
A Novel Framework for Simulating
Computing Infrastructure and Network Data Flows

Targeted on Cloud Computing

Peter Krauß
Karlsruhe Institute of Technology
Steinbuch Centre for Computing

76128 Karlsruhe
Email: peter.krauss@kit.edu

Achim Streit
Karlsruhe Institute of Technology
Steinbuch Centre for Computing

76128 Karlsruhe
Email: achim.streit@kit.edu

Tobias Kurze
Karlsruhe Institute of Technology

Library
76131 Karlsruhe

Email: kurze@kit.edu

Bernhard Neumair
Karlsruhe Institute of Technology
Steinbuch Centre for Computing

76128 Karlsruhe
Email: bernhard.neumair@kit.edu

Abstract— Understanding how computing infrastructure deci-
sions influence overall performance and cost can be very difficult.
Simulation techniques are an important tool to help analyse and
evaluate different infrastructure configurations and deployment
scenarios. As diversity of cloud computing resources is growing,
the space of possible infrastructure configurations becomes larger
and finding the best solution becomes harder. In our previous
paper, we presented a framework to benchmark cloud resources
to obtain objective and comparable results. Based on those results,
our simulation framework allows to model applications and to
estimate their performance. Compared to other infrastructure or
cloud simulation tools our framework excels when it comes to
the simulation of network data flows.

Keywords–Broad band networks, quality of service, infrastruc-
ture, cloud, simulation, framework

I. INTRODUCTION

Due to the rise of cloud computing during the last few
years - for a widely accepted definition of the term see [1][2] -
and its further growing adoption in commercial, industrial and
research endeavors [3][4], there are more and more different
infrastructure offerings and possible applications. Different
types of applications have different requirements on the under-
lying (virtual) hardware and are structured differently. Finding
deployment policies that deliver good performance and are
cost-efficient under varying conditions is challenging because
of multiple reasons.

First, the number of possible deployments for a given
application respectively for workload executing systems, grows
rapidly with the number of components of an application as
well as with the number of available resources to choose from.
Secondly, clouds do not always deliver the same performance
and are subject to varying demand. Further, as cloud resources
are delivered via public broadband networks, it is hard or even
impossible to reproduce identical test conditions. As it is nei-
ther practical to try out each and every possible deployment nor

feasible to reproduce an identical test environment, simulating
the respective scenarios is the better approach. Therefore, we
developed an infrastructure simulation framework that focuses
on cloud environments, but in principle it can be used for any
kind of infrastructure. The framework allows the simulation of
large-scale applications that may be deployed across different
cloud providers.

Our framework provides informations about the complete
behavior of a configured workload running on a user defined
infrastructure. During the simulation, a user can access all the
status information he might need, this includes load on disk,
CPU, memory as well as network interfaces. This allows a user
to attach e.g., cost models or simulate bad or malfunctioning
hardware. Our approach is unique in the way it models
networks and is very lightweight compared to other tools.

The paper is structured as follows:
A short overview of cloud respectively infrastructure sim-
ulation tools is given in Section II. Next, we present our
infrastructure model and introduce resource providers and our
network simulation model. Then, we give a description of how
workloads are specified, followed by the section dedicated to
the implementation of the simulator. Next, in addition to the
theoretical model, we describe how calibration of the simulator
is done and show the validity of the framework. Lastly a short
summary including a discussion of the validation’s results is
given.

II. RELATED WORK

In the field of cloud simulation, a lot of research with
varying focus has already been done. Lim et al. developed
MDCSim [5], a simulation platform for multi-tier data centers
that allows performance and power consumption analysis.
The simulator is event based and designed as a three-layer
architecture – user layer, kernel layer, communication layer.
It is able to capture details such as kernel level scheduling

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197528969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

strategies. For communication, the simulator supports IBA
and Ethernet over TCP/IP. By changing the timing parameters
other protocols can be incorporated. For kernel requests, the
simulator considers multiple CPUs as a single resource and is
modeled according to the Linux scheduler 2.6.9.

Another well known toolkit for modeling and simulating
cloud environments is CloudSim [6][7]. It is event-based and
allows to model data centers, virtual machines and resource
provisioning policies. Furthermore it is possible to model
federation of clouds resp. inter-networked clouds. Allocation
of virtual machines to hosts is done based on a First-Come-
First-Serve basis. CloudSim implements time-shared as well
as space-shared policies at host and at VM level to assign
resources. Besides aforementioned aspects, CloudSim models
the cloud market based on a multi-layered design, whereby the
first layer represents costs per unit related to the IaaS model
and the second layer comprises costs related to the SaaS model.
Network behavior is modeled using a latency matrix and a
message will be forwarded by the event management engine
after a delay specified by the according entry in the latency
matrix.

NetworkCloudSim [8] has been developed by Garg and
Buyya and is an extension for CloudSim providing a network
and generalized application model, allowing a more precise
evaluation of scheduling and provisioning policies. Network-
CloudSim adds three main entities: Switch, NetworkDatacenter
and NetworkDatacenterBroker. Also new classes to model
networks have been added to the original classes of CloudSim.
This allows a better modelling of applications that rely on
specific means of communication such as MPI for example.

DartCSim+ [9] is another enhancement of CloudSim. The
authors claim to have overcome limitations of CloudSim in
regard to three aspects: – simultaneous support of power
and network model is not possible – simulation of network
components is not power-aware – migration does not take into
account network overheads To overcame aforementioned lim-
itations, the authors developed a range of entities as extension
for CloudSim.

Wickremasinghe et al. propose another CloudSim related
tool named CloudAnalyst [10], that helps studying the be-
haviour of large-scale cloud applications. CloudAnalyst takes
into account the geographic dı̀stribution of an application and
of its users. CloudAnalyst provides a graphical user interface
that allows users to model their experimental setups.

Nunez et al. developed another cloud simulator called
iCanCloud [11][12] with focus on lage experiment setups.
iCanCloud features a global hypervisor that can integrate any
brokering policy and is configurable through a graphical user
interface. It also provides a POSIX-based API and supports
configurations for different storage systems such as remote
file systems like NFS or parallel files systems and RAID
configurations.

In our own previous work [13] we created a performance
measuring tool. The publication contains a description of the
used architecture to monitor a large amount of cloud resources
over time. We were able to show that the perfromance of
virtualized infrastructure resources does vary over time, even
though it should be constant, as well as the performance

of network interconnects between virtual machines. This as-
pect is not covered by common simulation frameworks. The
framework presented in this paper is capable of taking the
factors shown in [13] into account. We use the measured
performance values from [13] to calibrate our simulation
framework presented in this publication.

III. INFRASTRUCTURE MODEL

Our model describes an infrastructure cloud environment
as a hierarchy of entities. The entities on the lowest level
provide resources, which are in our model calculation power
in units called cpu cycles, ephemeral memory in units called
mbytes, persistent storage space in multiples of mbytes and
finally network traffic which is described by transfers between
network enabling entities characterized by a bandwidth in
units of mbytes per time step. The entities that provide those
resources are called vCPU, vMemory, vStorage and vNet which
creates instances of vTransfer objects.

On the next level, the model introduces another entity
called vMachine. This entity can be associated with any
combination and any amount of entities of the level below
and is a loose equvivalent to a virtual machine in a real cloud.
Further a vMachine can be associated with so called vWorkload
objects. Those objects contain a description of a workload and
are described in the course of this paper (see Section IV).

The next layer contains vDatacenter objects that in turn
contain vMachine objects. A vDatacenter in addition is asso-
ciated with two coordinates that express a location in a 2D-
space and can be used to position different datacenters relative
to each other. The distance between datacenters is factored in
when data transfers happen, since previous works showed that
this can affect transfers [13].

Beside those layers, the model is based on a global envi-
ronment object containing all entities related to the simulated
infrastructure. This environment provides a global, steadily
increasing counter to represent the simulation time in logical
seconds. With each step the timer advances by one and the
simulation progresses. The environment makes sure that all
objects associated with it are notified at least once per time
step about the new simulation time so they will update and
possibly advance their state.

In the following subsections, major parts of this model will
be explained in deeper detail.

A. Resource Providers

As mentioned before the model is based on four resources
that are provided by four resource providers. These entities are
always associated with a maximum capacity and a provisioning
speed. The first describes how many units of a certain resource
are provided whereas the latter expresses at what speed this
resource can be delivered. In addition, each resource can either
be ephemeral or static. Ephemeral resources reset their capacity
at the beginning of each new time step while static resources
do not. In our model the following four resource providers are
defined:

vCPU As mentioned, this object provides calculation power
in units of cpu cycles. The resource is ephemeral and
resets to its predefined maximum capacity with every

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

simulation step and the resource can be consumed at
instant speed.

vMemory To represent a machine’s internal memory, we
introduced a vMemory resource provider. In contrast to
physical RAM, this resource does reset its capacity with
every time step due to how workloads are designed
in our model: A vWorkload does not allocate and free
memory but it provides an absolute value representing
how much memory is required at a certain point in
time. All operations on a vMemory object are performed
instantly.

vStorage A vStorage object represents a comparably slow and
limited storage device for example a hard disk or solid
state drive. The provider’s operational speed is capped at
a predefined rate (throughput) which in addition is shared
among all entities currently using the resource.

vNet This object represents a network device which can
transfer a given amount of data per time step. The object’s
bandwidth is shared among all currently active transfers
and each transfer’s speed further depends on the receiver’s
bandwidth. Since proper network simulation is a major
part of our framework this will be discussed in detail
in a following section (see Section III-B). We assume a
physical network card to operate in duplex mode, sending
and receiving speeds are not correlated in any way and
are thus modeled as two independent vNet instances that
may be configured with different bandwidths.

vTransfer vTransfer objects contain all information that de-
scribe the state of ongoing data transfer, such as current
transmission speed and associated vNet instances (ori-
gin/destination). In contrast to the previously presented
objects, vCPU, vMemory, vStorage and vNet, a vTransfer
does not have a representation in real hardware and is a
completly virtual construct.

Since access to the ‘fast’ resources calculation power and
ephemeral memory is considered to be performed instantly,
no sophisticated scheduling is needed: In case those resources
are requested by one or more workloads, the resource provider
simply evenly divides the available resources among the re-
questers. In our current implementation, the scheduler follows
a round-robin manner to divide the resources. In case a request
cannot be fulfilled, an appropriate notification is sent to the
vWorkload for it to react according to its configuration. For
example, a common workload will request as many CPU
cycles as possible and a certain amount of memory. As long
as the first request does not lead to a critical error, a typical
workload can still execute even if there’s only a few cycles
assigned to it. On the other hand, a workload will most likely
crash if a memory requirement cannot be met.

In contrast, access to the ‘slow’ resources, storage and
network, has to be scheduled. We model two operations
on storage devices: write and read. Both operations are
performed equally but in the first case, the capacity of the
resource provider is decreased by the amount of transferred
data whereas in the latter case, the capacity remains constant.
When an operation on such a storage resource is initiated, the
resource provider will register the operation and evenly divide
the available bandwidth among the contenders and process
them in parallel. An operation is considered as failed, if the
requested amount of data cannot be written or read.

D

CA

B
L1 L2 L3

1,000
Interface
Bandwidth

Transfer

1,000

1,000 100
Figure 1. A simple example of a network graph.

B. Network Simulation

One of the major concerns of the simulator described
in this paper is the network simulation model. As indicated
above a proper calculation of per-transfer speeds can be
difficult due to the dependency on the sender’s as well as
the receiver’s bandwidth. The complexity increases with the
number of transfers, which, in addition, might or might not
share the same destination. A simple example is depicted in
Figure 1. The example shows four vNet objects named A,
B, C and D associated with the bandwidths bwA = 1,000,
bwB = 1,000, bwC = 100 and bwD = 1,000 and three
transfers between those (L1 = B → A, L2 = B → C
and L3 = C → D). The data transfers are represented as
instances of vTransfer. It is obvious that the bandwidth of
B has to be shared among two transfers L1 and L2 while
being capped by the available bandwidth of C after taking L3

into account. The arising challenge is to balance the transfer
speeds in a realistic manner in real-time while considering that
the network configuration might significantly change between
time steps due to added or removed nodes or transfers. Due
to those constraints known algorithms like those based on
the max-flow/min-cut-theorem [14] are not suitable for our
environment. Instead we developed an agent-based algorithm
that determines the available bandwidth per active transfer at
the current simulation time solely based on the information
provided by the receivers of the transfered data.

The algorithm we propose uses an iterative approach that
converges to a solution where an optimal data flow between all
vNet objects is achieved. This algorithm is further based on
a graph whose vertexes M = {M1, . . . ,Mn} are represent-
ing data sending or data receiving network interfaces (vNet
objects) and whose set of edges L = {L1, . . . , Ln} are repre-
senting network transfers (vTransfer objects). Each vertex Mi

is associated with a limited transfer rate bw(Mi) = bwi > 0
expressing the bandwidth of the vNet. The set of vTransfers
Ni contains all vTransfers originating from Mi and is a subset
of L.

To calculate the current transfer speed st at time t of a
vTransfer object Lk = Li→j = LMi→Mj

with Li→j ∈ Ni

originating from o(Lk) = Mi and targeted to d(Lk) = Mj , the
algorithm works in an iterative manner realistically saturating
the interfaces.

In a first step (t = 0), for each vNet instance all avail-
able bandwidth is divided proportionally among the active
vTransfers based on the theoretically possible transfer speeds
to the corresponding remote partners which is assumed to be
defined by the speed of the slowest involved vNet. This can

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE I. A SAMPLE CALCULATION FOR THE
NETWORK GRAPH SHOWN IN FIGURE 1.

L1 L2 L3

1st Iteration

A 1000 – –
B 909 91 –
C – 50 50
D – – 1000

min() 909 50 50

2nd Iteration

A 1000 – –
B 948 52 –
C – 50 50
D – – 1000

min() 948 50 50

3rd Iteration

A 1000 – –
B 950 50 –
C – 50 50
D – – 1000

min() 950 50 50

be expressed in the following equation:

s′0(Li→j) = s′t=0(Li→j) =
bwj∑

n∈Ni

bw(d(n))
× bwi (1)

In most cases, this assumption is just a rough approximation
and not exact, but it is a starting point for the algorithm to
work with. With further iterations the value will be gradually
corrected.

The result of calculation (1) represents the bandwidth a
sending vNet entity Mi could provide for a transfer Li→j to
a target Mj at maximum at time t = 0. The same value then
has to be calculated for the receiving vNet object. The speed
used for the transfer is then determined by the smaller of both
values:

s0(Li→j) = min(s′0(Li→j), s
′
0(Lj→i)) (2)

For the next steps (t > 0) the speed of a vTransfer instance
will no longer be based on the predefined bandwidth of the
involved vNets but on the previously calculated transfer speeds.
The equations to determine the speed s of a transfer Li→j at
any time t > 0 are adjusted to:

s′t(Li→j) =
st−1(Li→j)∑

n∈Ni

st−1(n))︸ ︷︷ ︸
A

×bwi (3)

st(Li→j) = min(s′t(Li→j), s
′
t(Lj→i)) (4)

With the factor A always being less or equal than 1.0 the
maximum bandwidth of source network interface is never
exceeded. Further A can only be equal to 1.0 in the case of a
single active transfer, which results in that transfer using the
maximum available capacity.

Using this algorithm we are able to determine the speed of
a transfer at any time simply by factoring in either previously
calculated transfer speeds in case of t > 0 or the neighboring
machines theoretically possible transfer speeds in case of t =
0. A sample calculation for the example discussed above is
shown in Table I. The first fours rows of the tables contain the
values for s′t for the transfer corresponding transfer expressed
by the columns. The last row of each table contains the value
of st. One can see that over time, the speeds of the transfers

TABLE II. PROPERTIES OF A WORKLOAD OBJECT.

Resource type data type description
vCPU integer Value expressing the total amount of

calculation power the workload will
use expressed in cpu cycles.

vMemory f(cpu cycles) Function returning the amount of used
vMemory when a given amount of cpu
cycles has be processed or is remain-
ing.

vStorage, vNetwork list List of triplets expressing the amount
of cpu cycles to be remaining or pro-
cessed for a defined operation to be
executed and a flag allowing parallel
execution.

converge to a final value that overall saturates the vNets A to
D.

Finally, when using the model above, the calculated trans-
mission speeds will always be based upon ideal network
connections transmitted over ideal network cables without
any kind of noise. Thus, we want to point out, that in our
implementation we add in a factor called ‘scatter’ to express
some randomness in latency and bandwidth and represent a
combination of all kind of complex signal fluctuations. Our
test show, that a variation of a few percent in transfer speeds is
realistic due to physical connections not performing perfectly
at all times.

IV. WORKLOAD DESCRIPTION

In our model, each workload is associated with a certain
amount of load related to the resources described in Subsec-
tion III-A. We do not consider workloads not associated with
any resource consumption, so the minimal defined workload
will be a workload only consuming a single cycle of calcu-
lation power. This enables the use of calculation power as a
reference for other resource usages: Instead of modeling usage
of vMemory based on the time passed since the launch of
the workload we model memory conumption as a function
of consumed calculation power. In general, the definition of
memory as a function over cpu cycles instead of processing
time is a more realistic approach: a started but not advancing
(i.e., due to missing resources) workload will not change its
state and thus not change its consumption of memory.

Since the usage of storage and network are time-consuming
processes due to the non-instant character of the underlying
resource providers we cannot transfer this mechanism par for
par. As a solution we designed storage and network usage as
triggers likewise based on the amount of cpu cycles. Those
triggers are simple integers and are executed as soon as the
number of consumed or remaining cpu cycles has reached
the configured value. Upon execution the trigger can then
instantiate new network transfers or storage operation which
are then processed. In addition the user can specify if those
operations should be processed in parallel or if the workload
should pause meanwhile.

Beside the described resource-related properties which are
summarized in Table II each workload may execute user-
defined subroutines upon reaching certain states to control the
flow of workloads. Predefined states are init which gets exe-
cuted when the workload is launched on a vMachine instance,
finish which is associated with the workload terminating and

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

error, the state that a workload changes to upon failing. In
addition a user can add other trigger and subroutines.

To start the simulation of a workload on a given infrastruc-
ture, the workload object has to be registered at a vMachine
instance. The vMachine then enables access to its resources
by reading the workload definition at the current simulation
time and passing appropriate requests to the resource providers
which then schedule the incoming requests.

V. IMPLEMENTATION

We realized the described model using Python 2.7 based
on the concepts of the object-oriented programming paradigm.
The most important components to mention are the different
resource providers vNet, vMemory, vStorage and vNetwork
along with vTransfer, the higher level entities vMachine and
vDatacentre and finally the global environment object called
env. Whereas most of the implementation can be considered
straight forward, we want to highlight some aspects we con-
sider implementation specific.

First, we implemented the resource provider’s scheduling
in case of more than one workload accessing the resource at
a time is done in a round-robin manner. Hereby, the resource
provider allocates an equal amount of the available resource
to each consumer. In the future, we plan to implement other
scheduling mechanisms.

Python natively does not offer an event handling concept,
so we based our simulator on generators. A generator function
allows to define a function that behaves like a iterator. The
details of this concept are described in [15] (PEP0289 and
PEP0342). This enables the implementation of time-dependent
actions, like network transfers and storage operations as loops.
An action requiring more than one time step to be performed is
expressed as a set of smaller parts that are one time step long
and yield at the end of their execution. We believe that using
generators leads to less error-prone code due to the simplicity
and the linear, synchronous layout.

Finally, due to the simulator not running in parallel but call-
ing subtasks subsequently one at a time, one has to make sure
that one task doesn’t change the simulation state prematurely.
We solved this by deep-copying the simulator’s state before
the execution of the subtask begins. Then, all subtasks refer
to the copy when reading values while making the changes to
the original state.

VI. CALIBRATION AND VALIDATION

To use the simulation framework, users must specify the
available infrastructure by defining resource providers as ex-
plained in Section III-A. The model can be calibrated based on
either of two correlated degrees of freedom: either the resource
provider’s performance or the workload’s resource usage can
be tuned. As soon as one dimension is set, the other has to be
picked accordingly to get consistent results.

With the model being a simplification of reality it is up to
the user to configure the infrastructure in a suitable way for
one’s use-case. Any calibration settings are workload specific,
since for example a workload might or might not benefit
from certain CPU features (i.e., Streaming SIMD Extensions

TABLE III. AVERAGE PERFORMANCE OF COMMON CPUS REGARDING
PSEUDO-RANDOM NUMBER GENERATION.

CPU name clock frequency Performance [MB/s]
Intel i3-2100 3.1 GHz 16.3 ± 0.9%

Intel i5-4288u 2.6 GHz 13.5 ± 1.4%
Intel Xeon E5520 2.27 GHz 7.2 ± 1.8%

Intel Xeon E5-2650 2.0 GHz 3.6 ± 8.5%

(SSE) [16]) or network related characteristics (e.g., delays due
to encryption settings).

In addition to this systematic calibration, performance
variations on all sorts of resources might occur due to non-
perfect behavior of hardware. Those variations are comparably
small and are covered by the aforementioned scatter factors we
added to the model in our implementation. Those aspects are
usually only known to system or software engineers or can be
obtained by benchmarking.

We provide consistent calibration values based on the
following assumptions for an Amazon EC2 environment:

• A workload that is modeled for a resource provider that
supports a certain CPU feature may need less CPU cycles
and is modeled accordingly.

• The same application that is modeled for a resource
provider that does not support a certain CPU feature may
need more CPU cycles and is modeled accordingly.

• The simulated execution of the same application using
resource providers that are n-times more powerful than the
original resource providers for which the application had
been tuned in the beginning should take in the order of a
n-th of the time when compared to the initial simulation.

• The simulated execution of an application should yield
approximately the same results when compared to real
run-time, respectively should be faster or slower in the
same order of magnitude relative to the application the
model’s parameters were derived from.

To derive calibration values, we ran a high number (approx.
560,000) of tests on different machine configurations using
a distributed benchmark suite. A detailed description of the
tests can be found in [13]. To obtain the calibration values, we
correlated the resources of the simulation environment with
the performance of the corresponding real hardware.

A. Calibration

In a first step, we calibrated calculation power based
on data of a synthetic CPU benchmark. In our case this
is the single-threaded calculation of pseudo-random numbers
for checksumming purposes on virtual machines of the EC2
instance type “t2.small” in the region “us-east-1”. For our
calibration, we set 2,000 cpu cycles =̂ 2,000MHz, which is
the average clock frequency a virtual CPU on the used EC2
instances provides as stated by Amazon. The benchmarks
showed an average random number generation rate of 3.6 ±
8.5% megabytes per second per core using an Intel Xeon E5-
2650 running at 2GHz. Table III shows the results of the same
benchmark on other CPUs for reference. Using this data, we
can state that a real-world workload using the same amount of
computing power as required for the generation of 3,600,000
pseudo-random numbers would run one second. As mentioned
above, this value might seem to be abstract compared to e.g.,

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE IV. AVERAGE PERFORMANCE OF COMMON CPUS REGARDING
PSEUDO-RANDOM NUMBER GENERATION.

Evaluated transfer distance std. deviation
us-east-1 ↔ us-west-1 3,600 km 13.4%
us-west-1 ↔ eu-west-1 8,000 km 14.5%

ap-southeast-1 ↔ eu-west-1 11,300 km 17.3%
ap-southeast-1 ↔ us-west-1 13,900 km 19.7%

GFLOPS, but since a user might not necessarily know the
amount of FLOPS his specific workload conducts as well as
he might not know what CPU features are beneficial to his
program, the description based on the benchmark results of
his actual workload is more usable.

In contrast to the calibration of calculation power, storage
and memory are less complex. The only free parameter asso-
ciated with a vStorage instance is the bandwidth per time step.
Nearly 50,000 performance tests on the aforementioned Ama-
zon EC2 instances resulted in an average of 40 ± 2.5%MB/s.
For vMemory, the only free parameter is the capacity, which
is expressed as an integer. Other parameters, like e.g., access
latency are not covered by the model.

The last parameters to be calibrated are those related to
the network simulation. The bandwidth of a network device is
primarily defined by its specifications and can usually be set
straight forward. However, due to our calibration environment
being virtualized, we had to measure the actual network capa-
bilities which resulted in a bandwidth of 350Mbit/sec±18%.
Secondarily, the model considers the distance between sender
and receiver as an influencing factor. A network transfer
will be slower proportionally to the distance between two
communicating machines. This factor can be significant and
results in variations of transfer speeds of up to 13% (for
transfers between us-east-1 situated in North Virginia, USA
and us-west-1 in California, USA) to 20% (for transfers
between us-west-1 and ap-southeast-1 in Singapore). A more
detailed listing of the influence of distance between transfer
endpoints on the fluctuation range of transfer speeds can
be found in Table IV. We assume a fluctuation of 2% per
kilometer on the first 4,000 km and 1% per kilometer above.
This is in good accordance with the measured results and,
in rough approximation, expresses that connections on the
first 4,000 km are most likely connections on mainland with
delays caused by e.g., routing devices. Longer distances can
be assumed to be oversea connections that are mostly free of
interference. The final parameter the model includes factors
in the quality of the involved hardware components. Network
transfers between the same machines on the same cable still
fluctuate in a non-negligible, statistical manner following a
gaussian curve. In our data we measured a standard deviation
of 5%.

With the values deduced from our benchmarks and pre-
sented in this section, we want to validate the simulation en-
vironment’s functionality by predicting the behavior of a real-
world scenario using the simulator and compare the results.

B. Validation

The validation of the system’s behavior regarding pure
CPU load was done by simulating the calculation of 1,000MB
of pseudo-random numbers as explained in the calibration
section. Based on the observations above, the expected runtime

A D

CT2

T3

B

T4

T1

350 350

350 100

Interface
Bandwidth

Transfer

Figure 2. The graph representing the network validation environment.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Bandwidth (normalized)

0

1

2

3

4

5

6

7

8

O
cc

ur
an

ce
(n

or
m

al
iz

ed
)

Gaussian µ = 1.0 σ = 0.05

measured data

Figure 3. Normalized histogram of the measured bandwidths.

per job is 288 s. This expectation is covered by the simulation
however, the observed values on real machines showed strong
fluctuations of up to 31% and a standard deviation of 7.9%.
A detailed description can be found in [13].

Next, we validated the behavior of the vStorage imple-
mentation. Since the system is based on a slow resource
provider equal to the one implemented to represent network
devices the validation of vStorage is shortened. The simulated
workload is a single threaded application writing 10,000MB
to disk. According to the calibration, this process should take
250 s. We were able to reproduce this value in our simulation
environment with a average deviation equal to the calibrated
2.5%. This result was then compared to the performance
values measured by bonnie++. We were able to show good
accordance between the test cases although the aforementioned
effect of varying performance biased the results. In numbers,
the deviation between simulated and observed results for the
duration of the benchmark was averaging at 5.3% with peaks
of 13.1%.

Exemplary we choose a network setup similar to the one
described in Section III-B and depicted in Figure 1 for vali-
dation of the network model. However, we slightly modified
the scenario to match the environment we used for calibration
(Amazon EC2, region us-east-1, “t2.small” instances). To be
more conclusive, in addition to a static network layout, we
assume another transfer between machine A and D to appear
after five seconds. The new scenario is depicted in Figure 2
and reads as follows:

At time t = 0, machine A initiates the transfer
of 500MB of data to machine B (T1). Meanwhile
machine C sends 500MB of data to B (T2) and
500MB of data to D (T3). A, B, D hold 350Mbit/s
network devices, C is associated with a 100Mbit/s
device. At t = 5, A initiates an additional transfer
of 500MB of data to D (T4).

We executed the scenario 100 times in reality and using

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

0

10

20

30

40

50

T1 simulated
T1 measured

0

2

4

6

8

10

ba
nd

w
id

th
[M

B/
s]

T2 simulated
T2 measured

0 5 10 15 20 25 30

simulation time [s]

−10

0

10

20

30

40

50

T4 simulated
T4 measured

Figure 4. Comparison of measured and simulated bandwidths over time.

the simulator. In our first configuration, all machines are
situated within the same data center and thus the geographical
correction factor is zero and we only expect fluctuations of five
percent due to our calibration. After dropping obvious outliers,
the results confirm the assumption of a gaussian distributed
micro-scattering as visualized in Figure 3.

The plot depicted in Figure 4 shows the transfer speeds
for each transfer at a given time averaged over all performed
benchmarks. Altogether we observed accurate accordance be-
tween simulation and reality as shown by the convergence of
the transfer speeds to the expected values. However, in the first
seconds, a large discrepancy can be seen. Since the values are
far above the specifications of the network device, we assume
the filling of caches or buffers being the cause. The transfers
T2 and T3 evidently converge to 6.25MB/s, the theoretical
maximum of the sending network card. T1 stays slightly below
the theoretical maximum sending speed of A. This is expected
since the overall bandwidth has to be shared with T4 as soon
as t ≥ 5.

In a second series of tests, we moved machine C to eu-
west-1, 3,600 km away from the other machines. This leads to
the geographical correction factor being relevant and thus to be
factored in during calculation. Again, the whole scenario was
done 100 times. This time we observed a bigger discrepancy
and larger fluctuations. As mentioned in [13], factors like time
of day respectively day of week do affect the performance of
the virtual environments and their attached network devices.
Since the deviation of the simulated results from those mea-
sured in reality is not larger than 7% at any time ttransfer > 3s
during our tests, we consider the simplification as acceptable.

VII. DISCUSSION, CONCLUSION AND OUTLOOK

As the tests show, our simulation framework provides good
results after calibration has been done. The avarage deviation
of the simulation results compared to real-world findings is
lower than 7.9 percent for CPU simulation, lower than 5.3
percent for storage simulation and lower than 7 percent for
network simulation.

The network simulation converges almost to the same mean
transfer speed, only during the first few seconds the simulation
underestimates the transfer speed that can be achived in the

real-world. Our simulation never yields results for transfer
speeds that are above the actual link speed - in contrast to
the real world due to cache effects in the first few seconds.
After around three seconds the simulated transfer rate is close
to the real-world transfer rate. As the focus of our simulation
framework is not to deliver a precise estimation of transfer
speeds at all times, but to provide good overall results, the
mentioned deviations are negligible in our case.

Our CPU simulations yielded very similar average results
when compared to real-word tests. However, there are some
deviations that can be explained by varying performance of
the cloud infrastructure. As we found in [13], the performance
of cloud infrastructure is not constant over time. Neglecting
those variations, our results were quite good.

Our simulation framework allows to model infrastructure
and workloads in a flexible way. There are two degres of
freedom that allow to set one of them conviniently while
choosing the other accordingly. The simulation framework
yields consistent results and converges quickly. As it is written
in Python, it is very lightweight and extensible with little
effort. However, during testing we noted that some facts that
are particularly important when simulating cloud infrastructure
cannot yet be captured by our framework. Most importantly:
cloud resources do not always yield the same performance.
Without knowing the exact reasons, we strongly suspect that
varying load of the providers’ infrastructure as well as varying
load of the inter-connecting networks.

Therefore, the next iteration of our simulation framework
must support resource providers that yield a time-dependent
amount of resources instead of a fixed number of, e.g., CPU
cycles. Also, multi core support as well as the ability to capture
CPU features are points to adress in future releases. Further
we plan to expand the framework in the future to support
a user when developing higher level functionalities such as
scheduling mechanisms for distributed systems or simulations
of platform services. Another aspect that is not yet covered by
our framework and that should be tackled in future releases is
a price model for infrastructure resources - something that is
of particular interest in cloud computing.

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”
National Institute of Standards and Technology, vol. 53, no. 6, 2009,
p. 50.

[2] S. NIST, “800-145,“,” A NIST definition of cloud computing”,[online]
http://csrc. nist. gov/publications/nistpubs/800-145/SP800-145. pdf,
2011, [accessed 1-February-2016].

[3] Bundesverband Informationswirtschaft, Telekommunikation und neue
Medien e.V., “Cloud Computing – Ein ganzheitlicher Blick über die
Technik hinaus,” 2010.

[4] BITKOM Research, “Cloud monitor 2014,” 2014.

[5] S. hwan Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “Mdcsim:
A multi-tier data center simulation, platform,” in in Cluster Computing
and Workshops, 2009. CLUSTER ’09. IEEE International Conference
on, 2009.

[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, 2011, pp.
23–50.

36Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

[7] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,” Jul. 2009, [accessed 1-February-2016].

[8] S. Garg and R. Buyya, “Networkcloudsim: Modelling parallel appli-
cations in cloud simulations,” in Utility and Cloud Computing (UCC),
2011 Fourth IEEE International Conference on, Dec 2011, pp. 105–113.

[9] X. Li, X. Jiang, K. Ye, and P. Huang, “Dartcsim+: Enhanced cloudsim
with the power and network models integrated,” in Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference on, June 2013,
pp. 644–651.

[10] B. Wickremasinghe, R. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing envi-
ronments and applications,” in Advanced Information Networking and
Applications (AINA), 2010 24th IEEE International Conference on,
April 2010, pp. 446–452.

[11] A. Núñez and et al., “icancloud: A flexible and scalable cloud infras-
tructure simulator,” J. Grid Comput., vol. 10, no. 1, Mar. 2012, pp.
185–209.

[12] G. Castane, A. Nunez, and J. Carretero, “icancloud: A brief architecture
overview,” in Parallel and Distributed Processing with Applications
(ISPA), 2012 IEEE 10th International Symposium on, July 2012, pp.
853–854.

[13] P. Krauss, T. Kurze, and A. Streit, “Cloudbench – A Framework
for Distributed, Self-organizing, Continuous and Topology-aware IaaS
Cloud Benchmarking with Super-peer Networks,” in e-Science (e-
Science), 2015 IEEE 11th International Conference on, Aug 2015, pp.
273–278.

[14] Wikipedia, “Max-Flow-Min-Cut-Theorem — Wikipedia, the free
encyclopedia,” 2015, [accessed 1-February-2016]. [Online]. Available:
https://de.wikipedia.org/wiki/Max-Flow-Min-Cut-Theorem

[15] D. Goodger and B. Warsaw, “Index of Python Enhancement
Proposals,” 2016, [accessed 1-February-2016]. [Online]. Available:
https://www.python.org/dev/peps/

[16] R. Ramanathan, R. Curry, S. Chennupaty, R. L. Cross, S. Kuo, and M. J.
Buxton, “Extending the World’s Most Popular Processor Architecture,”
Intel Corporation, White Paper, 2006.

37Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

