
E N G I N E E R I N G A L G O R I T H M S F O R
R O U T E P L A N N I N G I N M U LT I M O D A L

T R A N S P O RTAT I O N N E T W O R K S

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Julian Matthias Dibbelt

aus München

Tag der mündlichen Prüfung: 3. Februar 2016

Erste Gutachterin: Prof. Dr. Dorothea Wagner

Zweiter Gutachter: Prof. Dr. Christos Zaroliagis

Julian Dibbelt: Engineering Algorithms for Route Planning in Multimodal
Transportation Networks, © February, 2016

For Sherrie, Marlene, and Frederick.

A C K N O W L E D G M E N T S

Foremost, I wish to thank my advisor, Dorothea Wagner, for the great
opportunity to join her group, the many advice given throughout the
years, and the very productive, friendly and cooperative environment
established at her chair. I am deeply grateful to Christos Zaroliagis for
co-reviewing this thesis and for his great leadership during our joint
projects. I thank PTV for the opportunity to work with them for the
first year after my graduate studies, and the European Commission for
partially supporting my research at KIT through grants 288094 (project
eCOMPASS) and 609026 (project MOVESMART). I thank the members
of the respective consortia for the successful projects and the work put
into securing the proposals in the first place. I am incredibly grateful
to Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato
F. Werneck for inviting me to a very productive summer internship at
Microsoft Research.

I especially want to thank my co-authors Simeon D. Andreev, Moritz
Baum, Valentin Buchhold, Daniel Delling, Andreas Gemsa, Martin
Nöllenburg, Thomas Pajor, Lorenz Hübschle-Schneider, Ben Strasser,
Dorothea Wagner, Renato F. Werneck, and Tobias Zündorf for all the
fruitful collaborations that set the foundation of this thesis. I also thank
Takuya Akiba, Dennis Luxen, G. Veit Batz, Spyros Kontogiannis, Felix
König, Florian Krietsch, Ignaz Rutter, Dennis Schieferdecker, Frank
Schulz, Christian Sommer, Sabine Storandt, and Tim Zeitz for very
valuable and insightful discussions we have had. I thank Moritz Baum
and Fabian Fuchs for proof reading and general advice regarding the
write-up of this thesis.

I am very grateful to all my co-workers of the different research
groups at the Institute of Theoretical Informatics; this was a very
cooperative and fun place to do research at. I am deeply grateful to
Moritz for being a supreme office mate that I could always talk to and
depend on. No less am I thankful for the administrative and IT support
by Lilian Beckert, Lori Blonn, Bernd Giesinger, Hugo Hernandez, Ralf
Kölmel, Simone Meinhart, and Elke Sauer.

Last but not least, I thank my loving wife, my family, and my
friends for the strong support in my endeavors. I would not stand
here without you.

v

A B S T R A C T

Finding the fastest route through traffic, a well-rated restaurant en-
route while traveling, the latest train to catch in order to arrive on-time,
or a decently priced apartment, with a well-rated school in safe walk-
ing distance from home, in biking distance from work, and good public
transit access nearby—all these problems have at their core the com-
putation of shortest path queries on different transportation networks.
The wide-scale and frequent adoption of web-based map services
for route planning and driving directions, GPS navigation, and other
location-based applications on large spatial network databases that
we see today, has been enabled by and in turn motivated numerous
research into accelerating such shortest path queries.

In particular, the development of practical algorithms for route plan-
ning in transportation networks has been a showpiece application of
successful algorithm engineering during the past decade, where experi-
mental evaluation on real-world networks drives the design, analysis,
and implementation of algorithms in a continuous feedback loop.
This has produced many speedup techniques, varying in preprocessing
time, space, and query performance, but also simplicity and ease of
implementation. Most approaches follow a similar paradigm: During
preprocessing, auxiliary data is computed that is subsequently used
to accelerate queries by pruning the search space that needs to be
considered. Speedup techniques are so mature today that the fastest
can answer a single query within only a few memory accesses, while
retaining provable correctness of the results.

Due to these successes, focus has shifted to increasingly involved
and more realistic scenarios, taking into account, e. g., traffic, user
preferences, public transit schedules, and the options offered by the
many modalities of modern transportation networks. The challenges
here are twofold: 1) Finding the right problem formulation and mod-
eling for the considered scenarios, e. g., what metric or set of metrics
to optimize for; 2) Identifying and exploiting the structural properties
of the considered problems that enable fast queries. Both themes are
explored in this thesis with regards to road networks, public transit,
and multimodal journey planning.

road networks . Most web-based systems or stand-alone navi-
gation devices do not offer much room for user preferences beyond
specifying start and end address. But other than traveling quickly,
drivers might also like, e. g., to avoid complicated turns, narrow resi-
dential streets, highways or toll bridges. Not only might different users
have different cost functions to optimize—even the same user might

vii

prefer a fast route in the morning and a safe one at night. Besides
user interface and experience considerations, the main reason that
fine-grained preferences are often not supported, is the prohibitively
high cost of preprocessing of the implemented speedup techniques.

To enable custom user preferences, it has therefore recently been
proposed to split the expensive preprocessing: Into a first phase ex-
ploiting solely the topology of the graph, and a second, lightweight
phase adapting the preprocessed auxiliary data to a specific cost func-
tion. On this idea, we adapt Contraction Hierarchies, a well-established
preprocessing technique to offer fast customization, and a new, faster
query algorithm that avoids the overhead of a priority queue.

While this approach handles dynamically changing costs with ease—
like most of the work that focuses on time-independent route plan-
ning, it still assumes that cost per road segment are constant per
query. In practice, the current traffic situation significantly influences
the travel time on large parts of the road network, and it changes
over the day. One can distinguish between traffic congestion that
can be predicted using historical traffic data, and congestion due to
unpredictable events, e. g., accidents. We study a dynamic and time-
dependent route planning problem, which takes both live traffic and
prediction (i. e., short-term and based on historical data) into account.
To this end, we propose a practical algorithm that, while robust to user
preferences, is able to integrate global changes of the time-dependent
metric (e. g., due to traffic updates or user restrictions) faster than
previous approaches.

Other scenarios, such as computing routes for pedestrians, have of-
ten been neglected or simply dismissed as a trivial matter of applying
a different cost function. Instead, we observe that pedestrian routing
has its specific set of challenges not met by state-of-the-art route plan-
ners. For instance, the lack of detailed sidewalk data and the inability
to traverse plazas and parks in a natural way often leads to unap-
pealing and suboptimal routes. Therefore, we propose to augment
the network by generating sidewalks based on the street geometry
and enabling routing over plazas and squares. Using this and further
information, our query algorithm seamlessly handles node-to-node
queries and queries whose origin or destination is an arbitrary location
on a plaza or inside a park. Our experiments show that we are able
to compute appealing pedestrian routes at negligible overhead over
standard routing algorithms.

public transit. Public transit networks differ from road net-
works, as each vehicle follows a scheduled timetable and visits a
particular sequence of stops. Typical public transit query problems
consider either earliest time of arrival or even multiple criteria such
as time and number of transfers, and can be formulated either for a
given departure time or for a whole time range (called profile query).

viii

Accordingly, while on road networks there is often a straightforward
characterization as a shortest path problem, research into baseline
algorithms (i. e., before preprocessing) is still ongoing for public transit.
We introduce a novel algorithmic framework to compute journeys
directly on the timetable (as opposed to a graph representation thereof).
It organizes data as a single array of connections (the most basic
building block of a timetable), which it scans once per query. Despite
its simplicity, our algorithm is very versatile and solves earliest arrival
as well as multicriteria profile queries.

Moreover, developing efficient preprocessing-based speedup tech-
niques for public transit has been considered more challenging than
for road networks: Current approaches either require massive prepro-
cessing effort or provide limited speedups. Leveraging recent advances
in Hub Labeling (the fastest algorithm for road networks) and domain-
specific properties, we provide simple and efficient algorithms for
earliest arrival, profile, and multicriteria queries that are orders of
magnitude faster than the state of the art.

multimodal journey planning . Finally, we study the problem
of finding multimodal journeys in transportation networks (including
unrestricted walking, driving, cycling, and schedule-based public
transportation), which asks for a best integrated journey between two
locations. Thereby, it is crucial to respect a user’s modal preferences:
Not every mode of transport might be feasible to him at any point
along the journey. In general, the user has restrictions on the sequence
of transport modes. For example, some users might be willing to take
a taxi between two train rides if it makes the journey quicker. Others
prefer to use public transit at a stretch. We provide a multimodal
route-planning system that handles such constraints as a user input for
each query (as opposed to already during preprocessing).

Another natural solution to the multimodal problem is to use mul-
ticriteria search, in an attempt to capture the multitude of available
traveling options that the user might not yet be aware of. However, full
multicriteria search tends to be slow, producing too many solutions of
often surprisingly little value. Regarding the latter, we propose to score
the solutions in a post-processing step using techniques from fuzzy
logic, quickly identifying the most significant journeys. We also propose
several (still multicriteria) heuristics to find similar journeys, but much
faster. Our experiments show that this approach enables the computa-
tion of high-quality multimodal journeys on large metropolitan areas,
and is fast enough for practical applications.

ix

C O N T E N T S

1 introduction 1

1.1 Problems Considered 2

1.2 Main Contributions 3

1.2.1 Road Networks 3

1.2.2 Public Transit Networks 5

1.2.3 Multimodal Journey Planning 6

1.3 Thesis Outline 7

2 related work 9

2.1 Preprocessing Techniques 9

2.1.1 Theoretical Results 10

2.1.2 Dynamic Scenarios and Customization 11

2.1.3 Time-dependent Scenarios 11

2.2 Multicriteria Optimization 13

2.3 Sidewalks and Traversal of Open Areas 13

2.4 Public Transit Journey Planning 14

2.5 Multimodal Journey Planning 15

3 route planning in road networks 17

3.1 Customizable Contraction Hierarchies 18

3.1.1 Preliminaries 18

3.1.2 Preprocessing 22

3.1.3 Customization 28

3.1.4 Queries 37

3.1.5 Experiments 40

3.2 Time-Dependent Customizable Route Planning 70

3.2.1 Preliminaries 70

3.2.2 Our Approach 72

3.2.3 Experiments 77

3.3 Pedestrian Route Planning 87

3.3.1 Preliminaries 88

3.3.2 Augmented Graph Model for Pedestrian Rout-
ing 89

3.3.3 Computing Pedestrian Routes 93

3.3.4 Experiments 95

4 public transit journey planning 103

4.1 Connection Scan Algorithm 104

4.1.1 Preliminaries 104

4.1.2 Earliest Arrival Queries 105

4.1.3 Profile and Multicriteria Queries 106

4.1.4 Experiments 108

xi

xii contents

4.2 Public Transit Labeling 114

4.2.1 Preliminaries 114

4.2.2 Basic Earliest Arrival and Profile Queries 116

4.2.3 Improvements 118

4.2.4 Practical Extensions 120

4.2.5 Experiments 122

5 multimodal journey planning 131

5.1 User-Constraints on Multimodal Transfers 131

5.1.1 Preliminaries 132

5.1.2 Contraction Hierarchies for Multimodal Net-
works 136

5.1.3 UCCH: Contraction for User-Constrained Route
Planning 137

5.1.4 Improvements 140

5.1.5 Experiments 142

5.2 Multicriteria Multimodal Journey Planning 153

5.2.1 Preliminaries 153

5.2.2 Exact Algorithms 157

5.2.3 Heuristics 161

5.2.4 Experiments 163

6 final remarks 173

6.1 Future Work 173

6.1.1 User Preferences 173

6.1.2 Customizable Contraction Hierarchies 174

6.1.3 Traffic Patterns 174

6.1.4 Public Transit 175

6.1.5 Multimodal 175

bibliography 177

a curriculum vitæ 203

b list of publications 205

c deutsche zusammenfassung 209

1
I N T R O D U C T I O N

Services for route planning have become a commodity, used daily by
millions of users. The problem of quickly computing optimal routes in
transportation networks presents several algorithmic challenges, and
has been an active area of research in recent years.

Usually, the considered network is modeled as a weighted, directed
graph. While Dijkstra’s algorithm [Dij59] can be used to compute
an optimal route between two vertices of the graph in almost linear
time, this is still too slow for practical applications on large real-world
transportation networks. They consist of several million vertices, and
the user expect almost instant results.

For practical performance on large networks, numerous speedup
techniques (or distance oracles) have proven useful, which augment the
network with auxiliary data in a possibly expensive, offline preprocess-
ing phase. This auxiliary data in turn accelerates route computation
during subsequent queries. As a result, speedups of several orders
of magnitude over Dijkstra’s algorithm have been achieved. For an
overview see the recent surveys by [BDG+15; Som14] and Chapter 2.

Thereby, it is critical to design algorithms that exploit modern pro-
cessor architectures, which exhibit deep memory hierarchies (mul-
tiple levels of increasingly faster caches) and various forms of par-
allelism (instruction- and core-based). Since typical route planning
problems are computationally not very expensive (mostly addition and
comparison of costs on candidate paths), memory access becomes the
bottleneck, requiring data structures and algorithms with good cache
locality for best performance. For queries, it can be argued that paral-
lelism should be spent to serve more users simultaneously. However,
to derive fast preprocessing approaches exploitation of parallelism is
usually mandatory.

Considering this, traditional algorithm design and analysis (which
relies on rather abstract machine models) is best accompanied by
careful implementation and experimental evaluation, where observed
performance bottlenecks direct the redesign of the algorithmic ap-
proach. This framework has become known as Algorithm Engineering,
see the expositions by [MS10; San09; SW11] for details. At its best,
worst-case asymptotic complexity bounds are complemented by mea-
sures of practical performance on real-world benchmark instances
obtained on real-world machines. It also has the great benefit that the
derived algorithms are guaranteed to be practically implementable.

Sometimes, especially if the characteristics of realistic inputs are
hard to capture (e. g., what properties define the graph families of

1

2 introduction

“road networks” and “public transit networks”, respectively?), mean-
ingful worst-case bounds are hard to come by (in the sense that easily
obtained worst-case examples do not happen on typical inputs). In
such cases, the experimental aspects of Algorithm Engineering still
allow to derive practical solutions. For example, many of the first
practical algorithms for route planning in road networks were derived
purely experimentally. Only later, theoretical models for, e. g., road
networks under travel time metric [ADF+13; AFGW10] were proposed,
going full cycle from practical implementation to theoretical analysis
and back to practical solutions [DGW11b]. As a result, the fastest tech-
niques on road networks today can answer a single query in less than
microseconds [ADGW11], albeit for a basic route planning scenario.

More realistic scenarios encompass consideration of the current
traffic as well as predictable traffic patterns (e. g., rush hour), use of
public transit, and integrated multimodal journey planning, which
also entails appealing pedestrian routes. At the same time, algorithms
should be flexible enough so that user preferences and choice can be
taken into account. This thesis aims to broaden the state-of-the-art in
route planning on these aspects.

1.1 problems considered

In this thesis, we examine solutions for the following problem scenar-
ios in different transportation networks. Formal definitions are given
in later chapters, once we have settled the necessary notation.

road networks . Given a graph representation G = (V ,A) of the
segments and intersections of the road network, we consider the

• Point-to-point shortest path problem: Given a source vertex s and
target vertex t, compute the shortest path between s and t with
respect to scalar (single-valued) arc costs c : A→ R+.

• Time-dependent point-to-point earliest arrival problem: Given a source
vertex s and target vertex t, a departure time τ, compute the
earliest arrival at t when leaving s no earlier than τ, taking into
account functional arc costs c : A→ (R+ → R+) that map, per
arc, time-of-day to current travel time (to represent rush hours).

public transit. Given the vehicles, stops, and timetable of a
public transit network, there are many natural problem variants:

• An earliest arrival (EA) problem seeks a journey that arrives at
a target stop t as early as possible, given a source stop s and a
departure time τ (e. g., “now”).

• A multicriteria (MC) query also considers the number of trans-
fers when traveling from s to t. It computes the Pareto set of

1.2 main contributions 3

non-dominated journeys under the criteria earliest arrival and
number of transfer, respecting a departure time τ.

• A profile query reports all quickest journeys between two stops
within a time range. It computes the Pareto set of non-dominated
journeys under the criteria latest departure time and earliest
arrival time.

• A multicriteria profile query reports all quickest journeys between
two stops within a time range. It computes the Pareto set of
non-dominated journeys under the criteria latest departure time,
earliest arrival time, and number of transfers.

multimodal networks . Finally, we consider integrated multi-
modal transportation networks of walking, biking, private car, taxi,
and schedule-based public transit and flight. We assume that the mul-
timodal network is augmented sufficiently with transfers between the
modes of transportation. We examine two problem variants:

• Label constrained shortest path problem (LCSPP) [BJM00]. Given a
combined graph representation of the different input networks,
with each arc labeled by its mode of transport: Compute a short-
est path P, where the word w(P) formed by concatenating the
arc labels along P is an element of a language L, a query input.
In particular, we consider a point-to-point earliest arrival variant
(cf. above) of this problem, given an arbitrary source and target
location, and a departure time τ.

• Location-to-location multimodal multicriteria shortest path problem:
Given an arbitrary source and target location in a multimodal
network, and a departure time τ, compute a concise but diverse
set of representative multimodal journeys between source and
target location that optimize travel time, convenience and costs,
leaving the source not earlier than τ.

1.2 main contributions

This thesis broadens the state-of-the-art in route planning in 1) road
networks, in 2) public transit networks, and for 3) multimodal journey
planning. The following discusses the chief contributions per topic.

1.2.1 Road Networks

Here, we consider fast metric customization, traffic, and pedestrian
route planning.

customizable contraction hierarchies . Exploiting small
separators in road networks, we show that Customizable Contraction

4 introduction

Hierarchies (CCH) are feasible and practical. To this end, we employ
metric-independent nested dissection (ND) orders [Geo73] for precompu-
tation. This approach was proposed by [BCRW13], and a preliminary
case study can be found in [Zei13].

Compared to the main competitor, CRP [DGPW15], we achieve
a similar preprocessing–query trade-off, albeit with slightly better
query performance at slightly slower customization speed. Interest-
ingly, for metrics less well-behaved such as travel distance, we achieve
query times well below the original metric-dependent Contraction
Hierarchy (CH) described by [GSSV12].

As for CRP, our approach offers fast customization of any scalar
input metric with strict worst-case performance guarantees on both
customization and queries. We also introduce perfect witness search,
which computes a CCH with provably minimum number of arcs, given
a fixed metric-independent vertex order. Costing only a constant factor
in customization time, this yields even better query performance.

time-dependent customizable route planning . It is often
proposed to use dynamic but scalar route planning (such as provided
by CRP or CCH) to handle live traffic information—by dynamically
updating arc weights of congested streets. However, this necessarily
yields inaccurate results for medium and long-distance paths: Such
methods will (wrongly) consider current traffic even at far away des-
tinations—traffic that might well have dispersed once reaching the
destination. For most-realistic results, a combination of dynamic and
time-dependent (non-scalar, functional) route planning is necessary
that accounts for current traffic, short-term predictions, and long-term
historic knowledge about recurring traffic patterns.

In this thesis, we carefully extend a customizable route planning
approach to handle time-dependent functions. As such, we are the first
to evaluate partition-based route planning on a challenging non-scalar
metric. To this end, we integrate profile search into the customization
phase and compute time-dependent overlays. We observe that, unlike
EVCRP [BDPW13] and TCH [BGSV13], a naïve implementation fails:
Shortcuts on higher-level overlays become too expensive to be kept in
memory (and too expensive to evaluate during queries). In order to
reduce functional complexity, we propose to approximate overlay arcs
after each level already (in contrast to ATCH [BGSV13], which uses
a post-processing step). In fact, even slight approximation suffices to
make our approach practical, in accordance to theory [FHS14]. The
resulting algorithmic framework enables interactive queries with low
average and maximum error in a very realistic scenario consisting of
live traffic, short-term traffic predictions, and historic traffic patterns,
while also supporting and being robust to user preferences such as
lower maximum driving speeds or the avoidance of left-turns.

1.2 main contributions 5

pedestrian route planning . The customizable route planning
approaches discussed above, such as CRP and CCH, easily allow to
compute routes for pedestrians by applying a different cost function.
We argue that this naïve approach may lead to unnatural and subop-
timal solutions. In fact, pedestrians utilize the street network quite
differently from cars, which is often not captured by traditional ap-
proaches. For example to save distance, pedestrians are free to deviate
from the streets, using the walkable area of public open spaces such
as plazas and parks. On the other hand, crossing large avenues can
be expensive (due to traffic), and it may be faster and safer to walk a
small detour in order to use a nearby bridge or underpass.

In this part, we address the unique challenges that come with com-
puting pedestrian routes. In order to obtain as realistic routes as possi-
ble, we propose to first augment the underlying street network model,
and then to apply a tailored routing algorithm on top of it. We discuss
geometric approaches for automatically adding sidewalks, calculating
realistic crossing penalties for major roads, and preprocessing plazas
and parks in order to traverse them in a natural way. Our integrated
routing algorithm seamlessly handles queries whose origin or destina-
tion is an arbitrary geographic location inside a plaza or park, or at a
street. By experimental analysis, we demonstrate the practicability of
our approach. In case studies, we observe that the pedestrian routes
computed by our approach are much more appealing than those by
state-of-the-art route planners.

1.2.2 Public Transit Networks

Unlike roads, railroad tracks cannot be accessed freely. Instead, jour-
neys in public transit networks have to adhere to a fixed set of stops
for boarding, served by a fixed set of vehicles that follow a scheduled
timetable. Therefore, approaches for road networks do not directly
carry over.

connection scan algorithm . We present a new basic ap-
proach to journey planning in public transit networks. Like RAP-
TOR [DPW14], it is not graph-based. Unlike RAPTOR, it is not cen-
tered around routes but elementary connections, which are the most
basic building block of a timetable. CSA organizes them as one single
array, which it then scans once (linearly) to compute earliest arrival
journeys to all stops of the network. The algorithm turns out to be
intriguingly simple with excellent spatial data locality. We also extend
CSA to efficiently handle multicriteria profile queries: For a full time
period, it computes the Pareto set of journeys (optimizing departure
and arrival time and number of transfers), again with a single scan of
the connection array. Our experiments on, amongst others, the dense
metropolitan network of London validate our approach. With CSA,

6 introduction

we compute earliest arrival queries and multicriteria profile queries
faster than previous algorithms.

public transit labeling . Despite all the progress in recent
years [BCE+10; BS14; SW14], queries on road networks are still several
orders of magnitude faster than on public transit [BDG+15]. To reduce
this gap, we adapt 2-hop labeling [ADGW12; CHKZ03] to public tran-
sit networks, improving query performance by orders of magnitude
over previous methods, while keeping preprocessing time practical.
Starting from the time-expanded graph model [PSWZ08], we extend
the labeling scheme by carefully exploiting properties of public tran-
sit networks. Besides earliest arrival and profile queries, we address
multicriteria and location-to-location queries. We validate our Public
Transit Labeling (PTL) algorithm by careful experimental evaluation
on large metropolitan and national transit networks, achieving queries
within microseconds.

1.2.3 Multimodal Journey Planning

Here, we investigate integrated algorithms that compute journeys in a
combined network of walking, biking, private car, taxi, public transit,
or flight. We consider two aspects: 1) the avoidance of unwanted
transfers between modes of transportation (e. g., usage of a private car
between train rides), and 2) multicriteria search to provide the user
with meaningful multimodal alternatives.

user-constraints on multimodal transfers . We present
User-Constrained Contraction Hierarchies (UCCH), the first multimodal
speedup technique that handles arbitrary mode-sequence constraints
as user input to the query—a feature unavailable from previous tech-
niques. Unlike its predecessor, Access-Node Routing [DPW09a], it also
answers local queries correctly and requires significantly less prepro-
cessing effort. Our experimental study shows that, unlike previous
techniques, we can handle an intercontinental instance composed of
cars, railways and flights, achieving query times that are fast enough
for interactive scenarios.

multicriteria multimodal journey planning . To capture
the many options of metropolitan multimodal transportation net-
works, we employ multicriteria optimization. We argue that most
users consider three criteria: travel time, convenience, and costs. As
this produces a large Pareto set, we propose using fuzzy logic [FA04;
Zad88] to identify, in a principled way, a modest-sized subset of
representative journeys. This postprocessing step is very quick and
can incorporate personal preferences. We can use recent algorithmic
developments [DPW14; DPW15; GSSV12] to answer exact queries

1.3 thesis outline 7

optimizing time and convenience in less than two seconds within a
large metropolitan area, for the simpler scenario of walking, cycling,
and public transit. Unfortunately, this is not enough for interactive
applications, and becomes much slower when more criteria, such
as costs, are incorporated. We therefore also propose heuristics (still
multicriteria) that are significantly faster, and closely match the top
journeys in the Pareto set. A thorough experimental evaluation of all
algorithms, in terms of both solution quality and performance, shows
that our approach enables interactive applications. Moreover, since it
does not rely on heavy preprocessing, it can easily be used in fully
dynamic scenarios.

1.3 thesis outline

This thesis is organized as follows:

Chapter 2 gives an overview of the related work.
Chapter 3 describes the first key contribution of this thesis. It con-

siders route planning on road networks. In particular, Section 3.1 dis-
cusses customizable route planning, Section 3.2 extends customization
to live and historic traffic data, and Section 3.3 expands on specifics of
pedestrian route planning.

Chapter 4 contains the second main contribution of this thesis on
the topic of journey planning in public transit networks. In particular,
Section 4.1 introduces a new baseline algorithm, where as Section 4.2
discusses a preprocessing approach that enables much faster queries
than before.

Chapter 5 describes the third key contribution of this thesis. It
considers journey planning in multimodal networks. In particular,
Section 5.1 examines fast computation of label-constrained shortest
paths (with constraints as a query input). Section 5.2 discusses algo-
rithms to obtain significant travel alternatives in metropolitan multi-
modal networks.

Chapter 6 concludes this thesis with an outlook on future work.

References

Contents of this thesis have appeared previously in the following
publications. In particular, Section 3.1 is based on joint work with
Ben Strasser and Dorothea Wagner [DSW14; DSW16]. Section 3.2 is
based on joint work with Moritz Baum, Thomas Pajor, and Dorothea
Wagner [BDPW15]. Section 3.3 is based on joint work with Simeon
D. Andreev, Martin Nöllenburg, Thomas Pajor, and Dorothea Wag-
ner [ADN+15]. Section 4.1 is based on joint work with Thomas Pajor,
Ben Strasser, and Dorothea Wagner [DPSW13]. Section 4.2 is based
on joint work with Daniel Delling, Thomas Pajor, and Renato F. Wer-

8 introduction

neck [DDPW15]. Section 5.1 is based on joint work with Thomas Pajor
and Dorothea Wagner [DPW12b; DPW15]. Section 5.2 is based on
joint work with Daniel Delling, Thomas Pajor, Dorothea Wagner, and
Renato F. Werneck [DDP+12; DDP+13]. Some figures are also taken
from the respective conference talks of these publications.

2
R E L AT E D W O R K

Given a graph representation of the transport network, the classical
solution to shortest path problems is Dijkstra’s algorithm [Dij59]. In
case of point-to-point queries, slightly better performance is achieved
by employing bidirectional search from both source and target at
the same time [Dan62; Dre69; LR89; Nic66; Poh71]. One may employ
A* [HNR68; Poh71], using easily available bounds (e. g., Euclidean
distance) to guide the search to the target. In road networks, however,
such simple bounds do not pay off [GH05].

2.1 preprocessing techniques

Many speedup techniques have been proposed for further acceleration.
Most of these divide the work into two phases: In a preprocessing phase
the graph is augmented with auxiliary data that is then exploited
during the query phase for faster shortest path or distance retrieval. A
detailed overview of techniques is given in [BDG+15; Som14].

Examples of such techniques are Geometric Containers [WWZ05], Arc-
Flags [DGNW13; HKMS09; Lau04], Landmark-based A* (ALT) [EP13;
GH05], Reach [GKW07; GKW09; Gut04; MCB14], Contraction Hier-
archies [GSSD08; GSSV12; WXD+12], Transit Node Routing [ALS13;
BFSS07], Hub-based Labeling [ADF+12; ADGW11; ADGW12; AIY13;
CHKZ03; DGPW14; DGSW14; GPPR04], and several separator-based
techniques [DGPW15; DHM+09; HSW08; JP02; SWW00; SWZ02]. Vari-
ous combinations of these techniques have also been studied [BD09;
BDS+10; EPV15; HSWW06].

A common concept among these techniques are distance-preserving
shortcuts: additional arcs added to the graph that allow query algo-
rithms to bypass large regions of the graph efficiently, while preserving
correctness of the results. For instance, Contraction Hierarchies (CH),
at its core, consists of a systematic way of iteratively contracting ver-
tices along a given vertex order, each time adding shortcuts between
yet uncontracted neighbors.

Nearly all techniques are metric-dependent in the sense that the pre-
processing exploits shortest path structure; If the graph metric (i. e.,
the path optimization objective) changes, preprocessing has to be
updated or repeated. A notable exception is Customizable Route Plan-
ning (CRP) [DGPW11; DGPW15], discussed further below.

9

10 related work

2.1.1 Theoretical Results

Although many of the above preprocessing approaches work well in
practice—as has been established by extensive experimental evaluation
on real-world benchmark instances—optimal preprocessing is often
provably NP-hard in general: optimal landmark selection for ALT,
partitioning for Arc-Flags, separator selection, variants of the optimal
shortcut selection problem, or computation of an optimal (in terms
of search space size) CH vertex ordering have all been shown to be
hard [BBRW13; BCK+10; BDD+12; Mil12].

Hence, several studies [ADF+13; BCRW13; EG08] have discussed
properties of road networks to explain the observed efficiency in
practice. However, there is still no precise characterization of the
family of road graphs.

Starting on the observation that few vertices cover most long shortest
paths [BFSS07] (at least for travel time metric), the concept of Highway
Dimension (HD)) [ADF+11; ADF+13; AFGW10] has been developed as
a theoretical model of road networks. It allows to show polynomial
preprocessing and small query time bounds for several speedup tech-
niques. However, to the best of our knowledge, road networks have
only been conjectured to have low HD, this has never (experimen-
tally) been demonstrated. Furthermore, a synthetic network generation
study [BKMW10] has found that the HD model yields graphs of too
high density and vertex degree. Accordingly, generated graphs do not
look like road networks. See [Mei11] for more details.

Instead, it is experimentally well-established that road networks
have small, balanced separators [DGRW11; EG08; HS15; SS12b; SS15].
In [BCRW13], CH has been shown to be related to the minimum
fill-in problem (as in Gaussian elimination). In that terminology, the
graph constructed by adding shortcuts to the CH is a chordal super-
graph. The treewidth of a graph G corresponds to the minimum over
the maximum clique size (minus one) over all chordal supergraphs
of G. Nested dissection [Geo73; LRT79] orders, used as CH vertex
orderings, yield sub-linear (in the number of vertices) bounds on the
CH search space [BCRW13]. A preliminary case study that bridges
these theoretical results back to practice can be found in [Zei13].

Similar ideas have also appeared in [PWK12], where graphs of
low treewidth are considered, leveraging this property to compute
CH-like structures (without explicitly using the term CH). Related
techniques by [CZ00; Wei10] work directly on the tree decomposition.
Interestingly, low highway dimension graphs do not exclude fixed-size
minors and therefore do not necessarily have low treewidth [FFKP15].

2.1 preprocessing techniques 11

2.1.2 Dynamic Scenarios and Customization

An important aspect of realistic route planning, is handling unforeseen
dynamic changes, such as congestion after an accident. While this
can trivially be solved by repeating the whole preprocessing phase,
less costly approaches [DDFV12; DW07; EP13; GSSV12; SS07] enable
partial updates of preprocessed data.

Building on previous separator-based, multi-level overlays [HSW08;
JP02; SWW00; SWZ02], Customizable Route Planning (CRP) goes
even further [DGPW11; DGPW15], introducing a three-phase speedup
technique: Most preprocessing effort is offloaded to an initial, metric-
independent phase that solely exploits the topological structure of the
network. In particular, based on a nested multilevel partition of the
graph, unweighted shortcuts are computed between the boundary
vertices of each cell (a series of nested overlay graphs). In a second,
much less expensive phase, these overlays are customized to a specific
metric, computing distance-preserving weights for the predetermined
overlay shortcuts. Traversing these shortcuts then enables the query to
skip large parts of the graph.

Unless new streets or bridges are built, CRP preprocessing does
not have to be repeated. Not only allows this approach fast dynamic
changes to the metric, it also enables robust integration of user pref-
erences and extended costs models such as turn-costs: Small graph
separators in road networks guarantee efficient customization and
query times for any scalar metric, since the induced overlay graphs
are small [DGPW15]. Moreover, the graph partition also guides par-
allelization on multiple CPU cores or even GPUs [DKW14], yielding
customization times that are faster than a single Dijkstra query.

2.1.3 Time-dependent Scenarios

Another important aspect of route planning in realistic scenarios is the
consideration of traffic patterns such as rush hours, which greatly in-
fluence travel time [DBS10]. For time-dependent route planning, routing
costs are no longer constant, scalar values per road segment. Rather,
costs depend on the time of day at which a road is traversed, i. e., they
vary as a function of time [CH66; Dre69; DW09b]. These functions
are typically precomputed from historic knowledge of traffic pat-
terns [PBB+08]. However, the complexity of the functional description
is known to strongly increase for long-distance routes [FHS14], which
poses a difficulty when adapting preprocessing techniques based on
(long-distance) shortcuts [DW09b].

Dijkstra’s algorithm [Dij59] is easily extended to time-dependent
shortest paths [CH66; Dre69], as long as the time-dependent cost func-
tions have certain, reasonable properties [OR90]. Two query variants
are typically considered: (1) Given a source and target vertex and a

12 related work

fixed departure time at the source, compute the earliest arrival time (EA)
at the target; (2) compute earliest arrival times for all departure times
of a day (profile search).

Time-dependent cost functions are typically expressed as piecewise-
linear functions, mapping departure to travel time. The complexity
of such a function is expressed by its number of breakpoints. Let n
be the number of vertices in the graph: In [FHS14] it is shown that
the optimal path between two vertices can change nΘ(logn) times,
when varying departure time. In other words, for a given vertex pair,
any representation of the functional dependency between departure
time and travel time needs super-polynomial size. While these are
worst-case bounds for arbitrary graph families, a very strong increase
in functional complexity has also been observed by experimental
evaluation of profile searches on real-world road networks [DW09b].

Several known speedup techniques have been adapted to handle
time-dependency. Some works use (scalar) lower bounds on the travel
time functions to guide the graph search [DN12; DW07; NDLS12], cir-
cumventing any problems with functional complexity increase of short-
cuts. TD-CALT [DN12] yields reasonable EA query times (at least for
approximate solutions) and allows for fast dynamic traffic updates, but
does not enable profile search on large networks. TD-SHARC [Del11]
offers profile search on a country-scale network. Time-dependent Con-
traction Hierarchies (TCH) [BGSV13] enable both fast EA and profile
searches even on continental networks. Along the lines of normal
CH [GSSV12], the technique greedily computes a vertex order, build-
ing a sequence of overlays by iteratively contracting “unimportant”
vertices while inserting shortcuts between the remaining neighbors;
However, the weights of shortcuts are obtained using profile searches.
After preprocessing, piecewise-linear function approximation [II87]
can be used on the arc functions to save space, dropping optimality
of subsequent query results. Quite cleverly, a multi-phase extension
of the query algorithms (ATCH) restores exact results, despite ap-
proximated shortcuts [BGSV13]. Unfortunately, TCH and ATCH have
not been shown to be robust against user preferences. In [KWZ15;
KZ14; KZ15], time-dependent shortest path oracles are considered
that provide approximate time-dependent distances in sublinear query
time, after subquadratic preprocessing effort. The approach was also
evaluated in experimental settings [KMP+15; KMP+16], but prepro-
cessing effort and space consumption are comparably high, despite
the good theoretic bounds.

Unlike the scenarios on which CRP was analyzed (cf. above), for
time-dependent metrics, small separators do not guarantee fast cus-
tomization and query times: Even having a low number of overlay
arcs can be too expensive if the corresponding functional arc weights
increase rapidly in complexity. To the best of our knowledge, non-
scalar metrics for explicitly separator-based overlay approaches have

2.2 multicriteria optimization 13

so far only been investigated in the context of energy-optimal routes
for electric vehicles (EVCRP) [BDPW13], where energy consumption
depends on the battery state-of-charge, but functional complexity for
long shortcuts grows very slowly.

2.2 multicriteria optimization

Many of the methods discussed so far optimize a single criterion (typ-
ically travel time). But some also extend to multiple criteria [Ehr05] by
utilizing multi-dimensional vertex labels that represent sets of Pareto-
optimal paths [Han79; Mar84]. Interestingly, even without preprocess-
ing, Pareto optimization is theoretically hard [GJ79]. Depending on
the criterion space and transportation network, however, this problem
may actually be “feasible in practice” [MW01].

For general networks, the recent NAMOA* algorithm [MP10] is an
extension of A* search [HNR68] to the multicriteria case, where vertex
potentials help reducing the number of label scans. This approach was
also applied to road networks [MM12] and later parallelized [EKS14;
SM13]. Pareto-SHARC [DW09a] applies preprocessing to the Pareto
optimization problem, however, it drops exactness in order to achieve
practical performance.

For the case that the metric is a linear combination of two or more
criteria, practical algorithms are available as well [DSW15; FNS14;
FS13; GKS10]. However, even for the three criteria of travel time, travel
distance, and fuel consumption (which are even quite correlated),
diminishing returns in terms of query speed over preprocessing effort
have been reported [FS13], due to a strong increase in multi-arc short-
cuts. Contraction Hierarchies with edge restrictions [GRST12; RT10]
use very similar techniques.

2.3 sidewalks and traversal of open areas

For an overview and assessment of different sidewalk generation
approaches, see [KK13]. Many works consider extraction of street
networks from satellite images [MZ07; PJPZ10]. While this approach is
promising for roads, extracting sidewalks is problematic due to poor
image resolution and occlusion (e. g., by trees). Moreover, satellite
imagery is not as easily available as street data. In contrast, a street
network analysis technique proposed by [PV03] generates sidewalk
information directly from street layouts, but it does neither handle
multiple lanes very well, nor streets that are close to each other. An
alternative technique [BPS11] leverages building layouts to generate
sidewalks, however, not all streets that have sidewalks are also adjacent
to a building, resulting in incomplete output.

Traversing open areas is a classical problem in robotics and com-
putational geometry, and numerous works exist on the subject [SS88].

14 related work

Cell decomposition [Lat91] yields paths that are offset from the ob-
stacles and area boundary, and [MA04] combines several techniques,
including Voronoi diagrams, to obtain robust collision-free robot mo-
tion paths. Visibility graphs [AW88] are specifically important to us,
since they represent geometric shortest paths.

2.4 public transit journey planning

For purposes of journey planning, public transit networks are based on
scheduled vehicles and fixed stops for entering and leaving a vehicle.
(The exact course of railroad tracks, switches, signaling, or allocation
of tracks to vehicles, etc., are interesting optimization problems, but of
no concern to us.)

However, even more so than for road networks, deciding on an
optimization objective for journeys is not straightforward. For example,
while some people want to arrive as early as possible, others are
willing to spend a little more time to avoid extra transfers. Hence,
there are several natural problem variants [MSWZ07]: The simplest,
called earliest arrival, takes a departure time as input, and determines
a journey that arrives at the destination as early as possible. If further
criteria, such as the number of transfers, are important, one may
consider multicriteria optimization [DMS08; MS07; MW01]. Finally,
a profile query [DKP12; DPW12a] computes a set of optimal journeys
that depart during a period of time (such as a day).

Similar to road networks, these problems can be approached by
variants of Dijkstra’s algorithm [Dij59] applied to a graph that models
the public transit network, with various techniques to handle time-
dependency [CDD+14; DKP12; MMPZ13; MSWZ07; PSWZ08; Wit15].
In particular, the time-expanded (TE) graph encodes time in the vertices,
creating a vertex for every event (e. g., a train departure or arrival at
a stop at a specific time). In contrast, the time-dependent (TD) graph
has stops as vertices, with scheduled departures represented as time-
dependent arc cost functions. Other approaches, however, no longer
require a graph or a priority queue. RAPTOR [DPW12a; DPW14]
solves the multicriteria problem (arrival time and number of transfers)
directly on the timetable by dynamic programming.

While preprocessing-based techniques for computing point-to-point
shortest paths have been very successful on road networks, their adap-
tion [BDS+10; BGM10; Del11; DGWZ08; DPW09b; SWW00; SWZ02] to
public transit networks is “harder than expected” [Bas09; BDGM09;
BDW11], i. e., they do not yield the same level of acceleration. For exam-
ple, initial experiments for Timetable Contraction Hierarchies [Gei10]
look promising, but a newer study shows them not to perform well
on dense networks of both metropolitan and country scale, such as
Switzerland or London [Wir15]. Prominent candidates for fast public
transit journey planning are Transfer Patterns [BCE+10; BS14] and

2.5 multimodal journey planning 15

ACSA [SW14], but they still do not yield the same query performance
as exhibited on road networks.

For aperiodic timetables, the TE graph model yields a directed acyclic
graph (DAG), and several public transit query problems translate to
reachability problems. Different methodologies exist to enable fast
reachability computation [CHWF13; JW13; MS14; SABW13; YAIY13;
YCZ10; ZLWX14]. In particular, the 2-hop labeling [CHKZ03] scheme
associates with each vertex two labels (forward and backward); reach-
ability (or shortest-path distance) can be determined by intersect-
ing the source’s forward label and the target’s backward label. Note
that on road networks, 2-hop labeling yields the fastest known dis-
tance queries, taking less than a microsecond even on continental
networks [ADGW12].

2.5 multimodal journey planning

Public transit networks necessarily also have a multimodal component,
since journeys inherently require some amount of walking. To handle
this, existing solutions (see above) predefine transfer arcs between
nearby transit stops, then run a search algorithm on the public transit
network to find the “best” journey. Thereby, query performance notice-
ably depends on the number of such transfer arcs, hence, adding the
full clique of all stops (in the timetable) is not a viable option. Instead,
transfer arcs are typically shorter than five to ten minutes.

Therefore, this approach misses interesting traveling options, e. g.,
for pedestrians willing to walk more. In practice, users would want an
integrated solution, considering all available modes of transportation,
including unrestricted walking, biking, and taxis. We refer to this as
the (fully) multimodal journey planning problem.

Extending public transportation solutions to a fully multimodal
scenario may seem trivial at first: One could just incorporate routing
techniques for road networks to solve the new subproblems. However,
fastest multimodal paths can have arbitrarily many and sometimes
infeasible transfers between modes of transportation.

An elegant approach to restricting modal transfers is the label
constrained shortest paths problem (LCSPP) [MW95]: Arcs are labeled
according to the mode of transportation, and the sequence of arc labels
for any feasible path must induce an element of a formal language.
Ideally passed as query input, this typically enforces a hierarchy of
modes [BBM06; YL12]: For example, “no use of private car between
trains rides”, “no train between flights”, or “no walking between bike
rentals”.1 A version of Dijkstra’s algorithm can be used, if the language
is regular [BJM00; MW95]. An experimental study of this approach,
including basic goal-directed techniques, is conducted in [BBH+09].

1 The latter happing in a scenario near a large pedestrian zone, where dropping off the
bike and walking to the next bike rental station might be slightly faster, overall.

16 related work

In [Paj09] it is concluded that augmenting preprocessing techniques
for LCSPP is a challenging task.

A first efficient multimodal speedup technique, called Access-Node
Routing (ANR), has been proposed in [DPW09a]. It skips the road
network during queries by precomputing distances from every road
vertex to all its relevant access points of the public transportation
network. It has the fastest query times of all previous multimodal
techniques which are in the order of milliseconds. However, the pre-
processing phase predetermines the modal constraints that can be
used for queries. Also, it cannot compute short-range queries and
requires a separate algorithm to handle them correctly.

Another approach, called SDALT [KLPC11], adapts ALT by precom-
puting different vertex potentials depending on the mode of transport.
It allows fast preprocessing, but both preprocessing space and query
times are high. Also, it cannot handle arbitrary modal restrictions as
query input. By combining SDALT with a label-correcting algorithm,
the query time can be improved by up to 50 % [KLC12].

Finally, in [RT10] a technique based on contraction is presented that
handles arbitrary Kleene languages as user input. The authors use
them to exclude certain road categories. They report speedups of three
orders of magnitude on a continental road network. However, Kleene
languages are rather restrictive: In a multimodal context, they would
only allow excluding modes of transportation globally. In particular,
they cannot define feasible sequences of transportation modes.

3
R O U T E P L A N N I N G I N R O A D N E T W O R K S

There has been a plethora of research in algorithm engineering on
methods for faster route planning in road networks, as shown in Chap-
ter 2. Ultimately, this led to approaches [ADGW12; ALS13] that yield
point-to-point query times in the order of microseconds and below,
which is more than fast enough for most applications. However, these
results are only achieved for the most basic optimization objective.

In contrast, in this chapter, we focus on slower but more broadly
applicable approaches that aim to reduce preprocessing effort while
taking the dynamics of road traffic, more precise routing models,
and changing user preferences into account. At the same time, our
goal is to achieve query times still fast enough to enable responsive,
interactive applications for directions and navigation.

The general framework, which we follow and extend in this chapter,
is the 3-phase approach of [DGPW11; DGPW15] proposed for Cus-
tomizable Route Planning. Like previous works [DHM+09; HSW08;
JP02; SWW00], it exploits that road networks have small, balanced
separators [DGRW11; EG08; HS15; SS12b; SS15]. However, unlike pre-
vious works, it proposes to utilize this for very fast metric-dependent
preprocessing (called customization) by offloading most of the work to
a first, metric-independent preprocessing phase that only exploits the
topology of the network.

chapter outline . Section 3.1 introduces Customizable Contrac-
tion Hierarchies (CCH), showing how customization can be applied
to the well-established Contraction Hierarchies (CH) speedup tech-
nique [GSSD08; GSSV12]. Since CH has found widespread use in
practice, our results immediately enable straightforward consideration
of user preferences and live traffic for many real-world applications.
In turn, Section 3.2 takes a more closely look at the different aspects
of road traffic that can be used as an input to route planning: the
current (live) traffic situation, short-term traffic predictions, as well
as long-term traffic patterns. We provide a practical approach that
fulfills the requirements of both time-dependent and dynamic route
planning applications, and additionally allows user-specific metric
customization. Finally, in Section 3.3 we shift our attention away from
driving directions for (essentially) cars, instead providing methods
towards more realistic pedestrian route planning.

17

18 route planning in road networks

3.1 customizable contraction hierarchies

Contraction Hierarchies (CH) [GSSV12] are a very versatile speedup
technique for road networks. Originally designed to quickly answer
point-to-point queries, they have been extended to many more sce-
narios, such as one-to-all, one-to-many, point of interests [DGNW13;
DGW11a; FWL12; Gei11; GS10], ride sharing [GLS+10], and time-
dependent route planning [BGSV13; BS12; GS10]. Contraction Hierar-
chies have also proven useful as a “technological pathway” towards
the engineering [ADGW11; ADGW12] of hub labeling (HL) [CHKZ03;
GPPR04] on road networks, although there are now efficient algo-
rithms to directly derive a labeling from a vertex ordering [AIY13;
DGPW14]. To accelerate CH preprocessing, different parallelization
approaches have been evaluated [BGSV13; KLSV10; LS12].

With acceleration in mind, we extend Contraction Hierarchies to
support a three-phase workflow (such as that of CRP [DGPW15]):
The expensive preprocessing is split into 1) a phase exploiting solely
the unweighted topology of the graph, and 2) a very lightweight
phase that adapts auxiliary data obtained by the first phase to a given
routing cost function. We provide an in-depth experimental analysis
on large road networks that shows that Customizable Contraction
Hierarchies (CCH) are a very practicable solution in scenarios where
arc weights often change.

Customizable Contraction Hierarchies are based on nested dissec-
tion (ND) orders [Geo73] instead of the metric-dependent order com-
putation of [GSSV12]. This approach was first proposed by [BCRW13],
and a preliminary case study can be found in [Zei13]. Similar ideas
have also appeared in [PWK12]. Related techniques [CZ00; Wei10]
work directly on the tree decomposition.

The rest of this section is organized as follows. Section 3.1.1 sets
necessary notation. Section 3.1.2 describes the metric-independent
preprocessing phase, consisting of order computation, hierarchy con-
struction, and triangle enumeration. In Section 3.1.3, we discuss how
to customize the preprocessing to any scalar input metric. Section 3.1.4
describes different query algorithms. We then present in Section 3.1.5
an extensive experimental study that thoroughly evaluates the pro-
posed algorithms.

3.1.1 Preliminaries

Throughout Section 3.1, we use the following notation and concepts:
We denote by G = (V ,E) an undirected n-vertex graph where V is

the set of vertices and E the set of edges. Furthermore, G = (V ,A)
denotes a directed graph, where A is the set of arcs. A graph is simple
if it has no loops or multi-edges. Graphs are simple unless noted
otherwise, e. g., in parts of Section 3.1.2.2. Furthermore, we assume

3.1 customizable contraction hierarchies 19

that input graphs are strongly connected. We denote by N(v) the
neighborhood of vertex v ∈ G, i. e., the set of vertices adjacent to v;
for directed graphs the neighborhood ignores arc direction. A vertex
separator is a vertex subset S ⊆ V whose removal separates G into
two disconnected subgraphs induced by the vertex sets A and B. The
sets S, A and B are disjoint and their union forms V . Note that the
subgraphs induced by A and B are not necessarily connected and may
be empty. A separator S is balanced if max {|A| , |B|} 6 2n/3.

A vertex order π : {1 . . . n}→ V is a bijection. Its inverse π−1 assigns
each vertex a rank. Every undirected graph can be transformed into
a upward directed graph with respect to a vertex order π, i. e., every
edge {π(i),π(j)} with i < j is replaced by an arc (π(i),π(j)). Note that
all upward directed graphs are acyclic. We denote byNu(v) the upward
neighborhood of v, i. e., the neighbors of v with a higher rank than v,
and by Nd(v) the downward neighborhood of v, i. e., the vertices with
a lower rank than v. We denote by du(v) = |Nu(v)| the upward degree
and by dd(v) = |Nd(v)| the downward degree of a vertex.

Undirected edge weights are denoted using w : E→ R>0. With respect
to a vertex order π we define an upward weight wu : E→ R>0 and a
downward weight wd : E→ R>0. For directed graphs, one-way streets
are modeled by setting wu or wd to∞.

A path P is a sequence of adjacent vertices and incident edges. Its
hop-length is the number of edges in P. Its weight-length with respect
to w is the sum over all edges’ weights. Unless noted otherwise,
length always refers to weight-length. A shortest st-path is a path of
minimum length between vertices s and t. The minimum length in G
between two vertices is denoted by distG(s, t). We set distG(s, t) =∞
if no path exists. An up-down path P with respect to π is a path that
can be split into an upward path Pu and a downward path Pd. The
vertices in the upward path Pu must occur by increasing rank π−1

and the vertices in the downward path Pd must occur by decreasing
rank π−1. The upward and downward paths meet at the vertex with
the maximum rank on the path. We call this vertex the meeting vertex.

The vertices of every directed acyclic graph (DAG) can be parti-
tioned into levels ` : V → N such that for every arc (x,y) it holds
that `(x) < `(y). We only consider levels such that each vertex has the
lowest possible level. Note that such levels can be computed in linear
time given a directed acyclic graph.

The unweighted vertex contraction of v in G consists of removing v
and all incident edges and inserting edges between all neighbors N(v)

if not already present. The inserted edges are called shortcuts and the
other edges are original edges. Given an order π the core graph Gπ,i is
obtained by contracting all vertices π(1) . . . π(i− 1) in order of their
rank. We call the original graph G augmented by the set of shortcuts
a contraction hierarchy G∗π =

⋃
iGπ,i. Furthermore, we denote by G∧

π

the corresponding upward directed graph.

20 route planning in road networks

v

z

y

x
1

2

1
1

Figure 3.1: Contraction of v. If the pair x,y is considered first, a shortcut {x,y}
with weight 3 is inserted. If the pair x, z is considered first, an
edge {x, z} with weight 2 is inserted. This shortcut is part of a
witness x→ z→ y for the pair x,y. The shortcut {x,y} is thus not
added if the pair x, z is considered first.

Given a fixed weight w, one can exploit that in many applications
it is sufficient to only preserve all shortest path distances [GSSV12].
Weighted vertex contraction of a vertex v in the graph G is defined
as the operation of removing v and inserting (a minimum number)
of shortcuts among the neighbors of v to obtain a graph G ′ such
that distG(x,y) = distG ′(x,y) for all vertices x 6= v and y 6= v.
To compute G ′, one iterates over all pairs of neighbors x,y of v
increasing by distG(x,y). For each pair one checks whether a xy-
path of length distG(x,y) exists in G\{v}, i. e., one checks whether
removing v destroys the xy-shortest path. This check is called wit-
ness search [GSSV12] and the xy-path is called witness, if it exists.
If a witness is found, the considered vertex pair is skipped and
no shortcut added. Otherwise, if an edge {x,y} already exists, its
weight is decreased to distG(x,y), or a new shortcut edge with that
weight is added to G. This new shortcut edge is considered in witness
searches for subsequent neighbor pairs as part of G. If shortest paths
are not unique, it is important to iterate over the pairs increasing
by distG(x,y), because otherwise more edges than strictly necessary
can be inserted: Shorter shortcuts can make longer shortcuts super-
fluous. However, if we insert the shorter shortcut after the longer
ones, the witness search will not consider them. See Figure 3.1 for
an example. (This effect was independently observed by [RT10] in a
different setting.) Note that the witness searches are expensive and
therefore the witness search is usually aborted after a certain number
of steps [GSSV12]. If no witness was found, we assume that none
exists and add a shortcut. This does not affect the correctness of the
technique but might result in slightly more shortcuts than necessary.
To distinguish, perfect witness search is without such a one-sided error.

For an order π and a weight w the weighted core graph Gw,π,i is ob-
tained by contracting all vertices π(1) . . . π(i− 1). The original graph G
augmented by the set of weighted shortcuts is called a weighted con-
traction hierarchy G∗w,π. The corresponding upward directed graph is
denoted by G∧

w,π.

3.1 customizable contraction hierarchies 21

The search space SS(v) of a vertex v is the subgraph of G∧
π (respec-

tively G∧
w,π) reachable from v. For every vertex pair s and t, it has

been shown that a shortest up-down path must exist. This up-down
path can be found by running a bidirectional search from s restricted
to SS(s) and from t restricted to SS(t) [GSSV12].

tree-decompositions , sparse matrices and minimum fil-
l-in. Customizable speedup techniques for shortest path queries
are a very recent development but the idea to order vertices along
nested dissection orders is significantly older. To the best of our knowl-
edge the idea first appeared in 1973 in [Geo73] and was refined
in [LRT79]. They use nested dissection orders to reorder the columns
and rows of sparse matrices to ensure that Gaussian elimination pre-
serves as many zeros as possible. From the matrix they derive a graph
and show that vertex contraction in this graph corresponds to Gaus-
sian variable elimination. Inserting an extra edge in the graph destroys
a zero in the matrix. The additional edges are called the fill-in. The min-
imum fill-in problem asks for a vertex order that results in a minimum
number of extra arcs. In CH terminology these extra edges are called
shortcuts. The supergraph constructed by adding the additional edges
is a chordal graph. The treewidth of a graph G can be defined using
chordal supergraphs: For every supergraph consider the number of
vertices in the maximum clique minus one. The treewidth of a graph G
is the minimum of this number over all chordal supergraphs of G.
This establishes a relation between sparse matrices and treewidth and
in consequence with CHs. We refer to [Bod07] and [Bod93] for an
introduction to the broad field of treewidth and tree decompositions.

1
2

3
4

5

(a) No shortcuts, maxi-
mum search space is four
arcs

1 2
3 4

5

(b) Two shortcuts, maxi-
mum search space is two
arcs

Figure 3.2: Contrac-
tion Hierarchies for a
path graph.

Minimizing the number of extra edges, i. e., minimizing the
fill-in, is NP-hard [Yan81] but fixed parameter tractable in the
number of extra edges [KST99]. Note, however, that from the
CH point of view, optimizing the number of extra edges, i. e.,
the number of shortcuts, is not the sole optimization criterion.
Consider for example a path graph as depicted in Figure 3.2:
Optimizing the CH search space and the number of shortcuts
are competing criteria. A tree relevant in the theory of treewidth
is the elimination tree. [BCRW13] have shown that the maximum
search space size in terms of vertices corresponds to the height of
this elimination tree. Unfortunately, minimizing the elimination
tree height is also NP-hard [Pot88]. For planar graphs, it has been
shown that the number of additional edges is inO(n logn) [GT86].
However, this does not imply a O(logn) search space bound in
terms of vertices as search spaces can share vertices.

A graph is chordal if for every cycle of at least four vertices there
exists a pair of vertices that are non-adjacent in the cycle but are
connected by an edge. An alternative characterization is that a
vertex order π exists such that for every i the neighbors of π(i)

22 route planning in road networks

in Gπ,i, i. e., the core graph before the contraction of π(i), form a clique
[FG65]. Such an order is called a perfect elimination order. Another way
to formulate this characterization in CH terminology is as follows: A
graph is chordal if and only if a contraction order exists such that the
CH construction without witness search does not insert any shortcuts.
A chordal supergraph can be obtained by adding the CH shortcuts.

The elimination tree TG,π is a tree directed towards its root π(n). The
parent of vertex π(i) is its upward neighbor v ∈ Nu(π(i)) of minimal
rank π−1(v). Note that this definition already yields a straightfor-
ward algorithm for constructing the elimination tree. As shown in
[BCRW13], the set of vertices on the path from v to π(n) is the set of
vertices in SS(v). Computing a contraction hierarchy search of graph G
without witness consists of computing a chordal supergraph G∗π with
perfect elimination order π. Then, the height of the elimination tree
corresponds to the maximum number of vertices in the search space.
Note that the elimination tree is only well-defined for undirected
unweighted graphs.

3.1.2 Preprocessing

3.1.2.1 Metric-Independent Order

The metric-dependent orders presented in the previous section lead to
very good results on road graphs with travel time metric. However,
the results for the distance metric are not as good and the orders
are completely impracticable to compute Contraction Hierarchies
without witness search as our experiments in Section 3.1.5 show. To
support metric-independence, we therefore use nested dissection orders
as suggested in [BCRW13] or ND-orders for short. An order π for G
is computed recursively by determining a balanced separator S of
minimum cardinality that splits G into two parts induced by the
vertex sets A and B. The vertices of S are assigned to π(n − |S| +

1) . . . π(n) in an arbitrary order. Orders πA and πB are computed
recursively and assigned to π(1) . . . π(|A|) and π(|A| + 1) . . . π(|A| +

|B|), respectively. The base case of the recursion is reached when the
subgraphs are empty. Computing ND-orders requires good graph
bisectors, which in theory is NP-hard. However, recent years have
seen heuristics that solve the problem very well even for continental
road graphs [DGRW11; DGRW12; SS13]. This justifies assuming in
our particular context that an efficient bisection oracle exists. We
experimentally examine the performance of nested dissection orders
computed by NDMetis [KK99] and KaHIP [SS13] in Section 3.1.5. After
having obtained the nested dissection order we reorder the in-memory
vertex IDs of the input graph accordingly, i. e., the contraction order
of the reordered graph is the identity function. This improves cache
locality and we have seen a resulting acceleration of a factor 2 to 3 in
query times.

3.1 customizable contraction hierarchies 23

3.1.2.2 Constructing the Contraction Hierarchy

In this section, we describe how to efficiently compute the hierar-
chy G∧

π for a given graph G and order π. Weighted contraction hier-
archies are commonly constructed using a dynamic adjacency array
representation of the core graph. Our experiments show that this ap-
proach also works for the unweighted case, however, requiring more
computational and memory resources because of the higher growth
in shortcuts. It has been proposed by [Zei13] to use hash-tables on
top of the dynamic graph structure to improve speed but at the cost
of significantly increased memory consumption. In this section, we
show that the contraction hierarchy construction can be done signifi-
cantly faster on unweighted and undirected graphs. Note that in our
toolchain, graph weights and arc directions are accounted for during
the customization phase.

Figure 3.3: Dots represent vertices
in G ′ and H. Squares are additional
super vertices in H. Solid edges are
in H and dashed ones in G ′. Notice
how the neighbors of each super
vertex in H form a clique in G ′. Fur-
thermore, there are no two adjacent
super vertices in H, i. e., they form
an independent set.

Denote by n the number of vertices in G (and G∧
π),

by m the number of edges in G, by m̂ the number
of arcs in G∧

π , and by α(n) the inverse A(n,n) Ack-
ermann function. For simplicity we assume that G is
connected. Our approach enumerates all arcs of G∧

π

in O(m̂α(n)) running time and has a memory con-
sumption in O(m). To store the arcs of G∧

π , additional
space in O(m̂) is needed. The approach is heavily
based upon the method of the quotient graph [GL78].
To the best of our knowledge it has not yet been ap-
plied in the context of route planning and there exists
no complexity analysis for the specific variant em-
ployed by us. Therefore we discuss both the approach
and present a running time analysis in the remainder
of the section.

Recall that to compute the contraction hierarchy G∧
π

from a given input graph G and order π, one itera-
tively contracts each vertex, adding shortcuts between
its neighbors. Let G ′ = Gπ,i be the core graph in it-
eration i. We do not store G ′ explicitly but employ
a special data structure called contraction graph for
efficient contraction and neighborhood enumeration.
The contraction graph H contains both yet uncontracted core vertices
as well as an independent set of virtually contracted super vertices, see
Figure 3.3 for an illustration. These super vertices enable us to avoid
the overhead of dynamically adding shortcuts to G ′. For each vertex
in H we store a marker bit indicating whether it is a super vertex. Note
that G ′ can be obtained by contracting all super vertices in H.

contracting vertices . A vertex x in G ′ is contracted by turning
it into a super vertex. However, creating new super vertices can violate
the independent set property. We restore it by merging neighboring

24 route planning in road networks

super vertices: Denote by y a super vertex that is a neighbor of x. We
rewire all edges incident to y to be incident to x and remove y from H.
To support efficiently merging vertices in H, we store a linked list of
neighbors for each vertex. When merging two vertices we link these
lists together. Unfortunately, combining these lists is not enough as
the former neighbors z of y still have y in their list of neighbors. We
therefore further maintain a union-find data structure: Initially all
vertices are within their own set. When merging x and y, the sets of
x and y are united. We chose x as representative as y was deleted.1

When z enumerates its neighbors, it finds a reference to y. It can then
use the union-find data structure to determine that the representative
of y’s set is x. The reference in z’s list is thus read as pointing to x.

It is possible that merging vertices can create multi-edges and loops.
For example, consider that the neighborhood list of y contains x. After
merging, the united list of x will therefore contain a reference to x.
Similarly, it will contain a reference to y, which after looking up the
representative is actually x. Two loops are thus created at x per merge.
Furthermore, consider a vertex z that is a neighbor of both y and x.
In this case the neighborhood list of x will contain two references
to z. These multi-edges and loops need to be removed. We do this
lazily and remove them in the neighborhood enumeration instead of
removing them in the merge operation.

enumerating neighbors . Suppose that we want to enumerate
the neighbors of a vertex x in H. Note that x’s neighborhood in H
differs from its neighborhood in G ′. The neighborhood of x in H can
contain super vertices, as super vertices are only contracted in G ′.
We maintain a boolean marker that indicates which neighbors have
already been enumerated. Initially no marker is set. We iterate over
x’s neighborhood list. For each reference we lookup the representative
v. If v was already marked or is x, we remove the reference from the
list. If v was not marked and is not x, we mark it and report it as a
neighbor. After the enumeration we reset all markers by enumerating
the neighbors again.

However, during the execution of our algorithm, we are not inter-
ested in the neighborhood of x in H, but we want the neighborhood
of x in G ′, i. e., the algorithm should not list super vertices. Our algo-
rithm conceptually first enumerates the neighborhood of x and then
contracts x. We actually do this in reversed order. We first contract x.
After the contraction x is a super vertex. Because of the independent
set property, we know that x has no super vertex neighbors in H.

1 Or alternatively, we can let the union-find data structure choose the new representa-
tive. We then denote by x the new representative and by y the other vertex. In this
variant, it is possible that the new x is the old y, which can be confusing. For this
reason, we describe the simpler variant, where x is always chosen as representative
and thus x always refers to the same vertex.

3.1 customizable contraction hierarchies 25

We can thus enumerate x’s neighbors in H and exploit that in this
particular situation the neighborhoods of x in G ′ and H coincide.

performance analysis . As there are no memory allocations,
it is clear that the working space memory consumption is in O(m).
Proving a running time in O(m̂α(n)) is less clear. Denote by d(x) the
degree of x just before x is contracted. d(x) coincides with the upward
degree of x in G∧

π and thus
∑
d(x) = m̂. We first prove that we can

account for the neighborhood cleanup operations outside of the actual
algorithm. This allows us to assume that they are free within the main
analysis. We then show that contracting a vertex x and enumerating its
neighbors is in O(d(x)α(n)). Processing all vertices thus has a running
time in O(m̂α(n)).

The neighborhood list of x can contain duplicated references and
thus its length can be larger than the number of neighbors of x. Fur-
ther, for each entry in the list, we need to perform a union find lookup.
The costs of a neighborhood enumeration can thus be larger than
O(d(x)α(n)). Fortunately, the first neighborhood enumeration com-
pactifies the neighborhood list and thus every subsequent enumeration
runs in O(d(x)α(n)). Removing a reference has a cost in O(α(n)). Our
algorithm never adds references. Initially there are Θ(m) references.
The total costs for removing references over the whole algorithm are
thus in O(mα(n)). As our graph is assumed to be connected, we have
that m ∈ O(m ′) and therefore O(mα(n)) ⊆ O(m̂α(n)). We can there-
fore assume that removing references is free within the algorithm.
As removing a reference is free, we can assume that even the first
enumeration of the neighbors of x is within O(d(x)α(n)). Merging
two vertices consists of redirecting a constant number of references
within a linked list. The merge operation is thus in O(1).

Our algorithm starts by enumerating all neighbors of x to determine
all neighboring super vertices in O(d(x)α(n)) time. There are at most
d(x) neighboring super vertices and therefore the costs of merging
all super vertices into x is in O(d(x)). We subsequently enumerate all
neighbors a second time to output the arcs of G∧

π . The costs of this
second enumeration is also within O(d(x)α(n)). The overall algorithm
thus runs in O(m̂α(n)) time, since

∑
d(x) = m̂. This completes the

proof for our analysis.

adjacency array. While the described algorithm is efficient in
theory, linked lists cause too many cache misses in practice. We there-
fore implemented a hybrid of a linked list and an adjacency array,
which has the same worst case performance, but is more cache-friendly
in practice. An element in the linked list does not only hold a single
reference, but a small set of references organized as small arrays called
blocks. The neighbors of every original vertex form a single block. The
initial linked neighborhood list are therefore composed of a single

26 route planning in road networks

block. We merge two vertices by linking their blocks together. If all
references are deleted from a block, we remove it from the list.

3.1.2.3 Enumerating Triangles

x

y

z

Figure 3.4: A tri-
angle in G∧

π . The
triple {x,y, z} is a
lower triangle of the
arc (y, z), an interme-
diate triangle of the
arc (x, z), and an up-
per triangle of the
arc (x,y).

A triangle {x,y, z} is a set of three adjacent vertices. A triangle
can be an upper, intermediate or lower triangle with respect to
an arc (x,y), as illustrated in Figure 3.4. A triangle {x,y, z} is a
lower triangle of (y, z) if x has the lowest rank among the three
vertices. Similarly, {x,y, z} is a upper triangle of (x,y) if z has the
highest rank and {x,y, z} is a intermediate triangle of (x, z) if y’s
rank is between the ranks of x and z. The triangles of an edge
(a,b) can be characterized using the upward Nu and downward
Nd neighborhoods of a and b. There is a lower triangle {a,b, c}
of an arc (a,b) if and only if c ∈ Nd(a)∩Nd(b). Similarly, there
is an intermediate triangle {a,b, c} of an arc (a,b) with π−1(a) <
π−1(b) if and only if c ∈ Nu(a) ∩Nd(b) and an upper triangle
{a,b, c} of an arc (a,b) if and only if c ∈ Nu(a) ∩Nu(b). The
triangles of an arc can thus be enumerated by intersecting the
neighborhoods of the arc’s endpoints.

Efficiently enumerating all lower triangles of an arc is an im-
portant base operation of the customization (Section 3.1.3) and path
unpacking algorithms (Section 3.1.4). It can be implemented using
adjacency arrays or accelerated using extra preprocessing. Note that
in addition to the vertices of a triangle we are interested in the IDs of
the participating arcs as we need these to access the metric of an arc.

basic triangle enumeration. Triangles can be efficiently enu-
merated by exploiting their characterization using neighborhood in-
tersections. We construct an upward and a downward adjacency array
for G∧

π , where incident arcs are ordered by their head respectively
tail vertex ID. The lower triangles of an arc (x,y) can be enumerated
by simultaneously scanning the downward neighborhoods of x and
y to determine their intersection. Intermediate and upper triangles
are enumerated analogously using the upward adjacency arrays. For
later access to the metric of an arc, we also store each arc’s ID in the
adjacency arrays. This approach requires space proportional to the
number of arcs in G∧

π .

triangle preprocessing . Instead of merging the neighbor-
hoods on demand to find all lower triangles, we propose to create a
triangle adjacency array structure that maps the arc ID of (x,y) to the set
of pairs of arc IDs of (z, x) and (z,y) for every lower triangle {x,y, z}
of (x,y). This requires space proportional to the number of triangles t
in G∧

π , but allows for a very fast access. Analogous structures enable
efficient enumeration of all upper or intermediate triangles.

3.1 customizable contraction hierarchies 27

hybrid approach . For less well-behaved graphs the number of
triangles t can significantly outgrow the number of arcs in G∧

π . In the
worst case G is the complete graph and the number of triangles t is
in Θ(n3) whereas the number of arcs is only in Θ(n2). It can thus
be prohibitive to store a list of all triangles. We therefore propose a
hybrid approach, where only some triangles are precomputed.

The basic triangle enumeration algorithm computes the intersection
of two lower neighborhoods and thus encounters two cases: Either a
neighbor is common (yielding a triangle that has to be processed) or
it is not. With precomputed lower triangles, this second case can be
eliminated, resulting in faster enumeration times.

Now, for arcs where both endpoints have a high level, many (of their
numerous lower triangles) are contained in the top level cliques of the
CH. As a consequence, for them the ratio of common neighbors to
non-common neighbors is very high. For lower level arcs, on the other
hand, this ratio is often lower. This gives precomputed triangles for
these lower levels the greater benefit over basic triangle enumeration.
Hence, we propose to only precompute triangles for those arcs (u, v)
where the level of u is below a certain threshold. The threshold is a
tuning parameter that trades space for time.

comparison with crp. Triangle preprocessing has similarities
with micro and macrocode in CRP [DW13]. In the following, we
compare the space consumption of these two approaches against our
lower triangles preprocessing scheme. However, note that at this stage
we do not yet consider travel direction on arcs. Hence, let t be the
number of undirected triangles and m be the number of arcs in G∧

π ;
further let t ′ be the number of directed triangles andm ′ be the number
of arcs used in [DW13]. If every street is a one-way street, thenm ′ = m
and t ′ = t; otherwise, without one-way streets, m ′ = 2m and t ′ = 2t.

Microcode stores an array of triples of pointers to the arc weights
of the three arcs in a directed triangle, i. e., it stores the equivalent of
3t ′ arc IDs. Computing the exact space consumption of macrocode is
more difficult. However, it is easy to obtain a lower bound: Macrocode
must store for every triangle at least the pointer to the arc weight of
the upper arc. This yields a space consumption equivalent to at least t ′

arc IDs. In comparison, our approach stores for each triangle the arc
IDs of the two lower arcs. Additionally, the index array of the triangle
adjacency array, which maps each arc to the set of its lower triangles,
maintains m+ 1 entries. Each entry has a size equivalent to an arc ID.
Our total memory consumption is thus 2t+m+ 1 arc IDs.

Hence, our approach always requires less space than microcode. It
has similar space consumption as macrocode if one-way streets are
rare, otherwise it needs at most twice as much data. However, the
main advantage of our approach over macrocode is that it allows for

28 route planning in road networks

random access, which is crucial in the algorithms presented in the
following sections.

3.1.3 Customization

Up to now we only considered the metric-independent first preprocess-
ing phase. In this section, we describe the second, metric-dependent
preprocessing phase, known as customization. That is, we show how
to efficiently extend the weights of the input graph to a corresponding
metric with weights for all arcs in G∧

π . We consider three different
distances between the vertices: We refer to distI(s, t) as the shortest
st-path distance in the input graph G. With distUD(s, t) we denote
the shortest st-path distance in G∧

π when only considering up-down
paths. Finally, let distA(s, t) be the shortest st-path distance in G∗π, i. e.,
when allowing arbitrary not-necessarily up-down paths in G∧

π .
For correctness of the CH query algorithms (cf. Section 3.1.4) it

is necessary that between any pair of vertices s and t a shortest up-
down st-path in G∧

π exists with the same distance as the shortest
st-path in the input graph G. In other words, distI(s, t) = distA(s, t) =
distUD(s, t) must hold for all vertices s and t. We say that a metric that
fulfills distI(s, t) = distA(s, t) respects the input weights. If additionally
distA(s, t) = distUD(s, t) holds, we call the metric customized. Note
that customized metrics are not necessarily unique. However, there
is a special customized metric, called perfect metric mP, where for
every arc (x,y) in G∧

π the weight of this arc mP(x,y) is equal to the
shortest path distance distI(x,y). We optionally use the perfect metric
to perform perfect witness search.

Constructing a respecting metric is trivial: Assign to all arcs of G∧
π

that already exist in G their input weight and to all other arcs +∞.
Computing a customized metric is less trivial. We therefore describe
in Section 3.1.3.1 the basic customization algorithm that computes a
customized metricmC given a respecting one. Afterwards, we describe
the perfect customization algorithm that computes the perfect metric
mP given a customized one (i. e.,mC). Finally, we show how to employ
the perfect metric to perform a perfect witness search.

3.1.3.1 Basic Customization

A central notion of the basic customization algorithm is the lower
triangle inequality, which is defined as follows. A metric mC fulfills it
if for all lower triangles {x,y, z} of each arc (x,y) of G∧

π , it holds that
mC(x,y) 6 mC(x, z)+mC(z,y). We show that every respecting metric
that also fulfills this inequality is customized. Our algorithm exploits
this by transforming the given respecting metric in a coordinated way
that maintains the respecting property and ensures that the lower
triangle inequality holds. The resulting metric is thus customized.
We first describe the algorithm and prove that the resulting metric

3.1 customizable contraction hierarchies 29

is respecting and fulfills the inequality. We then prove that this is
sufficient for the resulting metric to be customized.

Our algorithm iterates over all arcs (x,y) ∈ G∧
π ordered increas-

ingly by the rank of x in a bottom-up fashion. For each arc (x,y),
it enumerates all lower triangles {x,y, z} and checks whether the
path x → z → y is shorter than the path x → y. If this is the
case, then it decreases mC(x,y) so that both paths are equally long.
Formally, it performs for every arc (x,y) the operation mC(x,y) ←
min{mC(x,y),mC(x, z) +mC(z,y)}. Note that this operation never as-
signs values that do not correspond to a path length and therefore
mC remains respecting. By induction over the vertex levels, we can
show that after the algorithm is finished, the lower triangle inequality
holds for every arc, i. e., for every arc (x,y) and lower triangle {x,y, z}
the inequality mC(x,y) 6 mC(x, z) +mC(z,y) holds. The key obser-
vation is that by construction the rank of z must be strictly smaller
than the ranks of x and y. The final weights of mC(x, z) and mC(z,y)
have therefore already been computed when considering (x,y). In
other words, when the algorithm considers the arc (x,y), the weights
mC(x, z) and mC(z,y) are guaranteed to be final.

Theorem 1. Every respecting metric that additionally fulfills the lower
triangle inequality is customized.

Proof. We need to show that between any pair of vertices s and t

a shortest up-down st-path exists. As we assumed for simplicity
that G is connected, there always exists a shortest not-necessarily up-
down path from s to t. Either this is an up-down path, or a subpath
x → z → y with π−1(x) > π−1(z) and π−1(y) > π−1(z) must exist.
As z is contracted before x and y, an edge {x,y} must exist. Because of
the lower triangle inequality, we further know that m(x,y) 6 m(x, z)+
m(z,y) and thus replacing x → z → y by x → y does not make the
path longer. Either the path is now an up-down path or we can apply
the argument iteratively. As the path has only a finite number of
vertices, this is guaranteed to eventually yield the up-down path
required by the theorem and thus this completes the proof.

3.1.3.2 Perfect Customization

Given a customized metric mC, we want to compute the perfect
metric mP. We first copy all values of mC into mP. Our algorithm
then iterates over all arcs (x,y) decreasing by the rank of x in a top-
down fashion. For every arc it enumerates all intermediate and upper
triangles {x,y, z} and checks whether the path over z is shorter and
adjusts the value of mP(x,y) accordingly, i. e., it performs mP(x,y)←
min{mP(x,y),mP(x, z) +mP(z,y)}. After all arcs have been processed
mP is the perfect metric, as is shown in the following theorem.

Theorem 2. After the perfect customization, mP(x,y) corresponds to the
shortest xy-path distance for every arc (x,y), i. e., mP is the perfect metric.

30 route planning in road networks

Proof. We have to show that after the algorithm has finished process-
ing a vertex x, all of its outgoing arcs in G∧

π are weighted by the
shortest path distance. We prove this by induction over the level of the
processed vertices. The top-most vertex is the only vertex in the top
level. It does not have any upward arcs and thus the algorithm does
not have anything to do. This forms the base case of the induction. In
the inductive step, we assume that all vertices with a strictly higher
level have already been processed. As consequence, we know that
the upward neighbors of x form a clique weighted by shortest path
distances. Denote these neighbors by yi. The situation is depicted in
Figure 3.5. The weights of the yi encode a complete shortest path
distance table between the upward neighbors of x.

Pick some arbitrary arc (x,yj). We show the correctness of our
algorithm by proving that either mC(x,yj) is already the shortest path
distance or a neighbor yk ∈ Nu(x) must exist such that x→ yk → yj
is a shortest up-down path. For the rest of this paragraph assume
the existence of yk, we prove its existence in the next paragraph. If
mC(x,yj) is already the shortest xyj-path distance, then enumerating
triangles will not change mC(x,yj) and is thus correct. If mC(x,yj) is
not the shortest xyj-path distance, then enumerating all intermediate
and upper triangles of (x,yj) is guaranteed to find the x→ yk → yj
path and thus the algorithm is correct. The upper triangles correspond
to paths with `(yk) > `(yj) while the intermediate triangles to paths
with `(yk) < `(yj).

It remains to show that the x → yk → yj shortest up-down path
actually exists. As the metric is customized at every moment during
the perfect customization, we know that a shortest up-down xyj-path
K exists. As K is an up-down path, we can conclude that the second
vertex of K must be an upward neighbor of x. We denote this neighbor
by yk . K thus has the following structure: x→ yk → . . .→ yj. As yk
has a higher rank than x, mP(yk,yj) is guaranteed to be the shortest
ykyj-path distance, and therefore we can replace the yk → . . .→ yj
subpath of K by yk → yj, and we have proven that the required x→
yk → yj shortest up-down path exists. This completes the proof.

3.1.3.3 Perfect Witness Search

Using the perfect customization algorithm, we can efficiently compute
the weighted CH with a minimum number of arcs with respect to the
same contraction order. We present two variants of our algorithm. The
first variant consists of removing each arc (x,y) whose weightmC(x,y)
after basic customization does not correspond to the shortest xy-path
distance mP(x,y). While simple and correct, this variant does not
remove as many arcs as possible, if a pair of vertices a and b exists in
the input graph such that there are multiple shortest ab-paths. The

3.1 customizable contraction hierarchies 31

second variant2 also removes these additional arcs. An arc (x,y) is
removed if and only if an upper or intermediate triangle {x,y, z} exists
such that the shortest path from x over z to y is no longer than the
shortest xy-path. However, before we can prove the correctness of
the second variant, we need to introduce some technical machinery,
which will also be needed in the correctness proof of the stalling query
algorithm. We define the “height” of a not-necessarily up-down path
in G∗π. We show that with respect to every customized metric, for
every path that is not up-down, an up-down path must exist that is
strictly higher and is no longer.

x

y2

y1

y3

y4

`

Figure 3.5: The vertices
y1 . . . y4 denote the upper
neighborhood Nu(x) of x.
They form a clique (grey
area) because x was con-
tracted first. As `(x) < `(yj)

for every j, we know by
the induction hypothesis
that the arcs in this clique
are weighted by shortest
path distances. We therefore
have an all-pair shortest
path distance table among
all yj. We have to show
that using this information
we can compute shortest
path distances for all arcs
outgoing of x.

variant for graphs with unique shortest paths .
The first algorithm variant consists of removing all arcs
(x,y) from the CH for which mP(x,y) 6= mC(x,y). It is
optimal if shortest path are unique in the input graph, i. e.,
between every pair of vertices a and b there is only one
shortest ab-path. This simple algorithm is correct as the
following theorem shows.

Theorem 3. If the input graph has unique shortest paths between
all pairs of vertices, then we can remove an arc (x,y) from the
CH if and only if mP(x,y) 6= mC(x,y).

Proof. We need to show that after removing all arcs, there
still exists a shortest up-down path between every pair of
vertices s and t. We know that before removing any arc
a shortest up-down st-path K exists. We show that no arc
of K is removed and thus K also exists after removing all
arcs. Every subpath of K must be a shortest path as K is
a shortest path. Every arc of K is a subpath. However, we
only remove arcs such that mP(x,y) 6= mC(x,y), i. e., which
are not shortest paths.

To show that no further arcs can be removed we need to
show that if mP(x,y) = mC(x,y), then the path x → y is
the only shortest up-down path. Denote the x→ y path by
Q. Suppose that another shortest up-down path R existed. R
must be different than Q, i. e., a vertex z must exist that lies
on R but not on Q. As z must be reachable from x, we know
that z is higher than x. Unpacking the path Q in the input
graph yields a path where x and y are the highest ranked
vertices and thus this unpacked path cannot contain z. Unpacking R
yields a path that contains z and is therefore different. Both paths are
shortest paths from x to y in the input graph. This contradicts the
assumption that shortest paths are unique. We have thus proven that,

2 Note that the second algorithm variant exploits that we defined weights as being
non-zero. If zero weights are allowed, it may remove too many arcs. A workaround
consists of replacing all zero weights with a very small but non-zero weight.

32 route planning in road networks

if the input graph has unique shortest paths, we can remove an arc
(x,y) if and only if mP(x,y) 6= mC(x,y).

rank

s

y

x

t

z

1

2

3

4

5

Figure 3.6: The rank se-
quence of the solid red path
is [3, 2, 1]. The 3 is the mini-
mum of the ranks of the end-
points of the {x, z} edge. Sim-
ilarly, the 2 is induced by
the {z, t} edge and the 1 by
the {s, x} edge. The rank se-
quence of the blue dashed
path is [3, 3, 2, 1] and the rank
sequence of the green dotted
path is [4, 2, 1]. The solid red
path is the lowest followed
by the blue dashed path and
the green dotted path is the
highest.

variant for general graphs . If shortest paths are
not unique in the original graph, using the first variant
of our algorithm still yields correct results. However, it is
possible that some arcs are not removed that could be re-
moved. Our second algorithm variant does not have this
weakness. It removes all arcs (x,y) for which an interme-
diate or upper triangle {x,y, z} exists such that mP(x,y) =
mP(x, z) +mP(z,y). These arcs can efficiently be identified
while running the perfect customization algorithm. An arc
(x,y) is marked for removal if an upper or intermediate
triangle {x,y, z} with mC(x,y) > mC(x, z) +mC(z,y) is en-
countered. However, before we can prove the correctness of
the second variant, we need to introduce some additional
technical machinery.

We want to order paths by “height”. To achieve this, we
first define for each path K in G∗π its rank sequence. We order
paths by comparing the rank sequences lexicographically.
Denote by vi the vertices in K. For each edge {vi, vi+1} in
K the rank sequence contains min{π−1(vi),π−1(vi+1)}. The
numbers in the rank sequences are sorted in non-increasing
order. Two paths have the same height if one rank sequence
is a prefix of the other. Otherwise we compare the rank
sequences lexicographically. This ordering is illustrated in
Figure 3.6. We prove the following technical lemma:

Lemma 1. Let mC be some customized metric. For every st-path K that is
no up-down path, an up-down st-path Q exists such that Q is strictly higher
than K and Q is no longer than K with respect to mC.

Proof. Denote by vi the vertices on the path K. As K is no up-down
path, there must exist a vertex vi on K that has lower ranks than its
neighbors vi−1 and vi+1. vi−1 and vi+1 are different vertices because
they are part of a shortest path and zero weights are not allowed.
Further, as vi is contracted before its neighbors, there must be a edge
between vi−1 and vi+1. As the metric is customized,mC(vi−1, vi+1) 6
mC(vi−1, vi) +mC(vi, vi+1) must hold. We can bypass vi by replac-
ing the subpath (vi−1, vi, vi+1) with the single arc (vi−1, vi+1) with-
out making the path longer. Denote this new path by R. Clearly, R
is higher than K as we replaced π−1(vi) in the rank sequence by
min{π−1(vi−1),π−1(vi+1)}, which must be larger. Either R is an up-
down path or we apply the argument iteratively. In each iteration, the
path loses a vertex. Hence, we can guarantee that eventually we obtain
an up-down path that is strictly higher than K and not longer. This is
the desired up-down path Q.

3.1 customizable contraction hierarchies 33

Note that this lemma does not exploit any property that is inherent
to CHs with a metric-independent contraction ordering and is thus
applicable to every CH.

Given this technical lemma, we can prove the correctness of the
second variant of our algorithm.

Theorem 4. We can remove an arc (x,y) if and only if an upper or interme-
diate triangle {x,y, z} exists with mP(x,y) = mP(x, z) +mP(z,y).

Proof. We need to show that for every pair of vertices s and t a shortest
up-down st-path exists, that uses no removed arc. We show that a
highest shortest up-down st-path has this property. As the metric
is customized, we know that a shortest up-down st-path K exists
before removing any arcs. If K does not contain an arc (x,y) for
which an upper or intermediate triangle {x,y, z} exists withmP(x,y) =
mP(x, z) +mP(z,y), then there is nothing to show. Otherwise, we
modify K by inserting z between x and y. This does not modify the
length of K, but we can no longer guarantee that K is an up-down
path. If {x,y, z} was an intermediate triangle, then K is still an up-down
path. However, it is strictly higher, as we added π−1(z) into the rank
sequence, which is guaranteed to be larger than π−1(x). If {x,y, z} was
an upper triangle, then K is no longer an up-down path. Fortunately,
using Lemma 1 we can transform K into an up-down path, that is no
longer and strictly higher. In both cases, the new K is an up-down
path or we apply the argument iteratively. As K gets strictly higher in
each iteration and the number of up-down paths is finite, we know
that we will eventually obtain a shortest up-down st-path where no
arc can be removed.

Further, we need to show that if no such triangle exists, then an
arc cannot be removed, i. e., we need to show that the only shortest
up-down path from x to y is the path consisting only of the (x,y)
arc. Assume that no such triangle and a further up-down path Q
existed. Q must contain a vertex beside x and y and all vertices in Q
must have the rank of x or higher. Consider the vertex z that comes
directly after x in Q. As x is contracted before z and y, an arc between
z and y must exist. Therefore, a triangle {x,y, z} must exist that is an
intermediate triangle, if z has a lower rank than y and is an upper
triangle, if z has a higher rank than y. However, we assumed that no
such triangle can exist. We have thus proven that we can remove an
arc (x,y) if and only if an upper or intermediate triangle {x,y, z} exists
with mP(x,y) = mP(x, z) +mP(z,y).

3.1.3.4 Parallelization

The basic customization can be parallelized by processing the arcs
(x,y) that depart within a level in parallel. Between levels, we need to
synchronize all threads using a barrier. As all threads only write to the
arc they are currently assigned to and only read from arcs processed

34 route planning in road networks

in a strictly lower level, we can thus guarantee that no read/write
conflict occurs. Hence, no locks or atomic operations are needed.

On most modern processors, perfect customization can be paral-
lelized analogously to basic customization: We iterate over all arcs de-
parting within a level in parallel and synchronize all threads between
levels. For every arc (x,y), we enumerate all upper and intermediate
triangles and update mP(x,y) accordingly.

Correctness of this algorithm is not obvious because the exact or-
der in which threads are executed influences intermediate results.
Consider two threads A and B. Suppose that thread A processes an
arc (x,yA) at the same time as thread B processes another arc (x,yB).
Furthermore, suppose that thread A updates mP(x,yA) at the same
moment as thread B enumerates an intermediate or upper (wrt. (x,yB))
triangle {x,yB,yA}. In this situation it is unclear what value for (x,yA)
thread B will read. However, we will show in the following that our
algorithm is correct as long it is guaranteed that thread B will either
read the old value or the new value. Then, the end result within each
level is always the same, independent of execution order. Overall
correctness follows.

In the proof of Theorem 2 we have shown that for every vertex x
and arc (x,yi) either the arc (x,yi) already has the shortest path
distance or an upper or intermediate triangle {x,yi,yj} exists such
that x→ yj → yi is a shortest path. No matter the order in which the
threads process the arcs, they do not modify shortest path weights.
This implies that the shortest path x → yj → yi is thus retained,
regardless of the execution order. This shortest path is not modified
and is guaranteed to exist before any arcs outgoing from the current
level are processed. Every thread is thus guaranteed to see it. However,
other weights can be modified. Fortunately, this is not a problem as
long as we can guarantee that no thread sees a value that is below the
corresponding shortest path distance. Therefore, if we can guarantee
that thread B either sees the old value or the new value, as is the case
on x86 processors, then the algorithm is correct.

Otherwise, if thread B can see some mangled combination of the
old value’s bits and new value’s bits, there are ways to mitigate the
problem. To still apply parallelization, however, we would need to use
locks or to make sure that all outgoing arcs of x are processed by the
same thread.

3.1.3.5 Directed Graphs

Up to now we have focused on customizing undirected graphs. If the
input graph G is directed, our toolchain works as follows: Based on
the undirected unweighted graph induced by G we compute a vertex
ordering π (Section 3.1.2.1), build the upward directed Contraction
Hierarchy G∧

π (Section 3.1.2.2), and optionally perform triangle pre-
processing (Section 3.1.2.3). For customization, however, we consider

3.1 customizable contraction hierarchies 35

two weights per arc in G∧
π , one for each direction of travel. One-

way streets are modeled by setting the weight corresponding to the
forbidden traversal direction to ∞. With respect to π we define an
upward metric mu and a downward metric md on G∧

π . For each
arc (x,y) ∈ G in the directed input graph with input weight w(x,y),
we set mu(x,y) = w(x,y) if π−1(x) < π−1(y), i. e., if x is ordered
before y; otherwise, we set md(x,y) = w(x,y). All other values of
mu and md are set to ∞. In other words, each arc (x,y) ∈ G∧

π of
the Contraction Hierarchy has upward weight mu(x,y) = w(x,y) if
(x,y) ∈ G, downward weight md(x,y) = w(y, x) if (y, x) ∈ G, and∞
otherwise.

The basic customization considers both metrics mu and md simul-
taneously. For every lower triangle {x,y, z} of (x,y) it sets

mu(x,y)← min{mu(x,y),md(x, z) +mu(z,y)},

md(x,y)← min{md(x,y),mu(x, z) +md(z,y)}.

The perfect customization can be adapted analogously. For every
intermediate triangle {x,y, z} of (x,y) the perfect customization sets

mu(x,y)← min{mu(x,y),mu(x, z) +mu(z,y)},

md(x,y)← min{md(x,y),md(x, z) +md(z,y)}.

Similarly, for every upper triangle {x,y, z} of (x,y) the perfect cus-
tomization sets

mu(x,y)← min{mu(x,y),mu(x, z) +md(z,y)},

md(x,y)← min{md(x,y),md(x, z) +mu(z,y)}.

The perfect witness search might need to remove an arc only in one
direction. It therefore produces, just as in the original CHs, two search
graphs: an upward search graph and a downward search graph. The
forward search in the query phase is limited to the upward search
graph and the backward search to the downward search graph, just as
in the original CHs. The arc (x,y) is removed from the upward search
graph if and only if an intermediate triangle {x,y, z} with mu(x,y) =
mu(x, z)+mu(z,y) exists or an upper triangle {x,y, z} withmu(x,y) =
mu(x, z) +md(z,y) exists. Analogously, the arc (x,y) is removed from
the downward search graph if and only if an intermediate triangle
{x,y, z} withmd(x,y) = md(x, z)+md(z,y) exists or an upper triangle
{x,y, z} with md(x,y) = md(x, z) +mu(z,y) exists.

3.1.3.6 Single Instruction Multiple Data

The weights attached to each arc in the CH can be replaced by an inter-
leaved set of k weights by storing for every arc a vector of k elements.
Vectors allow us to customize all k metrics in one go, amortizing
triangle enumeration time. Additionally, they allow us to use single
instruction multiple data (SIMD) operations. As we use essentially

36 route planning in road networks

two metrics to enable directed graphs, we can store both of them in
a 2-dimensional vector. This allows us to handle both directions in
a single processor instruction. Similarly, if we have k directed input
weights we can store them in a 2k-dimensional vector. (Depending
on the width of SIMD registers, we might require more than one
SIMD instruction per vector; nonetheless, we would still benefit from
amortized triangle enumeration, which is only done once per arc.)

The processor needs to support component-wise minimum and
saturated addition, i. e., a+ b = intmax must hold in the case of an
overflow. In the case of directed graphs it additionally needs to support
efficiently swapping neighboring vector components. A current SSE-
enabled processor supports all the necessary operations for 16-bit
integer components. For 32-bit integer saturated addition is missing.
There are two possibilities to work around this limitation: The first
is to emulate saturated-add using a combination of regular addition,
comparison and blend/if-then-else instruction. The second consists
of using 31-bit weights and use 231 − 1 as value for ∞ instead of
232 − 1. The algorithm only computes the saturated addition of two
weights followed by taking the minimum of the result and some other
weight, i. e., if computing min(a+ b, c) for all weights a, b and c is
unproblematic, then the algorithms works correctly. We know that a
and b are at most 231 − 1 and thus their sum is at most 232 − 2 which
fits into a 32-bit integer. In the next step we know that c is at most
231 − 1 and thus the resulting minimum is also at most 231 − 1.

3.1.3.7 Partial Updates

Until now we have only considered computing metrics from scratch.
However, in many scenarios this is overkill, as we know that only a
few edge weights of the input graph were changed. It is unnecessary
to redo all computations in this case. The ideas employed by our
algorithm are somewhat similar to those presented in [GSSV12], but
our situation differs as we know that we do not have to insert or
remove arcs. Denote by U =

{
((xi,yi),wnew

i)
}

the set of arcs whose
weights should be updated, where (xi,yi) is the arc ID and wnew

i the
new weight. Note that modifying the weight of one arc can trigger
further changes. However, these new changes have to be at higher
levels. We therefore organize U as a priority queue ordered by the
level of xi. We iteratively remove arcs from the queue and apply the
change. If new changes are triggered we insert these into the queue.
The algorithm terminates once the queue is empty.

Denote by (x,y) the arc that was removed from the queue and
by wnew its new weight and by wold its old weight. We first have
to check whether wnew can be bypassed using a lower triangle. For
this reason, we iterate over all lower triangles {x,y, z} of (x,y) and
perform wnew ← min{wnew,m(z, x) +m(z,y)}. Furthermore, if {x,y} is
an edge in the input graph G, we might have overwritten its weight

3.1 customizable contraction hierarchies 37

with a shortcut weight, which after the update might not be shorter
anymore. Hence, we additionally test that wnew is not larger than
the input weight. If after both checks wnew = m(x,y) holds, then no
change is necessary and no further changes are triggered. If wold and
wnew differ we iterate over all upper triangles {x,y, z} of (x,y) and test
whether m(x, z) +wold = m(y, z) holds; if so, the weight of the arc
(y, z) must be set to m(x, z) +wnew. We add this change to the queue.
Analogously we iterate over all intermediate triangles {x,y, z} of (x,y)
and queue up a change to (z,y) if m(x, z) +wold = m(z,y) holds.

How many subsequent changes a single change triggers heavily
depends on the metric and can significantly vary. Slightly changing
the weight of a dirt road has near to no impact whereas changing
a heavily used highway segment will trigger many changes. In the
game setting such largely varying running times are undesirable as
they lead to lag-peaks. We propose to maintain a queue into which
all changes are inserted. Every round a fixed amount of time is spent
processing elements from this queue. If time runs out before the queue
is emptied the remaining arcs are processed in the next round. This
way costs are amortized resulting in a constant workload per turn. The
downside is that as long the queue is not empty some distance queries
will use outdated data. How much time is spent each turn updating
the metric determines how long an update needs to be propagated
along the whole graph.

3.1.4 Queries

In this section, we describe how to answer distance queries, i. e., given
a customized metric, we compute the distance in G between two
vertices s and t by constructing a shortest up-down st-path in G∧

π . We
further describe how to unpack this path into a shortest path in G.

3.1.4.1 Basic Query Algorithm

The basic query runs two instances of Dijkstra’s algorithm on G∧
π

from s and from t. If G is undirected, then both searches use the same
metric. Otherwise if G is directed the search from s uses the upward
metric mu and the search from t the downward metric md. In either
case in contrast to [GSSV12] they operate on the same upward search
graph G∧

π . Once the radius of one of the two searches is larger than the
shortest path found so far, we stop the search because we know that
no shorter path can exist. We alternate between processing vertices in
the forward search and processing vertices in the backward search.

3.1.4.2 Stalling

We implemented a basic version of an optimization presented in
[GSSV12; SS12a] called stall-on-demand. The optimization exploits

38 route planning in road networks

that the shortest strictly upward sv-path in G∧
π can be longer than

the shortest sv-path in G∗π, which can go up and down arbitrarily.
The search from s only finds upward paths and if we observe that an
up-down path exists that is not longer, then we can prune the upward
search. Denote by x the vertex removed from the queue. We iterate
over all outgoing arcs (x,y) and test whether d(x) > m(x,y) + d(y)
holds. If this is the case for any arc, we prune x.

If d(x) > m(x,y) + d(y) holds, then pruning is correct because all
subpaths of shortest up-down paths must be shortest paths and the
upward path ending at x is not shortest path as a shorter up-down
path through y exists. We can also prune when d(x) > m(x,y) + d(y),
but a different argument is needed. To the best of our knowledge,
correctness has so far not been proven for the d(x) = m(x,y) + d(y)
case. Notice that we do not exploit any special properties of metric
independent orders and thus our proof works for every CH.

Theorem 5. The upward search can be pruned if d(x) > m(x,y) + d(y).

Proof. We show that for every pair of vertices s and t an unprunable,
shortest, up-down st-path exists. Our proof relies on Lemma 1 which
orders paths by height and states that st-path that are no up-down
paths can be transformed into up-down paths that are no longer and
strictly higher. We know that some shortest st-path K exists. If K
is not pruned, then there is nothing to show. If K is pruned, then
there exists a vertex x on K at which the search is pruned. Without
loss of generality we assume that x lies on the upward part of K.
Further, there must exist a vertex y and a path Q from s to x going
through y such that Q is no longer than the sx-prefix of K. Consider
the path R obtained by concatenating Q with the xt-suffix of K. R
is by construction not longer than K. If x is the highest vertex on K
then R is an up-down path and R is strictly higher. Otherwise, R is
no up-down path, but using Lemma 1 R can be transformed into an
up-down path that is strictly higher and no longer. In both cases, R is
no longer and strictly higher. Either, R is unprunable or we apply the
argument iteratively. As there are only finitely many up-down paths
and each iteration increases the height of R, we eventually end up at
an unprunable, shortest, up-down st-path.

3.1.4.3 Elimination Tree Query Algorithm

We precompute for every vertex its parent’s vertex ID in the elimina-
tion tree. This allows us to efficiently enumerate all vertices in SS(s)
and SS(t) at query time, increasingly by rank.

We store two tentative distance arrays df(v) and db(v). Initially
these are all set to∞. In a first step we compute the lowest common
ancestor (LCA) x of s and t in the elimination tree. We do this by
simultaneously enumerating all ancestors of s and t by increasing
rank until a common ancestor is found. In a second step we iterate

3.1 customizable contraction hierarchies 39

s t

x

`

Figure 3.7: The union of the darkgray and
lightgray areas is the search space of s. Analo-
gously the union of the darkgray and middlegray
areas is the search space of t. The darkgray area
is the intersection of both search spaces. The dot-
ted arcs start in the search space of s, but not in
the search space of t. Analogously the dashed
arcs start in the search space of t, but not in the
search space of s. The solid arcs start in the inter-
section of the two search spaces. The vertex x is
the LCA of s and t.

over all vertices y on the tree-path from s to x and relax all forward
arcs of such y. In a third step we do the same for all vertices y from t

to x in the backward search. In a final fourth step we iterate over all
vertices y from x to the root r and relax all forward and backward
arcs. Further, in the fourth step we also determine the vertex z that
minimizes df(z) + db(z). A shortest up-down path must exist that
goes through z. Knowing z is necessary to determine the shortest
path distance and to compute the sequence of arcs that compose the
shortest path. In a fifth cleanup step we iterate over all vertices from s

and t to the root r to reset all df and db to ∞. This fifth step avoids
having to spend O(n) running time to initialize all tentative distances
to∞ for each query. Consider the situation depicted in Figure 3.7. In
the first step the algorithm determines x. In the second step it relaxes
all dotted arcs and the tree arcs departing in the lightgray area. In the
third step it relaxes all dashed arcs and the tree arcs departing in the
middlegray area. In the fourth step the solid arcs and the remaining
tree arcs follow.

The elimination tree query can be combined with the perfect witness
search. Before pruning any arc, we compute the elimination tree. We
then prune the arcs. It is now possible that a vertex has an ancestor in
the tree that is not in its pruned search space. However, we can still
guarantee that every vertex in the pruned search space is an ancestor
and this is enough to prove the query correctness. To avoid relaxing
the outgoing arcs of an ancestor outside of the search space, we prune
vertices whose tentative distance df(x) respectively db(x) is∞.

Contrary to the approaches based upon Dijkstra’s algorithm the
elimination tree query approach does not need a priority queue. This
leads to significantly less work per processed vertex. Unfortunately
the query must always process all vertices in the search space. Luckily,
our experiments show that for random queries with s and t sampled
uniformly at random the query time ends up being lower for the

40 route planning in road networks

elimination tree query. If s and t are close in the original graph, the
Dijkstra-based approaches are faster.

3.1.4.4 Path Unpacking

All shortest path queries presented only compute shortest up-down
paths. This is enough to determine the distance of a shortest path in the
original graph. However, if the sequence of edges that form a shortest
path should be computed, then the up-down path must be unpacked.
The original CH of [GSSV12] unpacks an up-down path by storing for
every arc (x,y) the vertex z of the lower triangle {x,y, z} that caused
the weight at m(x,y). This information depends on the metric and
we want to avoid storing additional metric-dependent information.
We therefore resort to a different strategy: Denote by p1 . . . pk the up-
down path found by the query. As long as a lower triangle {pi,pi+1, x}
of an arc (pi,pi+1) exists with m(pi,pi+1) = m(x,pi) +m(x,pi+1),
our algorithm inserts the vertex x between pi and pi+1 into the path.

3.1.5 Experiments

In this section, we present an extensive experimental evaluation of the
algorithms introduced and described before.

compiler and machine . We implemented our algorithms in
C++, using g++ 4.7.1 with -O3 for compilation. The customization
and query experiments were run on a dual 8-core Intel Xeon E5-2670

processor, which is based on the Sandy Bridge architecture, clocked at
2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB
of L2 cache. The order computation experiments reported in Table 3.2
were run on a single core of an Intel Core i7-2600K processor.

metric-dependent orders . Most publications on applications
and extensions of Contraction Hierarchies use greedy orders in the
spirit of [GSSV12], but details of vertex order computation and witness
search vary. For reproducibility, we describe our precise approach in
this section, extending on the general description of metric-dependent
CH preprocessing given in Section 3.1.1.

Our witness search aborts once it finds some path shorter than
the shortcut—or when both forward and backward search each have
settled at most p vertices. For most experiments we choose p = 50.
The only exception is the distance metric on road graphs, where
we set p = 1500. We found that a higher value of p increases the
time per witness search but leads to sparser cores. For the distance
metric we needed a high value because otherwise our cores get too
dense. This effect did not occur for the other weights considered
in the experiments. Our weighting heuristic is similar to the one
of [ADGW12]. We denote by L(x) a value that estimates the level of

3.1 customizable contraction hierarchies 41

Table 3.1: Benchmark instances. We report the number of vertices and di-
rected arcs, as well as the number of edges in the induced undi-
rected graph. For comparison, we also report the running time
of Dijkstra’s algorithm (with stop criterion) averaged over 10 000

st-queries, where s and t are chosen uniformly at random.

Instance # Vertices # Arcs # Edges Symmetric? Dij. [ms]

Karlsruhe 120 412 302 605 154 869 no 6

TheFrozenSea 754 195 5 815 688 2 907 844 yes 58

Europe 18 010 173 42 188 664 22 211 721 no 1 560

a vertex x. Initially all L(x) are 0. If x is contracted, then for every
incident edge {x,y} we perform L(y)← max{L(y),L(x)+ 1}. We further
store for every arc a a hop length h(a). This is the number of arcs that
the shortcut represents if fully unpacked. Denote by D(x) the set of
arcs removed if x is contracted and by A(x) the set of arcs that are
inserted. Note that A(x) is not necessarily a full clique because of the
witness search and because some edges may already exist. We greedily
contract a vertex x that minimizes an importance I(x) defined by

I(x) = L(x) +
|A(x)|

|D(x)|
+

∑
a∈A(x) h(a)∑
a∈D(x) h(a)

.

We maintain a priority queue that contains all vertices weighted by
I. Initially all vertices are inserted with their exact importance. As
long as the queue is not empty, we remove a vertex x with minimum
importance I(x) and contract it. This modifies the importance of other
vertices. However, our weighting function is chosen such that only
the importance of adjacent vertices is influenced, if the witness search
was perfect. We therefore only update the importance values of all
vertices y in the queue that are adjacent to x. In practice, with a
limited witness search, we sometimes choose a vertex x with a sightly
suboptimal I(x). However, preliminary experiments have shown that
this effect can be safely ignored. Hence, for the metric-dependent CH
experiments presented in this section, we do not use lazy updates or
periodic queue rebuilding as proposed in [GSSV12].

instances . We evaluate three large instances of practical relevance
in detail. In Section 3.1.5.8 we provide summarized experiments on
further instances. The sizes of our main test instances are reported
in Table 3.1: The DIMACS Europe graph3 was provided by PTV4 for
the DIMACS challenge [DGJ09]. The vertex positions are depicted in
Figure 3.8. It is the standard benchmarking instance used by many

3 Visit http://i11www.iti.kit.edu/resources/roadgraphs.php for details on how to
acquire this graph.

4 http://www.ptvgroup.com

http://i11www.iti.kit.edu/resources/roadgraphs.php
http://www.ptvgroup.com

42 route planning in road networks

Table 3.2: Orders. Duration of order computation in seconds, without paral-
lelization. KaHIP was parametrized for quality only, disregarding
running time (as part of the metric-independent, first phase).

Instance MetDep [s] Metis [s] KaHIP [s]

Karlsruhe 4.1 0.5 < 1 532

TheFrozenSea 1 280.4 4.7 < 22 828

Europe 813.5 131.3 < 249 082

research papers on route planning in road networks. Note that besides
roads it also contains a few ferries to connect Great Britain and some
other islands with the continent. The Europe graph analyzed here, is
its largest strongly connected component, which is a common method
to remove bogus vertices. The graph is directed, and we consider
two different weights. The first weight is the travel time and the
second weight is the straight-line distance between two vertices on
a perfect Earth sphere. Note that in the input data highways are
often modeled using only a small number of vertices compared to
the streets going through cities. This differs from other data sources,
such as OpenStreetMap (http://www.openstreetmap.org) that have
a high number of vertices on highways to model road bends. As
demonstrated in Section 3.1.5.8, degree-2 vertices do not hamper the
performance of CHs.

(a) DIMACS Eu-
rope [DGJ09]

(b) TheFrozenSea
[Stu12]

Figure 3.8: Main
benchmarks.

The Karlsruhe graph is a subgraph of the PTV graph for a larger
region around Karlsruhe. We consider the largest connected compo-
nent of the graph induced by all vertices with a latitude between 48.3°
and 49.2°, and a longitude between 8° and 9°.

The TheFrozenSea graph is based on the largest Star Craft map
presented in [Stu12]. The map is composed of square tiles having at
most eight neighbors and distinguishes between walkable and non-
walkable tiles. These are not distributed uniformly, but rather form
differently-sized pockets of freely walkable space alternating with
choke points of very limited walkable space. The corresponding graph
contains for every walkable tile a vertex and for every pair of adjacent
walkable tiles an edge. Diagonal edges are weighted by

√
2, while

horizontal and vertical edges have weight 1. The graph is symmetric,
i. e., for each forward arc there is a backward arc, and contains large
grid subgraphs.

For comparability with other works we report in Table 3.1 the time
needed by Dijkstra’s algorithm. Our implementation uses a 4-ary heap.
As usual, it is uni-directional and employs a stopping criterion for
point-to-point queries.

http://www.openstreetmap.org

3.1 customizable contraction hierarchies 43

3.1.5.1 Orders

We analyze three different vertex orders: 1) The greedy metric-depen-
dent order in the spirit of [GSSV12]. We refer to it as “MetDep” in
the tables. 2) The Metis 5.0.1 graph partitioning package contains a
tool called ndmetis to create ND-orders. 3) KaHIP 0.61 provides only
graph partitioning. We therefore implemented a very basic nested
dissection computation on top of it: For every graph we iteratively
compute bisections with different random seeds using the “strong”
configuration of KaHIP, until for ten consecutive runs no better cut is
found. We recursively bisect the graph until the parts are too small
for KaHIP to handle and assign the order arbitrarily in these small
parts. We set the imbalance for KaHIP to 20%. Note that our program
is solely tuned for quality, completely disregarding running time. This
does not imply that the original KaHIP package is slow. Table 3.2
reports the times needed to compute the orders. Interestingly, Metis is
even faster than the metric-dependent greedy vertex ordering strategy.

resulting ch sizes In Table 3.3, we report the resulting CH sizes
for various approaches. Computing a CH on Europe without witness
search with the greedy, metric-dependent order is infeasible, even using
the Contraction Graph data structure. This is also true if we only want
to count the number of arcs: We aborted calculations after several days.
However, we can state with certainty that there are at least 1.3× 1012
arcs in the CH, and the maximum upward vertex degree is at least
1.4× 106. As the original graph has only 4.2× 107 arcs, it is safe to
assume that, using this order, it is impossible to achieve a speedup
over Dijkstra’s algorithm on the input graph. However, at least on the
Karlsruhe graph we can compute the CH without witness search and
perform a perfect witness search. The numbers show that the heuristic
witness search employed by [GSSV12] is nearly optimal. Furthermore,
the numbers clearly show that using metric-dependent orders in a
metric-independent setting, i. e., without witness search, results in
unpractical CH sizes. However, they also show that a metric-dependent
order exploiting the weight structure dominates ND-orders.

In Figure 3.9 we plot the number of arcs in the search space vs the
number of vertices. The plots show that the KaHIP order significantly
outperforms the Metis order on the road graphs whereas the situation
is a lot less clear on the game map where the plots suggest nearly a tie.
KaHIP only slightly outperforms Metis with perfect customization.

Table 3.4 examines the elimination tree. Most noticeably, it has a
relatively small height compared to the number of vertices in G. Note
that the height of the elimination tree corresponds5 to the number of
vertices in the (undirected) search space.

5 The numbers in Table 3.3 and Table 3.4 deviate a little because the search spaces in
the former table are sampled while in the latter we compute precise values.

44 route planning in road networks

Table 3.3: Size of the Contraction Hierarchies for different instances and or-
ders. We report the average number of vertices and arcs reachable
in the upward search space of a vertex. This number varies depend-
ing on whether a witness search is performed or not. It also varies
depending on whether we follow one-way streets in both direction
or not. We also report the number of triangles. As an indication
for query performance, we report the average search space size in
vertices and arcs, by sampling the search space of 1000 random
vertices. Metis and KaHIP orders are metric-independent. We re-
port resulting figures after applying different variants of witness
search. A heuristic witness search is one that exploits the metric in
the preprocessing phase. A perfect witness search is described in
Section 3.1.3.

Average upward search space size

Witness
search

Arcs [·103] # Triangles unweighted weighted

Order undir. upward [·103] # Vertices # Arcs # Vertices # Arcs

K
ar

ls
ru

he

MetDep
none 21 926 17 661 37 439 858 5 870 15 786 622 5 246 11 281 564

heuristic — 244 — — — 108 503

perfect — 239 — — — 107 498

Metis
none 478 463 2 590 164 6 579 163 6 411

perfect — 340 — — — 152 2 903

KaHIP
none 528 511 2 207 143 4 723 142 4 544

perfect — 400 — — — 136 2 218

Th
eF

ro
ze

nS
ea

MetDep heuristic — 6 400 — — — 1 281 13 330

Metis
none 21 067 21 067 601 846 676 92 144 676 92 144

perfect — 10 296 — — — 644 32 106

KaHIP
none 25 100 25 100 864 041 674 89 567 674 89 567

perfect — 10 162 — — — 645 24 782

Eu
ro

pe

MetDep heuristic — 33 912 — — — 709 4 808

Metis
none 70 070 65 546 1 409 250 1 291 464 956 1 289 453 366

perfect — 47 783 — — — 1 182 127 588

KaHIP
none 73 920 69 040 578 248 652 117 406 651 108 121

perfect — 55 657 — — — 616 44 677

3.1 customizable contraction hierarchies 45

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
● ●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●●
●

●

● ●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●● ●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●
●

●

●
●

●

●●

●
●●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●
●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

● ●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

0

2,500

5,000

7,500

10,000

0 50 100 150 200

(a) Karlsruhe

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

● ●●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●●
●

●

●

●

●●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
● ●

●

● ●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

50,000

100,000

200 400 600 800

(b) TheFrozenSea

●

●

●

● ●

●

●

●●●●

●

●

●

●

●

●●●

●
●

●
●

●

●
●●

●

●

●
●●

●

●

●

●

●●●

●

●

●
●● ●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

● ●●

●

●
●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●
● ●

●

●

●

●

●

●

●●●
●

● ●
●●●●

●

●

●

● ●

●●

●

●

●

●●
●

●

●●

●

●

●

● ●●

●
●●

●
●

●

●
●●

●
●

●

●

●
●

●●

● ●

● ●
●

●
●

●

●●
●

●

●

●●

●
●●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●●
● ●

●● ●●

●

●

●
●

●

●
●

●● ●●●●

●●

●

●

●

●●

●

●●●

●●
●

●

●

●
● ●

●

●

●

●
●

●
●

●●
●● ●●

●
●

●●

●

●

●

●

●

●

●
●

●●●

●●● ●

●

●

●

●●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●●●● ●●●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●● ●

●

●

●

●

●
●●

●●●

●

●
●

●● ●

●

●

●
●

●●

●
●

●

● ●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

● ●●

●

● ●●

●

●

●

●

●● ● ●

●

●
●●

●

● ●

●

●

●

●●

●
●

●

●●

●

● ●

●

●

●

●

●●

●

●

●

●
●
● ●

●

●

●

●
●

●●

●

●

● ●

●

●

●●

●

●

●

●

● ●●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●●

●

●

●●

●

●
●

●

●

●●

●● ●

●●
● ●● ●●●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●
●

● ●

●

●

●

● ●
●

●

●●

●
●

●● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●●●

●
● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●
●

●●

●

●●

●

● ●

●●

● ●●

●

●
●

●

●

●●
● ●

●
●

●●●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●

●

●
●

●●

●
●●

●●

●●

●

●

●

●

● ●● ●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●●
●

●

●

●
●

● ● ●
●●

●
●

●●●

●●●
●

●

●

●●
●●●

●

● ●

●
●

●
●

● ●

●●

●
●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●
●

●●

●

●

●●●

●

●●●● ●

●

●

●●

●●

●●

●●

●
●● ●

●

●

●

●

●

●

●

●●

●

●

● ●●●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●
●

●

●
●

●

●

●
● ●

●
●

●●
●

● ●

●

●

●●● ●●

●

●

●
●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

0

250,000

500,000

750,000

1,000,000

0 500 1,000 1,500 2,000

(c) Europe

Figure 3.9: The number of vertices (horizontal) versus the number of arcs
(vertical) in the search space of 1000 random vertices. The red hol-
low circles represent KaHIP, and the blue filled triangles represent
Metis.

46 route planning in road networks

Table 3.4: Elimination tree characteristics. Note that unlike in Table 3.3, these
values are exact and not sampled over a random subset of vertices.
We also report upper bounds on the treewidth of the input graphs,
after dropping the directions of arcs.

Children Height Upper bound
of TreewidthInstance Order avg. max. avg. max.

Karlsruhe
Metis 1 5 163.48 211 92

KaHIP 1 5 142.19 201 72

TheFrozenSea
Metis 1 3 675.61 858 282

KaHIP 1 3 676.71 949 287

Europe
Metis 1 8 1283.45 2017 876

KaHIP 1 7 654.07 1232 479

The treewidth of a graph is a measure widely used in theoretical
computer science, deeply coupled with the notion of chordal super-
graphs and vertex separators. See [BK10] for details. The authors show
in their Theorem 6 that the maximum upward degree du(v) over all
vertices v in G∧

π is an upper bound to the treewidth of a graph G. This
theorem yields a straightforward algorithm that gives us the upper
bounds presented in Table 3.4.

In Table 3.5 we evaluate the witness search performances for differ-
ent metrics. It turns out that the distance metric is the most difficult
one of the tested metrics. That the distance metric is more difficult
than the travel time metric is well known. However, it surprised us
that uniform and random metrics are easier than the distance metric.
We suppose that the random metric contains a few very long arcs
that are nearly never used. These could just as well be removed from
the graph resulting in a thinner graph with nearly the same shortest
path structure. The CH of a thinner graph with a similar shortest path
structure naturally has a smaller size. To explain why the uniform
metric behaves more similar to the travel time metric than to the dis-
tance metric, we have to realize that, on our data source, highways
do not have many degree-2 vertices in the input graph. Highways are
therefore also preferred by the uniform metric. We expect an instance
with more degree-2 vertices on highways to behave differently. Inter-
estingly, the heuristic witness search is perfect for a uniform metric.
We expect this effect to disappear on larger graphs.

Recall that a CH is a DAG, and in DAGs each vertex can be assigned
a level. If a vertex can be placed in several levels we put it in the lowest
level. Figure 3.10 illustrates the amount of vertices and arcs in each
level of a CH. The many highly ranked extremely thin levels are a
result of the top level separator clique: Inside a clique every vertex

3.1 customizable contraction hierarchies 47

Table 3.5: Detailed analysis of the size of CHs after perfect witness search.
We evaluate uniform, random and distance weights on the Karl-
sruhe input graph. Random weights are sampled from [0, 10000].
The distance weight is the straight distance along a perfect Earth
sphere’s surface. All weights respect one-way streets of the input
graph.

Witness
search

Avg. weighted upw. search space

Instance Metric Order # Upward arcs # Vertices # Arcs

Karlsruhe

Distance

MetDep
none 8 000 880 3 276 4 797 224

heuristic 295 759 283 2 881

perfect 295 684 281 2 873

Metis perfect 382 905 159 3 641

KaHIP perfect 441 998 141 2 983

Uniform

MetDep
none 5 705 168 2 887 3 602 407

heuristic 272 711 151 808

perfect 272 711 151 808

Metis perfect 363 310 153 2 638

KaHIP perfect 426 145 136 2 041

Random

MetDep
none 6 417 960 3 169 4 257 212

heuristic 280 024 160 949

perfect 276 742 160 948

Metis perfect 361 964 154 2 800

KaHIP perfect 424 999 138 2 093

Europe Distance
MetDep heuristic 39 886 688 4 661 133 151

Metis perfect 53 505 231 1 257 178 848

KaHIP perfect 60 692 639 644 62 014

48 route planning in road networks

0

25,000

50,000

75,000

100,000

4 32 256

(a) Karlsruhe/KaHIP

0

25,000

50,000

75,000

100,000

4 32 256

(b) Karlsruhe/Metis

0

1,000,000

2,000,000

3,000,000

4 32 256

(c) TheFrozenSea/KaHIP

0

1,000,000

2,000,000

3,000,000

4 32 256

(d) TheFrozenSea/Metis

0

5,000,000

10,000,000

15,000,000

4 32 256

(e) Europe/KaHIP

0

5,000,000

10,000,000

15,000,000

4 32 256 2,048

(f) Europe/Metis

Figure 3.10: The number of vertices (y-axis) per level (x-axis) is represented
by the blue dotted line. The number of arcs departing in each
level is represented by the red solid line, and the number of
lower triangles in each level is represented by the green dashed
line. Warning: In contrast to Figure 3.11, these figures have a
logarithmic x-scale.

3.1 customizable contraction hierarchies 49

Table 3.6: Construction of the Contraction Hierarchy. We report the time in
seconds required to compute the arcs in G∧

π given a KaHIP ND-
order π. No witness search is performed. No weights are assigned.

Instance Dyn. Adj. Array Contraction Graph

Karlsruhe 0.6 <0.1

TheFrozenSea 490.6 3.8

Europe 305.8 15.5

must be on its own level. A few big separators therefore significantly
increase the level count.

3.1.5.2 CH Construction

Table 3.6 reports the time required to compute the unweighted CH G∧
π

from a given KaHIP nested dissection order π. Results show that
our specialized Contraction Graph data structure, described in Sec-
tion 3.1.2.2, dramatically improves performance over the commonly
used dynamic adjacency structure, e. g., as in [GSSV12]. However, to
be fair, our approach cannot immediately be extended to directed or
weighted graphs, without applying our customization scheme. We
do not report numbers for the hash-based approach of [Zei13] as it is
fully dominated.

3.1.5.3 Triangle Enumeration

We first evaluate the running time of the adjacency-array-based trian-
gle enumeration algorithm. Figure 3.11 clearly shows that most time
is spent enumerating the triangles of the lower levels. This justifies
our suggestion to only precompute the triangles for the lower levels as
these are the levels where the optimization is most effective. However,
precomputing more levels does not hurt if enough memory is available.
We propose to determine the threshold level up to which triangles are
precomputed based on the size of the available unoccupied memory.
On modern server machines such as our benchmarking machine there
is enough memory to precompute all levels. The memory consump-
tion is summarized in Table 3.7. However, note that precomputing all
triangles is prohibitive in the game scenario as less available memory
should be expected.

3.1.5.4 Customization

In Table 3.8 we report the times needed to compute a customized
metric using the basic customization algorithm. A first observation
is that on the road graphs the KaHIP order leads to a faster cus-
tomization whereas on the game map Metis dominates. Using all
optimizations presented we customize Europe in below one second.

50 route planning in road networks

0

20,000

40,000

0 50 100 150 200

(a) Karlsruhe/KaHIP

0

10,000

20,000

30,000

40,000

0 50 100 150 200

(b) Karlsruhe/Metis

0

1,000,000

2,000,000

3,000,000

0 250 500 750

(c) TheFrozenSea/KaHIP

0

1,000,000

2,000,000

3,000,000

0 250 500 750

(d) TheFrozenSea/Metis

0

2,000,000

4,000,000

6,000,000

8,000,000

0 250 500 750 1,000 1,250

(e) Europe/KaHIP

0

1,000,000

2,000,000

3,000,000

4,000,000

0 500 1,000 1,500 2,000

(f) Europe/Metis

Figure 3.11: The number of lower triangles (y-axis) per level (x-axis) is repre-
sented by the blue dashed line, and the time needed to enumer-
ate all of them per level is represented by the red solid line. The
time unit is 100 ns. If the time curve thus rises to 1,000,000 on
the plot, the algorithm needs 0.1 seconds. Warning: In contrast
to Figure 3.10, these figures do not have a logarithmic x-scale.

3.1 customizable contraction hierarchies 51

Table 3.7: Precomputed triangles. As show in Section 3.1.2.3, the memory
needed is proportional to 2t+m+ 1, where t is the triangle count
and m the number of arcs in the CH. We use 4 byte integers.
We report t and m for precomputing all levels (“full”) and all
levels below a reasonable threshold level (“partial”). We further
indicate the percentage of total unaccelerated enumeration time
spent below the given threshold level. We chose the threshold level
such that this factor is about 33%.

Karlsruhe TheFrozenSea Europe

Metis KaHIP Metis KaHIP Metis KaHIP

fu
ll

Triangles [10³] 2 590 2 207 601 846 864 041 1 409 250 578 247

CH arcs [10³] 478 528 21 067 25 100 70 070 73 920

Memory [MB] 22 19 4 672 6 688 11 019 4 694

pa
rt

ia
l

Threshold level 16 11 51 54 42 17

Triangles [10³] 507 512 126 750 172 240 147 620 92 144

CH arcs [10³] 367 393 13 954 15 996 58 259 59 282

Memory [MB] 5 5 1 020 1 375 1 348 929

Enum. time [%] 33 32 33 33 32 33

Table 3.8: Basic customization performance. The input graphs are assumed to
be directed, i.e., separate upward and downward metrics are used.
We show the impact of enabling SSE, precomputing triangles (Pre.
trian.), multi-threading (# Thr.), and customizing several metric
pairs at once.

Karlsruhe TheFrozenSea Europe

Pre. # Metrics Metis KaHIP Metis KaHIP Metis KaHIP

SSE trian. # Thr. Pairs time [s] time [s] time [s] time [s] time [s] time [s]

no none 1 1 0.0567 0.0468 7.88 10.08 21.90 10.88

yes none 1 1 0.0513 0.0427 7.33 9.34 19.91 9.55

yes all 1 1 0.0094 0.0091 3.74 3.75 7.32 3.22

yes all 16 1 0.0034 0.0035 0.45 0.61 1.03 0.74

yes all 16 2 0.0035 0.0033 0.66 0.76 1.34 1.05

yes all 16 4 0.0040 0.0048 1.19 1.50 2.80 1.66

52 route planning in road networks

Table 3.9: Detailed basic customization performance on TheFrozenSea. We
show the impact of exploiting undirectedness, customizing several
metrics at once, reducing the bitwidth of the metric, enabling SSE,
multi-threading (# Thr.), and precomputing triangles (Pre. trian.).
Note that the order in which improvements are investigated is
different from Table 3.8. Also note that results are based on the
Metis order as Table 3.8 shows that KaHIP is outperformed.

Metric Precomputed Customization Amortized

Undir. # Metrics bits SSE # Threads triangles time [s] time [s]

no 2 (up & down) 32 no 1 none 7.88 7.88

yes 1 32 no 1 none 6.65 6.65

yes 4 32 no 1 none 9.36 2.34

yes 4 32 yes 1 none 8.51 2.13

yes 8 16 yes 1 none 8.52 1.06

yes 8 16 yes 2 none 5.00 0.63

yes 8 16 yes 2 all 2.16 0.27

yes 8 16 yes 16 all 0.63 0.08

When amortized6, we even achieve 415 ms which is only slightly above
the non-amortized 347 ms reported in [DW13] for CRP. Note that their
experiments were run on a different machine with a faster clock but
2× 6 instead of 2× 8 cores, while using a turn-aware data structure,
making an exact comparison difficult.

Previous works have tried to accelerate the preprocessing phase
of the original two-phase CH to the point that it can be used in a
similar scenario as our technique. A fast preprocessing phase can be
viewed as form of customization phase. In [GSSV12] a sequential pre-
processing time of 451 s was reported. This compares best to our 9.5 s
sequential customization time. Note that the machine on which the
451 s were measured is slower than our machine. However, the gap in
performance is large enough to conclude that we achieve a significant
speedup. Furthermore, [ADGW12] report a CH preprocessing time of
2 min when parallelized on 12 cores. This compares best against our
415 ms parallelized amortized customization time. While the machine
used in [ADGW12] is slightly older and slower than our machine and
the number of cores differs (12 vs. 16), again, the performance gap is
large enough to safely conclude that a significant speedup is present.
Besides these differences, both CH preprocessing experiments were
only performed for travel time weights. To the best of our knowledge,
nobody has been able to match performance achieved for travel time
weights for less well-behaved weights, such as travel distance. For
example, CH preprocessing times reported in [GSSV12] show at least

6 We refer to a server scenario of multiple active users that require simultaneous
customization, e. g., due to traffic updates.

3.1 customizable contraction hierarchies 53

Table 3.10: Partial update performance. We report time required in millisec-
onds and number of arcs changed for partial metric updates. We
report median, average and maximum over 10,000 runs. In each
run we change the upward and the downward weight of a single
random arc in G to random values in [0, 105]. The metric is reset
to initial state between runs. Timings are sequential without SSE.
No triangles were precomputed.

Arcs removed from queue Partial update [ms]

med. avg. max. med. avg. max.

Karlsruhe
Metis 2 3.5 857 0.001 0.003 0.9

KaHIP 3 3.7 466 0.001 0.002 1.0

TheFrozenSea
Metis 6 311.7 14 494 0.008 1.412 100.2

KaHIP 6 343.1 19 417 0.008 1.490 164.6

Europe
Metis 2 10.2 14 188 0.005 0.052 134.6

KaHIP 3 9.8 8 202 0.008 0.045 81.0

a factor of 2 difference in performance on distance over travel time
metric on any of the considered benchmarks. This contrasts with CCH,
for which basic customization and elimination-tree query performance
are provably independent of the metric considered.

Unfortunately, the optimizations illustrated in Table 3.8 are pretty
far from what is possible with the hardware normally available in
a game scenario. Regular PCs do not have 16 cores and one cannot
clutter up the whole RAM with several GB of precomputed triangles.
We therefore ran additional experiments with different parameters
and report the results in Table 3.9. The experiments show that it is
possible to fully customize TheFrozenSea in an amortized7 time of
1.06s without precomputing triangles or using multiple cores. However
a whole second is still too slow to be usable, as graphics, network and
game logic also require resources.

We therefore evaluated the time needed by partial updates as de-
scribed in Section 3.1.3.7. We report our results in Table 3.10, also for
the road networks. The median, average and maximum running times
significantly differ. There are a few arcs that trigger a lot of subse-
quent changes, whereas for most arcs a weight change has nearly no
effect. The explanation is that highway arcs and choke point arcs are
part of many shortest paths, and thus updating such an arc triggers
significantly more changes. On the Europe road network, the maxi-
mum observed time for a partial CCH update (81.0 ms) is similiar to
CRP (73.77 ms), but the average time is much lower for CCH (0.045 ms)
than for CRP (17.94 ms), cf. [DGPW15].

7 We refer to a multiplayer scenario, where, e. g., fog of war requires player-specific
simultaneous customization.

54 route planning in road networks

Table 3.11: Perfect Customization. We report the time required to turn an
initial metric into a perfect metric. Runtime is given in seconds,
without use of SSE.

Karlsruhe TheFrozenSea Europe

Thr. Pre. trian. Metis KaHIP Metis KaHIP Metis KaHIP

1 none 0.15 0.13 30.54 33.76 67.01 32.96

16 none 0.03 0.02 3.26 4.37 14.41 5.47

1 all 0.05 0.05 8.95 12.51 23.93 10.75

16 all 0.01 0.01 1.93 2.29 3.50 2.35

Finally, we report the running times of the perfect customization
algorithm in Table 3.11. The required running time is about three times
the running time needed by the basic customization. Recall that the
basic customization enumerates all lower triangles, i. e., visits every
triangle once, whereas the perfect customization also enumerates all
intermediate and upper triangles, i. e., visits every triangle three times.

3.1.5.5 Query Performance

We experimentally evaluated the running times of the query algo-
rithms. For this we ran 106 shortest path distance queries with the
source and target vertices picked uniformly at random. The presented
times are averaged running times on a single core without SSE.

In Table 3.12– 3.14 we compare query performance for our dif-
ferent algorithmic variants. The “MetDep+w” variant uses a metric-
dependent order and a non-perfect witness search as in [GSSV12].
The “Metis-w” and “KaHIP-w” variants use a metric-independent
order computed by Metis or KaHIP. Only a basic customization was
performed, i. e., no witness search was performed. The “Metis+w” and
“KaHIP+w” variants use the same metric-independent order but a
perfect customization followed by a perfect witness search was per-
formed. We evaluate three query variants. The “Basic” variant uses a
bidirectional variant of Dijkstra’s algorithm with stopping criterion.
The “Stalling” variant additionally uses the stall-on-demand opti-
mization as described in Section 3.1.4.2. Finally, we also evaluate the
elimination tree query and refer to it as “Tree”. This query requires
the existence of an elimination tree of low depth and is therefore not
available for metric-dependent orders. We ran our experiments on all
three of our main benchmark instances. Experiments on additional
instances are available in Section 3.1.5.8. For both road graphs, we
evaluate the travel-time and distance variants. We report the average
running time needed to perform a distance query, i. e., we do not
unpack the paths. We further report the average number of “visited”
vertices in the forward search. For the “basic” and “stalling” queries,

3.1 customizable contraction hierarchies 55

Table 3.12: Query performance in microseconds as well as the search space visited, averaged over 106

queries with source and target vertices picked uniformly at random. We use “visited” to
differentiate from the maximum reachable search space given in Table 3.3. If applicable,
we additionally report the number of vertices stalled, as well as the number of arcs
touched during the stalling test. Note that stalled vertices are not counted as visited.
All reported vertex and arc counts only refer to the forward search. We evaluate several
algorithmic variants. Each variant is composed of an input graph, a contraction order,
and whether a witness search is used. “+w” means that a witness search is used, whereas
“-w” means that no witness search is used. “MetDep+w” corresponds to the original
CHs. The metrics used for “-w” are directed and maximum. Results for Karlsruhe.
Table 3.13 and 3.14 contain the results for FrozenSea and Europe.

Visited up. search space Stalling Time

Instance Metric Variant Algorithm # Vertices # Arcs # Vertices # Arcs [µs]

K
ar

ls
ru

he

Tr
av

el
-T

im
e

MetDep+w Basic 81 370 — — 17

Stalling 43 182 167 227 16

Metis-w Basic 138 5 594 — — 62

Stalling 104 4 027 32 4 278 67

Tree 164 6 579 — — 33

KaHIP-w Basic 120 4 024 — — 48

Stalling 93 3 051 26 3 244 55

Tree 143 4 723 — — 25

Metis+w Basic 127 2 432 — — 32

Stalling 104 2 043 19 2 146 41

Tree 164 2 882 — — 17

KaHIP+w Basic 114 1 919 — — 27

Stalling 93 1 611 18 1 691 35

Tree 143 2 198 — — 14

D
is

ta
nc

e

MetDep+w Basic 208 1978 — — 57

Stalling 70 559 46 759 35

Metis-w Basic 142 5 725 — — 65

Stalling 115 4 594 26 4 804 75

Tree 164 6 579 — — 33

KaHIP-w Basic 123 4 117 — — 50

Stalling 106 3 480 17 3 564 59

Tree 143 4 723 — — 26

Metis+w Basic 138 3 221 — — 39

Stalling 115 2 757 21 2 867 50

Tree 164 3 604 — — 21

KaHIP+w Basic 122 2 626 — — 32

Stalling 106 2 302 14 2 350 43

Tree 143 2 956 — — 17

56 route planning in road networks

Table 3.13: Query performance. Continuation of Table 3.12.

Visited up. search space Stalling Time

Instance Metric Variant Algorithm # Vertices # Arcs # Vertices # Arcs [µs]

Th
eF

ro
ze

nS
ea

M
ap

-D
is

ta
nc

e

MetDep+w Basic 1 199 12 692 — — 539

Stalling 319 3 460 197 4 345 286

Metis-w Basic 610 81 909 — — 608

Stalling 578 78 655 24 79 166 837

Tree 676 92 144 — — 317

KaHIP-w Basic 603 82 824 — — 644

Stalling 560 74 244 50 74 895 774

Tree 674 89 567 — — 316

Metis+w Basic 567 28 746 — — 243

Stalling 474 25 041 86 25 445 333

Tree 676 31 883 — — 120

KaHIP+w Basic 578 22 803 — — 203

Stalling 475 19 978 81 20 138 276

Tree 674 24 670 — — 106

these are the vertices removed from the queue. For the “tree” query,
we regard every ancestor as “visited”. The numbers for the backward
search are analogous and therefore not reported. We also report the
average number of arcs relaxed in forward search of each query vari-
ant. Finally, we also report the average number of vertices stalled and
the average number of arcs that need to be tested in the stalling test.
Note that a stalled vertex is not counted as “visited”.

An important detail necessary to reproduce these results consists of
reordering the vertex IDs according to the contraction order. Prelimi-
nary experiments showed that this reordering results in better cache
behavior and a speed-up of about 2 to 3 because much query time is
spent on the topmost clique and this order ensures that these vertices
appear adjacent in memory.

As observed in [GSSD08; GSSV12], we confirm that the stall-on-
demand heuristic improves running times by a factor of 2–5 compared
to the basic algorithm for “greedy+w”. Interestingly, this is not the
case with any variant using a metric-independent order. This can be
explained by the density of the search spaces. While, the number of ver-
tices in the search spaces are comparable between metric-independent
orders and metric-dependent order, the number of arcs are not com-
parable and thus metric-independent search spaces are denser. As
consequence, we need to test significantly more arcs in the stalling-
test, which makes the test more expensive and therefore the additional
time spent in the test does not make up for the time economized in

3.1 customizable contraction hierarchies 57

Table 3.14: Query performance. Continuation of Table 3.12.

Visited up. search space Stalling Time

Instance Metric Variant Algorithm # Vertices # Arcs # Vertices # Arcs [µs]

Eu
ro

pe

Tr
av

el
-T

im
e

MetDep+w Basic 546 3 623 — — 283

Stalling 113 668 75 911 107

Metis-w Basic 1 126 405 367 — — 2 838

Stalling 719 241 820 398 268 499 2 602

Tree 1 291 464 956 — — 1 496

KaHIP-w Basic 581 107 297 — — 810

Stalling 418 75 694 152 77 871 857

Tree 652 117 406 — — 413

Metis+w Basic 1 026 110 590 — — 731

Stalling 716 83 047 271 89 444 951

Tree 1 291 126 403 — — 398

KaHIP+w Basic 549 41 410 — — 305

Stalling 418 33 078 117 34 614 425

Tree 652 45 587 — — 161

D
is

ta
nc

e

MetDep+w Basic 3 653 104 548 — — 2 662

Stalling 286 7 124 426 11 500 540

Metis-w Basic 1 128 410 985 — — 3 087

Stalling 831 291 545 293 308 632 3 128

Tree 1 291 464 956 — — 1 520

KaHIP-w Basic 584 108 039 — — 867

Stalling 468 85 422 113 87 315 1 000

Tree 652 117 406 — — 426

Metis+w Basic 1 085 157 400 — — 1 075

Stalling 823 124 472 247 127 523 1 400

Tree 1 291 177 513 — — 557

KaHIP+w Basic 575 56 386 — — 425

Stalling 467 46 657 101 47 920 578

Tree 652 61 714 — — 214

58 route planning in road networks

the actual search. We thus conclude that stall-on-demand is not useful,
when using metric-independent orders.

Very interesting is the comparison between the elimination tree
query and the basic query. The elimination tree query always explores
the whole search space. In contrast to the basic query, it does not
have a stopping criterion. However, the elimination tree query does
not require a priority queue. It performs thus less work per vertex
and arc than the basic query. Our experiments show, that the basic
query always explores large parts of the search space regardless of the
stopping criterion. The elimination tree query therefore does not visit
significantly more vertices. A consequence of this effect is that the time
spent in the priority queue outweighs the additional time necessary
to explore the remainder of the search space. The elimination tree
query is therefore always the fastest among the three query types
when using metric-independent orders. Combining a perfect witness
search with the elimination tree query results in the fastest queries for
metric-independent orders. However, the perfect witness search results
in three times higher customization times. Whether it is superior
therefore depends on the specific application and the specific trade-off
between customization and query running time needed.

The orders computed by KaHIP are nearly always significantly
better than those produced by Metis. However, significantly more
running time must be invested in the preprocessing phase to obtain
these better order. It therefore depends on the situation which order
is better. If the running time of the preprocessing phase is relevant,
then Metis seems to strike a very good balance between all criteria.
However, if the graph topology is fixed, as we expect it to be, then the
flexibility gained by using Metis is not worth the price. Interestingly,
on the game map KaHIP and Metis seem to be very close in terms
of search space size. The difference is only apparent when using the
perfect customization. For a setup with basic customization, the two
orders are nearly indistinguishable.

On travel-time, the metric-dependent orders outperform the metric-
independent orders. However, it is very interesting how close the
query times actually are. On the Europe graph, the basic query visits
about the same number of vertices, regardless of whether a metric-
dependent or the KaHIP order is used. The real difference lies in the
number of arcs that need to be relaxed. This number is significantly
higher with metric-independent orders. However, the effect this has on
the actual running times is comparatively slim. Using KaHIP without
perfect witness search results in an elimination tree query that is only
about 4 times slower than using the stalling query combined with
metric-dependent orders. If a perfect witness search is used then,
the gap is below a factor of 2. Further, the metric-dependent orders
only win because of the stall-on-demand optimization. The KaHIP

3.1 customizable contraction hierarchies 59

order combined with perfect customization outperforms the basic query
combined with metric-dependent orders.

It is well-known that metric-dependent CHs work significantly
better with the travel-time metric than with other less well behaved
metrics such as the geographic distance. For such metrics, the KaHIP
order outperforms the metric-dependent orders. For example the
basic query with perfect customization visits less vertices and less
arcs. This is very surprising, especially considering, that the metric-
dependent orders that we computed are better than those reported
in [GSSV12], i. e., the gap with respect to the original implementation
is even larger. However, combining the stalling query with metric-
dependent orders yields the smallest number of visited vertices and
relaxed arcs. Unfortunately, combining the stalling query with metric-
independent orders does not yield the same benefit and even makes
the query running times worse. Fortunately, the metric-independent
orders can be combined with the elimination tree query. As result,
the fastest variant is the combination of KaHIP order, perfect witness
search, and elimination tree query, which is over a factor of two faster
than stalling with the metric-dependent order. Interestingly, the latter
is even beaten when no perfect witness search is performed, but with
a significantly lower margin.

A huge advantage of metric-independent orders compared to metric-
dependent orders is that the resulting CH performs equally well
regardless of the weights of the input graph. The combination of
metric-independent order, elimination tree query and basic customiza-
tion results in a setup where the order in which the vertices are visited
and the order in which the arcs are relaxed during the query execution
does not even depend on the weights of the input graph. It is thus
impossible to construct a metric, where this setup performs badly.
This contrasts with the CH of [GSSV12], whose performances varies
significantly depending on the input metric.

In Table 3.15, we give a more in-depth experimental analysis of the
elimination tree query algorithm without perfect witness search. We
break the running times down into the time needed to compute the
least common ancestor (LCA), the time needed to reset the tentative
distances and the time needed to relax all arcs. We further report the
total distance query time, which is in essence the sum of the former
three. We additionally report the time needed to unpack the full path.
Our experiments show that the arc-relaxation phase clearly dominates
the running times. It is therefore not useful to further optimize the
LCA computation or to accelerate tentative distance resetting using,
e. g., timestamps. We only report path unpacking performance without
precomputed lower triangles. Using them would result in a further
speedup with a similar speed-memory trade-off as already discussed
for customization.

60 route planning in road networks

Table 3.15: Detailed elimination tree performance without perfect witness
search. We report running time in microseconds for the elimination-
tree-based query algorithms. We report the time needed to com-
pute the LCA, the time needed to reset the tentative distances, the
time needed to relax the arcs, the total time of a distance query,
and the time needed for full path unpacking as well as the average
number of vertices on such a path which is metric-dependent.

Distance query Path

LCA Reset Arc relax Total Unpack Length

[µs] [µs] [µs] [µs] [µs] [vert.]

Karlsruhe

Travel-Time
Metis 0.6 0.8 31.3 33.0 20.5

189.6
KaHIP 0.6 1.4 23.1 25.2 18.6

Distance
Metis 0.6 0.8 31.5 33.2 27.4

249.4
KaHIP 0.6 1.4 23.5 25.7 24.7

TheFrozenSea Map-Distance
Metis 2.7 3.1 310.1 316.5 220.0

596.3
KaHIP 3.0 3.2 308.7 315.5 270.8

Europe

Travel-Time
Metis 4.6 19.0 1471.2 1496.3 323.9

1390.6
KaHIP 3.4 9.9 399.4 413.3 252.7

Distance
Metis 4.7 19.0 1494.5 1519.9 608.8

3111.0
KaHIP 3.6 10.0 411.6 425.8 524.1

3.1.5.6 Comparison with Related Work

We conclude our experimental analysis on the DIMACS Europe road
network with a final comparison of related techniques, as shown in
Table 3.16. For Contraction Hierarchies (CH), we report results based
on implementations by [DGPW15; GSSV12] and ourselves, covering
different trade-offs in terms of preprocessing versus query speed.
More precisely, we observe that our own CH implementation (used
for detailed analysis and comparison in Section 3.1.5.1–3.1.5.5) has
slightly slower queries on travel time metric but factor of 2.1 faster
queries on distance metric, at the cost of higher preprocessing time.
Recall that we employ a different vertex priority function and no lazy
updates. For Customizable Route Planning (CRP), we report results
from [DGPW11; DGPW15].

Traditional, metric-dependent CH offers the fastest query time (91 µs,
on our machine), but it incurs substantial metric-dependent prepro-
cessing costs, even when parallelized (109 s, 12 cores). Furthermore,
CH performance is very sensible regarding metrics used: For distance
metric, preprocessing time increases by factor of 3.2–11.5 and query
time by factor of 4.9–12.8.

3.1 customizable contraction hierarchies 61

Table 3.16: Comparison with related work on the DIMACS Europe instance
with travel time and distance metric. We compare our approaches,
CCH, CCH with amortized customization (CCH+a), and CCH
with perfect witness search (CCH+w), with different CRP and CH
implementations from the literature. We report performance of
the metric-dependent fraction of overall preprocessing, i. e., vertex
ordering and contraction time for CH, customization time for
CRP and CCH. We further report average query search space,
including stalled vertices for CH (which might not be included in
the CH figures taken from [DGPW15]). We finally report running
time in microseconds. If parallelized, the number of threads used
is noted in parenthesis. Since the CH performance in [GSSV12]
was evaluated on a ten year old machine (AMD Opteron 270), we
obtained the source code and re-ran experiments on our hardware
(Intel Xeon E5-2670) for better comparability. Also note that the
latest CRP implementation by [DGPW15], evaluated on an Intel
Xeon X5680, is turn-aware (•), i. e., it uses turn tables (set to zero in
the reported experiments); We therefore additionally take results
from [DGPW11] obtained on an Intel Core-i7 920, which uses a
turn-unaware implementation but parallelizes queries.

Metric-Dep.

Prepro. Queries

Turn- Time [s] Search Space Time [µs]

Algorithm Impl. Machine Metric aware (# Threads) [# Vertices] (# Threads)

CH [GSSV12] Opt 270 Time ◦ 1 809 (1) 356 152 (1)

CH [GSSV12] Opt 270 Dist ◦ 5 723 (1) 1 582 1 940 (1)

CH [GSSV12] E5-2670 Time ◦ 1 075.88 (1) 353 91 (1)

CH [GSSV12] E5-2670 Dist ◦ 3 547.44 (1) 1 714 1 135 (1)

CH our E5-2670 Time ◦ 813.53 (1) 375 107 (1)

CH our E5-2670 Dist ◦ 9 390.32 (1) 1422 540 (1)

CH [DGPW15] X5680 Time ◦ 109 (12) 280 110 (1)

CH [DGPW15] X5680 Dist ◦ 726 (12) 858 870 (1)

CRP [DGPW15] X5680 Time • 0.37 (12) 2 766 1 650 (1)

CRP [DGPW15] X5680 Dist • 0.37 (12) 2 942 1 910 (1)

CRP [DGPW11] i7 920 Time ◦ 4.7 (4) 3 828 720 (2)

CRP [DGPW11] i7 920 Dist ◦ 4.7 (4) 4 033 790 (2)

CCH our E5-2670 Time ◦ 0.74 (16) 1 303 413 (1)

CCH our E5-2670 Dist ◦ 0.74 (16) 1 303 426 (1)

CCH+a our E5-2670 Time ◦ 0.42 (16) 1 303 416 (1)

CCH+a our E5-2670 Dist ◦ 0.42 (16) 1 303 421 (1)

CCH+w our E5-2670 Time ◦ 2.35 (16) 1 303 161 (1)

CCH+w our E5-2670 Dist ◦ 2.35 (16) 1 303 214 (1)

62 route planning in road networks

In contrast to traditional CH, Customizable Contraction Hierar-
chies (CCH) by design achieve a performance trade-off with much
lower metric-dependent preprocessing costs, similar to CRP. Account-
ing for differences in hardware, CCH basic customization time is
about a factor of 2–3 slower than CRP customization, but still well
below a second. On the other hand, CCH query performance is fac-
tor of 2–4 faster than CRP, both in terms of search space as well as
query time (even when accounting for differences due to turn-aware
implementation and hardware used). Overall, CCH is more robust
wrt. the metric than CRP: By design, CCH customization processes
the same sequence of lower triangles for any metric, while the CCH
elimination-tree query (given a fixed source and target) processes the
same sequence of vertices and arcs for any metric—unless, of course,
we employ perfect witness search (CCH+w), see below.

The CRP implementation of [DGPW15] uses SSE to achieve its cus-
tomization time of 0.37 s. In a server scenario where customization is
run for many users concurrently, e. g., to customize a stream of traffic
updates for all active users at once, we propose to amortize triangle
enumeration time as described in Section 3.1.3.6. By using SSE and
processing metrics for four users at once, this amortized customiza-
tion (CCH+a, 0.42 s) can almost close the gap to CRP customization
performance. Refer to Table 3.8 for other configurations.

Most interestingly, in terms of query performance on travel dis-
tance, CCH outperforms even the best CH result. For even better
CCH query performance, we may employ perfect customization and
witness search (CCH+w). It increases customization time by factor
of 3.2 (enumerating all lower, intermediate and upper triangles), but
enables a CCH query variant that, while still visiting all vertices in
the elimination tree, needs to consider far fewer arcs (cf. Table 3.14).
Thereby, CCH+w further improves CCH query performance by factor
of 1.9 for distance metric and factor of 2.6 for time metric. With 161 µs
for travel time, CCH+w query performance is almost as good as the
best CH result of 91 µs.

3.1.5.7 Further Metric-Independent Ordering Strategies

So far, we have only discussed metric-independent orders based on
nested dissection. For completeness, we consider two other metric-
independent orders in the following.

In the context of sparse matrix factorization a common approach is
the minimum degree heuristic (MinDeg). To the best of our knowledge,
the first variant of this ordering heuristic was described in [TW67],
but we refer to [GL89] for more details. The basic idea is simple:
Iteratively contract a vertex with a minimum degree in the core. Note
the difference to sorting vertices by degree in the input graph, which
does not work well on road networks [DGPW14].

3.1 customizable contraction hierarchies 63

Table 3.17: Time in seconds to compute minimum degree (MinDeg) and
minimum shortcut (MinArc) orders.

Karlsruhe TheFrozenSea Europe

MinDeg 1.7 67 250

MinArc 2.1 6 907 30 220

Table 3.18: Further ordering strategies: minimum degree (MinDeg) and mini-
mum shortcut (MinArc).

Upper Search Space

Triangles treewidth # Arcs in #Vertices #Arcs [·103]

Graph Order [·106] bound CH [·103] Avg. Max. Avg. Max.

Karlsruhe

MinDeg 2.37 94 423 244.6 369 11.9 16.2

MinArc 1.63 75 393 222.4 386 9.2 16.0

Metis 2.59 92 478 163.5 211 6.5 10.0

KaHIP 2.21 72 528 142.2 201 4.7 7.9

TheFrozenSea

MinDeg 1 123 500 25 698 1 462.1 2 351 351 502

MinArc 769 303 22 554 1 192.1 2 034 200 336

Metis 601 282 21 067 675.6 858 92 135

KaHIP 864 287 25 100 676.7 949 90 146

Europe

MinDeg 1 800 938 64 313 2 348.0 3 719 1 052 1 494

MinArc 767 599 56 948 1 815.4 3 256 552 889

Metis 1 409 876 70 070 1 283.5 2 017 462 967

KaHIP 578 479 73 920 638.6 1 224 114 284

A variant of this heuristic was proposed in [DGPW15]. The idea is
also simple: Iteratively contract a vertex that adds the least number of
arcs to the chordal supergraph (MinArc), using degree in the core to
break ties. However, [DGPW15] already observed that MinArc orders
can be improved when augmented with partitioning information from
what they refer to as guidance levels. Their reported experimental
results are only with respect to these hybrid orders.

We implemented both MinDeg and MinArc in the straightforward
way using a priority queue of vertices ordered by the respective weight-
ing function. Table 3.17 shows the resulting order computation times
on our three main instances. Note, that at least for MinDeg more
sophisticated strategies exist [GL89] that might be faster. Nonetheless,
MinArc is significantly slower than MinDeg because it simulates the
contraction of every vertex in the graph, including those that yield
a high number of shortcuts but are only contracted in the end, once
their degree has already decreased due to the graph shrinking.

64 route planning in road networks

More importantly, Table 3.18
8 reports performance indicators for

both MinDeg and MinArc in comparison to Metis and KaHIP. Recall
that the number of triangles determines customization running times,
the number of arcs in the CH is proportional to the memory consump-
tion if precomputed triangles are not used, and the number of arcs
in the search space gives a good indication of query performance.
MinArc nearly always dominates MinDeg with respect to every cri-
terion except computation time. Yet, while both can be computed
faster than the KaHIP-based orders, Metis is still fastest. Similarly,
both MinArc and MinDeg result in lower memory consumption than
KaHIP-based orders, but not than Metis on the TheFrozenSea instance.
Upper treewidth bound from KaHIP-based orders are consistently
better than from MinDeg or MinArc.

Note, however, that, at least for our work, customization and query
performance are of most importance. In both aspects, MinDeg and
MinArc are clearly dominated by Metis on the large game map and by
KaHIP-based order on the large road network. Therefore, we did not
further consider MinDeg and MinArc orderings in our experiments.

3.1.5.8 Further Instances

Figure 3.12:
Europe instance
from DIMACS
and OSM.

openstreetmap-based road graphs . OpenStreetMap (OSM)
is a very popular collaborative effort to create a map of the world.
From this huge data source very large road graphs can be extracted,
that are very detailed depending on the exact region considered. Using
the data provided by GeoFabrik9 and the tools provided by OSRM10,
we extracted a road graph of Europe and report its size in Table 3.19.
The exact graph is available in DIMACS format on our website11.
The geographic region corresponding to the graph is depicted in
Figure 3.12. Note that compared to the DIMACS Europe, our OSM
Europe graph also contains Eastern Europe and Turkey. The graph’s
east border ends at the east border of Turkey and then goes upward
cutting through Russia. On the other hand, the DIMACS Europe graph
stops at the German-Poland border.

At first glance the DIMACS Europe graph looks drastically smaller,
at least in terms of vertex count. However, this is very misleading.
A peculiarity of OSM is that the road graphs have a huge number
of degree-2 vertices. These vertices are used to encode the curvature
of a road. This information is needed to correctly represent a road
graph on a map but not necessarily for routing. However, most other
data sources, including the one on which the DIMACS graph is based,
encode this information as arc attributes and thus have fewer degree-2

8 The KaHIP and Metis numbers slightly differ from those in Table 3.3, where they
were only sampled over 1000 random search spaces.

9 http://download.geofabrik.de/

10 http://project-osrm.org/

11 http://i11www.iti.kit.edu/resources/roadgraphs.php

http://download.geofabrik.de/
http://project-osrm.org/
http://i11www.iti.kit.edu/resources/roadgraphs.php

3.1 customizable contraction hierarchies 65

Table 3.19: Size of the DIMACS Europe instance compared to the OSM Eu-
rope instance.

Deg. 1 # Deg. 2 # Deg.>2

Instance # Vertices # Arcs vertices vertices vertices

DIMACS-Eur 18 M 42 M 4 M (22 %) 2 M (11 %) 11 M (61 %)

OSM-Eur 174 M 348 M 8 M (5 %) 143 M (82 %) 23 M (13 %)

Table 3.20: CH sizes for OSM Europe. The search space sizes were obtained
by sampling 10 000 vertices uniformly at random.

Order Vertices Arcs

Input Graph Size — 174 M 348 M

Search Graph Size Metis 174 M 400 M

KaHIP 174 M 434 M

Avg. Search Space Metis 1 312 495 930

KaHIP 678 119 295

vertices. Accelerating shortest path computations on graphs with a
huge number of vertices of degree 1 or 2 is significantly easier relative
to the graph size. One reason is that Dijkstra’s algorithm cannot
exploit the abundance of low-degree vertices. Dijkstra’s algorithm
with stopping criterion needs on average 27 s for a st-query with s
and t picked uniformly at random on the OSM-Europe graph. This
contrasts with the DIMACS Europe graph, where only 1.6 s are needed.
A slower baseline obviously leads to larger speedups. Table 3.19 shows
that the difference between the two Europe graphs in terms of vertex
count is significantly smaller, when discarding degree 1 and degree-2
vertices. In fact, relative to their geographical region’s area, the two
graphs seem to be approximately comparable in size.

We computed contraction orders for OSM-Europe. The sizes of the
resulting CHs are reported in Table 3.20. These sizes can be compared
with the “undirected” numbers of Table 3.3. We did not perform exper-
iments with a perfect witness search. Metis ordered the vertices within
29 minutes, whereas the KaHIP-based ordering algorithm needed
slightly less than 3 weeks. However, as already discussed in detail,
we did not optimize the latter for speed and therefore one must not
conclude from this experiment that KaHIP is slow. The CHs for OSM-
based graphs are significantly larger. The DIMACS-Europe CH only
contains 70M arcs for Metis whereas the OSM-Europe CH contains
400M arcs for Metis. However, this is due to the huge amount of low-
degree vertices in the input. On the DIMACS graph the size increase
compared to the number of input arcs is 70M/42M = 1.67 whereas
for the OSM-based graph the size increase is only 400M/348M = 1.15.

66 route planning in road networks

Table 3.21: Customization performance on OSM Europe. We vary the number
of threads and whether precomputed triangles are used. SSE is
enabled, running times are non-amortized and no perfect cus-
tomization was performed.

Triangle Customization

#Thr. space [GB] time [s]

Metis

1 — 43.1

16 — 5.3

1 16.0 17.3

16 16.0 2.1

KaHIP

1 — 30.6

16 — 3.4

1 7.2 11.4

16 7.2 1.7

Table 3.22: Query performance on OSM Europe, averaged over 10 000 ran-
dom st-pairs chosen uniformly at random.

Query time [ms]

Dijkstra- Metis 3.7

based KaHIP 1.0

Elimination- Metis 1.7

Tree KaHIP 0.5

This effect can be explained by considering what happens when con-
tracting a graph consisting of a single path. In the input graph every
vertex, except the endpoints, has 2 outgoing arcs, one in each direction.
As long as the endpoints are contracted last, every vertex, except the
endpoints, in the resulting CH search graph also have degree 2. There
is thus no size increase. As the OSM-based graph has many degree-2
vertices, this effect dominates and explains the comparatively small
size increase. The search space sizes are nearly identical. For example
the KaHIP search space contains 117K arcs for the DIMACS Europe
graph, whereas it contains 119K arcs for the OSM Europe graph. This
effect is explained by the fact, that both data sources correspond to
almost the same geographical region. The mountains and rivers are
thus in the same locations and the number of roads through these ge-
ographic obstacles are the same in both graphs, i. e., both graphs have
very similar recursive separators. The small size increase is explained
by the fact that the OSM-based graph also includes Eastern Europe.

Customization performance is reported in Table 3.21. As the OSM-
based graph has more arcs, the customization times are higher on

3.1 customizable contraction hierarchies 67

that graph. On the DIMACS Europe graph 0.61 s are needed whereas
1.7 s are needed on OSM Europe for the KaHIP order and 16 threads,
which is a surprisingly small gap considering the differences in input
sizes. Eliminating the degree-2 vertices from the input should further
narrow this gap. As the search space sizes are very similar, it is not
surprising that the query performance reported in Table 3.22 is nearly
identical.

further dimacs-instances . During the DIMACS challenge
on shortest path [DGJ09] several benchmark instances were made
available. Among them is the Europe instance used throughout our
in-depth experiments in previous sections. Besides this instance, also a
set of graphs representing the road network of the USA was published.
In Table 3.23 we report experiments for these additional DIMACS
road graphs. Other than the DIMACS-Europe instance, these USA
instances originate from the U.S. Census Bureau. Note that the USA
instances have some known data quality issues: The graphs are gener-
ally undirected (no one-way streets) and highways are sometimes not
connected at state borders. The DIMACS-Europe comes from another
data source and does not have these limitations. This is the reason why
we focus on the Europe instance in the main part of our evaluation.

However, as the graphs are undirected we can evaluate the impact
that using a single undirected metric has on customization running
times compared to using two directed metrics (as used on DIMACS
Europe). Experiments using a single metric are marked with “Uni” in
the table, whereas the experiments with two metrics are marked with
“Bi”. The query running times are very similar. This is not surprising
as the number of relaxed arcs does not depend on whether one or two
weights are used. For larger graphs there is a slightly larger difference
in running times. We believe that this is a cache effect. As the “Bi”
variant has twice as many weights, less arcs fit into the L3 cache. For
the smaller graphs this effect does not occur because the higher CH
levels occupy less memory than the cache’s size and thus doubling
the memory consumption is non-problematic.

The difference in customization times between the two variants is
larger. The number of enumerated triangles is the same, but twice as
many instructions are executed per triangle. We would thus expect a
factor of 2 difference in the customization running times. However,
this factor is only observed on the largest instance. On all smaller
instances, the gap is significantly smaller. Again, this is most likely
the result of cache effects.

Conclusions

We have extended Contraction Hierarchies (CH) to a three-phase cus-
tomization approach and demonstrated in an extensive experimental

68 route planning in road networks

Table 3.23: Instance sizes and experimental results for the additional DI-
MACS road graphs graphs. The instances are weighted by travel
time. They are undirected, i. e., no one-way streets exist and the
weight of an arc corresponds to its backward arc’s weight. The
"Uni" numbers exploit this and have one weight per CH arc,
whereas the "Bi" numbers do not and have two weights per CH
arc. We report the number of vertices, directed arcs after removing
multi-arcs, arcs in the CH search graph, the time needed to do
a full non-amortized customization with 1 and 16 threads, the
average running time of Dijkstra’s algorithm with stopping crite-
rion, and the average running time of an elimination-tree distance
query. The order were computed with KaHIP. We averaged results
for 10 000 queries where s and twere picked uniformly at random.
We only do a basic customization and no perfect customization.

Customization [ms] CH Query

Vertices Arcs CH Arcs 1 thread 16 threads Dijkstra [µs]

Graph [·103] [·103] [·103] Uni Bi Uni Bi [µs] Uni Bi

NY 264 730 1 547 46 52 11 12 16 303 34 34

BAY 321 795 1 334 29 39 7 8 17 964 20 20

COL 436 1 042 1 692 40 51 12 12 25 505 35 41

FLA 1 070 2 688 4 239 93 117 25 32 63 497 30 26

NW 1 208 2 821 4 266 88 110 24 31 73 045 27 27

NE 1 524 3 868 6 871 195 255 54 57 96 628 68 64

CAL 1 891 4 630 7 587 195 250 61 64 114 047 43 43

LKS 2 758 6 795 12 829 478 646 75 87 175 084 138 149

E 3 599 8 708 14 169 395 514 85 96 233 511 86 88

W 6 262 15 120 24 115 682 894 121 132 425 244 82 84

CTR 14 082 33 867 57 222 2 656 3 592 392 416 1 050 314 276 285

USA 23 947 57 709 97 902 3 617 7 184 698 979 1 883 053 264 286

3.1 customizable contraction hierarchies 69

evaluation that our Customizable Contraction Hierarchies approach is
practicable and efficient not only on real world road graphs but also
on game maps. We have proposed new algorithms that improve on
the state-of-the-art for nearly all stages of the tool chain: Using our
contraction graph data structure, a metric-independent CH can be con-
structed faster than with the established approach based on dynamic
arrays. We have shown that the customization phase is essentially a
triangle enumeration algorithm. We have provided two variants of the
customization: The basic variant yields faster customization running
times, while perfect customization and witness search computes CHs
with a provable minimum number of shortcuts within seconds given
a metric-independent vertex order. We proposed an elimination-tree
based query that unlike previous approaches is not based on Dijk-
stra’s algorithm and thus does not use a priority queue. This results
in significantly lower overhead per visited arc, enabling faster queries.

Because of the connection to treewidth, further investigation into
algorithms [CZ00; PWK12] that explicitly exploit treewidth, seems
promising. In that regard, determining the precise treewidth of road
networks could prove useful.

Good separators are the foundation of Customizable Contraction
Hierarchies: Finding better separators directly improves both cus-
tomization as well as query performance. For our purposes, the time
required to compute good separators was of no primary concern (we
do it once per graph). Hence, our nested dissection implementation
based on KaHIP [SS13] was not optimized for speed but rather to
demonstrate that good separators exist. If this may seem too slow,
not that, since we performed our experiments, significant improve-
ments have been made in this domain [HS15; SS15; Weg14], resulting
in decreased query and customization times, and reduced memory
consumption [HS15] for Customizable Contraction Hierarchies.

70 route planning in road networks

3.2 time-dependent customizable route planning

While customization can easily handle live traffic data, for better
travel time estimation on medium and long-distance path, one should
consider short-term traffic predictions [DKKT13] and long-term traffic
patterns (e. g., rush hours, observed from historic traffic data). In
the following, we consider a dynamic, time-dependent route planning
problem, where time-dependent functions are updated to respect
current traffic incidents or short-term traffic predictions.

As discussed in the previous section, both CRP and CCH provide
good customization and query search space bounds on networks of
recursive small and balanced separators. In practice, this translates
to a strong robustness towards different input metrics. However, this
analysis only holds for scalar metrics: In case of multi-variate arc costs
(e. g., multiple criteria, time-dependency, electric vehicle constraints),
growth in shortcut complexity easily dominates the overall effort
and space requirements. For Electric Vehicle Customizable Route
Planning (EVCRP) [BDPW13], fortunately, this was experimentally
shown not to be case.

However, as examined in the following, time-dependent travel times
are a much more challenging non-scalar metric when applied to
partition-based route planning. Integrating profile search into the
customization phase and computing time-dependent overlays, we ob-
serve that, unlike for EVCRP [BDPW13], a naïve implementation fails:
Shortcuts on higher-level overlays become too expensive to be kept in
memory (and too expensive to evaluate during queries). Therefore, we
cannot follow the approach of Time-Dependent Contraction Hierar-
chies (TCH) [BGSV13], where approximation, if at all, was applied in a
post-processing step. Instead, in order to reduce functional complexity,
we propose to iteratively approximate overlay arcs after each level’s
customization. Then, in accordance to theory [FHS14], even slight
approximation suffices to make our approach practical. The resulting
algorithmic framework enables interactive queries with low average
and maximum error in a very realistic scenario consisting of live traffic,
short-term traffic predictions, and historic traffic patterns, while also
supporting and being robust to user preferences.

The rest of this section is organized as follows. Section 3.2.1 in-
troduces necessary notation and foundations, while our approach is
presented in Section 3.2.2. In Section 3.2.3, we provide an extensive
experimental evaluation.

3.2.1 Preliminaries

Throughout Section 3.2, we use the following notation and concepts:
A road network is modeled as a directed graph G = (V ,A) with n =

|V | vertices and m = |A| arcs, where vertices v ∈ V correspond to in-

3.2 time-dependent customizable route planning 71

tersections and arcs (u, v) ∈ A to road segments. An s–t-path P (in G)
is a sequence Ps,t = [v1 = s, v2, . . . , vk = t] of vertices such that
(vi, vi+1) ∈ A. If s and t coincide, we call P a cycle. Every arc a
has assigned a periodic travel-time function fa : Π → R+, mapping
departure time within period Π = [0,π] to travel time. Given a depar-
ture time τ at s, the (time-dependent) travel time τ[s,...,t] of an s–t-
path is obtained by consecutive function evaluation, i. e., τ[s,...,vi] =

f(vi−1,vi)(τ[s,...,vi−1)). We assume that functions are piecewise linear
and represented by breakpoints. We denote by |f| the number of break-
points of a function f. Moreover, we define fmax as the maximum value
of f, i.e., fmax = maxτ∈Π f(τ). Analogously, fmin is the minimum value
of f. A function f is constant if f ≡ c for some c ∈ Π. We presume
that functions fulfill the FIFO property, i. e., for arbitrary σ 6 τ ∈ Π,
the condition σ + f(σ) 6 τ + f(τ) holds (waiting at a vertex never
pays off). Unless waiting is allowed at vertices, the shortest-path
problem becomes NP-hard if this condition is not satisfied for all
arcs [Dea04; SOS98]. Given two functions f,g, the link operation is
defined as link(f,g) := f+ g ◦ (id+f), where id is the identity function
and ◦ is function composition. The result link(f,g) is piecewise linear
again, with at most |f|+ |g| breakpoints (namely, at departure times of
breakpoints of f and backward projections of departure times of points
of g). We also define merging of f and g by merge(f,g) := min(f,g).
The result of merging piecewise linear functions is piecewise linear,
and the number of breakpoints is in O(|f|+ |g|) (containing breakpoints
of the two original functions and at most one intersection per linear
segment). Linking and merging are implemented by coordinated linear
sweeps over the breakpoints of the corresponding functions.

The (travel-time) profile of a path P = [v1, . . . , vk] is the function
fP : Π→ R+ that maps departure time τ at v1 to travel time on P. Start-
ing at f[v1,v2] = f(v1,v2), we obtain the desired profile by consecutively
applying the link operation, i. e., f[v1,...,vi] = link(f[v1,...,vi−1], f(vi−1,vi)).
Given a set P of s–t-paths, the corresponding s–t-profile is fP(τ) =

minP∈P fP(τ) for τ ∈ Π, i. e., the minimum profile over all paths in P.
The s–t-profile maps departure time to minimum travel time for the
given paths. It is obtained by (iteratively) merging the respective paths.

A partition of V is a set C = {C1, . . . ,Ck} of disjoint vertex sets
with

⋃k
i=1Ci = V . More generally, a nested multi-level partition consists

of sets {C1, . . . ,CL} such that C` is a partition of V for all ` ∈ {1, . . . ,L},
and additionally for each cell Ci in C`, ` < L, there is a partition C`+1

at level `+ 1 containing a cell Cj with Ci ⊆ Cj. We call Cj the supercell
of Ci. For consistency, we define C0 = {{v} | v ∈ V} and CL+1 = {V}.
Vertices u and v are boundary vertices on level ` if they are in different
cells of C`. The corresponding arc (u, v) ∈ A is a boundary arc on level `.

query variants and algorithms . Given a departure time dep
and vertices s and t, an earliest-arrival (EA) query asks for the minimum

72 route planning in road networks

travel time from s to t when departing at time dep. Similarly, a latest-
departure (LD) query asks for the minimum travel time of an s–t-path
arriving at time dep. A profile query for given source s and target t asks
for the minimum travel time at every possible departure time dep, i. e.,
a profile fs,t from s to t (over all s–t-paths in G). EA queries can be
handled by a time-dependent variant of Dijkstra’s algorithm [Dre69],
which we refer to as TD-Dijkstra. It maintains (scalar) arrival time
labels d(·) for each vertex, initially set to dep for the source s (∞
for all other vertices). In each step, a vertex u with minimum d(u) is
extracted from a priority queue (initialized with s). Then, the algorithm
relaxes all outgoing arcs (u, v): if d(u) + f(u,v)(d(u)) improves d(v), it
updates d(v) accordingly and adds (or updates) v in the priority queue.
LD queries are handled analogously by running the algorithm from t,
relaxing incoming instead of outgoing arcs, and maintaining departure
time labels.

Profile queries can be solved by Profile-Dijkstra [DW09b], which
is based on linking and merging. It generalizes Dijkstra’s algorithm,
maintaining s–v profiles fv at each vertex v ∈ V . Initially, it sets fs ≡ 0,
and fv ≡∞ for all other vertices. The algorithm continues along the
lines of TD-Dijkstra, using a priority queue with scalar keys fmin

v . For
extracted vertices u, arc relaxations propagate profiles rather than
travel times, computing g := link(fu, f(u,v)) and fv := merge(fv,g) for
outgoing arcs (u, v). As shown by Foschini et al. [FHS14], the number
of breakpoints of the profile of an s–v-paths can be superpolynomial,
and hence, so is space consumption per vertex label and the running
time of Profile-Dijkstra in the worst case. Accordingly, it is not feasible
for large-scale instances, even in practice [DW09b].

3.2.2 Our Approach

We propose Time-Dependent CRP (TDCRP), a speedup technique for
time-dependent route planning allowing fast integration of user-
dependent metric changes. Additionally, we enable current and/or
predicted traffic updates with limited departure time horizon (account-
ing for the fact that underlying traffic situations resolve over time). To
take historic knowledge of traffic patterns into account, we use func-
tions of departure time at arcs. This conceptual change has important
consequences: For plain CRP, the topology data structures is fixed after
preprocessing, enabling several micro-optimizations with significant
impact on customization and query [DGPW15]. In our case, functional
complexity is metric-dependent (influenced by, e. g., user preferences)
and has to be handled dynamically during customization. Hence, for
adaptation to dynamic time-dependent scenarios, we require new
data structures and algorithmic changes during customization. Below,
we recap the three-phase workflow of CRP [DGPW15] that allows
fast integration of user-dependent routing preferences, describing

3.2 time-dependent customizable route planning 73

its extension to TDCRP along the way. In particular, we incorporate
profile queries into the customization phase to obtain time-dependent
shortcuts. Moreover, we adapt the query phase to efficiently compute
time-dependent shortest routes.

3.2.2.1 Preprocessing

The (metric-independent) preprocessing step of CRP computes a multi-
level partition of the vertices, with given number L of levels. Several
graph partition algorithms tailored to road networks exist, providing
partitions with balanced cell sizes and small cuts [DGRW11; HS15;
SS12b; SS15]. For each level ` ∈ {1, . . . ,L}, the respective partition C`

induces an overlay graph H`, containing all boundary vertices and
boundary arcs in C` and shortcut arcs between boundary vertices
within each cell C`i ∈ C`. We define C0 = {{v} | v ∈ V} and H0 :=

G for consistency. Building the overlay, we use the clique matrix
representation, storing cliques of boundary vertices in matrices of
contiguous memory [DGPW15]. Matrix entries represent pointers to
functions (whose complexity is not known until customization). This
dynamic data structure rules out some optimizations for plain CRP,
such as microcode instructions, that require preallocated ranges of
memory for the metric [DGPW15]. To improve locality, all functions are
stored in a single array, such that profiles corresponding to outgoing
arcs of a boundary vertex are in contiguous memory.

3.2.2.2 Customization

In the customization phase, costs of all shortcuts (added to the overlay
graphs during preprocessing) are computed. We run profile searches
to obtain these time-dependent costs. In particular, we require, for each
boundary vertex u (in some cell Ci at level ` > 1), the time-dependent
distances for all τ ∈ Π to all boundary vertices v ∈ Ci. To this end,
we run a profile query on the overlay H`−1. By design, this query is
restricted to subcells of Ci, i. e., cells Cj on level `− 1 for which Cj ⊆ Ci
holds. This yields profiles for all outgoing (shortcut) arcs (u, v) in Ci
from u. On higher levels, previously computed overlays are used for
faster computation of shortcuts. Unfortunately, profile queries are
expensive in terms of both running time and space consumption.
Below, we describe improvements to remedy these effects, mostly by
tuning the profile searches.

improvements . The main bottleneck of profile search is perform-
ing link and merge operations, which require linear time in the func-
tion size (cf. Section 3.2.1). To avoid unnecessary operations, we ex-
plicitly compute and store the minimum fmin and the maximum fmax

of a profile f in its corresponding label and in shortcuts of overlays.
These values are used for early pruning, avoiding costly link and

74 route planning in road networks

merge operations: Before relaxing an arc (u, v), we check whether
fmin
u + fmin

(u,v) > f
max
v , i. e., the minimum of the linked profile exceeds

the maximum of the label at v. If this is the case, the arc (u, v) does
not need to be relaxed. Otherwise, the functions are linked. We distin-
guish four cases, depending on whether the first or second function
are constant, respectively. If both are constant, linking becomes trivial
(summing up two integers). If one of them is constant, simple shift
operations suffice (we need to distinguish two cases, depending on
which of the two functions is constant). Only if no function is constant,
we apply the link operation.

After linking f(u,v) to fu, we obtain a tentative label f̃v together
with its minimum f̃min

v and maximum f̃max
v . Before merging fv and f̃v,

we run additional checks to avoid unnecessary merge operations. First,
we perform bound checks: If f̃min

v > fmax
v , the function fv remains

unchanged (no merge necessary). Note that this may occur although
we checked bounds before linking. Conversely, if f̃max

v < fmin
v , we

simply replace fv by f̃v. If the checks fail, and one of the two functions
is constant, we must merge. But if fv and f̃v are both nonconstant,
one function might still dominate the other. To test this, we do a
coordinated linear-time sweep over the breakpoints of each function,
evaluating the current line segment at the next breakpoint of the
other function. If during this test f̃v(τ) < fv(τ) for any point (τ, ·),
we must merge. Otherwise we can avoid the merge operation and its
numerically unstable line segment intersections.

Additionally, we use clique flags: For a vertex v, define its parents
as all direct predecessors on paths contributing to the profile at the
current label of v. For each vertex v of an overlay H`, we add a flag
to its label that is true if all parents of v belong to the same cell at
level `. This flag is set to true whenever the corresponding label fv is
replaced by the tentative function f̃v after relaxing a clique arc (u, v),
i. e., the label is set for the first time or the label fv is dominated by
the tentative function f̃v. It is set to false if the vertex label is partially
improved after relaxing a boundary arc. For flagged vertices, we do
not relax outgoing clique arcs, as this cannot possibly improve labels
within the same cell (due to the triangle inequality and the fact that
we use full cliques).

parallelization. Cells on a given level are processed indepen-
dently, so customization can be parallelized naturally, assigning cells
to different threads [DGPW15]. In our scenario, however, workload
is strongly correlated with the number of time-dependent arcs in the
search graph. It may differ significantly between cells: In realistic data
sets, the distribution of time-dependent arcs is clearly not uniform, as
it depends on the road type (highways vs. side roads) and the area
(rural vs. urban). To balance load, we parallelize per boundary vertex
(and not per cell).

3.2 time-dependent customizable route planning 75

Shortcut profiles are written to dynamic containers, as the number
of breakpoints is not known in advance. Thus, we must prohibit
parallel (writing) access to these data structure. One way to solve this
is to make use of locks. However, this is expensive if many threads
try to write profiles at the same time. Instead, we use thread-local
profile containers, i. e., each thread uses its own container to store
profiles. After customization of each level, we synchronize data by
copying profiles to the global container sequentially. To improve spatial
locality during queries, we maintain the relative order of profiles wrt.
the matrix layout (so profiles of adjacent vertices are likely to be
contiguous in memory). Since relative order within each thread-local
containers is maintained easily (by running queries accordingly), we
can use merge sort when writing profiles to the global container.

approximation. On higher levels of the partition, shortcuts rep-
resent larger parts of the graph. Accordingly, they contain more break-
points and consume more space. This makes profile searches fail on
large graphs due to insufficient memory, even on modern hardware.
Moreover, running time is strongly correlated to the complexity of
profiles. To save space and time, we simplify functions during cus-
tomization. To this end, we use the algorithm of Imai and Iri [II87].
For a maximum (relative or absolute) error bound ε, it computes an
approximation of a given piecewise linear function with minimum
number of breakpoints. In TCH [BGSV13], this technique is applied
after preprocessing to reduce space consumption. Instead, we use the
algorithm to simplify profiles after computing all shortcuts of a certain
level. Therefore, searches on higher levels use approximated functions
from lower levels, leading to slightly less accurate profiles but faster
customization. The bound ε is a tuning parameter: Larger values allow
faster customization, but decrease quality. Also, approximation is not
necessarily applied on all levels, but can be restricted to the higher
ones. Note that after approximating shortcuts, the triangle inequality
may no longer hold for the corresponding overlay. This is relevant
when using clique flags: They yield faster profile searches, but slightly
decrease quality (additional arc relaxations may improve shortcut
bounds).

3.2.2.3 Live Traffic and Short-Term Traffic Predictions

Updates due to, e. g., live traffic, require that we rerun parts of the
customization. Clearly, we only have to run customization for affected
cells, i. e., cells containing arcs for which an update is made. We can
do even better if we exploit that live traffic and short-term updates
only affect a limited time horizon. Thus, we do not propagate updates
to boundary vertices that cannot reach an affected arc before the end
of its time horizon.

76 route planning in road networks

We assume that short-term updates are partial functions f : [π ′,π ′′]→
R+, where π ′ ∈ Π and π ′′ ∈ Π are the beginning and end of the time
horizon, respectively. Let a1 = (u1, v1), . . . ,ak = (uk, vk) denote the
updated arcs inside some cell Ci at level `, and let f1, . . . , fk be the
corresponding partial functions representing time horizons. Moreover,
let τ be the current point in time. To update Ci we run, on its induced
subgraph, a backward multi-target latest departure (LD) query from
the tails of all updated arcs. In other words, we initially insert the
vertices u1, . . . ,uk into the priority queue. For each i ∈ {1, . . . ,k}, the
label of ui is set to π ′′i , i. e., the end of the time horizon [π ′i,π

′′
i] of the

partial function fi. Consequently, the LD query computes, for each
vertex of the cell Ci, the latest possible departure time such that some
affected arc is reached before the end of its time horizon. Whenever
the search reaches a boundary vertex of the cell, it is marked as affected
by the update. We stop the search as soon as the departure time
label of the current vertex is below τ. (Recall that LD visits vertices
in decreasing order of departure time.) Thereby, we ensure that only
such boundary vertices are marked from which an updated arc can be
reached in time.

Afterwards, we run profile searches for Ci as in regular customiza-
tion, but only from affected vertices. For profiles obtained during
the searches, we test whether they improve the corresponding stored
shortcut profile. If so, we add the affected interval of the profile for
which a change occurs to the set of time horizons of the next level. If
shortcuts are approximations, we test whether the change is signifi-
cant, i. e., the maximum difference between the profiles exceeds some
bound. We continue the update process on the next level accordingly.

3.2.2.4 Queries

The query algorithm makes use of shortcuts computed during cus-
tomization to reduce the search space. Given a source s and a target t,
the search graph consists of the overlay graph induced by the top-level
partition CL, all overlays of cells of lower levels containing s or t, and
the level-0 cells in the input graph G that contain s or t. Note that the
search graph does not have to be constructed explicitly, but can be
obtained on-the-fly [DGPW15]: At each vertex v, one computes the
highest levels `s,v and `v,t of the partition such that v is not in the
same cell of the partition as s or t, respectively (or zero, if v is in the
same level-1 cell as s or t). Then, one relaxes outgoing arcs of v only
at level min{`s,v, `v,t} (recall that H0 = G).

To answer EA queries, we run TD-Dijkstra on this search graph. For
faster queries, we make use of the minimum values fmin

(u,v) stored at arcs:
We do not relax an arc (u, v) if d(u) + fmin

(u,v) does not improve d(v).
Thereby, we avoid costly function evaluation. We could also use clique
flags for EA queries. However, in our implementation, when combined

3.2 time-dependent customizable route planning 77

with approximated profiles, we have observed rare but high maximum
errors. Hence we de-activate clique flags for all query experiments.

To answer profile queries, Profile-Dijkstra can be run on the CRP
search graph, using the same optimizations as described in Sec-
tion 3.2.2.2.

3.2.2.5 Implementation Details

Implementation of the functional operations (evaluation, link, merge,
and subroutines) requires considerable effort and is a great source
for numerical imprecision. We tested several implementation variants
and settled on using fixed-point arithmetics at milliseconds resolution.
We also found it beneficial to use half-plane tests (which require no
division) to determine whether an intersection between line segments
occurs, before computing the actual intersection.

We reorder vertices of the graph, moving boundary vertices to the
front, and ordering vertices of the same level by cell IDs [DGPW15].
This improves locality of subsequent memory accesses. In a naïve
implementation, each vertex requires its own vertex label. Since the
search graph is known in advance, we can reduce the number of vertex
labels to save space. Instead of explicitly extracting the search graph,
we compute the ranges of IDs of vertices of the current cell for each
level (note that there is at most one range per level, due to vertex
reordering). Then, we can remap the ranges of each level (for source
and target cell, respectively) to a smaller, global range of vertex indices.
The size of the global range depends on the maximum cell size, which
is known after preprocessing. The following (mixed) variant worked
best in our experiments: We only remap bottom-level inner-cell indices
(the majority of vertices), while keeping a distinct vertex label for
every boundary vertex in the graph. Thereby, we save a significant
amount of space, improve locality, but keep vertex mapping overhead
limited during queries.

To reset labels between queries, rather than using standard ap-
proaches (like timestamps), we again exploit the vertex reordering: We
store, for every cell, its vertex ranges, and reset only the (at most two)
cells per level touched during a query, along with all top level vertices.
With labels being on adjacent ranges, this can be done efficiently in
practice.

Finally, we can save some space by storing cell IDs only at boundary
vertices. Before running the actual query algorithm, the source and
target cell can be retrieved by running an additional DFS in their
respective (bottom-level) cells with negligible overhead.

3.2.3 Experiments

We implemented all algorithms in C++ using g++ 4.8 (flag -O3) as
compiler. Experiments were conducted on a dual 8-core Intel Xeon

78 route planning in road networks

Table 3.24: Network properties. We report the number of vertices and arcs
of the routing graph, and as a measure of time-dependency, the
total amount of break points in the whole network as well as the
average time-dependent arc complexity.

Break points

Network # Vertices # Arcs Time-dep. arcs Total Avg.

Berlin 443 191 988 493 271 688 (27.5%) 3 464 241 12.8

Germany 4 692 091 10 805 429 777 984 (7.2%) 12 714 370 16.3

Europe 18 010 173 42 188 664 2 609 651 (6.2%) 29 362 693 11.3

E5-2670 clocked at 2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB
of L3 and 256 KiB of L2 cache. We ran customization in parallel (using
all 16 threads) and queries sequentially.

input data and methodology. Our test instances are based on
the road network of Germany (n = 4.7 million, m = 10.8 million) and
Western Europe (n = 18 million, m = 42.2 million), kindly provided
by PTV AG,12 and the road network of Berlin/Brandenburg (n = 443 k,
m = 988 k), kindly provided by TomTom. All inputs contain time-
dependent data. For the Germany and Berlin instance, data stems
from historical traffic patterns. For both instances, we extracted the
24 hour profile of a Tuesday. For Western Europe, travel time functions
were generated synthetically [NDLS12]. See Table 3.24 for details
on inputs. For partitioning, we used PUNCH [DGRW11], which is
explicitly developed for road networks and aims at minimizing the
number of boundary arcs. For Germany, we use a 5-level partition,
with maximum cell sizes of 2[4:8:12:15:18]. For Europe, we use a 6-level
partition, with maximum cell sizes 2[4:8:11:14:17:20]. Finally, we use
a 5-level partition for Berlin, with cell size restricted to 2[4:8:11:14:17].
Compared to plain CRP, we use partitions with more levels, to allow
fine-grained approximation. Computing the partition took 20 seconds
for Berlin, 5 minutes for Germany, and 23 minutes for Europe. Given
that road topology changes rarely, this is sufficiently fast in practice.

evaluating customization. Table 3.25 details customization
for different approximation parameters ε on the Europe instance.
We report, for several choices of ε and for each level of the parti-
tion, figures on the complexity of shortcuts in the overlays and the
parallelized customization time. The first block shows figures for ex-
act profile computation. Customization had to be aborted after the
fourth level, because the 64 GiB of main memory were not sufficient to
store the profiles of all vertex labels. For remaining levels, we clearly

12 The Germany and Europe instances can be obtained easily for scientific purposes,
see http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php

http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php

3.2 time-dependent customizable route planning 79

Table 3.25: Customization performance on Europe for varying approxima-
tion parameters (ε). We report, per level, the number of break-
points (bps, in millions) in the resulting overlay, the percentage of
clique arcs that are time-dependent (td.clq.arcs), average complex-
ity of time-dependent arcs (td.arc.cplx), as well as customization
time. Without approximation, Levels 5 and 6 cannot be computed
as they do not fit into main memory.

ε Lvl1 Lvl2 Lvl3 Lvl4 Lvl5 Lvl6 Total

— bps [106] 99.1 398.4 816.4 1 363.4 — — 2 677.4

td.clq.arcs [%] 17.0 52.6 76.0 84.2 — — —

td.arc.cplx 21.0 68.9 189.0 509.3 — — —

time [s] 11.4 52.0 152.9 206.2 — — 375.7

0.01% bps [106] 75.7 182.7 244.6 240.8 149.3 59.2 952.2

td.clq.arcs [%] 17.0 52.6 76.0 84.2 85.2 82.5 —

td.arc.cplx 16.0 31.6 56.6 90.0 108.6 108.0 —

time [s] 4.5 18.0 32.7 82.1 150.3 151.5 439.1

0.1% bps [106] 60.7 107.5 111.5 87.9 47.9 17.6 432.9

td.clq.arcs [%] 17.0 52.7 76.0 84.2 85.2 82.5 —

td.arc.cplx 12.9 18.6 25.8 32.8 34.8 32.1 —

time [s] 4.2 16.0 21.4 40.7 62.4 55.0 199.7

1.0% bps [106] 45.7 58.0 45.6 29.2 14.7 5.4 198.5

td.clq.arcs [%] 17.0 52.7 76.0 84.2 85.2 82.5 —

td.arc.cplx 9.7 10.0 10.6 10.9 10.7 9.8 —

time [s] 4.1 14.1 14.8 22.7 29.6 24.1 109.2

see the strong increase in the total number of breakpoints per level.
Also, the relative amount of time-dependent arcs rises with each level,
since shortcuts become longer. Customization time clearly correlates
with profile complexity, from 10 seconds on the lowest level, to more
then three minutes on the fourth. When approximating, we see that
customization becomes faster for larger values of ε. We apply approxi-
mation to all levels of the partition (using it only on the topmost levels
did not provide significant benefits in preliminary experiments). Recall
that higher levels work on approximated shortcuts of previous levels,
so ε does not provide a bound on the error of the shortcuts. We see
that even a very small value (0.01%) yields a massive drop of profile
complexity (more than a factor 5 at Level 4), and immediately allows
full customization. For reasonably small values (ε = 0.1%, ε = 1.0%),
we see that customization becomes much faster (less than two minutes
for ε = 1.0%). In particular, this is fast enough for traffic updates.
Even for larger values of ε, the higher levels are far more expensive:

80 route planning in road networks

Table 3.26: Query performance on Europe as a trade-off between customiza-
tion effort and approximation. For customization, we set different
approximation parameters (ε) and disable (◦) or enable (•) clique
flags (Cl.). For the different settings, we report query performance
in terms of number of vertices extracted from the queue, scanned
arcs, evaluated function breakpoints (# Bps), running time, and
average and maximum error, each averaged over 100 000 random
queries. As we employ approximation per level, resulting query
errors can be higher than the input parameter.

Customization Query

Approx. Time Time Err. [%]

ε Cl. [s] # Vertices # Arcs # Bps [ms] avg. max.

0.01 % ◦ 1 155.1 3 499 541 091 433 698 14.69 <0.01 0.03

0.01 % • 439.1 3 499 541 090 434 704 14.53 <0.01 0.03

0.10 % ◦ 533.0 3 499 541 088 96 206 7.63 0.04 0.28

0.10 % • 199.7 3 499 541 088 99 345 6.47 0.04 0.29

1.00 % ◦ 284.4 3 499 541 080 67 084 5.66 0.51 3.15

1.00 % • 109.2 3 499 541 058 70 202 5.75 0.54 3.21

This is due to the increasing amount of time-dependent arcs, slowing
down profile search.

evaluating customization and queries . In Table 3.26, we
show query performance for different values of the approximation
parameter ε on the Europe instance. We also show the effect of using
clique flags during customization: they improve customization per-
formance by about a factor of 2.6, while having a negligible influence
on query results. For each value of ε, we report timings as well as
average and maximum error over 100 000 point-to-point queries. For
each query, the source and target vertex and the departure time were
picked uniformly at random. Similar to customization, the data shows
that query times decrease with higher approximation ratio. Again,
this is due to the smaller number of breakpoints in profiles (observe
that the number of visited vertices and arcs is almost identical in all
cases). As expected, the average and maximum error increase with ε.
However, we see that even for the parameter choice ε = 1.0%, the max-
imum error is very low (about 3 %). Moreover, query times are quite
practical for all values of ε, ranging from 5 ms to 15 ms. In summary,
our approach allows query times that are fast enough for interactive
applications, if a reasonable, small error is allowed. Given that input
functions are based on statistical input with inherent inaccuracy, the
error of TDCRP is more than acceptable for realistic applications.

3.2 time-dependent customizable route planning 81

Table 3.27: Robustness comparison for TCH [BGSV13] and TDCRP. For dif-
ferent input instances, we report timing of metric-dependent
preprocessing (always run on 16 cores) and sequential queries.
Query times are averaged over the same 100 000 random queries
as in Table 3.26.

TCH TDCRP

Network Prepro. [s] Query [ms] Custom. [s] Query [ms]

Europe 1 479 1.37 109 5.75

Europe, bad traffic 7 772 5.87 208 8.01

Europe, avoid highways 8 956 19.54 127 8.29

evaluating robustness . We also evaluate robustness of our
approach against dynamic updates and user-dependent custom met-
rics. The first scenario (bad traffic) simulates a highly congested
graph: for every time-dependent arc in the Western Europe instance
with associated travel-time function f, we replace f by f ′ defined
as f ′(τ) := 2(f(τ) − fmin(τ)) + fmin(τ), while maintaining the FIFO
property on f ′. In the second scenario, we consider user restrictions
(avoid highways). For each scenario, customization and the same set
of 100 000 random queries as before are run on the respective modified
instance. (Hence, we do not remove highways for the second scenario,
setting very high costs instead.) Table 3.27 compares results of the
original instance (Europe) to the modified ones. Besides our approach,
which is run using parameter ε = 1.0 for customization, we also eval-
uate TCH [BGSV13], the fastest known approach for time-dependent
route planning. All measurements for TCH are based on this freely
available implementation: https://github.com/GVeitBatz/KaTCH.

While TCH allows faster queries on the original instance, we see
that running times increase significantly for the modified ones. Prepro-
cessing time also increases to several hours in both cases. In the first
scenario (bad traffic), this can be explained by a larger number of paths
that are relevant at different points in time (more congested roads
need to be bypassed). Consequently, customization time of TDCRP
rises as well but by a much smaller factor.

In the second scenario (avoid highways), the TCH hierarchy clearly
deteriorates. While TDCRP is quite robust to this change (both cus-
tomization and query times increase by less than 50 %), TCH queries
slow down by more than an order of magnitude.

While possibly subject to implementation, our experiment indi-
cates that underlying vertex orderings of TCH are not robust against
less well-behaved metrics. Similar effects can be shown for scalar
Contraction Hierarchies (CH) on metrics reflecting, e. g., travel dis-
tance [DGPW15; GSSV12]. In summary, TDCRP is much more robust
in both scenarios.

https://github.com/GVeitBatz/KaTCH

82 route planning in road networks

Table 3.28: Comparison of time-dependent speedup techniques on instances of Berlin, Germany, and
Europe. We present figures as reported for variants of TDCALT [DN12], SHARC [Del11],
TCH and ATCH [BGSV13], FLAT [KMP+16], and TDCRP; see Table 3.29 for scaled
results. For preprocessing, customization, and live traffic updates, we show the number
of threads used (Thr.). For EA queries, we present average numbers on queue extrac-
tions (# Vert.), scanned arcs, sequential running time in milliseconds, and average and
maximum relative error. For FLAT, the Berlin instance differs slightly from ours.

Preprocessing Customization Traffic EA Queries

Time Space Time Space Time Time Err. [%]

Algorithm Inst. Thr. [h:m:s] [B/n] [m:s] [B/n] [m:s] # Vert. # Arcs [ms] avg. max.

TDCALT Ger 1 9:00 50 — — n/a 3 190 12 255 5.36 — —

TDCALT-K1.15 Ger 1 9:00 50 — — n/a 1 593 5 339 1.87 0.05 13.84

eco L-SHARC Ger 1 1:18:00 219 — — — 2 776 19 005 6.31 — —

heu SHARC Ger 1 3:26:00 137 — — — 818 1 611 0.69 n/a 0.61

TCH Ger 8 6:18 995 1:14 995 — 520 5 820 0.75 — —

ATCH (1.0) Ger 8 6:18 239 1:14 239 — 588 7 993 1.24 — —

inex. TCH (0.1) Ger 8 6:18 286 1:14 286 — 642 7 138 0.70 0.02 0.10

inex. TCH (1.0) Ger 8 6:18 214 1:14 214 — 654 7 271 0.69 0.27 1.01

inex. TCH (2.5) Ger 8 6:18 172 1:14 172 — 668 7 429 0.72 0.79 2.44

inex. TCH (10.0) Ger 8 6:18 113 1:14 113 — 898 10 109 1.06 3.84 9.75

FLAT/FCA Ger 6 ≈30:00:00 ≈10 000 — — 0:37 1 122 n/a 1.27 n/a 1.53

TDCRP (0.1) Ger 16 04:33 29 0:16 166 0:16 2 152 167 263 1.92 0.05 0.25

TDCRP (1.0) Ger 16 04:33 29 0:08 77 0:08 2 152 167 305 1.66 0.68 2.85

TDCALT Eur 1 1:00:00 61 — — 1:01 60 961 356 527 121.4 — —

TDCALT-K1.05 Eur 1 1:00:00 61 — — 1:01 32 405 n/a 62.5 0.01 3.94

TDCALT-K1.10 Eur 1 1:00:00 61 — — 1:01 12 777 n/a 21.9 0.09 7.88

TDCALT-K1.15 Eur 1 1:00:00 61 — — 1:01 6 365 32 719 9.2 0.26 8.69

eco L-SHARC Eur 1 6:49:00 198 — — — 18 289 165 382 38.29 — —

heu SHARC Eur 1 22:12:00 127 — — — 5 031 8 411 2.94 n/a 1.60

TCH Eur 8 45:44 599 8:02 599 — 1 021 13 681 2.11 — —

ATCH (1.0) Eur 8 45:44 208 8:02 208 — 1 223 20 336 2.89 — —

inex. TCH (0.1) Eur 8 45:44 239 8:02 239 — 1 722 24 389 2.70 0.02 0.15

inex. TCH (1.0) Eur 8 45:44 195 8:02 195 — 1 782 25 361 2.76 0.20 1.50

inex. TCH (2.5) Eur 8 45:44 175 8:02 175 — 1 875 26 948 2.94 0.48 3.37

inex. TCH (10.0) Eur 8 45:44 144 8:02 144 — 1 801 25 692 2.92 2.88 16.21

TDCRP (0.1) Eur 16 22:33 32 3:20 237 3:20 3 499 541 088 6.47 0.04 0.29

TDCRP (1.0) Eur 16 22:33 32 1:49 133 1:49 3 499 541 058 5.75 0.54 3.21

FLAT/FCA Ber* 6 ≈4:30:00 ≈60 000 — — 0:21 93 n/a 0.08 n/a 0.78

TDCRP (0.1) Ber 16 00:20 28 0:01 134 0:01 840 23 478 0.40 0.08 0.29

TDCRP (1.0) Ber 16 00:20 28 <0:01 66 <0:01 840 23 479 0.38 0.86 3.14

3.2 time-dependent customizable route planning 83

Table 3.29: Comparison of time-dependent speedup techniques as in Table 3.28. For better com-
parability across different hardware, we scale sequential timings for TDCALT [DN12],
SHARC [Del11], TCH and ATCH [BGSV13] to our machine; see Table 3.30 for factors.
For FLAT [KMP+16], sequential timings for preprocessing and live traffic updates were
not reported (n/a).

Preprocessing Customization Traffic EA Queries

Scaled Space Scaled Space Scaled Scaled Err. [%]

Algorithm Inst. [h:m:s] [B/n] [m:s] [B/n] [m:s] # Vert. # Arcs [ms] avg. max.

TDCALT Ger 3:14 50 — — n/a 3 190 12 255 1.93 — —

TDCALT-K1.15 Ger 3:14 50 — — n/a 1 593 5 339 0.67 0.05 13.84

eco L-SHARC Ger 28:03 219 — — — 2 776 19 005 2.27 — —

heu SHARC Ger 1:14:06 137 — — — 818 1 611 0.25 n/a 0.61

TCH Ger 34:10 995 6:59 995 — 520 5 820 0.69 — —

ATCH (1.0) Ger 34:10 239 6:59 239 — 588 7 993 1.15 — —

inex. TCH (0.1) Ger 34:10 286 6:59 286 — 642 7 138 0.65 0.02 0.10

inex. TCH (1.0) Ger 34:10 214 6:59 214 — 654 7 271 0.64 0.27 1.01

inex. TCH (2.5) Ger 34:10 172 6:59 172 — 668 7 429 0.67 0.79 2.44

inex. TCH (10.0) Ger 34:10 113 6:59 113 — 898 10 109 0.98 3.84 9.75

FLAT/FCA Ger n/a ≈10 000 — — n/a 1 122 n/a 1.51 n/a 1.53

TDCRP (0.1) Ger 54:30 29 3:30 166 3:30 2 152 167 263 1.92 0.05 0.25

TDCRP (1.0) Ger 54:30 29 1:43 77 1:43 2 152 167 305 1.66 0.68 2.85

TDCALT Eur 21:35 61 — — 0:22 60 961 356 527 43.67 — —

TDCALT-K1.05 Eur 21:35 61 — — 0:22 32 405 n/a 22.48 0.01 3.94

TDCALT-K1.10 Eur 21:35 61 — — 0:22 12 777 n/a 7.88 0.09 7.88

TDCALT-K1.15 Eur 21:35 61 — — 0:22 6 365 32 719 3.31 0.26 8.69

eco L-SHARC Eur 2:27:07 198 — — — 18 289 165 382 13.77 — —

heu SHARC Eur 7:59:08 127 — — — 5 031 8 411 1.06 n/a 1.60

TCH Eur 4:23:41 599 48:07 599 — 1 021 13 681 1.95 — —

ATCH (1.0) Eur 4:23:41 208 48:07 208 — 1 223 20 336 2.68 — —

inex. TCH (0.1) Eur 4:23:41 239 48:07 239 — 1 722 24 389 2.50 0.02 0.15

inex. TCH (1.0) Eur 4:23:41 195 48:07 195 — 1 782 25 361 2.56 0.20 1.50

inex. TCH (2.5) Eur 4:23:41 175 48:07 175 — 1 875 26 948 2.72 0.48 3.37

inex. TCH (10.0) Eur 4:23:41 144 48:07 144 — 1 801 25 692 2.70 2.88 16.21

TDCRP (0.1) Eur 4:30:38 32 47:10 237 — 3 499 541 088 6.47 0.04 0.29

TDCRP (1.0) Eur 4:30:38 32 25:16 133 — 3 499 541 058 5.75 0.54 3.21

FLAT/FCA Ber* n/a ≈60 000 — — n/a 93 n/a 0.10 n/a 0.78

TDCRP (0.1) Ber 4:03 28 0:14 134 0:14 840 23 478 0.40 0.08 0.29

TDCRP (1.0) Ber 4:03 28 0:09 66 0:09 840 23 479 0.38 0.86 3.14

84 route planning in road networks

Table 3.30: Scaling factors for different machines, used in Table 3.28. Each ma-
chine’s score has been determined by a shared Dijkstra implemen-
tation on the same graph. The benchmark tool [BDG+15] is avail-
able at http://i11www.iti.uni-karlsruhe.de/~pajor/survey/.
These factors have to be taken with a grain of salt, since Dijkstra’s
algorithm is not a good indicator of cache performance. For exam-
ple, when scaling on TDCRP performance, instead, we observe
a factor of 2.06–2.18 for the Opteron 2218 (which we have access
to), depending on the instance.

Machine Approaches Evaluated Score [ms] Scaling

2× 8-core Intel Xeon E5-2670, 2.6 GHz TDCRP 36 582 —

AMD Opteron 2218, 2.6 GHz TDCALT [DN12], SHARC [Del11] 101 552 2.78

2× 4-core Intel Xeon X5550, 2.66 GHz TCH, ATCH [BGSV13] 39 684 1.08

6-core Intel Xeon E5-2643v3, 3.4 Ghz FLAT/FCA [KMP+16] 30 901 0.84

comparison with related work . Finally, Table 3.28 provides
an overview comparing our results to the most relevant existing ap-
proaches for time-dependent route planning. We evaluated our ap-
proach on all benchmark instances (Berlin-Brandenburg, Germany,
and Europe) for the two fastest variants, i. e., ε = 0.1 and ε = 1.0. For
the related work, we show measurements as reported in the respective
publication, in the fastest reported variant (e. g., if parallelized). For
comparison, we also provide in Table 3.29 single-core performance
timings taken from the literature, which we scale to our hardware as
detailed in Table 3.30.

For TCH and ATCH [BGSV13], preprocessing can be further split
into node order computation and contraction. Since it has been shown
in [BGSV13] that node orders can be re-used for certain other metrics
(e. g., other week days), we report running times of the contraction as
rudimentary customization times. Recall, however, that our robustness
tests in Table 3.27 suggest that there is a limit to the applicability of
such a customization approach based on current TCH orders.

We see that our approach competes very well with the previous
techniques: While providing query times similar to the fastest ex-
isting approaches, TDCRP has by far the lowest metric-dependent
preprocessing time (i. e., customization time) and a good parallel
speedup (factor 13.9 to 14.2 on Europe for 16 threads). At the same
time, resulting average and maximum errors (due to approximating
profiles during customization) are similar to previous results and low
enough for practical purposes. When parallelized, customization of
the whole network is fast enough for regular live-traffic updates: 1 s on
Berlin, 8 to 16 s on Germany, and 2 to 3 min on Europe. Note, however,
that other approaches are also able to handle live traffic by providing
partial updates of the preprocessed data: For example, by exploiting
the fact that effects of live traffic are locally and temporally limited,

http://i11www.iti.uni-karlsruhe.de/~pajor/survey/

3.2 time-dependent customizable route planning 85

FLAT [KMP+16]) achieves partial update times of 21 s on Berlin and
37 s on Germany. For TDCALT [DN12], partial updates are equally
fast on Europe (60.94 s reported, 22 s scaled).

When accounting for differences in hardware and implementation,
TDCALT can be preprocessed similarly fast as TDCRP. This makes
it an interesting alternative candidate for our scenario (metric cus-
tomization); since it is mostly based on lower bounds and only light
contraction, it might be fairly robust to sensible, user-defined metrics
(unlike TCH, cf. Table 3.27). Note, however, that TDCALT on Europe
requires a significantly higher approximation to achieve a similar level
of query performance (even scaled), yielding a high maximum error.
Furthermore, in the evaluated variant, landmarks are chosen after the
graph contraction routine, making it hard to parallelize the prepro-
cessing (which also has not been attempted). Additionally, TDCALT
allows no practical profile search on large instances [Del11; DN12],
making it a less versatile approach.

To summarize, we see that TDCRP clearly broadens the state-of-
the-art of time-dependent route planning, handling a wider range
of practical requirements (e. g., fast metric-dependent preprocessing,
robustness to user preferences, live traffic) with a query performance
close to the fastest known approaches.

Conclusions

We introduced TDCRP, a separator-based approach for dynamic, time-
dependent route planning. We showed that, unlike its closest competi-
tor (A)TCH, TDCRP is robust against user-dependent metric changes,
very much like CRP is more robust than CH. Most importantly, unlike
scalar CRP, we have to deal with time-dependent shortcuts, and a
strong increase in functional complexity on higher levels; To reduce
memory consumption, we approximate the overlay arcs at each level,
accelerating customization and query times. As a result, we obtain
an approach that enables fast near-optimal, time-dependent queries,
with quick integration of user preferences, live traffic, and traffic
predictions.

There are several aspects of future work. First, functional complexity
growth of time-dependent shortcuts is problematic, and from what
we have seen, it is much stronger than the increase in the number of
corresponding paths. This might explain why TDCALT is surprisingly
competitive, so re-evaluation seems fruitful (e. g., exploiting insights
from [EP13]). Revisiting hierarchical preprocessing techniques that
are not based on shortcuts [Gut04; MCB14] could also be interest-
ing. Additionally, we are interested in alternative customization ap-
proaches (avoiding expensive profile searches). This could be achieved,
e. g., by using kinetic data structures [FHS14], or balanced contrac-
tion [BGSV13] within cells. While we customized time-dependent

86 route planning in road networks

overlay arcs with both historic travel time functions (changes seldom)
and user preferences (changes often) at once, in practice, it might
pay off to separate this into two further phases (yielding a 4-phase
approach). One could also aim at exact queries based on approximated
shortcuts as in ATCH. Finally, it would be interesting to re-evaluate
(A)TCH in light of Customizable CH [DSW14; DSW16].

3.3 pedestrian route planning 87

(a) Google Maps.

(b) Our approach.

Figure 3.13: In contrast to current approaches, our route in this example
makes use of sidewalks (avoiding unnecessary street crossings),
begins on a plaza and traverses it in a natural way.

3.3 pedestrian route planning

In this section, we address the unique challenges that come with
computing pedestrian routes. In order to obtain as realistic routes as
possible, we propose to first augment the underlying street network
model, and then to apply a tailored routing algorithm on top of it.
After setting some basic definitions (Section 3.3.1), we propose ge-
ometric approaches for automatically adding sidewalks, calculating
realistic crossing penalties for major roads, and preprocessing plazas
and parks in order to traverse them in a natural way (Section 3.3.2).
Our integrated routing algorithm seamlessly handles node-to-node
queries and queries whose origin or destination is an arbitrary geo-
graphic location inside a plaza or park (Section 3.3.3). To efficiently
support long-range queries, we also adapt the Customizable Route Plan-
ning (CRP) algorithm [DGPW15]—a well-known speed-up technique
for computing driving directions in road networks—to our scenario.
We evaluate our approach on OpenStreetMap data of Berlin and the
state of Baden-Württemberg, Germany (Section 3.3.4). Our algorithm
runs in the order of milliseconds, which is practical for interactive ap-
plications. We observe that we are able to compute pedestrian routes
that are much more appealing than those by state-of-the-art route

88 route planning in road networks

planners, such as shown in Figure 3.13. Section 3.3.4.2 shows further
examples and an illustrated comparison of our method with three
popular external services.

3.3.1 Preliminaries

Throughout Section 3.3, we use the following notation and concepts:
We model the street network as a undirected graph G = (V ,E) with

a set V of nodes and a set E ⊆
(
V
2

)
of edges. A node that is inci-

dent to exactly two edges is called a 2-node. For a specific subset of
edges E ′ ⊆ E the induced graph G[E ′] = (V ′,E ′) contains E ′ and the
nodes V ′, which are incident to the edges of E ′. An s–t path in G is
a node sequence Ps,t = (s = v1, . . . , vk = t), with each ei = {vi, vi+1}
contained in E. A graph G is planar if a crossing-free drawing of G
in the plane exists. A specific embedding of G maps each node to a
coordinate in the plane. The embedding of G subdivides the plane
into disjoint polygonal regions called faces bounded by the edges of G.
Note that in our street networks each node v ∈ V corresponds to a
physical location. Likewise, each edge e ∈ E represents a street seg-
ment. The cost of e is given by c : E→ R+, where c(e) is the time (in
seconds) a pedestrian requires to traverse e. This value may, e.g., de-
pend on the street category and the segment’s physical length. For
source and target nodes s and t, Dijkstra’s algorithm [Dij59] com-
putes a shortest s–t path Ps,t, i.e., an s–t path whose cost

∑k−1
i=1 c(ei) is

minimal.
Besides the street network, we consider the walkable area of public

open spaces such as plazas and parks. We represent them by polygons,
as follows. A (simple) polygon Q ⊂ R2 is defined as the interior of a se-
quence of vertices Q = (p1, . . . ,pn),pi ∈ R2 sorted clockwise and con-
nected by non-self-intersecting segments p1p2,p2p3, . . . ,pn,p1. (We
distinguish the nodes of a graph from the vertices of a polygon.) A poly-
gon with holes Q is defined by a boundary cycle bQ and holes h1Q, . . . ,hkQ
in the interior of bQ, where bQ and hiQ again define simple polygons
and their vertices are the vertices of Q. The interior of Q is bQ \ (∪ihiQ)
and a point o or a segment s is within Q if o or s lie within this interior.
The visibility graph VG(Q) of a polygon with holes Q is a geometric
graph that consists of all vertices p1, . . . ,pn ofQ and all segments pipj
which lie within Q. The visibility polygon VP (p,Q) of a point p ∈ Q
with respect to the containing polygon Q is the region within Q that
is visible from p, i. e., for each q ∈ VP(p,Q) the segment pq ⊆ Q.
With |Q| we denote the number of vertices of Q.

For many geometric computations, we use functionality of the
computational geometry library CGAL [Cgal15], in particular for
computing line segment intersections, polygon unions and differences,
visibility graphs and polygons, range queries, and point-in-polygon
queries; see [BCKO08] for descriptions of the algorithms. To apply

3.3 pedestrian route planning 89

these geometric algorithms to our street data, we map geographic
coordinates to points in R2 using the Mercator projection. We use
Euclidean distances ||p− q|| between points p and q.

We implemented our own sweep line algorithm for a batched point
in polygon test. Given a set of disjoint polygons (without holes) and
a set of query points, our algorithm determines for each point the
polygon that contains it (if any). The algorithm works by sweeping
the query points and the end points of the polygon segments, which
define our event points, from left to right, maintaining a self-balancing
binary tree of the segments which intersect the current (vertical) sweep
line. Whenever the current event point is a query point o = (x,y),
we find the two segments sa and sb, which lie vertically directly
above and below o. If sa and sb belong to a polygon Q = (p1, . . . ,pn)
with leftmost vertex p1, we check whether sa = pipi+1, sb = pjpj+1,
and j > i. If so, o lies within Q, otherwise it is not contained in any
polygon. If m is the number of polygon edges and n is the number of
points and polygon vertices then this algorithm requires O(n logm)

time. For a set of polygons with holes we may use the same approach
once for the boundaries and once for the holes.

3.3.2 Augmented Graph Model for Pedestrian Routing

We consider three key aspects where pedestrian routes differ from
those of vehicles: (a) sidewalks are preferred over streets, if present;
(b) plazas can be traversed freely; (c) in parks pedestrians may walk
freely on the lawn, but park walkways are preferred. In this section, we
present algorithms that process the street network in order to accom-
modate these differences. (We then discuss queries in Section 3.3.3.)
Most of this preprocessing is independent of the edge costs in the
network, hence, new costs can be integrated with little effort.

3.3.2.1 Sidewalks and Street Crossings

Unlike features, such as street direction, turn restrictions and sep-
aration into lanes, sidewalk data is often lacking (or inconsistently
modeled) in popular street databases, such as OpenStreetMap.13 As
a result, state-of-the art pedestrian route planners mostly use the
streets themselves and not their sidewalks. However, this may lead
to unnecessary street crossings, which can either be costly (due to
traffic lights), or even be impossible. In contrast, when sidewalks are
considered properly, a seeming detour may actually be the shorter
path, see Figure 3.14. We therefore propose to replace some streets (as
given by the input) with automatically generated sidewalks. We dis-
tinguishing between three street types: Highways represent streets that
are inaccessible for pedestrians, hence, they have no sidewalks; regular

13 http://openstreetmap.org

http://openstreetmap.org

90 route planning in road networks

δs
δs

vi+1

vi

ri

ei
li

(a) Sidewalks for single
segment.

li−1

vi−1

vi

vi+1

vi+2

ei−1

ei

ei+1

li

li+1

ri−1

ri

ri+1

(b) Connecting sidewalk
paths.

v

(c) Adjusting sidewalks at
a street intersection.

Figure 3.15: Generating sidewalks. Regular street segments are replaced by
two sidewalk edges (a). Subsequent pairs of sidewalk edges are
then connected along each 2-node path (b). Finally, the result-
ing sidewalks are adjusted at street intersections (dotted parts
removed), and crossing edges (dashed) are added (c).

streets, such as city streets, have sidewalks; and walkways are footpaths
and streets small enough to require no sidewalks.

t

s111

10

111

105

Figure 3.14: Us-
ing streets (left)
or sidewalks
(right) changes
shortest path.

street polygons . Naïvely, one could add sidewalks to the left
and to the right of every regular street in the input [PV03]. Unfortu-
nately, this results in sidewalks being placed in the middle of multi-
lane streets or in median strips, which is clearly unwanted. We there-
fore propose to avoid areas enclosed by regular or highway streets
that are too small or thin to hold sidewalks.

To achieve this, we first compute a set S of street polygons, represent-
ing such areas without sidewalks. Consider the embedded graph Ghr

induced by the set of highway and regular street edges. We obtain
the planarization G ′hr of Ghr using a standard sweep-line algorithm
for line segment intersections [BCKO08]. Let f be a face in G′hr and
let af and pf denote its area and perimeter, respectively. Then f is
considered a street polygon, if af/pf 6 βr (too thin) or af 6 βa (too
small) for suitably chosen thresholds βr,βa.

sidewalks . Our goal is to place sidewalks to the left and to the
right of each street edge at some offset, unless they would be placed
inside a street polygon. They should also follow curves and handle
street intersections correctly, see Figure 3.15. To do so, we consider the
embedded graph Gr, induced by the regular street edges. Recall that
in Gr street intersections are modeled by nodes v of degree deg(v) > 3,
while the street’s curvature is modeled as paths of 2-nodes. For each
maximal 2-node path (v1, . . . , vk) and its adjacent intersection nodes v0
and vk+1 (where we treat dead ends as intersection nodes, too), we
consider the edge sequence (e0, . . . , ek), where ei = {vi, vi+1}. For
each edge ei, we create two sidewalk edges li and ri, and offset

3.3 pedestrian route planning 91

them (from ei) by a distance δs; see Figure 3.15a. In order to form
correct paths along bends, these edges need to be trimmed or linked
via auxiliary edges, depending on the bend angles; see Figure 3.15b.

At each street intersection v ∈ Gr with deg(v) > 3, we sort the
incident edges in cyclic order. This order yields adjacent sidewalks,
which we again trim at their respective intersection points or link by
an auxiliary edge; see Figure 3.15c. For each street edge e incident to v,
we also add an edge between the two sidewalks at v associated with e,
which allows to cross e at v; see again Figure 3.15c.

Next, we remove all sidewalk portions contained in street polygons
of S. Using a standard line segment intersection algorithm [BCKO08],
we first subdivide sidewalks at the boundaries of street polygons.
Then, we use our point-in-polygon algorithm (see Section 3.3.1) to
remove all sidewalk segments with both endpoints inside a polygon
of S. This results in (at most) two sidewalks per street, as opposed to
two sidewalks per lane.

Finally, we assemble the routing graph G induced by sidewalk, cross-
ing and walkway edges (but not highway and regular street edges).
For connectivity, we add nodes at the intersections of sidewalks with
walkways, subdividing the intersecting edges, again by running a line
segment intersection algorithm [BCKO08].

crossing penalties . We may further utilize the street polygons S
in order to penalize certain street crossings where waiting times can
be expected. As the area covered by parallel street lanes is represented
in S, an edge e of G which passes through a multi-lane street also has a
portion within S, and we may penalize this portion in our cost function.
We use two types of penalties. The “one-time” penalty αe models a
general waiting time, either for a pedestrian light or for traffic to clear.
We add αe to the cost of each edge that enters S. More precisely, an
edge e = {u, v} in G enters S if u is outside S and the segment of e has
common points with S. The second penalty, denoted αw, is a penalty
per unit of length spent within S. It reflects that wider streets generally
require longer waiting times to cross. We find the edge portions of G
within S while we remove sidewalks within S. We use our sweep line
algorithm (cf. Section 3.3.1) to find edges starting outside S. Such
edges with portions within S also enter the street polygons.

3.3.2.2 Plazas

Pedestrians may traverse plazas freely. However, somewhat surpris-
ingly, most state-of-the-art pedestrian navigation services route around
such walkable areas, not through them. We propose to utilize visibility
graphs to remedy this shortcoming. We assume that the street network
database provides traversable plazas as a set P of plaza polygons, possi-
bly with holes due to obstacles. Given P and the previously obtained
routing graph G, we compute the entry nodes of each plaza: These lie on

92 route planning in road networks

(a) A visibility graph. (b) Shortest path visibility
edges.

s

(c) Route origin in plaza
polygon.

Figure 3.16: Small polygon Q with a hole and all visibility edges (a) and the
ones that are also on shortest paths (b). Routing from within Q
requires all visibility edges (c).

the intersection of a plaza polygon’s boundary and the routing graph
and are obtained by a line segment intersection algorithm [BCKO08].
We add each entry node both to the plaza polygon (as a vertex) and
to the routing graph. For each polygon Q ∈ P, we then compute
the visibility graph VG(Q). If Q has no holes, we require quadratic
time [Cgal15; OW88], otherwise cubic time. (Since we encounter only
very few polygons with holes in practice, we did not implement a
more efficient algorithm, such as [AW88].) Let Evis(Q) be the visibil-
ity edges of VG(Q), and Evis = ∪Q∈PEvis(Q). We add Evis as further
pedestrian edges to the routing graph G.

Since the number of visibility edges Evis(Q) of a plaza polygon Q ∈
P is generally quite high (see Figure 3.16a), routing through plazas
can become expensive. We therefore mark the subset Esp

vis ⊂ Evis of vis-
ibility edges that are part of shortest paths between any pair of entry
nodes (the query may then ignore unmarked edges); see Figure 3.16b.
We do so by running Dijkstra’s algorithm from each entry node, only
relaxing visibility edges of the node’s plaza. Note that Esp

vis suffices
to route across plazas, but queries that begin or end on a plaza may
still require all edges in Evis; see Figure 3.16c and Section 3.3.3. Also
note that computing Esp

vis requires knowledge of the routing cost func-
tion (all other preprocessing does not). However, since the necessary
shortest path queries are restricted to each plaza and the number of
entry nodes is typically small, this step is not costly compared to the
total preprocessing effort.

3.3.2.3 Parks

Unlike plazas, parks have designated walkways, which we favor by
routing on walkable park areas (such as lawn) only at the beginning
or end of a route. In order to quickly locate nearby walkways during
queries, we precompute the faces of a park induced by its walkways.

Similarly to plazas, we assume that the walkable area of parks
is given as the set L of park polygons (possibly with holes) by the
street network database. We compute the entry nodes the same way
we do for plazas. We then use our algorithm from Section 3.3.1 to

3.3 pedestrian route planning 93

compute the set EL of edges in G contained in each L ∈ L (in a
single sweep). Thus, GL = G[EL] contains exactly the park walkways
within L. We add the boundary of L to GL (as nodes and edges) and
planarize GL. We define the set of park faces FL to be the faces of GL,
and F =

⋃
L∈L FL. During queries, we will use F for locating park

walkways and routing to/from them (see Section 3.3.3).

3.3.3 Computing Pedestrian Routes

We now discuss how we leverage our model from Section 3.3.2 to
compute realistic pedestrian routes. We are generally interested in
queries between arbitrary locations `o (origin) and `d (destination).
Usually, one handles such location-to-location queries by first mapping
the locations to their nearest nodes (or edges) of the network, and
then invoking a shortest path algorithm between those. However,
for locations inside plazas and parks this method would result in
inaccurate routes. Instead, we propose the following approach. First,
we test whether ` ∈ {`o, `d} is located inside a plaza or a park. In either
case, we first connect ` to Gwith sensible edges and then run Dijkstra’s
algorithm between `o and `d on this augmented graph. If neither is
the case, we just find the nearest nodes in G using a k-d tree [Ben75],
as in the classic scenario. We discuss more details next.

plazas . To test whether the origin or destination location ` is on
a plaza, we simply perform a point-in-polygon test [BCKO08]. Now,
assume that Q ∈ P is the polygon, which contains `. We compute
the visibility polygon VP(`,Q) of ` with respect to Q by applying the
recent algorithm of Bungiu et al. [BHH+14]. We also use our sweep line
algorithm from Section 3.3.1 to obtain the nodes V`Q in VG(Q) ⊂ G
that are located within VP(`,Q). We then simply connect ` to each
node p ∈ V`Q by adding edges {`,p} to the graph G.

Recall from Section 3.3.2.2 that to route across plazas, the visibility
edges in Esp

vis suffice. Hence, we ignore edges e ∈ Evis \ E
sp
vis during the

query, unless e ∈ VG(Q) for the polygon Q containing `, in which
case it is required for correctness.

parks . For the case that ` is contained in a park, we first obtain
the enclosing park face f (similarly to the plaza case). We now con-
sider two different walking speeds: the regular walking speed vr,
and another (slower) one vs for park faces (e. g., lawn). We set λ =

vs/vr (with λ ∈ (0, 1]) as a query time parameter; values λ < 1 pe-
nalize walking on the lawn, with smaller λ values leading to higher
penalization.

Taking this into account, our goal is to connect ` to the walkways
of f, such that the total walking duration is minimized. We thereby
compute the optimal path toward each edge e = {u, v} ∈ f separately,

94 route planning in road networks

`

minπu
||πu−`||
vs

+ ||u−πu||
vr

φ πu uv

(a) Reaching park walkways via park
area.

`

uv π1
u π2

u π3
u

λ1 = 0.01
λ2 = 0.1

λ3 = 0.7

(b) Different penalties for walking on
park area.

Figure 3.17: Using the park area and walkway. We minimize the walking time
on the park area plus that on the walkway (left). The manner in
which the park area is utilized varies with vs (right).

as follows. Consider a point πu on e. To reach u from ` via πu, one
requires total walking timew =

||πu−`||
vs

+
||u−πu||
vr

; see Figure 3.17a. For
a given λ, the minimum walking time w∗ is achieved by the projection
point π∗u = φ+ λ

1−λ2
· ||`−φ||

||u−φ||
· (u−φ), where φ is the perpendicular

projection of ` on the line through e; see [And12] for a derivation
of this formula. As seen in Figure 3.17b, a small value of λ causes a
perpendicular projection: walking on the lawn is costly and therefore
minimized. A larger value of λ allows for a more direct, target-aimed
projection, saving distance but using more of the walkable park area.

`o

`d

fd

fo

Figure 3.18: De-
tour due to long
thin face.

We now use the aforementioned formula to compute for each
edge e = {u, v} ∈ f the projection points π∗u and π∗v. To check whether
a segments su = π∗u` is walkable within the park, we test whether
the point π∗u lies within the visibility polygon VP(`,Q). If so, we add
the edge {`,u} with cost ||π∗u−`||

vs
+

||u−π∗u||
vr

to G. Node v is handled
analogously.

Note that since we directly connect the origin `o and destination `d
to the edges of their enclosing faces, we are unable to route around
obstacles in parks. Moreover, we are unable to walk across other park
faces (except the ones containing the origin and destination locations).
However, this may result in unnatural routes, if origin and destination
are in the same park separated by a thin face; see Figure 3.18. We
solve this issue by introducing a radius parameter ε, and additionally
compute edges to the boundaries of all faces (of the same park) that
have vertices within distance ε of `. We use range queries [Cgal15]
to obtain those faces. If, both, origin `o and destination `d are in the
same park and within distance ε, we additionally consider the direct
route `o`d with cost ||`d−`o||

vs
explicitly.

customizable route planning . Typical pedestrian routes are
very short, thus, one might argue that Dijkstra’s algorithm computes
them sufficiently fast. Still, a practical routing engine should be robust
against long-distance queries as well. We therefore propose to make
use of the Customizable Route Planning (CRP) algorithm [DGPW15].
It is a state-of-the-art speedup technique, developed for computing

3.3 pedestrian route planning 95

driving directions in road networks. CRP employs three phases: The
preprocessing phase uses a nested multilevel partition to compute (for
each level) a metric-independent overlay graph over the boundary
nodes of the partition. The customization phase takes a cost function
as input and computes the actual edge weights of the overlay graph.
Finally, the query phase runs bidirectional Dijkstra’s algorithm, using
the overlay graph to the effect of “skipping” over large parts of the
network. See [DGPW15] for details.

Adapting CRP to our scenario requires little effort. We use the
routing graph G for computing both the multilevel partition and the
overlay graph. To easily support queries beginning or ending within
parks or plazas, we enforce that nodes within the same park or plaza
are never put into different cells of the partition. (We do this by
running the partitioner on a slightly modified graph, in which we
contract all nodes associated with the same park or plaza.) To see why
this is correct, recall that the temporary edges added by the query only
point to nodes within the park or plaza which contains the origin (or
destination) location. By construction these nodes are all part of the
same cell (on every level of the partition), therefore, the distances in
the overlay graph are unaffected and still correct.

Note that in our CRP query we do not bother ignoring visibility
edges in G that are not on shortest paths: They are only present on
the bottom level, therefore, the query skips over them automatically
in most cases.

3.3.4 Experiments

We implemented all algorithms in C++ using g++ 4.8.3 (flag -O3)
and CGAL 4.6. We conducted our experiments on a single core of
a 4-core Intel Xeon E5-1630v3 CPU clocked at 3.7 GHz with 128 GiB
of DDR4-2133 RAM. Our data set was extracted from OpenStreet-
Map (OSM) on May 15, 2015, and includes roads, plazas and parks.14

We use two instances: Berlin (BE) and the state of Baden-Württem-
berg (BW), both in Germany. While BE is an eclectic city with plenty
of large streets, parks and plazas (making it interesting for evaluating
pedestrian routes), we use BW to demonstrate the scalability of our
approach.

We first present a quantitative evaluation of our approach, then
compare the quality of our routes to the state of the art in a case study.

3.3.4.1 Quantitative Evaluation

We determined sensible values for the parameters of our preprocess-
ing (cf. Section 3.3.2) by running preliminary experiments. We set the

14 Note that OSM offers a tag for indicating availability of sidewalks at streets, however,
it has not been widely adopted as of now, cf. http://taginfo.openstreetmap.org/
keys/?key=sidewalk.

http://taginfo.openstreetmap.org/keys/?key=sidewalk
http://taginfo.openstreetmap.org/keys/?key=sidewalk

96 route planning in road networks

Table 3.31: Size figures before and after preprocessing. Besides graph size, we
report the total number of vertices for plaza, park, and obstacle
polygons. Preprocessing time is given in [m:s].

OSM Input Pedestrian Output

Nodes Edges Plaza Park Obst. Nodes Edges Plaza Park Time

BE 378 298 890 682 9 727 33 072 1 116 452 586 1 132 928 7 276 19 903 1:26

BW 8 235 762 17 740 940 74 547 86 380 4 439 10 209 641 22 750 644 63 300 43 632 32:45

Table 3.32: Detailed preprocessing figures. Besides running time, we report
the number of added sidewalks, substituted streets, avg. vertices
per plaza polygon (Plaza avg.), visibility edges (Vis.) and the
fraction of them on shortest paths (SP. [%]), avg. vertices per
park (Park avg.), avg. faces per park (Faces/park), avg. vertices
per park face (Face avg.), and the vertices of all park faces (Faces
total).

Sidewalks Plazas Parks

Added Subst. Time Plaza Vis. SP. Time Park Faces/ Face Faces Time

sidewalks streets [s] avg. total [%] [s] avg. park avg. total [s]

BE 266 336 105 146 32.6 15.38 86 912 9.5 23.0 22.4 10.4 10.68 98 108 31.6

BW 5 580 842 1 824 185 743.7 17.45 772 416 7.7 563.6 20.8 6.6 11.26 155 840 657.4

sidewalk offset to δs = 3m, and set values for sidewalks suppression
of small and thin street polygons to βa = 1000m2 and βr = 3.17m. For
queries we assume a regular walking speed of vr = 1.4 m

s [BBHK06],
and we set vs = 0.9 m

s for walkable park areas, i. e., λ ≈ 0.6. We also
set the park face expansion value to ε = 20m. Regarding intersections,
we set the crossing penalties to αe = 10 s and αw = 1 s

m , which leads
to about 30 s of expected waiting time for typically-sized intersections.

Note that though we set these parameter values uniformly for our
experiments, the approach would easily allow setting specific values
per intersection or park face, if such detailed data was available. Also
note that in our instances we do not add crossing edges within street
polygons, i. e., at large multi-lane intersections (cf. Section 3.3.2). In fact,
OpenStreetMap provides these already, and adding further crossings
may result in dangerous paths, forcing the pedestrian to cross several
lanes without the aid of traffic regulations.

preprocessing . Table 3.31 presents size figures for the input and
output of our preprocessing. Note that BW is significantly larger
than BE (factor of 20 in graph size and factor of 9 in plaza poly-
gons). This is reflected by the preprocessing effort, which takes about
23 times longer on BW. However, the graph size increases by less

3.3 pedestrian route planning 97

than 30 % (nodes and edges) by our preprocessing. Unfortunately,
polygons representing walkable areas (parks and plazas) in OSM may
overlap and, moreover, polygons with holes are not supported. In-
stead, obstacles are represented as an additional type of polygon. We
therefore first compute the union of overlapping polygons and then
subtract potential obstacles from it [Cgal15]. This explains the (some-
what peculiar) drop of 50 % in the number of park polygon vertices
in our output. Note that only less than 3 % of the resulting plaza
polygons have holes in them (not reported in the table).

Table 3.32 presents more detailed figures. We observe that each part
of our preprocessing requires a similar amount of time. Regarding side-
walks, only a small subset (12%) of the roads is actually substituted.
(Recall that we replace neither highways nor walkways.) However, the
number of sidewalk edges per substituted road segment is more than
two on average, due to complex intersections and other effects (cf. Sec-
tion 3.3.2). Regarding plazas, we observe that the number of visibility
edges is only a small fraction of the graph (less than 10 %), with less
than 10 % of those actually being on shortest paths. The necessary
shortest path computations take less than 3 seconds on BW (not re-
ported in the table). For parks, we observe that including walkways (to
compute park faces) increases the number of park vertices by a factor
of 5 (“Faces total” in the table). While this results in a high average
number of vertices per entire park (111 for BE), the number of vertices
per park face remains small, which is the influential performance
figure for queries that begin or end in a park.

queries . We now evaluate the query performance. Recall that our
query algorithm takes as input two arbitrary locations, which may be
inside a plaza or park, and in which case the query will route from the
precise location to the vertices of its surrounding polygon. Table 3.33

separately evaluates our algorithm for each scenario of placing the
origin or destination on a street node (s), inside a plaza (p), or a park
face (f). Per scenario, we generated 1,000 queries, choosing origin
and destination (i.e., node, plaza polygon or park face) uniformly at
random. For the plaza or park case, we further chose an interior point
at random.

The query is oblivious to the specific scenario, i.e., we only pass
geographic locations as input, and it needs to perform the necessary
checks to figure out the right scenario itself. However, at below 80 µs
these checks (including the determination of the specific street node
or enclosing polygon) take negligible time. The initialization stage for
plazas (computing additional visibility edges) or parks (computing
and testing projections) is considerably more expensive, but still runs
well below a millisecond, orders of magnitude faster than the subse-
quent run of Dijkstra’s algorithm. Note that in our implementation
we never add any edges explicitly (cf. Section 3.3.3), but rather simply

98 route planning in road networks

Table 3.33: Evaluating the query performance of our approach. We distin-
guish each combination of the origin/destination being on a street
node (s), plaza polygon (p), or park face (f). We report the time in
milliseconds to check for each of these cases (Localization), the
time for our initialization stage (Initialization) or not applicable (—
), and the time for running Dijkstra’s algorithm (Dij.).

BE BW

Localization Initialization Dij. Localization Initialization Dij.

Query Plaza Park Street Plaza Park [ms] Plaza Park Street Plaza Park [ms]

s–s 0.021 0.027 0.004 — — 31.8 0.033 0.040 0.005 — — 808.0

s–p 0.021 0.016 0.002 0.165 — 30.4 0.032 0.020 0.003 0.173 — 871.6

p–p 0.016 — — 0.264 — 27.9 0.027 — — 0.351 — 889.4

s–f 0.021 0.022 0.002 — 0.359 28.3 0.029 0.026 0.002 — 0.310 758.7

p–f 0.017 0.011 — 0.145 0.362 30.6 0.027 0.014 — 0.178 0.303 810.1

f–f 0.020 0.021 — — 0.733 27.6 0.029 0.027 — — 0.622 733.6

initialize Dijkstra’s algorithm with all vertices (and their respective
distances) to which these temporary edges would point.

customizable route planning . We finally evaluate the com-
bination of our query algorithm with the Customizable Route Plan-
ning (CRP) approach [DGPW15] on our larger BW network. For parti-
tioning, we use PUNCH [DGRW11] set to compute five nested levels
with at most [28, 211, 214, 217, 220] vertices per cell. (This is the same
configuration as in [DGPW15].) We compute the partition on the
routing graph (that is output by our preprocessing), however, we tem-
porarily replace nodes of the same plaza or park by a single supernode.
This keeps polygons from spreading over cell boundaries and simpli-
fies the CRP query. Computing the metric-independent partition takes
several minutes and the subsequent customization phase takes about
five seconds. Note that to integrate a new cost function, e.g., due to
different crossing penalties, only the customization phase has to be
rerun, which is very fast.

Figure 3.19 compares the performance of CRP with Dijkstra’s al-
gorithm using the Dijkstra rank methodology [SS05]: When running
Dijkstra’s algorithm from node s, node u has rank x, if it is the x-
th node taken from the priority queue. By selecting random origin
and destination pairs according to ranks 21, 22, . . . , 2blog |Vr|c (we select
1,000 queries per bucket), the plot simultaneously captures short- mid-
and long-range queries. We observe that for short-range queries the
performance of Dijkstra’s algorithm is very similar to that of CRP (be-
low 200 µs on average). However, from rank 210 onward, Dijkstra’s
algorithm becomes significantly slower (rising to more than a second),

3.3 pedestrian route planning 99

0:4 0:7 0:10 0:15 0:20 0:28 0:39 0:55 1:16 1:44 2:25 3:24 4:49 6:52 9:55 14:31 21:13 32:4 53:53

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

10-1

100

101

102

103

10-1

100

101

102

103Dijkstra (left) CRP (right)

Walking Time [h:m]

Rank

Q
u
er
y
T
im

e
[m

s]

Figure 3.19: Dijkstra rank plot on our BW instance, comparing the perfor-
mance of Dijkstra’s algorithm with CRP. The top axis shows the
average walking time for the queries in each bucket.

while the average running time of CRP remains below 1 ms at any
rank. Note that while most pedestrian queries are likely of short range,
a production system must nevertheless be robust against any query.

3.3.4.2 Case Study

We now present a case study, which compares the output of our
approach to OpenRouteService15, Google Maps16 and Nokia HERE17.

Figure 3.20 shows an example in the city of Karlsruhe, Germany.
It highlights the importance of, both, the presence of sidewalks and
being able to route across walkable areas. Clearly, OpenRouteService
has the worst result, as it does not consider the boundary of the
plaza (Festplatz) for routing, which results in a large detour. Because of
improper sidewalk data, the routes of Google Maps and HERE suggest
to go across the same street (Beiertheimer Allee) twice, which is
unnatural and unnecessary. While Nokia HERE is the only competing
approach that has some additional edges for walking across open
areas (thus yielding a more realistic route), the utilization of these
edges seems to be heuristic, still yielding an (unnatural) detour. In
contrast, our route has no unnecessary street crossings (because of our
generated sidewalk data), and the plaza is traversed in a natural way.

Figure 3.21 shows an example of a route starting on a plaza between
buildings and ending in a park (Berlin, Germany). Unlike the previous
example, OpenRouteService is able to route around (but not across)
the plaza, because the plaza’s boundary has been tagged as walkable.
On the other hand, GoogleMaps seems to lack information in that
region and so maps the query locations to the nearest street network
node (which is actually blocked by the building structure). HERE

15 http://www.openrouteservice.org/
16 https://maps.google.de/
17 https://www.here.com/

100 route planning in road networks

(a) OpenRouteService.

(b) Google Maps.

(c) Nokia’s HERE.

(d) Our approach.

Figure 3.20: Comparison with several readily available pedestrian route plan-
ning services. The origin of the route is a street address, and its
destination is inside a plaza.

3.3 pedestrian route planning 101

(a) OpenRouteService. (b) Google Maps.

(c) Nokia’s HERE. (d) Our approach.

Figure 3.21: Comparison with several readily available pedestrian route plan-
ning services. The route begins in a plaza and ends in a park.

102 route planning in road networks

has walkways on the plaza, but also uses a shortcut which passes
through a cinema; it yields a shorter path but is obscure and unlikely:
guiding the pedestrian to a door is puzzling, the building may be
closed, etc. As before, the route of our approach traverses the plaza
without detours.

Towards the destination, the routes of OpenRouteService, Google
Maps and HERE are all incomplete: they find the nearest node and sim-
ply use it as the query target. In contrast, our approach allows walking
directly across the lawn and avoids the small detours introduced by
the other approaches.

Conclusions

We presented an approach for quickly computing realistic pedestrian
routes. We proposed geometric algorithms to automatically augment
the street network with sensible sidewalks and edges in plazas, making
it possible to walk across them in a natural way. Our query algorithm
extends classic node-to-node queries by allowing the origin or des-
tination to be an arbitrary location inside a park or plaza. We also
combined our algorithm with the well-known Customizable Route
Planning technique, which enabled us to compute appealing pedes-
trian routes within milliseconds, fast enough for interactive applica-
tions.

Future work includes more realistic models (e.g., for traffic lights
or more precise human walking behavior); leveraging of building
layouts [BPS11]; and additional optimization criteria like elevation and
stairs, which have been used in the context of bicycle routing [Sto12].
We would also be interested in using our sidewalk generation al-
gorithm in a semi-automatic tool for adding sidewalk data back to
OpenStreetMap.

4
P U B L I C T R A N S I T J O U R N E Y P L A N N I N G

Research on journey planning in public transit networks is still very
active, see the discussion in Chapter 2. While many publications opt to
ignore traffic and rush hours (with a significant but bearable error on
the calculated travel time) for road networks, transit networks are in-
herently time-dependent due to the underlying timetable. Ignoring the
schedule may lead to journeys that have infeasible transfers between
vehicles, which most likely results in getting the user stranded.

To capture the time-dependency, early approaches suggested differ-
ent encodings of the schedule in a graph representation of the transit
network [DKP12; DPW09b; PSWZ08]. One of these, the time-expanded
model (TE), expands time in the sense that it creates a vertex for each
time event in the timetable (such as a vehicle departing or arriving at a
stop), inserting arcs to connect events in the sequence they are served
by a vehicle.

Newer approaches, like RAPTOR [DPW12a; DPW14], moved from
graph representations to applying dynamic programming directly
on the timetable. Very recently, however, graph representations were
again considered by a trip-based approach [Wit15].

One of the degrees of freedom in public transit modeling is the
way periodicity is handled. Undoubtedly, there are many recurring
events in a timetable (e. g., small bus operators typically have only
three schedules throughout the year: for Monday through Friday, for
Saturday, and for Sunday). For larger-scale networks, however, period-
icity is seldom perfect (as witnessed by the long list of exceptions in
the footer of the station timetable of, e. g., the German railways). Ape-
riodic timetables therefore consider each singular day in the calendar
as it is scheduled to happen.

In this chapter, we revisit the time-expanded graph model. For ape-
riodic timetables, the TE graph is directed and acyclic, a property that
we exploit in this chapter. In particular, we find that by topologically
sorting (in the most straightforward way) the timetable connections
represented in the TE graph, we can completely avoid explicitly build-
ing the TE graph to begin with. In the second part of this chapter, these
properties (directed, acyclic) enable the transfer of research results on
fast reachability queries.

chapter outline . Section 4.1 introduces the Connection Scan
Algorithm (CSA), a novel algorithmic framework to compute journeys
directly on the timetable. It organizes data as a single array of con-
nections, which it scans once per query, enabling fast earliest arrival

103

104 public transit journey planning

and multicriteria profile search. Section 4.2 introduces Public Transit
Labeling (PTL), a preprocessing approach that provides simple and ef-
ficient algorithms for earliest arrival, profile, and multicriteria queries
that are orders of magnitude faster than the state of the art.

4.1 connection scan algorithm

In this section, we present the Connection Scan Algorithm (CSA). In
its basic variant, it solves the earliest arrival problem, and is, like
RAPTOR, not graph-based. It is centered around elementary connec-
tions, which are the most basic building block of a timetable. CSA
organizes them as one single array, which it then scans once (linearly)
to compute journeys to all stops of the network. The algorithm turns
out to be intriguingly simple with excellent spatial data locality.

The rest of this section is organized as follows. Section 4.1.1 sets
necessary notion, and Section 4.1.2 presents our new algorithm. Sec-
tion 4.1.3 extends it to multicriteria profile queries. The experimental
evaluation is available in Section 4.1.4.

4.1.1 Preliminaries

Throughout Section 4.1, we use the following notation and concepts:
Our public transit networks are defined in terms of their aperi-

odic timetable, consisting of a set of stops, a set of connections, and
a set of footpaths. A stop p corresponds to a location in the network
where a passenger can enter or exit a vehicle (such as a bus stop or
train station). Stops may have associated minimum transfer times, de-
noted τch(p), which represent the minimum time required to transfer
between vehicles at the same stop p. A connection c models a vehicle
departing at a stop pdep(c) at time τdep(c) and arriving at stop parr(c)

at time τarr(c) without intermediate halt. Connections that are sub-
sequently operated by the same vehicle are grouped into trips. We
identify them by t(c). We denote by cnext the next connection (after c)
of the same trip, if available. Trips can be further grouped into routes.
A route is a set of trips serving the exact same sequence of stops. For
correctness, we require trips of the same route to not overtake each
other. Footpaths enable walking transfers between nearby stops. Each
footpath consists of two stops with an associated walking duration.
Note that our footpaths are transitively closed. A journey is a sequence
of connections and footpaths. If two subsequent connections are not
part of the same trip, their arrival-departure time-difference must be at
least the minimum transfer time of the stop. Because our footpaths are
transitively closed, a journey never contains two subsequent footpaths.

In the following, we consider several well-known problems. In the
earliest arrival problem we are given a source stop ps, a target stop pt,
and a departure time τ. It asks for a journey that departs from ps

4.1 connection scan algorithm 105

no earlier than τ and arrives at pt as early as possible. The profile
problem asks for the set of all earliest arrival journeys (from ps to pt)
for every departure at ps. Besides arrival time, we also consider the
number of transfers as criterion: In multicriteria scenarios one is
interested in computing a Pareto set of nondominated journeys. Here,
a journey J1 dominates a journey J2 if it is better with respect to every
criterion. Nondominated journeys are also called to be Pareto-optimal.
Finally, the multicriteria profile problem requests a set of Pareto-optimal
journeys (from ps to pt) for all departures (at ps).

Usually, these problems have been solved by (variants of) Dijkstra’s
algorithm on an appropriate graph (representing the timetable). Most
relevant for us is the realistic time-expanded model [PSWZ08]. It ex-
pands time in the sense that it creates a vertex for each event in the
timetable (such as a vehicle departing or arriving at a stop). Then, for
every connection it inserts an arc between its respective departure/ar-
rival events, and also arcs that link subsequent connections. Arcs are
always weighted by the time difference of their linked events. Special
vertices may be added to respect minimum transfer times at stops.
See [MSWZ07; PSWZ08] for details.

4.1.2 Earliest Arrival Queries

We now introduce the Connection Scan Algorithm (CSA), our ap-
proach to public transit route planning. We describe it for the earli-
est arrival problem and extend it to more complex scenarios in Sec-
tions 4.1.3. Our algorithm builds on the following property of public
transit networks: We call a connection c reachable iff either the user is
already traveling on a preceding connection of the same trip t(c), or,
he is standing at the connection’s departure stop pdep(c) on time, i. e.,
before τdep(c). In fact, the time-expanded approach encodes this prop-
erty into a graph G, and then uses Dijkstra’s algorithm to obtain
optimal sequences of reachable connections [PSWZ08]. Unfortunately,
Dijkstra’s performance is affected by many priority queue operations
and suboptimal memory access patterns. However, since our timeta-
bles are aperiodic, we observe that G is acyclic. Thus, its arcs may
be sorted topologically, e. g., by departure time. Dijkstra’s algorithm
on G, actually, scans (a subsequence of) them in this order.

Instead of building a graph, our algorithm assembles the timetable’s
connections into a single array C, sorted by departure time. Given
source stop ps and departure time τ as input, it maintains for each
stop p a label τ(p) representing the earliest arrival time at p. Labels τ(·)
are initialized to all-infinity, except τ(ps), which is set to τ. The algo-
rithm scans all connections c ∈ C (in order), testing if c can be reached.
If this is the case and if τarr(c) improves τ(parr(c)), CSA relaxes c by up-
dating τ(parr(c)). After scanning the full array, the labels τ(·) provably
hold earliest arrival times for all stops.

106 public transit journey planning

reachability, minimum transfer times and footpaths .
To account for minimum transfer times in our data, we check a connec-
tion c for reachability by testing if τ(pdep(c)) + τch(pdep(c)) 6 τdep(c)

holds. Additionally, we track whether a preceding connection of the
same trip t(c) has been used. We, therefore, maintain for each con-
nection a flag, initially set to 0. Whenever the algorithm identifies a
connection c as reachable, it sets the flag of c’s subsequent connec-
tion cnext to 1. Note that for networks with τch(·) = 0, trip tracking can
be disabled and testing reachability simplifies to τ(pdep(c)) 6 τdep(c).
To handle footpaths, each time the algorithm relaxes a connection c, it
scans all outgoing footpaths of parr(c).

improvements . Clearly, connections departing before time τ can
never be reached and need not be scanned. We do a binary search
on C to identify the first relevant connection and start scanning from
there (start criterion). If we are only interested in one-to-one queries, the
algorithm may stop as soon as it scans a connection whose departure
time exceeds the target stop’s earliest arrival time. Also, as soon as one
connection of a trip is reachable, so are all subsequent connections of
the same trip (and preceding connections of the trip have already been
scanned). We may, therefore, keep a flag (indicating reachability) per
trip (instead of per connection). The algorithm then operates on these
trip flags instead. Note that we store all data sequentially in memory,
making the scan extremely cache-efficient. Only accesses to stop labels
and trip flags are potentially costly, but the number of stops and trips
is small in comparison. To further improve spatial locality, we subtract
from each connection c ∈ C the minimum transfer time of pdep(c)

from τdep(c), but keep the original ordering of C. Hence, CSA requires
random access only on small parts of its data, which mostly fits in
low-level cache.

4.1.3 Profile and Multicriteria Queries

CSA can be extended to profile queries. Given the timetable and a
source stop ps, a profile query computes for every stop p the set of all
earliest arrival journeys to p for every departure from ps, discarding
dominated journeys. Such queries are useful for preprocessing tech-
niques, but also for users with flexible departure (or arrival) time. We
refer to the solution as a Pareto set of (τdep(ps), τarr(pt)) pairs.

In the following, we describe the reverse p–pt-profile query. The
forward search works analogously. Our algorithm, pCSA (p for profile),
scans once over the array of connections sorted by decreasing departure
time. For every stop it keeps a partial (tentative) profile. It maintains
the property that the partial profiles are correct wrt. the subset of
already scanned connections. Every stop is initialized with an empty
profile, except pt, which is set to a constant identity-profile. When

4.1 connection scan algorithm 107

scanning a connection c, pCSA evaluates the partial profile at the
arrival stop parr(c): It asks for the earliest arrival time τ∗ at pt over
all journeys departing at parr(c) at τarr(c) or later. It then updates the
profile at pdep(c) by potentially adding the pair (τdep(c), τ∗) to it,
discarding newly dominated pairs, if necessary.

maintaining profiles . We describe two variants of maintaining
profiles. The first, pCSA-P (P for Pareto), stores them as arrays of
Pareto-optimal (τdep, τarr) pairs ordered by decreasing arrival (de-
parture) time. Since new candidate entries are generated in order of
decreasing departure time, profile updates are a constant-time oper-
ation: A candidate entry is either dominated by the last entry or is
appended to the array. Profile evaluation is implemented as a linear
scan over the array. This is quick in practice, since, compared to the
timetable’s period, connections usually have a short duration. The
identity profile of pt is handled as a special case. By slightly modify-
ing the data structure, we obtain pCSA-C (C for constant), for which
evaluation is also possible in constant time: When updating a profile,
pCSA may append a candidate entry, even if it is dominated. To ensure
correctness, we set the candidate’s arrival time τ∗ to that of the domi-
nating entry. We then observe that, independent of the input’s source
or target stop, profile entries are always generated in the same order.
Moreover, each connection is associated with only two such entries,
one at its departure stop, relevant for updating, and, one at its arrival
stop, relevant for evaluation. For each connection, we precompute
profile indices pointing to these two entries, keeping them with the
connection. Furthermore, its associated departure time and stop may
be dropped. Note that the space consumption for keeping all (even
suboptimal) profile entries is bounded by the number of connections.
Following [DKP12], we also collect—in a quick preprocessing step—
at each stop all arrival times (in decreasing order). Then, instead of
storing arrival times in the profile entries, we keep arrival time indices.
For our scenarios, these can be encoded using 16 (or fewer) bits. We
call this technique time indexing, and the corresponding algorithm
pCSA-CT.

minimum transfer times and footpaths . We incorporate
minimum transfer times by evaluating the profile at a stop p for time τ
at τ + τch(p). The trip bit is replaced by a trip arrival time, which
represents the earliest arrival time at pt when continuing with the
trip. When scanning a connection c, we take the minimum of the
trip arrival time and the evaluated profile at parr(c). We update the
trip arrival time and the profile at pdep(c), accordingly. Footpaths are
handled as follows. Whenever a connection c is relaxed, we scan all
incoming footpaths at pdep(c). However, this no longer guarantees
that profile entries are generated by decreasing departure time, mak-

108 public transit journey planning

ing profile updates a non-constant operation for pCSA-P. Also, we
can no longer precompute profile indices for pCSA-C. Therefore, we
expand footpaths into pseudoconnections in our data, as follows. If pa
and pb are connected by a footpath, we look at all reachable (via
the footpath) pairs of incoming connections cin at pa and outgoing
connections cout at pb. We create a new pseudoconnection (from pa
to pb, departure time τarr(cin), and arrival time τdep(cout)) iff there is
no other pseudoconnection with a later or equal departure time and
an earlier or equal arrival time. Pseudoconnections can be identified by
a simultaneous sweep over the incoming/outgoing connections of pa
and pb. During query, we handle footpaths toward pt as a special case
of the evaluation procedure. Footpaths at ps are handled by merging
the profiles of stops that are reachable by foot from ps.

one-to-one queries . So far we described all-to-one profile queries,
i. e., from all stops to the target stop pt. If only the one-to-one pro-
file between stops ps and pt is of interest, a well-known pruning
rule [DKP12; MSWZ07] can be applied to pCSA-P: Before inserting a
new profile entry at any stop, we check whether it is dominated by
the last entry in the profile at ps. If so, the current connection cannot
possibly be extended to a Pareto-optimal solution at the source, and,
hence, can be pruned. However, we still have to continue scanning the
full connection array.

multicriteria . CSA can be extended to compute multicriteria
profiles, optimizing triples (τdep(ps), τarr(pt), # t) of departure time,
arrival time and number of taken trips. We call this variant mcpCSA-
CT. We organize these triples by mapping arrival time τarr(pt) onto
bags of (τdep(ps), # t) pairs. Thus, we follow the general approach
of pCSA-CT, but now maintain profiles as (τarr(pt), bag) pairs. Eval-
uating a profile, thus, returns a bag. Where pCSA-CT computes the
minimum of two departure times, mcpCSA-CT merges two bags, i. e., it
computes their union and removes dominated entries. When it scans
a connection c, # t is increased by one for each entry of the evaluated
bag, unless c is a pseudoconncetion. It then merges the result with
the bag of trip t(c), and updates the profile at pdep(c), accordingly.
Exploiting that, in practice, # t only takes small integral values, we
store bags as fixed-length vectors using # t as index and departure
times as values. Merging bags then corresponds to a component-wise
minimum, and increasing # t to shifting the vector’s values. A variant,
mcpCSA-CT-SSE, uses SIMD-instructions for these operations.

4.1.4 Experiments

We ran experiments pinned to one core of a dual 8-core Intel Xeon
E5-2670 clocked at 2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB

4.1 connection scan algorithm 109

Table 4.1: Size figures for our timetables including figures of the time-
dependent (TD), colored time-dependent (TD-col), and time-
expanded (TE) graph models [DKP12; MSWZ07; PSWZ08].

Figures London Germany Europe

Stops 20 843 6 822 30 517

Trips 125 537 94 858 463 887

Connections 4 850 431 976 678 4 654 812

Routes 2 135 9 055 42 547

Footpaths 45 652 0 0

Expanded Footpaths 8 436 763 0 0

TD Vertices 97 k 114 k 527 k

TD Arcs 272 k 314 k 1 448 k

TD-col Vertices 21 k 20 k 79 k

TD-col Arcs 71 k 86 k 339 k

TE Vertices 9 338 k 1 809 k 8 778 k

TE Arcs 34 990 k 3 652 k 17 557 k

of L3 and 256 KiB of L2 cache. We compiled our C++ code using g++
4.7.1 with flags -O3 -mavx.

We consider three realistic inputs whose sizes are reported in Ta-
ble 4.1. They are also used in [DKP12; DPW14; Gei10], but we ad-
ditionally filter them for (obvious) errors, such as duplicated trips
and connections with non-positive travel time. Our main instance,
London, is available at [Lds]. It includes tube (subway), bus, tram,
Dockland Light Rail (DLR) and is our only instance that also includes
footpaths. However, it has no minimum transfer times. The German
and European networks were kindly provided by HaCon [HaC84].
Both have minimum transfer times. The German network contains
long-distance, regional, and commuter trains operated by Deutsche
Bahn during the winter schedule of 2001/02. The European network
contains long-distance trains, and is based on the winter schedule of
1996/97. To account for overnight trains and long journeys, our (aperi-
odic) timetables cover one (London), two (Germany), and three (Eu-
rope) consecutive days.

We ran for every experiment 10 000 queries with source and target
stops chosen uniformly at random. Departure times are chosen at
random between 0:00 and 24:00 (of the first day). We report the running
time and the number of label comparisons, counting an SSE operation
as a single comparison. Note that we disregard comparisons in the
priority queue implementation.

earliest arrival . In Table 4.2, we report performance figures
for several algorithms on the London instance. Besides CSA, we ran re-

110 public transit journey planning

Table 4.2: Figures for the earliest arrival problem on our London instance.
Indicators are: • enabled, ◦ disabled, – not applicable. “Sta.” refers
to the start criterion. “Trp.” indicates the method of trip tracking:
connection flag (◦), trip flag (•), none (×). “One.” indicates one-to-
one queries by either using the stop criterion or pruning. We also
show results for TE+ALT as reported in [CDD+14] for a slightly
different instance and machine.

Scanned # Reachable # Relaxed # Scanned # L.Cmp. Time

Alg. St
a.

Tr
p.

O
ne

.
Arcs/Con. Arcs/Con. Arcs/Con. Footpaths p. Stop [ms]

TE – – ◦ 20 370 117 — 5 739 046 — 977.3 876.2

TD – – ◦ 262 080 — 115 588 — 11.9 18.9

TD-col – – ◦ 68 183 — 21 294 — 3.2 7.3

CSA ◦ ◦ ◦ 4 850 431 2 576 355 11 090 11 500 356.9 16.8

CSA • ◦ ◦ 2 908 731 2 576 355 11 090 11 500 279.7 12.4

CSA • • ◦ 2 908 731 2 576 355 11 090 11 500 279.7 9.7

TE – – • 1 391 761 — 385 641 — 66.8 64.4

TD – – • 158 840 — 68 038 — 7.2 10.9

TD-col – – • 43 238 — 11 602 — 2.1 4.1

TE+ALT – – • n/a — n/a — n/a 9.4

CSA • • • 420 263 126 983 5 574 7 005 26.6 2.0

CSA • × • 420 263 126 983 5 574 7 005 26.6 1.8

duced, realistic time-expanded Dijkstra (TE) with two vertices per con-
nection [PSWZ08] and footpaths [MSWZ07], realistic time-dependent
Dijkstra (TD), and time-dependent Dijkstra using the optimized col-
oring model [DKP12] (TD-col). For CSA, we distinguish between
scanned, reachable and relaxed connections. Algorithms in Table 4.2
are grouped into blocks.

The first considers one-to-all queries, and we see that basic CSA
scans all connections (4.8 M), only half of which are reachable. On the
other hand, TE scans about half of the graph’s arcs (20 M). Still, this
is a factor of four more entities due to the modeling overhead of the
time-expanded graph. Regarding query time, CSA greatly benefits
from its simple data structures and lack of priority queue: It is a factor
of 52 faster than TE. Enabling the start criterion reduces the number of
scanned connections by 40 %, which also helps query time. Using trip
bits increases spatial locality and further reduces query time to 9.7 ms.
We observe that just a small fraction of scanned arcs/connections
actually improve stop labels. Only then CSA must consider footpaths.
The second block considers one-to-one queries. Here, the number
of connections scanned by CSA is significantly smaller; journeys in
London rarely have long travel times. Since our London instance
does not have minimum transfer times, we may remove trip tracking

4.1 connection scan algorithm 111

from the algorithm entirely. This yields the best query time of 1.8 ms
on average. Although CSA compares significantly more labels, it
outperforms Dijkstra in almost all cases (also see Table 4.4 for other
inputs). Only for one-to-all queries on London TD-col is slightly faster
than CSA.

further engineering of the time-expanded approach . In
our implementation of TE, we already use the reduced graph represen-
tation with two vertices per connection. However, it is well known that
TE can be further accelerated by, e. g., (1) node blocking [DPW09b] and
restricted node exploration [CDD+14], essentially skipping later connec-
tions to already discovered stops, (2) extended arc relaxation [CDD+14],
where only arrival vertices are inserted into the queue, and (3) a com-
bination with speedup techniques such as ALT [GH05]. Note that such
techniques are not easily applied to CSA: by design, it does not use
a queue to maintain a search front, and skipping a connection by
means of checking a flag is not much faster than actually scanning the
connection. In [CDD+14], a combination of above techniques (called
TE+ALT in Table 4.2) yields query times below 10 ms on a 4-core
Intel i5-2500K clocked at 3.30 GHz; Since the considered instance of
London has three times as many connections but only half as many
stops as our London instance, a precise comparison is difficult. How-
ever, in [DPW09b] similar speedups of factor 2.5–10 over basic TE are
achieved by applying such improvements. Hence, it seems safe to say
that the TE graph model and query algorithms can be engineered
to achieve performance within the same order of magnitude as the
non graph-based approaches. Nonetheless, CSA offers competitive
EA query times with an exceptionally simple algorithm that is much
easier to implement and test.

profile and multicriteria queries . In Table 4.3 we report ex-
periments for (multicriteria) profile queries on London. Other instances
are available in Table 4.4. We compare CSA to SPCS-col [DKP12] (an ex-
tension of TD-col to profile queries) and rRAPTOR [DPW14] (an exten-
sion of RAPTOR to multicriteria profile queries). Note that in [DPW14],
rRAPTOR is evaluated on two-hours range queries, whereas we com-
pute full profile queries. A first observation is that, regarding query
time, one-to-all SPCS is outperformed by all other algorithms, even
those which additionally minimize the number of transfers. Similarly
to our previous experiment, CSA generally does more work than the
competing algorithms, but is, again, faster due to its cache-friendlier
memory access patterns. We also observe that one-to-all pCSA-C is
slightly faster than pCSA-P, even with target pruning enabled, al-
though it scans 2.7 times as many connections because of expanded
footpaths. Note, however, that the figure for pCSA-C does not include
the postprocessing that removes dominated journeys. Time indexing

112 public transit journey planning

Table 4.3: Figures for the (multicriteria) profile problem on London. “# Tr.” is
the max. number of trips considered. “Arr.” indicates minimizing
arrival time, “Tran.” transfers. “Prof.” indicates profile queries.
“# Jn.” is the number of Pareto-optimal journeys.

L.Cmp. Time

Algorithm #T
r.

A
rr

.
Tr

an
.

Pr
of

.
O

ne
.

Jn. p. Stop [ms]

SPCS-col – • ◦ • ◦ 98.2 477.7 1 262

SPCS-col – • ◦ • • 98.2 372.5 843

pCSA-P – • ◦ • ◦ 98.2 567.6 177

pCSA-P – • ◦ • • 98.2 436.9 161

pCSA-C – • ◦ • – 98.2 1 912.5 134

pCSA-CT – • ◦ • – 98.2 1 912.5 104

rRAPTOR 8 • • • ◦ 203.4 1 812.5 1 179

rRAPTOR 8 • • • • 203.4 1 579.6 878

rRAPTOR 16 • • • • 206.4 1 634.0 922

mcpCSA-CT 8 • • • – 203.4 15 299.8 255

mcpCSA-CT-SSE 8 • • • – 203.4 1 912.5 221

mcpCSA-CT-SSE 16 • • • – 206.4 3 824.9 466

Table 4.4: Evaluating other instances. Start criterion and trip flags are always
used.

Germany Europe

L.Cmp. Time # L.Cmp. Time

Algorithm #T
r.

A
rr

.
Tr

an
.

Pr
of

.
O

ne
.

Jn. p. Stop [ms] # Jn. p. Stop [ms]

TE – • ◦ ◦ ◦ 1.0 317.0 117.1 0.9 288.6 624.1

TD-col – • ◦ ◦ ◦ 1.0 11.9 3.5 0.9 10.0 21.6

CSA – • ◦ ◦ ◦ 1.0 228.7 3.4 0.9 209.5 19.5

TE – • ◦ ◦ • 1.0 29.8 11.7 0.9 56.3 129.9

TD-col – • ◦ ◦ • 1.0 6.8 2.0 0.9 5.3 11.5

CSA – • ◦ ◦ • 1.0 40.8 0.8 0.9 74.2 8.3

pCSA-CT – • ◦ • – 20.2 429.5 4.9 11.4 457.6 46.2

rRAPTOR 8 • • • ◦ 29.4 752.1 161.3 17.2 377.5 421.8

rRAPTOR 8 • • • • 29.4 640.1 123.0 17.2 340.8 344.9

mcpCSA-CT-SSE 8 • • • – 29.4 429.5 17.9 17.2 457.6 98.2

4.1 connection scan algorithm 113

further accelerates pCSA-C, indicating that the algorithm is, indeed,
memory-bound. Regarding multicriteria profile queries, doubling the
number of considered trips also doubles both CSA’s label comparisons
and its running time. For rRAPTOR the difference is less (only 12 %)—
most work is spent in the first eight rounds. Indeed, journeys with
more than eight trips are very rare. This justifies mcpCSA-CT-SSE with
eight trips, which is our fastest algorithm (221 ms on average). Note
that using an AVX2 processor (announced for June 2013), one will be
able to process 256 bit-vectors in a single instruction. We, therefore,
expect mcpCSA-CT-SSE to perform better for greater numbers of trips
in the future.

Conclusions

We have studied the Connection Scan framework of algorithms (CSA)
for several public transit route planning problems. One of its strengths
is the conceptual simplicity, allowing easy implementation. Yet, it is
sufficiently flexible to handle complex scenarios, such as multicriteria
profile queries. Our experiments on the metropolitan network of
London revealed that CSA is faster than existing, non-preprocessed
approaches. All scenarios considered are fast enough for interactive
applications. For future work, since CSA does not use a priority queue,
parallel extensions seem promising.

114 public transit journey planning

4.2 public transit labeling

Since for aperiodic timetables, the TE model yields a directed acyclic
graph (DAG), several public transit query problems translate to reach-
ability problems. Different methodologies exist to enable fast reacha-
bility computation [CHWF13; JW13; MS14; SABW13; YAIY13; YCZ10;
ZLWX14]. In particular, the 2-hop labeling [CHKZ03] scheme associates
with each vertex two labels (forward and backward); reachability (or
shortest-path distance) can be determined by intersecting the source’s
forward label and the target’s backward label. Modern implementa-
tions of this scheme [ADGW12] yield the fastest known query times
on road networks, as discussed in Chapter 2.

In this section, we adapt 2-hop labeling to public transit networks,
improving query performance by orders of magnitude over previous
methods, while keeping preprocessing time practical. Starting from
the time-expanded graph model (Section 4.2.2), we extend the labeling
scheme by carefully exploiting properties of public transit networks
(Section 4.2.3). Besides earliest arrival and profile queries, we address
multicriteria and location-to-location queries, as well as reporting the
full journey description quickly (Section 4.2.4). We validate our Public
Transit Labeling (PTL) algorithm by careful experimental evaluation
on large metropolitan and national transit networks (Section 4.2.5),
achieving queries within microseconds.

Please note that a very similar approach has appeared in [WLY+15],
independently of this work, which originally appeared in [DDPW15].

4.2.1 Preliminaries

Throughout Section 4.2, we use the following notation and concepts:
Let G = (V ,A) be a (weighted) directed graph, where V is the set of

vertices and A the set of arcs. An arc between two vertices u, v ∈ V is
denoted by (u, v). A path is a sequence of adjacent vertices. A vertex v
is reachable from a vertex u if there is a path from u to v. A DAG is a
graph that is both directed and acyclic.

We consider aperiodic timetables that consist of sets of stops S,
events E, trips T , and footpaths F. Stops are distinct locations where
one can board a transit vehicle (such as bus stops or subway plat-
forms). Events are the scheduled departures and arrivals of vehicles.
Each event e ∈ E has an associated stop stop(e) and time time(e). Let
E(p) = {e0(p), . . . , ekp(p)} be the list (ordered by time) of events at
a stop p. We set time(ei(p)) = −∞ for i < 0, and time(ei(p)) = ∞
for i > kp. For simplicity, we may drop the index of an event (as
in e(p) ∈ E(p)) or its stop (as in e ∈ E). A trip is a sequence of events
served by the same vehicle. A pair of a consecutive departure and ar-
rival events of a trip is a connection. Footpaths model transfers between
nearby stops, each with a predetermined walking duration.

4.2 public transit labeling 115

A journey planning algorithm outputs a set of journeys. A journey is
a sequence of trips (each with a pair of pick-up and drop-off stops) and
footpaths in the order of travel. Journeys can be measured according
to several criteria, such as arrival time or number of transfers. A
journey j1 dominates a journey j2 if and only if j1 is no worse in
any criterion than j2. In case j1 and j2 are equal in all criteria, we
break ties arbitrarily. A set of non-dominated journeys is called a
Pareto set. Multicriteria Pareto optimization is NP-hard in general,
but practical for natural criteria in public transit networks [DPSW13;
DPW14; MW06; PSWZ08]. A journey is tight if there is no other journey
between the same source and target that dominates it in terms of
departure and arrival time, e. g., that departs later and arrives earlier.

Given a timetable, stops s and t, and a departure time τ, the (s, t, τ)-
earliest arrival (EA) problem asks for an s–t journey that arrives at t as
early as possible and departs at s no earlier than τ. The (s, t)-profile
problem asks for a Pareto set of all tight journeys between s and t
over the entire timetable period. Finally, the (s, t, τ)-multicriteria (MC)
problem asks for a Pareto set of journeys departing at s no earlier
than τ and minimizing the criteria arrival time and number of transfers.
We focus on computing the values of the associated optimization
criteria of the journeys (i. e., departure time, arrival times, number
of transfers), which is enough for many applications. Section 4.2.4
discusses how the full journey description can be obtained with little
overhead.

2-hop labeling . Our algorithms are based on the 2-hop labeling
scheme for directed graphs [CHKZ03]. It associates with every vertex v
a forward label Lf(v) and a backward label Lb(v). In a reachability labeling,
labels are subsets of V , and vertices u ∈ Lf(v) ∪ Lb(v) are hubs of v.
Every hub in Lf(v) must be reachable from v, which in turn must be
reachable by every hub in Lb(v). In addition, labels must obey the cover
property: for any pair of vertices u and v, the intersection Lf(u)∩ Lb(v)
must contain at least one hub on a u–v path (if it exists). It follows
from this definition that Lf(u)∩ Lb(v) 6= ∅ if and only if v is reachable
from u.

In a shortest path labeling, each hub u ∈ Lf(v) also keeps the asso-
ciated distance dist(u, v) (or dist(v,u), for backward labels), and the
cover property requires Lf(u)∩ Lb(v) to contain at least one hub on a
shortest u–v path. If labels are kept sorted by hub ID, a distance label
query efficiently computes dist(u, v) by a coordinated linear sweep
over Lf(u) and Lb(v), finding the hub w ∈ Lf(u) ∩ Lb(v) that mini-
mizes dist(u,w) + dist(w, v). In contrast, a reachability label query can
stop as soon as any matching hub is found.

In general, smaller labels lead to less space and faster queries.
Many algorithms to compute labelings have been proposed [ADGW12;
AIY13; CHWF13; JW13; YAIY13; ZLWX14], often for restricted graph

116 public transit journey planning

classes. We use (as a black box) the recent RXL algorithm [DGPW14],
which efficiently computes small shortest path labelings for a variety
of graph classes at scale. It is a sampling-based greedy algorithm that
builds labels one hub at a time, with priority to vertices that cover as
many relevant paths as possible. More precisely, RXL has two main
ingredients: (1) the generation of a vertex order based on (frequently
updated) sampling; and (2) the generation of labels from this order
using pruned labeling [AIY13].

pruned labeling . A labeling is hierarchical if the relation “u is a
hub of v” constitutes a partial order. Conversely, a given vertex order-
ing rank(·) can be turned into a consistent hierarchical labeling, the
smallest of which is called canonical labeling [ADGW12]. The Pruned
Landmark Labeling (PLL) algorithm [AIY13] computes a canonical label-
ing from a given vertex order, processing vertices from most to least
important (in terms of their rank). We describe it in terms of shortest
path labelings, but reachability labelings are computed analogously. It
starts with an empty labeling. Processing vertex v, it runs a modified
forward and backward Dijkstra-search from v. We describe the for-
ward run, the other works analogously. For every vertex w removed
from the queue with distance d(w), it checks the distance distL(w)
obtained from a v–w-label query on the partially computed labels. If
distL(w) 6 d(w), a shortest path v–w must already be covered by a
higher-ranked vertex and the search is pruned at w. Otherwise, v is
added as a hub (v, dist(v,w)) to the backward label Lb(w) of w, and
the outgoing arcs of w are scanned. Note that, in case of non-unique
shortest paths, PLL breaks ties in favor of higher-ranked vertices.
Moreover, for the partial label queries to work efficiently, it is crucial
to assign hub ids by rank, which guarantees that partial labels remain
sorted. We note that RXL uses PLL not only to generate the labels
from an order, but also as a subroutine when producing the order
itself [DGPW14].

Different approaches for transforming a timetable into a graph
exist (see [PSWZ08] for an overview). Here, we focus on the time-
expanded model. Since it uses scalar arc costs, it is a natural choice
for adapting the labeling approach. In contrast, the time-dependent
model (another popular approach) associates functions with the arcs,
which makes adaption more difficult.

4.2.2 Basic Earliest Arrival and Profile Queries

We build the time-expanded graph from the timetable as follows. We
group all departure and arrival events by the stop where they occur.
We sort all events at a stop by time, merging events that happen
at the same stop and time. We then add a vertex for each unique
event, a waiting arc between two consecutive events of the same stop,

4.2 public transit labeling 117

and a connection arc for each connection (between the corresponding
departure and arrival event). The cost of arc (u, v) is time(v)− time(u),
i. e., the time difference of the corresponding events. To account for
footpaths between two stops a and b, we add, from each vertex at
stop a, a foot arc to the first reachable vertex at b (based on walking
time), and vice versa. As events and vertices are tightly coupled in
this model, we use the terms interchangeably.

Any label generation scheme (we use RXL [DGPW14]) on the time-
expanded graph creates two (forward and backward) event labels for
every vertex (event), enabling event-to-event queries. For our application
reachability labels [YAIY13], which only store hubs (without distances),
suffice. First, since all arcs point to the future, time-expanded graphs
are DAGs. Second, if an event e is reachable from another event e ′

(i. e., Lf(e ′)∩ Lb(e) 6= ∅), we can compute the time to get from e ′ to e
as time(e) − time(e ′). In fact, all paths between two events have equal
cost.

In practice, however, event-to-event queries are of limited use, as
they require users to specify both departure and arrival times, one
of which is usually unknown. Therefore, we discuss earliest arrival
and profile queries, which optimize arrival time and are thus more
meaningful. See Section 4.2.4 for multicriteria queries.

earliest arrival queries . Given event labels, we answer an
(s, t, τ)-EA query as follows. We first find the earliest event ei(s) ∈
E(s) at the source stop s that suits the departure time, i. e., with
time(ei(s)) > τ and time(ei−1(s)) < τ. Next, we search at the target
stop t for the earliest event ej(t) ∈ E(t) that is reachable from ei(s)

by testing if Lf(ei(s))∩ Lb(ej(t)) 6= ∅ and Lf(ei(s))∩ Lb(ej−1(t)) = ∅.
Then, time(ej(t)) is the earliest arrival time. One could find ej(t) using
linear search (which is simple and cache-friendly), but binary search is
faster in theory and in practice. To accelerate queries, we prune (skip)
all events e(t) with time(e(t)) < τ, since Lf(ei(s)) ∩ Lb(e(t)) = ∅
always holds in such cases. Moreover, to avoid evaluating Lf(ei(s))
multiple times, we use hash-based queries [DGPW14]: we first build a
hash set of the hubs in Lf(ei(s)), then check the reachability for an
event e(t) by probing the hash with hubs h ∈ Lb(e(t)).

profile queries . To answer an (s, t)-profile query, we perform
a coordinated sweep over the events at s and t. For the current
event ei(s) ∈ E(s) at the source stop (initially set to the earliest
event e0(s) ∈ E(s)), we find the first event ej(t) ∈ E(t) at the tar-
get stop that is reachable, i. e., such that Lf(ei(s))∩ Lb(ej(t)) 6= ∅
and Lf(ei(s)) ∩ Lb(ej−1(t)) = ∅. This gives us the earliest arrival
time time(ej(t)). To identify the latest departure time from s for that
earliest arrival event (and thus have a tight journey), we increase i
until Lf(ei(s)) ∩ Lb(ej(t)) = ∅, then add (time(ei−1(s)), time(ej(t)))

118 public transit journey planning

to the profile. We repeat the process starting from the events ei(s)
and ej+1(t). Since we increase either i or j after each intersection test,
the worst-case time to find all tight journeys is linear in the number of
events (at s and t) multiplied by the size of their largest label.

4.2.3 Improvements

Our approach can be refined to exploit features specific to public
transit networks. As described so far, our labeling scheme maintains
reachability information for all pairs of events (by covering all paths
of the time-expanded graph, breaking ties arbitrarily). However, in
public transit networks we actually are only interested in certain paths.
In particular, the labeling does not need to cover any path ending
at a departure event (or beginning at an arrival event). We can thus
discard forward labels from arrival events and backward labels from
departure events.

trimmed event labels . Moreover, we can disregard paths rep-
resenting dominated journeys that depart earlier and arrive later than
others (i. e., journeys that are not tight, cf. Section 4.2.1). Consider
all departure events of a stop. If a certain hub is reachable from
event ei(s), then it is also reachable from e0(s), . . . , ei−1(s), and is
thus potentially added to the forward labels of all these earlier events.
In fact, experiments show that on average the same hub is added to
1.8–5.0 events per stop (depending on the network). We therefore com-
pute trimmed event labels by discarding all but the latest occurrence of
each hub from the forward labels. Similarly, we only keep the earliest
occurrence of each hub in the backward labels. (In preliminary experi-
ments, a much slower algorithm that greedily covers tight journeys
explicitly [ADGW12; DGPW14] produced very similar label sizes.)

Unfortunately, we can no longer just apply the query algorithms
from Section 4.2.2 with trimmed event labels: if the selected depar-
ture event at s does not correspond to a tight journey toward t, the
algorithm will not find a solution (though one might exist). One could
circumvent this issue by also running the algorithm from subsequent
departure events at s, which however may lead to quadratic query
complexity in the worst case (for both EA and profile queries).

stop labels . We solve this problem by introducing stop labels: For
each stop p, we merge all forward event labels Lf(e0(p)), . . . ,Lf(ek(p))
into a forward stop label SLf(p), and all backward event labels into
a backward stop label SLb(p). Similar to distance labels, each stop
label SL(p) is a list of pairs (h, timep(h)), each containing a hub and a
time, sorted by hub. For a forward label, timep(h) encodes the latest
departure time from p to reach hub h. More precisely, let h be a hub in
an event label Lf(ei(p)): we add the pair (h, time(ei(p))) to the stop

4.2 public transit labeling 119

label SLf(p) only if h /∈ Lf(ej(p)), j > i, i. e., only if h does not appear
in the label of another event with a later departure time at the stop.
Analogously, for backward stop labels, timep(h) encodes the earliest
arrival time at p from h.

By restricting ourselves to these entries, we effectively discard dom-
inated (non-tight) journeys to these hubs. It is easy to see that these
stop labels obey a tight journey cover property: for each pair of stops s
and t, SLf(s)∩ SLb(t) contains at least one hub on each tight journey
between them (or any equivalent journey that departs and arrives
at the same time; recall from Section 4.2.1 that we allow arbitrary
tie-breaking). This property does not, however, imply that the label in-
tersection only contains tight journeys: for example, SLf(s) and SLb(t)
could share a hub that is important for long distance travel, but not to
get from s to t. The remainder of this section discusses how we handle
this fact during queries.

stop label profile queries . To run an (s,t)-profile query on
stop labels, we perform a coordinated sweep over both labels SLf(s)
and SLb(t). For every matching hub h, i. e., (h, times(h)) ∈ SLf(s)
and (h, timet(h)) ∈ SLb(t), we consider the journey induced by
(times(h), timet(h)) for output. However, since we are only inter-
ested in reporting tight journeys, we maintain (during the algorithm)
a tentative set of tight journeys, removing dominated journeys from it
on-the-fly. (We found this to be faster than adding all journeys during
the sweep and only discarding dominated journeys at the end.) We can
further improve the efficiency of this approach in practice by (globally)
reassigning hub IDs by the time of day. Note that every hub h of a
stop label is still also an event and carries an event time time(h). (Not
to be confused with times(h) and timet(h).) We assign sequential
IDs to all hubs h in order of increasing time(h), thus ensuring that
hubs in the label intersection are enumerated chronologically. Note
that this does not imply that journeys are enumerated in order of
departure or arrival time, since each hub h may appear anywhere
along its associated journey. However, preliminary experiments have
shown that this approach leads to fewer insertions into the tentative
set of tight journeys, reducing query time. Moreover, as in shortest
path labels [DGPW14], we improve cache efficiency by storing the
values for hubs and times separately in a stop label, accessing times
only for matching hubs.

Overall, stop and event labels have different trade-offs: maintaining
the profile requires less effort with event labels (any discovered journey
is already tight), but fewer hubs are scanned with stop labels (there
are no duplicate hubs).

stop label earliest arrival queries . Reassigned hub IDs
also enable fast (s, t, τ)-EA queries. We use binary search in SLf(s) and

120 public transit journey planning

SLb(t) to find the earliest relevant hub h, i. e., with time(h) > τ. From
there, we perform a linear coordinated sweep as in the profile query,
finding (h, times(h)) ∈ SLf(s) and (h, timet(h)) ∈ SLb(t). However,
instead of maintaining tentative profile entries (times(h), timet(h)),
we ignore solutions that depart too early (i. e., times(h) < τ), while
picking the hub h∗ that minimizes the tentative best arrival timet(h∗).
(Note that time(h) > τ does not imply times(h) > τ.) Once we
scan a hub h with time(h) > timet(h

∗), the tentative best arrival time
cannot be improved anymore, and we stop the query. For practical
performance, pruning the scan, so that we only sweep hubs h between
τ 6 time(h) 6 timet(h

∗), is very important.

4.2.4 Practical Extensions

So far, we presented stop-to-stop queries, which report the departure
and arrival times of the quickest journey(s). In this section, we ad-
dress multicriteria queries, general location-to-location requests, and
obtaining detailed journey descriptions.

multicriteria optimization and minimum transfer time .
Besides optimizing arrival time, many users also prefer journeys with
fewer transfers. To solve the underlying multicriteria optimization
problem, we adapt our labeling approach by (1) encoding transfers
as arc costs in the graph, (2) computing shortest path labels based on
these costs (instead of reachability labels on an unweighted graph), and
(3) adjusting the query algorithm to find the Pareto set of solutions.

Reconsider the earliest arrival graph from Section 4.2.2. As before,
we add a vertex for each unique event, linking consecutive events at
the same stop with waiting arcs of cost 0. However, each connection
arc (u,w) in the graph is subdivided by an intermediate connection
vertex v, setting the cost of arc (u, v) to 0 and the cost of arc (v,w)
to 1. By interpreting costs of 1 as leaving a vehicle, we can count the
number of trips taken along any path. To model staying in the vehicle,
consecutive connection vertices of the same trip are linked by zero-cost
arcs [PSWZ08]. See Figure 4.1 for an example graph.

A shortest path labeling on this graph now encodes the number of
transfers as the shortest path distance between two events, while the
duration of the journey can still be deduced from the time difference of
the events. Consider a fixed source event e(s) and the arrival events of
a target stop e0(t), e1(t), . . . in order of increasing time. The minimum
number of transfers required to reach the target stop t never increases
with arrival times. (Hence, the whole Pareto set P of multicriteria
solutions can be computed with a single Dijkstra run [PSWZ08].)

We exploit this property to compute (s, t, τ)-EA multicriteria (MC)
queries from the labels as follows. We initialize P as the empty set. We
then perform an (s, t, τ)-EA query (with all optimizations described

4.2 public transit labeling 121

c1

c2

c2
′

1

c3

c4
′

c4

c5
′

c5

1

1

Figure 4.1: Detail of the multicriteria graph (with minimum transfer time). It
shows departure and/or arrival event vertices (in black) of three
stops, where consecutive events at each stop are connected by
vertical waiting arcs. The figure further shows connection vertices
(in white) of three trips (trip 1: c1, c2, . . ., trip 2: c3, . . ., trip 3:
c4, c5, . . .). All arcs have cost 0, except those from connection
vertices to event vertices, which have cost 1. This is used to model
and count transfers.

in Section 4.2.2) to compute the fastest journey in the solution, i. e., the
one with most transfers. We add this journey to P. We then check (by
performing distance label queries) for each subsequent event at t
whether there is a journey with fewer transfers (than the most recently
added entry of P), in which case we add the journey to P and repeat.
The MC query ends once the last event at the target stop has been
processed. We can stop earlier with the following optimization: we
first run a distance label query on the last event at t to obtain the
smallest possible number of transfers to travel from s to t. We may then
already stop the MC query once we add a journey to P with this many
transfers. Note that, since we do not need to check for domination
in P explicitly, our algorithm maintains P in constant time per added
journey.

minimum transfer times . Transit agencies often model an en-
tire station with multiple platforms as a single stop and account for
the time required to change trips inside the station by associating a
minimum transfer time mtt(p) with each stop p. To incorporate them
into the EA graph, we first locally replace each affected stop p by
a set of new stops p∗, distributing conflicting trips (between which
transferring is impossible due to mtt(p)) to different stops of p∗. We
then add footpaths between all pairs of stops in p∗ with length mtt(p).

122 public transit journey planning

A small set p∗ can be computed by solving an appropriate color-
ing problem [DKP12]. For the MC graph, we need not change the
input. Instead, it is sufficient to shift each arrival event e ∈ E(p) by
adding mtt(p) to time(e) before creating the vertices.

location-to-location queries . A query between arbitrary
locations s∗ and t∗, which may employ walking or driving as the first
and last legs of the journey, can be handled by a two-stage approach.
It first computes sets S and T of relevant stops near the origin s∗ and
destination t∗ that can be reached by car or on foot. With that informa-
tion, a forward superlabel [ADF+12] is built from all forward stop labels
associated with S. For each entry (h, timep(h)) ∈ SLf(p) in the label
of stop p ∈ S, we adjust the departure time time∗s(h) = timep(h) −

dist(s∗,p) so that the journey starts at s∗ and add (h, time∗s(h)) to the
superlabel. For duplicate hubs that occur in multiple stop labels, we
keep only the latest departure time from s∗. This can be achieved with
a coordinated sweep, always adding the next hub of minimum ID. A
backward superlabel (for T) is built analogously. For location-to-location
queries, we then simply run our stop-label-based EA and profile query
algorithms using the superlabels. In practice, we need not build su-
perlabels explicitly but can simulate the building sweep during the
query (which in itself is a coordinated sweep over two labels). A simi-
lar approach is possible for event labels. Moreover, point-of-interest
queries (such as finding the closest restaurants to a given location)
can be computed by applying known techniques [ADF+12] to these
superlabels.

journey descriptions . While for many applications it suffices to
report departure and arrival times (and possibly the number of trans-
fers) per journey, sometimes a more detailed description is needed. We
could apply known path unpacking techniques [ADF+12] to retrieve
the full sequence of connections (and transfers), but in public transit
it is usually enough to report the list of trips with associated transfer
stops. For this, we can store with each hub the sequence of trips (and
transfer stops) for travel between the hub and its label vertex.

4.2.5 Experiments

setup. We implemented all algorithms in C++ using Visual Stu-
dio 2013 with full optimization. All experiments were conducted on
a machine with two 8-core Intel Xeon E5-2690 CPUs and 384 GiB
of DDR3-1066 RAM, running Windows 2008R2 Server. All runs are
sequential. We use at most 32 bits for distances.

We consider four realistic inputs: the metropolitan networks of
London (data.london.gov.uk) and Madrid (emtmadrid.es), and the
national networks of Sweden (trafiklab.se) and Switzerland (gtfs.

data.london.gov.uk
emtmadrid.es
trafiklab.se
gtfs.geops.ch
gtfs.geops.ch

4.2 public transit labeling 123

Table 4.5: Size of timetables and the earliest arrival (EA) and multicrite-
ria (MC) graphs.

EA Graph MC Graph

Instance Stops Conns Trips Footp. Dy. |V | |A| |V | |A|

London 20.8 k 5,133 k 133 k 45.7 k 1 4,719 k 51,043 k 9,852 k 72,162 k

Madrid 4.7 k 4,527 k 165 k 1.3 k 1 3,003 k 13,730 k 7,530 k 34,505 k

Sweden 51.1 k 12,657 k 548 k 1.1 k 2 8,151 k 34,806 k 20,808 k 93,194 k

Switzerland 27.1 k 23,706 k 2,198 k 29.8 k 2 7,979 k 49,656 k 31,685 k 170,503 k

Table 4.6: Preprocessing figures. Label sizes are averages of forward and
backward labels.

Earliest Arrival Multicriteria

Event Labels Stop Labels Event Labels

RXL Hubs Hubs Space Hubs Space RXL Hubs Hubs Space

Instance [h:m] p. lbl p. stop [MiB] p. stop [MiB] [h:m] p. lbl p. stop [MiB]

London 0:54 70 15,480 1,334 7,075 1,257 49:19 734 162,565 26,871

Madrid 0:25 77 49,247 963 9,830 403 10:55 404 258,008 10,155

Sweden 0:32 37 5,630 1,226 1,536 700 36:14 190 29,046 12,637

Switzerland 0:42 42 11,189 1,282 2,970 708 61:36 216 58,022 12,983

geops.ch). London includes all modes of transport, Madrid contains
only buses, and the national networks contain both long-distance and
local transit. We consider 24-hour timetables for the metropolitan
networks, and two days for national ones (to enable overnight jour-
neys). Footpaths were generated using a known heuristic [DKP12] for
Madrid; they are part of the input for the other networks. See Table 4.5
for size figures of the timetables and resulting graphs. The average
number of unique events per stop ranges from 160 for Sweden to 644

for Madrid. (Recall from Section 4.2.2 that we merge all coincident
events at a stop.) Note that no two instances dominate each other (wrt.
number of stops, connections, trips, events per stop, and footpaths).

preprocessing . Table 4.6 reports preprocessing figures for the
unweighted earliest arrival graph (which also enables profile queries)
and the multicriteria graph. For earliest arrival (EA), preprocessing
takes well below an hour and generates about one gigabyte, which is
quite practical. Although there are only 37–70 hubs per label, the total
number of hubs per stop (i. e., the combined size of all labels) is quite
large (5,630–49,247). By eliminating redundancy (cf. Section 4.2.3), stop
labels have only a fifth as many hubs (for Madrid). Even though they

gtfs.geops.ch
gtfs.geops.ch

124 public transit journey planning

Table 4.7: Evaluating earliest arrival queries. Bullets (•) indicate different
features: profile query (Prof.), stop labels (St. lbs.), pruning (Prn.),
hashing (Hash), and binary search (Bin.). The column “=” indicates
the average number of matched hubs.

London Sweden Switzerland

Pr
of

.
St

. l
bs

.
Pr

n.
H

as
h

Bi
n.

Lbls. Hubs = [µs] Lbls. Hubs = [µs] Lbls. Hubs = [µs]

◦ ◦ ◦ ◦ ◦ 108.4 6,936 1 14.7 68.0 2,415 1 6.9 89.0 3,485 1 8.7

◦ ◦ • ◦ ◦ 16.1 1,360 1 5.9 34.4 1,581 1 5.4 33.5 1,676 1 5.8

◦ ◦ • • ◦ 16.1 1,047 1 4.2 34.4 1,083 1 3.6 33.5 1,151 1 3.8

◦ ◦ • • • 7.0 332 4 2.8 6.5 179 3 2.1 7.6 204 4 2.1

◦ • ◦ ◦ ◦ 2.0 13,037 1,126 54.8 2.0 2,855 81 10.0 2.0 5,707 218 20.4

◦ • • ◦ ◦ 2.0 861 62 6.2 2.0 711 16 3.6 2.0 699 19 3.8

• ◦ ◦ ◦ ◦ 658.5 40,892 211 141.7 423.7 13,590 118 39.4 786.6 29,381 240 81.4

• • ◦ ◦ ◦ 2.0 13,037 1,126 74.3 2.0 2,855 81 12.1 2.0 5,707 218 24.5

need to store an additional distance value per hub, total space usage
is still smaller. In general, average labels sizes (though not total space)
are higher for metropolitan instances. This correlates with the higher
number of daily journeys in these networks.

Preprocessing the multicriteria (MC) graph is much more expensive:
times increase by a factor of 26.2–54.8 for the metropolitan and 67.9–88

for the national networks. On Madrid, Sweden, and Switzerland labels
are five times larger compared to EA, and on London the factor is even
more than ten. This is immediately reflected in the space consumption,
which is up to 26 GiB (London).

queries . We now evaluate query performance. For each algorithm,
we ran 100,000 queries between random source and target stops, at
random departure times between 0:00 and 23:59 (of the first day).
Table 4.7 reports detailed figures, organized in three blocks: event
label EA queries, stop label EA queries, and profile queries (with both
event and stop labels). We discuss MC queries later.

We observe that event labels result in extremely fast EA queries
(6.9–14.7 µs), even without optimizations. As expected, pruning and
hashing reduce the number of accesses to labels and hubs (see columns
“Lbls.” and “Hubs”). Although binary search cannot stop as soon as a
matching hub is found (see the “=” column), it accesses fewer labels
and hubs, achieving query times below 3 µs on all instances.

Using stop labels (cf. Section 4.2.3) in their basic form is significantly
slower than using event labels. With pruning enabled, however, query
times (3.6–6.2 µs) are within a factor of two of the event labels, while
saving a factor of 1.1–2.4 in space. For profile queries, stop labels are

4.2 public transit labeling 125

Table 4.8: Comparison with the state of the art. Presentation largely based
on [BDG+15], with some additional results taken from [BS14]. The
first block of techniques considers the EA problem, the second the
MC problem and the third the profile problem.

Instance Criteria

Stops Conns Prep. Query

Algorithm Name [·103] [·106] Dy. A
rr

.
Tr

an
.

Pr
of

.

[h] Jn. [ms]

CSA [DPSW13] London 20.8 4.9 1 • ◦ ◦ — n/a 1.8

ACSA [SW14] Germany 252.4 46.2 2 • ◦ ◦ 0.2 n/a 8.7

CH [Gei10] Europe (LD) 30.5 1.7 p • ◦ ◦ < 0.1 n/a 0.3

TP [BDG+15] Madrid 4.6 4.8 1 • ◦ ◦ 19 n/a 0.7

TP [BS14] Germany 248.4 13.9 1 • ◦ ◦ 249 0.9 0.2

PTL London 20.8 5.1 1 • ◦ ◦ 0.9 0.9 0.0028

PTL Madrid 4.7 4.5 1 • ◦ ◦ 0.4 0.9 0.0030

PTL Sweden 51.1 12.7 2 • ◦ ◦ 0.5 1.0 0.0021

PTL Switzerland 27.1 23.7 2 • ◦ ◦ 0.7 1.0 0.0021

RAPTOR [DPW14] London 20.8 5.1 1 • • ◦ — 1.8 5.4

TP [BDG+15] Madrid 4.6 4.8 1 • • ◦ 185 n/a 3.1

TP [BS14] Germany 248.4 13.9 1 • • ◦ 372 1.9 0.3

PTL London 20.8 5.1 1 • • ◦ 49.3 1.8 0.0266

PTL Madrid 4.7 4.5 1 • • ◦ 10.9 1.9 0.0643

PTL Sweden 51.1 12.7 2 • • ◦ 36.2 1.7 0.0276

PTL Switzerland 27.1 23.7 2 • • ◦ 61.6 1.7 0.0217

CSA [DPSW13] London 20.8 4.9 1 • ◦ • — 98.2 161.0

ACSA [SW14] Germany 252.4 46.2 2 • ◦ • 0.2 n/a 171.0

CH [Gei10] Europe (LD) 30.5 1.7 p • ◦ • < 0.1 n/a 3.7

TP [BS14] Germany 248.4 13.9 1 • ◦ • 249 16.4 3.3

PTL London 20.8 5.1 1 • ◦ • 0.9 81.0 0.0743

PTL Madrid 4.7 4.5 1 • ◦ • 0.4 110.7 0.1119

PTL Sweden 51.1 12.7 2 • ◦ • 0.5 12.7 0.0121

PTL Switzerland 27.1 23.7 2 • ◦ • 0.7 31.5 0.0245

126 public transit journey planning

clearly the best approach. It scans up to a factor of 5.1 fewer hubs and
is up to 3.3 times faster, computing the profile of the full timetable
period in under 80 µs on all instances. The difference in factors is due
to the overhead of maintaining the Pareto set during the query.

comparison. Table 4.8 compares our new algorithm (indicated
as PTL, for Public Transit Labeling) to the state of the art and also
evaluates multicriteria queries. In this experiment, PTL uses event la-
bels with pruning, hashing and binary search for earliest arrival (and
multicriteria) queries, and stop labels for profile queries. We com-
pare PTL to CSA [DPSW13] and RAPTOR [DPW14] (currently the
fastest algorithms without preprocessing), as well as Accelerated
CSA (ACSA) [SW14], Timetable Contraction Hierarchies (CH) [Gei10],
and Transfer Patterns (TP) [BCE+10; BS14] (which make use of prepro-
cessing). Since RAPTOR always optimizes transfers (by design), we
only include it for the MC problem. Note that the following evaluation
should be taken with a grain of salt, as no standardized benchmark in-
stances exist, and many data sets used in the literature are proprietary.
Although precise numbers are not available for several competing
methods, it is safe to say they use less space than PTL, particularly for
the MC problem.

Table 4.8 shows that PTL queries are very efficient. Remarkably,
they are faster on the national networks than on the metropolitan
ones: the latter are smaller in most aspects, but have more frequent
journeys (that must be covered). Compared to other methods, PTL
is 2–3 orders of magnitude faster on London than CSA and RAPTOR
for EA (factor 643), profile (factor 2,167), and MC (factor 203) queries.
We note, however, that PTL is a point-to-point algorithm (as are ACSA,
TP, and CH); for one-to-all queries, CSA and RAPTOR would be faster.

PTL has 1–2 orders of magnitude faster preprocessing and queries
than TP for the EA and profile problems. On Madrid, EA queries
are 233 times faster while preprocessing is faster by a factor of 48.
Note that Sweden (PTL) and Germany (TP) have a similar number
of connections, but PTL queries are 95 times faster. (Germany does
have more stops, but recall that PTL query performance depends
more on the frequency of trips.) For the MC problem, the difference is
smaller, but both preprocessing and queries of PTL are still an order of
magnitude faster than TP (up to 48 times for MC queries on Madrid).

Compared to ACSA and CH (for which figures are only available
for EA and profile problems), PTL has slower preprocessing but sig-
nificantly faster queries (even accounting for different network sizes).

4.2.5.1 Alternative Preprocessing Techniques

Before settling on using RXL [DGPW14] as a black box, we tried
several other techniques (and variants) for computing reachability
within our PTL algorithm. We shortly describe our experience here.

4.2 public transit labeling 127

other labeling techniques . Since we mainly deal with reacha-
bility labeling (except for multicriteria queries), it is natural to try alter-
native orders (as an input to pruned labeling) based on the vast reach-
ability literature [CHWF13; JW13; MS14; SABW13; YAIY13; YCZ10;
ZLWX14], with the goal of obtaining smaller labels. In particular, we
found that orders based on vertex degrees, which work well for un-
weighted social networks [JW13; YAIY13], do not offer much guidance
on the time-expanded timetable graph, which has a very uniform
degree distribution. We also tried the order obtained from topologi-
cal folding (TF) [CHWF13] and the order implicit in the contraction
scheme from PReaCH [MS14]. PReaCH is a refined online search (non-
labeling) reachability technique that reports excellent results using
vertex contraction as an ingredient. It works by iteratively contracting
sources and sinks of the DAG (which creates new sources and sinks).
We thus tried the reverse order for labeling, selecting the vertex con-
tracted last as the first hub, all the way down to the original sources
and sinks. However, TF and PReaCH orders both slowed down label
generation by at least an order of magnitude relative to RXL (we
aborted the experiment).

tight journey cover . In Section 4.2.3, we introduced stop labels,
which obey a tight journey cover property: for each pair of stops s
and t, the label intersection SLf(s)∩ SLb(t) contains at least one hub
on each tight journey between them (or any equivalent journey that
departs and arrives at the same time). We proposed to obtain stop
labels by trimming (reachability-based) event labels, disregarding
paths that correspond to dominated journeys (that depart earlier
and arrive later than other journeys). To validate our approach, we
have also evaluated an algorithm that (greedily) covers tight journeys
explicitly.

Similar to the Offline Path Greedy algorithm from [DGPW14], the
approach computes the set of all tight journeys (breaking ties arbitrar-
ily) between all stops of the timetable (we used a variant of profile
CSA, cf. Section 4.1, but other algorithms such as RAPTOR [DPW14]
should work as well), with indices keeping track of which events cover
each journey and which journeys are covered by each event. Then, in
each iteration, it greedily picks the event that covers most uncovered
journeys. It adds this event as a hub to departure and arrival events of
the journeys covered, while updating the indices of other events these
journeys were covered by. It terminates as soon as all tight journeys
are covered. On the small instance (38 195 connections, 4 573 stops,
and 1 252 footpaths) we could test (since memory for the indices is the
bottleneck), this greedy approach achieves stop labels 5.7% smaller
(on average) than our default approach from Section 4.2.3.

Even for tight journeys, however, public transit networks often
have multiple alternative ways of traveling that lead to the same

128 public transit journey planning

departure and arrival time. (In contrast, on road networks, shortest
paths are mostly unique.) Essentially, waiting times due to difference
in frequency (e. g., metro vs. train) can be attributed differently to
journey legs.1 We therefore found it important to break ties in the
most favorable way when determining the order, as in the Online
Path Greedy algorithm from [DGPW14]. Extending our approach
to compute all events that cover a specific pair of departure and
arrival event (i. e., computing all tight journeys without prior tie-
breaking), we achieve stop labels 20.5% smaller than our default
approach from Section 4.2.3. While this results in slightly faster queries,
our default approach offers a much better trade-off between label size
and preprocessing effort.

However, the order in which vertices are chosen by the greedy cover
algorithms as hubs offers an interesting perspective: when we look at
the corresponding stops (or routes) of these hubs, they are very evenly
distributed. This is an indication that choosing hubs freely, i. e., not
from whole stops (or routes) at once (which, in contrast, would be
natural for time-dependent graph models), is important.

other algorithmic approaches . The time-expanded graph
model is not particularly space-efficient. Moreover, graph search-based
queries on this model are usually less efficient [BDG+15] than in the
time-dependent model, and also than RAPTOR [DPW14] and CSA
(see Section 4.1), which are not search-based. Unfortunately, we found
it challenging to incorporate these faster techniques within our label-
based algorithm.

Since CSA does not maintain a search space (it is just a linear scan
of an array), there is not much hope in combining it with pruned
labeling (or RXL). Similarly, we do not see how to prune the scan
of routes in RAPTOR. We did try running pruned labeling on the
time-dependent graph model, but found the pruning test to be an
issue. One possibility is to base the pruning test on pre-trimmed stop
labels, but this amounts to EA queries, which would be too slow with
stop labels (cf. Table 4.7), particularly since we cannot yet reassign
hub IDs (for then, partial labels used for pruning, would not be sorted
implicitly). An alternative would be to build event labels, but this is
essentially the same as using the time-expanded approach. In fact,
preliminary experiments indicated that the time-dependent approach
was slower than plain pruned labeling on the time-expanded graph.

1 In the time-expanded graph, consider a fixed pair of departure and arrival events.
The intersection of the set of all events reachable by the departure event with the set
of all events that can reach the arrival event is exactly the set of all events that cover
the considered journey.

4.2 public transit labeling 129

Conclusions

We have introduced PTL, a new preprocessing-based algorithm for
journey planning in public transit networks, by revisiting the time-
expanded model and adapting the Hub Labeling approach to it. By
further exploiting structural properties specific to timetables, we ob-
tained simple and efficient algorithms that outperform the current
state of the art on large metropolitan and country-sized networks by
orders of magnitude for various realistic query types. Future work
includes developing tailored algorithms for hub computation (instead
of using RXL as a black box), compressing the labels (e. g., using tech-
niques from [BS14] and [DGPW14]), exploring other hub representa-
tions (e. g., using trips instead of events, as in 3-hop labeling [YAIY13]),
using multi-core and instruction-based parallelism for preprocessing
and queries, and handling dynamic scenarios (e. g., temporary station
closures and train delays or cancellations [CDD+14; MMPZ13]).

5
M U LT I M O D A L J O U R N E Y P L A N N I N G

In this chapter, we study the problem of finding multimodal journeys
in transportation networks. However, it is important to note that
the transition from public transit to multimodal journey planning is
fluid, as mentioned in Chapter 2. We find the following categorization
(increasing in complexity) helpful, but note that in the literature each
variant is sometimes described as being multimodal:

• Public transit (bus, ferry, metro, tram, train, . . .) augmented by
precomputed footpaths for short transfers,

• Public transit as above, plus initial (from both source and target)
limited radius search (involving walking, biking, and driving)
for location-location queries (i. e., “door-to-door”),

• Public transit with unrestricted initial walking, biking, driving,

• Fully multimodal search, i. e., with unrestricted walking, biking,
driving before, between, and after public transit trips,

In this chapter, we examine the latter case. Thereby, as in Chapter 3,
we aim at supporting user preferences and offering choice. An inter-
esting challenge in multimodal route planning is that a quickest path
may have an infeasible or undesirable (to a particular user) sequence
of modal transfers (e. g., taking a private car between train rides).
Furthermore, in a multimodal setting, it can be hard for the user to
comprehend all available traveling options. A good multimodal jour-
ney planner should provide the user with a concise yet diverse set of
choices (in order not to overwhelm yet provide good options).

chapter outline . Section 5.1 introduces User-Constrained Con-
traction Hierarchies (UCCH), a multimodal route-planning technique
that handles mode-sequence constraints as a user input for each
query (as opposed to already during preprocessing). Then, Section 5.2
examines fully-multimodal multicriteria search, where we propose
using fuzzy logic [FA04; Zad88] to identify, in a principled way, a
modest-sized subset of representative journeys.

5.1 user-constraints on multimodal transfers

Here, we present User-Constrained Contraction Hierarchies (UCCH),
the first multimodal speedup technique that handles arbitrary mode-
sequence constraints as input to the query—a feature unavailable from

131

132 multimodal journey planning

previous techniques. Unlike Access-Node Routing, it also answers
local queries correctly and requires significantly less preprocessing
effort. We revisit one technique, namely vertex contraction, that has
proven successful in road networks (cf. Chapter 3): By ensuring that
shortcuts never span multiple modes of transport, we extend Contrac-
tion Hierarchies [GSSV12] in a sound manner. Moreover, we show
how careful engineering further helps our scenario. Our experimental
study shows that, unlike previous techniques, we can handle an inter-
continental instance composed of cars, railways and flights with over
50 million vertices, 125 million edges, and 30 thousand stations. With
only 557 MiB of auxiliary data, we achieve query times that are fast
enough for practicable applications.

The rest of this section is organized as follows. Section 5.1.1 sets
necessary notation, summarizes graph models we use, and precisely
defines the problem we are solving. Section 5.1.1.3 introduces our new
technique. Finally, Section 5.1.5 presents experiments to evaluate our
algorithm.

5.1.1 Preliminaries

Throughout Section 5.1, we use the following notation and concepts:
Let G = (V ,E) be a directed graph, where V is the set of vertices

and E ⊆ V × V the set of edges. For an edge (u, v) ∈ E, we call u
the tail and v the head of the edge. The degree of a vertex u ∈ V is
defined as the number of edges e ∈ E where u is either head or
tail of e. The reverse graph

←−
G = (V ,

←−
E) of G is obtained from G by

flipping all edges, i. e., (u, v) ∈ ←−E if and only if (v,u) ∈ E. Note that
we use the terms graph and network interchangeably. To distinguish
between different modes of transport, our graphs are labeled by vertex
labels lbl : V → Σ and edge labels lbl : E → Σ. Often Σ is called
the alphabet and contains the available modes of transport in G, for
example, road, rail, flight. All edges in our graphs are weighted by
periodic time-dependent travel time functions f : Π → N0 where Π
depicts a set of time points (think of it as the seconds of a day). If f
is constant over Π, we call f time-independent. Respecting periodicity
in a meaningful way, we say that a function f has the FIFO property if
for all τ1, τ2 ∈ Π with τ1 6 τ2 it holds that f(τ1) 6 f(τ2) + (τ2 − τ1).
In other words, waiting never pays off. Moreover, we require link
and merge operations which generalize the summation and minimum
operations from scalar values to travel time functions. Thereby, the link
operation of two functions f1, f2 is defined for any departure time τ
as (f1⊕ f2)(τ) = f1(τ) + f2(τ+ f1(τ)), and depicts the total travel time
when first evaluating f1 (at departure time τ) and then f2 (at departure
time τ+ f1(τ), i. e., the arrival time after “traversing” f1). The merge
operation min(f1, f2)(τ) is defined as the element-wise minimum of
f1 and f2, i. e., min(f1(τ), f2(τ)). Note that to depict the travel time

5.1 user-constraints on multimodal transfers 133

function f(τ) of an edge e ∈ E, we sometimes write len(e, τ), or just
len(e) if it is clear from the context that len(e, τ) is constant over all
choices of τ.

In time-dependent graphs there are two types of queries relevant
for us: A time-query has as input s ∈ V and a departure time τ. It
computes a shortest path tree to every vertex u ∈ V when departing
from s at time τ. In contrast, a profile-query computes a shortest path
graph from s to all u ∈ V , consisting of shortest paths for all departure
times τ ∈ Π.

Whenever appropriate, we use some notion of formal languages. A
finite sequence w = σ0σ1 . . . σk of symbols σi ∈ Σ is called a word. A
not necessarily finite set of words L is called formal language (over Σ).
A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ,S, F)
characterized by the setQ of states, the transition relation δ ⊆ Q×Σ×Q,
and sets S ⊆ Q of initial states and F ⊆ Q of final states. A language L
is called regular if and only if there is a finite automaton AL such that
AL accepts L.

5.1.1.1 Models

Following [DPW09a], our multimodal graphs are composed of differ-
ent models for each mode of transportation. We briefly introduce each
model and explain how they are combined.

In the road network, vertices model intersections and edges depict
street segments. We either label edges by car for roads or foot for
pedestrian paths. Our road networks are weighted by the average
travel time of the street segment. For pedestrians we assume a walking
speed of 4.5 kph. Note that our road networks are time-independent.

Regarding the railway network, we use the coloring model [DKP12]
which is based on the well-known realistic time-dependent graph
model [PSWZ08]. It consists of station vertices connected to route ver-
tices. Trains are modeled between route vertices via time-dependent
edges. Different trains use the same route vertex as long as they are
not conflicting. In the coloring model conflicting trains are computed
explicitly which yields significantly smaller graphs compared to the
original realistic time-dependent model (without dropping correct-
ness). Moreover, to enable transfers between trains, some station ver-
tices are interconnected by time-independent foot paths. See [DKP12]
for details. We label vertices and edges with rail. Note that we also
use this model for bus networks.

Finally, to model flight networks, we use the time-dependent phase
II model [DPWZ09]. It has small size and models airport procedures
realistically. Vertices and edges are labeled with flight.

Note that the travel time functions in our networks are a special form
of piecewise linear functions that can be efficiently evaluated [DKP12;
PSWZ08]. Also all edges in our networks have the FIFO property.

134 multimodal journey planning

link link

foot rail foot

(a) foot-and-rail.

foot

car

foot

car

rail railflight

(b) hierarchical.

Figure 5.1: Two example automata. In the right figure, light edges are labeled
as link.

merging the networks . To obtain an integrated multimodal
network G = (V, E), we merge the vertex and edge sets of each
individual network. Detailed data on transfers between modes of
transport was not available to us. Thus, we heuristically add link
edges labeled link. More precisely, we link each station vertex in
the railway network to its geographically closest vertex of the road
network. We also link each airport vertex of the flight network to their
closest vertices in the road and rail networks. Thereby we only link
vertices that are no more than distance δ apart, a parameter chosen
for each instance. The time to traverse a link edge is computed from
its geographical length and a walking speed of 4.5 kph.

5.1.1.2 Path Constraints on the Sequences of Transport Modes

Since the naïve approach of using Dijkstra’s algorithm on the combined
network G does not incorporate modal constraints, we consider the
Label Constrained Shortest Path Problem (LCSPP) [BJM00]: Each edge
e ∈ E has a label lbl(e) assigned to it. The goal is to compute a shortest
s-t-path P where the word w(P) formed by concatenating the edge
labels along P is element of a language L, a query input.

Modeling sequence constraints is done by specifying L. To represent
mode sequence constraints, regular languages of the following form
suffice. The alphabet Σ consists of the available transport modes. In
the corresponding NFA AL, states depict one or more transport modes.
To model traveling within one transport mode, we require (q,σ,q) ∈ δ
for those transport modes σ ∈ Σ that q represents. Moreover, to
allow transfers between different modes of transport, states q,q ′ ∈ Q,
q 6= q ′ are connected by link labels, i. e., (q, link,q ′) ∈ δ. Finally,
states are marked as initial/final if its modes of transport can be used
at the beginning/end of the journey. Example automata are shown in
Figure 5.1.

We refer to this variant of LCSPP as LCSPP-MS (as in Modal Se-
quences). In general, LCSPP is solvable in polynomial time, if L is

5.1 user-constraints on multimodal transfers 135

context-free. In our case, a generalization of Dijkstra’s algorithm
works [BJM00].

5.1.1.3 Contraction Hierarchies (CH)

Our algorithm is based on Contraction Hierarchies [GSSD08; GSSV12].
Preprocessing works by heuristically ordering the vertices of the graph
by an importance value (a linear combination of edge expansion, num-
ber of contracted neighbors, among others). Then, all vertices are
contracted in order of ascending importance. To contract a vertex
v ∈ V , it is removed from G, and shortcuts are added between its
neighbors to preserve distances between the remaining vertices. The
index at which v has been removed is denoted by rank(v). To deter-
mine if a shortcut (u,w) is added, a local search from u is run (without
looking at v), until w is settled. If len(u,w) 6 len(u, v) + len(v,w), the
shortcut (u,w) is not added, and the corresponding shorter path is
called a witness.

The CH query is a bidirectional Dijkstra search operating on G,
augmented by the shortcuts computed during preprocessing. Both
searches (forward and backward) go “upward” in the hierarchy: The
forward search only visits edges (u, v) where rank(u) 6 rank(v),
and the backward search only visits edges where rank(u) > rank(v).
Vertices where both searches meet represent candidate shortest paths
with combined length µ. The algorithm minimizes µ, and a search
can stop as soon as the minimum key of its priority queue exceeds µ.
Furthermore, we make use of stall-on-demand: When a vertex v is
scanned in either query, we check for all its incident edges e = (u, v)
of the opposite direction if dist(u) + len(e) < dist(v) holds (dist(v)
denotes the tentative distance at v). If this is the case, we may prune
the search at v. See [GSSV12] for details.

partial hierarchy. If the preprocessing is aborted prematurely,
i. e., before all vertices are contracted, we obtain a partial contraction
hierarchy (PCH). Let rank(v) =∞ if and only if v is never contracted,
then the same query algorithm as for Contraction Hierarchies is ap-
plicable and yields correct results [BDS+10]. The induced subgraph
of all uncontracted vertices is called the core, and the remaining (con-
tracted) subgraph the component. Note that both core and component
can contain shortcuts not present in the original graph.

performance . Both preprocessing and query performance of
CH depend on the number of shortcuts added. It works well if the
network has a pronounced hierarchy, i. e., far journeys eventually
converge to a “freeway subnetwork” which is of a small fraction in
size compared to the total graph [AFGW10]. Note that if computing a
complete hierarchy produces too many shortcuts, one can always abort
early and compute a partial hierarchy. A possible stopping criterion

136 multimodal journey planning

is the average vertex degree on the core that is approached during the
contraction process.

Our Approach

We now introduce our basic approach and show how CH can be used
to compute shortest path with restrictions on sequences of transport
modes. We first argue that applying CH on the combined multimodal
graph G without careful consideration either yields incorrect results
to LCSPP-MS or finalizes the automaton A during preprocessing. We
then introduce UCCH: A practical adaption of Contraction Hierar-
chies to LCSPP-MS that enables arbitrary modal sequence constraints
as query input. Further improvements that help accelerating both
preprocessing and queries are presented in Section 5.1.4.

5.1.2 Contraction Hierarchies for Multimodal Networks

Let G = (V, E) be a multimodal network. Recall that G is a combina-
tion of time-independent and time-dependent networks (for example,
of road and rail), hence, contains edges having both constants and
travel time functions associated with them. Applying CH to G already
requires some engineering effort: Shortcuts may represent paths con-
taining edges of different type. In order to compute the shortcuts’
travel time functions, these edges have to be linked, resulting in inho-
mogeneous functions that slow down both preprocessing and query
performance. More precisely, when a path P = (e1, . . . , ek) is com-
posed into a single shortcut edge e ′, its labels need to be concatenated
into a super label lbl(e ′) = lbl(e1) · · · lbl(ek). In particular, if there
are subsequent edges ei, ej in P where lbl(ei) 6= lbl(ej), the short-
cut induces a modal transfer. Running a query where this particular
mode change is prohibited potentially yields incorrect results: The
shortcut must not be used but the label constrained path (i. e. the one
without this transfer) may have been discarded during preprocess-
ing by the witness search (see Section 5.1.1.3). Note that the partial
time-dependent nature of G further complicates things. A shortcut
e ′ = (u, v) needs to represent the travel time profile from u to v, that is,
the underlying path P depends on the time of day. As a consequence,
the super label of e ′ is time-dependent as well.

If the automaton A is known during preprocessing, we can modify
CH preprocessing to yield correct query results with respect to A.
While contracting vertex v ∈ G and thereby considering to add a short-
cut e ′ = (u,w), we look at its super label lbl(e ′) = lbl(e1) · · · lbl(ek).
To determine if e ′ has to be inserted, we run multiple witness searches
as follows: For each state q ∈ A where q represents lbl(v), we run
a multimodal profile-search from u (ignoring v). We run it with q
as initial state and all those states q ′ ∈ A as final state, where q ′ is

5.1 user-constraints on multimodal transfers 137

reachable from q in A by applying lbl(e ′). Only if for all these profile-
searches dist(w) 6 len(e ′) holds, the shortcut e ′ is not required: For
every relevant transition sequence of the automaton, there is a shorter
path in the graph. Note that shortcuts e ′ = (u,w) may be required
even if an edge from u to w already existed before contraction. This
results in parallel edges for different subsequences of the constraint
automaton.

This approach which we call State-Dependent CH (SDCH) has some
disadvantages, however. First, witness search is slow and less effective
than in the unimodal scenario, resulting in many more shortcuts. This
hurts preprocessing and query performance. Adding to it the more
complicated data structures required for inhomogeneous travel time
functions and arbitrary label sequences, SDCH combines challenges
of both Flexible CH [GKS10] and Timetable CH [Gei10]. As a result
we expect a significant slowdown over unimodal CH on road net-
works. But most notably, SDCH requires a predetermined automaton
A during preprocessing.

5.1.3 UCCH: Contraction for User-Constrained Route Planning

We now introduce User-Constrained Contraction Hierarchies (UCCH).
Unlike SDCH, it can handle arbitrary sequence constraint automata
during query and has a simpler witness search. We first turn toward
preprocessing before we go into detail about the query algorithm.

preprocessing . The main reason behind the disadvantages dis-
cussed in Section 5.1.2 is the computation of shortcuts that span over
boundaries of different modal networks. Instead, let Σ be the alphabet
of labels of a multimodal graph G. We now process each subnetwork
independently. We compute—in no particular order—a partial Con-
traction Hierarchy restricted to the subgraph Glbl = (Vlbl,Elbl) (for
every lbl ∈ Σ). Here, Glbl is exactly the original graph of the particular
transportation mode (before merging). We consider the traditional
contraction order with the exception of transfer vertices: Vertices which
are incident to at least one edge labeled link in G. We fix the rank of
all such vertices v to infinity, i. e., they are never contracted. Note that
all other vertices have only incident edges labeled by lbl in G. As a
result, shortcuts only span edges within one modal network. Hence,
we neither obtain inhomogeneous travel time functions nor “mixed”
super labels. We set the label of each shortcut edge e ′ to lbl(e), where
e is an arbitrary edge along the path, represented by e ′.

To determine if a shortcut e ′ = (u,w) is required (when contracting
a vertex v), we restrict the witness search to the modal subnetwork Glbl

of v. Restricting the search space of witness searches does not yield
incorrect query results: Only too many shortcuts might be inserted, but
no required shortcuts are omitted. In fact, this is a common technique

138 multimodal journey planning

(a) Input graph.

1 2 3 4 5

∞ ∞ ∞ ∞ ∞

(b) Graph after contraction.

Figure 5.2: Contracting only route vertices in the realistic time-dependent
rail model [PSWZ08]. The bottom row of vertices are station ver-
tices, while the top row are route vertices contracted in the order
depicted by their labels. Grey edges represent added shortcuts.
Note that these shortcuts are required as they incorporate differ-
ent transfer times (for boarding and exiting vehicles at different
stations).

to accelerate CH preprocessing [GSSV12]. Note that broadening the
witness search beyond network boundaries is prohibitive in our case:
It may find a shorter u-v-path using parts of other modal networks.
However, such a path is not necessarily a witness if one of these other
modes is forbidden during the query. Thus, we must not take it into
account to determine if e ′ can be dropped.

Our preprocessing results in a partial hierarchy for each modal
network of G. Its transfer vertices are not contracted, thus, stay at
the top of the hierarchy. Recall that we call the subgraph induced
by all vertices v with rank(v) = ∞ the core. Because of the added
shortcuts, the shortest path between every pair of core vertices is also
fully contained in the core. As a result, we achieve independence from
the automaton A during preprocessing.

a practical variant. Sequence-constrained contraction is inde-
pendent for every modal network of G: We can use any combination
of partial, full or no contraction. Our practical variant only contracts
time-independent modal networks, that is, the road networks. Con-
tracting the time-dependent networks is much less effective. Recall
that we do not contract station vertices as they have incident link
edges. Applying contraction only on the non-station vertices, however,
yields too many shortcuts (see Figure 5.2 and [Gei10]). It also hides
information encoded in the timetable model (such as railway lines),
further complicating query algorithms [BDGM09].

query. Our query algorithm combines the concept of a multimodal
Dijkstra algorithm with unimodal CH. Let s, t ∈ V be source and target
vertices and A some finite automaton with respect to LCSPP-MS. Our
query algorithm works as follows. First, we initialize distance values
for all pairs of (v,q) ∈ V×A with infinity. We now run a bidirectional
Dijkstra search from s and t. Each search runs independently and
maintains priority queues

−→
Q and

←−
Q of tuples (v,q) where v ∈ V

5.1 user-constraints on multimodal transfers 139

and q ∈ A. We explain the algorithm for the forward search; the
backward search works analogously. The queue

−→
Q is ordered by

distance and initialized with (s,q) for all initial states q in A (the
backward queue is initialized with respect to final states). Whenever
we extract a tuple (v,q) from Q, we scan all edges e = (v,w) in G. For
each edge, we look at all states q ′ in A that can be reached from q

by lbl(e). For every such pair (w,q ′) we check whether its distance is
improved, and update the queue if necessary. To use the preprocessed
data, we consider the graph G, augmented by all shortcuts computed
during preprocessing. We run the aforementioned algorithm, but when
scanning edges from a vertex v, the forward search only looks at edges
(v,w) where rank(w) > rank(v). Similarly, the backward search only
looks at edges (v,w) where rank(v) > rank(w). Note that by these
means we automatically search inside the core whenever we reach the
top of the hierarchy. Thereby we never reinitialize any data structures
when entering the core like it is typically the case for core-based
algorithms, e. g., Core-ALT [DSSW09]. The stopping criterion carries
over from basic CH: A search stops as soon as its minimum key in the
priority queue exceeds the best tentative distance value µ. We also use
stall-on-demand, however, only on the component.

Intuitively, the search can be interpreted as follows. We simulta-
neously search upward in those hierarchies of the modal networks
that are either marked as initial or as final in the automaton A. As
soon as we hit the top of the hierarchy, the search operates on the
common core. Because we always find correct shortest paths between
core vertices in any modal network, our algorithm supports arbitrary
automata (with respect to LCSPP-MS) as query input. Note that our
algorithm implicitly computes local queries which use only one of the
networks. It makes the use of a separate algorithm for local queries,
as in [DPW09a], unnecessary.

handling time-dependency. Some of the networks in G are
time-dependent. Weights of time-dependent edges (u, v) are evaluated
for a departure time τ. However, running a reverse search on a time-
dependent network is non-trivial, since the arrival time at the target
vertex is not known in advance. Several approaches, such as using
the lower-bound graph for the reverse search, exist [BGNS10; DN08],
but they complicate the query algorithm. Recall that in our practical
variant we do not contract any of the time-dependent networks, hence,
no time-dependent edges are contained in the component. This makes
backward search on the component easy for us. We discuss search on
the core in the next section.

140 multimodal journey planning

5.1.4 Improvements

We now present improvements to our algorithm, some of which also
apply to CH.

average vertex degree . Recall that whenever we contract a
modal network, we never contract transfer vertices, even if they were
of low importance in the context of that network. As a result, the
number of added shortcuts may increase significantly. Thus, we stop
the contraction process as soon as the average vertex degree in the core
exceeds a value α. By varying α, we trade off the number of core
vertices and the number of core edges: Higher values of α produce a
smaller core but with more shortcut edges. We evaluate a good value
of α experimentally.

edge ordering . Due to the higher average vertex degree com-
pared to unimodal CH, the search algorithm has to look at more edges.
Thus, we improve performance of iterating over incident edges of a
vertex v by reordering them locally at v: We first arrange all outgoing
edges, followed by all bidirected edges, and finally, all incoming edges.
By these means, the forward respective backward search only needs
to look at their relevant subsets of edges at v. The same optimization
is applied to the stalling routine. Preliminary experiments revealed
that edge reordering improves query performance up to 21 %.

vertex ordering . To improve the cache hit rate for the query al-
gorithm, we also reorder vertices such that adjacent vertices are stored
consecutively with high probability. We use a DFS-like algorithm to
determine the ordering [DGNW11]. Because most of the time is spent
on the core, we also move core vertices to the front. This improves
query performance up to a factor of 2.

core pruning . Recall that a search stops as soon as its minimum
key from the priority queue exceeds the best tentative distance value µ.
This is conservative, but necessary for CH (and UCCH) to be correct.
However, UCCH spends a large fraction of the search inside the core.
We can easily expand road and transfer edges both forward and
backward, but because of the conservative stopping criterion, many
core vertices are settled twice. To reduce this amount, we do not scan
edges of core vertices v, where v has been settled by both searches
and did not improve µ. A path through v is provably not optimal.
This increases performance by up to 47 %. Another alternative is not
applying bidirectional search on the core at all. The forward search
continues regularly, while the backward search does not scan edges
incident to core vertices. This approach turns out most effective with
a performance increase by a factor of 2.

5.1 user-constraints on multimodal transfers 141

state pruning . Recall that our query algorithm maintains dis-
tances for pairs (v,q) where v ∈ V and q ∈ A. Thus, whenever we
scan an edge (u, v) ∈ E resulting in some state q ∈ A, we update
the distance value of (v,q) only if it is improved, and discard (or
prune) it otherwise. However, we can even make use of a stronger
state pruning rule: Let qi and qj be two states in A. We say that qi
dominates qj if and only if the language LA(qj) accepted by A with
modified initial state qj is a subset of the language LA(qi) accepted
by A with modified initial state qi. In other words, any feasible mode
sequence beginning with qj is also feasible when starting at qi. As
a consequence, when we are about to update a pair (v,qj), we can
additionally prune (v,qj) if there exists a state qi that dominates qj
and where (v,qi) has smaller distance: Any shortest path from v is
provably not using (v,qj). As an example, consider the first automaton
in Figure 5.1. Let its states be denoted by {q0,q1,q2}, from left to right.
Here, q0 dominates q2 with respect to our definition: Any foot path
beginning at state q2 is also a feasible (foot) path beginning at state q0.
Therefore, any pair (v,q2) can be pruned if (v,q0) has better distance
than (v,q2). State pruning improves performance by ≈ 10 %.

state-independent search in component. Automata are
used to model sequence constraints, however, by definition their state
may only change when traversing link edges. In particular, when
searching inside the component, there is never a state transition (recall
that all link edges are inside the core). Thus, we use the automaton only
on the core. We start with a regular unimodal CH-query. Whenever
we are about to insert a core vertex v into the priority queue for the
first time on a branch of the shortest path tree, we create labels (v,q)
for all initial/final states q (regarding forward/backward search).
Because the amount of settled component vertices on average is small
compared to the total search space, we do not observe a performance
gain. However, on large instances with complicated query automata
we save up to 1.1 GiB of RAM during query by keeping only one
distance value for each component vertex. Recall that component
vertices constitute the major fraction of the graph.

parallelization. In general, the multimodal graph G is com-
posed of more than one contractable modal subnetwork, for instance
foot and car. In this case, we have to run the aforementioned unimodal
CH-query on every component individually. Because these queries are
independent from each other, we are able to parallelize them easily.
In a first phase, we allocate one thread for every contracted network
which then runs the unimodal CH-query on its respective component
until it hits the core. In the second phase, we synchronize the threads,
and continue the search on the core sequentially. Note that we only

142 multimodal journey planning

Table 5.1: Comparing size figures of our input instances. The column “Col.”
indicates whether we use the coloring approach (see Section 5.1.1.1)
to model the railway subnetwork. The bottom two instances are
taken from [DPW09a].

Public Transportation Road

Network Stations Connections Col. Vertices Edges Density

ny-road-rail 16 897 2 054 896 • 579 849 1 527 594 1 : 56

de-road-rail 6 822 489 801 • 5 055 680 12 378 224 1 : 749

europe-road-rail 30 517 1 621 111 • 30 202 516 72 586 158 1 : 1 133

wo-road-rail-flight 31 689 1 649 371 • 50 139 663 124 625 598 1 : 1 846

de-road-rail(long) 498 16 450 ◦ 5 055 680 12 378 224 1 : 10 711

wo-road-flight 1 172 28 260 ◦ 50 139 663 124 625 598 1 : 139 277

need to run the first phase on those components that are represented
by an initial or final state in the input automaton A.

Combining all improvements yields a speedup of up to factor 4.9.
(Section 5.1.5.5 of the experimental evaluation will show detailed
figures.)

5.1.5 Experiments

We conducted our experiments on an Intel Xeon E5430 processor
clocked at 2.66 GHz with 32 GiB of RAM and 12 MiB of L2 cache. The
program was compiled with GCC 4.5, using optimization level 3. Our
implementation is written in C++ using the STL and Boost. We use our
own custom implementations for most data structures. In particular,
we represent graphs as adjacency arrays, and as a priority queue we
use a 4-ary heap. All runs are sequential for comparison.

inputs . We assemble a total of six multimodal networks where
two are imported from [DPW09a]. Their size figures are reported in
Table 5.1. For ny-road-rail, we combine New York’s foot network
with the public transit network operated by MTA [Met66]. We link
bus and subway stops to road intersections that are no more than
500 m apart. The de-road-rail network combines the pedestrian and
railway networks of Germany. The railway network is extracted from
the timetable of the winter period 2000/01. It includes short and long
distance trains, and we link stations using a radius of 500 m. The
europe-road-rail network combines the road (as in car) and railway
networks of Western Europe. The railway network is extracted from
the timetable of the winter period 1996/97 and stations are linked
within 5 km. The wo-road-rail-flight network is a combination of

5.1 user-constraints on multimodal transfers 143

the road networks of North America and Western Europe with the
railway network of Western Europe and the flight network of Star
Alliance and One World. The flight networks are extracted from the
winter timetable 2008. As radius we use 5 km.

Both de-road-rail(long) and wo-road-flight are from [DPW09a].
The data of the Western European and North American road networks
(thus Germany and New York) was kindly provided to us by PTV
AG [PTV79] for scientific use. The timetable data of New York is
publicly available through General Transit Feeds [Gtfs], while the data
of the German and European railway networks was kindly provided
by HaCon [HaC84]. Unlike the data from HaCon, the New York
timetable did not contain any foot path data for short transfers between
nearby stops (as typically defined by the operator). Thus, we generated
artificial foot paths with a known heuristic [DKP12].

Our instances vary in the fractional size of their public transit sub-
network with respect to the total network size. We call the fraction
of linked vertices in a subgraph density (see last column of Table 5.1).
Our densest network is ny-road-rail, which also has the highest
number of connections. On the other hand, de-road-rail(long) and
wo-road-flight are rather sparse. However, we include them to com-
pare our algorithm to Access Node Routing (ANR). Note that we
take the figures for ANR from [DPW09a]. Since they used a differ-
ent machine, we scale the running time figures by comparing the
running time of Dijkstra’s algorithm on our machine to theirs. Also
note that for comparison we do not use the improved coloring model
(see Section 5.1.1.1) on these two instances.

We use the following automata as query input. The foot-and-rail

automaton allows either walking, or walking, taking the railway net-
work and walking again. Similarly, the car-and-rail automaton uses
the road network instead of walking, while the car-and-flight au-
tomaton uses the flight network instead of the railway network. The
hierarchical automaton is our most complicated automaton. It hi-
erarchically combines road, railways and flights (in this order). All
modal sequences are possible, except of going up in the hierarchy
after once stepping down. For example, if one takes a train after a
flight, it is impossible to take another flight. Note that completely dis-
allowing walking is not reasonable. Instead, taking the predefined (by
the timetable) transfer foot paths within the rail (flight) model is
always allowed within the rail (flight) state. Finally, the everything

automaton allows arbitrary modal sequences in any order. See Fig-
ure 5.1 for transition graphs of foot-and-rail and hierarchical.

methodology. We evaluate both preprocessing and query perfor-
mance. The contraction order is always computed according to the
aggressive variant from [GSSV12]. We report the time and the amount
of computed auxiliary data. Queries are generated with source, target

144 multimodal journey planning

Table 5.2: Comparing preprocessing performance of UCCH on de-road-rail

with varying average core degree limit. For queries we use the foot

automaton. We also report numbers for unconstrained unimodal
CH and partial CH (PCH).

Preprocessing Query

Avg. Core- Core- Shortcut- Time Settled Relaxed Touched Time

Algorithm Degree Vertices Edges [min] Vertices Edges Edges [ms]

UCCH

10 30 908 42.3 % 6 15 531 27 506 155 776 5.85

15 16 003 43.1 % 7 8 090 16 844 121 631 3.11

20 12 239 43.7 % 9 6 240 14 425 124 201 2.82

25 10 635 44.2 % 10 5 465 13 687 135 151 2.80

30 9 742 44.7 % 12 5 049 13 486 148 735 2.96

35 9 171 45.1 % 14 4 794 13 598 163 376 3.15

40 8 788 45.4 % 15 4 628 13 787 179 483 3.38

PCH 13 10 635 41.7 % 6 5 567 11 402 71 860 1.93

PCH 15 6 750 41.8 % 7 3 636 7 970 53 655 1.37

CH — 0 41.8 % 9 677 1 290 11 434 0.25

vertices and departure times uniformly picked at random. For Dijkstra
we run 1,000 queries, while for UCCH we run a superset of 100,000

queries. We report the average number of: (1) extracted vertices in the
implicit product graph from the priority queue (settled vertices), (2)
priority queue update operations (relaxed edges), (3) touched edges,
(4) the average query time, and (5) the speedup over Dijkstra. Note
that we only report the time to compute the length of the shortest
path. Unpacking of shortcuts can be done efficiently in less than a
millisecond [GSSV12].

5.1.5.1 Evaluating Average Core Degree Limit

The first experiment evaluates preprocessing and query performance
with varying average core degree. We abort contraction as soon as the
average vertex degree in the core exceeds a limit α. In our implementa-
tion we compute the average vertex degree by dividing the number of
edges by the number of vertices in our graph data structure. Note that
we use edge compression [Del09]: Whenever there are edges e = (u, v)
and e ′ = (v,u) where len(e) = len(e ′), we combine both edges in a
single entry at u and v. As a result, the number we report may be
smaller than the true average degree (at most by a factor of 2) which
is, however, irrelevant for the result of this experiment.

Table 5.2 shows preprocessing and query figures on de-road-rail.
For queries we use the foot automaton, which does not use public
transit edges. With higher values of α more vertices are contracted,

5.1 user-constraints on multimodal transfers 145

resulting in higher preprocessing time and more shortcuts (we report
them as a fraction of the input’s size). At the same time, less vertices
(but with higher degree) remain in the core. Setting α =∞ is infeasible.
The amount of shortcuts is too large, and preprocessing does not finish
within reasonable time. Interestingly, the query time decreases (with
smaller core size) up to α ≈ 25 and then increases again. Though we
settle less vertices, the increase in shortcuts results in more touched
edges during query, that is, edges the algorithm has to iterate when
settling a vertex. We conclude that for de-road-rail the trade-off
between number of core vertices and added shortcut edges is optimal
for α = 25. Hence, we use this value in subsequent experiments.
Accordingly, we determine α for all instances.

comparison to unimodal ch . In Table 5.2 we also compare
UCCH to CH when run on the unimodal road network. Computing a
full hierarchy results in queries that are faster by a factor of 11.2. Since
UCCH does not compute a full hierarchy by design, we evaluate two
partial CH hierarchies: The first stops when the core reaches a size
of 10,635—equivalent to the optimal core size of UCCH. We observe
a query performance almost comparable to UCCH (slightly faster by
45 %). The second partial hierarchy stops with a core size of 6,750

which is equal to the number of transfer vertices in the network (i. e.,
the smallest possible core size on this instance for UCCH). Here, CH
is a factor of 2 faster than UCCH. Recall that UCCH must not contract
transfer vertices. In road networks these are usually unimportant:
Long-range queries do not pass many railway stations or bus stops
in general, which explains that UCCH’s hierarchy is less pronounced.
However, for multimodal queries transfer vertices are indeed very
important, as they constitute the interchange points between different
networks. To enable arbitrary automata during query, we overestimate
their importance by not contracting them at all, which is reflected by
the (relatively small) difference in performance compared to CH.

5.1.5.2 Preprocessing

Table 5.3 shows preprocessing figures for UCCH on all our instances.
Besides the average degree we evaluate the core in terms of total
and fractional number of core vertices, and the amount of added
shortcuts. Added shortcuts are reported as percentage of all road
edges and in total MiB. We observe that the preprocessing effort cor-
relates with the graph size. On the small ny-road-rail instance it
takes less than a minute and produces 8 MiB of data. On our largest in-
stance, wo-road-rail-flight, we need 1.5 hours and produce 558 MiB
of data. Because the size of the core depends on the size of the
public transportation network, we obtain a much higher ratio of
core vertices on ny-road-rail (1 : 52) than we do, for example, on
wo-road-rail-flight (1 : 1,298).

146 multimodal journey planning

Table 5.3: Preprocessing figures for UCCH and Access-Node Routing on the
road subnetwork. Figures for the latter are taken from [DPW09a],
which were obtained on a different machine. We thus scale the
preprocessing time with respect to running time figures compared
to Dijkstra.

UCCH ANR

Avg. Core- Core Vertices Shortcuts Shortcuts Time Space Time

Network Degree Total Ratio Percent [MiB] [min] [MiB] [min]

ny-road-rail 8 11 057 1:52 48.3 % 8 < 1 — —

de-road-rail 25 10 635 1:475 44.2 % 63 10 — —

europe-road-rail 25 39 665 1:761 39.0 % 324 38 — —

wo-road-rail-flight 30 38 610 1:1 298 39.1 % 558 87 — —

de-road-rail(long) 35 996 1:5 075 42.3 % 60 10 504 26

wo-road-flight 35 727 1:68 967 38.0 % 542 78 14 050 184

Comparing the preprocessing effort of UCCH to scaled figures
of Access-Node Routing (ANR), we observe that UCCH is more
than twice as fast and produces significantly less amount of data:
on de-road-rail(long) by a factor of 8.4, on wo-road-flight by a
factor of 26. Here, ANR requires 14 GiB of space, whereas UCCH
only uses 542 MiB. Concluding, UCCH outperforms ANR in terms of
preprocessing space and time.

5.1.5.3 Query Performance

In this experiment we evaluate the query performance of UCCH and
compare it to Dijkstra and ANR (where figures are available). Re-
sults are presented in Table 5.4. We observe that we achieve speedups
of several orders of magnitude over Dijkstra, depending on the in-
stance. Generally, UCCH’s speedup over Dijkstra correlates with the
ratio of core vertices after preprocessing (thus, indirectly with the
density of transfer vertices): the sparser our networks are intercon-
nected, the higher the speedups we achieve. On our densest network,
ny-road-rail, we have a speedup of 17, while on wo-road-flight we
achieve query times of less than a millisecond—a speedup of over
50,540. To further highlight how the density of the network affects
the speedup, Figure 5.3 plots the speedup of UCCH on each instance
subject to its density. Note that most of the time is spent inside the
core (particularly, in the public transit network), which we do not
accelerate. Section 5.1.5.6 contains a detailed query time distribution
analysis. Comparing UCCH to ANR, we observe that query times are
in the same order of magnitude, UCCH being slightly faster. Note that
we achieve this with significantly less preprocessing effort.

5.1 user-constraints on multimodal transfers 147

Ta
bl

e
5
.4

:Q
ue

ry
pe

rf
or

m
an

ce
of

U
C

C
H

co
m

pa
re

d
to

pl
ai

n
m

ul
ti

m
od

al
D

ijk
st

ra
an

d
A

cc
es

s-
N

od
e

R
ou

ti
ng

.
Fi

gu
re

s
fo

r
th

e
la

tt
er

ar
e

ta
ke

n
fr

om
[D

PW
0

9
a]

,w
hi

ch
w

er
e

ob
ta

in
ed

on
a

di
ff

er
en

t
m

ac
hi

ne
.W

e
th

us
sc

al
e

th
e

ru
nn

in
g

ti
m

e
w

it
h

re
sp

ec
t

to
D

ijk
st

ra
.

D
ijk

st
ra

A
N

R
U

C
C

H

Se
tt

le
d

Ti
m

e
Se

tt
le

d
Ti

m
e

Sp
ee

d-
Se

tt
le

d
Ti

m
e

Sp
ee

d-

N
et

w
or

k
A

ut
om

at
on

Ve
rt

ic
es

[m
s]

Ve
rt

ic
es

[m
s]

U
p

Ve
rt

ic
es

[m
s]

U
p

n
y
-
r
o
a
d
-
r
a
i
l

f
o
o
t
-
a
n
d
-
r
a
i
l

4
0

4
8

1
6

2
2

6
—

—
—

2
5

5
2

5
1

3
.6

1
1

7

d
e
-
r
o
a
d
-
r
a
i
l

f
o
o
t
-
a
n
d
-
r
a
i
l

2
6

1
1

0
5

4
2

0
0

5
—

—
—

1
8

2
7

5
1

2
.7

8
1

5
7

e
u
r
o
p
e
-
r
o
a
d
-
r
a
i
l

c
a
r
-
a
n
d
-
r
a
i
l

3
0

0
2

1
5

6
7

2
3

9
9

3
—

—
—

9
0

5
7

9
5

3
.7

8
4

4
6

w
o
-
r
o
a
d
-
r
a
i
l
-
f
l
i
g
h
t

c
a
r
-
a
n
d
-
f
l
i
g
h
t

3
6

0
5

3
7

1
7

3
3

6
9

2
—

—
—

4
2

0
5

6
2

6
.7

2
1

2
6

0

w
o
-
r
o
a
d
-
r
a
i
l
-
f
l
i
g
h
t

h
i
e
r
a
r
c
h
i
c
a
l

3
6

1
2

4
1

0
5

3
5

2
6

1
—

—
—

1
2

6
0

7
2

7
0

.5
2

5
0

0

w
o
-
r
o
a
d
-
r
a
i
l
-
f
l
i
g
h
t

e
v
e
r
y
t
h
i
n
g

2
5

2
6

7
2

0
2

2
3

9
7

2
—

—
—

7
1

3
8

9
5

0
.7

7
4

7
2

d
e
-
r
o
a
d
-
r
a
i
l
(
l
o
n
g
)

f
o
o
t
-
a
n
d
-
r
a
i
l

2
7

3
5

4
2

6
2

0
7

5
1

3
5

2
4

3
.4

5
6

0
2

1
2

5
0

9
3

.1
3

6
6

3

w
o
-
r
o
a
d
-
f
l
i
g
h
t

c
a
r
-
a
n
d
-
f
l
i
g
h
t

3
6

5
8

2
9

0
4

3
3

8
6

2
4

2
0

0
1

.0
7

3
1

5
5

1
1

6
4

7
0

.6
7

5
0

5
4

0

148 multimodal journey planning

10−5 10−4 10−3 10−210
1

10
2

10
3

10
4

10
5

Density
Sp

ee
du

p

Figure 5.3: Evaluating the speedup of UCCH from Table 5.4 subject to the
density of the input from Table 5.1.

5.1.5.4 Detailed path properties

Table 5.5 reports the impact of integrating modal sequence constraints
on the paths output by the algorithm. It does so by evaluating three
main figures: The percentage of the total number of paths that utilize
a certain transportation mode (foot, car, rail with transfers, and flight
with transfers), the average and maximum number of interchanges
between transportation modes along the journeys, and the average
and maximum factor by which the travel time increases when mode
sequence constraints are enabled. Note that for the latter, we only count
paths that actually differ from the unconstrained one, additionally
reporting the amount of paths where mode sequence constraints
have no impact (Ident.). Each instance in Table 5.5 is evaluated on
both an appropriate constrained automaton as well as the everything

automaton, which corresponds to running unrestricted queries.
We observe that on ny-road-rail 57 % of the paths utilize the rail

network, regardless whether we constrain paths by the foot-and-rail

automaton. However, 36 % of the paths are indeed different, and en-
abling constraints reduces the average number of modal interchanges
by a factor of almost four with only a 7 % increase in travel time.
Figures for de-road-rail are similar: All paths use the rail network,
and enabling constraints reduces the number of modal interchanges
by a factor of almost 3.5 with only little increase in travel time. On
our sparser long-distance networks the effects are less pronounced.
For example, on wo-road-rail-flight, we see that 89 % of the paths
already follow a hierarchical use of transportation modes, and the
difference in the number of modal interchanges decreases only by 0.4.
However, while this difference may seem small, we argue that model
constraints are nevertheless important, since our experiment shows

5.1 user-constraints on multimodal transfers 149

Ta
bl

e
5

.5
:E

va
lu

at
in

g
th

e
im

pa
ct

of
in

te
gr

at
in

g
m

od
al

se
qu

en
ce

co
ns

tr
ai

nt
s

on
th

e
pa

th
s.

M
od

e
U

se
d

in
%

Pa
th

s
#

M
od

al
C

ha
ng

es
St

re
tc

h

N
et

w
or

k
A

ut
om

at
on

Fo
ot

C
ar

R
ai

l
Fl

ig
ht

A
vg

.
M

ax
.

A
vg

.
M

ax
.

Id
en

t.
[%

]

n
y
-
r
o
a
d
-
r
a
i
l

e
v
e
r
y
t
h
i
n
g

1
0

0
—

5
7

—
4

.1
2

2
—

—
—

n
y
-
r
o
a
d
-
r
a
i
l

f
o
o
t
-
a
n
d
-
r
a
i
l

1
0

0
—

5
7

—
1

.1
2

1
.0

7
2
.8

3
6

4

d
e
-
r
o
a
d
-
r
a
i
l

e
v
e
r
y
t
h
i
n
g

1
0

0
—

1
0

0
—

6
.8

2
4

—
—

—

d
e
-
r
o
a
d
-
r
a
i
l

f
o
o
t
-
a
n
d
-
r
a
i
l

1
0

0
—

1
0

0
—

2
.0

2
1

.0
8

2
.9

4
8

7

e
u
r
o
p
e
-
r
o
a
d
-
r
a
i
l

e
v
e
r
y
t
h
i
n
g

—
1

0
0

4
1

—
1

.2
1

0
—

—
—

e
u
r
o
p
e
-
r
o
a
d
-
r
a
i
l

c
a
r
-
a
n
d
-
r
a
i
l

—
1

0
0

4
1

—
0

.8
2

1
.0

3
1
.4

6
9

2

w
o
-
r
o
a
d
-
r
a
i
l
-
f
l
i
g
h
t

e
v
e
r
y
t
h
i
n
g

—
1

0
0

1
3

8
5

2
.2

1
2

—
—

—

w
o
-
r
o
a
d
-
r
a
i
l
-
f
l
i
g
h
t

h
i
e
r
a
r
c
h
i
c
a
l

—
1

0
0

9
8

5
1

.8
4

1
.0

8
2
.2

5
8

9

w
o
-
r
o
a
d
-
r
a
i
l
-
f
l
i
g
h
t

c
a
r
-
a
n
d
-
f
l
i
g
h
t

—
1

0
0

—
8

5
1
.7

2
1

.0
6

2
.3

4
8

4

150 multimodal journey planning

Table 5.6: Detailed analysis of the impact on query performance by our
improvements (cf. Section 5.1.4). We show figures for reordering
vertices (rn), reordering edges (re), improved bidirectional search
(bi), only forward search on the core (fo), state-independent search
on component (si), and state-pruning (sp)

Settled Time Spd.

Network Automaton Improv. vert. [ms] up

europe-road-rail car

none 48 488 69.93 —

rn 48 488 35.11 2.00

rn,re 48 488 29.38 2.38

rn,re,bi 31 628 20.02 3.49

rn,re,fo 24 297 14.57 4.80

wo-road-rail-flight car

none 35 539 54.42 —

rn 35 539 27.93 1.95

rn,re 35 539 23.18 2.35

rn,re,bi 29 695 19.84 2.74

rn,re,fo 17 862 11.50 4.73

europe-road-rail car-and-rail

rn,re,fo 95 095 57.23 —

rn,re,fo,si 95 024 60.12 0.95

rn,re,fo,sp 89 770 51.72 1.11

rn,re,fo,si,sp 89 699 54.45 1.05

wo-road-rail-flight car-and-rail

rn,re,fo 72 997 46.73 —

rn,re,fo,si 72 895 49.09 0.95

rn,re,fo,sp 69 627 42.35 1.10

rn,re,fo,si,sp 69 525 44.51 1.05

that in 11 % of the cases the (unconstrained) path violates the modal
constraints, which may render it completely infeasible to the user.

5.1.5.5 Improvements

In Table 5.6 we report figures for the improvements to UCCH described
in Section 5.1.4. The table is divided into two parts. The upper part
addresses unimodal improvements that are also applicable to (partial)
CH. Therefore, we evaluate them using the car automaton. For our
two biggest networks, we provide the number of settled vertices and
the query time for several combinations of improvements. The first
row (none) reports results for the basic version of UCCH. The other
rows use: Reordered vertices (rn), reordered edges (re), improved
bi-directional search on the core (bi), and uni-directional search on
the core (fo), that is, no backward search is performed on the core.
Combining these techniques, we obtain a speedup of up to factor 4.8.

5.1 user-constraints on multimodal transfers 151

Table 5.7: In-depth analysis of UCCH’s query time. We report the distribution
of query time among the particular subnetworks and compare it
to Dijkstra.

Dijkstra UCCH

Settled Time Settled Time Spd.

Network Automaton Subgraph vert. [ms] vert. [ms] up

ny-road-rail foot-and-rail

road-comp. — — 203 ≈ 0.0 —

road-core 389 578 215.5 9 944 4.8 45

rail 15 238 10.5 15 238 8.8 1.2

de-road-rail foot-and-rail

road-comp. — — 188 ≈ 0.0 —

road-core 2 599 251 1 988.4 6 314 5.0 397

rail 11 803 16.6 11 803 7.8 2.1

europe-road-rail car-and-rail

road-comp. — — 213 ≈ 0.0 —

road-core 29 973 817 23 933.3 43 017 24.4 982

rail 47 750 59.7 47 750 29.4 2.0

wo-road-rail-flight hierarchical

road-comp. — — 301 ≈ 0.0 —

road-core 36 047 522 35 169.3 49 944 30.6 1 149

rail 75 682 89.9 75 682 39.2 2.3

flight 902 1.8 902 0.7 2.6

The lower part of Table 5.6 is dedicated to improvements for UCCH
which we evaluate using the car-and-rail automaton. We provide
numbers for state-independent search on the component (si) and state-
pruning (sp). Note that these figures already include the previous
improvements. Interestingly, using state-independent search results
in slightly worse query times of about 5 %. However, we reduce the
memory footprint of the algorithm by a significant amount since we
store distance values only once per component vertex. Maintaining
distance labels on the implicit product graph requires between 6.9 MiB
and 1341.2 MiB on our instances. When (si) is enabled, these num-
bers are reduced to 2.4 MiB and 192.1 MiB, respectively. This is an
improvement of up to factor 7.

Note that from the number of settled vertices we can deduce which
of the improvements impact cache efficiency and which impact the
search space.

5.1.5.6 In-Depth Analysis of Query Performance

Table 5.7 reports in-depth figures for the UCCH query including all
(reasonable) improvements from the previous section. We see that a
large fraction of the query is spent on the public transportation part
of the multimodal network: Up to 65% of the settled vertices and

152 multimodal journey planning

also up to 65% of query time. Recall that we do not further accelerate
the search on the core. Interestingly, UCCH is slightly faster (up to a
factor of 2.6) on the timetable subnetworks when compared to Dijkstra.
UCCH settles fewer vertices in total, which helps cache performance
on the public transit part. When we compare the time spent on the
road network (component and core) of de-road-rail with the figures
of Table 5.2 (where we use the same instance but with the smaller foot
automaton), we observe that the foot-and-rail automaton yields a
factor 1.8 slowdown. The reason is that the foot-and-rail automaton
actually has two “foot-states” (cf. Figure 5.1) and, thus, has to do twice
the work on the road subnetwork. Note that the number 1.8 (instead
of exactly 2) stems from the fact that we apply state pruning.

Conclusions

We have introduced UCCH: The first, fast multimodal speedup tech-
nique that handles arbitrary modal sequence constraints at query time—
a problem considered challenging before. Besides not determining
the modal constraints during preprocessing, its advantages are small
space overhead, fast preprocessing time and the ability to implicitly
handle local queries without the need for a separate algorithm. Its
preprocessing can handle huge networks of intercontinental size with
many more stations and airports than those of previous multimodal
techniques.

For future work, we are interested in augmenting our approach to
more general scenarios. For example, the computation of multimodal
profile queries would produce journeys whose departure time follows
the timetable more closely. We would also like to further accelerate
search on the uncontracted core—especially on the rail networks. Fi-
nally, we are interested to improve the contraction order. In particular,
we would like to use ideas from Access Node Routing [DPW09a] to
achieve better results on more densely interlinked networks: It should
be possible to contract a transfer node as soon as all road nodes, for
which it is an access node, have been contracted. Furthermore, UCCH
can be interpreted as a point-of-interest (POI) technique [ADF+12;
DW14; EPV15; FWL12; Gei11]: Instead of computing buckets with
distances to relevant POIs, we simply keep the POIs (i. e., transit stops)
in the uncontracted core. This could be interesting to evaluate for
general POIs.

5.2 multicriteria multimodal journey planning 153

5.2 multicriteria multimodal journey planning

In the previous section, we required paths to obey a user-defined
pattern (often given as regular expressions) for enforcing a hierarchy
of modes [BBM06; YL12] (such as “no car travel between trains”).
The main advantage of this strategy is that preprocessing techniques
developed for road networks carry over [BBH+09; DPW09a; DPW15;
KLC12; KLPC11]. This approach, however, can hide interesting jour-
neys (for example, taking a taxi between train stations in Paris may
be an option). In fact, this exposes a fundamental conceptual problem
with label-constrained optimization: It essentially relies on the user to
know her options before planning the journey.

Given the limitations of current approaches, we consider the prob-
lem of finding multicriteria multimodal journeys on a metropolitan
scale. Instead of optimizing each mode of transportation indepen-
dently [EL11], we argue in Section 5.2.1 that most users optimize three
criteria: travel time, convenience, and costs. As this produces a large
Pareto set, we propose using fuzzy logic [FA04; Zad88] to identify, in
a principled way, a modest-sized subset of representative journeys.
This postprocessing step is very quick and can incorporate personal
preferences. As Section 5.2.2 shows, we can use recent algorithmic
developments [DPW14; DPW15; GSSV12] to answer exact queries
optimizing time and convenience in less than two seconds within a
large metropolitan area, for the simpler scenario of walking, cycling,
and public transit. Unfortunately, this is not enough for interactive
applications, and becomes much slower when more criteria, such as
costs, are incorporated. We therefore also propose (in Section 5.2.3)
heuristics (still multicriteria) that are significantly faster, and closely
match the top journeys in the Pareto set. Section 5.2.4 presents a
thorough experimental evaluation of all algorithms in terms of both
solution quality and performance, and shows that our approach can
be fast enough for practicable applications.

5.2.1 Preliminaries

Throughout Section 5.2, we use the following notation and concepts:
We want to find journeys in a network built from several partial

networks. The first is a public transportation network representing all
available schedule-based means of transportation, such as trains, buses,
rail, or ferries. We can specify this network in terms of its timetable,
which is defined as follows. A stop is a location in the network (such
as a train platform or a bus stop) at which a user can board or leave a
particular vehicle. A route is a fixed sequence of stops for which there is
scheduled service during the day; a typical example is a bus or subway
line. A route is served by one or more distinct trips during the day;
each trip is associated with a unique vehicle, with fixed (scheduled)

154 multimodal journey planning

arrival and departure times for every stop in the route. Each stop
may also keep a minimum change time, which must be obeyed when
changing trips.

Besides the public transportation network, we also take as input
several unrestricted networks, with no associated timetable. Walking,
cycling, and driving are modeled as distinct unrestricted networks,
each represented as a directed graph G = (V ,A). Each vertex v ∈ V
represents an intersection and has associated coordinates (latitude
and longitude). Each arc (v,w) ∈ A represents a (directed) road seg-
ment and has an associated duration dur(v,w), which corresponds to
the (constant) time to traverse it.

The integrated transportation network is the union of these partial
networks with appropriate link vertices, i. e., vertices (or stops) in dif-
ferent networks are identified with one another to allow for changes
in modes of transportation. Note that, unlike previous work [BCE+10;
DKP12; DMS08; DPW14; PSWZ08], we do not necessarily require
explicit footpaths in the public transportation networks (to walk be-
tween nearby stops). For pure public transport optimization, adding
these footpaths is often done by the operator of the network or by
heuristics [DKP12].

A query takes as input a source location s, a target location t, and
a departure time τ, and it produces journeys that leave s no earlier
than τ and arrive at t. A journey is a valid path in the integrated
transportation network that obeys all timetable constraints.

5.2.1.1 Criteria.

We still have to define which journeys the query should return. We
argue that users optimize three natural criteria in multimodal net-
works: arrival time, costs, and “convenience”. For our first (simplified)
scenario (with public transit, cycling, and walking, but no taxi), we
work with three criteria. Besides arrival time, we use number of trips
and walking duration as proxies for convenience. We add cost for the
scenario that includes taxi.

Given this setup, a first natural problem we need to solve is the full
multicriteria problem, which must return a full (maximal) Pareto set of
journeys. We say that a journey J1 dominates J2 if J1 is strictly better
than J2 according to at least one criterion and no worse according
to all other criteria. A Pareto set is a set of pairwise nondominating
journeys [Han79; MW01]. If two journeys have equal values in all
criteria, we only keep one.

5.2.1.2 Fuzzy Dominance.

Solving the full multicriteria problem, however, can lead to solution
sets that are too large for most users. Moreover, many solutions pro-
vide undesirable tradeoffs, such as journeys that arrive much later to

5.2 multicriteria multimodal journey planning 155

save a few seconds of walking (or walk much longer to save a few
seconds in arrival time). Intuitively, most criteria are diffuse to the user,
and only large enough differences are significant. Pareto optimality
fails to capture this.

To formalize the notion of significance, we propose to score the
journeys in the Pareto set in a post-processing step using concepts
from fuzzy logic [Zad88] (and fuzzy set theory [Zad65]). Loosely
speaking, fuzzy logic generalizes Boolean logic to handle (continuous)
degrees of truth. For example, the statement “60 and 61 seconds of
walking are equal” is false in classical logic, but might be considered
“almost true” in fuzzy logic. Formally, a fuzzy set is a tuple S = (U,µ),
where U is a set and µ : U → [0, 1] a membership function that de-
fines “how much” each element in U is contained in S. Mostly, we
use µ to refer to S. Our application requires fuzzy relational opera-
tors µ<, µ=, and µ>. For any x,y ∈ R, they are evaluated by µ<(x−y),
µ>(y− x), and µ=(x− y). We use the well-known [Zad88] exponen-
tial membership functions for the operators: µ=(x) := exp(ln(χ)

ε2
x2),

where 0 < χ < 1 and ε > 0 control the degree of fuzziness. The
other two operators are derived by µ<(x) := 1− µ=(x) if x < 0 (0
otherwise) and µ> := 1− µ=(x) if x > 0 (0 otherwise). A triangular
norm (short: t-norm) T : [0, 1]2 → [0, 1] is a commutative, associative,
and monotone (i. e., a 6 b, x 6 y ⇒ T(a, x) 6 T(b,y)) binary op-
erator to which 1 is the neutral element. If x,y ∈ [0, 1] are truth
values, T(x,y) is interpreted as a fuzzy conjunction (and) of x and y.
Given a t-norm T , the complementary conorm (or s-norm) of T is defined
as S(x,y) := 1− T(1− x, 1− y), which we interpret as a fuzzy disjunc-
tion (or). Note that the neutral element of S is 0. Two well-known pairs
of t- and s-norms are (min(x,y), max(x,y)), called minimum/maximum
norms, and (xy, x+ y− xy), called product norm/probabilistic sum.

We now recap the concept of fuzzy dominance in multicriteria opti-
mization, which is introduced by Farina and Amato [FA04]. Given jour-
neys J1 and J2 with M optimization criteria, we denote by nb(J1, J2)
the (fuzzy) number of criteria in which J1 is better than J2. More
formally, nb(J1, J2) :=

∑M
i=1 µ

i
<(κ

i(J1), κi(J2)), where κi(J) evaluates
the i-th criterion of J and µi< is the i-th fuzzy less-than operator. (Note
that each criterion may use different fuzzy operators.) Analogously,
we define ne(J1, J2) for equality and nw(J1, J2) for greater-than. By
definition, nb + ne + nw = M. Hence the Pareto dominance can be
generalized to obtain a degree of domination d(J1, J2) ∈ [0, 1], defined
as (2nb + ne −M)/nb if nb > (M− ne)/2 (and 0 otherwise). Here,
d(J1, J2) = 0 means that J1 does not dominate J2, while a value of 1
indicates that J1 Pareto-dominates J2. Otherwise, we say J1 fuzzy-
dominates J2 by degree d(J1, J2). Figure 5.4 shows contour lines for
values of d between 0 and 1 when using the maximum norm and two
exemplary criteria: arrival time and walking duration (with fuzziness
parameters set as in Section 5.2.4). In the figure we fix the criteria

156 multimodal journey planning

−1 0 1 2 3 4 5

−15

−10

−5

0

5

0.1

0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.98
strict

J1

Arrival Time [min]
W

al
ki

ng
D

ur
at

io
n

[m
in

]

Figure 5.4: Contour lines of the fuzzy dominance function d(J1, J2) = t for
different values t and a fixed journey J1 = (0, 0) when considering
two exemplary criteria: arrival time and walking duration. The
thick black line marks the classical Pareto-dominance (t = 1).

of J1 to (0, 0). The area right-above each contour line t then contains
all journeys J2 (with respective values for their criteria) which are
dominated by J1 with degree at least t. For example, a journey is still
dominated by J1 with degree 0.4 if it has 10 minutes less walking
while arriving 5 minutes later.

Now, given a (Pareto) set J of n journeys J1, . . . , Jn, we define a
score function sc : J → [0, 1] that computes the degree of domination
by the whole set for each Ji. More precisely, sc(J) := 1− S(J1, . . . , Jn).
Note that if we set S to be the maximum norm, the score is based on
the (one) journey that dominates J most. On the other hand, with the
probabilistic sum the score may be based on several fuzzily dominating
journeys.

We finally use the score to order the journeys by significance. One
may then decide to only show the top k journeys with highest score
to the user. Figure 5.5 shows an example of such a score-based filter-
ing. a (quite representative) location-to-location query from William
Road (near Warren Street Station) to Caxton Street (near Westminster
Abbey) on our London instance using public transit, walking, and taxi
with optimization criteria arrival time, number of transfers, walking
duration, and cost (in pounds). The departure time is 4:27 pm. The left
figure shows all nondominating journeys of the full Pareto set (there
are 65 in total), while the right figure shows the three journeys with
highest score from the (same) Pareto set, when our fuzzy dominance
approach is usedThis example clearly demonstrates that we obtain too
many nondominating solutions (left figure), a known problem for mul-
ticriteria search. But not only is the number of solutions too high for
presentation to a user, in fact, most of the journeys are not meaningful.
Some of them take considerable detours (for example north of the
source location), just to save some (insignificant) amount of walking.

5.2 multicriteria multimodal journey planning 157

Figure 5.5: Exemplary multicriteria multimodal query on London with crite-
ria arrival time, number of transfers, walking duration, and cost.
The left figure shows the full Pareto set (65 journeys), while the
right figure shows the three journeys with highest score (cf. Sec-
tion 5.2.1). Each dot represents a transfer and included trans-
portation modes are walking (thin black), taxi (thick purple),
buses (thin red), and tube (other thick colors).

In contrast, our scoring approach by fuzzy domination (right figure)
is able to identify the significant solutions in the Pareto set, resulting
in three meaningful journeys: One taking taxi the full way (purple),
one taking the subway (blue) which is faster at the cost of more walk-
ing (black), and one taking the bus (red) which takes longer but with
significantly less total walking (4 min instead of 14 min).

5.2.2 Exact Algorithms

This section considers exact algorithms for the multicriteria multi-
modal problem. Sections 5.2.2.1 and 5.2.2.2 propose two solutions, each
building on a different algorithm for multicriteria optimization on pub-
lic transportation networks (MLC [PSWZ08] and RAPTOR [DPW14]).
Section 5.2.2.3 then describes an acceleration technique that applies
to both. To simplify the discussion (and notation), we first describe
the algorithms in terms of our simplest scenario, considering only
the (timetable-based) public transit network and the (unrestricted)
walking network. Section 5.2.2.4 explains how to handle cycling and
taxis, which are unrestricted but have special properties.

158 multimodal journey planning

5.2.2.1 Multi-label-correcting Algorithm

Traditional solutions to the multicriteria problem on public transporta-
tion networks typically model the timetable as a graph [BDGM09;
DKP12; Gei10; MSWZ07]. A particularly effective approach is to use
the time-dependent route model [MSWZ07]. For each stop p, we create a
single stop vertex linked by time-independent transfer edges to multiple
route vertices, one for each route serving p. We also add route edges
between route vertices associated to consecutive stops within the same
route. To model the trips along a route, the cost of a route edge is given
by a piecewise linear function reflecting the traversal time (including
waiting for the next departure).

A journey in the public transportation network corresponds to a
path in this graph. The multi-label-correcting (MLC) [MSWZ07] algo-
rithm uses this to find full Pareto sets for arbitrary criteria that can be
modeled as edge costs. MLC extends Dijkstra’s algorithm [Dij59] by
operating on labels that have multiple values, one per criterion. Each
vertex v maintains a bag B(v) of nondominated labels. In each iteration,
MLC extracts from a priority queue the minimum (in lexicographic
order) unprocessed label L(u). For each arc (u, v) out of the associated
vertex u, MLC creates a new label L(v) (by extending L(u) in the
natural way) and inserts it into B(v); newly-dominated labels (possibly
including L(v) itself) are discarded, and the priority queue is updated
if needed. MLC can be sped up with target pruning and by avoiding
unnecessary domination checks [DMS08].

To solve the multimodal problem, we extend MLC: It suffices to
augment its input graph to include the walking network. We com-
bine the original graphs by merging (public transportation) stops
and (walking) intersections that share the same location (and keeping
all edges). These link vertices are then used to switch between modes
of transportation. The MLC query remains essentially unchanged, and
still processes labels in lexicographic order. Although labels can now
be associated to vertices in different networks, they can all share the
same priority queue.

5.2.2.2 Round-based Algorithm

A drawback of MLC (even restricted to public transportation net-
works) is that it can be quite slow: Unlike Dijkstra’s algorithm, MLC
may scan the same vertex multiple times (the exact number depends
on the criteria being optimized), and domination checks make each
such scan quite costly. Delling et al. [DPW14] have recently intro-
duced RAPTOR (Round bAsed Public Transit Optimized Router) as a
faster alternative. The simplest version of the algorithm optimizes two
criteria: arrival time and number of transfers. Unlike MLC, which
searches a graph, RAPTOR uses dynamic programming to operate
directly on the timetable. It works in rounds, with round i processing

5.2 multicriteria multimodal journey planning 159

all relevant journeys with exactly i− 1 transfers. It maintains one label
per round i and stop p representing the best known arrival time at p
for up to i trips. During round i, the algorithm processes each route
once. It reads arrival times from round i− 1 to determine relevant
trips (on the route) and updates the labels of round i at every stop
along the way. Once all routes are processed, the algorithm considers
potential transfers to nearby (predefined) stops in a second phase.
Simpler data structures and better locality make RAPTOR an order of
magnitude faster than MLC. Delling et al. [DPW14] have also proposed
McRAPTOR, which extends RAPTOR to handle more criteria (besides
arrival times and number of transfers). It maintains a bag (set) of labels
with each stop and round.

Even with multiple modes of transport available, one trip always
consists of a single mode. This motivates adapting the round-based
paradigm to our scenario. We propose MCR (multimodal multicriteria
RAPTOR), which extends McRAPTOR to handle multimodal queries.
As in McRAPTOR, each round has two phases: the first processes
trips in the public transportation network, while the second consid-
ers arbitrary paths in the unrestricted networks. We use a standard
McRAPTOR round for the first phase (on the timetable network) and
MLC for the second (on the walking network). Labels generated by
one phase are naturally used as input to the other. During the second
phase, MLC extends bags instead of individual labels. To ensure that
each label is processed at most once, we keep track of which labels (in
a bag) have already been extended. The initialization routine (before
the first round) runs Dijkstra’s algorithm on the walking network from
the source s to determine the fastest walking path to each stop in the
public transportation network (and to t), thus creating the initial la-
bels used by MCR. During round i, the McRAPTOR subroutine reads
labels from round i− 1 and writes to round i. In contrast, the MLC
subroutine may read and write labels of the same round if walking is
not regarded as a trip.

5.2.2.3 Contracting the Unrestricted Networks

As our experiments will show, the bottleneck of the multimodal al-
gorithms is processing the walking network G = (V ,A). We improve
performance using ideas for quick preprocessing from Section 5.1.
For any journey involving public transportation, walking between
trips always begins and ends at the restricted set K ⊂ V of link ver-
tices. During queries, we must only be able to compute the pairwise
distances between these vertices. We therefore use preprocessing to
compute a smaller core graph [SWW00] that preserves these distances.
More precisely, we start from the original graph and iteratively con-
tract [GSSV12] each vertex in V \ K in the order given by a rank
function rank. Each contraction step (temporarily) removes a vertex
and adds shortcuts between its uncontracted neighbors to maintain

160 multimodal journey planning

shortest path distances (if necessary). It is usually advantageous to
first contract vertices with relatively small degrees that are evenly
distributed across the network [GSSV12]. Recall from Section 5.1, that
we stop contraction when the average degree in the core graph reaches
some threshold (we use 12 in our experiments).

To run a faster multimodal s–t query, we use essentially the same
algorithm as before (based on either MLC or RAPTOR), but replacing
the full walking network with the (smaller) core graph. Since the
source s and the target t may not be in the core, we handle them
during initialization. It works on the graph G+ = (V ,A ∪A+) con-
taining all original arcs A as well as all shortcuts A+ added during
the contraction process. We run upward searches (only following
arcs (u, v) such that rank(u) > rank(w)) in G+ from s (scanning for-
ward arcs) and t (scanning reverse arcs); they reach all potential entry
and exit points of the core, but arcs within the core are not processed
(cf. Section 5.1). These core vertices (and their respective distances) are
used as input to MCR’s (or MLC’s) standard initialization, which can
operate on the core from this point on.

The main loop works as before, with one minor adjustment. When-
ever MLC extracts a label L(v) for a scanned core vertex v, we check if
it has been reached by the reverse search during initialization. If so,
we create a temporary label L ′(t) by extending L(v) with the (already
computed) walking path to t and add it to B(t) if needed. MCR is
adjusted similarly, with bags instead of labels.

5.2.2.4 Beyond Walking

We now consider other unrestricted networks (besides walking). In
particular, our experiments include a bicycle rental scheme, which can
be seen as a hybrid network: It does not have a fixed schedule (and is
thus unrestricted), but bicycles can only be picked up and dropped off
at designated cycling stations. Picking a bike from its station counts as
a trip. To handle cycling within MCR, we consider it during the first
stage of each round (together with RAPTOR and before walking). Be-
cause bicycles have no schedule, we process them independently (from
RAPTOR) by running MLC on the bicycle network. To do so, we initial-
ize MLC with labels from round i− 1 for all relevant bicycle stations
and, during the algorithm, we update labels of (the current) round i.

We consider a taxi ride to be a trip as well, since we board a vehicle.
Moreover, we also optimize a separate criterion reflecting the (mone-
tary) cost of taxi rides. If taxis were not penalized in any way, an all-taxi
journey would almost always dominate all other alternatives (even
sensible ones), since it is fast and has no walking. Our round-based
algorithms handle taxis as they do walking, except that in the taxi
stage labels are read from round i− 1 and written into round i. Note
that we link the taxi network to public transit stops as well as bicycle
stations and that—unlike with rental bicycles—we also allow taking

5.2 multicriteria multimodal journey planning 161

a taxi as the first and/or last leg of any location-to-location query.
Dealing with personal cars or bicycles is simpler. Assuming that they
are only available for the first or last legs of the journey, we must
only consider them during initialization. Initialization can also handle
other special cases, such as allowing rented bicycles to be ridden to
the destination (to be returned later).

Note that contraction can be used for cycling and driving. For
every unrestricted network (walking, cycling, driving), we keep the
link vertices (stops and bicycle stations) in one common core and
contract (up to) all other vertices. As before, queries start with upward
searches in each relevant unrestricted network.

5.2.3 Heuristics

Even with all accelerations, the exact algorithms proposed in Sec-
tion 5.2.2 are not fast enough for interactive applications. This section
proposes quick heuristics aimed at finding a set of journeys that is
similar to the exact solution, which we take as ground truth. We con-
sider three approaches: weakening the dominance rules, restricting
the amount of walking, and reducing the number of criteria. We also
discuss how to measure the quality of the heuristic solutions we find.

5.2.3.1 Weak Dominance.

The first strategy we consider is to weaken the domination rules dur-
ing the algorithm, reducing the number of labels pushed through
the network. We test four implementations of this strategy. The first,
MCR-hf, uses fuzzy dominance (instead of strict dominance) when
comparing labels during the algorithm: For labels L1 and L2, we
compute the fuzzy dominance value d(L1,L2) (cf. Section 5.2.1) and
dominate L2 if d exceeds a given threshold (we use 0.9). The sec-
ond, MCR-hb(κ), uses strict dominance, but discretizes criterion κ:
before comparing labels L1 and L2, we first round κ(L1) and κ(L2)
to predefined discrete values (buckets); this can be extended to use
buckets for several criteria. The third heuristic, MCR-hs(κ), uses strict
dominance but adds a slack of x units to κ. More precisely, L1 already
dominates L2 if κ(L1) 6 κ(L2) + x and L1 is at least as good L2 in all
other criteria. The last heuristic, MCR-ht, weakens the domination rule
by trading off two or more criteria. More concretely, consider the case
in which walking (walk) and arrival time (arr) are criteria. Then, L1
already dominates L2 if arr(L1) 6 arr(L2) + a · (walk(L1) − walk(L2)),
walk(L1) 6 walk(L2)+a · (arr(L1)−arr(L2)), and L1 is at least as good
as L2 in all other criteria, for a tradeoff parameter a (we use a = 0.3).

162 multimodal journey planning

5.2.3.2 Restricting Walking.

Consider our simple scenario of walking and public transit. Intu-
itively, most journeys start with a walk to a nearby stop, followed
by one or more trips (with short transfers) within the public transit
system, and finally a short walk from the final stop to the actual
destination. This motivates a second class of heuristics, MCR-tx. It
still runs three-criterion search (walking, arrival, and trips), but limits
walking transfers between stops to x minutes; in this case we precom-
pute these transfers. MCR-tx-ry also limits walking in the beginning
and end to y minutes. Note that existing solutions often use such
restrictions [BCE+10].

5.2.3.3 Fewer Criteria.

The last strategy we study is reducing the number of criteria consid-
ered during the algorithm. As already mentioned, this is a common
approach in practice. We propose MR-x, which still works in rounds,
but optimizes only the number of trips and arrival times explicitly (as
criteria). To account for walking duration, we count every x minutes
of a walking segment (transfer) as a trip; the first x minutes are free.
With this approach, we can run plain Dijkstra to compute transfers,
since link vertices no longer need to keep bags. The round index to
which labels are written then depends on the walking duration (of
the current segment) of the considered label. A special case is x =∞,
where a transfer is never a trip. Another variant is to always count a
transfer as a single trip, regardless of duration; we abuse notation and
call this variant MR-0. We also consider MR-∞-tx: Walking duration
is not an explicit criterion and transfers do not count as trips, but are
limited to x minutes.

For scenarios that include cost as a criterion (for taxis), we consider
variants of the MCR-hb and MCR-hf heuristics. In both cases, we drop
walking as an independent criterion, leaving only arrival time, number
of trips, and costs to optimize. We account for walking by making it
a (cheap) component of the costs.

5.2.3.4 Quality Evaluation

To measure the quality of a heuristic, we compare the set of journeys
it produces to the ground truth, which we define as the solution found
by MCR. To do so, we first compute the score of each journey with
respect to the Pareto set that contains it (cf. Section 5.2.1). Then, for a
given parameter k, we measure the similarity between the top k scored
journeys returned by the heuristics and the top k scored journeys in
the ground truth. Note that the score depends only on the algorithm
itself and does not assume knowledge of the ground truth, which is
consistent with a real-world deployment.

5.2 multicriteria multimodal journey planning 163

To compare two sets of k journeys, we run a greedy maximum
matching algorithm. First, we compute a k×kmatrix where entry (i, j)
represents the similarity between the i-th journey in the first set and
the j-th in the second. To measure the similarity, we make use of the
same fuzzy relational operators we use for scoring. More precisely,
given two journeys J1 and J2, the similarity with respect to the i-th
criterion is given by ci := µi=(κ

i(J1) − κ
i(J2)), where κi is the value

of this criterion and µi= is the corresponding fuzzy equality relation.
Then, we define the similarity between J1 and J2 as T(c1, c2, . . . , cM),
where T is an arbitrary t-norm. We always select T to be consistent
with the s-norm that we use to compute the score values.

After computing the pairwise similarities, we greedily select the
unmatched pairs with highest similarity (by picking the highest entry
in the matrix that does not share a row or column with a previously
picked entry). The similarity of the whole matching is the average
similarity of its pairs, weighted by the fuzzy score of the reference
journey. This means that matching the highest-scored reference journey
is more important than matching the k-th one.

5.2.4 Experiments

This section presents an extensive evaluation of the methods intro-
duced before. All algorithms from Sections 5.2.2 and 5.2.3 were im-
plemented in C++ and compiled with g++ 4.6.2 (64 bits, flag -O3). We
ran our experiments on one core of a dual 8-core Intel Xeon E5-2670

clocked at 2.6 GHz, with 64 GiB of DDR3-1600 RAM.

5.2.4.1 Input and Methodology.

We focus on the transportation network of London (England); re-
sults for other instances are similar, as Section 5.2.4.7 will show. We
use the timetable information made available by Transport for Lon-
don (TfL) [Lds; TfL], from which we extracted a Tuesday in the pe-
riodic summer schedule of 2011. The data includes subway (tube),
buses, tram, ferries, and light rail (DLR), as well as bicycle station lo-
cations. To model the underlying road network, we use data provided
by PTV AG [PTV79] from 2006, which explicitly indicates whether
each road segment is open for driving, cycling and/or walking. We set
the walking speed to 5 km/h and the cycling speed to 12 km/h, and
we assume driving at free-flow speeds. We do not consider turn costs,
which are not defined in the data. The resulting combined network
has 564 cycle stations and about 20 k stops, 5 M departure events,
and 259 k vertices in the walking network. Exact numbers are given
in Table 5.8.

Recall that we specify the fuzziness of each criterion by a pair (χ, ε),
roughly meaning that the corresponding Gaussian (centered at x = 0)
has value χ for x = ε. We set these pairs to (0.8, 5) for walking,

164 multimodal journey planning

Table 5.8: Size figures for our input instances. We link every stop and cycle
station with the walking/taxi network.

Figure London New York Los Angeles Chicago

Public Transit

Stops 20 843 17 894 15 003 12 137

Routes 2 184 1 393 1 099 710

Trips 133 011 45 299 16 376 20 303

Daily Departure Events 4 991 125 1 825 129 931 846 1 194 571

Vertices (Route Model) 99 230 66 124 81 657 47 561

Edges (Route Model) 260 583 193 159 214 369 118 452

Walking

Vertices 258 840 255 808 224 053 70 440

Vertices in Core 27 840 25 808 21 053 16 440

Edges 1 433 814 1 586 782 1 395 185 586 979

Footpaths 6 5 min 150 948 219 040 83 844 122 450

Footpaths 6 10 min 518 174 670 702 271 444 426 818

Cycling

Cycle Stations 564 — — —

Vertices 23 311 — — —

Vertices in Core 1 311 — — —

Edges 130 971 — — —

Taxi

Vertices 259 122 — — —

Vertices in Core 27 122 — — —

Edges 1 339 487 — — —

to (0.8, 1) for arrival time, (0.1, 1) for trips, and (0.8, 5) for costs (given
in pounds; times are in minutes). Note that the number of trips is
sharper than the other criteria. Later in this section we show that our
approach is robust to small variations in these parameters, but they can
be tuned to account for user-dependent preferences. If not indicated
otherwise, our experiments consider the minimum/maximum norms
by default. We run location-to-location queries, with sources, targets,
and departure times picked uniformly at random (from the walking
network and during the day, respectively).

5.2.4.2 Algorithms Evaluation.

For our first experiment, we use walking, cycling, and the public trans-
portation network and consider three criteria: arrival time, number of
trips, and walking duration. We ran 1 000 queries for each algorithm.
Table 5.9 summarizes the results. For each algorithm, the table first

5.2 multicriteria multimodal journey planning 165

Table 5.9: Performance and solution quality on journeys considering walking,
cycling, and public transit. Bullets (•) indicate the criteria taken
into account by the algorithm.

Scans Comp. Time Quality-3 Quality-6

Algorithm A
rr

.
Tr

p.
W

lk
.

Rnd. / Ent. / Ent. Jn. [ms] Avg. Sd. Avg. Sd.

MCR-full • • • 13.8 13.8 168.2 29.1 4 634.0 100 % 0 % 100 % 0 %

MCR • • • 13.8 3.4 158.7 29.1 1 438.7 100 % 0 % 100 % 0 %

MLC • • • — 10.6 1 246.7 29.1 4 543.0 100 % 0 % 100 % 0 %

MCR-hf • • • 15.6 2.9 14.3 10.9 699.4 89 % 15 % 89 % 11 %

MCR-hb • • • 10.2 2.1 12.7 9.0 456.7 91 % 12 % 91 % 10 %

MCR-hs • • • 14.7 2.6 11.1 8.6 466.1 67 % 28 % 69 % 23 %

MCR-ht • • • 10.5 2.0 6.4 8.6 373.6 84 % 22 % 82 % 20 %

MCR-t10 • • • 13.8 2.7 132.7 29.0 1 467.6 97 % 10 % 95 % 10 %

MCR-t10-r15 • • • 10.7 1.7 73.3 13.2 885.0 38 % 40 % 30 % 31 %

MCR-t5 • • • 13.8 2.7 126.6 28.9 891.9 93 % 16 % 92 % 15 %

MR-∞ • • ◦ 7.6 1.4 4.8 4.5 44.4 63 % 28 % 63 % 24 %

MR-0 • • ◦ 13.7 2.1 6.9 5.4 61.5 63 % 28 % 63 % 24 %

MR-10 • • ◦ 20.0 1.1 4.8 4.3 39.4 51 % 33 % 45 % 29 %

MR-∞-t10 • • ◦ 7.6 1.1 4.8 4.5 22.2 63 % 28 % 62 % 24 %

shows which criteria are explicitly taken into account. The next five
columns show the average values observed for the number of rounds,
scans per entity (stop/vertex), label comparisons per entity, journeys
found, and running time (in milliseconds). The last four columns eval-
uate the quality of the top 3 and 6 journeys found by our heuristics,
as explained in Section 5.2.3. Note that we show both averages and
standard deviations.

The methods in Table 5.9 are grouped in blocks. Those in the first
block compute the full Pareto set considering all three criteria (arrival
time, number of trips, and walking). MCR, our reference algorithm,
is round-based and uses contraction in the unrestricted networks.
As anticipated, it is faster (by a factor of about three) than MCR-
full (which does not use the core) and MLC (which uses the core but is
not round-based). Accordingly, all heuristics we test are round-based
and use the core.

The second block contains heuristics that accelerate MCR by weak-
ening the domination rules, causing more labels to be pruned (and
losing optimality guarantees). As explained in Section 5.2.3, MCR-hf
uses fuzzy dominance during the algorithm, MCR-hb uses walking
buckets (discretizing walking by steps of 5 minutes for domination),
MCR-hs uses a slack of 5 minutes on the walking criterion when
evaluating domination, and MCR-ht considers a tradeoff parameter

166 multimodal journey planning

Table 5.10: Detailed performance analysis of our algorithms. The total run-
ning time includes additional overhead, such as for initialization.

Public Transit Walking Cycling Total

Scans Time Scans Time Scans Time Scans Time

Algorithm A
rr

.
Tr

p.
W

lk
.

/ Stop [ms] / Vert. [ms] / Vert. [ms] / Ent. [ms]

MCR-full • • • 32.1 350.6 9.6 3 030.9 43.6 1 203.1 13.8 4 634.0

MCR • • • 32.1 341.4 1.2 889.3 1.7 159.2 3.4 1 438.7

MLC • • • 119.3 — 2.6 — 2.1 — 10.6 4 543.0

MCR-hf • • • 28.1 157.7 1.0 483.9 0.7 25.6 2.9 699.4

MCR-hb • • • 21.1 115.2 0.7 297.4 0.5 19.7 2.1 456.7

MCR-hs • • • 25.1 97.3 0.9 322.2 0.6 16.8 2.6 466.1

MCR-ht • • • 20.2 86.8 0.7 246.4 0.5 17.4 2.0 373.6

MCR-t5 • • • 31.5 318.4 0.5 348.6 1.7 157.2 2.7 891.9

MCR-t10 • • • 31.6 326.2 0.5 913.7 1.7 158.5 2.7 1 467.6

MCR-t10-r15 • • • 20.0 207.5 0.3 554.0 1.2 103.6 1.7 885.0

MR-∞ • • ◦ 14.2 10.0 0.5 31.0 0.3 1.8 1.4 44.4

MR-0 • • ◦ 21.4 13.9 0.7 42.5 0.4 2.4 2.1 61.5

MR-10 • • ◦ 9.7 6.3 0.5 30.5 0.2 1.3 1.1 39.4

MR-∞-t10 • • ◦ 14.4 9.4 0.2 9.5 0.3 1.6 1.2 22.2

of a = 0.3 between walking and arrival time. All heuristics are faster
than pure MCR, and MCR-hb gives the best quality at a reasonable
running time.

The third block has algorithms with restrictions on walking duration.
Limiting transfers to 10 minutes (as MCR-t10 does) has almost no
effect on solution quality (which is expected in a well-designed public
transportation network). Moreover, adding precomputed footpaths
of 10 minutes is not faster than using the core for unlimited walking (as
MCR does). Additionally limiting the walking range from s or t (MCR-
t10-r15) improves speed, but the quality becomes unacceptably low:
The algorithm misses good journeys (including all-walk) quite often. If
instead we allow even more restricted transfers (with MCR-t5), we get
a similar speedup with much better quality (comparable to MCR-hb).

The MR-x algorithms (fourth block) reduce the number of criteria
considered by combining trips and walking. The fastest variant is
MR-∞-t10, which drops walking duration as a criterion but limits the
amount of walking at transfers to 10 minutes, making it essentially the
same as RAPTOR, with a different initialization. As expected, however,
quality is much lower than for MCR-tx, confirming that considering
the walking duration explicitly during the algorithm is important to
obtain a full range of solutions. MR-10 attempts to improve quality

5.2 multicriteria multimodal journey planning 167

Arrival Time [min]

W
al

ki
ng

D
ur

at
io

n
[m

in
]

0

3

6

9

12

15

0 3 6 9 12 15

5

10

15

20

25

30

Arrival Time [min]

W
al

ki
ng

D
ur

at
io

n
[m

in
]

0

3

6

9

12

15

0 3 6 9 12 15

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Figure 5.6: Number of Pareto optimal journeys with score higher than 0.1
for varying fuzziness. We consider both the maximum norm (left)
and probabilistic sum (right). The x axis varies the fuzziness in the
arrival time, while the y axis considers the walking duration. The
intensity (color) of the corresponding entry indicates the average
number of journeys in the filtered output.

by transforming long walks into extra trips, but is not particularly
successful as the obtained results are actually worse.1

Summing up, MCR-hb should be the preferred choice for high-
quality solutions, while MR-∞-t10 can support interactive queries
with reasonable quality.

5.2.4.3 Detailed Performance

Table 5.10 presents a more detailed analysis. For each algorithm, it
shows the effort (number of scans per vertex and/or stop, as well as
running times in milliseconds) spent in each of the networks (public
transit, walking, and cycling) and in total. The table shows that all
round-based algorithms except MR-∞-t10 spend significantly more
time processing the unrestricted networks (walking and cycling) than
dealing with public transportation. This was to be expected: not only
are the unrestricted networks bigger (they have more vertices), but also
they must be processed with a (slower) Dijkstra-based algorithm (as
in MLC, rather than RAPTOR). This is the reason for the good perfor-
mance of the MR-∞-t10 heuristic.

5.2.4.4 Fuzzy Parameters Evaluation.

We also evaluated the impact of the fuzzy parameters on the number
of journeys we obtain. We again use London with walking, public
transit, and cycling as input. Figure 5.6 shows the number of journeys
given a score higher than 0.1 (by the fuzzy ranking routine) when we
vary ε (the level of fuzziness) for two criteria, walking and arrival time.
We set χ = 0.8, as in our main experiments. To not overload the figure,
we keep the fuzziness of the third criterion (number of trips) constant.

168 multimodal journey planning

Journeys

#
Q

ue
ri

es
[%

]

0 5 10 15 20 25 30 35 40 45 50

0
20

40
60

80
10

0

MCR
MCR-hf
MCR-hb

MCR-t5
MCR-t10-r15
MR-∞-t10

Figure 5.7: Evaluating the number of journeys returned by some of our algo-
rithms: For a given n (on the abscissa), we report the percentage
of 1 000 random queries that compute n or more journeys.

A comparison between the plots shows that, for the same set of pa-
rameters, probabilistic sum is significantly stricter than the maximum
norm, and reduces the number of journeys much more drastically (for
a fixed threshold). Qualitatively, however, they behave similarly. Under
both norms, making the walking criterion fuzzier is more effective at
identifying unwanted journeys. A couple of minutes of fuzziness in
the walking criterion is enough to significantly reduce the number of
journeys above the threshold. Adding fuzziness only to the arrival
time has much more limited effect on the results.

5.2.4.5 Quality of the Heuristics.

We here further investigate the quality of our heuristics. We use Lon-
don with walking, public transit, and cycling as input. Figure 5.7
reports the size of the Pareto set (the input to scoring) for various
algorithms, while Figure 5.8 shows how well the the top k heuristic
journeys match the ground truth, for varying k. We observe that exact
MCR (even if restricted to 5-minute transfers) does indeed produce
many journeys, supporting the notion of ranking them afterwards (by
score). A good heuristic, such as MCR-hb, computes much fewer jour-
neys, but they match the top MCR journeys quite well. An interesting
observation is that the quality of the heuristic hardly depends on the
number of journeys we try to match.

5.2.4.6 Multimodal Problem with Taxis.

Our final experiment considers a multimodal problem, including taxis.
We add cost as fourth criterion (at 2.40 pounds per taxi trip plus 60

pence per minute). We do not consider the cost of public transit, since it
is significantly cheaper. Table 5.11 presents the average performance of
some of our algorithms over 1 000 random queries in London. The first
block includes algorithms that optimize all four criteria (arrival time,

5.2 multicriteria multimodal journey planning 169

Journeys

Q
ua

lit
y

[%
]

1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10

0

Journeys

Q
ua

lit
y

[%
]

1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10

0

MCR (ref)
MCR-hf
MCR-hb

MCR-hs
MCR-ht
MCR-t5

MCR-t10-r15
MR-10
MR-∞-t10

Figure 5.8: Evaluating the solution quality by matching the top k journeys
in the solution with the top k of the reference algorithm (MCR).
The scores and similarity values are obtained by using the mini-
mum/maximum norms (left) and the product norm/probabilistic
sum (right). The legend of the right plot also applies to the left.

170 multimodal journey planning

Table 5.11: Performance on our London instance when taking taxi into ac-
count.

Scans Comp. Time Quality-3 Quality-6

Algorithm A
rr

.
Tr

p.
W

lk
.

C
os

t

Rnd. / Ent. / Ent. Jn. [ms] Avg. Sd. Avg. Sd.

MCR • • • • 16.3 3.1 369 606.0 1 666.0 1 960 234.0 100 % 0 % 100 % 0 %

MCR-hf • • • • 17.1 2.1 137.1 35.2 6 451.6 92 % 12 % 92 % 6 %

MCR-hb • • • • 9.9 1.3 86.8 27.6 2 807.7 96 % 8 % 92 % 6 %

MCR • • ◦ • 14.6 2.4 7 901.4 250.9 25 945.8 98 % 6 % 97 % 5 %

MCR-hf • • ◦ • 12.0 1.4 33.6 17.6 2 246.3 87 % 12 % 74 % 12 %

MCR-hb • • ◦ • 9.0 1.0 20.0 11.6 996.4 86 % 12 % 74 % 12 %

walking duration, number of trips, and costs). While exact MCR is
impractical, fuzzy domination (MCR-hf) makes the problem tractable
with little loss in quality. Using 5-minute buckets for walking and
5-pound buckets for costs (MCR-hb) is even faster, though queries
still take more than two seconds. The second block shows that we can
reduce running times by dropping walking duration as a criterion (we
incorporate it into the cost function at 3 pence per minute, instead),
with almost no loss in solution quality. This is still not fast enough,
though. Using 5-pound buckets (MCR-hb) reduces the average query
time to about 1 second, with reasonable quality.

5.2.4.7 Additional Inputs

In addition to London, we tested inputs representing other large
metropolitan areas (New York, Los Angeles, and Chicago). We built
the public transit network from publicly available General Transit
Feeds (GTFS) [Gtfs], restricting ourselves to the timetable for Au-
gust 10, 2011 (a Wednesday). The walking network data is still given
by PTV [PTV79], and these instances do not include bicycles. Detailed
statistics for all instances were presented in Table 5.8.

Table 5.12 compares the performance of our algorithms on these
inputs. For reference, we also consider a simplified version of the Lon-
don network, without bicycles. For each input, we show the average
values (over 1 000 queries) for number of journeys found, running
time, and quality (considering the top 6 journeys). The results are con-
sistent with those obtained for the full London network, showing that
our preferred choice of heuristics also holds here. MCR-hb is always
the best choice in terms of solution quality (among methods with
reasonable speedups), while MR-∞-t10 is preferred if query times
should be as low as possible.

5.2 multicriteria multimodal journey planning 171

Table 5.12: Evaluating the performance of MCR and MR with different heuris-
tics on other instances. The quality is determined identically to
Table 5.9 (cf. Section 5.2.4).

New York Los Angeles Chicago

Time Qual. Time Qual. Time Qual.

Algorithm A
rr

.
Tr

p.
W

lk
.

Jn. [ms] Avg. Jn. [ms] Avg. Jn. [ms] Avg.

MCR • • • 25.5 1 703.0 100 % 16.7 644.6 100 % 22.1 532.8 100 %

MCR-hf • • • 8.6 611.0 91 % 8.9 445.0 88 % 8.3 241.3 72 %

MCR-hb • • • 7.2 413.8 94 % 7.6 295.8 93 % 7.1 160.8 92 %

MCR-hs • • • 6.7 414.0 84 % 7.4 310.7 62 % 6.6 158.8 58 %

MCR-ht • • • 6.6 300.9 80 % 6.7 228.4 69 % 6.2 113.9 79 %

MCR-t5 • • • 25.6 695.5 69 % 16.6 262.7 93 % 21.9 277.7 95 %

MCR-t10 • • • 25.3 1 401.4 85 % 16.8 424.5 96 % 22.0 578.8 98 %

MCR-t10-r15 • • • 5.4 677.9 10 % 3.9 202.0 13 % 9.6 372.7 28 %

MR-∞ • • ◦ 3.4 26.3 65 % 3.6 21.5 51 % 3.3 12.3 63 %

MR-0 • • ◦ 3.8 37.6 65 % 4.3 28.5 52 % 3.7 15.6 63 %

MR-10 • • ◦ 6.0 26.1 41 % 6.1 26.6 42 % 5.1 13.9 50 %

MR-∞-t10 • • ◦ 3.6 10.6 60 % 3.6 11.0 51 % 3.3 7.1 63 %

Conclusions

We have studied multicriteria journey planning in multimodal net-
works. We argued that users optimize three criteria: arrival time, costs,
and convenience. Although the corresponding full Pareto set is large
and has many unnatural journeys, fuzzy set theory can extract the
relevant results and rank them. Since exact algorithms are too slow, we
have introduced several heuristics that closely match the best journeys
in the Pareto set. Our experiments show that our approach enables
efficient realistic multimodal journey planning in large metropolitan
areas. A natural avenue for future research is accelerating our ap-
proach further to enable interactive queries with an even richer set of
criteria in dynamic scenarios, handling delay and traffic information.
The ultimate goal is to compute multicriteria multimodal journeys on
a global scale in real time.

6
F I N A L R E M A R K S

In this thesis, we examined several new approaches towards more re-
alistic route planning in road networks, public transit and multimodal
journey planning. A central theme was enabling user preferences,
which we implemented in different ways. In Sections 3.1 and 3.2, it
was achieved through fast metric-dependent preprocessing that can
be adapted to a new global optimization objective, quickly. To this
end, we introduced Customizable Contraction Hierarchies (CCH) and
extended Customizable Route Planning (CRP) [DGPW15] to time-
dependent, functional metrics. In Section 5.1 we achieved user choice
by introducing the first label-constrained shortest path technique that
takes multimodal transfer sequence constraints as query input, en-
abling the user to specify (and change) modal preferences even after
preprocessing. In Sections 4.1 and 4.2, and especially in Section 5.2,
we enabled user choice through multicriteria optimization, providing
solution sets to choose from. In addition, the approach for multicri-
teria multimodal journey planning proposed in Section 5.2 allows
parametrization of the fuzzy logic operators (for identifying signifi-
cant journeys) to a user’s situational preferences and trade-offs: For
example, even an enthusiastic pedestrian might start to notice the
difference in five more minutes of walking, if it is raining heavily.

For public transit journey planning, we introduced two new ap-
proaches: A baseline algorithm, Connection Scan Algorithm (CSA),
that works directly on the timetable and requires no priority queue,
as well as a preprocessing technique, Public Transit Labeling (PTL),
adapted from road networks. Both approaches greatly improve perfor-
mance over the state-of-the-art.

6.1 future work

We conclude by discussing interesting directions for future work.

6.1.1 User Preferences

User preferences can be challenging in terms of user interface design.
Especially on mobile devices, there is hardly room for parameter in-
put. But more importantly, they require the user to set parameters
before understanding their effect in terms of route options. One way
around this issue, of course, is to provide multiple solutions from the
parameter space at once (such as we have done in Section 5.2). Another
approach would learn optimization preferences by observation: In-

173

174 final remarks

stead of customizable route planning it would provide customized route
planning. For a journey planner with integrated fare management, this
could be achieved by monitoring the journeys that are finally selected
for booking. For car navigation, it has been proposed to analyze GPS
traces [DGG+15]. It would be interesting to extend this approach to
multimodal journey planning (where GPS tracking itself can already
be a challenge).

6.1.2 Customizable Contraction Hierarchies

While we considered point-to-point queries, other query types are
also of practical importance, for example: one-to-all, many-to-many,
and k-nearest-neighbor queries, which have been evaluated for tradi-
tional (greedy) Contraction Hierarchies (CH) and related hierarchical
techniques [ADF+12; DGNW13; DGW11a; GLS+10; GSSV12; KSS+07].
Since Customizable CH (CCH), see Section 3.1, still yields a CH search
space, algorithmic results directly carry over. Similarly, CCH could be
applied to the computation of alternative routes [ADGW13; KRS13].

Preliminary experiments by us for customizable PHAST (applying
nested dissection orders to the approach presented in [DGNW13])
show that performance on travel time metric degrades only by 40 %
over results in [DGNW13], although we observe about a factor of 2

increase in the number of CCH arcs (compared to traditional CH). This
is due to the fact that graph separation yields improved cache locality.
Moreover, it should enable better parallelization of PHAST without
requiring synchronization between levels (as opposed to [DGNW13]).

Likewise, customizable hub labeling (HL) (applying nested dissec-
tion orders to the approach presented in, e. g., [ADGW11; DGPW14])
enables straightforward parallelization of pruned labeling [AIY13]. It
also achieves much earlier pruning, as the graph decomposes naturally.
However, we have experimentally observed an increase in labeling
size by an order of magnitude. Given the already high overhead of
normal HL (tens of gigabytes), this seems impractical. Partial labeling
approaches, however, with limited local search, might be practical.

6.1.3 Traffic Patterns

In Section 3.2, we essentially provided a 4-phase speedup technique:
Phase 1 computes nested multi-level separators and the metric-inde-
pendent overlay. Phase 2 computes historic time-dependent overlay
functions.1 Then, Phase 3 customizes overlay arcs with live traffic
and user preferences. Finally, Phase 4 provides queries. A detailed
experimental analysis of such a setup would be very interesting (we
examined Phase 2 and 3 as one).

1 These are relatively static, typically updated every few months, according to personal
communication with a large provider of navigation services.)

6.1 future work 175

Furthermore, our approach is still not fully customizable: it requires
arc cost functions that map time to time. This is good enough to model
avoidance of highways or driving slower than the speed limit, but
it cannot handle combined linear optimization of (time-dependent)
travel time and, e. g., toll costs. For that, one should investigate the
application of generalized time-dependent objective functions as pro-
posed in [BS12].

Also, time-dependent shortcuts have proven problematic in Sec-
tion 3.2, due to functional complexity growth on long paths. Revisiting
a hierarchical preprocessing technique that does not use shortcuts,
such as Reach [Gut04; MCB14], could be interesting.

6.1.4 Public Transit

For CSA (cf. Section 4.1), we observed fast query times, which since
have further been accelerated [SW14]. For plain CSA, this is largely
because of good cache locality. The approach is, however, quite verbose
in its representation of the timetable: Connections are not grouped
by routes or trips as in other approaches [DKP12; DPW14; PSWZ04;
PSWZ08; Wit15]. It would be interesting to investigate whether fre-
quency compression (see, e. g., [BS14; DPW14]) could be applied to
CSA without too much of a performance loss.

For PTL (cf. Section 4.2), we saw excellent performance for earliest
arrival and profile search problems, even on the largest networks avail-
able to us. Multicriteria labeling (minimizing travel time and number
of transfers), however, suffers from a very steep increase in prepro-
cessing time and space overhead (requiring 26 GiB on metropolitan
London). Future research could revisit 3-hop labeling [YAIY13], cover-
ing shortest paths with trips [Wit15] instead of connections. Since the
number of trips taken corresponds directly to the number of transfers,
this could greatly improve multicriteria labeling.

Furthermore, currently for PTL, dynamic scenarios (e. g., tempo-
rary station closures and train delays or cancellations) are difficult, as
they change not only the metric but also the topology of the underly-
ing graph. Here, PTL could benefit from recent results in [CDD+14;
MMPZ13] that examine fast graph topology updates.

Finally, as evidenced by comparison with the state-of-the-art in
Section 4.8, there is a great need for a set of common, shared, and
open benchmarks for public transit journey planning research.

6.1.5 Multimodal

In Chapter 5, we discussed two approaches to multimodal journey
planning: label constraints on modal transfers (to suppress results
suggesting, e. g., to take a private car between train rides) and multicri-
teria optimization. While we originally discussed the first approach in

176 final remarks

the context of user preferences, examination of the second approach sug-
gests that future work should treat modal constraints only as physical
restrictions. This simplifies label constraints from (somewhat arbitrary)
automata towards just tracking the availability of modes for subpaths:
If, for example, the user left her bike at the first metro stop, the current
path cannot be extended by biking. Algorithms for multicriteria set
dominance, as used for fare zone optimization [DPW14], then already
solve the problem of physical restrictions.

Another natural avenue for future research is accelerating the mul-
ticriteria approach further to enable interactive queries. So far, in
Section 5.2, we did not employ preprocessing other than for the road
network. Future work should investigate preprocessing of multimodal
multicriteria solutions on an overlay. For that, our current approach
of identifying significant solutions (by means of fuzzy logic) is prob-
lematic: Candidates qualify as accepted solutions based on relative
comparisons with other candidates. In that regard, the approach de-
scribed in [BBS13] seems promising: It accepts a solution only based
on its own properties, rejecting solutions that, e. g., use only little taxi
at the end of a long walking journey. It would, however, also reject
the exemplary taxi ride between train stations in Paris, which some
traveler might prefer. Further research on this matter is necessary.

For multimodal preprocessing, labeling is surprisingly straightfor-
ward from a conceptional point of view (extending our results on
PTL): If one can formalize the set of multimodal shortest paths to be
covered, a greedy approach [DGPW14] could always pick the hub
that covers the most multimodal paths. Of course, the challenge lies
in designing efficient algorithms for preprocessing this in practice,
without exhaustive enumeration of all wanted paths.

B I B L I O G R A P H Y

[ADF+11] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V.
Goldberg, and Renato F. Werneck. “VC-Dimension and
Shortest Path Algorithms.” In: Proceedings of the 38th
International Colloquium on Automata, Languages, and Pro-
gramming (ICALP’11). Vol. 6755. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 690–699 (cit. on
p. 10).

[ADF+12] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V.
Goldberg, and Renato F. Werneck. “HLDB: Location-
Based Services in Databases.” In: Proceedings of the 20th
ACM SIGSPATIAL International Symposium on Advances
in Geographic Information Systems (GIS’12). ACM Press,
2012, pp. 339–348 (cit. on pp. 9, 122, 152, 174).

[ADF+13] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V.
Goldberg, and Renato F. Werneck. “Highway dimension
and provably efficient shortest path algorithms.” In:
(2013) (cit. on pp. 2, 10).

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and
Renato F. Werneck. “A Hub-Based Labeling Algorithm
for Shortest Paths on Road Networks.” In: Proceedings
of the 10th International Symposium on Experimental Algo-
rithms (SEA’11). Vol. 6630. Lecture Notes in Computer
Science. Springer, 2011, pp. 230–241 (cit. on pp. 2, 9, 18,
174).

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg,
and Renato F. Werneck. “Hierarchical Hub Labelings
for Shortest Paths.” In: Proceedings of the 20th Annual
European Symposium on Algorithms (ESA’12). Vol. 7501.
Lecture Notes in Computer Science. Springer, 2012,
pp. 24–35 (cit. on pp. 6, 9, 15, 17, 18, 40, 52, 114, 115, 116,
118).

[ADGW13] Ittai Abraham, Daniel Delling, Andrew V. Goldberg,
and Renato F. Werneck. “Alternative Routes in Road
Networks.” In: ACM Journal of Experimental Algorithmics
18.1 (2013), pp. 1–17 (cit. on p. 174).

[ADN+15] Simeon Danailov Andreev, Julian Dibbelt, Martin Nöl-
lenburg, Thomas Pajor, and Dorothea Wagner. “Towards
Realistic Pedestrian Route Planning.” In: Proceedings of
the 15th Workshop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems (ATMOS’15).

177

178 Bibliography

Vol. 48. OpenAccess Series in Informatics (OASIcs).
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
09/2015, pp. 1–15 (cit. on p. 7).

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Re-
nato F. Werneck. “Highway Dimension, Shortest Paths,
and Provably Efficient Algorithms.” In: Proceedings of
the 21st Annual ACM–SIAM Symposium on Discrete Al-
gorithms (SODA’10). SIAM, 2010, pp. 782–793 (cit. on
pp. 2, 10, 135).

[AIY13] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. “Fast
exact shortest-path distance queries on large networks
by pruned landmark labeling.” In: Proceedings of the 2013
ACM SIGMOD International Conference on Management
of Data (SIGMOD’13). ACM Press, 2013, pp. 349–360

(cit. on pp. 9, 18, 115, 116, 174).

[ALS13] Julian Arz, Dennis Luxen, and Peter Sanders. “Tran-
sit Node Routing Reconsidered.” In: Proceedings of the
12th International Symposium on Experimental Algorithms
(SEA’13). Vol. 7933. Lecture Notes in Computer Science.
Springer, 2013, pp. 55–66 (cit. on pp. 9, 17).

[And12] Simeon Danailov Andreev. “Realistic Pedestrian Rout-
ing.” Bachelor Thesis. Karlsruhe Institute of Technology,
11/2012 (cit. on p. 94).

[AW88] H. Alt and E. Welzl. “Visibility Graphs and Obstacle-
avoiding Shortest Paths.” English. In: Zeitschrift für
Operations Research 32.3-4 (1988), pp. 145–164 (cit. on
pp. 14, 92).

[Bas09] Hannah Bast. “Car or Public Transport – Two Worlds.”
In: Efficient Algorithms. Vol. 5760. Lecture Notes in
Computer Science. Springer, 2009, pp. 355–367 (cit. on
p. 14).

[BBH+09] Chris Barrett, Keith Bisset, Martin Holzer, Goran Kon-
jevod, Madhav V. Marathe, and Dorothea Wagner. “En-
gineering Label-Constrained Shortest-Path Algorithms.”
In: The Shortest Path Problem: Ninth DIMACS Implemen-
tation Challenge. Vol. 74. DIMACS Book. American
Mathematical Society, 2009, pp. 309–319 (cit. on pp. 15,
153).

[BBHK06] Raymond C. Browning, Emily A. Baker, Jessica A. Her-
ron, and Rodger Kram. “Effects of Obesity and Sex on
the Energetic Cost and Preferred Speed of Walking.” In:
Journal of Applied Physiology 100.2 (2006), pp. 390–398

(cit. on p. 96).

Bibliography 179

[BBM06] Maurizio Bielli, Azedine Boulmakoul, and Hicham Moun-
cif. “Object modeling and path computation for multi-
modal travel systems.” In: European Journal of Operational
Research 175.3 (2006), pp. 1705–1730 (cit. on pp. 15, 153).

[BBRW13] Reinhard Bauer, Moritz Baum, Ignaz Rutter, and Doro-
thea Wagner. “On the Complexity of Partitioning Graphs
for Arc-Flags.” In: Journal of Graph Algorithms and Appli-
cations 17.3 (2013), pp. 265–299 (cit. on p. 10).

[BBS13] Hannah Bast, Mirko Brodesser, and Sabine Storandt.
“Result Diversity for Multi-Modal Route Planning.” In:
Proceedings of the 13th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (AT-
MOS’13). OpenAccess Series in Informatics (OASIcs).
2013, pp. 123–136 (cit. on p. 176).

[BCE+10] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert
Geisberger, Chris Harrelson, Veselin Raychev, and Fa-
bien Viger. “Fast Routing in Very Large Public Trans-
portation Networks using Transfer Patterns.” In: Proceed-
ings of the 18th Annual European Symposium on Algorithms
(ESA’10). Vol. 6346. Lecture Notes in Computer Science.
Springer, 2010, pp. 290–301 (cit. on pp. 6, 14, 126, 154,
162).

[BCK+10] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus
Krug, and Dorothea Wagner. “Preprocessing Speed-Up
Techniques is Hard.” In: Proceedings of the 7th Confer-
ence on Algorithms and Complexity (CIAC’10). Vol. 6078.
Lecture Notes in Computer Science. Springer, 2010,
pp. 359–370 (cit. on p. 10).

[BCKO08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and
Mark Overmars. Computational Geometry: Algorithms and
Applications. 3rd. Springer, 2008 (cit. on pp. 88, 90, 91,
92, 93).

[BCRW13] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and
Dorothea Wagner. “Search-Space Size in Contraction
Hierarchies.” In: Proceedings of the 40th International
Colloquium on Automata, Languages, and Programming
(ICALP’13). Vol. 7965. Lecture Notes in Computer Sci-
ence. Springer, 2013, pp. 93–104 (cit. on pp. 4, 10, 18,
21, 22).

[BD09] Reinhard Bauer and Daniel Delling. “SHARC: Fast and
Robust Unidirectional Routing.” In: ACM Journal of
Experimental Algorithmics 14.2.4 (08/2009), pp. 1–29 (cit.
on p. 9).

180 Bibliography

[BDD+12] Reinhard Bauer, Gianlorenzo D’Angelo, Daniel Delling,
Andrea Schumm, and Dorothea Wagner. “The Shortcut
Problem – Complexity and Algorithms.” In: Journal of
Graph Algorithms and Applications 16.2 (2012), pp. 447–
481 (cit. on p. 10).

[BDG+15] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Mat-
thias Müller–Hannemann, Thomas Pajor, Peter Sanders,
Dorothea Wagner, and Renato F. Werneck. Route Plan-
ning in Transportation Networks. Tech. rep. abs/1504.05140.
ArXiv e-prints, 2015 (cit. on pp. 1, 6, 9, 84, 125, 128).

[BDGM09] Annabell Berger, Daniel Delling, Andreas Gebhardt,
and Matthias Müller–Hannemann. “Accelerating Time-
Dependent Multi-Criteria Timetable Information is Harder
Than Expected.” In: Proceedings of the 9th Workshop on
Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems (ATMOS’09). OpenAccess Series
in Informatics (OASIcs). 2009 (cit. on pp. 14, 138, 158).

[BDPW13] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Doro-
thea Wagner. “Energy-Optimal Routes for Electric Ve-
hicles.” In: Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Infor-
mation Systems. ACM Press, 2013, pp. 54–63 (cit. on
pp. 4, 13, 70).

[BDPW15] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Doro-
thea Wagner. Dynamic Time-Dependent Route Planning in
Road Networks with User Preferences. Tech. rep. 1512.09132.
ArXiv e-prints, 2015 (cit. on p. 7).

[BDS+10] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis
Schieferdecker, Dominik Schultes, and Dorothea Wagner.
“Combining Hierarchical and Goal-Directed Speed-Up
Techniques for Dijkstra’s Algorithm.” In: ACM Journal
of Experimental Algorithmics 15.2.3 (01/2010). Special Sec-
tion devoted to WEA’08., pp. 1–31 (cit. on pp. 9, 14,
135).

[BDW11] Reinhard Bauer, Daniel Delling, and Dorothea Wag-
ner. “Experimental Study on Speed-Up Techniques
for Timetable Information Systems.” In: Networks 57.1
(01/2011), pp. 38–52 (cit. on p. 14).

[Ben75] Jon Louis Bentley. “Multidimensional Binary Search
Trees Used for Associative Searching.” In: Commun.
ACM 18.9 (09/1975), pp. 509–517 (cit. on p. 93).

Bibliography 181

[BFSS07] Holger Bast, Stefan Funke, Peter Sanders, and Dominik
Schultes. “Fast Routing in Road Networks with Transit
Nodes.” In: Science 316.5824 (2007), p. 566 (cit. on pp. 9,
10).

[BGM10] Annabell Berger, Martin Grimmer, and Matthias Müller–
Hannemann. “Fully Dynamic Speed-Up Techniques for
Multi-criteria Shortest Path Searches in Time-Dependent
Networks.” In: Proceedings of the 9th International Sym-
posium on Experimental Algorithms (SEA’10). Vol. 6049.
Lecture Notes in Computer Science. Springer, 05/2010,
pp. 35–46 (cit. on p. 14).

[BGNS10] Gernot Veit Batz, Robert Geisberger, Sabine Neubauer,
and Peter Sanders. “Time-Dependent Contraction Hi-
erarchies and Approximation.” In: Proceedings of the
9th International Symposium on Experimental Algorithms
(SEA’10). Vol. 6049. Lecture Notes in Computer Science.
Springer, 05/2010, pp. 166–177 (cit. on p. 139).

[BGSV13] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and
Christian Vetter. “Minimum Time-Dependent Travel
Times with Contraction Hierarchies.” In: ACM Journal
of Experimental Algorithmics 18.1.4 (04/2013), pp. 1–43

(cit. on pp. 4, 12, 18, 70, 75, 81, 82, 83, 84, 85).

[BHH+14] Francisc Bungiu, Michael Hemmer, John Hershberger,
Kan Huang, and Alexander Kröller. “Efficient Compu-
tation of Visibility Polygons.” In: CoRR abs/1403.3905

(2014) (cit. on p. 93).

[BJM00] Chris Barrett, Riko Jacob, and Madhav V. Marathe. “For-
mal-Language-Constrained Path Problems.” In: SIAM
Journal on Computing 30.3 (2000), pp. 809–837 (cit. on
pp. 3, 15, 134, 135).

[BK10] Hans L. Bodlaender and Arie M. C. A. Koster. “Tree-
width computations I. Upper bounds.” In: Information
and Computation 208.3 (2010), pp. 259–275 (cit. on p. 46).

[BKMW10] Reinhard Bauer, Marcus Krug, Sascha Meinert, and
Dorothea Wagner. “Synthetic Road Networks.” In:
Proceedings of the 6th International Conference on Algo-
rithmic Aspects in Information and Management (AAIM’10).
Vol. 6124. Lecture Notes in Computer Science. Springer,
2010, pp. 46–57 (cit. on p. 10).

[Bod07] Hans L. Bodlaender. “Treewidth: Structure and Algo-
rithms.” In: Proceedings of the 14th International Collo-
quium on Structural Information and Communication Com-
plexity. Vol. 4474. Lecture Notes in Computer Science.
Springer, 2007, pp. 11–25 (cit. on p. 21).

182 Bibliography

[Bod93] Hans L. Bodlaender. “A Tourist Guide through Treewidth.”
In: j-acta-cybernet 11 (1993), pp. 1–21 (cit. on p. 21).

[BPS11] Miquel Ginard Ballester, Maurici Ruiz Pérez, and John
Stuiver. “Automatic Pedestrian Network Generation.”
In: Proceedings 14th AGILE International Conference on GIS.
2011, pp. 1–13 (cit. on pp. 13, 102).

[BS12] Gernot Veit Batz and Peter Sanders. “Time-Dependent
Route Planning with Generalized Objective Functions.”
In: Proceedings of the 20th Annual European Symposium
on Algorithms (ESA’12). Vol. 7501. Lecture Notes in
Computer Science. Springer, 2012 (cit. on pp. 18, 175).

[BS14] Hannah Bast and Sabine Storandt. “Frequency-Based
Search for Public Transit.” In: Proceedings of the 22nd
ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. ACM Press, 11/2014,
pp. 13–22 (cit. on pp. 6, 14, 125, 126, 129, 175).

[CDD+14] Alessio Cionini, Gianlorenzo D’Angelo, Mattia D’Emidio,
Daniele Frigioni, Kalliopi Giannakopoulou, Andreas
Paraskevopoulos, and Christos Zaroliagis. “Engineering
Graph-Based Models for Dynamic Timetable Informa-
tion Systems.” In: Proceedings of the 14th Workshop on
Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems (ATMOS’14). Ed. by Stefan Funke
and Matúš Mihalák. Vol. 42. OpenAccess Series in Infor-
matics (OASIcs). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 09/2014, pp. 46–61 (cit. on pp. 14, 110,
111, 129, 175).

[Cgal15] The CGAL Project. CGAL User and Reference Manual. 4.6.
CGAL Editorial Board, 2015 (cit. on pp. 88, 92, 94, 97).

[CH66] K. Cooke and E. Halsey. “The Shortest Route Through
a Network with Time-Dependent Internodal Transit
Times.” In: Journal of Mathematical Analysis and Applica-
tions 14.3 (1966), pp. 493–498 (cit. on p. 11).

[CHKZ03] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri
Zwick. “Reachability and Distance Queries via 2-Hop
Labels.” In: SIAM Journal on Computing 32.5 (2003),
pp. 1338–1355 (cit. on pp. 6, 9, 15, 18, 114, 115).

[CHWF13] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-
Chee Fu. “TF-Label: A Topological-folding Labeling
Scheme for Reachability Querying in a Large Graph.”
In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (SIGMOD’13). ACM
Press, 2013, pp. 193–204 (cit. on pp. 15, 114, 115, 127).

Bibliography 183

[CZ00] Soma Chaudhuri and Christos Zaroliagis. “Shortest
Paths in Digraphs of Small Treewidth. Part I: Sequential
Algorithms.” In: Algorithmica (2000) (cit. on pp. 10, 18,
69).

[Dan62] George B. Dantzig. Linear Programming and Extensions.
Princeton University Press, 1962 (cit. on p. 9).

[DBS10] Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus
Shahabi. “A case for time-dependent shortest path com-
putation in spatial networks.” In: Proceedings of the 18th
ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (GIS’10). 2010, pp. 474–
477 (cit. on p. 11).

[DDFV12] Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Fri-
gioni, and Camillo Vitale. “Fully Dynamic Maintenance
of Arc-Flags in Road Networks.” In: Proceedings of the
11th International Symposium on Experimental Algorithms
(SEA’12). Vol. 7276. Lecture Notes in Computer Science.
Springer, 2012, pp. 135–147 (cit. on p. 11).

[DDP+12] Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea
Wagner, and Renato F. Werneck. Computing and Evalu-
ating Multimodal Journeys. Tech. rep. 2012-20. Faculty
of Informatics, Karlsruhe Institute of Technology, 2012

(cit. on p. 8).

[DDP+13] Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea
Wagner, and Renato F. Werneck. “Computing Mul-
timodal Journeys in Practice.” In: Proceedings of the
12th International Symposium on Experimental Algorithms
(SEA’13). Vol. 7933. Lecture Notes in Computer Science.
Springer, 2013, pp. 260–271 (cit. on p. 8).

[DDPW15] Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato
F. Werneck. “Public Transit Labeling.” In: Proceedings
of the 14th International Symposium on Experimental Al-
gorithms (SEA’15). Lecture Notes in Computer Science.
Springer, 2015, pp. 273–285 (cit. on pp. 8, 114).

[Dea04] Brian C. Dean. “Algorithms for Minimum-Cost Paths in
Time-Dependent Networks with Waiting Policies.” In:
Networks 44.1 (08/2004), pp. 41–46 (cit. on p. 71).

[Del09] Daniel Delling. “Engineering and Augmenting Route
Planning Algorithms.” PhD thesis. Universität Karl-
sruhe (TH), Fakultät für Informatik, 2009 (cit. on p. 144).

[Del11] Daniel Delling. “Time-Dependent SHARC-Routing.” In:
Algorithmica 60.1 (05/2011), pp. 60–94 (cit. on pp. 12, 14,
82, 83, 84, 85).

184 Bibliography

[DGG+15] Daniel Delling, Andrew V. Goldberg, Moises Goldszmidt,
John Krumm, Kunal Talwar, and Renato F. Werneck.
“Navigation Made Personal: Inferring Driving Prefer-
ences from GPS Traces.” In: Proceedings of the 23rd ACM
SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems. ACM Press, 2015 (cit. on
p. 174).

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S.
Johnson, eds. The Shortest Path Problem: Ninth DIMACS
Implementation Challenge. Vol. 74. DIMACS Book. Amer-
ican Mathematical Society, 2009 (cit. on pp. 41, 42, 67).

[DGNW11] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk,
and Renato F. Werneck. “PHAST: Hardware-Accelerated
Shortest Path Trees.” In: 25th International Parallel and
Distributed Processing Symposium (IPDPS’11). IEEE Com-
puter Society, 2011, pp. 921–931 (cit. on p. 140).

[DGNW13] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk,
and Renato F. Werneck. “PHAST: Hardware-accelerated
shortest path trees.” In: Journal of Parallel and Distributed
Computing 73.7 (2013), pp. 940–952 (cit. on pp. 9, 18,
174).

[DGPW11] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and
Renato F. Werneck. “Customizable Route Planning.” In:
Proceedings of the 10th International Symposium on Experi-
mental Algorithms (SEA’11). Vol. 6630. Lecture Notes in
Computer Science. Springer, 2011, pp. 376–387 (cit. on
pp. 9, 11, 17, 60, 61).

[DGPW14] Daniel Delling, Andrew V. Goldberg, Thomas Pajor,
and Renato F. Werneck. “Robust Distance Queries on
Massive Networks.” In: Proceedings of the 22nd Annual
European Symposium on Algorithms (ESA’14). Vol. 8737.
Lecture Notes in Computer Science. Springer, 09/2014,
pp. 321–333 (cit. on pp. 9, 18, 62, 116, 117, 118, 119, 126,
127, 128, 129, 174, 176).

[DGPW15] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and
Renato F. Werneck. “Customizable Route Planning in
Road Networks.” In: Transportation Science (2015) (cit. on
pp. 4, 9, 11, 17, 18, 53, 60, 61, 62, 63, 72, 73, 74, 76, 77, 81,
87, 94, 95, 98, 173).

[DGRW11] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn,
and Renato F. Werneck. “Graph Partitioning with Nat-
ural Cuts.” In: 25th International Parallel and Distributed
Processing Symposium (IPDPS’11). IEEE Computer Soci-
ety, 2011, pp. 1135–1146 (cit. on pp. 10, 17, 22, 73, 78,
98).

Bibliography 185

[DGRW12] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn,
and Renato F. Werneck. “Exact Combinatorial Branch-
and-Bound for Graph Bisection.” In: Proceedings of the
14th Meeting on Algorithm Engineering and Experiments
(ALENEX’12). SIAM, 2012, pp. 30–44 (cit. on p. 22).

[DGSW14] Daniel Delling, Andrew V. Goldberg, Ruslan Savchenko,
and Renato F. Werneck. “Hub Labels: Theory and Prac-
tice.” In: Proceedings of the 13th International Symposium
on Experimental Algorithms (SEA’14). Vol. 8504. Lecture
Notes in Computer Science. Springer, 2014, pp. 259–270

(cit. on p. 9).

[DGW11a] Daniel Delling, Andrew V. Goldberg, and Renato F.
Werneck. “Faster Batched Shortest Paths in Road Net-
works.” In: Proceedings of the 11th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’11). Vol. 20. OpenAccess Series in
Informatics (OASIcs). 2011, pp. 52–63 (cit. on pp. 18,
174).

[DGW11b] Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck. “Shortest Paths in Road Networks: From Practice
to Theory and Back.” In: it—Information Technology 53

(12/2011), pp. 294–301 (cit. on p. 2).

[DGWZ08] Daniel Delling, Kalliopi Giannakopoulou, Dorothea Wag-
ner, and Christos Zaroliagis. Contracting Timetable In-
formation Networks. Tech. rep. 144. Arrival Technical
Report, 2008 (cit. on p. 14).

[DHM+09] Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz,
and Dorothea Wagner. “High-Performance Multi-Level
Routing.” In: The Shortest Path Problem: Ninth DIMACS
Implementation Challenge. Vol. 74. DIMACS Book. Amer-
ican Mathematical Society, 2009, pp. 73–92 (cit. on pp. 9,
17).

[Dij59] Edsger W. Dijkstra. “A Note on Two Problems in Con-
nexion with Graphs.” In: Numerische Mathematik 1 (1959),
pp. 269–271 (cit. on pp. 1, 9, 11, 14, 88, 158).

[DKKT13] Themistoklis Diamantopoulos, Dionysios Kehagias, Fe-
lix König, and Dimitrios Tzovaras. “Investigating the
Effect of Global Metrics in Travel Time Forecasting.”
In: Proceedings of the 16th International IEEE Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2013,
pp. 412–417 (cit. on p. 70).

[DKP12] Daniel Delling, Bastian Katz, and Thomas Pajor. “Par-
allel Computation of Best Connections in Public Trans-
portation Networks.” In: ACM Journal of Experimental

186 Bibliography

Algorithmics 17.4 (07/2012), pp. 4.1–4.26 (cit. on pp. 14,
103, 107, 108, 109, 110, 111, 122, 123, 133, 143, 154, 158,
175).

[DKW14] Daniel Delling, Moritz Kobitzsch, and Renato F. Wer-
neck. “Customizing Driving Directions with GPUs.” In:
Proceedings of the 20th International Conference on Parallel
Processing (Euro-Par 2014). Vol. 8632. Lecture Notes in
Computer Science. Springer, 2014, pp. 728–739 (cit. on
p. 11).

[DMS08] Yann Disser, Matthias Müller–Hannemann, and Math-
ias Schnee. “Multi-Criteria Shortest Paths in Time-
Dependent Train Networks.” In: Proceedings of the 7th
Workshop on Experimental Algorithms (WEA’08). Vol. 5038.
Lecture Notes in Computer Science. Springer, 06/2008,
pp. 347–361 (cit. on pp. 14, 154, 158).

[DN08] Daniel Delling and Giacomo Nannicini. “Bidirectional
Core-Based Routing in Dynamic Time-Dependent Road
Networks.” In: Proceedings of the 19th International Sympo-
sium on Algorithms and Computation (ISAAC’08). Vol. 5369.
Lecture Notes in Computer Science. Springer, 12/2008,
pp. 813–824 (cit. on p. 139).

[DN12] Daniel Delling and Giacomo Nannicini. “Core Rout-
ing on Dynamic Time-Dependent Road Networks.” In:
Informs Journal on Computing 24.2 (2012), pp. 187–201

(cit. on pp. 12, 82, 83, 84, 85).

[DPSW13] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea
Wagner. “Intriguingly Simple and Fast Transit Routing.”
In: Proceedings of the 12th International Symposium on Ex-
perimental Algorithms (SEA’13). Vol. 7933. Lecture Notes
in Computer Science. Springer, 2013, pp. 43–54 (cit. on
pp. 7, 115, 125, 126).

[DPW09a] Daniel Delling, Thomas Pajor, and Dorothea Wagner.
“Accelerating Multi-Modal Route Planning by Access-
Nodes.” In: Proceedings of the 17th Annual European Sym-
posium on Algorithms (ESA’09). Vol. 5757. Lecture Notes
in Computer Science. Springer, 09/2009, pp. 587–598

(cit. on pp. 6, 16, 133, 139, 142, 143, 146, 147, 152, 153).

[DPW09b] Daniel Delling, Thomas Pajor, and Dorothea Wagner.
“Engineering Time-Expanded Graphs for Faster Timetable
Information.” In: Robust and Online Large-Scale Optimiza-
tion. Vol. 5868. Lecture Notes in Computer Science.
Springer, 2009, pp. 182–206 (cit. on pp. 14, 103, 111).

Bibliography 187

[DPW12a] Daniel Delling, Thomas Pajor, and Renato F. Werneck.
“Round-Based Public Transit Routing.” In: Proceedings of
the 14th Meeting on Algorithm Engineering and Experiments
(ALENEX’12). SIAM, 2012, pp. 130–140 (cit. on pp. 14,
103).

[DPW12b] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner.
“User-Constrained Multi-Modal Route Planning.” In:
Proceedings of the 14th Meeting on Algorithm Engineering
and Experiments (ALENEX’12). SIAM, 2012, pp. 118–129

(cit. on p. 8).

[DPW14] Daniel Delling, Thomas Pajor, and Renato F. Werneck.
“Round-Based Public Transit Routing.” In: Transportation
Science 49.3 (2014), pp. 591–604 (cit. on pp. 5, 6, 14, 103,
109, 111, 115, 125, 126, 127, 128, 153, 154, 157, 158, 159,
175, 176).

[DPW15] Julian Dibbelt, Thomas Pajor, and Dorothea Wagner.
“User-Constrained Multi-Modal Route Planning.” In:
ACM Journal of Experimental Algorithmics 19 (04/2015),
3.2:1.1–3.2:1.19 (cit. on pp. 6, 8, 153).

[DPWZ09] Daniel Delling, Thomas Pajor, Dorothea Wagner, and
Christos Zaroliagis. “Efficient Route Planning in Flight
Networks.” In: Proceedings of the 9th Workshop on Algorith-
mic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’09). OpenAccess Series in Infor-
matics (OASIcs). 2009 (cit. on p. 133).

[Dre69] Stuart E. Dreyfus. “An Appraisal of Some Shortest-Path
Algorithms.” In: Operations Research 17.3 (1969), pp. 395–
412 (cit. on pp. 9, 11, 72).

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and
Dorothea Wagner. “Engineering Route Planning Algo-
rithms.” In: Algorithmics of Large and Complex Networks.
Vol. 5515. Lecture Notes in Computer Science. Springer,
2009, pp. 117–139 (cit. on p. 139).

[DSW14] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Cus-
tomizable Contraction Hierarchies.” In: Proceedings of the
13th International Symposium on Experimental Algorithms
(SEA’14). Vol. 8504. Lecture Notes in Computer Science.
Springer, 2014, pp. 271–282 (cit. on pp. 7, 86).

[DSW15] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Fast
Exact Shortest Path and Distance Queries on Road Net-
works with Parametrized Costs.” In: Proceedings of the
23rd ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems. ACM Press,
2015 (cit. on p. 13).

188 Bibliography

[DSW16] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Cus-
tomizable Contraction Hierarchies.” In: ACM Journal of
Experimental Algorithmics (2016). To appear. (cit. on pp. 7,
86).

[DW07] Daniel Delling and Dorothea Wagner. “Landmark-Based
Routing in Dynamic Graphs.” In: Proceedings of the 6th
Workshop on Experimental Algorithms (WEA’07). Vol. 4525.
Lecture Notes in Computer Science. Springer, 06/2007,
pp. 52–65 (cit. on pp. 11, 12).

[DW09a] Daniel Delling and Dorothea Wagner. “Pareto Paths
with SHARC.” In: Proceedings of the 8th International
Symposium on Experimental Algorithms (SEA’09). Vol. 5526.
Lecture Notes in Computer Science. Springer, 06/2009,
pp. 125–136 (cit. on p. 13).

[DW09b] Daniel Delling and Dorothea Wagner. “Time-Dependent
Route Planning.” In: Robust and Online Large-Scale Opti-
mization. Vol. 5868. Lecture Notes in Computer Science.
Springer, 2009, pp. 207–230 (cit. on pp. 11, 12, 72).

[DW13] Daniel Delling and Renato F. Werneck. “Faster Cus-
tomization of Road Networks.” In: Proceedings of the
12th International Symposium on Experimental Algorithms
(SEA’13). Vol. 7933. Lecture Notes in Computer Science.
Springer, 2013, pp. 30–42 (cit. on pp. 27, 52).

[DW14] Daniel Delling and Renato F. Werneck. “Customizable
Point-of-Interest Queries in Road Networks.” In: IEEE
Transactions on Knowledge and Data Engineering (2014). to
appear (cit. on p. 152).

[EG08] David Eppstein and Michael T. Goodrich. “Studying
(non-planar) road networks through an algorithmic lens.”
In: Proceedings of the 16th ACM SIGSPATIAL international
conference on Advances in geographic information systems
(GIS ’08). ACM Press, 2008, pp. 1–10 (cit. on pp. 10, 17).

[Ehr05] Matthias Ehrgott. Multicriteria Optimization. Springer,
2005 (cit. on p. 13).

[EKS14] Stephan Erb, Moritz Kobitzsch, and Peter Sanders. “Par-
allel Bi-objective Shortest Paths Using Weight-Balanced
B-trees with Bulk Updates.” In: Proceedings of the 13th In-
ternational Symposium on Experimental Algorithms (SEA’14).
Vol. 8504. Lecture Notes in Computer Science. Springer,
2014, pp. 111–122 (cit. on p. 13).

[EL11] Andrew Ensor and Felipe Lillo. Partial order approach to
compute shortest paths in multimodal networks. Tech. rep.
http://arxiv.org/abs/1112.3366v1, 2011 (cit. on p. 153).

Bibliography 189

[EP13] Alexandros Efentakis and Dieter Pfoser. “Optimizing
Landmark-Based Routing and Preprocessing.” In: Pro-
ceedings of the 6th ACM SIGSPATIAL International Work-
shop on Computational Transportation Science. ACM Press,
11/2013, 25:25–25:30 (cit. on pp. 9, 11, 85).

[EPV15] Alexandros Efentakis, Dieter Pfoser, and Yannis Vassil-
iou. “SALT. A Unified Framework for All Shortest-Path
Query Variants on Road Networks.” In: Proceedings of the
14th International Symposium on Experimental Algorithms
(SEA’15). Lecture Notes in Computer Science. Springer,
2015, pp. 298–311 (cit. on pp. 9, 152).

[FA04] Marco Farina and Paolo Amato. “A Fuzzy Definition of
“Optimality” for Many-Criteria Optimization Problems.”
In: IEEE Transactions on Systems, Man, and Cybernetics,
Part A 34.3 (2004), pp. 315–326 (cit. on pp. 6, 131, 153,
155).

[FFKP15] Andreas Emil Feldmann, Wai Shing Fung, Jochen Köne-
mann, and Ian Post. “A (1+ε) (1 + ε) -Embedding of
Low Highway Dimension Graphs into Bounded Tree-
width Graphs.” In: Automata, Languages, and Program-
ming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part I. Ed. by Mag-
nús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi,
and Bettina Speckmann. Vol. 9134. Lecture Notes in
Computer Science. Springer, 2015, pp. 469–480 (cit. on
p. 10).

[FG65] Delbert R. Fulkerson and O. A. Gross. “Incidence Matri-
ces and Interval Graphs.” In: Pacific Journal of Mathemat-
ics 15.3 (1965), pp. 835–855 (cit. on p. 22).

[FHS14] Luca Foschini, John Hershberger, and Subhash Suri.
“On the Complexity of Time-Dependent Shortest Paths.”
In: Algorithmica 68.4 (04/2014), pp. 1075–1097 (cit. on
pp. 4, 11, 12, 70, 72, 85).

[FNS14] Stefan Funke, André Nusser, and Sabine Storandt. “On
k-Path Covers and their Applications.” In: Proceedings of
the 40th International Conference on Very Large Databases
(VLDB 2014). 2014, pp. 893–902 (cit. on p. 13).

[FS13] Stefan Funke and Sabine Storandt. “Polynomial-time
Construction of Contraction Hierarchies for Multicri-
teria Objectives.” In: Proceedings of the 15th Meeting
on Algorithm Engineering and Experiments (ALENEX’13).
SIAM, 2013, pp. 31–54 (cit. on p. 13).

190 Bibliography

[FWL12] Fletcher Foti, Paul Waddell, and Dennis Luxen. “A Gen-
eralized Computational Framework for Accessibility:
From the Pedestrian to the Metropolitan Scale.” In: Pro-
ceedings of the 4th TRB Conference on Innovations in Travel
Modeling. Transportation Research Board, 2012 (cit. on
pp. 18, 152).

[Gei10] Robert Geisberger. “Contraction of Timetable Networks
with Realistic Transfers.” In: Proceedings of the 9th Inter-
national Symposium on Experimental Algorithms (SEA’10).
Vol. 6049. Lecture Notes in Computer Science. Springer,
05/2010, pp. 71–82 (cit. on pp. 14, 109, 125, 126, 137,
138, 158).

[Gei11] Robert Geisberger. “Advanced Route Planning in Trans-
portation Networks.” PhD thesis. Karlsruhe Institute of
Technology, 02/2011 (cit. on pp. 18, 152).

[Geo73] Alan George. “Nested Dissection of a Regular Finite
Element Mesh.” In: SIAM Journal on Numerical Analysis
10.2 (1973), pp. 345–363 (cit. on pp. 4, 10, 18, 21).

[GH05] Andrew V. Goldberg and Chris Harrelson. “Computing
the Shortest Path: A* Search Meets Graph Theory.” In:
Proceedings of the 16th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA’05). SIAM, 2005, pp. 156–165

(cit. on pp. 9, 111).

[GJ79] Michael R. Garey and David S. Johnson. Computers and
Intractability. A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1979 (cit. on p. 13).

[GKS10] Robert Geisberger, Moritz Kobitzsch, and Peter Sanders.
“Route Planning with Flexible Objective Functions.” In:
Proceedings of the 12th Workshop on Algorithm Engineering
and Experiments (ALENEX’10). SIAM, 2010, pp. 124–137

(cit. on pp. 13, 137).

[GKW07] Andrew V. Goldberg, Haim Kaplan, and Renato F. Wer-
neck. “Better Landmarks Within Reach.” In: Proceedings
of the 6th Workshop on Experimental Algorithms (WEA’07).
Vol. 4525. Lecture Notes in Computer Science. Springer,
06/2007, pp. 38–51 (cit. on p. 9).

[GKW09] Andrew V. Goldberg, Haim Kaplan, and Renato F. Wer-
neck. “Reach for A*: Shortest Path Algorithms with
Preprocessing.” In: The Shortest Path Problem: Ninth DI-
MACS Implementation Challenge. Vol. 74. DIMACS Book.
American Mathematical Society, 2009, pp. 93–139 (cit.
on p. 9).

Bibliography 191

[GL78] Alan George and Joseph W. Liu. “A Quotient Graph
Model for Symmetric Factorization.” In: Sparse Matrix
Proceedings. SIAM, 1978 (cit. on p. 23).

[GL89] Alan George and Joseph W. Liu. “The Evolution of
the Minimum Degree Ordering Algorithm.” In: SIAM
Review 31.1 (1989), pp. 1–19 (cit. on pp. 62, 63).

[GLS+10] Robert Geisberger, Dennis Luxen, Peter Sanders, Sabine
Neubauer, and Lars Volker. “Fast Detour Computation
for Ride Sharing.” In: Proceedings of the 10th Workshop on
Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems (ATMOS’10). Vol. 14. OpenAccess
Series in Informatics (OASIcs). 2010, pp. 88–99 (cit. on
pp. 18, 174).

[GPPR04] Cyril Gavoille, David Peleg, Stéphane Pérennes, and
Ran Raz. “Distance Labeling in Graphs.” In: Journal of
Algorithms 53 (2004), pp. 85–112 (cit. on pp. 9, 18).

[GRST12] Robert Geisberger, Michael Rice, Peter Sanders, and
Vassilis Tsotras. “Route Planning with Flexible Edge Re-
strictions.” In: ACM Journal of Experimental Algorithmics
17.1 (2012), pp. 1–20 (cit. on p. 13).

[GS10] Robert Geisberger and Peter Sanders. “Engineering
Time-Dependent Many-to-Many Shortest Paths Compu-
tation.” In: Proceedings of the 10th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’10). Vol. 14. OpenAccess Series in
Informatics (OASIcs). 2010 (cit. on p. 18).

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and
Daniel Delling. “Contraction Hierarchies: Faster and
Simpler Hierarchical Routing in Road Networks.” In:
Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08). Vol. 5038. Lecture Notes in Computer Science.
Springer, 06/2008, pp. 319–333 (cit. on pp. 9, 17, 56,
135).

[GSSV12] Robert Geisberger, Peter Sanders, Dominik Schultes,
and Christian Vetter. “Exact Routing in Large Road Net-
works Using Contraction Hierarchies.” In: Transportation
Science 46.3 (08/2012), pp. 388–404 (cit. on pp. 4, 6, 9, 11,
12, 17, 18, 20, 21, 36, 37, 40, 41, 43, 49, 52, 54, 56, 59, 60,
61, 81, 132, 135, 138, 143, 144, 153, 159, 160, 174).

[GT86] John R. Gilbert and Robert Tarjan. “The analysis of a
nested dissection algorithm.” In: Numerische Mathematik
(1986) (cit. on p. 21).

[Gtfs] General Transit Feed Specification. https://developers.
google.com/transit/gtfs/ (cit. on pp. 143, 170).

https://developers.google.com/transit/gtfs/
https://developers.google.com/transit/gtfs/

192 Bibliography

[Gut04] Ronald J. Gutman. “Reach-Based Routing: A New Ap-
proach to Shortest Path Algorithms Optimized for Road
Networks.” In: Proceedings of the 6th Workshop on Algo-
rithm Engineering and Experiments (ALENEX’04). SIAM,
2004, pp. 100–111 (cit. on pp. 9, 85, 175).

[HaC84] HaCon - Ingenieurgesellschaft mbH. http : / / www .

hacon.de. 1984 (cit. on pp. 109, 143).

[Han79] Pierre Hansen. “Bricriteria Path Problems.” In: Mul-
tiple Criteria Decision Making – Theory and Application –.
Springer, 1979, pp. 109–127 (cit. on pp. 13, 154).

[HKMS09] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and
Heiko Schilling. “Fast Point-to-Point Shortest Path Com-
putations with Arc-Flags.” In: The Shortest Path Problem:
Ninth DIMACS Implementation Challenge. Vol. 74. DI-
MACS Book. American Mathematical Society, 2009,
pp. 41–72 (cit. on p. 9).

[HNR68] Peter E. Hart, Nils Nilsson, and Bertram Raphael. “A
Formal Basis for the Heuristic Determination of Min-
imum Cost Paths.” In: IEEE Transactions on Systems
Science and Cybernetics 4 (1968), pp. 100–107 (cit. on
pp. 9, 13).

[HS15] Michael Hamann and Ben Strasser. Graph Bisection with
Pareto-Optimization. Tech. rep. arXiv, 2015 (cit. on pp. 10,
17, 69, 73).

[HSW08] Martin Holzer, Frank Schulz, and Dorothea Wagner.
“Engineering Multilevel Overlay Graphs for Shortest-
Path Queries.” In: ACM Journal of Experimental Algo-
rithmics 13.2.5 (12/2008), pp. 1–26 (cit. on pp. 9, 11,
17).

[HSWW06] Martin Holzer, Frank Schulz, Dorothea Wagner, and
Thomas Willhalm. “Combining Speed-up Techniques
for Shortest-Path Computations.” In: ACM Journal of
Experimental Algorithmics 10.2.5 (2006), pp. 1–18 (cit. on
p. 9).

[II87] H. Imai and Masao Iri. “An optimal algorithm for ap-
proximating a piecewise linear function.” In: Journal
of Information Processing 9.3 (1987), pp. 159–162 (cit. on
pp. 12, 75).

[JP02] Sungwon Jung and Sakti Pramanik. “An Efficient Path
Computation Model for Hierarchically Structured Topo-
graphical Road Maps.” In: IEEE Transactions on Knowl-
edge and Data Engineering 14.5 (09/2002), pp. 1029–1046

(cit. on pp. 9, 11, 17).

http://www.hacon.de
http://www.hacon.de

Bibliography 193

[JW13] Ruoming Jin and Guan Wang. “Simple, Fast, and Scal-
able Reachability Oracle.” In: Proceedings of the VLDB
Endowment 6.14 (2013), pp. 1978–1989 (cit. on pp. 15,
114, 115, 127).

[KK13] Hassan A. Karimi and Piyawan Kasemsuppakorn. “Pedes-
trian Network Map Generation Approaches and Rec-
ommendation.” In: International Journal of Geographical
Information Science 27.5 (2013), pp. 947–962 (cit. on p. 13).

[KK99] George Karypis and Vipin Kumar. “A Fast and High
Quality Multilevel Scheme for Partitioning Irregular
Graphs.” In: SIAM Journal on Scientific Computing 20.1
(1999), pp. 359–392 (cit. on p. 22).

[KLC12] Dominik Kirchler, Leo Liberti, and Roberto Wolfler Calvo.
“A Label Correcting Algorithm for the Shortest Path
Problem on a Multi-Modal Route Network.” In: Proceed-
ings of the 11th International Symposium on Experimental
Algorithms (SEA’12). Vol. 7276. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 236–247 (cit. on pp. 16,
153).

[KLPC11] Dominik Kirchler, Leo Liberti, Thomas Pajor, and Roberto
Wolfler Calvo. “UniALT for Regular Language Con-
straint Shortest Paths on a Multi-Modal Transportation
Network.” In: Proceedings of the 11th Workshop on Algorith-
mic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’11). Vol. 20. OpenAccess Series in
Informatics (OASIcs). 2011, pp. 64–75 (cit. on pp. 16,
153).

[KLSV10] Tim Kieritz, Dennis Luxen, Peter Sanders, and Chris-
tian Vetter. “Distributed Time-Dependent Contraction
Hierarchies.” In: Proceedings of the 9th International Sym-
posium on Experimental Algorithms (SEA’10). Vol. 6049.
Lecture Notes in Computer Science. Springer, 05/2010,
pp. 83–93 (cit. on p. 18).

[KMP+15] Spyros Kontogiannis, George Michalopoulos, Georgia
Papastavrou, Andreas Paraskevopoulos, Dorothea Wag-
ner, and Christos Zaroliagis. “Analysis and Experimen-
tal Evaluation of Time-Dependent Distance Oracles.” In:
Proceedings of the 17th Meeting on Algorithm Engineering
and Experiments (ALENEX’15). SIAM, 2015, pp. 147–158

(cit. on p. 12).

[KMP+16] Spyros Kontogiannis, George Michalopoulos, Georgia
Papastavrou, Andreas Paraskevopoulos, Dorothea Wag-
ner, and Christos Zaroliagis. “Engineering Oracles for
Time-Dependent Road Networks.” In: Proceedings of the

194 Bibliography

18th Meeting on Algorithm Engineering and Experiments
(ALENEX’16). SIAM, 2016 (cit. on pp. 12, 82, 83, 84, 85).

[KRS13] Moritz Kobitzsch, Marcel Radermacher, and Dennis
Schieferdecker. “Evolution and Evaluation of the Penalty
Method for Alternative Graphs.” In: Proceedings of the
13th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS’13). Ope-
nAccess Series in Informatics (OASIcs). 2013, pp. 94–107

(cit. on p. 174).

[KSS+07] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank
Schulz, and Dorothea Wagner. “Computing Many-to-
Many Shortest Paths Using Highway Hierarchies.” In:
Proceedings of the 9th Workshop on Algorithm Engineering
and Experiments (ALENEX’07). SIAM, 2007, pp. 36–45

(cit. on p. 174).

[KST99] Haim Kaplan, Ron Shamir, and Robert Tarjan. “Tractabil-
ity of Parameterized Completion Problems on Chordal,
Strongly Chordal, and Proper Interval Graphs.” In:
SIAM Journal on Computing (1999) (cit. on p. 21).

[KWZ15] Spyros Kontogiannis, Dorothea Wagner, and Christos
Zaroliagis. Hierarchical Oracles for Time-Dependent Net-
works. Tech. rep. Technical Report on arXiv. 2015 (cit. on
p. 12).

[KZ14] Spyros Kontogiannis and Christos Zaroliagis. “Distance
Oracles for Time-Dependent Networks.” In: Proceed-
ings of the 41st International Colloquium on Automata, Lan-
guages, and Programming (ICALP’14). Vol. 8572. Lecture
Notes in Computer Science. Springer, 07/2014, pp. 713–
725 (cit. on p. 12).

[KZ15] Spyros Kontogiannis and Christos Zaroliagis. “Distance
Oracles for Time-Dependent Networks.” In: Algorithmica
(2015), pp. 1–31 (cit. on p. 12).

[Lat91] Jean-Claude Latombe. Robot Motion Planning. Vol. 124.
Springer International Series in Engineering and Com-
puter Science. Springer, 1991 (cit. on p. 14).

[Lau04] Ulrich Lauther. “An Extremely Fast, Exact Algorithm
for Finding Shortest Paths in Static Networks with Geo-
graphical Background.” In: Geoinformation und Mobilität
- von der Forschung zur praktischen Anwendung. Vol. 22.
IfGI prints, 2004, pp. 219–230 (cit. on p. 9).

[Lds] London Data Store. http://data.london.gov.uk/ (cit.
on pp. 109, 163).

http://data.london.gov.uk/

Bibliography 195

[LR89] Michael Luby and Prabhakar Ragde. “A Bidirectional
Shortest-Path Algorithm with Good Average-Case Be-
havior.” In: Algorithmica 4.4 (1989), pp. 551–567 (cit. on
p. 9).

[LRT79] Richard J. Lipton, Donald J. Rose, and Robert Tarjan.
“Generalized Nested Dissection.” In: SIAM Journal on
Numerical Analysis 16.2 (04/1979), pp. 346–358 (cit. on
pp. 10, 21).

[LS12] Dennis Luxen and Dennis Schieferdecker. Doing More
for Less – Cache-Aware Parallel Contraction Hierarchies Pre-
processing. Tech. rep. Karlsruhe Institute of Technology,
2012 (cit. on p. 18).

[MA04] Ellips Masehian and M. R. Amin-Naseri. “A Voronoi
Diagram-visibility Graph-potential Field Compound Al-
gorithm for Robot Path Planning.” In: J. Robotic Systems
21.6 (2004), pp. 275–300 (cit. on p. 14).

[Mar84] Ernesto Queiros Martins. “On a Multicriteria Short-
est Path Problem.” In: European Journal of Operational
Research 26.3 (1984), pp. 236–245 (cit. on p. 13).

[MCB14] Joris Maervoet, Patrick De Causmaecker, and Greet Van-
den Berghe. “Fast Approximation of Reach Hierarchies
in Networks.” In: Proceedings of the 22nd ACM SIGSPA-
TIAL International Conference on Advances in Geographic
Information Systems. ACM Press, 11/2014 (cit. on pp. 9,
85, 175).

[Mei11] Sascha Meinert. “Engineering Data Generators for Ro-
bust Experimental Evaluations. Planar Graphs, Artificial
Road Networks, and Traffic Information.” PhD thesis.
Fakultät für Informatik, Karlsruher Institut für Technolo-
gie (KIT), 12/2011 (cit. on p. 10).

[Met66] Metropolitan Transportation Authority of the State of
New York. http://www.mta.info/. 1966 (cit. on p. 142).

[Mil12] Nikola Milosavljević. “On optimal preprocessing for
contraction hierarchies.” In: Proceedings of the 5th ACM
SIGSPATIAL International Workshop on Computational Trans-
portation Science. ACM Press, 2012, pp. 33–38 (cit. on
p. 10).

[MM12] Enrique Machuca and Lawrence Mandow. “Multiobjec-
tive Heuristic Search in Road Maps.” In: Expert Systems
with Applications 39.7 (06/2012), pp. 6435–6445 (cit. on
p. 13).

http://www.mta.info/

196 Bibliography

[MMPZ13] Georgia Mali, Panagiotis Michail, Andreas Paraskevopou-
los, and Christos Zaroliagis. “A New Dynamic Graph
Structure for Large-Scale Transportation Networks.” In:
Proceedings of the 8th Conference on Algorithms and Com-
plexity. Vol. 7878. Lecture Notes in Computer Science.
Springer, 05/2013, pp. 312–323 (cit. on pp. 14, 129, 175).

[MP10] Lawrence Mandow and José-Luis Pérez-de-la-Cruz. “Mul-
tiobjective A* Search with Consistent Heuristics.” In:
Journal of the ACM 57.5 (06/2010), 27:1–27:24 (cit. on
p. 13).

[MS07] Matthias Müller–Hannemann and Mathias Schnee. “Find-
ing All Attractive Train Connections by Multi-Criteria
Pareto Search.” In: Algorithmic Methods for Railway Opti-
mization. Vol. 4359. Lecture Notes in Computer Science.
Springer, 2007, pp. 246–263 (cit. on p. 14).

[MS10] Matthias Müller–Hannemann and Stefan Schirra, eds.
Algorithm Engineering: Bridging the Gap between Algorithm
Theory and Practice. Vol. 5971. Lecture Notes in Computer
Science. Springer, 2010 (cit. on p. 1).

[MS14] Florian Merz and Peter Sanders. “PReaCH: A Fast
Lightweight Reachability Index Using Pruning and Con-
traction Hierarchies.” In: Proceedings of the 22nd Annual
European Symposium on Algorithms (ESA’14). Vol. 8737.
Lecture Notes in Computer Science. Springer, 09/2014,
pp. 701–712 (cit. on pp. 15, 114, 127).

[MSWZ07] Matthias Müller–Hannemann, Frank Schulz, Dorothea
Wagner, and Christos Zaroliagis. “Timetable Informa-
tion: Models and Algorithms.” In: Algorithmic Methods
for Railway Optimization. Vol. 4359. Lecture Notes in
Computer Science. Springer, 2007, pp. 67–90 (cit. on
pp. 14, 105, 108, 109, 110, 158).

[MW01] Matthias Müller–Hannemann and Karsten Weihe. “Pareto
Shortest Paths is Often Feasible in Practice.” In: Proceed-
ings of the 5th International Workshop on Algorithm Engi-
neering (WAE’01). Vol. 2141. Lecture Notes in Computer
Science. Springer, 2001, pp. 185–197 (cit. on pp. 13, 14,
154).

[MW06] Matthias Müller–Hannemann and Karsten Weihe. “On
the cardinality of the Pareto set in bicriteria shortest
path problems.” In: Annals of Operations Research 147.1
(2006), pp. 269–286 (cit. on p. 115).

Bibliography 197

[MW95] Alberto O. Mendelzon and Peter T. Wood. “Finding
Regular Simple Paths in Graph Databases.” In: SIAM
Journal on Computing 24.6 (1995), pp. 1235–1258 (cit. on
p. 15).

[MZ07] M. Mokhtarzade and M.J. Valadan Zoej. “Road De-
tection from High-Resolution Satellite Images Using
Artificial Neural Networks.” In: International Journal of
Applied Earth Observation and Geoinformation 9.1 (2007),
pp. 32–40 (cit. on p. 13).

[NDLS12] Giacomo Nannicini, Daniel Delling, Leo Liberti, and
Dominik Schultes. “Bidirectional A* Search on Time-
Dependent Road Networks.” In: Networks 59 (2012),
pp. 240–251 (cit. on pp. 12, 78).

[Nic66] T. A. Nicholson. “Finding the Shortest Route between
Two Points in a Network.” In: The Computer Journal 9.3
(1966), pp. 275–280 (cit. on p. 9).

[OR90] Ariel Orda and Raphael Rom. “Shortest-Path and Mini-
mum Delay Algorithms in Networks with Time-Depen-
dent Edge-Length.” In: Journal of the ACM 37.3 (1990),
pp. 607–625 (cit. on p. 11).

[OW88] M. H. Overmars and Emo Welzl. “New Methods for
Computing Visibility Graphs.” In: Proc. 4th Annu. ACM
Sympos. Comput. Geom. 1988, pp. 164–171 (cit. on p. 92).

[Paj09] Thomas Pajor. “Multi-Modal Route Planning.” MA
thesis. Fakultät für Informatik, 03/2009 (cit. on p. 16).

[PBB+08] Dieter Pfoser, Sotiris Brakatsoulas, Petra Brosch, Mar-
tina Umlauft, Nektaria Tryfona, and Giorgos Tsironis.
“Dynamic Travel Time Provision for Road Networks.”
In: Proceedings of the 16th ACM SIGSPATIAL international
conference on Advances in geographic information systems
(GIS ’08). ACM Press, 2008 (cit. on p. 11).

[PJPZ10] Ting Peng, Ian H. Jermyn, Veronique Prinet, and Josiane
Zerubia. “Extended Phase Field Higher-Order Active
Contour Models for Networks.” English. In: International
Journal of Computer Vision 88.1 (2010), pp. 111–128 (cit.
on p. 13).

[Poh71] Ira Pohl. “Bi-directional Search.” In: Proceedings of
the Sixth Annual Machine Intelligence Workshop. Vol. 6.
Edinburgh University Press, 1971, pp. 124–140 (cit. on
p. 9).

[Pot88] Alex Pothen. The complexity of optimal elimination trees.
Tech. rep. Pennsylvania State University, 1988 (cit. on
p. 21).

198 Bibliography

[PSWZ04] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and
Christos Zaroliagis. “Towards Realistic Modeling of
Time-Table Information through the Time-Dependent
Approach.” In: Proceedings of the 3rd Workshop on Algo-
rithmic Methods and Models for Optimization of Railways
(ATMOS’03). Vol. 92. Electronic Notes in Theoretical
Computer Science. 2004, pp. 85–103 (cit. on p. 175).

[PSWZ08] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and
Christos Zaroliagis. “Efficient Models for Timetable
Information in Public Transportation Systems.” In: ACM
Journal of Experimental Algorithmics 12.2.4 (2008), pp. 1–
39 (cit. on pp. 6, 14, 103, 105, 109, 110, 115, 116, 120, 133,
138, 154, 157, 175).

[PTV79] PTV AG – Planung Transport Verkehr. http://www.ptv.de.
1979 (cit. on pp. 143, 163, 170).

[PV03] Scott Parker and Ellen Vanderslice. “Pedestrian Network
Analysis.” In: Walk 21 IV. Portland, OR, 2003 (cit. on
pp. 13, 90).

[PWK12] Léon Planken, Mathijs de Weerdt, and Roman van Krogt.
“Computing All-pairs Shortest Paths by Leveraging Low
Treewidth.” In: Journal of Artificial Intelligence Research
(2012) (cit. on pp. 10, 18, 69).

[RT10] Michael Rice and Vassilis Tsotras. “Graph Indexing of
Road Networks for Shortest Path Queries with Label
Restrictions.” In: Proceedings of the VLDB Endowment 4.2
(11/2010), pp. 69–80 (cit. on pp. 13, 16, 20).

[SABW13] Stephan Seufert, Avishek Anand, Srikanta Bedathur,
and Gerhard Weikum. “FERRARI: Flexible and Efficient
Reachability Range Assignment for Graph Indexing.”
In: Proceedings of the 29th International Conference on Data
Engineering. IEEE Computer Society, 2013, pp. 1009–
1020 (cit. on pp. 15, 114, 127).

[San09] Peter Sanders. “Algorithm Engineering – An Attempt at
a Definition.” In: Efficient Algorithms. Vol. 5760. Lecture
Notes in Computer Science. Springer, 2009, pp. 321–340

(cit. on p. 1).

[SM13] Peter Sanders and Lawrence Mandow. “Parallel Label-
Setting Multi-Objective Shortest Path Search.” In: 27th
International Parallel and Distributed Processing Symposium
(IPDPS’13). IEEE Computer Society, 2013, pp. 215–224

(cit. on p. 13).

[Som14] Christian Sommer. “Shortest-Path Queries in Static Net-
works.” In: ACM Computing Surveys 46.4 (2014) (cit. on
pp. 1, 9).

Bibliography 199

[SOS98] Hanif D. Sherali, Kaan Ozbay, and Shivaram Subra-
manian. “The time-dependent shortest pair of disjoint
paths problem: Complexity, models, and algorithms.”
In: Networks 31.4 (1998), pp. 259–272 (cit. on p. 71).

[SS05] Peter Sanders and Dominik Schultes. “Highway Hierar-
chies Hasten Exact Shortest Path Queries.” In: Proceed-
ings of the 13th Annual European Symposium on Algorithms
(ESA’05). Vol. 3669. Lecture Notes in Computer Science.
Springer, 2005, pp. 568–579 (cit. on p. 98).

[SS07] Dominik Schultes and Peter Sanders. “Dynamic High-
way-Node Routing.” In: Proceedings of the 6th Workshop
on Experimental Algorithms (WEA’07). Vol. 4525. Lecture
Notes in Computer Science. Springer, 06/2007, pp. 66–
79 (cit. on p. 11).

[SS12a] Peter Sanders and Dominik Schultes. “Engineering
Highway Hierarchies.” In: ACM Journal of Experimental
Algorithmics 17.1 (2012), pp. 1–40 (cit. on p. 37).

[SS12b] Peter Sanders and Christian Schulz. “Distributed Evo-
lutionary Graph Partitioning.” In: Proceedings of the
14th Meeting on Algorithm Engineering and Experiments
(ALENEX’12). SIAM, 2012, pp. 16–29 (cit. on pp. 10, 17,
73).

[SS13] Peter Sanders and Christian Schulz. “Think Locally,
Act Globally: Highly Balanced Graph Partitioning.” In:
Proceedings of the 12th International Symposium on Experi-
mental Algorithms (SEA’13). Vol. 7933. Lecture Notes in
Computer Science. Springer, 2013, pp. 164–175 (cit. on
pp. 22, 69).

[SS15] Aaron Schild and Christian Sommer. “On Balanced
Separators in Road Networks.” In: Proceedings of the
14th International Symposium on Experimental Algorithms
(SEA’15). Lecture Notes in Computer Science. Springer,
2015 (cit. on pp. 10, 17, 69, 73).

[SS88] J.T. Schwartz and M. Sharir. “A Survey of Motion Plan-
ning and Related Geometric Algorithms.” In: Artificial
Intelligence 37.1—3 (1988), pp. 157–169 (cit. on p. 13).

[Sto12] Sabine Storandt. “Route Planning for Bicycles – Exact
Constrained Shortest Paths Made Practical Via Contrac-
tion Hierarchy.” In: Proceedings of the Twenty-Second Inter-
national Conference on Automated Planning and Scheduling.
2012, pp. 234–242 (cit. on p. 102).

[Stu12] Nathan Sturtevant. “Benchmarks for Grid-Based Path-
finding.” In: Transactions on Computational Intelligence
and AI in Games (2012) (cit. on p. 42).

200 Bibliography

[SW11] Peter Sanders and Dorothea Wagner. “Algorithm En-
gineering.” In: it—Information Technology 53.6 (2011),
pp. 263–265 (cit. on p. 1).

[SW14] Ben Strasser and Dorothea Wagner. “Connection Scan
Accelerated.” In: Proceedings of the 16th Meeting on Algo-
rithm Engineering and Experiments (ALENEX’14). SIAM,
2014, pp. 125–137 (cit. on pp. 6, 15, 125, 126, 175).

[SWW00] Frank Schulz, Dorothea Wagner, and Karsten Weihe.
“Dijkstra’s Algorithm On-Line: An Empirical Case Study
from Public Railroad Transport.” In: ACM Journal of
Experimental Algorithmics 5.12 (2000), pp. 1–23 (cit. on
pp. 9, 11, 14, 17, 159).

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
“Using Multi-Level Graphs for Timetable Information
in Railway Systems.” In: Proceedings of the 4th Workshop
on Algorithm Engineering and Experiments (ALENEX’02).
Vol. 2409. Lecture Notes in Computer Science. Springer,
2002, pp. 43–59 (cit. on pp. 9, 11, 14).

[TfL] Transport for London. http://www.tfl.gov.uk/. 2000

(cit. on p. 163).

[TW67] William F. Tinney and J.W. Walker. “Direct solutions
of sparse network equations by optimally ordered tri-
angular factorization.” In: Proceedings of the IEEE 55.11

(11/1967), pp. 1801–1809 (cit. on p. 62).

[Weg14] Michael Wegner. “Finding Small Node Separators.”
Bachelor Thesis. Karlsruhe Institute of Technology, 2014

(cit. on p. 69).

[Wei10] Fang Wei. “TEDI: efficient shortest path query answer-
ing on graphs.” In: Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data
(SIGMOD’10). ACM Press, 2010 (cit. on pp. 10, 18).

[Wir15] Alexander Wirth. “Algorithms for Contraction Hierar-
chies on Public Transit Networks.” MA thesis. Karlsruhe
Institute of Technology, 2015 (cit. on p. 14).

[Wit15] Sascha Witt. “Trip-Based Public Transit Routing.” In:
Proceedings of the 23rd Annual European Symposium on
Algorithms (ESA’15). Lecture Notes in Computer Science.
Accepted for publication. Springer, 2015, pp. 1025–1036

(cit. on pp. 14, 103, 175).

[WLY+15] Sibo Wang, Wenqing Lin, Yi Yang, Xiaokui Xiao, and
Shuigeng Zhou. “Efficient Route Planning on Public
Transportation Networks: A Labelling Approach.” In:
Proceedings of the 2015 ACM SIGMOD International Con-

http://www.tfl.gov.uk/

Bibliography 201

ference on Management of Data (SIGMOD’15). ACM Press,
2015, pp. 967–982 (cit. on p. 114).

[WWZ05] Dorothea Wagner, Thomas Willhalm, and Christos Zaro-
liagis. “Geometric Containers for Efficient Shortest-Path
Computation.” In: ACM Journal of Experimental Algorith-
mics 10.1.3 (2005), pp. 1–30 (cit. on p. 9).

[WXD+12] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong,
Andy Diwen Zhu, and Shuigeng Zhou. “Shortest Path
and Distance Queries on Road Networks: An Experi-
mental Evaluation.” In: PVLDB 5.5 (2012), pp. 406–417

(cit. on p. 9).

[YAIY13] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi
Yoshida. “Fast and Scalable Reachability Queries on
Graphs by Pruned Labeling with Landmarks and Paths.”
In: Proceedings of the 22nd International Conference on In-
formation and Knowledge Management. ACM Press, 2013,
pp. 1601–1606 (cit. on pp. 15, 114, 115, 117, 127, 129,
175).

[Yan81] Mihalis Yannakakis. “Computing the minimum fill-in is
NP-complete.” In: SIAM Journal on Algebraic and Discrete
Methods (1981) (cit. on p. 21).

[YCZ10] Hilmi Yildirim, Vineet Chaoji, and Mohammad J. Zaki.
“GRAIL: Scalable Reachability Index for Large Graphs.”
In: Proceedings of the VLDB Endowment 3.1 (2010), pp. 276–
284 (cit. on pp. 15, 114, 127).

[YL12] Haicong Yu and Feng Lu. “Advanced multi-modal
routing approach for pedestrians.” In: 2nd International
Conference on Consumer Electronics, Communications and
Networks. 2012, pp. 2349–2352 (cit. on pp. 15, 153).

[Zad65] Lotfi A. Zadeh. “Fuzzy Sets.” In: Information and Control
8.3 (1965), pp. 338–353 (cit. on p. 155).

[Zad88] Lotfi A. Zadeh. “Fuzzy Logic.” In: IEEE Computer 21.4
(1988), pp. 83–93 (cit. on pp. 6, 131, 153, 155).

[Zei13] Tim Zeitz. “Weak Contraction Hierarchies Work!” Bach-
elor Thesis. Karlsruhe Institute of Technology, 2013 (cit.
on pp. 4, 10, 18, 23, 49).

[ZLWX14] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui
Xiao. “Reachability Queries on Large Dynamic Graphs:
A Total Order Approach.” In: Proceedings of the 2014
ACM SIGMOD International Conference on Management
of Data (SIGMOD’14). ACM Press, 2014, pp. 1323–1334

(cit. on pp. 15, 114, 115, 127).

A
C U R R I C U L U M V I TÆ

Julian Dibbelt
born in Munich, Germany

education

07/2011 – 02/2016 PhD student in Informatics
Karlsruhe Institute of Technology, Germany
Advisors: Prof. Dr. Dorothea Wagner

Prof. Dr. Christos Zaroliagis

02/2010 Diploma in Informatics (M.Sc. equiv.)
University of Karlsruhe, Germany
Specialization: Algorithmics and Algorithm Engi-
neering, Cognitive Systems, Operations Research
Thesis: Alternative Routes in Road Networks

experience abroad

06/2014 – 09/2014 Internship at Microsoft Research Silicon Valley,
Mountain View, CA, United States
Supervisors: Daniel Delling, Thomas Pajor, and
Renato F. Werneck;
Research on fast public transit route planning

teaching experience

04/2015 – 07/2015 Lecture “Algorithms for Route Planning”

10/2014 – 03/2015 Practical course “Algorithm Engineering”

04/2014 – 07/2014 Lecture “Algorithms for Route Planning”

10/2013 – 03/2014 Practical course “Algorithm Engineering”

04/2013 – 07/2013 Lecture “Algorithms for Route Planning”

10/2012 – 03/2013 Practical course “Algorithm Engineering”

10/2011 – 03/2012 Practical course “Algorithm Engineering”

supervised students

student research projects and bachelor theses

08/2013 – 11/2013 Janis Hamme, Customizable Route Planning in
External Memory

06/2013 – 09/2013 Tim Zeitz, Weak Contraction Hierarchies Work!

203

204 curriculum vitæ

03/2013 – 06/2013 L. Hübschle-Schneider, Speed–Consumption Tra-
de-off for Electric Vehicle Routing

08/2012 – 11/2012 Simeon Andreev, Realistic Pedestrian Routing

01/2012 – 05/2012 Andreas Bauer, Multimodal Profile Queries

01/2012 – 05/2012 Jörg Weißbarth, Shortest-Path Cover on Restric-
ted Graph Classes

01/2012 – 03/2012 Michael Nagel, Bounded Verification of an Opti-
mized Shortest Path Implementation

diploma and master theses

01/2015 – 06/2015 Valentin Buchhold, Fast Computation of Isochro-
nes in Road Networks

12/2014 – 05/2015 Alexander Wirth, Algorithms for Contraction Hi-
erarchies on Public Transit Networks

11/2014 – 04/2015 Simeon Andreev, Consumption and Travel Time
Profiles in Electric Vehicle Routing

06/2014 – 11/2014 Tobias Zündorf, Route Planning for Electric Vehi-
cles with Realistic Charging Models

03/2013 – 08/2013 Qi-Bai Zhu, Consideration of Toll Costs for Route
Planning in Road Networks

04/2012 – 09/2012 Joan Reixach, Constraint Programming based Lo-
cal Search for the Vehicle Routing Problem with
Time Windows

02/2012 – 07/2012 Ben Strasser, Delay-Robust Stochastic Routing in
Timetable Networks

B
L I S T O F P U B L I C AT I O N S

All conference and journal publications have been peer-reviewed.

journal articles

1 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Cus-
tomizable Contraction Hierarchies.” In: ACM Journal of Ex-
perimental Algorithmics (2016). To appear.

2 Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. “User-
Constrained Multi-Modal Route Planning.” In: ACM Journal
of Experimental Algorithmics 19 (04/2015), 3.2:1.1–3.2:1.19.

3 Moritz Baum, Julian Dibbelt, Andreas Gemsa, and Dorothea
Wagner. “Towards route planning algorithms for electric
vehicles with realistic constraints.” In: Computer Science -
Research and Development (2014), pp. 1–5.

in conference proceedings

1 Simeon Danailov Andreev, Julian Dibbelt, Martin Nöllen-
burg, Thomas Pajor, and Dorothea Wagner. “Towards Real-
istic Pedestrian Route Planning.” In: Proceedings of the 15th
Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’15). Vol. 48. OpenAccess
Series in Informatics (OASIcs). Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 09/2015, pp. 1–15.

2 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wag-
ner, and Tobias Zündorf. “Shortest Feasible Paths with Charg-
ing Stops for Battery Electric Vehicles.” In: Proceedings of the
23rd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM Press, 2015.

3 Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F.
Werneck. “Public Transit Labeling.” In: Proceedings of the 14th
International Symposium on Experimental Algorithms (SEA’15).
Lecture Notes in Computer Science. Springer, 2015, pp. 273–
285.

4 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Fast
Exact Shortest Path and Distance Queries on Road Networks
with Parametrized Costs.” In: Proceedings of the 23rd ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM Press, 2015.

205

206 list of publications

5 Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider,
Thomas Pajor, and Dorothea Wagner. “Speed-Consumption
Tradeoff for Electric Vehicle Route Planning.” In: Proceedings
of the 14th Workshop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems (ATMOS’14). Vol. 42.
OpenAccess Series in Informatics (OASIcs). Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 09/2014, pp. 138–151.

6 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Cus-
tomizable Contraction Hierarchies.” In: Proceedings of the 13th
International Symposium on Experimental Algorithms (SEA’14).
Vol. 8504. Lecture Notes in Computer Science. Springer, 2014,
pp. 271–282.

7 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Delay-
Robust Journeys in Timetable Networks with Minimum Ex-
pected Arrival Time.” In: Proceedings of the 14th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems (ATMOS’14). Vol. 42. OpenAccess Series in
Informatics (OASIcs). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 09/2014, pp. 1–14.

8 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea
Wagner. “Energy-Optimal Routes for Electric Vehicles.” In:
Proceedings of the 21st ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems. ACM
Press, 2013, pp. 54–63.

9 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wag-
ner, and Renato F. Werneck. “Computing Multimodal Jour-
neys in Practice.” In: Proceedings of the 12th International
Symposium on Experimental Algorithms (SEA’13). Vol. 7933.
Lecture Notes in Computer Science. Springer, 2013, pp. 260–
271.

10 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea
Wagner. “Intriguingly Simple and Fast Transit Routing.” In:
Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13). Vol. 7933. Lecture Notes in Computer
Science. Springer, 2013, pp. 43–54.

11 Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. “User-
Constrained Multi-Modal Route Planning.” In: Proceedings
of the 14th Meeting on Algorithm Engineering and Experiments
(ALENEX’12). SIAM, 2012, pp. 118–129.

technical reports

1 Moritz Baum, Valentin Buchhold, Julian Dibbelt, and Doro-
thea Wagner. Fast Computation of Isochrones in Road Networks.
Tech. rep. 1512.09090. ArXiv e-prints, 2015.

Technical Reports 207

2 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea
Wagner. Dynamic Time-Dependent Route Planning in Road
Networks with User Preferences. Tech. rep. 1512.09132. ArXiv
e-prints, 2015.

3 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Fast
Exact Shortest Path and Distance Queries on Road Networks with
Parametrized Costs. Tech. rep. abs/1509.03165. ArXiv e-prints,
2015.

4 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customiz-
able Contraction Hierarchies. Tech. rep. abs/1402.0402. ArXiv
e-prints, 2014.

5 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea
Wagner. Energy-Optimal Routes for Electric Vehicles. Tech.
rep. 2013-06. Faculty of Informatics, Karlsruhe Institute of
Technology, 2013.

6 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wag-
ner, and Renato F. Werneck. Computing and Evaluating Mul-
timodal Journeys. Tech. rep. 2012-20. Faculty of Informatics,
Karlsruhe Institute of Technology, 2012.

C
D E U T S C H E Z U S A M M E N FA S S U N G

Die schnellste Route durch den Verkehr, ein gut bewertetes Restaurant
unterwegs, eine möglichst späte Zugfahrt, die einen noch rechtzeitig
ans Ziel bringt, oder auch die bezahlbare Wohnung, mit sicherem
Schulweg, in Fahrradreichweite zur Arbeit und guter Nahverkehrs-
anbindung – all diesen Szenarien liegen Kürzeste-Wege-Anfragen in
verschiedenen Transportnetzwerken zugrunde.

Die weit verbreitete und tägliche Nutzung von web-basierten Kar-
tendiensten, GPS-Navigation und anderen standortsbezogenen Dienst-
leistungen, die uns so zur Gewohnheit geworden ist, wurde ermöglicht
durch umfangreiche Forschung auf dem Gebiet der Beschleunigung
von Kürzeste-Wege-Anfragen.

Insbesondere ist die Entwicklung praxistauglicher Algorithmen
zur Routenplanung in Transportnetzwerken ein Paradebeispiel für
erfolgreiches Algorithm Engineering. Hierbei wird Entwurf, Analyse
und Implementierung von Algorithmen durch experimentelle Eva-
luation auf Echtweltinstanzen vorangetrieben. Auf dem Gebiet der
Routenplanung hat diese Methodik zahlreiche Beschleunigungstech-
niken hervorgebracht, die sich in Vorverarbeitungsdauer und -platz,
Anfragegeschwindigkeit, aber auch Einfachheit ihrer Implementierung
unterscheiden. Die meisten Ansätze folgen einem gemeinsamen Para-
digma: Während der Vorverarbeitung werden Zusatzdaten berechnet,
die anschließend den Suchraum nachfolgender Anfragen verkleinern
(und somit diese Anfragen beschleunigen). Die schnellsten bekann-
ten Techniken ermöglichen beweisbar korrekte Anfragen mit Hilfe
weniger Speicherzugriffe.

Mittlerweile hat sich deswegen der Forschungsschwerpunkt in Rich-
tung aufwendigerer und realistischerer Szenarien verschoben, die
z.B. Benutzerpräferenzen, Fahrpläne, und multimodale Transportnetz-
werke mit einbeziehen. Die Herausforderungen sind dabei: 1) Eine
adäquate Formulierung der Problemstellung zu finden, und 2) Struk-
turen zu finden, die es auszunutzen gilt, um schnelle Anfragen zu
ermöglichen. Beides sind Themenfelder der vorliegenden Arbeit: Sie
führt neue Modellierungen und Beschleunigungstechniken ein für die
Routenplanung auf Straßennetzwerken, Fahrplannetzwerken und die
multimodale Optimierung.

straßennetzwerke . Die meisten webbasierten Systeme oder
Standalone-Navigationsgeräte bieten nicht viel Raum für Benutzerein-
stellungen, von der Angabe der Start- und Zieladresse abgesehen na-
türlich. Aber außer der reinen Fahrzeitoptimierung, möchte mancher

209

210 deutsche zusammenfassung

Fahrer auch kompliziertes Abbiegen, enge Wohnstraßen, Autobahnen
oder teure Mautbrücken, etc. vermeiden. Nicht nur, dass verschiede-
ne Benutzer verschiedene Kostenfunktionen optimiert haben wollen,
sogar der gleiche Benutzer könnte einen schnellen Weg am Morgen
und einen sicheren am Abend bevorzugen. Der Hauptgrund dafür,
dass feinkörnige Einstellungen oft nicht unterstützt werden, sind die
prohibitiv hohen Vorverarbeitungskosten der implementierten Be-
schleunigungstechnik. (Neben der Schwierigkeit, trotz komplizierter
Parametrisierung eine einfache Benutzerführung zu gestalten.)

Um benutzerdefinierte Einstellungen zu ermöglichen, wurde des-
halb kürzlich vorgeschlagen, die teure Vorverarbeitung weiter zu
unterteilen: in eine erste Phase, die ausschließlich die Topologie des
Graphen nutzt, und eine zweite, schnelle Phase zur Anpassung an eine
bestimmte Kostenfunktion, in der Literatur Customization genannt. Auf
diese Idee bauen wir auf, wenn wir Contraction Hierarchies (eine gut
etablierte Technik) um eine schnelle Customization erweitern. Deswei-
teren evaluieren wir einen neuen, schnelleren Anfrage-Algorithmus,
der ohne Prioritätswarteschlange auskommt.

Während der vorgenannte Ansatz dynamische Kosten mit Leich-
tigkeit beachten kann, geht er (wie es typisch ist für zeitunabhängige
Routenplanung) immer noch davon aus, dass die Kosten pro Straßen-
segment pro Anfrage konstant sind. In der Praxis wird die Fahrzeit
deutlich beeinflusst durch die aktuelle Verkehrssituation im Straßen-
netz, die sich über den Tag ändert. Man kann unterscheiden zwischen
Staus, die mit historischen Verkehrsdaten vorhersehbar sind (z. B. Be-
rufsverkehr), und Staus aufgrund von unvorhersehbaren Ereignissen
wie z. B. Unfällen. Wir untersuchen ein dynamisch und zeitabhängiges
Routenplanungsproblem, das sowohl aktuellen Verkehr und Vorhersa-
ge berücksichtigt. Zu diesem Zweck schlagen wir einen praktischen
Algorithmus vor, der in der Lage ist, netzwerkweit zugleich Benut-
zereinstellungen und die globalen Veränderungen der zeitabhängigen
Metrik zu integrieren, schneller als bisherige Ansätze.

Andere Szenarien, wie z. B. Routen für Fußgänger, werden oft ver-
nachlässigt oder als triviale Angelegenheit der Anwendung einer
anderer Kostenfunktion abgetan. Stattdessen beobachten wir, dass
Fußgänger-Routing eine spezifische Reihe von Problemen hat, die
nicht von State-of-the-Art Routenplanern erfüllt werden. Zum Bei-
spiel führt das Fehlen detaillierter Gehsteigdaten und die Unfähigkeit,
Plätze und Parks auf eine natürliche Weise zu durchqueren, oft zu
nicht ansprechenden und nicht optimalen Routen. Deshalb schlagen
wir vor, das Netzwerk um Gehwege auf der Grundlage der Straßen-
geometrie und um Kanten zum Routing über Plätze und in Parks
zu erweitern. Mit Hilfe dieser und weiterer Informationen, löst unser
Ansatz nahtlos Anfragen, deren Ausgangs- oder Ziel eine beliebige
Stelle im Straßennetzwerk, auf einem Platz oder in einem Park ist.
Unsere Experimente zeigen, dass wir in der Lage sind, ansprechende

deutsche zusammenfassung 211

Fußgängerrouten zu berechnen, mit vernachlässigbarem Overhead
gegenüber Standard-Routing-Algorithmen.

öffentlicher fahrplanverkehr . Öffentliche Verkehrsnetze
unterscheiden sich deutlich von Straßennetzen, da jedes Fahrzeug
einem Fahrplan folgt und eine fest Sequenz von Haltestellen abfährt.
Typische Routenplanungsprobleme im öffentlichen Verkehr betrachten
entweder nur die Optimierung der frühesten Ankunftszeit oder sogar
mehrere Kriterien wie Ankunftszeit und Anzahl der Umstiege, und
können entweder für eine bestimmte Abfahrtszeit oder für einen
ganzen Zeitbereich (Profilanfrage genannt) formuliert werden.

Dementsprechend ist, während es für die Straße oft eine einfa-
che Charakterisierung als Kürzeste-Wege-Problem gibt, selbst die
Erforschung von Basisalgorithmen (also noch vor dem Entwurf von
Beschleunigungstechniken) noch nicht abgeschlossen für den öffentli-
chen Nahverkehr. Wir stellen einen neuartigen algorithmischen Ansatz
vor, der Fahrten direkt auf dem Fahrplan berechnet (ohne Überfüh-
rung in eine Graphrepräsentation). Dabei organisieren wir die Eingabe
als Array von Elementarverbindungen (der Grundbaustein eines Fahr-
plans), die nur einmal pro Abfrage kontinuierlich gescannt werden.
Trotz seiner Einfachheit ist unser Algorithmus sehr vielseitig und löst
früheste Ankunfts- sowie multikriterielle Profilanfragen.

Die Entwicklung von Vorverarbeitungs-basierten Beschleunigungs-
techniken für öffentliche Verkehrsnetze hat sich als anspruchsvoller als
für Straßennetze erwiesen: Aktuelle Ansätze erfordern entweder mas-
sive Vorverarbeitungsdauer oder bieten nur eine begrenzte Beschleu-
nigung. Aufbauend auf jüngsten Ergebnissen zu Hub-Labeling (der
derzeit schnellste Ansatz für Straßennetze) und durch Ausnutzung
anwendungspezifischer Eigenschaften, entwickeln wir einfache und
effiziente Algorithmen für früheste Ankunfts-, Profil- und multikrite-
rielle Anfragen, die um Größenordnungen schneller als der Stand der
Technik sind.

multimodale routenplanung . Schließlich untersuchen wir
das Problem, multimodale Routen in integrierten Verkehrsnetzen zu
finden, also eine Reise zwischen zwei beliebigen Orten, die unein-
geschränktes Laufen, Autofahren, Radfahren und Fahrplan-basierte
öffentliche Verkehrsmittel einbezieht.

Dabei ist es von entscheidender Bedeutung, auf die Vorlieben ei-
nes Benutzers in Hinblick auf die Wahl der Verkehrsmittel zu ach-
ten: Nicht jeder Verkehrsträgerwechsel könnte zu jedem Zeitpunkt
der Reise eine Option darstellen. Im allgemeinen hat der Benutzer
Einschränkungen an die Abfolge der Verkehrsmittel. Zum Beispiel
könnte manch Nutzer bereit sein, ein Taxi zwischen zwei Zugfahrten
zu nehmen, wenn es die Reise schneller macht. Andere bevorzugten
es, öffentliche Verkehrsmittel am Stück zu verwenden. Wir bieten ein

212 deutsche zusammenfassung

multimodales Routenplanungssystem, das solche Einschränkungen
als Benutzereingabe für jede Anfrage zulässt (und nicht bereits während
der Vorverarbeitung festlegt).

Eine weitere, natürliche Lösung für das Problem ist es, multimoda-
le multikriterielle Optimierung zu verwenden, um die Vielzahl der
verfügbaren Reisemöglichkeiten zu erfassen (die dem Benutzer wo-
möglich noch gar nicht bewusst sind). Vollständige multikriterielle
Suche neigt jedoch dazu langsam zu sein und zu viele Lösungen
von oft überraschend geringem Wert zu produzieren. In Bezug auf
das letztgenannte schlagen wir vor, die Lösungen in einem Nach-
bearbeitungsschritt zu filtern. Wir verwenden dazu Techniken aus
der Fuzzy-Logik, um die Signifikanz einer Lösung zu beurteilen. Wir
untersuchen ferner mehrere (weiterhin multikriterielle) Heuristiken,
die ähnliche Fahrten viel schneller berechnen. Unsere Experimente
zeigen, dass dieser Ansatz die Berechnung von hochwertigen multi-
modalen Fahrten ermöglicht und dabei schnell genug für praktische
Anwendungen ist, selbst in großen Ballungsgebieten.

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of February, 2016 (classicthesis version 4.2).

https://bitbucket.org/amiede/classicthesis/

	Dedication
	Acknowledgments
	Abstract
	Contents
	1 Introduction
	1.1 Problems Considered
	1.2 Main Contributions
	1.2.1 Road Networks
	1.2.2 Public Transit Networks
	1.2.3 Multimodal Journey Planning

	1.3 Thesis Outline

	2 Related Work
	2.1 Preprocessing Techniques
	2.1.1 Theoretical Results
	2.1.2 Dynamic Scenarios and Customization
	2.1.3 Time-dependent Scenarios

	2.2 Multicriteria Optimization
	2.3 Sidewalks and Traversal of Open Areas
	2.4 Public Transit Journey Planning
	2.5 Multimodal Journey Planning

	3 Route Planning in Road Networks
	3.1 Customizable Contraction Hierarchies
	3.1.1 Preliminaries
	3.1.2 Preprocessing
	3.1.3 Customization
	3.1.4 Queries
	3.1.5 Experiments

	3.2 Time-Dependent Customizable Route Planning
	3.2.1 Preliminaries
	3.2.2 Our Approach
	3.2.3 Experiments

	3.3 Pedestrian Route Planning
	3.3.1 Preliminaries
	3.3.2 Augmented Graph Model for Pedestrian Routing
	3.3.3 Computing Pedestrian Routes
	3.3.4 Experiments

	4 Public Transit Journey Planning
	4.1 Connection Scan Algorithm
	4.1.1 Preliminaries
	4.1.2 Earliest Arrival Queries
	4.1.3 Profile and Multicriteria Queries
	4.1.4 Experiments

	4.2 Public Transit Labeling
	4.2.1 Preliminaries
	4.2.2 Basic Earliest Arrival and Profile Queries
	4.2.3 Improvements
	4.2.4 Practical Extensions
	4.2.5 Experiments

	5 Multimodal Journey Planning
	5.1 User-Constraints on Multimodal Transfers
	5.1.1 Preliminaries
	5.1.2 Contraction Hierarchies for Multimodal Networks
	5.1.3 UCCH: Contraction for User-Constrained Route Planning
	5.1.4 Improvements
	5.1.5 Experiments

	5.2 Multicriteria Multimodal Journey Planning
	5.2.1 Preliminaries
	5.2.2 Exact Algorithms
	5.2.3 Heuristics
	5.2.4 Experiments

	6 Final Remarks
	6.1 Future Work
	6.1.1 User Preferences
	6.1.2 Customizable Contraction Hierarchies
	6.1.3 Traffic Patterns
	6.1.4 Public Transit
	6.1.5 Multimodal

	Bibliography
	A Curriculum Vitæ
	B List of Publications
	C Deutsche Zusammenfassung
	Colophon

