

 Karlsruhe Reports in Informatics 2016,3
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Proofs for the Automated Inversion of Attribute

Mappings in Bidirectional Model Transformations

Max E. Kramer, Kirill Rakhman

 2016

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

http://creativecommons.org/licenses/by-nc-nd/3.0/de

Proofs for the Automated Inversion of Attribute
Mappings in Bidirectional Model Transformations

Max E. Kramer
Karlsruhe Institute of Technology

max.e.kramer@kit.edu

Kirill Rakhman
Green Parrot GmbH

kirill.rakhman@gmail.com

Abstract

Bidirectional model transformations create or update a target
model according to a base model and vice versa using a single trans-
formation specification for both directions. Triple graph grammars,
for example, define which model elements shall exist and how they
should reference each other without repeating information for both
directions. They can also copy values of simple-typed attributes,
such as enumerations, strings, or numbers. But currently only the
identity operator can be easily specified in bidirectional transfor-
mation languages: Other attribute mappings either have to be
specified for both directions or with a special constraint language.
In this technical report, we present proofs for an approach that
inverts attribute transformation expressions that can be written in
a simple Java-like syntax by extending the original paper [KR16].
We also present an initial library of 30 operator-specific invert-
ers that result in well-behaved view-update round-trips (GetPut)
for all changes. For changes for which well-behaved update-view
round-trips (PutGet) are impossible, we chose inversions that
sustain as much information as possible. We realized our inver-
sion approach for a prototypical transformation language that
generates Java code. An evaluation using all 103 transformations
of the ATL zoo shows that 26% of the LLOC of all non-trivial
attribute transformation expressions could be inverted with our
initial inverters. This may indicate that many transformation
tasks could involve non-trivial attribute transformations that can
easily be specified and inverted with our approach.

1 Introduction and Motivation
Bidirectional model transformations [Ste08] support two transformation directions: in forward mode,
new or existing target models are created or updated according to source models, which are provided
as input; in backward mode, source models are created or updated according to target models. The
advantage of bidirectional model transformation languages and engines is that a single transformation

RentalCar

travelDistance:int

ManagedVehicle

fuelCapacity:int
fuelConsumption:float

travelDistance = 100 * fuelCapacity / fuelConsumption

Figure 1: Two exemplary metamodels for cars and a simple attribute transformation expression

specification can be executed for both directions. This can be less error-prone and less tedious than
manually specifying both transformation directions with redundant parts.

Successful approaches for bidirectional transformations, such as triple graph grammars (TGGs) [GW09],
can be used to define many but not all necessary computations in a bidirectional way: It is possible to
define bidirectionally which model elements have to be created, how complex-typed references between
them shall be established, and which values shall be assigned to simple-typed attributes of the model
elements. Bidirectional specifications of attribute assignments in TGGs are, however, currently either
restricted to identity mappings [Hil+13] or to special constraint languages [AVS12]: This means the
engines can either only copy unchanged values or process expressions that use constraints for which
forward and backward operations are provided. The relations between the attributes of model elements
that are transformed with bidirectional languages cannot always be expressed with identity mappings,
but using a separate constraint language and always defining specific constraint operations can introduce
accidental complexity.

Consider, as a running example, two metamodels that could be used to model the promotion and
management of rental cars as depicted in Figure 1: The metamodel used to promote cars for customers
has a single attribute to represent the travel distance that can be covered with a full tank. The
other metamodel, which is used to manage all vehicles internally, has two separate attributes for the
fuel capacity of the tank and for the average fuel consumption per 100 km. In a bidirectional model
transformation an attribute mapping travelDistance = 100 * fuelCapacity / fuelConsumption should
not only be used to set or update the attribute of instances of the first metamodel based on the attributes
of instances of the second metamodel but also the other way round.

With current approaches for bidirectional transformations, a transformation developer cannot easily
specify such a mapping in a bidirectional way. Either separate unidirectional operations to calculate
the attribute values in forward or backward mode have to be written. Or the mapping would have to
be expressed using constraints, e.g. divide(fuelCapacity,fuelConsumption,t1), multiply(t1, 100, t2),
and floatToInt(travelDistance,t2). In the first case the developer has to ensure manually that both
operations together fulfill round-trip properties in order not to ruin the bidirectional properties of his
transformation and he has to use explicit type casts in both directions. In the second case the developer
hast to ensure this for the atomic forward and backward operations that he has to be provide for divide,
multiply, and floatToInt. This can be avoided with a transformation language that automatically
derives transformations for both directions from attribute mappings that are expressed in a well-known
syntax using a library of expression inverters. This can be particularly important if the correctness of
bidirectional transformations has to be verified, e.g. in order to meet security requirements.

In this technical report, we extend an original paper that presented two contributions: an approach
for the automated inversion of attribute mappings and an extensible library of 30 operator-specific
inverters for a Java-like expression language. These composable inverters can be used to obtain an
inverse attribute assignment for a backward transformation when given an attribute assignment of a
forward transformation. The obtained inverted expression and the original expression always fulfill the
GetPut law, which demands that we obtain identical values after a round-trip that starts in forward
mode [Fos+07]. The PutGet law, which demands identical values after a round-trip that starts in
backward mode, is fulfilled whenever this is possible. If a violation of PutGet cannot be avoided,
the inverters yield backward expressions that minimize the cases of violations and sustain as much

original information as possible. The inversion approach is not more powerful than the constraint-based
programming approach of Anjorin et al. [AVS12] but the language for attribute mappings could be
easier to use because only one transformation direction has to be specified. Our library of inverters
could also be used to ship a set of constraints with already defined forward and backward operations
with this constraint-based approach of Anjorin et al.

We implemented a prototype for our approach1, which provides instant feedback to support developers
in writing invertible mappings. Invertible forward attribute transformations can be written in a language
that is based on the expression language Xbase [Eff+12] and almost identical to a subset of Java. For
every forward transformation, our prototype generates a backward transformation that takes values for
all attributes that appear in the forward transformation as input and outputs an updated value. The
inversion procedure is limited to expressions that mention a metaclass attribute at most once and we
do not present inverters that update more than one source attribute.

We evaluated how often attribute transformation expressions that are supported by our initial
inverter library appear both, on the left-hand side and the right-hand side of expressions in all 103
transformations of the ATL zoo2. 55% of the LLOC of all attribute transformation expressions including
the trivial identity operator and 26% of the LLOC of all non-trivial transformation expressions in these
transformations use operations for which we present inverters. This may indicate that not only such
unidirectional transformations but also bidirectional transformations involve many non-trivial attribute
mapping expressions that can be easily expressed and inverted with our approach. Further research is,
however, needed to investigate whether the inverters would indeed yield inverse transformations that
meet all requirements.

The rest of this technical report, which is based on a thesis of one of the authors [Rak15] and extends
a paper published for the 5th workshop on bidirectional transformations [KR16], is structured as follows:
In section 2, we present the foundations of our approach. In section 3, we discuss related work. In
section 4, we introduce our inversion approach and in section 5, we explain the individual inverters.
In section 7, we discuss formal properties and an evaluation of the applicability. In section 8, we draw
some final conclusions and mention future work.

2 Background and Foundations

In this section we present the languages and laws on which our inversion approach is based.

2.1 Essential Meta Object Facility (EMOF)

The Object Management Group (OMG) developed a metamodeling language called Meta Object Facility
(MOF) (ISO 19508:2014). A subset of it is called Essential Meta Object Facility (EMOF) and defines core
concepts, such as metaclasses with properties and operations. The Ecore language is used in the Eclipse
Modeling Framework (EMF) to define metamodels. It is closely aligned with EMOF but distinguishes
complex-typed and simple-typed properties: Associations that link to metaclass instances are called
references and properties that take simple values such as enumerations, strings, or numbers are called
attributes. In order to simplify formulations, we use this terminology throughout this technical report.

2.2 Round-Trip Laws for Bidirectional Transformations

There are several definitions for laws of bidirectional transformations that guarantee properties for
round-trips that combine forward and backward direction. For our inversion approach we chose the
well-known GetPut and PutGet laws that were formulated for lenses by Foster et al. [Fos+07]. For our

1The language and inverters are available as open-source: sdqweb.ipd.kit.edu/wiki/Attribute_Mapping_Inversion
2ATL Transformations Zoo: eclipse.org/atl/atlTransformations

http://sdqweb.ipd.kit.edu/wiki/Attribute_Mapping_Inversion
http://www.eclipse.org/atl/atlTransformations

special setting of attribute assignment expressions an operator op and its inverse operator op−1 fulfill
the GetPut law if the subsequent application of op (get) and op−1 (put) always yields the same value:

op−1(op(s), s) = s, for all source values s (GetPut)

Similar the operator and inverse operator fulfill the PutGet law if the subsequent application of op−1

(put) and op (get) always yields the same value:

op(op−1(t, s)) = t, for all target values t and all source values s (PutGet)

3 Related Work
The problem of inverting programs in general [Dij79] and complex attribute expressions of bidirectional
model transformations in particular [AVS12] is clearly stated in the literature. Many approaches
successfully invert such attribute transformations for special languages [Mat+07; YG07; Boh+08]. All
these approaches have very strong properties but it is not possible to express bidirectional attribute
transformations as easily as with popular unidirectional languages such as ATL or QVT-O: Numbers,
for example, cannot be encoded [Mat+07], have to be positive [YG07], or are simply not in the focus
[Boh+08]. Other approaches restrict the usage of transformed models by forbidding changes outside the
transformation engine [Xio+07].

In the introduction, we have already mentioned the approach by Anjorin et al. [AVS12] for the
inversion of attribute transformations using constraint-based programming. In contrast to our approach
a special constraint language has to be used instead of a well-known expression syntax. Furthermore,
there is no library of predefined constraint inverters: a forward and backward operation has to be
provided for each atomic constraint.

4 Mapping Inversion Approach
In this section, we first introduce our general approach for inverting attribute mapping expressions.
Then, we present our initial library of operator-specific inverters in the next section.

4.1 Overview
Our inversion approach transforms expressions according to common rules for rewriting mathematical
equations. It takes an assignment expression that involves attributes of two metaclasses as input of
the forward transformation direction and outputs an inverse assignment expression for the backward
transformation direction. Our approach assumes that instances of both metaclasses have already been
created by a transformation engine so that their attribute values can directly be manipulated by the
forward and backward transformations.

The input assignment represents an initial equation and the output assignment represents the equation
that results from solving the initial equation for the variable corresponding to the attribute that shall be
updated in a backward transformation. The output assignment is obtained by transforming the abstract
syntax tree (AST) of the input assignment: every operation node on the way down to the leaf node for
the attribute to be updated is replaced with an inverse operation and all other nodes remain unchanged.
Each operation is inverted independently using an inverter for the used operator. Only the result of the
previously inverted parent operation is passed in form of a temporary variable and the final result is the
result of the last inversion.

4.2 Mapping Expressions
The attribute mapping expressions that can be inverted with our current prototype are assignment
expressions for a metaclass of the target metamodel and a metaclass of the source metamodel of the

forward direction with the following restrictions: On the left side exactly one attribute of the target
metaclass has to be given. The right side can contain nested operations that mention at least one
attribute of the source metaclass and every of these attributes at most once. This property is called
linear [Wad88] or affine [Mat+07] and guarantees straightforward inversion. In the following we will call
the left side the target side and the right side the source side of an assignment.

If more than one attribute of the source metaclass is mentioned, one of these attributes has to be
marked as the one to be updated in the backward direction. The reason is that we currently do not
support operators that can only be inverted by updating more than one operand. Operations that
operate directly or indirectly on the attribute according to which the expression is inverted have to use
operators for which an inverter is defined. In the AST these operations correspond to nodes that are
direct or indirect parents of the attribute leaf. All other operations can use arbitrary operators as they
do not have to be inverted.

The expression of our initial car rental example travelDistance = 100 * fuelCapacity / fuelCon-

sumption is an assignment expression for the attribute travelDistance of the metaclass RentalCar of
the metamodel that acts as target in in the forward transformation direction. The source side is a
multiplication operation of a constant literal operand and a division operation that mentions the two
attributes fuelCapacity and fuelConsumption of the source metaclass ManagedVehicle. To enable an
inversion of this expression both of these source attributes could be marked as the one to be updated in
the backward direction. In our scenario, an inversion according to the fuel consumption would probably
be chosen to respond to a change of the monitored travel distance that indirectly reflects a change of
the average consumption and not of the fixed tank size.

4.3 Inversion Procedure

The inversion procedure for an attribute assignment expression consists of three steps. First, the AST
of the expression is statically checked to ensure that the assignment fulfills the above requirements in
addition to properties checked by the compiler of the transformation language. Then, a copy of the AST
is transformed: first the root and then every node on the way to the leaf for the attribute according to
which the expression is inverted. Finally, the source code for the inverted assignment is generated from
the transformed AST copy in form of a method, which returns the result of the last inversion and has a
parameter for the target attribute and for every source attribute.

It is possible to invert every operation individually because they only depend on the value of
the operands and not on the internal structure of the operands. This can be illustrated using the
expression of our car rental example travelDistance = 100 * fuelCapacity / fuelConsumption. It is
inverted in two steps to fuelCapacity / fuelConsumption = travelDistance / 100 =: tmp and then to
fuelCapacity = tmp * fuelConsumption which yields (travelDistance / 100) * fuelConsumption. The
temporary variables, which we use during the code generation in our prototype, are not necessary as
they could be inlined, but they make the generated code more readable.

4.4 Inverter Properties

In order to build well-behaved bidirectional transformations from a given forward attribute assignment
expression and the inverse expression obtained with our approach, the inverters have to fulfill the GetPut
and the PutGet laws of Foster et al. [Fos+07]. It is, however, not possible to invert every expression that
may be desired in a bidirectional transformation language in a way that always fulfills the PutGet law
if all target updates are allowed: For every operation that is not right-total (surjective) only updates to
target values that are in the image of the operation can be inverted in a way that fulfills the PutGet
law. An operation that returns the absolute value of a source value, for example, cannot be inverted
without breaking the PutGet law if the target may be updated to a negative value: no matter which

value will be put as new source, the absolute target value that we will get from it will always be positive
and therefore not identical to the negative target value after the update.

We stick to the terminology of Foster et al. and call transformations that always fulfill the GetPut
and the PutGet law well-behaved transformations. We introduce the new term best-possible behaved
transformations for transformations that fulfill the GetPut law in all cases and the PutGet law for
every target change that can be inverted without breaking the PutGet law. Inverters that yield well-
behaved or best-possible behaved transformations are also called well-behaved respectively best-possible
behaved inverters. All 30 inverters that we present in this paper and realized in our initial prototype
are best-possible behaved inverters and 14 of them are even well-behaved inverters. Proofs for the
well-behavedness of our inverters are presented in section 6.

Best-possible behaved inverters have to deal with target updates for which a violation of the PutGet
law cannot be avoided. These cases are always updates to target values that are in the codomain of the
function represented by the forward operator but not in the image of this function. They can, however,
be divided into two categories: For PutGet violations of the first category some of the information of
the updated target value can be used to choose a new source value for which the new target after a
round-trip will be closer to the initially updated target value than for all other choices of source values.
For PutGet violations of the second category no choice for a new source value yields a target value after
a round-trip that is closer to the initially updated target value than for all other choices of source values.
Therefore, we call the first type of PutGet violations restrictable PutGet violations and the second type
desperate PutGet violations.

A restrictable PutGet violation occurrs, for example, if the target of the arithmetic abs operator is
changed to a negative value: the absolute value of the negative target is used to choose a new source value
that yields a target after a round-trip that has the correct absolute value but inevitably an incorrect
algebraic sign. A desparate PutGet violation occurs, for example, if the target of the trigonometric sin
operator is changed to a value that is not in the interval [−1, 1]: all choices for a new source value that
are of the form 2n± π

2 for an n ∈ N0 yield the target value ±1 after a round-trip and are as close as
possible to the initially updated target value.

In our prototype, we respond to restrictable violations with a handler that updates the source according
to a passed value that is derived from the updated target value. How the passed value is changed before
updating the source or whether a target update shall be rejected by throwing an exception can be
customized using a callback. The default implementation directly updates the source to the passed
value without any further changes and rejects no target update. For desperate PutGet violations, no
kind of exception handling would make any difference so our prototype simply updates the source to a
default value that is independent of the updated target value.

5 Inverters
In this section, we present best-possible behaved inverters for 30 common operators, which we also
realized for our prototypical language. Before we define and explain each inverse operator in detail, we
provide an overview and classification for all inverters.

5.1 Classification, Notation, and Overview

In the previous section, we have introduced the notion of well-behaved and best-possible behaved inverters
and distinguished restrictable and desperate PutGet violations. There are two further properties that
can be used to classify inverters: Operators with more than one operand can be inverted in an operand-
agnostic way if they represent a commutative function. For all other operators with more than one
operand we define an individual inverse operator for inversion according to each operand.

We write op(s1 : T1, s2 : T2) : T3 to denote an operator with the name “op”, two operands named “s1”
and “s2” of type T1 and T2, and a return type T3. An operand-agnostic inverse operator of this operator

is denoted by op−1 and op−1
i denotes an inverse operator for inversion according to the operand with

1-based index i. All inverse operators have at least one parameter to obtain the updated target value
and may have additional parameters for the values of the operands of the operator to be inverted.

Some target-agnostic operators can be inverted in way that fulfills the GetPut law with a single
definition that holds for all possible target values. The remaining operators are inverted with separate
functions for target values with different properties.

We grouped the operator for which we define inverse operations in five categories: primitive casts,
boolean logical operators, basic and advanced arithmetic operators, and string operators. Table 1 lists
properties of the operators and their inverse operators. The 14 well-behaved inverters are those that
neither have restrictable nor desperate PutGet violations. All operators for which we present inverters
in this paper operate on single values not on collections of values and can be inverted by updating a
single source attribute. Inverters for collection operators and for operators that require updates of more
than one source attribute in backward direction are part of our future work.

Note that our inverters are just one possibility to invert a given operation. For many operations,
however, there are not many different ways to define a best-possible behaved inverter that updates
only a single source attribute. Inverters that update more than one source attribute have an important
additional degree of freedom: the difference between the old and the updated target value ∆ can now be
split in different ways on several source attributes. Such inverters for binary arithmetic operators may,
for example, apply the inverse arithmetic operation using ∆

2 to both source attributes or using ∆ to one
of both source attributes. But this paper focuses on inverters that update only a single source attribute.

The presented extensible library is restricted to inverters that update only one attribute and to an
incomplete set of common operations. But many inverters for operations that we did not address can
reuse presented inverters or can be defined in a similar way. A new inverter for a string concatenation
operator with more than two operands, for example, could easily be defined even if more than operand
shall be updated in the inverse transformation.

In the following definitions we will use a helper restrictPGV(p:T):T to encapsulate the handling of
restrictable violations of the PutGet law based on the value of the parameter p. In our prototype the
default implementation always returns the passed value, but it can be customized to react differently
depending on the value and / or operator that was inverted. For desperate violations of the PutGet law
a helper reportPGV(p:T):T updates the source to the given fixed value and reports the violation.

5.2 Primitive Casts

Type conversions and a notion of type-compatibility are necessary for some arithmetic operators.
Therefore, we start by defining inverse operators for primitive type casts. These are the only possible
casts that can appear in attribute mapping expressions. Casts of complex-typed references to metaclass
instances have to be handled separately in Ecore-based bidirectional transformation languages.

If a numeric type T2 can be converted without information loss to a numeric type T1, we call T1
wider than T2 and write T1 > T2. For our prototype we use the relation that is defined by the widening
primitive conversion int the Java language specification3: double > float > long > int > short > byte.

If a floating-point value x is equal to another floating-point value y with a relative tolerance of ε, i.e.
| x−y
max(x,y) | < ε , we call x and y ε-equal and write x ε= y. In our prototype values are ε-equal if a call to
org.apache.commons.math3.util.Precision.equalsWithRelativeTolerance using the IEEE 754 machine
epsilon 2−53 returns true, but the epsilon can be configured differently and the comparison could be
replaced with a comparison based on the units in the last place (ulp).

For two numeric types T1 > T2 and the narrowing primitive cast operator ncastT1,T2(source : T1) : T2
we define the inverse operator ncast−1

T1,T2
(target : T2) : T1 := wcastT2,T1(target).

3Java Widening Primitive Conversion: docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2

http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/util/Precision.html#equalsWithRelativeTolerance%28double,%20double,%20double%29
http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.2

Operator to Invert Argument Types Op
era
nd
-A
gn
ost
ic

Ta
rge
t-A

gn
ost
ic

no
res
tri
cta
ble

Pu
tG
et
vio
lat
ion
s

no
de
sp
era
te
Pu
tG
et
vio
lat
ion
s

Primitive Casts

narrowing cast numeric – 3 3 3
widening cast (ex- and implicit) numeric – 7 7 3

Boolean Logical Operators

not, xor boolean – 3 3 3

Basic Arithmetic Operators

unary minus numeric – 3 3 3
addition, multiplication numeric 3 3 3 3
float division floats 7 3 3 3
int division integers 7 7 3 3

Advanced Arithmetic Operators

absolute value numeric – 7 7 3
rounding floats – 7 3 3
floor, ceil double – 7 7 3
floor modulus integers 7 7 7 7

exponentiation b:numeric,e:integers 7 7 7 3
sin, cos floats – 7 3 7

tan floats – 7 3 3
asin, acos, atan floats – 7 7 3

String Operators

parse boolean,numeric – 3 3 3
num printing numeric – 7 3 7

bool printing boolean – 7 3 3
length strings – 7 3 3
concat strings 7 7 7 3
suffix strings – 3 3 3
substring with fixed indices strings – 7 7 3
toUpperCase, toLowerCase strings – 7 7 3

Table 1: Arguments of the operators and inverter properties (– : not applicable, 7 : no, 3 : yes)

For two numeric types T2 > T1 and the widening primitive cast operator wcastT1,T2(source : T1) : T2
we define the inverse operator

wcast−1
T1,T2

(t : T2) : T1 :=
{

ncastT2,T1(t) if wcastT1,T2(ncastT2,T1(t)) ε= t

restrictPGV(ncastT2,T1(t)) otherwise

To invert all implicit casts in expressions, which are called “widening primitive conversions” for
Java, we replace them with explicit widening casts before inverting an expression and use the inverse
operator wcast−1 as defined above. As a result, all explicit and implicit widening casts are inverted
using a narrowing cast without violating the PutGet-law whenever the target value can be cast with a
relative error smaller than ε. In all other cases a PutGet violation cannot be avoided but its effect can
be restricted by choosing the cast target value as new source value.

5.3 Boolean Logical Operators

The next group of operators with inverters consists only of the not and the xor operator, because
conjunctions and disjunctions cannot always be inverted by updating only a single source attribute: If a
target value is changed from 1 to 0 an inverter for the and operator has to update both source values
and an inverter for the or operator has to do this if both source values were 1.

Not

For the operator not(source : bool) : bool we define the trivial inverse operator not−1(target : bool) :
bool := not(target)

Xor

For the operator xor(s1 : bool, s2 : bool) : bool we define the inverse operator xor−1
1 (target : bool, s2 :

bool) : bool := xor(target, s2) for inversion according to the first operand s1 and the inverse operator
xor−1

2 (target : bool, s1 : bool) : bool := xor(target, s1) for inversion according to the second operand s1.

5.4 Basic Arithmetic Operators

This group of operators realizes the four basic arithmetic operations on integer and floating-point types.

Unary Minus

For all numeric types T and the operator unaryminus(source : T) : T we define the trivial inverse
operator unaryminus−1(target : T) : T := unaryminus(target)

Addition

For all numeric types T and the operator addition(s1 : T, s2 : T) : T we define the inverse operator
addition−1(target : T, s : T) : T := addition(target,unaryminus(s)).

The language of our prototype provides no subtraction operator but replaces the syntactic sugar
s1 − s2 with addition(s1, unaryminus(s2)) in order to reduce the inversion of subtraction operations to
the inversion of unary minus operations.

Multiplication

For all numeric types T and the operator multiplication(s1 : T, s2 : T) : T we define the inverse operator
multiplication−1(target : T, s : T) : T := xdivision(target, s) where xdivision is floatdivision if T is a
floating-point type and otherwise intdivision.

Division

For two floating-point types T1 > T2 or T1 = T2 and the operator floatdivision(s1 : T1, s2 : T2) : T1 we
define the inverse operator floatdivision−1

1 (target : T1, s2 : T2) : T1 := multiplication(t, s2) for inversion
according to the dividend s1 and the inverse operator floatdivision−1

2 (target : T1, s1 : T1) : T1 :=
floatdivision(s1, t) for inversion according to the divisor s2.

For two integer types T1 > T2 or T1 = T2 and the IEEE 754 round-toward-0 operator intdivision(s1 :
T1, s2 : T2) : T1 we define the inverse operator

intdivision−1
1 (t : T1, s1 : T1, s2 : T2) : T1 :=

{
s1 if intdivision(s1, s2) = t

multiplication(t, s2) otherwise

for inversion according to the dividend s1, and the inverse operator

intdivision−1
2 (t : T1, s1 : T1, s2 : T2) : T1 :=

{
s2 if intdivision(s1, s2) = t

intdivision(s1, t) otherwise

for inversion according to the divisor s2.
Integer division is an operator that is not left-unique (injective). Therefore, it cannot be inverted in

a way that fulfills the GetPut law without inspecting the original target value. The presented inverse
operators for intdivision avoid a violation of the GetPut law by checking whether the target was changed
to another value than the one that we would get from the source values using the original operator. If
this is the case, they return the original source value for the operand according to which the operation
is inverted in order to fulfill the GetPut law. In all other cases it does not matter which of the values
that would fulfill the GetPut law is chosen. Therefore, the common division inversion by multiplication
with the divisor respectively division by the dividend is enough.

5.5 Advanced Arithmetic Operators

To simplify the definition of inverse operators for advanced arithmetic operators, we will use a helper,
which returns the algebraic sign for uses in multiplications and is defined for numeric types T as

sign4mult(p : T) : T :=
{

1 if p ≥ 0
−1 otherwise

Absolute Value

For a numeric type T and the absolute value operator abs(source : T) : T we define the inverse operator

abs−1(target : T, source : T) : T :=
{

sign4mult(source) · target if target ≥ 0
restrictPGV(sign4mult(source) · |target|) otherwise

With this inverter we can sustain the information about the absolute value of an updated target and
restrict the loss of information to the algebraic sign of it, which cannot be avoided for the abs operator.

For numeric x and y, we briefly write |x| to denote abs(x) and x · y to denote multiplication(x, y).

Round to Nearest

For a floating-point type T and the IEEE 754 round-to-nearest operator round(source : T) : int we
define the inverse operator

round−1(target : int, source : T) : T :=
{
source if round(source) ε= target

wcastint,T(target) otherwise

Round toward Infinity

For the IEEE 754 round-toward-−∞ operator floor(source : double) : double we define the inverse
operator

floor−1(target : double, source : double) : double :=

source if floor(source) ε= target

target if floor(target) ε= target

restrictPGV(target) otherwise

For the IEEE 754 round-toward-∞ operator ceil the inverse operator ceil−1 is defined completely
analog to floor and floor−1.

Modulus

Instead of defining an inverter for the modulus operator that uses round-to-zero division, which is
denoted by a % b in Java, we present an inverter for the floor modulus operator4. It is defined as
floormod(divisor, dividend) := divisor − (floordiv(divisor, dividend) · dividend), where floordiv is the
round-toward-−∞ floor division operator and “returns the largest [...] integer value that is less than
or equal to the algebraic quotient”. This operator yields a modulus with the same sign as the divisor,
which is helpful for example for array index arithmetic.

For an integer type T and the modulus or remainder operator floormod(s1 : T, s2 : T) : T we define
the inverse operator

floormod−1
1 (t : T, s1 : T, s2 : T) : T :=

s1 if floormod(s1, s2) = t

floordiv(s1, s2) · s2 + t if floormod(t, s2) = t

restrictPGV(t) otherwise

for inversion according to the dividend s1, and the inverse operator

floormod−1
2 (t : T, s1 : T, s2 : T) : T :=

s2 if floormod(s1, s2) = t

t+ s2 · sign4mult(t) if s1 = t

|s1 − t| · sign4mult(t) =: s′2 if floormod(s1, s
′
2) = t

reportPGV(1) otherwise

for inversion according to the divisor s2.
In the case of floormod(target, s2) = target we could also make floormod−1

1 (target, s1, s2) return
simply target. For every n ∈ N0 returning n · s2 + target would fulfill PutGet. Our choice of n =
floordiv(s1, s2) preserves information about the old range of the divisor s1 before the update of the
target: For example, if the target for a divisor of 5 and a dividend of 3 is changed from 2 to 1, our
inversion of the remainder operator would update the divisor to 4 instead of 1.

In the case of s1 = target the inversion according to the divisor floormod−1
2 (target, s1, s2) fulfills

PutGet if it returns target+n ·sign4mult(t) for an n ∈ NK{0}. Our choice of n = s2 preserves information
about the old value of the dividend s2 before the update of the target: For example, if the target for a
divisor of 5 and a dividend of 3 is changed from 2 to 5, our inversion of the remainder operator would
update the divisor to 8 to indicate that the divisor was 8− 5 = 3 before the update.

An example for which all four possible target changes from ±t to ±t ′ can be inverted is given in
Table 2 based on the divisor values ±9 and the dividend values ±6.

4Java floor modulus operator: docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-int-int-

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-int-int-

floormod dividend
−13 −6 −5 5 6 13

divisor −9 −3 −4 3 4
9 −4 −3 4 3

Table 2: Old and new operand values of the floormod operator for target updates from ±3 to ±4

Exponentiation

For a numeric type T1, a floating-point type T2, and the exponentiation operator pow(b : T1, e : T2) :
double we define the inverse operator

pow−1
1 (t : double, b : T1, e : T2) : T1 :=

{

sign4mult(b) · e
√
t if t ≥ 0

restrictPGV(sign4mult(b) · e
√
|t|) otherwise

if e is even

sign4mult(t) · e
√
|t| otherwise

for inversion according to the base b, and the inverse operator

pow−1
2 (t : double, b : T1, e : T2) : T2 := wcast−1

T1,T2

e if be = t

log|b|(|t|) if blog|b|(|t|) ε= t

restrictPGV(log|b|(|t|)) otherwise

for inversion according to the exponent e.

Trigonometric Operators

For the trigonometric operator sin(source : double) : double we define the inverse operator

sin−1(t : double, source : double) : double :=

source if sin(source) ε= t

asin(t) if − 1 ≤ t ≤ 1
reportPGV(sign4mult(t) · π2) otherwise

For the trigonometric operator cos the inverse operator cos−1 is defined completely analog to sin and
sin−1: only sign4mult(t) · π2 has to be replaced with π

2 − sign4mult(t) · π2 for cos−1. For the trigonometric
operator tan(source : double) : double we define the inverse operator

tan−1(target : double, source : double) : double :=
{
source if tan(source) ε= target

atan(target) otherwise

Inverse Trigonometric Operators

For the inverse trigonometric operator asin(double) : double we define the inverse operator

asin−1(target : double, source : double) : double :=

sin(target) if |target| ≤ π

2
restrictPGV(sin(target)) otherwise

For the inverse trigonometric operators acos and atan the inverse operators acos−1 and atan−1 are
defined analog to sin and sin−1: only |target| ≤ π

2 has to be replaced with 0 ≤ target ≤ π for acos−1.

5.6 String Operators

The last group of operators for which we define inverse operators involves character strings.

Parsing, Printing and Length

For all types T and the operator parse(source : string) : T we define the trivial inverse operator
parse−1(target : T) : string := print(target).

For all numeric types T and the operator numprint(s : T) : string we define the inverse operator

numprint−1(t : string, s : T) : T :=
{

parse(t) if t represents a number of type T
reportPGV(0) otherwise

For the operator boolprint(source : bool) : string we define the inverse operator

boolprint−1(target : string, source : bool) : bool :=
{
true if target = “true′′ (case insensitive)
false otherwise

We define a helper pad(source : string, length : integer), which appends as many underscore
characters to a given string source as are needed to obtain a string with length characters. We also
define a helper to obtain prefixes that are automatically padded to a desired length using the pad helper:

prefix(source : string, end : int) : T :=
{

substring(source, 0, end) if end ≤ length(source)
pad(source, end) otherwise

It uses the substring operator with fixed indices substring(s : string, b : int, e : int), which returns e− b
subsequent characters of s including the character at index b and excluding the character at index e.
For the operator length(source : string) : int, for which we briefly write |source|, we can now define
the inverse operator

length−1(target : int, source : string) : string := prefix(source, target)

Concatenation and Substrings

For the string concatenation operator concat(s1 : string, s2 : string) : string, for which we briefly write
s1
_s2, we define the inverse operator

concat−1
1 (target : string, s2 : string) : string :=

{
s′1 if target = s′1

_s2

restrictPGV(target) otherwise

for inversion according to the first operand s1, and the inverse operator

concat−1
2 (target : string, s1 : string) : string :=

{
s′2 if target = s1

_s′2
restrictPGV(target) otherwise

for inversion according to the second operand s2.
We define a specialized substring operator:

suffix(s : string, b : int) : T :=
{

substring(s, b, |s|) if b < |s|
“” otherwise

where “” denotes the empty string. Its inverse operator is

suffix−1(t : string, s : string, b : int) : string := prefix(s, b)_t

We define a helper that concatenates a circumfix c and an infix i by prepending the first e characters
of the circumfix to the infix while appending the last |c| − b characters of the circumfix:

circumcat(c : string, e : int, i : string, b : int) := prefix(c, e)_i_suffix(c, b)

Now we can define an inverse operator for the substring operator with fixed indices substring(s :

string, b : int, e : int) : string using the pad and circumcat helpers:

substring−1(t : string, s : string, b : int, e : int) : string :=
circumcat(s, b, t, e) if |t| = b− e
restrictPGV(circumcat(s, b, t, e)) if |t| > b− e
restrictPGV(circumcat(s, b,pad(t, b− e), e)) otherwise

We illustrate the inversion of the substring operator with fixed indices using the example input
s =“inverse”, b = 2, and e = 6: If the target “vers” is changed to “plac” the first case applies because
|“plac”| = 4 = 6− 2 and the source is changed to “in”_“plac”_“e”. If the target is changed to “carnat”
the second case applies because |“carnat”| = 6 > 6− 2 and the source is changed to “in”_“carnat”_“e”.
If the target is changed to “di” the third case applies because |“di”| = 2 < 6−2 and the source is changed
to “in”_“di__”_“e”. Without the third case a target change to “di” would yield “indie” for which an
application of substring with b = 2 and e = 6 would not be possible because e = 6 > 5 = |“indie”|.
Therefore, we have to ensure that the source string has at least the length of the target string.

Letter Case

To invert letter case conversions we define a helper that returns the index of the first occurrence of a
pattern p in a string s or the length of s if the pattern does not occur:

firstIndex(s : string, p : string) : int := min({i ∈ N0 | substring(s, i, i+ |p|) = p} ∪ {|s|})

For the to-upper-case-conversion operator tUC(s : string) : string we define the inverse operator

tUC−1(t : string, s : string) : string :=
restrictPGV(tUC−1(tUC(t), s)) if t 6= tUC(t)
substring(s, i, i+ |t|) if |t| < |s| ∧ i := firstIndex(tUC(s), t) < |s|
tLC(prefix(t, i))_s_tLC(suffix(t, i+ |s|)) if |t| > |s| ∧ i := firstIndex(t, tUC(s)) < |t|
tLC(t) otherwise

We illustrate the inversion of the upper-case conversion operator based on the example input
s =“CamelCase”: If the target “CAMELCASE” is changed to “Cas”, the first case of the definition applies
because “Cas” 6= “CAS” = tUC(“Cas”). The inverse operator is recursively called with the new target
“CAS” and the obtained string will be used as default value during the handling of the PutGet violation.
The recursive call is identical to what happens if the target is directly changed to “CAS”: the second case
applies because |“CAS”| = 3 < 9 = |“CamelCase”| and firstIndex(tUC(“CamelCase”), “CAS”) = 5 < 9.
Therefore, “Cas” is returned. If the target is changed to “NOCAMELCASED”, the third case applies
because |“NOCAMELCASED”| = 12 > 9 and firstIndex(“NOCAMELCASED”, tUC(“CamelCase”)) =
2 < 12. Therefore, “no”_“CamelCase”_“d” is returned. If the target is changed to “DROMEDAR”,
the last case applies and “dromedar” is returned.

For the to-lower-case-conversion operator tLC the inverse tLC−1 is defined completely analog.

6 Formal Proofs
In this section, we formally prove well-behavedness and best-possible behavedness for our generic
composition inverter and for exemplary individual inverters of our operator categories.

6.1 Best-Possible Behavedness with Respect to a Partition

In order to be precise enough for the proofs, we first refine our notion of best-possible behavedness:
A transformation is best-possible behaved with respect to a partition W,B of the set of possible target

values if it is best-possible behaved such that the PutGet law holds for all values in W and cannot hold
for any value in B.

Based on this refined notion our proofs for best-possible behavedness always have the same structure:
for the partition W,B of the set of possible target values we show that a) the GetPut law holds for all
source values, b) the PutGet law holds for all target values in W , and c) that we obtain a contradiction
for every inverter that would fulfill the PutGet law for a target value in B.

6.2 Best-Possible Behavedness is Compositional

We show that best-possible behavedness is compositional by showing the following: if two inverters are
best-possible behaved, then the composed inverter that combines these two inverters is also best-possible
behaved. Let op−1

1 (t, s) and op−1
2 (t, s) be two inverters for two operators op1(s) and op2(s) such that

op−1
1 is best-possible behaved with respect to the partition W1, B1 and op−1

2 is best-possible behaved
with respect to the partition W2, B2, such that W2 includes the image of W1 under op−1

1 . More precisely,
let S denote the set of all source values and let op−1

1 [W1, S] denote the image of W1 and S under op−1
1 ,

then op−1
1 [W1, S] ⊂W2.

In the following, we will show that the composed inverter op−1
1◦2(t, s) := op−1

2 (op−1
1 (t, op2(s)), s) for

the composition operator op1◦2(s) = op1(op2(s)) is best-possible behaved with respect to the partition
W1, B1.

First, we show that the composed inverter always fulfills the GetPut law: Let s be a source value.
Then

op−1
1◦2(op1◦2(s), s) = op−1

1◦2(op1(op2(s)), s)

by the definition of composition. The definition of inverse composition yields

op−1
2 (op−1

1 (op1(op2(s)), op2(s)), s)

Because op−1
1 is best-possible behaved, it fulfills the GetPut law for the source value op2(s). Therefore,

we obtain
op−1

2 (op2(s), s)

Because op−1
2 is best-possible behaved, it fulfills the GetPut law for s, so that we finally obtain

op−1
1◦2(op1◦2(s), s) = s.

This shows that the GetPut law holds for the composed inverter op−1
1◦2 and all source values s.

Second, we show that the composed inverter fulfills the PutGet law for all values in W1: Let w be a
target value in W1 and let s be an arbitrary source value. Then

op1◦2(op−1
1◦2(w, s)) = op1◦2(op−1

2 (op−1
1 (w, op2(s)), s))

by the definition of the inverse composition. The definition of composition yields

op1(op2(op−1
2 (op−1

1 (w, op2(s)), s)))

We define t̃ := op−1
1 (w, op2(s)) and obtain

op1(op2(op−1
2 (t̃, s)))

We chose w to be in W1. Therefore, t̃ is in op−1
1 [W1, S] and also in W2. Thus, op2 fulfills the PutGet

law for t̃ and we obtain
op1(t̃)

, which stands for
op1(op−1

1 (w, op2(s)))

Because op1 fulfills the PutGet law for w in W1, we finally obtain

op1◦2(op−1
1◦2(w, s)) = w

Thus the PutGet law holds for all w in W1.
Last, we show that the PutGet law cannot hold for any value in B1: Assume op−1

1◦2 fulfills the PutGet
law for a target value b in B1 and a source value s. Then

b = op1◦2(op−1
1◦2(b, s))

This yields
b = op1◦2(op−1

2 (op−1
1 (b, op2(s)), s))

by the definition of the inverse composition. The definition of composition yields

b = op1(op2(op−1
2 (op−1

1 (b, op2(s)), s)))

By applying op1 ◦ op−1
1 on both sides we obtain

op1(op−1
1 (b, s)) = op1(op−1

1 (op1(op2(op−1
2 (op−1

1 (b, op2(s)), s))), s))

Because op−1
1 fulfills the GetPut law, we obtain

op1(op−1
1 (b, s)) = op1(op2(op−1

2 (op−1
1 (b, op2(s))), s))

The definition of composition yields

op1(op−1
1 (b, s)) = op1◦2(op−1

2 (op−1
1 (b, op2(s)), s))

Next, the definition of the inverse composition yields

op1(op−1
1 (b, s)) = op1◦2(op−1

1◦2(b, s))

The assumption that op−1
1◦2 fulfills the PutGet law for b yields

op1(op−1
1 (b, s)) = b

which is a contradiction to the requirement that op−1
1 does not fulfill the PutGet law for b. Therefore,

our assumption is wrong, which shows that the PutGet law cannot hold for any value in B1.
Altogether, the GetPut law holds for all s, the PutGet law holds for all values in W1 and cannot

hold for any value in B1. Therefore, we conclude that op−1
1◦2 is best-possible behaved with respect to the

partition W1, B1.

6.3 Proofs for Individual Inverters

All presented inverters have been designed to be best-possible behaved. Therefore, proofs for the best-
possible behavedness of individual inverters are mostly straightforward applications of the definitions of
the operators and their inverters. Nevertheless, we present three exemplary proofs that illustrate how
the general proof template is used for operators with different properties, e.g. floating-point involvement
or several operands influencing the fulfillment of lense laws.

The Absolute Value Inverter is Best-Possible Behaved

We will show that the inverter of the abs operator is best-possible behaved with respect to the partition

W := {t ∈ Num | t ≥ 0}, B := {t ∈ Num | t < 0}

.
Let s be a source value. Then

abs−1(abs(s), s) = abs−1(|s|, s) = sign4mult(s) · |s|

If s ≥ 0, this yields
1 · s = s

Otherwise s < 0, which yields
−1 · −1 · s = s

Thus the GetPut law holds for all s.
Let w be a target value w in W and let s be an arbitrary source value. Then

abs(abs−1(w, s)) = abs(sign4mult(s) · w)

If s ≥ 0, this yields
abs(1 · w) = abs(w) = w

because w ≥ 0. Otherwise s < 0, which yields

abs(−1 · w) = abs(−w) = w

Thus the PutGet law holds for all w in W .
Assume abs−1′ is an inverse operator for abs that fulfills the PutGet law for a target value b in B

and an arbitrary source value s. Then

abs(abs−1′(b, s)) = b

This yields
|abs−1′(b, s)| = b < 0

which is a contradiction to the definition of the absolute value operator because |x| ≥ 0 for all x.
Altogether, the GetPut law holds for all s, the PutGet law holds for all w in W and cannot hold for

any inverse operator abs−1′ and b in B. Therefore, we conclude that abs−1 is a best-possible behaved
inverter.

The Exponentiation Inverters are Best-Possible Behaved

First, we will show for the exponentiation operator pow that the inverter pow−1
1 for inversion according

to the base is best-possible behaved with respect to the partition

W1 := {(t, e) ∈ Num×Double | t ≥ 0 ∧ e is even} ∪ {(t, e) ∈ Num×Double | e is not even},

P1 := {(t, e) ∈ Num×Double | t < 0 ∧ e is even}

For some operators with more than one operand it is not sufficient to partition the space of possible
target values. Instead, we have to partition the space of tuples that contains a possible target value and
a source value for every additional operand that influences the fulfillment of the lense laws (except —of
course— for the operand according to which we are inverting).

Let b be a base source value and e be an exponent source value. If e is not even, then

pow−1
1 (pow(b, e), b, e) = sign4mult(be) · e

√
|be| = sign4mult(b) · e

√
|be|

because sign4mult(be) = sign4mult(b) for all e that are not even. If b ≥ 0, we obtain
e
√
be = b

Otherwise b < 0 and we obtain
−1 · e

√
|be| = b

If e is even, then
pow−1

1 (pow(b, e), b, e) = sign4mult(b) · e
√
be

because pow(b, e) = be ≥ 0 for all b and all even e. If b ≥ 0, we obtain
e
√
be = b

Otherwise b < 0 and we obtain
−1 · e

√
be = b

because e is even. Altogether, we obtain

pow−1
1 (pow(b, e), b, e) = b

for all possible b and e. Thus the GetPut law holds for all base values b and exponent values e.
Let (tw, e) be a tuple of target and exponent source value in W1 and let b be an arbitrary base source

value. If e is not even, then

pow(pow−1
1 (tw, b, e), e) = pow(sign4mult(tw) · e

√
|tw|, e)

If tw ≥ 0, we obtain
pow(e

√
tw, e) = e

√
tw
e = tw

Otherwise tw < 0 and we obtain

pow(−1 · e

√
|tw|, e) = (− e

√
|tw|)e = tw

If e is even, then tw ≥ 0 by construction of W1 and

pow(pow−1
1 (tw, b, e), e) = pow(sign4mult(b) · e

√
tw, e) = (sign4mult(b) · e

√
tw)e = e

√
tw
e = tw

because |sign4mult(b)| = 1 for all b and xe = 1 for all even e and x such that |x| = 1. Thus the PutGet
law holds for all (tw, e) in W1.

Assume pow−1′
1 inverts pow according to the base and fulfills the PutGet law for a target value tp,

an exponent source value ep such that (tp, ep) in P1, and an arbitrary base source value b. Then

pow(pow−1′
1 (tp, b, ep), ep) = tp

This yields
(pow−1′

1 (tp, b, ep))ep = tp < 0

which is a contradiction to the definition of exponentiation because ep is even by the construction of P1
and it holds that xe ≥ 0 for all even e and all x.

Altogether, the GetPut law holds for all base values b and exponent values e, the PutGet law holds
for all (tw, e) in W1 and cannot hold for any inverse operator pow−1′

1 and (tp, ep) in P1. Therefore, we
conclude that pow−1

1 is a best-possible behaved inverter.
Now, we will show for the exponentiation operator pow that the inverter pow−1

2 for inversion according
to the exponent is best-possible behaved with respect to the partition

W2 := {(t, b) ∈ Num×Num | blog|b|(|t|) ε= t},

P2 := {(t, b) ∈ Num×Num | blog|b|(|t|) 6 ε= t}

Let b be a base source value and e be an exponent source value. Then

pow−1
2 (pow(b, e), b, e) = e

by definition of pow−1
2 because pow(b, e) = be. Thus the GetPut law holds for all base values b and

exponent values e.
Let (tw, bw) be a tuple of target and base source value in W2 and let e be an arbitrary exponent

source value. If (bw)e = tw, then

pow(bw,pow−1
2 (tw, bw, e)) = pow(bw, e) = (bw)e = tw

If (bw)e 6= tw, then
(bw)log|bw|(|tw|) ε= tw

by the definition of W2. This yields

pow(bw, pow−1
2 (tw, bw, e)) = pow(bw, log|bw|(|tw|)) = (bw)log|bw|(|tw|)

ε= tw

Thus the PutGet law holds for all (tw, bw) in W2, except for negligible floating-point inaccuracies.
Assume pow−1′

2 inverts pow according to the exponent and fulfills the PutGet law for a target value
tp, a base source value bp such that (tp, bp) in P2, and an arbitrary exponent source value e. Then

pow(bp,pow−1′
2 (tp, bp, e)) = tp

This yields
(bp)pow−1′

2 (tp,bp,e) = tp 6
ε= (bp)log|bp|(|tp|)

which is a contradiction to the definition of the logarithm operator because xy ε= xlog|x|(|y|) for all x and
y.

Altogether, the GetPut law holds for all base values b and exponent values e, the PutGet law holds
for all (tw, bw) in W2 and cannot hold for any inverse operator pow−1′

2 and (tp, ep) in P2. Therefore, we
conclude that pow−1

2 is a best-possible behaved inverter.

The Sine Inverter is Best-Possible Behaved

We will show that the inverter of the trigonometric sin operator is best-possible behaved with respect
to the partition

W := {t ∈ Double | − 1 ≤ t ≤ 1}, B := {t ∈ Double | |t| > 1}

Let s be a source value. Then
sin−1(sin(s), s) = s

by definition of sin−1 because sin(source) ε= sin(source). Thus the GetPut law holds for all s.
Let w be a target value w in W and let s be an arbitrary source value. If sin(s) ε= w, then

sin(sin−1(w, s)) = sin(s) ε= w

Otherwise
sin(sin−1(w, s)) = sin(asin(w)) = w

by the definition of asin. Thus the PutGet law holds for all w in W , except for negligible floating-point
inaccuracies.

Assume sin−1′ is an inverse operator for sin that fulfills the PutGet law for a target value b in B and
an arbitrary source value s. Then

sin(sin−1′(b, s)) = b

This is a contradiction to the definition of the sine operator because |sin(x)| ≤ 1 for all x.
Altogether, the GetPut law holds for all s, the PutGet law holds for all w in W and cannot hold for

any inverse operator sin−1′ and b in B. Therefore, we conclude that sin−1 is a best-possible behaved
inverter.

Category LLOC

Identity Operator 2238

Arithmetic Operators 119
Parsing or Printing 441
Other String Operators 356

Sequence Operators 1478
List Operators 1062

Table 3: Categories for operators of attribute mapping expressions of the ATL Transformation Zoo

7 Evaluation and Limitations
In this section we briefly discuss the results of our evaluation of applicability, and summarize the
limitations of our approach and the presented inverters.

7.1 ATL Transformations Zoo

In addition to unit tests for all inverters and target use cases we evaluated how often attribute
mapping expressions with operators that can be inverted with our inverters appear in available model
transformations. We categorized the operators used in all 103 transformations of the so-called ATL
Transformations Zoo2. The sum of logical lines of code (LLOC) for each operator category is shown
in Table 3. The identity operator is used in 39% of all lines. The three operator categories arithmetic,
parsing or printing, and other string operators, for which we defined non-trivial inverters, make up
additional 16%. Sequence and list operators that cannot yet be inverted with our approach are used in
44% of all lines. If we exclude the trivial identity operator, we can conclude that we defined inverters
for 26% of the LLOC of all non-trivial attribute expressions.

7.2 Limitations

Currently our approach is bound to one limitation and the presented inverters to two restrictions. As
we already stated in subsection 4.2, our approach can only be used for expressions in which every source
attribute appears at most once. Furthermore, we currently only defined inverters for operators that
can be inverted by updating a single source attribute. Finally, all supported operators only operate on
single-valued attributes not on collections or sequences.

In our opinion, the limitation to linear or affine expressions should not be a big issue for realistic
applications. The restriction to operators that can be inverted with a single update limits the applicability
of our approach but it is only temporary: the conceptual framework and implementation prototype
can easily be adapted in the future to support inverters that update several source attributes. Even
defining inverters for operators on collections or sequences should not be conceptually more difficult: If
the source value collections before an update of the target collection are given, then the inversion of a
collection operator is often similar to the inversion of single-element operators. The technical realization
and static analysis e.g. of higher-order functions is, however, challenging.

8 Conclusions and Future Work
In this technical report, we have presented formal proofs for an approach for the automated inversion of
attribute mappings in forward specifications of bidirectional transformations [KR16]. It is based on an
expression language with a Java-aligned syntax and supports the inversion of mappings that assign the
result of a linear compound expression to an attribute of a metaclass. We have explained the overall
inversion process based on operator-specific inverters that can be independently composed and we have

introduced a notation for inverters that always fulfill GetPut and that fulfill PutGet for all target values
where this can be achieved: best-possible behaved inverters. Next, we have presented an initial library
of 30 best-possible behaved inverters for common logical, arithmetic, and string operators. Finally, we
have discussed an evaluation of the applicability of our approach which may indicate that many of the
non-trivial attribute mapping expressions that appear in available transformations could be inverted
with our approach.

In future work, we will provide inverters for further operators. Operators that involve collections
of source attribute values and operators that can only be inverted if different source attributes are
updated, e.g. the boolean logical and operator, are our main interest.

Acknowledgments
This work was partly supported by the German Federal Ministry of Education and Research within
the framework of the project “Security for the Internet of Everything” in the Competence Center for
Applied Security Technology (KASTEL).

References
[AVS12] Anthony Anjorin, Gergely Varró, and Andy Schürr. “Complex Attribute Manipulation

in TGGs with Constraint-Based Programming Techniques.” In: Proceedings of the First
International Workshop on Bidirectional Transformations (BX 2012). Vol. 49. Electronic
Communications of the EASST. 2012.

[Boh+08] Aaron Bohannon et al. “Boomerang: Resourceful Lenses for String Data.” In: Proceedings
of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’08. San Francisco, California, USA: ACM, 2008, pp. 407–419.

[Dij79] Edsger W. Dijkstra. “Program inversion.” In: Program Construction. Ed. by Friedrich L.
Bauer et al. Vol. 69. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1979,
pp. 54–57.

[Eff+12] Sven Efftinge et al. “Xbase: Implementing Domain-specific Languages for Java.” In: Pro-
ceedings of the 11th International Conference on Generative Programming and Component
Engineering. GPCE ’12. Dresden, Germany: ACM, 2012, pp. 112–121.

[Fos+07] John Nathan Foster et al. “Combinators for Bidirectional Tree Transformations: A Linguistic
Approach to the View-update Problem.” In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 29.3 (2007).

[GW09] Holger Giese and Robert Wagner. “From model transformation to incremental bidirectional
model synchronization.” In: Software and Systems Modeling 8 (1 2009), pp. 21–43.

[Hil+13] Stephan Hildebrandt et al. “A survey of triple graph grammar tools.” In: Electronic Com-
munications of the EASST 57 (2013).

[KR16] Max E. Kramer and Kirill Rakhman. “Automated Inversion of Attribute Mappings in
Bidirectional Model Transformations.” In: Proceedings of the 5th International Workshop
on Bidirectional Transformations (Bx 2016). Ed. by Anthony Anjorin and Jeremy Gibbons.
Vol. 1571. CEUR Workshop Proceedings. Eindhoven, The Netherlands: CEUR-WS.org,
2016, pp. 61–76.

[Mat+07] Kazutaka Matsuda et al. “Bidirectionalization Transformation Based on Automatic Deriva-
tion of View Complement Functions.” In: Proceedings of the 12th ACM SIGPLAN Interna-
tional Conference on Functional Programming. ICFP ’07. Freiburg, Germany: ACM, 2007,
pp. 47–58.

http://dx.doi.org/10.1007/BFb0014657
http://doi.acm.org/10.1145/1232420.1232424
http://doi.acm.org/10.1145/1232420.1232424
http://books.google.com/books?vid=ISSN1619-1366
http://books.google.com/books?vid=ISSN1619-1366

[Rak15] Kirill Rakhman. “Automated Inversion of Attribute Mapping Expressions for Multi-Model
Consistency.” MA thesis. Karlsruhe Institute of Technology (KIT), Germany, 2015.

[Ste08] Perdita Stevens. “A Landscape of Bidirectional Model Transformations.” In: Generative and
Transformational Techniques in Software Engineering II. Ed. by Ralf Lämmel, Joost Visser,
and João Saraiva. Vol. 5235. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2008, pp. 408–424.

[Wad88] Philip Wadler. “Deforestation: Transforming Programs to Eliminate Trees.” In: Theoretical
Computer Science 73.2 (1988), pp. 231–248.

[Xio+07] Yingfei Xiong et al. “Towards automatic model synchronization from model transformations.”
In: Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering. ASE ’07. Atlanta, Georgia, USA: ACM, 2007, pp. 164–173.

[YG07] Tetsuo Yokoyama and Robert Glück. “A Reversible Programming Language and Its Invert-
ible Self-interpreter.” In: Proceedings of the 2007 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation. PEPM ’07. Nice, France: ACM,
2007, pp. 144–153.

http://dx.doi.org/10.1007/978-3-540-88643-3_10
http://dx.doi.org/10.1016/0304-3975(90)90147-A

	2016,3_Titelbl
	inversion_bx_tech_rep_final
	Introduction and Motivation
	Background and Foundations
	Essential Meta Object Facility (EMOF)
	Round-Trip Laws for Bidirectional Transformations

	Related Work
	Mapping Inversion Approach
	Overview
	Mapping Expressions
	Inversion Procedure
	Inverter Properties

	Inverters
	Classification, Notation, and Overview
	Primitive Casts
	Boolean Logical Operators
	Not
	Xor

	Basic Arithmetic Operators
	Unary Minus
	Addition
	Multiplication
	Division

	Advanced Arithmetic Operators
	Absolute Value
	Round to Nearest
	Round toward Infinity
	Modulus
	Exponentiation
	Trigonometric Operators
	Inverse Trigonometric Operators

	String Operators
	Parsing, Printing and Length
	Concatenation and Substrings
	Letter Case

	Formal Proofs
	Best-Possible Behavedness with Respect to a Partition
	Best-Possible Behavedness is Compositional
	Proofs for Individual Inverters
	The Absolute Value Inverter is Best-Possible Behaved
	The Exponentiation Inverters are Best-Possible Behaved
	The Sine Inverter is Best-Possible Behaved

	Evaluation and Limitations
	ATL Transformations Zoo
	Limitations

	Conclusions and Future Work

