commonly known distance metrics, e.g., the L1-Norm, quantify the distance between two time
series. Choosing a greater privacy parameter may lead to a larger distance if the privacy method
is monotonically increasing, as defined in the following. Let dist(xc(t), x̃c(t)) be such a distance
metric.
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Definition 43 (Monotonically Increasing): Let p1, p2 be two privacy parameter choices
for Mp with p1 having greater order than p2, that is p1 > p2. Furthermore, x̃1

c(t) ∈ Mp1(F) and
x̃2
c(t) ∈Mp2(F) are time series obtained by applying Mp on the same time series xc(t) ∈ F .
A deterministic privacy-enhancement method is monotonically increasing with respect to a metric

dist(⋅), if the following holds for:

dist(xc(t), x̃
1
c(t)) ≥ dist(xc(t), x̃

2
c(t)).

A random privacy-enhancement method is monotonically increasing with respect to a metric
dist(⋅) if in expectation the following holds:

E [dist(xc(t), x̃
1
c(t)) − dist(xc(t), x̃

2
c(t)] ≥ 0

◻

Intuitively, a privacy enhancement method is monotonically increasing if greater privacy-
parameter choices give rise to greater changes to the original time series values.

5.2 Theoretical Results

We now derive formal results on the impact of privacy enhancement on local energy markets. In
the following we assume that the time series are of infinite length. We also assume non triviality
of the privacy-enhancement methods, i.e., we exclude the case that x̃c(t) = xc(t),∀t ∈ T .
Lemma 7: The welfare loss is monotonically increasing for greater privacy parameters if the
privacy-enhancement method is monotonically increasing and a balanced modifier.
Proof: Assume F ′ =Mp(F). Further, let d be the difference between the saturation level and the
privacy-enhanced saturation level of consumer c on time slot t: d = xct(−)x̃c(t). If d > 0, the higher
d the lower the x̃c(t) and potentially the higher the welfare loss. c may not get electricity allocated
even if the marginal utility is greater than zero because there are no bids exceeding x̃c(t). A similar
result holds for d < 0: The smaller d the higher the potential welfare loss, because c may allocate
energy at a price greater than zero, even if the marginal utility is zero. Depending on the actual
utility functions, the welfare loss is higher for d > 0 or d < 0. However, if the privacy-enhancement
method is a balanced modifier, the sum of the welfare loss of all time slots remains the same. Let
the privacy-enhancement method M1

p be monotonically increasing, then the welfare loss for more
restrictive privacy requirements is higher, as the distance between xc(t) and x̃c(t) also increases
for p1 > p. ◻

Lemma 8: In the presence of storage, the welfare loss is equal or smaller than without storage if
the privacy-enhancement method is a balanced modifier.
Proof: Let Mp be a balanced modifier and F ′ = Mp(F). Assume that there exists a t1 ∈ T
where x̃c(t1) > xc(t1). Because Mp is a balanced modifier, we assume that there exists a t2 where
x̃c(t2) < xc(t2). If the allocation at t1 is also greater than xc(t1), the additional electricity bought
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is stored and used in times of undersupply, or at t2. If the storage did not exist, the additional
electricity bought at t1 would not return in utility. Only in the case that after t1 there is no time
slot with undersupply, storage cannot reduce the welfare loss. ◻

Lemma 9: Privacy-induced welfare loss is weakly decreasing in demand flexibility if the utility
function is saturation-level dependent.
Proof: Assume a privacy-enhanced market allocation for a given flexibility level φ. If the demand
flexibility is raised to φ′ > φ, the assumed concavity of the utility functions leads to the following
effect: The marginal utility U ′

c,t(i ⋅D) with i = 1...n for small is is higher for φ′ than for φ, and
drops faster for greater is. Formally, let [U ′

c,t(i ⋅D)]
φ

be the marginal utility for flexibility level φ,
then there exists a threshold î where

[U ′
c,t(̂i ⋅D)]

φ
≤ [U ′

c,t(̂i ⋅D)]
φ′

and
[U ′

c,t((̂i + 1) ⋅D)]
φ
> [U ′

c,t((̂i + 1) ⋅D)]
φ′

holds. Because the higher valued units have a higher probability of being allocated, and a lower
probability of being omitted if the privacy-enhancement method changes the saturation level, the
welfare loss is weakly lower for φ′. ◻

If the utility is independent of the saturation level, the actual saturation xc(t), respectively
x̃c(t), does not necessarily reach the threshold î. Thus, Lemma 9 does not hold for saturation-level
independent utility.

A privacy-enhancement method leads to a distortion of saturation levels, which has the following
effect: Replacing the saturation level xc(t) with a distorted value x̃c(t) could naturally have a
quantity effect on the resulting bidding behavior. This becomes evident in Definition 37: Inflated
values, i.e., x̃c(t) > xc(t), lead to positive marginal utility assessments when the marginal utility
is zero in the nondistorted case. Discounted values, in turn, i.e., x̃c(t) < xc(t), yield premature
zero-marginal-utility assessments. However, remember that we ruled out untrue saturation-level
reports to the privacy-enhancement method M, as this potentially leads to a privacy breach. The
semantic of M is defined on sensitive and true personal data; the effects if applied to untrue data
are unknown. Furthermore, a deviation from the true saturation level will not influence the bidding
quantities of others if the privacy-enhancement method is a ∪-homomorphism.

Although we rule out quantity misreports, we are interested in characterizing privacy-aware
markets that induce consumers to reveal their true valuation.
Definition 44 (Incentive Compatibility): A privacy-aware market mechanism is (in
expectation) incentive-compatible with respect to valuation if consumers cannot (in expectation)
profitably deviate from placing bids that reflect their true valuation. ◻

Thus, consumers will bid according to their true valuation in the presence of an incentive-
compatible privacy-enhancement method.
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Lemma 10: An incentive-compatible market mechanism retains this property in the presence of pri-
vacy enhancement, if the following holds: The privacy-enhancement method is an ∪-homomorphism
and the utility function is saturation-level independent.
Proof: Although the distortion of the saturation level always affects the optimal quantity, it does
not necessarily have an effect on the optimal bid price. The occurrence of a price effect hinges
on the structure of the customer-utility function: If U ′

c,t is independent of xc(t), the bid price will
always reflect the customer’s true valuation for all demand increments x ∈ [0,min{xc(t), x̃c(t)}].
In contrast, if the utility function is saturation-level dependent, this leads to a price effect, and
the consumers may strategize and report prices that are different from their true valuation. The
∪-homomorphism property excludes incentives from true reports, as other consumers are not in-
fluenced. Consequently, incentive compatibility is preserved if the utility is independent from the
saturation level, and the privacy-enhancement method is a ∪-homomorphism. ◻

5.3 Numerical Evaluation

Because a purely theoretical analysis would lack expressiveness, we conducted a number of exper-
iments with different privacy-enhancement methods and real-world data. We describe the results
in the following.

5.3.1 Privacy-Enhancement Methods Considered

We conduct experiments with four privacy-enhancing methods from three different classes: A
k-anonymity derivative on the time series [86] (see Section 3.1.2) as a representative of ‘anonymiza-
tion’; a ‘perturbation’ approach we call wavelet privacy [88] (see Section 3.1.2), and a slightly
modified version of this algorithm, which retains incentive compatibility, called ‘IC wavelet pri-
vacy’. PACTS (see Section 3.2) provides ‘provable privacy’ for the time series. In the following, we
investigate which properties the proposed algorithms have.

We assume the saturation levels xc as input time series. The privacy-enhancement mechanisms
then return the modified saturation levels x̃c for the privacy-enhanced bidding. Refer to Sec-
tion 4.3.2 for a detailed description on the integration of privacy-enhancement methods in the
market.

k-anonymity We provide a pseudo code implementation in Algorithm 1. This method is ran-
domized, as time series are randomly selected yielding to possible different results for each run. The
method replaces time-series values fp(t) with the average of all k time series belonging to the same
group. By definition, the differences between fp(t) and f ′p(t) add up to zero, making this method
a balanced modifier. Partitioning the data set into two distinct groups and applying the method
to both obviously yields a different result than modifying the whole set. For example, think of
a group of k time series in F having small distances. Considering the whole data set, such time
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Property k-Anonymity Wavelet Privacy IC Wavelet Privacy PACTS
Deterministic
Randomized ✓ ✓ ✓ ✓

Balanced Modifier ✓ ✓ ✓ (✓)

∪-homomorphism ✓ ✓ ✓

Monotonically ✓ ✓ (✓)

Increasing

Table 5.1: Property overview for privacy-enhancing methods considered

series will most likely form a k group. If these time series are partitioned into two different sets,
the resulting k-anonymous data set will differ: k-anonymity is not a ∪-homomorphism. The order
of privacy parameter k is canonical. In terms of k-anonymity, a higher k provides better protection
of privacy. Assume that k1 > k2 holds, a data set that is k1-anonymous requires more modifications
than for k2. Consequently, this method is monotonically increasing.

Wavelet Privacy-Enhancement Algorithm Refer to Section 3.1.2, respectively Algorithm 2,
for a detailed explanation of this privacy method. The perturbation is based on noise and is obvi-
ously randomized. Because all time series are treated independently, it is also a ∪-homomorphism.
Finally, the symmetry of the noise distribution ensures that the method is a balanced modifier.

However, the method is not monotonically increasing: Applying a higher threshold σ1 > σ2 most
likely results in noise with a higher variance, but is only applied to fewer coefficients. In general,
we cannot assess whether Mσ1(fp) will distort a single data point to a larger extent than Mσ2(fp).

Incentive Compatible Wavelet Privacy-Enhancement Algorithm In what follows, we
propose a modification of the wavelet privacy-enhancement algorithm, referred to as incentive-
compatible wavelet privacy-enhancement algorithm (IC-wavelet privacy). As shown in Lemma 10,
a privacy-enhancement algorithm needs to be monotonously increasing to retain in-expectation
incentive compatibility with respect to valuation. Our modification achieves monotonicity by de-
coupling the threshold for coefficients and the noise variance. To this end, we introduce a parameter
ξ that determines the standard deviation of the applied noise. The detailed implementation is given
in Algorithm 5. For a fixed σ, the modified algorithm is monotonically increasing in ξ: Choosing
ξ1 > ξ2 leads to a higher expected distance between original and perturbed time series compared
with ξ2. Thus, it fulfills all requirements of Lemma 10. By setting ξ = σ, the modified algorithm is
identical to the unmodified wavelet privacy-enhancement algorithm (see Section 3.1.2).

Choosing σ and ξ: The same (absolute) σ may have very different effects on two different time
series: xc1(t) and xc2(t). σ may lead to a lot of modified coefficients in x̃c1(t) because they exceed
σ, whereas x̃c2(t) remains unmodified. To keep the parameters comparable, we choose σ and ξ
relative to the standard deviation of the currently modified time series. Let σ, ξ ∈ [0,1]. Then the
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Algorithm 5: Mσ,ξ Modified Privacy-Enhancement Methods Corresponding to Algorithm 2
Input: Privacy Parameter σ
Input: Noise parameter ξ
Input: Set of time series F
Result: Privacy-enhanced time series F ′

1 foreach fp(t) ∈ F do
2 f̃p(l, t) =DWT (fp(t)) //Wavelet transform;
3 Il = {t ∶ ∣f̃p(l, t)∣ ≥ σ};
4 foreach level l do
5 K = ∑lKl //coeffs exceeding l;
6 p = ∣N ∣ /K //Noise ‘density’, N is number of coefficients;
7 foreach detail f̃p(l, t) do
8 if t ∈ Il then
9 f̃p(l, t)+ = GaussRnd(0, ξ√p);

10 end
11 end
12 end
13 f ′t(=)InvDWT (f̃p(l, t));
14 F ′ = F ′ ∪ {f ′t()};
15 end
16 return F ′;

actual parameters σc and ξc for time series xc(t) are the product of σ, ξ and the standard deviation
of the time series xc(t).

Figure 5.1 illustrates the effect of the privacy-enhancing techniques. The upper panel illustrates
that the wavelet privacy-enhancement method is not monotonically increasing: At many points of
time, the perturbed time series with σ = 80% has a higher distance to the nonperturbed time series
than the one perturbed with σ = 100%. In contrast, the lower panel shows the corresponding results
from the monotonically increasing and incentive-compatible algorithm. The time series perturbed
with the higher ξ = 100% usually has a higher distance than the one with a lower ξ = 80%.

PACTS Provable privacy is achieved by applying noise to time series. This makes PACTS a
randomized method. The noise added is symmetric, but applied to an abstracted representation. If
the transformation, respectively the inverse transformation, processes noise regardless of whether
it is less than or greater than zero, PACTS is also a balanced modifier. One of the design goals of
PACTS is that it handles time series in isolation. Consequently, it is a ∪-homomorphism. PACTS
takes ε and discriminative pairs of secrets Spairs as parameters. Different sets of discriminative pairs
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Figure 5.1: Examples of privacy-enhancement method realizations

are not comparable. Considering a fixed Spairs, the privacy mechanism is monotonically increasing
in ε. The greater ε, the larger the distribution of the noise applied to the same coefficients.

5.3.2 Common Parameters

For the evaluation we chose 1,000 persons in total living in 314 randomly chosen households of the
CER data set (see Section 2.2.3). The supply side is modeled as combinations of 100 or 250 PV
and CHP sites.

For the traditional pricing scheme, we choose the prices proposed in Section 4.4.2: A consumer
orders with a limit price of 0.27 e

kWh , the CHP sells electricity for 0.11 e
kWh , and the PV sites sell

for 0.08 e
kWh up to 0.24 e

kWh , depending on the initial year of operation. The DSO offers energy at
a constant price of 0.27 e

kWh , and therefore does not lead to any welfare.
In the smart grid pricing scheme, we assume homogeneous utility functions (φ = 2, A = 11 kW )

across consumers. Additionally, to quantify the effect of demand-side flexibility, we consider φ = 3
and φ = 1. The balancing party is parametrized with α = 2.

In the scenarios with storage systems, we consider storage sizes of B ∈ {2.5 kWh,5 kWh} in
line with currently marketed products. We assume storage efficiency of 80%. The time span for
each simulation run is one day. We tested longer simulation horizons as well, but these results did
not exhibit any substantial differences to the ones described in the following. Each experiment is
repeated 10 times.

5.3.3 Privacy Parameters

For the k-anonymity we choose k ∈ {0,2,5,10,20}. We apply the wavelet privacy-enhancement
method with ε ∈ {0,0.2,0.4,0.6,0.8,1}. For the incentive compatible version, we fix σ = 30% and
vary ξ ∈ {0,0.2,0.4,0.6,0.8,1}. For evaluating the impact of PACTS, we took all of the hidden
sample secrets to hinder INDiC as well as re-identification. We hid whether ‘Light’, ‘Refrigerator’
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Figure 5.2: Relative welfare for traditional pricing scheme and k-anonymity

or ‘Microwave’ is in State 2 or 3 (see Table 3.3 for the specific parameters). Furthermore, we hid
secrets specified for the ‘Overall’, ‘Maximum’ and ‘Minimum Consumption’ and secrets for ‘Average
Wakeup Hours’ and ‘Bedtime Hours’ as defined in Section 3.4.3.

For the explanation of numerical results, we distinguish among approaches with numeric param-
eters (k-anonymity, wavelet privacy, IC wavelet privacy) and PACTS a privacy mechanism that
requires different, nonnumeric secrets. The results of methods with numerical parameters can be
set into relation to each other, i.e., parameters have an order. With PACTS instead hiding different
secrets, this leads to a different and not necessarily comparable privacy results.

5.3.4 Numerical Results: k-Anonymity, Wavelet Privacy, IC Wavelet Privacy

We investigate the effect of market structure, storage endowments, and demand-side flexibility.
Finally, we compare all three methods.

Effect of Market Structure First, we investigate whether and to what extent the number
of PV and CHP sites influences the impact of different privacy-enhancement methods and levels
to relative welfare and relative-saved emissions. This sheds light on how privacy enhancement
interacts with different market structures. Figures 5.2–5.10 contain results regarding the relative
welfare for the different privacy-enhancement methods, and Figures 5.11–5.19 the saved emissions.
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Figure 5.3: Relative welfare for the smart grid pricing scheme with saturation-level-dependent
utility and k-anonymity

R.19 Market configuration has little impact on the welfare loss as well as on the saved emissions.
Although the variance of the results (size of boxes in Figs. 5.2–5.10, respectively Figs. 5.11–5.19)
is naturally higher in smaller markets with few generators, the median results are hardly affected.
This holds for all privacy-enhancement methods investigated. Privacy enhancement has a similar
(relative) effect, independent of the actual market structure.

This result is beneficial for privacy enhancement in such scenarios in the following way: The
negative effect of privacy-enhancement methods is predictable and does not require knowledge
about the current or future market structure. In turn, increasing privacy parameters has a different
effect.

R.20 Smart grid pricing scheme: Saturation-level-independent utility exhibits decreasing
marginal welfare cost of the privacy level. Although the welfare loss is strictly increasing in
the privacy level for both utility specifications, saturation-independent utility exhibits decreasing
marginal losses in our results. For saturation-level-dependent utility we observe almost linear be-
havior. This is the result of different effects of perturbed saturation levels. (Figures 5.4, 5.7 and
5.10 contain the results for the saturation-independent utility and Figures 5.3, 5.6 and 5.9 the
results for the dependent utility.)

However, different utility ratings do influence CO2 emissions, but not as strongly as the welfare.
R.21 Smart grid pricing scheme: Dependence on utility leads to less saved emissions with privacy
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Figure 5.4: Relative welfare for the smart grid pricing scheme with saturation-level-independent
utility and k-anonymity
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Figure 5.5: Relative welfare W ′ for traditional pricing scheme and wavelet privacy

112



Dissertation of Stephan Kessler Karlsruhe Institute of Technology

100 PV 250 PV

●

●

●

●

●
●

●
●

0.87

0.90

0.93

0.96

0.99

0.87

0.90

0.93

0.96

0.99

100 C
H

P
250 C

H
P

20 % 40 % 60 % 80 % 100 % 20 % 40 % 60 % 80 % 100 %
σ

R
el

at
iv

e 
W

el
fa

re

Figure 5.6: Relative welfare W ′ for the smart grid pricing scheme with saturation-level-dependent
utility and wavelet privacy

enhancement. On average, the saved emissions with the saturation-level-independent utility are
a little higher than for the dependent utility. Because of privacy enhancement, the limit prices
of consumers also changes in the case of dependent utility. This influences the trades with the
balancing party more, compared with the saturation-independent case. For the wavelet and the
IC wavelet privacy, the difference between relative saved emissions is below 5%, and for the k-
anonymity privacy enhancement this difference is even smaller. In all cases the negative effects are
lower as on relative welfare (Figures 5.12 and 5.13 contain the results for k-anonymity, Figures 5.15
and 5.16 contain the results for wavelet privacy, 5.18 and 5.19 contain the results for IC wavelet
privacy).

Comparing the traditional pricing scheme with the smart grid pricing scheme leads to more
significant results.

R.22 Privacy enhancement and the traditional pricing scheme leads to higher loss of welfare
and reduces the saved emissions more compared with the smart grid pricing schemes. In the
traditional pricing scheme, each unit of electricity has the same valuation for a consumer. In turn,
in the smart grid pricing scheme, valuations differ. Inaccuracies resulting from privacy enhancement
usually affect units with lower valuations in the smart grid pricing scheme. Thus, welfare decreases
more in the traditional scheme. Emissions depend on the amount of electricity bought from the
balancing party. In the smart grid pricing scheme, the limit price of the balancing party is quadratic
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Figure 5.7: Relative welfare W ′ for the smart grid pricing scheme with saturation-level-independent
utility and wavelet privacy
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Figure 5.8: Relative welfare W ′ for traditional pricing scheme and IC wavelet privacy
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Figure 5.9: Relative welfare W ′ for the smart grid pricing scheme with saturation-level-dependent
utility and IC wavelet privacy

increasing, whereas in the traditional scheme it remains constant. Inaccurate demand reports lead
to additional emissions with traditional pricing, as the consumer limit price equals the balancing
party price. In the smart grid pricing scheme, trades with the balancing party depend on the
market situation. This explains the additional emissions in the traditional scheme. (Figures 5.2,
5.5, and 5.8 contain results for the traditional pricing scheme, Figures 5.4, 5.7, and 5.10 the results
for the saturation-independent utility and Figures 5.3, 5.6, and 5.9 the results for the dependent
utility.)

One important element of the smart grid is that consumers can express different valuations for
electricity (see Chapter 1). Different valuations allow the expression of demand-side flexibility
and facilitates distribution of renewable energy. The results exhibit that the expression of flexible
valuations is also beneficial in the context of privacy enhancement.

Effect of Storage In theory, storage can help to reduce the welfare loss of privacy enhancement
(see Lemma 8). This is because it is capable of storing bought electricity that exceeds the saturation
level. Thus, it is not ‘wasted’ but can be used in times of undersupply. The results of the simulations
quantify the actual impact on welfare in a real-world scenario. The results show that storage can
reduce the privacy-induced welfare loss by 70% (Figs. 5.20–5.22). Next to this expected result, at
least in qualitative terms, we make the following observations.
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Figure 5.10: Relative welfare W ′ for the smart grid pricing scheme with saturation-level-
independent utility and IC wavelet privacy
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Figure 5.11: Relative saved CO2 emissions Ω′ for the traditional pricing scheme and k-anonymity
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Figure 5.12: Relative saved CO2 emissions Ω′ for the smart grid pricing scheme with saturation-
level-dependent utility and k-anonymity

R.23 Small storage systems are sufficient to mitigate privacy costs. Under our näıve privacy-
driven storage operation strategy, the 2.5−kWh system is almost as efficient as the 5−kWh system.
This suggests that privacy costs may be mitigated at comparably low costs.

R.24 The value of storage is increasing in the privacy level. Higher privacy level choices
induce more frequent quantity mismatches, which are mitigated by the storage system.

R.25 Privacy enhancement may increase welfare in the presence of storage. With storage,
relative welfare is not monotonically decreasing with the privacy level. This is because privacy
enhancement can induce economic dispatching of the storage system: Electricity bought above the
saturation level xc(t) usually is relatively ‘cheap’ because of the concave utility function. In times
of undersupply, the stored electricity is only used if less than xc(t) is allocated on the market.
Thus, the actual resulting utility of the stored electricity is much higher than the bid price in the
former time slot.

R.26 The value of storage is increasing in decentral generation capacity. In the case of high
decentral generation capacity, surplus energy stored will more often originate from these low-cost
sources. Consequently, the use of the balancing party will decrease. This has a positive impact on
social welfare.

These simulation results show that even small energy storage systems are very effective at miti-
gating the welfare loss resulting from privacy enhancement.
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Figure 5.13: Relative saved CO2 emissions Ω′ for the smart grid pricing scheme with saturation-
level-independent utility and k-anonymity
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Figure 5.14: Relative saved CO2 emissions Ω′ for the traditional pricing scheme and wavelet privacy
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Figure 5.15: Relative saved CO2 emissions Ω′ for the smart grid pricing scheme with saturation-
level-dependent utility and wavelet privacy

Impact of Demand-Side Flexibility We know from Lemma 9 that higher demand-side flexibil-
ity curbs the influence of the privacy-enhancement method on the welfare loss. For saturation-level-
independent utility functions, the influence of demand-side flexibility is unpredictable (Lemma 9).
In the traditional pricing scheme, we cannot model demand-side flexibility as every unit of energy
is valuated equally. Thus, we only cover the dependent utility function.

R.27 Demand-side flexibility can mitigate the welfare loss only to a limited extent. The
mitigating effect of demand-side flexibility is for the (IC) wavelet privacy-enhancing method lower
than 3% (Fig. 5.23). Comparing that with the effects of storage, flexibility has only a little effect
(Figs. 5.21 and 5.22). The higher relative welfare for low demand-side flexibility in one data point is
the result of numerical instabilility (Fig. 5.23a). However, demand-side flexibility has a much larger
effect for k-anonymity privacy enhancement. In particular, low demand-side flexibility results in
severe welfare loss, whereas high flexibility has a lower positive effect. In comparison to storage
(Fig. 5.20), mitigating effects are on a similar level.

Both demand flexibility and storage can mitigate the welfare loss of privacy enhancement. How-
ever, our results suggest that storage has a much larger potential. Load flexibility only helps to
reduce the welfare loss if x̃c(t) < xc(t). Storage in turn also helps in cases of over-allocation: When
the privacy-enhancement method upward-adjusts the saturation level, the additional allocated elec-
tricity is not lost. If the saturation level is downward-adjusted, storage can help to mitigate the
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Figure 5.16: Relative saved CO2 emissions Ω′ for the smart grid pricing scheme with saturation-
level-independent utility and wavelet privacy

welfare loss if Bc(t) > 0.

Impact and Comparison of Privacy-Enhancement Methods As noted previously, the stan-
dard wavelet approach may induce strategic bidding on behalf of the consumers. This is because
this privacy mechanism is not monotonously increasing. Here we want to analyze the variant of this
algorithm for saturation-level-independent utility. The wavelet-privacy parameter σ varies between
0 and 100%. To ensure that the second privacy-enhancement method actually is monotonically
increasing, we choose a fixed σ = 30% and vary the noise ξ only. We find that the welfare loss is
more pronounced under our modified algorithm (Figs. 5.6, 5.7, 5.9, and 5.10).

R.28 The IC wavelet-privacy method leads to a greater welfare loss. In the standard wavelet
privacy-enhancement method, σ influences both the choice of coefficients perturbed and the stan-
dard deviation of the noise. For the incentive compatible method, the perturbed coefficients are
always the same. This is because σ is fixed to 30%. For a higher privacy level the wavelet privacy
method perturbs fewer coefficients, resulting in a higher welfare. The additional welfare loss can
be interpreted as the cost of establishing incentive compatibility. Although these costs remain
negligible for privacy levels of up to 60%, they become more significant at higher privacy levels as
the noise level is monotonically increasing.

R.29 Increasing the privacy parameters of the (IC) wavelet privacy method have a linear effect
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Figure 5.17: Relative saved CO2 emissions Ω′ for the traditional pricing scheme and IC wavelet
privacy

on the relative welfare. The reason for the linear decrease is that each unit of electricity is
valuated equally by consumers and by producers. Increasing σ or ξ leads to (in expectation)
linearly increasing noise. Consequently, allocative efficiency decreases linearly and, because of the
constant valuation of electricity units, also decreases linearly.

R.30 The drop in relative welfare for k-anonymity flattens the higher k is. Initially, finding
groups of k similar time series requires changing the original values a lot. This especially holds
for outliers. Severe modifications result in a large initial drop in welfare, i.e., compare k = 2 and
k = 5 in Fig. 5.2. The investigated CER data set (Section 2.2.3) contains households from the same
region, and most likely a large fraction has a similar behavior. The larger the chosen k groups, the
more similar the whole data set becomes, in alignment with most households. This explains why
the drop from k = 5 to k = 10 anonymity is lower than the one from k = 2 and k = 5.

In summary, different modification schemes of privacy-enhancement methods obviously have a
different effect. In terms of privacy level, privacy methods are not necessarily comparable. In
particular, choosing k-anonymity may be suitable for the privacy preferences of outstanding time
series, e.g., households that consume a lot of electricity, because such time series are severely
modified when putting them into a group. In turn, this kind of privacy may not be enough
for households that have common consumption patterns. However, we can quantify the negative
impact on data quality of the methods. Thus, it is worthwhile to compare the impacts of different
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Figure 5.18: Relative saved CO2 emissions Ω′ for the smart grid pricing scheme with saturation-
level-dependent utility and IC wavelet privacy

privacy-enhancement methods.

5.3.5 Numerical Results: PACTS

As previously discussed, applying provable privacy methods results in a complete loss of utility (see
Section 3.1.2). Thus, in the following we are especially interested in whether PACTS can preserve
the data quality necessary for a local energy market. Reconsider that hiding ‘Light’, ‘Refrigerator’
and ‘Microwave’ requires the same abstraction with increasing noise.

Effect of Market Structure We analyzed the effects on relative welfare (Figs. 5.24–5.26) and
saved CO2 emissions (Figs. 5.27–5.29) with different numbers of suppliers.

R.31 PACTS, in combination with the traditional pricing scheme, results in a useless market.
For many secrets, PACTS leads to negative relative welfare, and for most configurations to relative
welfare below 50%. Allocative inefficiency may lead to negative consumer surplus, as each unit
of electricity is valued equally. In particular, each additionally bought unit reduces the surplus
linearly because utility and limit prices are fixed (Fig. 5.24). Still, up to 75% of the emissions
are saved in the presence of PACTS (Fig. 5.27). However, welfare values indicate that consumers
will suffer a loss in such a market. Consequently, they will not participate. In this case, provable
privacy guarantees lead to a useless data set for a local energy market.
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Figure 5.19: Relative saved CO2 emissions Ω′ for the smart grid pricing scheme with saturation-
level-independent utility and IC wavelet privacy
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Figure 5.20: Relative welfare for k-anonymity with storage, 250 PV, and CHP sites present
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Figure 5.21: Relative welfare for wavelet privacy with storage, 250 PV, and CHP sites present
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Figure 5.22: Relative welfare for IC wavelet privacy with storage, 250 PV, and CHP sites present
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In the following, we will refer only to the smart grid pricing scheme, as PACTS is not applicable
in a local energy market.

R.32 PACTS is feasible in a local energy market with the smart grid pricing scheme. De-
pending on the secret (with different noise levels), relative welfare differs, but in many cases it is
above 60% and up to 85%. In the evaluated scenario, guaranteeing privacy leads to lower relative
welfare compared to the other privacy-enhancement methods considered. Considering that we have
assumed the ‘worst case’ scenario in that each secret is hidden in the complete time span, we can
argue that the loss of welfare with PACTS is acceptable. The same conclusions also hold for the
saved emissions (Figs. 5.25 and 5.26 contain the relative welfare, Figs. 5.28 and 5.29 contain the
relative saved emissions).

R.33 Effect on welfare and saved emissions of PACTS can depend on the market structure.
In particular, we consider the hiding the ‘Wakeup Hour’ respectively ‘Bedtime Hour’ feature in
Figure 5.26. In the morning, when most households get up, as well as in the evening, most of the
renewable electricity is produced by CHP sites, as the sun intensity is rather low. The more CHP
sites, the more consumer surplus is achieved during that time. In turn, the more welfare is lost
when hiding these specific secrets. The similar effect can be seen for the saved emissions (Fig. 5.29).

In contrast to the (IC) wavelet and k-anonymity privacy-enhancing approaches, in which uniform
‘noise’ is applied, PACTS may have different effects depending on the correlation between the
secrets and number of suppliers. Estimating the loss of welfare becomes harder, but also allows the
consumer to define less rigorous privacy requirements during peak times.

Effect of Storage We also evaluated the impact of storage on relative welfare with PACTS.
Figure 5.30 contains those results.

R.34 The effect of storage on relative welfare increases as the relative welfare without storage
decreases. For instance, the highest mitigating effect of storage is the case in which the state of
the ‘Refrigerator’ is hidden. With the help of storage, the relative welfare is higher than 50% in all
cases, and higher than 75% with the saturation-level-independent utility.

These results underline, that storage can have a significant effect on relative welfare when ap-
plying privacy-enhancement methods in local energy markets. Even in cases in which the hiding
of secrets results in a severe welfare loss, storage mitigates a large fraction. The results clearly
show that provable privacy guarantees can be achieved for consumers in a local energy market with
acceptable loss of welfare.

Impact of Demand-Side Flexibility We also tested PACTS with different flexibility levels.
Depending on the secret hidden, flexibility strongly influences the relative welfare.

R.35 High demand-side flexibility can increase the relative social welfare up to 10%, and a low
flexibility reduces welfare up to 40% In general, PACTS adds more noise than other considered
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Figure 5.23: Impact of demand-side flexibility in the smart grid pricing scheme with saturation-
level-dependent utility

100 PV 250 PV

●

●
●

●
●

●

●
●

●

●

−1.5

−1.0

−0.5

0.0

0.5

−1.5

−1.0

−0.5

0.0

0.5

100 C
H

P
250 C

H
P

Light

Refrig
erator

Microwave

Wakeup,Bedtime

Overall,M
ax,Min

Light

Refrig
erator

Microwave

Wakeup,Bedtime

Overall,M
ax,Min

Secret

R
el

at
iv

e 
W

el
fa

re

Figure 5.24: Relative welfare for the traditional pricing scheme and PACTS
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Figure 5.25: Relative welfare for the smart grid pricing scheme with saturation-level-dependent
utility and PACTS

privacy-enhancing methods. Consequently, different flexibilities have a stronger effect on welfare.
We find that, in particular, a low flexibility leads to a sharp drop in social welfare (Fig. 5.31).

Our results suggest that households with a low demand-side flexibility have a severe decrease in
social welfare when applying PACTS. In contrast, even if the impact is smaller, a high demand-side
flexibility preserves a significant fraction of welfare.

5.4 Conclusions

Privacy-aware local energy markets are a promising approach for matching renewable supply and
demand of private households. However, the potential effects of privacy enhancement on the
market outcome have so far remained vague. We provide a characterization of relevant privacy-
enhancement properties when applied in a market scenario. Under certain assumptions, market
mechanisms can retain incentive compatibility in the presence of privacy enhancement.

For approaches like k-anonymity and (IC) wavelet privacy, our numerical analyses show that loss
of relative welfare and saved emissions are low. In combination with storage endowments, the loss
of welfare is below 5%, in many cases even for strong privacy requirements. The saved emissions
are still approximately 85% of the maximum amount of saved emissions.

As expected, provable privacy guarantees of PACTS result in a stronger decrease in relative
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Figure 5.26: Relative welfare for the smart grid pricing scheme with saturation-level-independent
utility and PACTS
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Figure 5.27: Relative saved CO2 emissions Ω′ for the traditional pricing scheme and PACTS
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Figure 5.28: Relative saved CO2 emissions Ω′ for the smart grid pricing scheme with saturation-
level-dependent utility and PACTS

welfare and saved emissions. However, when the hidden secrets are chosen carefully, a large fraction
of welfare and emissions are retained. The presence of storage and a high demand-side flexibility
improve the results. Thus, providing utility and provable privacy guarantees is possible in the local
energy market scenario.

The overall conclusion is that privacy-enhancement methods are applicable in local energy mar-
kets, including private households. From an economic perspective, the negative allocative effects
are low and controllable, whereas privacy enhancement significantly increases the privacy protection
of participating individuals. From a computer science perspective, these markets are a meaningful
performance indicator for the utility of privacy-enhancement methods.
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Figure 5.29: Relative saved CO2 emissions Ω′ for the smart grid pricing scheme with saturation-
level-independent utility and PACTS
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Figure 5.30: Relative welfare for PACTS with storage, 250 PV, and CHP sites present
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Figure 5.31: Relative welfare for PACTS with different flexibility levels, 250 PV, and CHP sites
present
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Chapter 6

Conclusion and Future Work

In many cases personal data are necessary for applications to be beneficial for society. One impor-
tant example is the smart grid, in which access to fine-grain personal consumption data promises
interesting new applications that reduce emissions and guarantee security of supply. However,
arbitrary access to personal data puts privacy at risk. In this dissertation, we investigated the
trade-off between privacy and utility, and strove to find a way of to fulfill both privacy and data re-
quirements. The following chapter concludes the dissertation and summarizes the most important
contributions and findings as well as an outlook on interesting future work.

6.1 Summary

In this dissertation, we investigated the privacy threats related to the time series of personal
data. There exists a growing number of personal time-series data, e.g., GPS trajectories of mobile
devices or energy consumption measured by smart meters in private households. As an application
domain for the evaluation of our findings, we chose the smart grid scenario with the time series of
smart meters. Legislation restricts access and requires special treatment for data that reflect living
conditions and that can be assigned to individuals with minimal effort. Time series of personal
data reflect living conditions, e.g., the wake-up and bedtime hours of households. Furthermore,
as our first contribution, we have shown with a systematical method that smart-meter time series
can be assigned to individuals with the help of features that describe consumption patterns with
minimal effort. Consequently, the actual data (even without any personal identifier) is subject to
privacy legislation and requires special treatment. This evaluation shows that a large fraction of
households can be re-identified with minimal computational effort. Instead of striving for accurate
re-identification, we have shown a system that provides a systematic way to do this, with minimal
effort and with success rates that are significantly higher than ‘random guessing’. It is not surprising
that re-identification rates differ, e.g., an increasing number of households considered reduce the
rates because the likeliness of similar households increases. Additionally, features also have a
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different identifying degree, e.g., wake-up hours are more identifying for a shift worker in a data
set, with households working on a nine-to-five basis. In addition to the system itself, we also
contribute features with different identifying degrees.

As a second contribution, we proposed PACTS, a privacy-enhancement method that gives prov-
able guarantees for individually defined privacy preferences. We have already seen that time series
of smart-meter data contain a lot of different sensitive information. This includes features for
re-identification and information about running devices. With PACTS, individuals decide inde-
pendently of others, which information they deem sensitive. Informational self-determination re-
quires strong guarantees regarding the removed information. Thus, PACTS gives provable privacy
guarantees. PACTS provides ε-Pufferfish privacy guarantees for individually published time series
of smart-meter data. Our evaluation has shown that PACTS is capable of removing a number of
objectively chosen privacy requirements. Like other privacy-enhancement methods, PACTS modi-
fies the data set. Although privacy is guaranteed with respect to the given assumptions, it is still
questionable whether the modified data set still provides utility for applications.

The third contribution is the local energy market, an application-specific measure for the resulting
data quality of privacy-enhancing methods. In such a market, private households as consumers
and privately run renewable producers trade electricity in short time intervals. True demand
reports of consumers allow the optimal allocative efficiency, maximizing the welfare and saved
emissions. However, this puts the privacy at risk because the reported demands in short time slots
match the time series of smart meters. Applying a privacy-enhancement method on the demand
reports reduces the allocative efficiency. Comparing market outcomes with and without privacy
enhancement allows one to measure how much the privacy-enhancement methods influence the data
quality. In contrast to existing abstract measures like the L1-Norm, the local energy market results
in intuitively understandable values, in particular CO2 emissions and loss of welfare. The success
of a local energy market depends on the typical effects for the smart grid, e.g., modifications during
times of oversupply by a renewable source has a different effect than during times of undersupply. It
is therefore possible to conclude that the local energy market, as a quality measure, is discriminative
for smart grid applications in general.

Finally, we investigated the actual impact of privacy-enhancement methods on such markets. We
found on a theoretical basis that market mechanisms keep important properties like incentive com-
patibility in the presence of privacy-enhancement methods. As numerical results, we investigated
the actual impact of common related privacy-enhancement methods and PACTS. In addition, we
have also seen that storage systems can significantly mitigate the negative effects of privacy en-
hancement. A consumer may invest in such a system to preserve privacy while still keeping high
surplus. The overall conclusion is that privacy enhancement is applicable in markets such as the
proposed local energy market. Effects are controllable and low in comparison to the achieved
benefit for society.

This dissertation shows that it is possible to combine the contradictory goals of privacy and utility
gained from access to personal data. We have shown that both theoretically and numerically in
the smart grid scenario. Privacy-enhancement methods for time series give way for numerous
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applications that are beneficial to society and that require personal data. Individuals keep their
right to informational self-determination when they define their privacy preferences.

6.2 Future Work

In the following, we elaborate on possible fields of future research, to continue the contributions in
this dissertation.

6.2.1 Simplification of Privacy Requirements in PACTS

In Chapter 3 we introduced PACTS as a provable privacy approach that respects in-
dividual requirements. Users have to define discriminative pairs such as spair =

(‘The flow heater is starting.’, ‘The flow heater is not starting.’). PACTS requires a transformation
mechanism for time series in an abstracted representation and a distinct mapping for the abstract
coefficients correlation to spair. An individual with very little technical knowledge would not be
able to provide such transformations and definitions for arbitrary secrets. Therefore, to allow every
individual the use of PACTS, we require an easier way to define such secrets and discriminative
pairs. One might research the following possibilities:

• Automatic learning: With the help of locally installed smart meters, individuals can automat-
ically learn signatures by manually and controlled use of devices that should be hidden. With
the help of the learned signatures, we can determine a wavelet basis with methods such as
lifting [3].

• Central signature database: Activities involving the same type of device usually lead to typical
electricity consuming signatures. Although this also allows the extraction of information in
smart-meter data, we could use this to build a database for ‘commonly secrets’. Such predefined
database entries contain an understandable description as well as the required transformation
mechanism and a mapping to coefficients in question. Individuals choose the activities they
wish to hide, and include them in their privacy enhancement.

6.2.2 Utility Guaranty

In general, privacy enhancing methods focus on requirements from individuals regarding their
privacy. The goal is to provide applications with meaningful data while still keeping the right
of individual self-determination. On the other hand, applications also have requirements for the
utility of the data, i.e., depending on the actual modifications data might not be usable at all.
Thus, the requirement of such an application to be able to use the data would be, that it is only
modified to a certain extent. For instance, one requirement can be that the moving average of all
the time series in a data set is preserved during privacy-enhancement. If such requirements for
data is not fulfilled, it leads to the following contradiction: A user publishes privacy-enhanced data
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for the benefit of society, but the data is useless for certain applications. Consequently, the benefit
for society strives to zero. In this case, it is preferable not to publish the data at all, because it
does not provide utility and this obviously minimizes the risk of any privacy breach.

One possibility to overcome the explained contradiction is to combine privacy with application
requirements. If both cannot be matched, no data is published at all. Challenges for such a system
are, amongst others, to specify a way to express application specific requirements and on the other
hand, to make sure that both, privacy as well as utility requirements, are still respected.

6.2.3 Optimal Privacy and Welfare

With the help of the local energy market, we were able to quantify the welfare loss of different
privacy-enhancement methods (see Chapters 4 and 5). We could predict the welfare loss for a given
privacy-enhancing method and parameters. However, we were not able to define an ‘optimal’ way
of privacy enhancement for an individual because we could not quantify the valuation for privacy.
If we could specify such valuations, our market would be able to determine the optimal methods
and parameters. Finding such valuations is challenging, as they depend on individual perception
of privacy. However, valuations for privacy would shed light on the dependency between privacy
and utility from an individual perspective. One possible way of valuating privacy, is explained in
the following section.

Valuations for Privacy based on Identifying Degree

One promising approach to introduce a objective valuation is to rate the value of certain information
by their identifying degree. We have seen in Chapter 2 that time series of power consumption values
are identifying with the help of different features. Each feature represents a certain information
of the individual household. We also found out, that all features differ in their identifying degree.
On model for valuation would be: The higher the identifying degree the higher the valuation of
an individual is to keep exactly this information private. That model depends on the actual data
set, i.e., in a set consisting of time series from employees working at regular business hours the
‘Average Wakeup Hour’ is not as identifying as in a data set of shift workers. Thus, this model also
incorporates perception with respect to the peer group of a household. This model still requires a
reference point, since currently it only provides an order of valuations.

6.2.4 Extending the Application-Specific Data Quality Measure

In Chapter 4 we explained the benefits of an application specific measure such as the proposed local
energy market. Applications in the same domain rely on similar characteristics of the data. Thus,
we expect that the results of the local energy market are also discriminative for other smart grid
applications. However, one might still be interested in actual values regarding a specific application
rather than qualitative results derived from the impact on electronic markets. Investigating other
applications if they are suitable as a measure for data quality will lead to a deeper understanding

136



Dissertation of Stephan Kessler Karlsruhe Institute of Technology

how privacy enhancement methods interact with actual applications. It is a promising line of
research to analyze the following applications:

• Detailed usage data should optimize the planning of electricity network expansion. However,
it is unknown how privacy enhancing methods influence possible results.

• Self-tracking devices measuring body functions such as heart rate as time series increase in
popularity. Exchange and comparison of such data allow conclusions regarding health. It is
also unknown, how privacy enhancement methods applied to self-tracking data changes results.

The proposed techniques of privacy enhancement can be used for such time series with none
or minimal modifications. The major challenge of finding suitable measures for this applications
remains.
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Relative distance drel, 21
Relative Saved Emissions, 90
Relative Welfare, 89
Relevant Channel, 55

Saved Emissions, 89
Score for feature φ, 22
Score for set of features Φ and weights Ω, 22
Signals and Channels, 54
Small storage systems are sufficient to mitigate

privacy costs., 115
Smart grid pricing scheme: Dependence on util-

ity leads to less saved emissions with pri-
vacy enhancement., 111

Smart grid pricing scheme: Saturation-level-
independent utility exhibits decreasing
marginal welfare cost of the privacy
level., 111

Smart-meter data can be re-identified., 32
Social Welfare, 87
Standard Deviation (SD), 19

The accuracy decrease is lower for feature
sets consisting of φWH , φBH com-
pared with feature sets consisting of
φMaxC , φMinC , φOC ., 73
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The accuracy decrease is more than 50% on av-
erage for features {φMaxC}, {φMinC},
{φOC}, and their combination., 73

The additional computational effort for the LP
and the ILP approach does not lead to
a similar significant increase in the re-
identification rate., 31

The decomposed wavelet transformation fulfills
Definition 25, i.e., is invertible and an
endomorphism for the +-operator., 60

The discrete Fourier transformation fulfills Defi-
nition 25, i.e., is invertible and an endo-
morphism for the +-operator., 61

The drop in relative welfare for k-anonymity flat-
tens the higher k is., 121

The effect of storage on relative welfare increases
as the relative welfare without storage
decreases., 125

The features proposed are suitable for re-
identification, i.e., they are sufficiently
identifying., 25

The Haar wavelet transformation is invert-
ible and an endomorphism for the +-
operator., 53

The IC wavelet-privacy method leads to a
greater welfare loss., 120

The ILP approach has a higher re-identification
rate compared with the LP approach,
but a similar rate compared with the
static approach., 30

The ILP approach requires longer computation
time than the LP approach., 31

The INDiC approach determines the states of
appliances well., 65

The training time of the the LP is at least an
order of magnitude longer than for the
static approach., 30

The value of storage is increasing in decentral
generation capacity., 117

The value of storage is increasing in the privacy
level., 117

The wavelet-packet transformation fulfills Defi-
nition 25, i.e., is invertible and an endo-
morphism for the +-operator., 60

The welfare loss is monotonically increasing
for greater privacy parameters if the
privacy-enhancement method is mono-
tonically increasing and a balanced
modifier., 104

Tolerated Error δφ, 17
Transformation Mechanism, 51

Utility, 91

Wavelet, 46
Wavelet Transformation, 46
Weekend Consumption, 20
Weight ωφ, 17
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