

 Karlsruhe Reports in Informatics 2016,7
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

4th Workshop on View-Based,
Aspect-Oriented and

Orthographic Software Modelling

Proceedings

2 March 2016, Karlsruhe, Germany

Colin Atkinson, Erik Burger, Thomas Goldschmidt, Ralf Reussner

(Editors)

 2016

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197528831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

http://creativecommons.org/licenses/by-nc-nd/3.0/de

Preface

Modern software engineering paradigms, such as model-driven development, multi-view modelling, or
role-based software development, use different types and combinations of abstraction techniques to de-
compose systems into human-tractable pieces. This leads to an increasing number of models and views
that have to be considered, which presents fundamental challenges for engineers of complex software-
intensive systems. Software developers need technologies for operationally managing views of systems
in a consistent way, and software architects require concepts that indicate in which way views and models
should be developed, evolved, and navigated as projects evolve.

The goal of this workshop is to distil a common understanding of existing approaches and current
research directions in treating heterogeneous models of software and systems.

Workshop Co-organizers

Colin Atkinson
Chair of Software Engineering
University of Mannheim
B6, 26
68159 Mannheim, Germany
E-mail: atkinson@informatik.uni-mannheim.de
Web: http://swt.informatik.uni-mannheim.de/

Erik Burger, Ralf Reussner
Institute for Program Structures and Data Organization
Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5
76131 Karlsruhe, Germany
E-mail: burger@kit.edu, reussner@kit.edu
Web: http://sdq.ipd.kit.edu/

Thomas Goldschmidt
ABB AG
Forschungszentrum
Wallstadter Straße 59
68526 Ladenburg, Germany
E-mail: thomas.goldschmidt@de.abb.com

mailto:atkinson@informatik.uni-mannheim.de
http://swt.informatik.uni-mannheim.de/
mailto:burger@kit.ed
mailto:reussner@kit.edu
http://sdq.ipd.kit.edu/
mailto:thomas.goldschmidt@de.abb.com

4

Programme Committee

• Steffen Becker, University of Chemnitz, Germany
• Ruth Breu, University of Innsbruck, Austria
• Jacques Klein, University of Luxemburg
• Manuel Wimmer, Vienna University of Technology, Austria
• Steffen Zschaler, King’s College London, United Kingdom

Contents

Towards a Configuration Framework for Orthographic-Software-Modeling Environments
Colin Atkinson, Christian Tunjic . 7

Projecting UML Class Diagrams from Java Code Models
Heiko Klare, Michael Langhammer, Max Kramer . 11

Towards Metamodel Integration Using Reference Metamodels
Johannes Meier, Andreas Winter . 19

Towards a Configuration Framework for
Orthographic-Software-Modeling Environments

Colin Atkinson
Chair of Software Engineering

University of Mannheim
Mannheim, Germany

atkinson@informatik.uni-mannheim.de

Christian Tunjic
Chair of Software Engineering

University of Mannheim
Mannheim, Germany

tunjic@informatik.uni-mannheim.de

ABSTRACT
View-based modeling approaches are today widely used to
specify software systems because they allow the associated
complexity to be distributed over multiple, separately man-
ageable perspectives of a system. However, virtually all
existing view-based modeling approaches have “hardwired”
viewpoint frameworks that cannot be easily changed by users.
Customizing a view-based modeling environment for a spe-
cific methodology is consequently a complex and error prone
task since it involves changes to the core implementation
code. Therefore, a simple and systematic process allow-
ing methodologists to configure a view-based modeling envi-
ronment is required which ensures that all requirements for
view-based modeling are fulfilled, i.e. that the complete sys-
tem can be specified using mutually consistent view-types.
In this paper we outline such an approach in the context of
Orthographic Software Modeling.

CCS Concepts
•Software and its engineering → Model-driven soft-
ware engineering; Abstraction, modeling and modularity;
•Information systems → Information integration;

Keywords
Model Transformations, Single Underlying Model, Views

1. INTRODUCTION
As the size and complexity of software systems grow so

do the size and complexity of the models needed to specify
them. View-based modeling approaches, which go back to
the early ’90s [10], attempt to address this problem by al-
lowing modelers to describe a system using many separately
manageable perspectives, thereby separating concerns. As
long as views are available for all relevant concerns, and can
be used to completely and consistently specify any required
information, complete specifications of the system under de-
velopment can be created.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

VAO 2016, 2 March, 2016, Karlsruhe, Germany
c© 2016 Copyright held by the owner/author(s).

ISSN 2190-4782.

Over the years numerous view-based specification meth-
ods have been proposed such as RM-ODP [13], Archimate
[12], View-based textual modelling [11] or the Zachman Frame-
work [16], but these differ widely in the way they concep-
tualize and support views [5]. Arguably one of the most
systematic and complete proposals is the Orthographic Soft-
ware Modeling (OSM) approach [2] which supports subject-
oriented views and is completely prescriptive about what
views should be generated in a project, what content they
should contain and how they should be related.

The underlying principles of OSM are not tied to any spe-
cific set of views or view-types, however. To date, prototype
OSM environments have focused on the KobrA [1] method
as the underlying motivation for the views to be supported,
since this is based on precisely the principles of strictly pre-
scribed views and view content (in fact KobrA was the inspi-
ration for OSM). However in principle, any suitably adapted
view-based method could be supported using an OSM en-
vironment as long as the views are not hardwired into the
implementation as in previous prototypes ([6]).

To make this possible in practice, an OSM environment
must be implemented in a generic way so that it can be con-
figured using relatively straightforward steps to support dif-
ferent view-based methods. However, this is easier said than
done. First, since OSM uses a hyper-cube based approach
for identifying views, view-types and navigation routes, the
appropriate dimensions and dimension elements need to be
defined. Second, since OSM is based on a strictly-projective
approach to view generation, the appropriate Single Under-
lying Model (SUM) and view-type definitions need to be
defined. Third, since OSM supports subject-based views,
the appropriate dimension elements and view-type param-
eterizations need to be defined. Finally, this configuration
information needs to be packaged into concise methodology
descriptions which can be easily understood by human users
and efficiently put into effect by the OSM environment.

In this paper we describe our preliminary work in realiz-
ing such a configuration approach for a prototype version of
a generic OSM environment at the University of Mannheim.
In the next section we first describe the idea of OSM method
configurations and the elements from which they are con-
structed. In Section 3 we then describe how view-types are
defined and parameterized to support views focused on dif-
ferent subjects. Section 4 then describes how view-type def-
initions and views are assigned to cells of the hyper-cube to
support dimension based navigation, and Section 5 provides
an overview of the overall process used to construct OSM
method configurations. Section 6 concludes the paper.

Proceedings of the 4th Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling (VAO 2016)

Cell

D
yn
am

ic
D
im

en
sio

n
Y

St
a�
c D
im
en
sio
n
Z

Sta�c Dimension X

View A

View B

SUM

Figure 1: OSM Method Configuration Overview

2. OSM METHOD CONFIGURATIONS
A generic OSM environment has to be customized to a

specific view-based methodology before it can be used to
model a particular software system. In our approach this is
achieved by means of a so called OSM method configura-
tion which defines what views need to be created to specify
a system, what these views should contain and how these
should relate to one another. The process of configuring
an OSM method configuration is performed by a so called
methodologist who is an expert in the chosen methodol-
ogy, but is not involved in the specification process. This is
perform by an architect or modeler once the OSM method
configuration has been deployed and the generic OSM envi-
ronment has been instantiated for the specific methodology
to be used.

An OSM method configuration consists of three parts: (a)
the definition of the concepts used in the single-underlying-
model to capture user data, (b) the definition of views pro-
jected from the SUM which are used to visualize and add
data to the SUM and (c) the definition of a hyper-cube defin-
ing the navigation routes for accessing the available views.

Formally, the ingredients of an OSM method definition
(M) can be defined as a set containing the SUM (S), view
definitions (V D) and a hyper-cube (HC), where V D is the
set containing all defined views (Vx).

M := {S, V D,HC}
V D := {V1, ..., Vn}

Figure 1 gives an overview of an OSM method configura-
tion. The left-hand side presents the SUM and two views
(V iewA, V iewB) which are projections of particular parts of
the SUM. The right-hand side presents the multi-dimensional
hyper-cube which in this example is spanned by two static
dimensions (X,Z) and one dynamic dimension (Y). Each
cell of the hyper-cube is identified by a unique set of choices
for each dimension and represents a viewpoint that can have
at most one associated view.

Static dimensions have elements (i.e. choices) that are
predefined by the method (e.g. the PIM or PSM levels in
a platform-independence dimension), while dynamic dimen-
sions evolve as part of the specified model. The dynamic di-
mension Component for example might have elements (i.e.
values or choices) corresponding to the components that are
available in the SUM. This is shown in Figure 1 by the

dashed lines connecting a concept from the SUM with a
value in the dynamic dimension Y . The assignment of views
to cells of the hyper-cube is part of the OSM method con-
figuration and is performed by a methodologist.

In general, of course an OSM method configuration con-
tains more than the two views shown in Figure 1 and the
hyper-cube can be spanned by more than three dimensions.

3. PARAMETERIZED VIEW-TYPE DEFINI-
TIONS

The views in view-based modeling approaches show a par-
ticular part of the SUM describing the system under devel-
opment. How they do this is determined by three things:
(a) what kind of information is shown by the view, (b) what
notation is used to show the information and (c) which spe-
cific part of the SUM is shown in the view. The first two of
these (a and b) can be defined a priori by the methodologist
(i.e. before the start of the system modeling process) and
thus can be thought of as representing the type of the view,
while the latter (c) can only be determined as the model
evolves and thus represents the focus or subject of the view.

At environment configuration time, therefore, the only in-
gredient of views that can be fixed is their view-type. In or-
der to re-use the view-type definitions the content of a view
– i.e. the information from the SUM to be presented by an
“instance”of the view-type – can be selected via a parameter
of the model-to-model transformations that “project” SUM
information into a view. This allows the subject of the view,
which is the only dynamic value controlling the view gener-
ation, to be separated from the static view-type definition
using model-to-model transformations and domain specific
language definitions.

The possibility to use parameters in view generation leads
to views which have a “focus”, i.e. they show the system
from a particular perspective focused on a particular set of
concepts rather than showing an arbitrary part of the system
using a predefined, generic view of the entire system. In
other words, this ability supports so called subject-oriented
views in which views can differ by their subject as well as
their type. As far as we know OSM [2] is the only approach
which supports this capability. Most view-based approaches,
such as Archimate [12] only allow users to “focus” views by
defining ad-hoc content or to populate predefined views with
ad-hoc content, or both [3, 4]. The flexible views approach
of Burger [8] allows view content to be defined at projection
time, but does not tie its selection to navigation dimensions.

Figure 1 shows two views of the same type projected from
the SUM. Although their view-type is the same, however,
their content is different since they have different subjects,
as defined by the parameter to the project transformations –
in this case the parameters are values of the dynamic dimen-
sion Y . The parameter(s) of view-types that define the focus
of specific views (i.e determine their subject) are matched
to dynamic dimension elements from the SUM. Moreover,
these dynamic dimension elements are usually represented
in the views. This is shown in Figure 1 by the dashed arrows
pointing from the concepts in the SUM to their correspond-
ing projection in the views.

4. HYPER-CUBE CONFIGURATION
In order to provide an intuitive and efficient navigation

metaphor over all available views in an OSM environment

8 Colin Atkinson, Christian Tunjic

Sta�c Dim X

D
yn
am

ic
D
im

Y

St
a�
c D
im
Z

B

A
1 2 3 4

a

b

1

2

3

Slice Cell

D
yn
am

ic
D
im

Y

St
a�
c D
im
Z

1

2

3

a

b

Sta�c Dim X1 2 3 4

Figure 2: Slice and Cell in Hyper-Cube

we use a multi-dimensional hyper-cube. This is analogous to
the conceptual cube used in data warehousing [14]. The on-
line analytical processing (OLAP) approach is used to define
“views” which present business reports for business intelli-
gence by answering multi-dimensional analytical queries [9].
In contrast to our navigation approach the OLAP approach
is driven exclusively by dynamic dimensions. The combina-
tion of both kinds of dimensions (i.e. static and dynamic
dimensions) is unique to OSM.

The static dimensions which span the hyper-cube are de-
fined by the methodologist and contain static values which
cannot be changed by architects. Once the dimensions and
dimension elements of the hyper-cube have been defined, a
key step is to assign views to its cells. In the first step, the
view-type definition is assigned to a slice of the hyper-cube
defined by static dimensions by choosing one value for each
static dimension (note that both the view-type and the slice
are static). Such a slice is shown in the left-hand side of
Figure 2 where the static dimension X is set to value 2 and
static dimension Z to value 1. The dynamic dimension Y
is not set to a specific value. The right-hand side of Figure
2 shows two cells (A,B) which are part of the slice in the
left-hand side hyper-cube. The cells are distinguished by
concrete values from the dynamic dimension Y – value a for
cell A and value b for cell B. The slices defined by choosing
concrete values for all static dimensions contain all views of
one particular view-type.

In the case of Figure 1, the slice spanned by values of
the static dimensions contains both views (blue cells). In
other words, both views in the example (V iewA, V iewB)
have the same view-type since their static dimension val-
ues are the same. In the second step a specific view is “in-
stantiated” from the view-type by choosing values from the
dynamic dimensions for the parameters for the model-to-
model transformations of the view-type. In order for the
model-to-model transformation to be able to generate the
view the values of the dynamic dimensions assigned to view-
types must be compatible with the parameters. Once a valid
assignment has been made the appropriate view can be gen-
erated and associated with the corresponding cell which is
uniquely identified by the choice of dimension elements.

In implementation terms, the static dimensions correspond-
ing to a view-type are “hardwired” into the transformation
definitions while the assignment of dynamic dimensions to
parameters is achieved using wildcards since these values
are not available at the time the configuration is performed.
The wildcards are evaluated at runtime when a concrete
system specification (i.e. SUM content) is available. Using
wildcards it is possible to specify that a view exists only

if a (specific) value in a particular dynamic dimension ex-
ists. If, for example, one dynamic dimension contains all
components which are available in the SUM, then the views
which require the existence of a value of this dynamic dimen-
sion would only be available if at least one component exists
in the SUM. The chosen example is very simple in order to
convey the core ideas. In order to support more complex
values in dynamic dimensions, decision trees [7] supporting
decisions over multiple levels can be used.

Ideally all cells of the hyper-cube should have views as-
signed to them since sparse cells are undesirable in an OSM
environment in order to enhance the efficiency of the navi-
gation approach. The views which are assigned to cells form
the V D part of the OSM environment definition for a given
methodology (M).

5. CONFIGURATION PROCESS
The concepts used to visualize information in a view are

usually similar, if not identical, to those used to represent
the corresponding information in the SUM, and often the
two are designed together. The subset of concepts in the
SUM from which the concepts in a view-type are projected
is referred to as the“scope‘”of the view. As explained above,
the task of the methodologist is to define how instances of
concepts in the scope of a view-type are mapped to instances
of concepts in the view language based on the specified sub-
ject of the view at projection-time.

Figure 3 shows the process supporting the configuration
of an OSM environment for a particular methodology. The
rectangle notation is used for activities while the parallelo-
gram notation is used for artifacts. Solid lines show the flow
of activities while the dashed lines show the flow of artifacts
denoting where the artifacts are produced and used.

In order to adapt an existing methodology for use in an
OSM environment the methodology’s existing support for
OSM concepts must first be determined, e.g. what view-
types are needed, what dimensions are recognizable and
what is the subject of existing views. These questions are
answered in the analyse method step and are stored in the
artifact method description. Using the method description
the SUM, the views and the hyper-cube are defined in the
step configure OSM environment. This contains three
sub-steps for the needed actions. In the first step, define
SUM/types, the methodologist defines the types needed
to capture the domain information that needs to be stored
in the SUM. The resulting artifact of this step is the SUM
(S) metamodel. The step, define view-types, is used for
defining the views which are needed according to the method
description. Defining the views means to identify the view-
types and write the projection rules describing how views are
projected from the SUM. In order to ensure the propagation
of information in both directions synchronizable, projective
views are needed [15]. The resulting artifact here is the
set of all view-type definitions for the methodology (V D).
Finally, the step, define hyper-cube, allows the method-
ologist to define the hyper-cube for view navigation using
the information from the method description. Defining the
hyper-cube means to define the static and dynamic dimen-
sions that span the hyper-cube. Furthermore, this step is
used to assign views to the cells of the hyper-cube. The ar-
tifact which results from this step is the hyper-cube (HC)
description. All the sub-steps of the configure OSM en-
vironment step use the method description and contribute

Towards a Configuration Framework for Orthographic-Software-Modeling Environments 9

define
SUM/types

define
hyper-cube

define
view-types

analyse
method

method
descrip�on

OSM method
configura�on

configure OSM environment

Figure 3: Process for Configuration of OSM Environment (role = methodologist)

a specific piece of information to the common resulting ar-
tifact – the OSM method configuration. Since the definition
of the SUM, the views and the hyper-cube go hand in hand
the three sub-steps can be applied in an arbitrary order and
as often as needed.

6. CONCLUSION
In this paper we presented an approach for defining OSM

method configurations for customizing a generic OSM en-
vironment to support particular view-based methods. We
described the ingredients for an OSM configuration descrip-
tion and the concept of parameterized view-type definitions
which use values from a conceptual navigation hyper-cube
to specify the subject of a view. Furthermore we showed
how view-types and view (instances) can be assigned to the
cells of this hyper-cube to provide a simple, intuitive and
systematic way of navigating over all views. The presented
process simplifies the task of configuring an OSM environ-
ment to support and enforce the rules of systematic view-
based modeling environments such as RM-ODP [13].

7. REFERENCES
[1] C. Atkinson. Component-based Product Line

Engineering with UML. Addison-Wesley object
technology series. Addison-Wesley, 2002.

[2] C. Atkinson, D. Stoll, and P. Bostan. Orthographic
software modeling: A practical approach to
view-based development. In Communications in
Computer and Information Science, pages 206–219.
Springer Science + Business Media, 2010.

[3] C. Atkinson and C. Tunjic. Criteria for orthographic
viewpoints. In Proceedings of the 2nd Workshop on
View-Based, Aspect-Oriented and Orthographic
Software Modelling - VAO ’14. Association for
Computing Machinery (ACM), 2014.

[4] C. Atkinson and C. Tunjic. Towards orthographic
viewpoints for enterprise architecture modeling. In
18th IEEE International Enterprise Distributed Object
Computing Conference Workshops and
Demonstrations, EDOC Workshops 2014, Ulm,
Germany, September 1-2, 2014, pages 347–355, 2014.

[5] C. Atkinson, C. Tunjic, and T. Moller. Fundamental
realization strategies for multi-view specification
environments. In Enterprise Distributed Object

Computing Conference (EDOC), 2015 IEEE 19th
International, pages 40–49, Sept 2015.

[6] C. Atkinson, C. Tunjic, D. Stoll, and J. Robin. A
prototype implementation of an orthographic software
modeling environment. In Proceedings of the 1st
Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling - VAO ’13, pages
3:1–3:10, New York, NY, USA, 2013. ACM.

[7] L. Breiman, J. Friedman, C. J. Stone, and R. A.
Olshen. Classification and regression trees. CRC press,
1984.

[8] E. Burger. Flexible Views for View-based Model-driven
Development. PhD thesis, Karlsruhe Institute of
Technology, Karlsruhe, Germany, July 2014.

[9] E. Codd. Providing OLAP to User-Analysts: An IT
Mandate. Codd & Date. 1993.

[10] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein,
and M. Goedicke. Viewpoints: A framework for
integrating multiple perspectives in system
development. International Journal of Software
Engineering and Knowledge Engineering,
02(01):31–57, mar 1992.

[11] T. Goldschmidt. View-based textual modelling. PhD
thesis, Karlsruhe, 2011.

[12] M. Iacob, D. H. Jonkers, M. Lankhorst, E. Proper,
and D. D. Quartel. Archimate 2.0 specification: The
open group. Van Haren Publishing, 2012.

[13] ISO/IEC. RM-ODP. Reference Model for Open
Distributed Processing. ISO/IEC 10746, ITU-T Rec.
X.901-X.904, 1997.

[14] R. Kimball and M. Ross. The Data Warehouse
Toolkit. Data Wareh. Toolkit - Complet. Guid. to
Dimens. Model., 2002.

[15] C. Tunjic and C. Atkinson. Synchronization of
Projective Views on a Single-Underlying-Model. In
Proc. 2015 Jt. MORSE/VAO Work. Model. Robot
Softw. Eng. View-based Software-Engineering -
MORSE/VAO ’15, pages 55–58, New York, New York,
USA, 2015. ACM Press.

[16] J. A. Zachman. A framework for information systems
architecture. IBM Syst. J., 26(3):276–292, 1987.

10 Colin Atkinson, Christian Tunjic

Projecting UML Class Diagrams from Java Code Models

Heiko Klare, Michael Langhammer, and Max E. Kramer
Chair for Software Design and Quality (SDQ)

Institute for Program Structures and Data Organization (IPD)
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{heiko.klare@student.kit.edu, michael.langhammer@kit.edu, max.e.kramer@kit.edu

ABSTRACT
In model-driven software development, source code and other
artifacts are used to describe and develop a software system.
UML class diagrams are one of the most common models that
are used. A UML class diagram models classes and interfaces
of a software system as well as their relations.

The usage of UML class diagrams in addition to source
code can lead to drift and erosion if the models are not
kept consistent with code changes and vice versa: Existing
solutions solve this problem using consistency mechanisms
that update the source code and UML class diagram accord-
ingly. The development and maintenance of such consistency
mechanisms can result in considerable effort and costs.

In this paper, we present a prototype for a new UML class
diagram editor that is realized as a projection of a Java source
code model. The editor does not use an explicit UML model.
It provides another concrete syntax for a subset of the source
code elements and their relations. A model represenation of
the source code is used as a single underlying model (SUM)
for the projective UML class diagram view. As a result, code
and diagrams are updated automatically without the need for
a consistency mechanism. The current minimal UML class
diagram editor uses state-of-the-art model-driven software
technologies and adds less than 2000 LLOC to the Eclipse
IDE, Sirius and JaMoPP.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Object-oriented
design methods; D.2.11 [Software Architectures]: Lan-
guages

Keywords
UML class diagram, projective view, round-trip engineering

1. INTRODUCTION
In modern model-driven software development, not only

source code is used to develop a software system, but also

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

VAO 2016, 2 March, 2016, Karlsruhe, Germany
c© 2016 Copyright held by the owner/author(s).

ISSN 2190-4782.

other artifacts, such as component or class diagrams. For
object-oriented software development, UML class diagrams
[Obj11] are a common language to model software systems
[Lan+14]. Within a UML class diagram, elements such as
classes, interfaces and methods as well as the relations be-
tween them are represented. Certain details, such as the
implementation of method bodies, are not shown. Hence,
an UML class diagram can provide a quick overview of a
software system. To have up-to-date UML class diagrams
during the evolution of a software system, the UML class
diagrams have to be kept consistent with the source code.
If the diagrams are not kept consistent with the code, the
well-known problems architecture drift and architecture ero-
sion [PW92] arise. To solve these problems, a lot of tools,
especially for UML class diagrams, already exist.

We subdivide these tools into three categories. The first
category of tools generate UML class diagrams dynamically
from the source code. This generated diagrams help to get
an overview about the software system but can not be edited.
The second category comprises forward engineering tools,
which can be used to generate a blueprint of the system’s
source code from UML class diagrams. The third category
contains tools that combine the first two categories. Hence,
tools in the third category support round-trip engineering
between source code and UML class diagrams. This means
as soon as developers change the code the architecture is
updated immediately and visa versa. A lot of tools that fall
into the third category, e.g. UML Lab1, have been developed.
To our knowledge, all of these tools use an explicit consistency
mechanism to keep the source code consistent with another
model, which is used for the UML class diagram.

In this paper, we present a round-trip engineering approach
for the third category that does not need to use an explicit
consistency mechanism. Instead, we create a projective view
onto the source code, which omits the problem of keeping
different artifacts consistent during the development process.
By creating a projective view, we achieve consistency be-
tween UML class diagrams and source code by design: all
changes made in the UML class diagram editor are changes
to a different representation of a subset of the source code so
that there is no need for change propagation or something
similar. Since we do not use a consistency mechanism, our
editor should be easier to maintain in cases where either the
UML metamodel or the source code metamodel changes. In
such cases, we only have to update the view definition instead
of changing the consistency mechanisms. Our approach can
be seen as an implementation of the Orthographic Software

1http://www.uml-lab.com/

Proceedings of the 4th Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling (VAO 2016)

Modelling (OSM) approach, which was introduced by Atkin-
son et al. [ASB10]. OSM introduces the idea of a Single
Underlying Model (SUM) that contains all artifacts, which
are used to develop a specific software system. The access to
the SUM is only possible via defined views. In our approach,
we use the source code as the SUM. As views, we use the
standard source code view and the UML class diagram view.
Figure 1 exemplifies the functionality of our editor. The figure
shows a class diagram with two classes, two interfaces and
three methods. An edit operation is performed in step (1):
A new method called download is added within the source
code. The UML editor is updated (2) after saving the source
code files containing the new information.

If one wants to show information in the UML class diagram
that can not be generated from the source code solely, we
propose, similar to other tools, an embedding mechanism into
the source code. One important concept, for example, that can
be used within the UML diagram but does not have a source
code equivalent are the associations. To embed associations
in the source code, we have developed annotations that allow
developers to define the source and target multiplicity as
well as the kind of the association. Hence, the creation of a
projective view is possible because our UML class diagram
does not contain information that is not contained within
the source code already.

Our prototypical implementation of the Projective UML
class diagram editor for Java (ProjUMLed4J) can be down-
loaded online2 and uses state-of-the-art model-driven soft-
ware development technologies: ProjUMLed4J is based on
Eclipse Sirius [VMP14] and the Java Model Parser and
Printer (JaMoPP) [Hei+10]. Both tools are realized using the
Eclipse Modeling Framework (EMF). While our approach for
a projective UML editor could be used for any object-oriented
language, the implementation is currently limited to Java.

The remainder of the paper is structured as follows. In
Section 2 we introduce the necessary foundations. Section 3
gives an overview about the related work. In Section 4 we
explain the realization and features of our new UML editor.
In Section 5 we discuss the advantages and disadvantages
of our approach. Section 6 concludes the paper and gives a
brief outlook on the future work.

2. FOUNDATIONS

2.1 Model-Driven Software Development
In MDSD (Model-Driven Software Development) models

are the primary artifacts of the development process. This
means that in contrast to model-based software development,
models are not only used for some tasks such as documen-
tation. Instead, every artifact is either a model conforming
to an explicit metamodel, which describes the set of allowed
instances, or it is derived from a model. Therefore, even code
is either generated from models or treated as a model that is
used to obtain other models. Source code can be treated as a
textual representation of a code model with special printing
and parsing capabilities. This makes it possible to apply
techniques that were developed for arbitrary models and to
abstract away from the textual nature of code. Programs
that consume or produce models are called model transfor-
mations and can also be described as model instances of a
transformation metamodel.

2https://sdqweb.ipd.kit.edu/wiki/Vitruvius/ProjUMLed4J

2.2 Class Diagrams of the Unified Modeling
Language (UML)

A well-known diagram type of the UML ISO/IEC 19505-
2:2012(E) standard are class diagrams. They represent classes
and interfaces of object-oriented software that may be grouped
into packages. Many concepts of class diagrams, such as in-
heritance, attributes, or operations, have direct equivalents
in object-oriented programming languages, such as Java. The
initial purpose of the UML was, however, not code generation
or co-evolution but support for the documentation and design
of software. Therefore, there is not a universal mapping to
object-oriented code for all concepts that are available in UML
class diagrams. Special associations between classes, such as
aggregations, which represent whole-part relationships, can,
for example, be realized in different ways in object-oriented
code. Round-trip engineering tools for UML class diagrams
and object-oriented code rely on such mappings although
they do not always make them explicit.

2.3 Eclipse Modeling Framework (EMF) and
Sirius

EMF is a set of tools and plug-ins for the Eclipse IDE
that provides all infrastructure necessary for model-driven
development. It provides the metamodelling language Ecore,
which is closely aligned to the Essential Meta-Object Facility
standard ISO/IEC 19508:2014(E), and is used to define meta-
models and implement their instances in a variety of tools
and domains. Code generation facilities of EMF provide a
very convenient way to obtain code for instantiating Ecore
metamodels and editing in a customizable tree-based editor.

To obtain grapical editors for Ecore-based models the Sir-
ius [VMP14] framework can be used. With Sirius, so called
representation descriptions can be defined. These descrip-
tions specify how elements of the represented models shall
be displayed and how they can be edited. A description can
be instantiated for an Ecore-based model and results in a
diagram for that model. The descriptions are interpreted dy-
namically, which means that an existing diagram is opened
with the actual version of the representation description and
not with the one it was created with. Each description must
be assigned to a viewpoint, which summarizes descriptions
that belong together and can be simultaneously activated or
deactivated for a project that uses Sirius diagrams. To create
diagrams with Sirius, a Sirius session must be created. A
Sirius session exists for each project that uses Sirius diagrams.
The session contains references to the used models and the
created representations with their layout information. It is
persisted in a special file in the root folder of the project.

2.4 Java Model Printer and Parser (JaMoPP)
JaMoPP [Hei+10] parses Java source code and represents

it as an instance of an Ecore metamodel so that model-driven
tools can be applied to it. It also supports printing generated
or modified code models without any loss of information.
Printing and parsing of source code is performed in a fully
transparent way so that transformations and analyses of Java
models do not have to consider the special serialization as
Java source files. Cross-references between model elements
are established after parsing so that tools that use JaMoPP
can easily navigate the models and perform analyses.

2.5 Software Architecture Views
The ISO/IEC/IEEE 42010:2011(E) standard mentions two

12 Heiko Klare, Michael Langhammer, Max Kramer

interface IWebGUI{
int webUpload(File file);
File webDownload(String fileName);}

public class WebGUI implements IWebGUI{
private IMediaStore iMediaStore;

@Override
public File webDownload(String fileName){

System.out.println("Begin download");
// ...

}

@Override
public int webUpload(File file){

System.out.println("Begin upload");
// ...

}}

interface IMediaStore{
public int upload(File file);}

public class MediaStore implements IMediaStore{
private int uploadCounter = 0;

@Override
public int upload(File file){

System.out.println("Begin MediaStore upload");
uploadCounter++;

}}

IWebGUI

webUpload(file:File):int
webDownload(fileName:String):File

IMediaStore

upload(file:File):int

WebGUI

MediaStore

uploadCounter:int

iMediaStore1

interface IMediaStore{
int upload(File file);
File download(String fileName);

}

IMediaStore

upload(file:File):int
download(fileName:String):File

add
download
method(1)

update af-
fected UML
artifact auto-
matically(2)

Figure 1: Example of the UML editor’s functionality: After adding the download method to the interface
IMediaStore the UML editor is automatically updated.

different approaches for architectural views that can be ap-
plied to any kind of view: Synthetic approaches integrate
views with each other and have to manage correspondences
and updates. Projective approaches use a central repository
from which all views are derived respectively projected.

3. RELATED WORK
UML class diagrams are a common and established repre-

sentation of software fragments. In the last years, many tools
for generating, editing and viewing class diagrams have been
developed. As we already introduced in Section 1, we sub-
divide these tools into three categories, which are read-only
views generated directly from the source code, forward engi-
neering tools that generate code stubs from the UML class
diagram, and round-trip engineering tools providing a syn-
chronization mechanism for code and the diagram. Since our
tool falls into the third category, we compare our approach
with others in the same category.

UML class diagram editors providing round-trip engineer-
ing with the source code can again be subdivided into three
different categories based on the way they represent the addi-
tional semantic information, which a class diagram contains
as opposed to source code. Most of the existing tools fall into
the first category. They either use a separate UML model
that stores the whole information that is needed for the di-
agram or an artifact containing the additional information
compared to the source code. Tools of the second category
use a central model that stores the whole information of all
related artifacts. Thus, the model contains the UML informa-
tion as well as implementation and further details. The third
and last category aggregates tools which use no additional
artifact to store semantic information but extract it from the

code or, if necessary, store it directly in it.
The list of approaches that fall in the first category is

long. Popular tools are ArgoUML [Ram+03], IBM Rational
Software Architect [Cla10], MagicDraw [No 12] and UML
Lab, which arose from FuJaBa [Nic+00]. The first three
approaches use explicit synchronization mechanisms that
must be triggered by the user. While an explicit update in one
direction, from diagram to code or vice versa, mostly tries to
integrate the changes into the other artifact, some tools simply
generate the other artifact again. In the case of ArgoUML,
this means that changes in a UML class diagram can only
be transformed into a new and empty code template but not
be integrated into existing code. MagicDraw also provides
an explicit synchronization mechanism of diagram and code.
Changes are integrated into the other artifact. Nevertheless,
even simple modifications such as the renaming of a field
are not detected. Instead, the field exists twice after the
synchronization of the renaming operation. On the contrary,
UML Lab uses an approach combining implicit and explicit
synchronization. If an artifact that is affected by a change is
currently opened, it is automatically updated. For instance,
if a class is opened in a Java source code editor and modified
in a UML class diagram, this modification is automatically
synchronized with the code. To ensure consistency with closed
artifacts, an explicit synchronization can also be triggered.
UML Lab also stores the additional semantic information
of UML class diagrams inside the code using formalized
code comments. This allows the sharing of these information
without sharing the diagram itself. The Rational Software
Architect also provides a primarily implicit synchronization
mechanism. Modifications in one view are transferred to the
other. However, modifications of associations inside the code
are not represented in the UML diagram.

Projecting UML Class Diagrams from Java Code Models 13

A popular tool that falls into the second category is the
Enterprise Architect [Spa14]. It provides a toolset for the
design of software architectures containing several UML dia-
gram types. A central model contains the information that
is necessary for all diagrams and for the generation of code
for different programming language from the architectural
design. Modifications in a UML class diagram are persisted
in this central model. However, the synchronization with the
source code has to be called explicitly. This also means that
concurrent modifications in the diagram and the code are
not possible because one overwrites the other.

The last category covers tools that use only the source
code as the model for the UML class diagram. Because these
tools do not use an additional model for storing further in-
formation, there is no mechanism for the synchronization of
semantic elements. A popular tool that falls into this cate-
gory is Together from Borland [Bor05]. The central feature
of Together is the so called LiveSource mechanism, which
synchronizes the class diagram with the source code. The
semantic information that is represented by the UML class di-
agram is either already stored in the source code or persisted
in formalized code comments, for example, for multiplicities
of associations. Together is a quite unintrusive tool since it
does not influence an existing Java project apart from the
mentioned code comments. The layout information of the
class diagrams is stored in a separate folder of the project.

A tool that follows an approach that is similar to the one
we present here was published by the developers of JaMoPP.
Their GMF-based editor [Hei+09] uses JaMoPP to present
the classes inside a package and their relationships graphically.
The editor is not UML compliant and is not compatible
with the latest version of Eclipse but is conceptually also a
graphical editor that uses the source code as the underlying
model. The UML Aid Explorer3 is another tools that can
be assigned to the third category of UML class diagram
tools. It provides the generation of read-only class diagrams
based on the source code as the underlying model. Due
to this mechanism, the diagram is always in sync with the
source code. Additional information of UML class diagrams is
extracted from the model, if possible, but cannot be modified
due to the missing editability of the diagram contents.

The language workbench mbeddr [Voe+13] is built on top
of the Meta Programming System (MPS) [Voe13] and allows
projective editing of Java source code [PSV13] and many
other languages. It uses an Abstract Syntax Tree (AST)
instead of a textual serialization from which all views are
projected. All manipulations in the views are translated to
manipulations of the central AST. Java code is edited in a
projective editor that offers similar functionality to editors
that have to parse the code. Currently, it is however only
possible to visualize and navigate UML class diagrams in
mbeddr but no edit operations are supported.

4. UML CLASS DIAGRAM EDITOR
The editor that we introduce in this paper provides func-

tionality for the viewing and editing of classes in a UML class
diagram that builds on Java source code as the underlying
model. A single diagram represents one package of an exist-
ing Java project since a package represents a semantically
isolated set of classes. However, the concepts we present can
be easily extended to arbitrary sets of classes.

3http://www.objectaid.com

The implementation of our approach uses the EMF tools
Sirius and JaMoPP. JaMoPP allows us to treat Java source
code as an Ecore-based model. For the graphical representa-
tion of the model as a UML class diagram we chose Sirius.
Certainly, any other tools providing these functionalities can
be used for these tasks. The use of state-of-the-art model-
driven software development technologies allows us to imple-
ment our minimal prototype in less than 2000 LLOC. The
remainder of this section explains how our diagram genera-
tion and diagram editor work, and what the limitations of
the implementation currently are.

4.1 Persisting semantic UML information
UML class diagrams are highly abstract representations

of software fragments. Thus, most of their elements can also
be found in more precise artifacts such as source code. Only
few UML elements do not have a clear equivalent in the
code. Especially association properties, such as multiplicities,
belong to these elements that can be implemented in code
in many different ways, if at all, and thus cannot be unam-
biguously extracted from code. This information has to be
stored separately.

In Section 3, we summarized several tools that synchronize
program code and UML class diagrams and therefore use
some mechanism to store the additional semantic informa-
tion of class diagrams. While most of them use a second
artifact to store some kind of code-independent model that
is supplemented with this information, some of them, such
as UML Lab, embed the information in the program code.

Since we rely on the capabilities of Sirius and JaMoPP,
the easiest way to provide the UML specific information
is to integrate it into the source code. This decision has
several further advantages regarding consistency, which we
will discuss later. Since the information increases the code
size, we have decided to use Java annotations for storing
it. Annotations are compact and cannot be easily corrupted
like comments, for instance, through accidental modifications
in the Java code view, because they are a feature of the
programming language that is syntactically and semantically
checked by the compiler.

An association is stored by writing the annotation @As-
sociation next to a field that represents the association in
one direction. Default values for all necessary association
properties are specified in the annotation definition and can
be overwritten in each case. Currently, supported values are
the multiplicities and the type of an association, which can
be an aggregation or a composition.

4.2 Diagram generation process
Our process of generating a UML class diagram for a spe-

cific Java package can be generally separated into two steps:
Initially, an optional preprocessing step extracts semantic
UML information out of the program code and embeds this
information in the code to generate a more expressive dia-
gram. The second step is the diagram generation itself, that
again consists of several steps that complete in a UML class
diagram that is opened in an editor.

Source code preprocessing
Some of the information in a UML class diagram that

cannot be obviously extracted from the program code can
be approximated conservatively. We assume that a field with
a type that is defined in the same package shall be presented

14 Heiko Klare, Michael Langhammer, Max Kramer

as an association. Therefore, an association annotation is
created for all the affected elements.

An interesting property of associations are the multiplici-
ties. The common multiplicities 0..1 and 0..* can be reliably
reproduced from code. Consider the following listing. During
the generation of a UML diagram we generate the annotation
@Association for the attribute myStringList if MyString is
in the same package as MyClass. The multiplicity values are
represented by annotation attributes and are set to 1 by de-
fault. Since the myStringList references an arbitrary number
of MyString objects, the target multiplicity is overwritten
with 0..*, whereas the upper bound is represented by -1.

public MyClass {
@Association(targetLowerMultiplicity=0,
targetUpperMultiplicity=-1)
private MyString[] myStringList; }

More precise multiplicities, especially limited ranges, are hard
to assure in code and even more hard to extract from code.
Generally, there are two types of associations. If they are
single-valued, the code contains a field with the type of the
association target. Furthermore, if a field is declared as final,
its value cannot be changed and thus the multiplicity can
be set to 1. By contrast, if the association is multi-valued,
the field is a collection of the association target type, which
can be any class implementing the Collection interface, an
array, or a user-defined container class. While the first two
can be easily determined by investigating the inheritance
hierarchy respectively check whether the type is used within
an array, the latter one cannot be recognized as a multi-valued
association generally.

We generate this information for each field of classes in the
considered package investigating and modifying the JaMoPP
model of the code. This process could also be performed
based on the Abstract Syntax Tree to avoid the complexity of
JaMoPP. To improve the approximation results, the process
could also be realized semi-automatically. In reasonable cases,
the user could be asked for more specific property values. An
example could be the check of a collection size for a limited
value inside a method, which might be an indicator for the
upper bound of the association multiplicity. To reduce the
number of annotations, our approach could be easily adapted
to only persist annotations for non-default values and to
implicitly handle default values in the view.

In contrast, an association cannot be automatically identi-
fied as an aggregation or composition since the information
can even not be extracted using static Java code analysis.

Diagram generation
The generation of a UML class diagram consists of three

major steps. At first, a Sirius session has to be created and
prepared. After that, the needed resources have to be added
to the session and finally the diagram has to be instantiated.
The diagram generation process is shown in Figure 2.

Sirius sessions are persisted in special files saving the re-
sources and diagrams the session contains. The implemen-
tation of Sirius assumes such a file for every project that
diagrams shall be created for. Thus, the diagram generation
initially creates a session for the affected project if it does
not already exist. Otherwise, the existing session is opened,
which means that the persisted state, that contains the re-
sources and the already created diagrams with their layout
information, is read and resources of the session are loaded.

A Sirius session may contain different types of diagrams.

These types are organized in viewpoints, which can be enabled
or disabled. To enable the creation of UML class diagrams,
its containing viewpoint is activated in the Sirius session.

For each diagram, Sirius needs a single root element whose
content is displayed. Therefore, we cannot simply add the
Java source files we want to display but need an element
containing them. Since we decided to present a single Java
package in each diagram, we use the package as the root
element. Packages are not persisted but implicitly defined
through the package declaration of Java classes. Thus, we
have implemented a virtual package EMF resource that gen-
erates a package element instance of the JaMoPP metamodel.
Afterwards, the Java classes inside the package are added
as compilation units to this package element. This package
resource is added to the Sirius session to be used as the root
element for the diagram that is about to be created.

Sirius has an integrated mechanism for synchronizing the
used resources with the diagram contents. It observes the
persisted resources for modifications and reloads them in case
of a change. Since the added package is a virtual element
and has no persisted equivalent that can be monitored for
changes, in this state no synchronization between code and
the diagram would happen. To achieve this, the resources of
the compilation units inside the virtual package element must
be added to the Sirius session as well. Using the resources
that are contained in the package element, Sirius reloads the
Java classes on changes and implicitly updates the classes
inside the virtual package that is displayed as well.

The mechanics of JaMoPP require a further adjustment
of the previous process. When loading a class with JaMoPP,
a proxy resolution, loading all classes which the currently
loaded one depends on, is performed by default. These de-
pendencies are treated as special proxy objects to avoid that
their dependencies are resolved as well. If, in our scenario, a
class of the package that is currently loaded depends on a
class of the same package that will be loaded later, a proxy
object gets created first. Although the class is completely
loaded afterwards, the proxy object stays in the resource
set. This way the Sirius session could potentially load classes
twice, which will cause synchronization problems. If a class
gets modified in the diagram, this change gets written back to
the code. The proxy objects of the same class recognize that
change of their resource and, therefore, this change is tried
to be written back to the model. This violates the read-only
state of the transaction, which is founded in the fact that the
model should only be read to write the change to the Java
file. Because of that, we need to ensure that the Sirius session
contains each class only once. We achieve this by disabling
the proxy resolution mechanism of JaMoPP while adding
the classes to the Sirius session and reactivate it afterwards.

Finally, we can create an instance of our Sirius UML class
diagram definition for the virtual package element. The dia-
gram is automatically generated for the contents of the given
package element with a default layout determined by Sirius
and is opened in a Sirius diagram editor.

4.3 UML class diagram usage
After creating and opening the UML class diagram, a state-

of-the-art Eclipse Sirius editor is shown. This editor shows the
classes, interfaces and methods with parameters and return
types as well as the visibility of the elements. Furthermore,
it shows the relations of the elements in terms of inheritance
and associations.

Projecting UML Class Diagrams from Java Code Models 15

Source Code Preprocessing

Sirius session creation

Diagram Generation

Insert association annotations Determine reasonable multiplicities

Create and open Sirius sessionActivate UML viewpoint

Disable JaMoPP proxy resolution

Add virtual package resource
1. Generate JaMoPP package element

2. Add compliation units to package element

Add resources of compilation
units to Sirius session

Reactivate JaMoPP proxy resolution

Generate UML class diagram
representation for package

Open Sirius editor

Figure 2: UML class diagram generation process for
a specific package

As mentioned above, the editor allows users to change the
model elements. For example, a name of the method can be
changed by clicking on the method and typing the new name.
Since the editor is just another view onto the source code, the
source code is updated automatically after saving the editor.
For rename operations, the editor automatically supports
refactoring for the classes that are currently displayed. The
reason for that is that each object of the model instance is
created and instantiated once by JaMoPP. Other occurrences
of the objects in the same model are only references to the
original model. Moreover, the toolbox of the editor allows
users the creation of fields, methods, classes and interfaces.

4.4 Features
We already introduced the functionality of the editor in

Section 1. Further features are presented in this section.
Within our editor, the navigation from the UML class diagram
to the source code is possible by double clicking on the class.

Figure 3 shows the steps that are necessary to create a
method or a class. The creation of a method is rather simple
since we only have to create a new method element in the
JaMoPP model. It is automatically synchronized to the code
because Sirius calls the save operation of the JaMoPP model.
The creation of a class is far more complicated: First, we
have to create a file for the compilation unit. Within this

Create Method

Method is added to the JaMoPP class

Save editor to print the source code

Create Class

Create a compilation unit file for class

Create class with the correct name inside the compilation unit

Add the file to the correct package

Add compilation to (virtual) package resource

Add the resource to the current Sirius session

Reload the Sirius editor

Figure 3: Steps that are necessary to create a
method in comparison to steps that are necessary
to create a class. To create a class first we have to
create a resource and a new compilation unit.

compilation unit, we save the contents of the new class as
text. After that, the file has to be added to the correct
package. To get the new compilation unit into the Sirius
session, we have to add it to the current Sirius session and
to the virtual package resource. As the last step, we reload
the Sirius editor to show the newly created class within the
editor. This approach is complicated since Sirius, like other
editor frameworks for EMF models, are optimized for only
one resource containing one root element. In our case, we
have many resources (the Java source code files), with each
of them containing one root element.

In the future, a support of existing UML tools is planned.
Therefore, we need an importer and an exporter from and
to the UML Diagram Interchange format. This can be done
using model-to-model transformations between the UML
class diagram metamodel and JaMoPP.

4.5 Limitations
The current realization of our UML class diagram edi-

16 Heiko Klare, Michael Langhammer, Max Kramer

tor proves the feasibility of the concept of a projective and
editable class editor based on Java code. Nevertheless, the
implementation is limited in the elements it shows and the
modifications it allows. Currently, no stereotypes and gener-
ics are shown and associations are always unidirectional. The
persistence of bidirectional associations requires an extension
of the current annotation mechanism for associations.

The editability of elements inside the editor currently cov-
ers a set of elementary modifications, that are essential for
the usability of the editor. Some features which we plan to
support in the future are the modification of multiplicities,
switching between the presentation of a field as an attribute
or as an association, the modification of class names and the
modification of attribute, parameter and return types.

The modification of values, such as types, multiplicities
and names, that are presented in the diagram can usually be
achieved with the capabilities of Sirius. An actual limitation
of Sirius is the editability of attributes of a relationship
between elements, such as the multiplicities of an association.
Thus, it is currently not possible to realize the modification
of multiplicities using Sirius. Realizing the modification of
types with Sirius features would also be limited since Sirius
only allows the selection of types that are available in the
Sirius session. Although it is theoretically possible to add all
potentially used types as resources to the Sirius session, this
is impossible in practice. The set of potentially used types is
very large, for instance, the whole Java API would have to
be available. The memory consumption of JaMoPP would
be too high due to the large models and the loading process
would take too long for an acceptable usability. One option
for the realization of these modification is the use of the
Extensible Editing Framework (EEF) to realize a two-step
import mechanism that does not need to load all classes prior
to their usage.

Although our editor provides a limited set of displayed
elements and possible modifications at the moment, it can
be easily extended by all the missing features to provide a
full UML class diagram. Merely the integration of advanced
UML elements, such as annotation classes or qualifiers, would
require major modifications. Indeed, even established tools
with UML editors ignore these elements. Finally, it is just
more difficult to implement such elements with our approach
than the already existing features but not impossible.

5. DISCUSSION
In this section we discuss our approach in comparison to

other approaches and give an outlook to what can be done
with projective views on source code. Until now, we executed
some tests of our prototypic editor on some example projects
(e.g. the simple project that can be seen in Figure 1). Part
of our future work is to provide a case study where we apply
our approach to open source projects. Since we use JaMoPP
to parse and print Java source code into an EMF model
representation and Sirius for creating the view, our approach
is embedded into the Eclipse IDE.

Compared to most other tools, our editor only depends on
the source code. This makes it easy to integrate our UML class
diagram editor into existing development tool chains. In fact,
there is no integration effort needed to use our tool with other
tools. This means that developers can stick with tools they
use to change the source code. The UML class representation
is updated automatically if any changes are made to the
source code. Since we embed the associations in the source

code and thus do not need any other artifacts, our approach
can be easily used in collaborative software development
processes. Simultaneous editing of model diagrams, however,
is not supported. If another artifact stores the additional
semantic UML information, it has to be shared as well. In
the case of a conflict due to concurrent changes by different
developers, both artifacts have to be merged ensuring their
consistency. Using our approach, the risk of a faulty merge
is minimized due to the fact that the UML information is
stuck to the element it describes in the source code. The
layout information of the diagrams is not saved in the source
code, but in the Sirius session file that exists for each project.
Thus, if diagrams and their layouts shall be shared between
developers, this file has to be shared between them as well.

Compared to other tools, we do not need a consistency
mechanism. Ensuring consistency is one of the most difficult
parts of the approaches using an additional artifact to store
the UML diagram information. Each tool shows a faulty
behavior in at least one situation. Just to give some example,
UML Lab does not handle the moving of a class into another
package correctly; MagicDraw does not recognize a renaming
of a field, which leads to a duplication of the field after a
synchronization. Enterprise Architect displays a field as an
attribute as well as an association without ensuring consis-
tency between them. Renaming the association leads to an
additional attribute with the old name, and both elements
are synchronized to the code that afterwards contains two
fields instead of one. Since our approach uses the source code
as a SUM and UML diagrams are only projected from it, it
does not need an explicit synchronization mechanism and it
cannot exhibit a faulty behavior in these situations as long
as the generic synchronization logic of Sirius works well.

The missing necessity of a consistency mechanism also
brings an advantage if one of the involved metamodels changes.
If the Java metamodel changes, e.g. if a new Java version
is released, only JaMoPP has to be updated. If the changes
are not affecting the UML class diagram, which was the case
from Java 1.5 until the current Java Version 1.8, the class
editor and the view still work. In this case, our approach
does not differ much from other approaches. They also have
to adapt their source code parser and printer or generator if
the Java language changes.

Since we are not using a dedicated UML metamodel, our
projective view still works if the UML metamodel changes.
However, in this case, our UML class diagram does show
the new features that were added in the UML metamodel
changes. To get an adapted UML class diagram, the view
definition has to be updated. After doing that, the view shows
the new UML model and the source code is kept consistent
automatically. Tools that use a consistency mechanism need
to update the view and the consistency mechanism, e.g., the
transformations that are used to keep the UML class diagram
consistent with the code.

To exemplify this, we consider a change that could be
introduced into the UML metamodel: A new EventInterface
class is introduced into the UML metamodel, which should
be displayed in UML class diagrams. In the source code, an
EventInterface is represented as a normal interface. To figure
out whether a normal interface or a new event interface should
be generated for an event interface, there are two possibilities:
Either an event interface has to provide a specific method,
or we can annotate standard code interfaces with a new
EventInterface annotation. To adapt our editor, we have to

Projecting UML Class Diagrams from Java Code Models 17

specify the representation of the new EventInterface in the
editor. To enable the creation of an event interface within
our editor, we have to add a new tool in the tool section and
specify the meta class of JaMoPP (in this case Interface) that
should be created. Tools that use a consistency mechanism
would have to adapt at least the consistency mechanism as
well as the view to reach the same functionality.

Our approach of having a projective view and using the
source code as SUM could be extended to further UML views.
For example, it is possible to create a UML package diagram
view. A UML package diagram shows all packages of a soft-
ware system and its dependencies. The necessary information
to create such a model is already contained in the source
code, and there is no need to extend the source code with
additional annotations or comments. If one wants to use the
approach of creating a projective view with the source code
as SUM to create, for example, an activity diagram, the chal-
lenge arises that additional information is required that is not
contained in the source code already. This information could
be added by creating additional annotations or comments
for the affected source code element, e.g., classes, methods or
even statements within the method bodies. However, if too
much additional information is included in the source code,
it gets bloated and confusing for developers. To circumvent
that, a new source code view could be created that shows the
code without the annotations. However, this view is not easy
to create since Sirius can not be used for the view creation.
Hence, the approach of having projective views seems promis-
ing if only information that is contained in the source code
must be displayed. To investigate this claim, the creation of
additional views will be part of our future work.

6. CONCLUSION
In this paper we presented a projective UML class diagram

view using the source code as SUM. The view is created using
Sirius and JaMoPP. It gives an overview about the classes
within a package and supports editing of the class diagram.
Furthermore, we support associations and their multiplicities
using Java annotations. Since we use JaMoPP, changes made
in the view are automatically saved within the source code.
Compared to existing tools we do not need a consistency
mechanism to keep source code and the UML class diagram
consistent during the software evolution.

In future work, we will extend our preprocessing to infer
more association properties, such as ordered and unique for
lists and set, as well as qualifiers for maps. Furthermore,
technology-specific annotations, such as ”OneToMany“ of
the Java Persistence API (JPA), could be supported. We
will investigate whether it is possible to use our approach
to create further projective views using the source code as
SUM. We also plan to evaluate the maintainability of our
approach in comparison to the maintainability of other tools.

References
[ASB10] C. Atkinson, D. Stoll, and P. Bostan. “Ortho-

graphic Software Modeling: A Practical Approach
to View-Based Development”. In: Evaluation of
Novel Approaches to Software Engineering. Vol. 69.
Communications in Computer and Information
Science. Springer, 2010, pp. 206–219.

[Bor05] Borland Software Corporation. Borland Together
UML 2.1 Guide Version 2008 R3 . 2005.

[Cla10] Claire Liu. Round Trip Engineering Scenario us-
ing Rational Software Architect and ClearCase
Remote Client . 2010.

[Hei+09] F. Heidenreich et al. Jamopp: The java model
parser and printer. Tech. rep. 2009.

[Hei+10] F. Heidenreich et al. “Closing the Gap between
Modelling and Java”. In: Software Language En-
gineering. Vol. 5969. LNCS. Springer Berlin Hei-
delberg, 2010, pp. 374–383.

[ISO11] ISO/IEC/IEEE 42010:2011(E). Systems and soft-
ware engineering – Architecture description. Inter-
national Organization for Standardization, Geneva,
Switzerland, 2011, pp. 1–46.

[ISO12] ISO/IEC 19505-2:2012(E). Information technol-
ogy – Object Management Group Unified Modeling
Language (OMG UML), Superstructure. Interna-
tional Organization for Standardization, Geneva,
Switzerland, 2012, pp. 1–758.

[ISO14] ISO/IEC 19508:2014(E). Information technology
– Object Management Group Meta Object Facil-
ity (MOF) Core. International Organization for
Standardization, Geneva, Switzerland, 2014.

[Lan+14] P. Langer et al. “On the Usage of UML: Initial
Results of Analyzing Open UML Models.” In:
Modellierung. Vol. 19. 2014, p. 21.

[Nic+00] U. A. Nickel et al. “Roundtrip engineering with
FUJABA”. In: Proceedings of the 2nd Workshop
on Software-Reengineering (WSR), August. 2000.

[No 12] No Magic, Inc. MagicDraw Technical Overview .
2012.

[Obj11] Object Management Group (OMG). Unified Mod-
eling Language (UML), Infrastructure Specifica-
tion – Version 2.4.1 . 2011.

[PSV13] V. Pech, A. Shatalin, and M. Voelter. “JetBrains
MPS As a Tool for Extending Java”. In: Pro-
ceedings of the 2013 International Conference on
Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and
Tools. PPPJ ’13. ACM, 2013, pp. 165–168.

[PW92] D. E. Perry and A. L. Wolf. “Foundations for the
Study of Software Architecture”. In: ACM SIG-
SOFT Software Engineering Notes 17.4 (1992),
pp. 40–52.

[Ram+03] A. Ramirez et al. ArgoUML User Manual A tuto-
rial and reference description. 2003.

[Spa14] Sparx Systems. Enterprise Architect User Guide.
2014.

[VMP14] V. Viyovic, M. Maksimovic, and B. Perisic. “Sirius:
A rapid development of DSM graphical editor”.
In: Intelligent Engineering Systems (INES), 2014
18th International Conference on. IEEE. 2014,
pp. 233–238.

[Voe+13] M. Voelter et al. “mbeddr: instantiating a lan-
guage workbench in the embedded software do-
main”. In: Automated Software Engineering 20.3
(2013), pp. 339–390.

[Voe13] M. Voelter. “Language and IDE Modularization
and Composition with MPS”. In: Generative and
Transformational Techniques in Software Engi-
neering IV. Vol. 7680. LNCS. Springer Berlin
Heidelberg, 2013, pp. 383–430.

18 Heiko Klare, Michael Langhammer, Max Kramer

Towards Metamodel Integration
Using Reference Metamodels

Johannes Meier
Software Engineering Group

University of Oldenburg, Germany
meier@se.uni-oldenburg.de

Andreas Winter
Software Engineering Group

University of Oldenburg, Germany
winter@se.uni-oldenburg.de

ABSTRACT
The complexity of modern software engineering projects in-
creases with growing numbers of artefacts, domain specific
languages, and stakeholders with their concerns. To over-
come these demands, different viewpoints are used to de-
scribe different languages specifying different artefacts, spe-
cific concerns of stakeholders, and domain specific languages.
Therefore, the use of different viewpoints together in one
software engineering project increases and requires techni-
cal support for automatic synchronization of the used view-
points. This paper gives an overview about use cases for
viewpoint synchronization and compares their fulfillment by
existing approaches. As result, this vision paper proposes
a new approach for synchronization of viewpoints to over-
come the presented use cases with focus on reduction in syn-
chronization and integration effort, on reuse of integration
knowledge, and on viewpoint evolution.

1. MOTIVATION
Viewpoint-oriented software engineering is becoming more

and more an essential paradigm in modern software engi-
neering. It allows different viewpoints on the current system
under development, and is motivated by an increasing num-
ber of different artefacts and languages, which are involved
in modern software systems. Working with one artefact writ-
ten in one language out of several means using one viewpoint
out of several viewpoints pointing on the same information
of the system.

As an example to describe and develop software, view-
points for representing requirements in textual form, de-
signing required static data in form of UML class diagrams,
object-oriented implementation using Java, and for testing
with JUnit testcases could be used. They all are work-
ing on information, which form together the domain. The
term domain describes all relevant information of the cur-
rent project. This example stems from the domain of object-
oriented software development (OOSD) and is an ongoing
one through the complete paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

VAO ’16 March 2, 2016, Karlsruhe, Germany
c© 2016 Copyright held by the owner/author(s).

ISSN 2190-4782.

Different viewpoints support different concerns of different
stakeholder with tailored viewpoints. Following the defini-
tions of ISO 42010:2011 [8], a viewpoint determines selected
concepts of the domain addressing specific concerns. A view
contains a subset of the concrete information of the domain
on instance level and is conform to one viewpoint.

An important property of viewpoints on technical level is
the possibility for overlapping viewpoints [7]. This allows
using same concepts in different viewpoints. As an exam-
ple, the tester needs at least reading access to the source
code, and to the requirements which are giving specifica-
tions what to test. This concept allows several stakeholders
to work together at the same software project using differ-
ent viewpoints. Overlapping viewpoints raise the problem of
duplicated data which are changed through different view-
points which is a source for inconsistencies, which leads to
the need for synchronization of data for being consistent [6].

Working with several viewpoints requires also, that fur-
ther information on content level “between” the viewpoints
can be expressed. As an example, relations between the
viewpoints for requirements and Java source code specify,
which part of the source code fulfills which requirement. To
support this kind of traceability between viewpoints on con-
tent level, new viewpoints could be defined for this purpose.

These aspects have to be realized on technical level, be-
fore user are able to work in viewpoint-oriented way. While
working, the user needs support to synchronize viewpoints
with other ones. Because of this different use cases and
their actors, this position paper prepares several use cases
in viewpoint-oriented projects as first step (Section 2). After
comparison with existing approaches, which shows different
fields for improvements, this position paper introduces a new
approach for the synchronization of viewpoints for user, and
for reduced integration effort for methodologists (Section 3).
The approach will also support existing viewpoints and cor-
responding existing data, the evolution of that integration
by the methodologists, and the reuse of integration effort in
future projects by methodologists. This position paper ends
with a conclusion and an outlook in Section 4.

2. USE CASES
The two most important stakeholder in viewpoint-oriented

projects are the user who uses one or more viewpoints for
working with different artefacts, and the methodologist [1,
15] who creates and manages the viewpoints and their re-
lationships with each other. In the following, several use
cases for user and methodologists are described and their
fulfillment by existing approaches discussed.

Proceedings of the 4th Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling (VAO 2016)

2.1 Integrate existing Viewpoints
Initially, the methodologist integrates existing viewpoints

somehow. Suitable existing approaches from literature are
divided into synthetic and projectional approaches, following
the ISO for Architecture Description 42010:2011 [8]. These
two approaches are visualized in Fig. 1 using the ongoing ex-
ample. Synthetic approaches keep the views of the different

Textual-RQs
ViewPoint

Java
ViewPoint

ClassDiagram
ViewPoint

JUnit
ViewPoint

Textual-RQs
ViewPoint

Java
ViewPoint

SUMM

ClassDiagram
ViewPoint

JUnit
ViewPoint

Figure 1: Synthetic vs. Projectional Approaches

viewpoints unchanged and independent from each other, and
require some kind of synchronization between all viewpoints
for consistency (Fig. 1). Main characteristic is the pair-
wise synchronization between the viewpoints to propagate
changes from one viewpoint into all other viewpoints. To
synchronize overlapping concepts like classes of viewpoints
for Java and class diagrams, synchronizations directly be-
tween these two viewpoints are introduced.

The several synthetic approaches differ from each other
by using different techniques for synchronizations: Triple
Graph Grammars (TGGs) are used for specifying bidirec-
tional relations between different graph languages [13]. In
opposite to that, [12] uses QVT-R for synchronization.

Projectional approaches integrate the existing viewpoints
into one singe integrated metamodel (later called SUMM)
which contains the concepts off all viewpoints in an inte-
grated manner, whereby synchronization is done only be-
tween viewpoint and SUMM. Each viewpoint works with a
subset of the concepts of the SUMM, and propagates changes
in the view to the central model. In Fig. 1, the central meta-
model called SUMM contains all concepts of the viewpoints
for textual requirements, UML class diagrams, Java source
code, and JUnit test cases. Duplicated concepts like classes
in the viewpoints for Java source code and UML class di-
agrams are only once in the SUMM which saves pair-wise
synchronization effort. Instead, the viewpoints containing
a subset of the concepts of the SUMM propagate changes
in their views into the SUM, which forwards the changes to
the other views which contain also these changed concepts.
There are also several projectional approaches which differ
from each other mostly in the underlying techniques.

Orthographic Software Modeling (OSM) [1] uses a so called
Single Underlying Model (SUM) which contain all informa-
tion about the current domain. Therefore, a metamodel
for the SUM is needed, the Single Underlying MetaModel
(SUMM). The SUM will be changed only through changes
in views on it, respectively viewpoints on the SUMM. The
views will be synchronized with the SUM by transforma-
tions. An environment for OSM is realized prototypically [2].
The issue, how to get a SUMM, is marked as future work [2].

The Vitruvius approach [10] follows the projective OSM
ideas of a SUM with views on it, but implements this idea
internally by a so-called modular SUM (MSUM). For that,
the existing models are kept independent from each other
like in synthetic approaches (without an explicit SUMM),
and are combined with relations between each pair of view-
points expressed through a new DSL called MIR, from which
synchronization transformations are derived. In the end, on
technical level, Vitruvius can be seen as synthetic approach.

2.2 Import and integrate existing Data
If in viewpoint-oriented projects data already exist which

are conform to the integrated viewpoints, then these data
have to be imported and reused. In particular, if data are
coming from different overlapping viewpoints, not only the
viewpoints have to be integrated, but also the instance data.
Additionally, existing tools use models which conform to
fixed metamodels of viewpoints. As result, the approach
has to keep the existing viewpoints as first viewpoints to
allow import and export for existing data and tools. This
use case is motivated also in Vitruvius [10].

An advantage of synthetic approaches is, that existing
viewpoints are directly usable, because only additional mecha-
nisms for synchronization between the existing viewpoints
will be created. Therefore, no additional effort is required
to keep existing viewpoints and views usable for existing
tools. Keeping existing viewpoints is significant easier in
synthetic approaches, because projectional approaches take
the existing viewpoints and integrate them into a SUMM.
The presented projectional approaches in the modeling area
do not give hints, how to deal with existing viewpoints.

2.3 Create new Viewpoints
In approaches for viewpoint-oriented engineering, method-

ologists have to create new viewpoints to support new exter-
nal tools with a fixed viewpoint and new concerns of stake-
holders. Important is, that new viewpoints have to use all
aspects of the current domain [6]. In particular, concepts of
several existing overlapping viewpoints together with their
interrelations have to be reusable for new viewpoints. This
allows easy creation of new viewpoints while reusing the
elaborate work for integration.

Reusing concepts of different viewpoints is hard in syn-
thetic approaches, wherefore Vitruvius introduces a declar-
ative DSL called ModelJoin [3]. With ModelJoin, new view-
points can be defined declaratively using concepts of several
viewpoints, while the required metamodel of the new view-
point and the synchronization transformations will be gener-
ated from the declarations. For the projectional approaches,
[4] has similar ideas like the OSM approach and focuses on
how to create new viewpoints on basis of a SUMM. For that,
[4] developed an editor which helps to create new viewpoints
as subsets of the SUMM. The needed synchronizations be-
tween new viewpoints and the SUMM will be generated,
which use model differences for propagating changes between
SUM and all views.

2.4 Synchronize Views
After integrating viewpoints and importing existing data,

user read and write all data through initial and new view-
points. Changed concepts in one viewpoint have to be syn-
chronized into all viewpoints containing these concepts to
keep overlapping viewpoints consistent.

General problem of synthetic approaches is the square
number of relations between the viewpoints, which synchro-
nize overlapping views of overlapping viewpoints to avoid
inconsistencies. This results in heavily increasing initially
creation effort. By contrast, in projectional approaches the
number of required synchronizations is linear in the num-
ber of viewpoints. This is achieved by deleting duplicated
concepts in the SUMM. At runtime, changes in a view are
synchronized into the SUM, and from there forwarded into
other views which also contain the changed elements.

20 Johannes Meier, Andreas Winter

2.5 Create a similar Integration again
Another problem is the initial effort for methodologists

to integrate all viewpoints. While this initial effort is in
general not avoidable, the reuse of previous done integra-
tion in future projects simplifies viewpoint integration. As
an example, in a future project, requirements, Java code,
and testcases should be used like before, but now Extended
Entity Relationship (EER) diagrams should be used for de-
scribing static data. It would be nice to reuse the integration
of requirements, source code, and testcases, and exchange
class diagrams through EER diagrams easily. This results
in the problem, how to reuse integration knowledge in fu-
ture projects in the same domain. Ideas for reusing inte-
gration knowledge inside domains are not mentioned in the
presented related work, which shows field for optimization.

2.6 Evolve Viewpoints
After finishing the integration of viewpoints, the initial

viewpoints and their integration evolve because of, as exam-
ples, new versions of the tool specifying the viewpoint, or
new version of Java like in the ongoing example. It is im-
portant, that evolution is possible, all unrelated metamodels
remain the same, and that the co-evolution of existing mod-
els will be handled [6]. Neither the presented synthetic nor
projectional approaches support currently this use case.

3. NEW APPROACH
This section proposes a new approach for viewpoint in-

tegration. Summarizing the related work for the different
use cases in viewpoint-oriented projects, the integration and
synchronization of projectional approaches has linear effort
compared with square effort for synthetic approaches, while
projectional approaches lack in handling existing data. Be-
cause this limitation is removable with manageable effort
(compare Section 3.2), and the creation of new viewpoints
is possible in both approaches but easier in projectional ones,
the new approach of this position paper extends the projec-
tional OSM approach. The following text show, how this
new approach look like and will fulfill all the use cases.

3.1 Integrate existing Viewpoints
To create the SUMM which have to contain the concepts

of all viewpoints exactly once, the metamodels of the view-
points will be taken and integrated into one big metamodel,
the SUMM. This integration will be done by the method-
ologist who has to define on semantic level, which concepts
are duplicated in several viewpoints, and which additional
relations between concepts have to be added. On techni-
cal level, several operators will by applied on the metamod-
els in a step-wise way. Besides typical operators like add,
change, and delete [11], some more specialized refactorings
like merging two classes representing the same concept into
one single class are required. The selection of appropriate
operators is part of future work. These operators allow the
integration of the metamodels of the different viewpoints
into one single underlying metamodel which is required by
the OSM approach as input.

3.2 Import and integrate existing Data
An open issue in the existing OSM approach is, how to

handle existing data which are conform to the integrated
metamodels. This is important, because existing tools, for
example, for modeling UML class diagrams, should be used
together with the new approach. As an example, existing
Java source code should be used further on. This means in

both cases, that existing viewpoints and their data (here for
UML class diagrams and for Java source code) have to be
usable together within the new approach. On technical level,
the concrete metamodels have to be kept as viewpoints on
the final SUMM through the complete integration process.

This should be ensured by the in Section 3.1 proposed
step-wise execution of operators on the metamodels with
parallel creation of transformations for the model-co-evolu-
tion [5]. After integrating the viewpoints into the SUMM,
the corresponding co-evolution-transformations allow the in-
tegration and import of the existing data into the SUM. If
each step is combined with a complementary operator and
a complementary co-evolution-step for the other direction,
the data export from the SUMM into the viewpoints will be
executable.

3.3 Create new Viewpoints
To create new viewpoints onto an existing SUMM, the

existing projectional approach of [4] will be reused: After
selecting a subset of the SUMM which forms the viewpoint,
the required synchronizations between new viewpoints and
the SUMM will be generated.

3.4 Synchronize Viewpoints
Extending the OSM approach allows linear effort for syn-

chronization transformations. For future implementations,
approaches for the propagation of model differences between
views and the SUM like [15] which is used in the OSM ap-
proach or like [4] can be used also in this approach.

3.5 Create a similar Integration again
Looking at the ongoing example, concrete metamodels for

Java code and class diagrams are integrated into a SUMM
following the OSM approach. If a new project uses C++ in-
stead of Java, the complete integration has to be performed
again, while for integration purposes only general concepts
like classes and methods are required. To allow such reuse
of integration knowledge in the new approach, these general
concepts will be moved into reference metamodels (RMMs).

Following [16], reference models are modeling the main
and general characteristics of sets of systems of the same
kind, and hiding specialized aspects of individual systems [9].
Reference models serve as reference point for specialized
models [16] and support the construction of specialized mod-
els reusing the concepts of the reference model [14].

Because the specialized models are metamodels for Java
and C++, a reference metamodel will be created. Java and
C++ have both generalizable characteristics like classes and
methods, and specialized aspects like different handling of
pointers. The generalizable characteristics are part of the
reference metamodel for object-oriented programming lan-
guages, while the specialized aspects remain in the concrete
metamodels for Java and C++ (Fig. 2). The RMM for

XSD
ViewPointEER

ViewPoint

C++
ViewPoint

Requirements
RMM

OO-GPL
RMM

RSUMM

StaticData
RMM

TestCase
RMM

Textual-RQs
ViewPoint

Java
ViewPoint

ClassDiagram
ViewPoint

JUnit
ViewPoint

Figure 2: Concepts of the new approach
the subdomain of object-oriented programming languages
would contain at least classes containing methods. Con-
crete metamodels for Java and C++ will be mapped onto
their corresponding RMM, whereby as example the details of

Towards Metamodel Integration Using Reference Metamodels 21

the Java and C++ metamodels are ignored on RMM level.
The RMMs of all subdomains will be integrated into the
RSUMM. The RSUMM contains the integration on concep-
tual level, like here the integration of classes and methods
from object-oriented programming languages, with classes
and attributes of data description languages.

In concrete projects, for each subdomain one concrete
metamodel will be selected, like Java as programming lan-
guage and Extended Entity Relationship (EER) diagrams
as data description language. Based on the RSUMM, the
RMM parts will be replaced by concrete metamodels to get
the SUMM, whereby the integration knowledge will be de-
rived from the integration done in the RSUMM. The derived
SUMM is the same like in the OSM approach.

This approach allows to integrate the subdomains as rep-
resentatives for the main concepts only once in form of the
RSUMM for each domain, instead of each time in form of
SUMMs for each new project. The integration in form of
the RSUMM can be reused for each project by “instantiat-
ing”each subdomain by the currently needed concrete meta-
model to get a SUMM. This allows arbitrary combinations
of concrete metamodels and their viewpoints.

Another advantage of the new approach is, that for new
concrete viewpoints like XML Schema Definition (XSD), its
mapping to the StaticDataRMM is enough, and no complex
integration with other subdomains has to be performed, be-
cause the integration is done before using the RMM. After
creating the mapping, XSD can be used directly.

The technique for mappings between concrete metamodels
and their reference metamodels is part of future work, which
could apply step-wise metamodel changes (Sec. 3.1).

3.6 Evolve Viewpoints
After finishing the metamodel integration by the method-

ologist and while user are working with the integrated view-
points, evolution can occur to the integrated viewpoints:
The evolution of new viewpoints (CMMs) basing on the
SUMM can be expressed again as metamodel changes to-
gether with the creation of model-co-evolution transforma-
tions to handle the instance level. The evolution of the
CMMs can be simplified in this approach by distinguishing
changes into changes which affect only unimportant concepts
which are not part of the RMM, and into important changes
which affect both the CMM and the RMM. While the former
case can be realized as refactoring of the CMM, the latter
case requires also changes in the RMM and therefore also
in the RSUMM, which will be complex and requires further
investigations. But after handling the evolution task in the
RSUMM, all derived SUMMs benefit and apply them.

4. CONCLUSION
For technical support of viewpoint-oriented software engi-

neering, the viewpoints have to be integrated by the method-
ologist to offer the user consistent information across sev-
eral viewpoints. Therefore, this position paper presented
different use cases in viewpoint-oriented projects, and com-
pared their fulfillment by several synthetic and projectional
approaches. As result, synthetic approaches have the prob-
lem of square synchronization effort, projectional approaches
lack in supporting existing viewpoints, and all approaches
do not support the evolution of viewpoints and the reuse of
integration results in future projects.

To overcome these limitations, this paper proposes a new
approach following the OSM approach to have only lin-

ear synchronization effort. The new approach extends the
OSM approach by support for existing viewpoints, which
allows using existing data and reusing existing tools. This
is reached by rigorously creating model-co-evolution mecha-
nisms for all metamodel changing steps, which are needed
to map concrete metamodels to their reference metamodels
and to integrate reference metamodels into the RSUMM.

Main contribution and benefit of the new approach com-
pared to existing approaches is the reuse of integration effort
for future projects within the same domain, which is not in
the focus of other approaches. This is reached by shifting
the integration of concrete metamodels to the integration
of concepts expressed in reference metamodels (RMM) con-
taining the main concepts of subdomains. This allows the
methodologist to select one of several possible metamodels
like for Java or C++ for the current project. As result, the
complex integration will be done once on reference level, and
will be reused while deriving SUMMs for current projects.

The proposed ideas of this position paper will be con-
cretised and implemented in a framework for viewpoint-
oriented software engineering. As domain for validation, the
ongoing example of this paper of object-oriented software de-
velopment will be used, which could be extended by further
subdomains like project management, or documentation.

5. REFERENCES
[1] C. Atkinson, D. Stoll, and P. Bostan. Supporting

View-Based Development through Orthographic Software
Modeling. Enase, pages 71–86, 2009.

[2] C. Atkinson, D. Stoll, C. Tunjic, and J. Robin. A Prototype
Implementation of an Orthographic Software Modeling
Environment. VAO 2013.

[3] E. Burger, J. Henss, M. Küster, S. Kruse, and L. Happe.
View-based model-driven software development with
ModelJoin. Software & Systems Modeling, 2014.

[4] A. Cicchetti, F. Ciccozzi, and T. Leveque. A hybrid
approach for multi-view modeling. Recent Advances in
Multi-paradigm Modeling, 50, 2011.

[5] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio.
Automating co-evolution in model-driven engineering. 12th
EDOC’08, 2008.

[6] R. France and B. Rumpe. Model-driven Development of
Complex Software: A Research Roadmap. FOSE 2007.

[7] T. Goldschmidt, S. Becker, and E. Burger. Towards a
Tool-Oriented Taxonomy of View-Based Modelling. 2012.

[8] IEEE. ISO/IEC/IEEE 42010:2011 - Systems and software
engineering - Architecture description. 1–46, 2011.

[9] H. Krallmann and B. Scholz-Reiter. Cim-KSA - Eine
Rechnergestützte Methode für die Planung von
Cim-Informations- und Kommunikationssystemen.
Informatik-Fachberichte, 258:57–66, 1990.

[10] M. Kramer, E. Burger, M. Langhammer. View-centric engi-
neering with synchronized heterogeneous models. VAO’13.

[11] D. Kuryazov and A. Winter. Representing Model
Differences by Delta Operations. EDOCW 2014.

[12] J. R. Romero, J. I. Jaén, and A. Vallecillo. Realizing corres-
pondences in multi-viewpoint specifications. EDOC 2009.

[13] A. Schürr and F. Klar. 15 Years of triple graph grammars:
Research challenges, new contributions, open problems.
Lecture Notes in Computer Science, 5214:411–425, 2008.

[14] O. Thomas. Understanding the Term Reference Model in
Information Systems Research: History, Literature Analysis
and Explanation. LNCS, 3812 (Chapter 45):484–496, 2006.

[15] C. Tunjic and C. Atkinson. Synchronization of Projective
Views on a Single-Underlying-Model. VAO 2015.

[16] A. Winter. Referenz-Metaschema für visuelle Modellie-
rungssprachen. Deutscher Universitäts-Verlag, 2000.

22 Johannes Meier, Andreas Winter

	2016,7_Titelbl.pdf
	Pages from vao2016_proceedings-1.pdf

