
energies

Article

Modeling and Simulation the Thermal Runaway
Behavior of Cylindrical Li-Ion Cells—Computing of
Critical Parameter
Andreas Melcher *, Carlos Ziebert, Magnus Rohde and Hans Jürgen Seifert

Institute for Applied Materials-Applied Materials Physics, Karlsruhe Institute of Technology,
Hermann-von-Helmholtz-Platz-1, Eggenstein-Leopoldshafen 76344, Germany
* Correspondence: andreas.melcher@kit.edu; Tel.: +49-721-608-28927

Academic Editor: Sheng S. Zhang
Received: 11 February 2016; Accepted: 7 April 2016; Published: 16 April 2016

Abstract: The thermal behavior of Li-ion cells is an important safety issue and has to be known
under varying thermal conditions. The main objectives of this work is to gain a better understanding
of the temperature increase within the cell considering different heat sources under specified
working conditions. With respect to the governing physical parameters, the major aim is to find
out under which thermal conditions a so called Thermal Runaway occurs. Therefore, a mathematical
electrochemical-thermal model based on the Newman model has been extended with a simple
combustion model from reaction kinetics including various types of heat sources assumed to be
based on an Arrhenius law. This model was realized in COMSOL Multiphysics modeling software.
First simulations were performed for a cylindrical 1860 cell with a LiCoO2-cathode to calculate the
temperature increase under two various simple electric load profiles and to compute critical system
parameters. It has been found that the critical cell temperature Tcrit, above which a thermal runaway
may occur is approximately 400 K, which is near the starting temperature of the decomposition of the
Solid-Electrolyte-Interface in the anode at 393.15 K. Furthermore, it has been found that a thermal
runaway can be described in three main stages.

Keywords: Li-Ion batteries; thermal runaway; mathematical modeling; simulation; electrochemical
thermal model; solid fuel model; COMSOL Multiphysics

1. Introduction

Lithium-ion batteries (LIB) have found a wide range of applications in many consumer products
in the last 25 years. LIBs are used in cell phones, tablet and laptop computers as well as in electric
(EV) or hybrid electric (HEV) driven vehicles. The size and the capacity of the batteries differs with
the application. A battery used in an EV or HEV is much bigger than the one used for a cell phone.
However the scale up of the batteries leads to a complexity of the physical phenomenona that do not
play any significant role in single or small battery systems.

The occurrence of these physical phenomena are spread over a wide range of time and length
scales, from the atomic level up to the heat transfer of the whole battery. The relation of these different
phenomena to each other is of great importance, especially regarding the safety of the battery systems.

The usage of model-based investigations promises a theoretical understanding of battery physics
even beyond the point that is possible using experiments. Due to their general structure, the behavior
of batteries is strongly affected by the interaction of physics on varying length and time scales. In
the last two decades, many approaches have been reported in literature starting with the work of
Newman [1–3] based on the theory of porous electrodes [4]. This theory is based on a electrochemical
description of diffusion dynamics and charge transfer kinetics of a battery and can give a forecast of the
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electric response of a cell in an intercalation electrode system. This model is adequate in small battery
systems. In large formatted battery cells, however, the uniformity of the electrical potential along the
current collectors in the cell composites are no longer given. Additionally due to the inhomogeneity of
the distribution of the temperature field with respect to the cell geometry, thermal dynamics must also
be taken into account.

As consequence an extended coupled electrochemical-thermal model must be considered.
First thermal approaches for Lithium batteries are suggested by Newman and Pals [5–7] using an
inhomogeneous heat equation , where the coupling of the thermal and electrochemical model is
realized with the heat generation terms. This approach can be applied to single battery cells as well as
for whole batteries [8–12]. Parallel the multi-scale and multi-domain character of the electrochemical
model is developed [13,14] by using the mathematical theory of homogenization resp. the spatial
averaging theorem [15]. Newer approaches are reported in the works of [16–18].

First, coupling between the multi-scale, multi-domain electrochemical-thermal model is
introduced by [19–21] and is under development until now. A general short overview can be found in
[22] and some current results in [23–25]. The purpose of this modeling approach is to gain a better
understanding of the behavior of large LIB systems, because the transport of electrical current and
heat must be considered on the length scales of the electrode particles up to the length scale of the
cell composite, which is in general an anisotropic medium. One central point in the modeling of LIBs
are the aspects of cell safety which correspond to the thermal stability of a LIB. Several exothermic
reactions can occur inside a cell during operation as its inner temperature increases. If the heat creation
is larger than the dissipated heat in the surrounding space, this may cause heat to accumulate inside
the cell and chemical reactions will be accelerated which yields in a further temperature increase until a
thermal runaway is reached. In these terms, a thermal runaway describes a rapid temperature increase
in a very short time interval of the typical order of 100K/min and above [26].

This phenomenon can not be described with the mathematical models mentioned above. A first
attempt to overcome this disadvantage is given in [27]. The heat equation is coupled with ordinary
differential equations (ODEs), describing the temporal evolution of the concentration of the exothermic
reactions based on an Arrhenius-type law. Spotnitz et al. [28,29] give a first PDE modeling of a thermal
runaway including reaction kinetics. In [30–32], the electrochemical-thermal model is extended with
reaction kinetics based on an ODE formulation. Some newer results can be found in [33–35]. In [33] an
oven test and the influence of convection is investigated, while [34] is focused on a Lithium-Titanate
Battery with a model similar described in [33]. The PhD Thesis of Tanaka [35] gives a detailed insight
in the modeling and simulation of a thermal runaway for different chemistry.

In Section 2 of this article a model to describe the thermal behavior of a LIB in general with all
sub-models is introduced and reviewed. In Section 2.1, the thermal model is formulated and the
important heat sources are identified. In the following subsections, the corresponding mathematical
models behind the several heat sources are given. In Section 2.2, the abusive exothermic kinetic
reactions leading to a thermal runaway are given in terms of mathematical combustion theory [36,37]
followed by a simplification in Section 2.3. In Section 2.4, the electrochemical heat source is considered
and the multi-scale, multi-domain electrochemical model of LIB’s [22,23], which is implemented in
the Battery and Fuel Cell Module in COMSOL Multiphysics. In the Section 3 some results simulated in
COMSOL Multiphysics are shown. In Section 3.1, the model with and without exothermic contributions
is compared, followed by the computation of the time, where the thermal runaway occur in Section
3.2. Additionally a first coarse classification of the thermal runaway is given. In Section 3.3 the
critical overall cell temperature, where above the thermal runaway occur, is determined. Furthermore
intervals for the convective heat transfer coefficient and environmental temperature are computed
in this case. In the final section, we summarize our results and an outlook of possible future work is
given.
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2. Modeling the Thermal Behavior of a Lithium-Ion Battery

Since the interior of a LIB is separated from the environmental air due to the battery can, the
cell can be considered as a closed system. Under working conditions, i.e., the cell is exposed to an
electrical load, heat is generated inside the cell due to several electrochemical and chemical processes.
If more heat can dissipated to the environment as that generated inside the cell, the LIB works in
a stable state with respect to the temperature. If more heat is generated inside the cell as then can
dissipated to the environment the cell is in an unstable state with respect to the temperature, leading to
a permanent temperature increase, that finally can end in a thermal runaway. The critical aspect in the
case of thermal runaway is its relation to energy conservation. With the help of energy conservation,
one is able to describe thermal characteristics like heat generation and heat dissipation. For our
consideration we state the following assumption with respect to the geometry of the LIB (cylindrical,
pouch or prismatic):

(1) In a certain (infinitesimal) time interval the cell is under constant charge, discharge or in
relaxation.

(2) The cell geometry resp. volume is constant, i.e., elastic processes and gas generation inside the
cell are not considered.

(3) Without loss of generality (W.l.o.g.) the emissivity ε, heat transfer coefficient h, the density ρ,
heat capacity cp and thermal conductivity κ are assumed to be constant in space and time.

2.1. The Energy Conservation

Neglecting heat convection inside the LIB, the general equation for the conservation of
energy can be derived from Fourier’s Law as initial-boundary problem [36–38] with the parabolic
differential equation:

ρ cp
∂T
∂t

(x, t) = κ∆T(x, t) + Qgen(x, t) (1)

for the temperature T : (x, t) ∈ Ω × R+ 7→ R of the cell and the corresponding initial and
boundary conditions:

T(x, 0) = T0(x), ∀x ∈ Ω, (2)

n · (κ∇T) = −h(T − Tenv)− εσ(T4 − T4
env), ∀x ∈ ∂Ω. (3)

In this framework x ∈ Ω ⊂ R3 is a spatial interior or surface point of the cell and t ∈ R+ :=
{t ∈ R, t ≥ 0} is the time coordinate. Tenv denotes the environmental temperature, T0 is the initial
temperature profile inside the cell at t = 0 s and it is assumed that the initial temperature at the
boundary of the cell coincides with the environmental temperature at t = 0 s. n ∈ R3 is the outward
pointing normal vector. Ω denotes the interior of the battery cell, ∂Ω represent the boundary of the
cell and the closure Ω = Ω ∪ ∂Ω is the complete cell. Furthermore h is the heat transfer coefficient, ε

the emissivity, σ the Stefan-Boltzmann constant, i.e., σ = 5.670373× 10−8 W/m2 ×K4, ρ the density of
the cell, the heat capacity is cp and κ denotes the thermal conductivity.

In the inhomogeneity Qgen different heat sources are included. These contributions come from
the heat generated by exothermic kinetic reactions, Joule and Ohmic heat and from reversible and
irreversible thermodynamic effects:

Qgen(x, t) = Qel-chem(x, t) + Qexotherm(x, t) (4)

For each contribution of Qgen, an additional complete mathematical model must be formulated.

2.2. Identifying Heat Sources From Exothermic Reaction Kinetics Inside the Lithium-Ion Batteries

Exothermic reaction kinetics are closely related to thermal abuse mechanisms inside a LIB. Several
exothermic chemical reactions can occur inside a battery as the temperature increases. These may
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generate heat, which accumulates inside the cell and accelerates the chemical reaction between the cell
components, if the heat transfer to the surroundings is not sufficient [39], i.e., if the heat generation
rate exceeds the dissipation rate. External conditions for a temperature rise can be external heating,
over-charging or -discharging, high current charging, nail penetration, external short or others. In
these cases, a thermal runaway can occur resulting in leak, smoke, gas venting, flames etc., which leads
to a destruction of the cells. Several authors have given models to describe abuse behavior and thermal
runaway. First attempts to describe the exothermic reaction kinetics are given by [27]. A simplified
reaction-diffusion model is given in the works of [30–32]. The case of nail penetration is described
in [40]. A catastrophe theoretic approach can be found [41], which is based on a simplified ODE model
and is extended in [42]. To describe the abuse behavior including thermal runaway, one has to identify
the main exothermic chemical reactions. Following [26,27,31,32,43] the general mechanism that leads
to a thermal runaway can be described with respect to rising temperature in four steps as follows:

(1) SEI decomposition reaction: At T > T1, in an exothermic reaction, the of solid-electrolyte
interface (SEI) decomposes.

(2) Negative solvent reaction: At T > T2 an exothermic reaction between the intercalated Li-ions
and the electrolyte starts (NE).

(3) Positive solvent reaction: For T > T3 an exothermic reaction between the positive material and
the electrolyte takes place under the evolution of oxygen inside the cell (PE).

(4) Electrolyte decomposition: In a final exothermic reaction the electrolyte will decomposes at
T > T4 (ELE).

The several temperatures may differ with the cell chemistry. For a LiCoO2- chemistry the
corresponding temperatures are [32]: T1 ∈ [363.15− 393.15]K, T2 > 393.15 K, T3 > 443.15 K and
T4 > 473.15 K. Other exothermic- or endothermic contributions are neglected in this work. For
example exothermic reactions caused by a phase transition of CoO2 from hexagonal to cubic crystal
structure give a reaction enthalpy of typical 4–7 J/g [44] in comparison to the SEI decompostion, where
the enthalpy is between 250–350 J/g [28]. Furthermore the produced oxygen during the phase change
can lead to additional exothermic reactions with the electrolyte which can accelerate the thermal
runaway [45].

A suitable theory to describe exothermic reaction kinetics is the mathematical theory of
combustion [36,37]. Within this theory, if one is mainly interested in temperature dynamics, the usage
of a so called solid fuel model is a possible approach. A Solid Fuel Model consists of the Equations (1)–(3)
and an additional system of parabolic differential equations to describe the time-spatial evolution of
the concentrations, the several constituents of the exothermic kinetic reactions with the corresponding
initial and boundary equations. These equations may be derived from Fick’s Law of diffusion. In the
following, we assume that the several exothermic reactions are independent from each other and are
governed by a simple Arrhenius law. With Ωi, i ∈ I := {SEI, NE, PE, ELE} ⊂ Ω ⊂ R3 and

⋃
i Ωi ⊂ Ω,

we denote the spatial domain where the exothermic reaction took place, ∂Ωi is the corresponding
boundary and Ωi = Ωi ∪ ∂Ωi the closure. Then the i-th exothermic reaction can be written as:

∂ci
∂t

(x, t) = di∆ci(x, t) + γiRi, (x, t) (5)

ci(x, 0) = ci,0(x), ∀x ∈ Ωi (6)

ci(x, t) = 0, ∀x ∈ ∂Ωi (7)

Here ci,0(x) is the initial concentration, di is the diffusion coefficient, γi the stoichiometric
coefficient. Then the exothermic heat sources can be computed governing an Arrhenius-law:

Qi(x, t) = qiRi(x, t) (8)

Ri(x, t) = Aic
mi
i (x, t) exp

(
− Ea,i

RT(x, t)

)
(9)
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where qi is the heat release in J · g−1, Ri the reaction rate in 1/s, Ai the frequency factor in 1/s, mi the
dimensionless reaction order, Ea,i the activation energy in J/mol and R the universal gas constant, i.e.,
R = 8.314462 J/mol ·K.

This gives the total exothermic heat source as:

Qexotherm(x, t) = ∑
i∈I

Qi(x, t) (10)

2.3. Simplification of Combustion Model: The Constant Fuel Model

For our simulation the solid fuel model will be simplified to a constant fuel model [38,52] by
neglecting all time-spatial dynamics of the concentrations ci, if one assumes that:

ci(x, t) = ci,0, ∀t > 0, x ∈ Ωi (11)

mi = 1 (12)

This reduces the model to the Equations (1)–(3) and the exothermic heat sources defined in
Equations (8) and (9) are only dependent on temperature T.

2.4. The Electrochemical Heat Source of a LIB and the Electrochemical Model

If one applies the thermal model described in last two sections to a LIB, this will coincide with a so
called oven-trial for a Li-ion cell [31,32]. The cell is placed in a hot environment and the environmental
temperature is increased with a specific profile. The cell is then heated only from the outside, if no
current load is applied. If the environmental temperature is held constant and the cell is exposed to a
current load, the cell will be heated from the inside. In addition to the exothermic heat contributions,
additional electrochemical heat sources like Joule/Ohmic heating and reversible and irreversible effects
will also occur. In summarize these heat sources are given as

Qel-chem = ∑
j∈J

Qj, J := {Joule, Irrev, Rev, Ohm } (13)

with

QJoule = U · I (14)

QIrrev = I
(
Ueq −U

)
(15)

QRev = I T
dUeq

dT
(16)

QOhm = I2Rin (17)

where I is the applied current profile in A, U the cell voltage and Ueq the equilibrium voltage of the
cell in V. Rin is the internal resistance of the LIB in Ω. The critical variable in the electrochemical
heat source is the equilibrium voltage and derivation of the equilibrium voltage with respect to the
temperature. In the Ohmic heat source, the internal resistance must be computed from the first partial
derivative of the electric potential in the liquid and solid phase and the concentration of the Li-ions in
the cell. These are additional variables to compute. These quantities must be computed with a separate
mathematical model based on the porous electrode model developed by Newman [4]. This type of
model has been under constant development in the last twenty years and describes a multi-scale
multi-domain model (MSMD) to resolve the spatial-temporal electrochemical dynamics of a LIB with
the Equations (1)–(3). The MSMD approach takes the physical and geometrical structure on different
length scales and different geometrical domains into account. The general scheme is given in Figure 1.
The three domains of interest and their inclusion in the LIB are identified (a) the particle domain;
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(b) the electrode domain and (c) the cell domain. To every domain an associated coordinate system
taking into account the corresponding length scale and geometry is used.

Rs

r

(a) Particle Domain (b) Electrode Domain

x

la

Anode SeparatorCathode

ls lc

(c) Cell Domain

X2
X1

X3

1D spherical particle model 1D porous electrode model 3D continuum model

Figure 1. Scheme of the several domain levels and their corresponding coordinate systems. (a) Particle
domain; (b) electrode domain; (c) cell domain.

At the electrode-electrolyte interface charge transfer kinetics have to be solved. The transport
of the Li-ions is modeled with a diffusion mechanism and the migration and diffusion of the Li-ions
through the liquid electrolyte can be evaluated. The charge balances in the solid and liquid phase
are also resolved in the corresponding domains, i.e., cathode, anode and separator. The model is
able to predict the electrical behavior of a LIB cell for given electrical load. In this extended form
with the Equations (1)–(3) the temperature-distribution is solved over the whole cell geometry. The
electrochemical dynamics of a LIB can mathematically be described as coupled system of elliptic and
parabolic differential equations for the concentration of the Li-ions and the electric potential in the
electrochemical active domain Ωel-chem ⊂ Ω. From the concentractions of the Li-ion and electrical
potentials in the subdomains the corresponding heat sources in the Equations (14)–(17) have to be
computed with a suitable homogenization using the spatial averaging theorem [15] from current
densities and heat fluxes. This model is implemented in the Battery and Fuel Cell Module of COMSOL
Multiphysics. A short review can be found in [22] a more detailed review in [46].

3. Simulations

First simulation results using COMSOL Multiphysics Version 4.4 are given in this chapter. The
model was implemented in the Battery and Fuel Cell Module of COMSOL Multiphysics. This module
includes some predefined models of a LIB as described in the last section. The user defines his
simulation problem including the concrete models, their coupling, the cell geometry, the simulation
parameters and the spatial-temporal discretisation.

The purpose of this first simulation is to get a better insight in the thermal behavior of a LIB under
normal and abuse conditions. The standard battery model in this module is not able to resolve thermal
runaway. In the following the standard model is labeled as Model A. Therefore, an extension of this
model with additional contributions is required. This extension is described in the last section together
with the battery model and implemented in COMSOL Multiphysics in our already existing model in
the most simple case first. This model is labeled as Model B in the following.

We consider a cylindrical 18,650 cell with LiCoO2 chemistry, i.e., in the COMSOL Multiphysics
material database a LixC6 anode, a LixCoO2 cathode and as electrolyte 1 : 1 EC : DEC with a LiPF6 salt
is chosen. The internal spiral wounds are not resolved in this work, which means, that the geometric
considerations will be restricted to the r − z-plane. Only the additional heat sources are used to
extend the temperature equation with additional heat sources (Constant fuel assumption) from the
reaction-diffusion system of the exothermic reactions inside the LIB. These heat contributions are
directly implemented with the electrochemical heat sources in the MSMD approach.
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It is assumed, that a single LIB is placed in an Accelerating Rate Calorimeter (ARC) and the
environment of the LIB in the ARC is filled with air. Experimental measurements inside the ARC gave
typical values for h in the range of h ≈ [0, 30]W/m2 ·K. During the simulations the convective heat
transfer coefficient h is varied in the interval of h ∈ [0, 24]W/m2 ·K. This setup represents adiabatic
conditions for h = 0 W/m2 ·K. The non adiabatic conditions with positive h describes the free flow
of gases and steams for h ∈ [5, 35]W/m2 ·K in general, stationary gases and air in the environment
are described by h in the interval h ∈ [2, 10]W/m2 ·K [47]. Therefore only natural convection is
considered in this work.

In a cylindrical geometry, the equations for the particle and electrode domain model remains
unchanged. Only on cell domain the corresponding equations for the potentials at the current
collector and the temperature field have to be reformulated in cylindrical coordinates in the
r− z−plane, i.e., X = (r, z):

c− 1
r
ε±σ

eff
±

∂

∂r

(
r

∂φ±
∂r

)
− ε±σ

eff
±

∂2φ±
∂z2 = J± (18)

∂(ρbattcp,battT)
∂t

−
(

1
r

∂

∂r

(
κT,rad,batt r

∂T
∂r

)
+ κT,z,batt

∂2T
∂z2

)
= Qgen (19)

The initial and boundary conditions of the temperature field T are given in the Equations (2)
and (3). Since the electrodes and the separator possess a porous structure, where the pores are filled
with the electrolyte, the thermal parameter in the heat Equation (19) have to be considered as an
effective parameter. Therefore in each of the three porous domains the total value of the thermal
parameter is computed with a mixture formula containing the parameter value of the corresponding
solid phase and the liquid electrolyte. Then the effective thermal conductivity (radial-, z- direction)
κT,{rad,z},batt, density ρbatt and heat capacity cp,batt are given as follows [30]:

κT,z,batt =

∑
i∈I

κT,iLi

Lbatt
(20)

κT,rad,batt =
Lbatt

∑
i∈I

Li
κT,i

(21)

ρbatt = ∑
i∈I

ρiLi
Lbatt

(22)

cp,batt = ∑
i∈I

cp,iLi

Lbatt
(23)

where I = {pos., neg., ccpos, ccneg, sep} denotes the index set to the corresponding parameter in
cathode, anode, separator and current collector.

The last four equations can be regarded as special cases from corresponding formulas of the
spiral geometry restricted to the r− z−plane [48,49]. Therefore, this thermal model can be considered
as a serial thermal network in r−direction and a parallel thermal network in z−direction. With the
parameters from Table A1 in the appendix, the corresponding effective parameters are given in Table 1.
In this table, the effective parameters are compared with parameters given in literature [50,51].

The main physical parameters of the simulation for both models can be found in Table A1 and in
Table A2 in the appendix. The additional simulation parameters of the exothermic reaction in Model B
for the abuse contributions are taken from [30,31].
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Table 1. Effective thermal parameter used in simulation in comparison with effective thermal parameter
given in literature.

Parameter Zhang [50] Drake [51] Simulation

κT,z,batt Initial: 1.1 W/m ·K 0.2± 0.01 W/m ·K 0.898 W/m ·KOptimized: 0.48 W/m ·K
κT,rad,batt Initial: 18.7 W/m ·K 30.4± 1.5 W/m ·K 27.544 W/m ·KOptimized: 21 W/m ·K

cp,batt Initial: 913.60 J/kg ·K 1720± 86 J/kg ·K 1389.70 J/kg ·K
Optimized: 1243 J/kg ·K

ρbatt - - 2172.99 kg/m3

The simulations were performed with the two current load profiles with a constant current density
of i = ±80 A/m2 as seen in Figure 2, in which there are no relaxation periods between the charging
and discharging pulses with duration of 250 s each in the first profile Profile I . In the second profile
(Profile II) relaxation periods of 250 s between charging and discharging pulses are used. A complete
current cycle lasts 500 s and 1000 s. The maximal simulation time is tsim = 5× 104 s and tsim = 105 s.
For the time integration in COMSOL Multiphysics, a BDF integration scheme is chosen with a minimum
order of 1 and a maximum order of 5 using a variable step size with a maximum time step of 1 s and an
absolute tolerance of 0.001. Since the spatial discretisation in COMSOL Multiphysics is based on the FEM
method, we have used an adaptive spatial discretisation in the three models of the particle domain,
the electrode domain and the cell domain respectively. The model of the particle domain is solved
automatically in the battery module of COMSOL Multiphysics. Therefore only a spatial discretisation
for the electrode domain and the cell domain is required. In the electrode domain, the maximum
element size in the discretisation is chosen as 1 µm. In total the discretisation contains 168 elements.
Quadratic basis functions were chosen for the one-dimensional finite element discretisation in the
electrode domain. In the cell domain the spatial discretisation is performed in the r− z-plane using
2266 triangular elements with the element size in the interval [3.9× 10−4, 8.45× 10−2]m and quadratic
basis functions. The FEM discretisation is shown in Figure 3.

Figure 2. (a) First 1000 s of the current load profile I without relaxation times and (b) of the current
load profile II with relaxation times of 250 s between charging and discharging pulses.
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Figure 3. Meshing of a cylindrical 18650 cell.

The main purpose of this section is to compute the overall mean cell temperature, below which
the LIB shows normal behavior and above which the cell shows a thermal runaway with respect to
some system parameters like the environmental temperature or the convective heat transfer coefficient.
Furthermore, critical values for such parameters will be computed from the simulations and a first
coarse classification of the thermal runaway will be given.

3.1. Model Comparison

In a first step Model A and Model B are compared under normal and abusive conditions with
Profile (I). The following three cases are considered:

(1) h = 0 W/m2 ·K: In this case the LIB is unable to dissipate any generated heat to the
environment. Therefore, a thermal runaway will always occur after a sufficient large time.

(2) h positive and a thermal runaway occurs after a sufficient large time: In this case, more heat is
generated inside the LIB, as can be dissipated to the environment.

(3) h positive and no thermal runaway occurs after a sufficient large time: In this case the generated
heat can completely dissipated to the environment .

The first case coincides with adiabatic boundary conditions while the other two cases coincide with
isoperibolic boundary conditions. Additionally for this comparison an environmental temperature
of Tenv = 293.15 K is chosen as a representative temperature in the interval of [273.15, 343.15]K.
This temperature coincides with the minimum temperature where stable environmental conditions
can be adjusted in the ARC. As corresponding convective heat transfer coefficients the values
h = 0, 5, 10 W/(m2 ·K) are chosen. The spatial averaged mean cell temperature T of all interior points
is considered W.l.o.g. the overall mean cell temperature T can be replaced by the mean temperature
Tsurf of the cell surface or the temperature T(x, t) at an arbitrary interior point of the cell. , i.e.,

T(t) =
1
Ω

∫
Ω

T(x, t)dΩ (24)

Since the simulation results are stored in a non-equidistant time grid, the mean temperature
T is interpolated to an equidistant time grid with ∆t = 0.1 s using splines with Matlab R© 2015b. In
Figure 4a–c the Time- Temperature plot for Model A (blue) and Model B (red) are shown with respect
to h = 0, 5, 10 W/(m2 ·K). In Figure 4d–f the corresponding Temperature-Heating Rate plot is given
on a semi-logarithmic scale. From Figure 4 one can see that in (a) and (b) both models shows similar
behavior until t ≈ 1900 s resp. t ≈ 3000 s. The corresponding cell temperature is approximately 400 K
(Lower horizontal line in (a), (b), first vertical line in (d), (e)). This temperature is near to the start
temperature of SEI decomposition, which is given in [26] to 393.15 K. After this time date Model B
exhibits a greater increase in temperature as Model A. Finally, the simulation of Model B shows a blow-up
in solution which corresponds to a thermal runaway in a LIB. For T ≈ 460 K, the reaction for the
electrolyte decomposition starts [26]. This is marked with the upper horizontal line in (a), (b) and the
second vertical line in (d), (e) in Figure 4. The corresponding heating rate is≈ 1.624 K/s = 97.44 K/min
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which correspond very well with the start of the thermal runaway given in [26] with 100 K/min. In
(c), both models have no significant difference in their time evolution of the temperature and the both
solutions remain bounded. Therefore, in the graphs (a), (b) and (d), (e) of Figure 4 one can split the
time evolution of the temperature in the three zones (I),(II) and (III).

Figure 4. t − T-plot (a–c) and corresponding T − dT/dt plot (d–f) for the Model A (blue) and
Model B (red) and three different h values.

First consider the plots (a) and (b) of Figure 4. In Zone (I) the cell shows a normal behavior. In
this zone, the heat generation is governed by the electrochemical, Joule and Ohmic heat contributions.
Exothermic contributions are negligible. In Zone (II), the cell temperature is high enough, so that the
exothermic heat contributions are no longer negligible. This zone can be considered as an intermediate
zone or the onset of the thermal runaway. In Zone (III), the exothermic heat contributions are dominant
and thermal runaway takes place. Electrochemical heat contributions can be neglected in Zone (III).

Next consider in Figure 4 in the plots (d), (e), (f) the corresponding Temperature-Heating Rate
trajectory. Since the current profiles Profile I and Profile II are of a rectangular shape, the first derivative
dT/dt will be a piecewise continuous function with discontinuities at the time, where the current
profiles jumps. Therefore, we consider dT/dt in the sense of distributions. At the time of the
discontinuities one have to take the limit from right and left to get a derivation from left and right.

The graphs in (d) and (e) can be seperated into three zones again (Vertical black lines). In the first
zone (I) Model A and Model B show similar behavior with an increase in the mean cell temperature T
while the heating rate dT/dt remains almost constant or have a small decrease with respect to some
outlier points. These points coincide with the time, where the current profile jumps from the charging
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state to the discharging state and vice versa. At the end of zone (I) in Model B, the heating rate begins to
rise. This is justified due to heat contribution of the exothermic reaction, which is no longer negligible.
The general shape of the curve from Model B remains unchanged. This is the transition to zone (II).
In the zones (II) and (III) one observes an increase in temperature T and an increase in the heating
rate dT/dt, which is justified in the accelerating of the exothermic reactions. The transition from zone
(II) to (III) is reached, when the heating rate exceeds the critical value of dT/dt ≥ 1.67 K/s [26]. The
corresponding temperatures are computed from the plots (d) and (e) in Figure 4 as the intersection
the horizontal black line with the graph of Model B (red). This result is compared with the upper
black line in the plots (a) and (b) with the graph of Model B (red). The results are given in the last
column in Table 2. Next, we compare our simulation results for Model B with the experimental results
from Abraham et.al [26]. In this work, the thermal abuse of a 18650 cell with a LiNi0.8Co0.15 Al0.05O2

chemistry is considered. The time evolution of the temperature is also grouped into three zones. A
comparison between the experimental results from [26], the results given in [32] and our simulation
results is given in Table 2. From a physical point of view one can interpret the zones (I)–(III) as follows:
If the T − dT/dt curve remains in zone (I) and stays below certain temperature values the cell works
in safe conditions. If the T− dT/dt-curve changes to zone (II) thermal runaway starts, and both the
heating rate and temperature rise. In zone (III) the heating rate exceeds a critical heating rate value.
This is the thermal runaway, in which the heating rate tends to infinity. In Figure 4c,f both models stay
in zone (I), no thermal runaway occurs and no significant difference is to be observed in both models.

Table 2. Classification of the time evolution of the temperature during thermal runaway.

Zone Abraham [26] Peng [32] Simulation

(I) T < 393 K T < 393 K T < 400 K

(II) T ∈ (393, 453)K T ∈ (393, 473)K T ∈ (400, 464)K for h = 0 W/m2 K
T ∈ (400, 461)K for h = 4 W/m2 K

(III) T > 453 K T > 473 K T > 464 K for h = 0 W/m2 K
T > 461 K for h = 4 W/m2 K

Chemistry LiNi0.8Co0.15 Al0.05O2 LiCoO2 LiCoO2

In summarize one can see the difference between Model A and Model B due to the exothermic heat
sources in the temperature development over the time and corresponding heating rate. Furthermore
Model B gives a good agreement with experimental results from literature [26,32] and a coarse
classification of the time evolution of a thermal runaway event has been made. This topic will
be considered in more detail in a subsequent publication.

3.2. Computing the Thermal Runaway Time tTR

In this and the following section only Model B is considered. The environmental temperature is
Tenv ∈ [273.15, 373.15]K and steps of ∆Tenv = 20 K were employed. In the simulations for each Tenv,
the heat transfer coefficient h is in the interval [0, 10]W/(m2 ·K) and the emissivity is equal to 0.02.
The time required for thermal runaway to occur with respect to the environmental temperature and
convective heat transfer coefficient is computed in the simulation. For this purpose, the term Thermal
runaway time has to be precisely defined.

Definition 1. The Thermal Runaway Time tTR of a Lithium ion cell is defined as the time, at which
the heating rate exceeds a predefined threshold i.e., ∃tkrit ∈ R+ such that:

dT
dt

(t) >
dT
dt

∣∣∣∣
thres
∀t > tkrit (25)

for sufficient high cell temperatures.
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For an equidistant time grid of ∆t = 0.1 s, the heating rate dT/dt is approximated by the
Equation (26).

dT
dt
≈ T′ :=

∆T
∆t

=
T(t2)− T(t1)

t2 − t1
. (26)

The threshold is chosen here as:

T′
∣∣
thres := 102 K/s. (27)

The thermal runaway time tTR is chosen as the time at which the condition T′ ≥ T′
∣∣
thres

is achieved.
In Table 3 and Figure 5 the time tTR for the current profiles (I) and (II) is given with respect to

Tenv and h. The following two cases are considered:

(1) For Tenv ∈ [273.15, 373.15]K with ∆Tenv = 20 K the environmental temperature is fixed, then
for h ∈ {0, 1, 2, 3, 4, 5, 6, 8, 10}W/m2 K the thermal runaway temperature tTR is determined
(Figure 5a,c).

(2) For h ∈ {0, 1, 2, 3, 4, 5, 6, 8, 10}W/m2 K the convective heat transfer coefficient is fixed, the
environmental temperature Tenv ∈ [273.15, 373.15]K with ∆Tenv = 20 K is varied and the
thermal runaway time tTR is computed (Figure 5b,d).

Table 3. Thermal runaway time tTR/[s] with respect to heat transfer coefficient h and the environment
al temperature Tenv. (a) Profile (I), (b) Profile (II).

(a) h/Tenv: 0 2 4 6 8 10 (b) h/Tenv: 0 2 4 6 8 10

273.15 2234 2672 3431 5385 - - 273.15 4173 6943 - - - -
293.15 1899 2204 2671 3544 6376 - 293.15 3490 4847 10684 - - -
313.15 1585 1787 2059 2478 3272 5656 313.15 2821 3695 5673 - - -
333.15 1283 1398 1556 1758 2057 2539 333.15 2246 2708 3517 5491 - -
353.15 984 1052 1133 1232 1346 1490 353.15 1671 1850 2217 2719 3677 6664
373.15 1116 1199 1282 1408 1636 1818 373.15 710 741 777 812 852 897

Figure 5. Cont.
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Figure 5. Thermal runaway time tTR as function of the convective heat transfer coefficient h (a),(b)
and as function of the environmental temperature Tenv (c),(d) for both current profiles Profile (I) and
Profile (II).

In case (1) for a fixed environmental temperature, the thermal runaway time tTR increases with
increasing convective heat transfer coefficient h. In case (2) for a fixed convective heat transfer
coefficient, the thermal runaway time tTR decreases with increasing environmental temperature.

3.3. Critical parameter intervals

In the last section the thermal runaway time tTR was computed. In this section the time evolution
of the mean cell temperature T was computed, again in the cases (1) and (2) from Section 3.2. The
aim is to calculate the critical mean cell temperature Tcell with respect to the parameter Tenv and h
in the sense, that below the critical temperature the LIB is under safe conditions and above the LIB
will show a thermal runaway. Therefore, multiple simulations of the current profiles (I) and (II) are
performed. In all simulations the environmental temperature is in the interval Tenv ∈ [273.15, 373.15]K
and the convective heat transfer coefficient h is in the interval h ∈ [0, 24]W/m2 K. The purpose of
the simulations was to compute numerically approximately intervals for the critical environmental
temperature Tenv,crit and the critical convective heat transfer h, analog to the cases (1) and (2) from
Section 3.2 for fixed environmental temperature and variable heat transfer coefficient h (case(1)) and
vice versa (case (2)). The critical parameter interval are determined with a bisection procedure, where
successive the interval of the parameter under investigations is shrinking with respect to the fact, if a
thermal runaway in the simulation occurs or not.

The results are plotted in the Figures 6 and 7. In the subplots (a) and (c) for Tenv = 273.15K, the
convective heat transfer coefficient is varied in the interval h ∈ [0, 24]W/m2 K for the current profiles
(I) and (II). In the subplots (b) and (d), the environmental temperature is varied over the interval
Tenv = [273.15, 373.15]K for h = 8 W/m2 K and h = 4 W/m2 K for the current profiles (I) and (II). In
Table 4 some approximate intervals for the critical parameter are given.
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Figure 6. Profile (I): Temperature profile for the mean cell temperature T: (a) Tenv fixed, h varied;
(b) h fixed, Tenv varied.

Figure 7. Profile (I): Temperature profile for the mean cell temperature T: (a) Tenv fixed, h varied;
(b) h fixed, Tenv varied.
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Table 4. Critical parameter intervals: Profile (I) (a) Tenv fixed, (b) h fixed, Profile (II) (c) Tenv fixed,
(d) h fixed.

Profile (I) (a1) (a2) Profile (II) (c1) (c2)

Tenv = 273.15 K 293.15 K Tenv = 273.15 K 293.15 K

h ∈ [7.4725, 7.48]W/m2 K [8.945, 8.95]W/m2 ·K h ∈ [3.78125, 3.796875]W/m2 ·K [4.605, 4.61]W/m2 ·K
∆h = 0.0075 W/m2 ·K 0.005 W/m2 ·K ∆h = 0.015625 W/m2 ·K 0.005 W/m2 ·K

Profile (I) (b1) (b2) Profile (II) (d1) (d2)

h = 8 W/m2 ·K 10 W/m2 ·K h = 4 W/m2 ·K 5 W/m2 ·K
Tenv ∈ [281.05, 281.15]K [304, 304.0625]K Tenv ∈ [278.15, 278.62]K [300.725, 300.7625]K

∆Tenv = 0.1 K 0.0625 K ∆Tenv = 0.47 K 0.0375 K

Additional from the temperature curves of the mean cell temperature T in the Figures 6 and 7
the critical mean cell temperature is Tcrit ≈ 400 K. Since the development of a complete mathematical
theory is far beyond the scope of this work an extension of the theories of Semenov [52] and
Frank-Kamenetskii [38] and the corresponding critical parameter will be considered in future work.. In
summarize the following general statement can be given from the observation of the simulation results:

Statement 2. Let Tstat be a the asymptotic temperature profile if the limit Tstat(t) = lim
t→∞

T(t) exists.

Then the following holds:

• (a) If the environmental temperature Tenv is constant and fixed and the convective heat transfer
coefficient h is allowed to vary, then ∃hcrit with:

– lim
t→∞

T(t) = Tstat(t, Tenv) ∀h ≥ hcrit,
– lim

t→∞
T(t)→ ∞ ∀h < hcrit,

• (b) If the convective heat transfer coefficient h is constant and fixed and the environmental
temperature Tenv is allowed to vary, then ∃Tenv,crit with:

– lim
t→∞

T(t) = Tstat(t, h) ∀Tenv ≤ Tenv,crit,
– lim

t→∞
T(t)→ ∞ ∀Tenv > Tenv,crit,

If Tstat(t, h) or Tstat(t, Tenv) is bounded then it is (almost) constant for the current profile (I) and
periodic for the current profile (II).

4. Conclusions and Outlook

In this work a model for the simulation of a thermal runaway in LIBs for a given current profile
was introduced. The thermal model was extended with additional heat sources coming from several
exothermic reactions inside the LIB due to the constant fuel assumption. In the electrochemical part of
our model we took the length scales for the essential dynamics into account. This results in a coupled
system of elliptic and parabolic partial differential equations on the particle, the electrode and the
cell domain respectively. The coupling of the equations of the particle domain with the the equations
of the electrode domains, as well as the the equations of the electrode domain with the equations
of the cell domain is solved with a suitable homogenization procedures using the spatial averaging
theorem which is based on the assumption of spatial homogeneity. Despite the fact that the advantages
of this model in the spatial resolution are not used in this work, it is the intention of the authors to
consider spatial localized effects in the dynamics of a thermal runaway in future work with this model.
In this work we show the difference between the old model Model A and the model with additional
contributions for exothermic reactions Model B. Furthermore, we have show that Model B is able to
show a thermal runaway in contrary to Model A. We defined and computed the thermal runaway
time with respect to some system parameters as well as the critical cell temperature which can be
interpreted as a marker for the cell stability with respect to thermal dynamics. Furthermore, a coarse
classification of thermal runaway is given with the model B. In summary, in these simulations, which
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were performed using in COMSOL Multiphysics, we have shown that these additional exothermic
terms in the numerical FEM model can resolve this phenomena for a specific current load profile.
Due to the constant fuel assumption, this model is not able to resolve the decay period of a thermal
runaway after all fuel is consumed. Also, the change in the amount of fuel is not considered in this
model. For future work, this first model describing the thermal runaway of LIB’s will be improved due
to skipping the constant fuel assumption. A detailed consideration of the underlying battery chemistry
and corresponding exothermic reaction kinetics is planned in addition to determining a criteria to
predict a thermal runaway with the information given by the simulations. Furthermore, it is planned
to compare the simulations of this model with experimental results in a future work.
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Appendix: Simulation Parameters

Table A1. Simulation parameters.

Initial values

Li-concentration neg. solid phase cs,neg,0 = 7917 mol
m3 Li-concentration pos. solid phase cs,pos,0 = 16002 mol

m3

Initial temperature T0 ∈ [273.15, 373, 15]K Li-concentration liquid phase ce,0 = 2000 mol
m3

Li-diffusivity

Neg. solid phase Ds,neg = 3.9× 10−14 m2

s Pos. solid phase Ds,pos = 1× 10−13 m2

s

Volume frcation

Neg. solid phase εs,neg = 0.471 Pos. solid phase εs,pos = 0.297
Neg. liquid phase εe,neg = 0.357 Pos. liquid phase εe,pos = 0.444

Maximal concentration

Neg. solid phase cs,max,neg = 26390 mol
m3 Pos. solid phase cs,max,pos = 22860 mol

m3

Thermal conductivity

Neg. electrode κT,neg = 1.04 W
m·K Pos. electrode κT,pos = 1.58 W

m·K
Neg. current collector κT,cc,neg = 298.15 W

m·K Pos. current collector κT,cc,pos = 170 W
m·K

Density

Neg. electrode ρneg = 1347.33 kg
m3 Pos. electrode ρpos = 2328.5 kg

m3

Neg. current collector ρneg,cc = 8933 kg
m3 Pos. current collector ρpos,cc = 2770 kg

m3

Particle radius

Neg. particle rp,neg = 12.5× 10−6m Pos. particle rp,pos = 8× 10−6m

Reaction rate coefficient

Neg. electrode kneg = 2× 10−11 m
s Pos. electrode kpos = 2× 10−11 m

s
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Table A1. Cont.

Heat capacity

Neg. electrode cp,neg = 1437.4 J
kg·K Pos. electrode cp,pos = 1269.21 J

kg·K
Neg. current collector cp,cc,neg = 385 J

kg·K Pos. current collector cp,cc,pos = 875 J
kg·K

Separator

Density ρsep = 1008.98 kg
m3 Thermal conductivity κT,sep = 0.344 W

m·K
Heat capacity cp,sep = 1978.16 J

kg·K

Battery geometry

Radius rbatt = 9 mm Height hbatt = 65 mm
Mandrel radius rmand = 2 mm
Cell thickness Lbatt = 157µm Thickness battery canister dcan = 0.25 mm

Thickness neg. current collector Lneg,cc = 7µm Thickness pos. current collector Lpos,cc = 10µm
Length pos./neg. electrode Lpos/neg = 55µm Length separator Lsep = 30µm

Table A2. Exothermic simulation parameters.

x ∈ {sei, pe, ne, e}, Reaction Heat Frequency Activation Energy Volume Content

y ∈ {c, p, e} Hx/
[

J
kg

]
factor Ax/

[
1
s

]
EA/

[
J

mol

]
Wy/

[
kg
m3

]
SEI reaction 2.57× 105 1.667× 1015 1.3508× 105 1.39× 103

Neg. solvent reaction 1.714× 106 2.5× 1013 1.3508× 105 1.39× 103

Pos. solvent reaction 3.14× 105 6.667× 1013 1.396× 105 1.3× 103

Electrolyte decomp. 1.55× 105 5.14× 1025 2.74× 105 5× 102
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