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A search is presented for exotic decays of a Higgs boson into undetectable particles and one or two 
isolated photons in pp collisions at a center-of-mass energy of 8 TeV. The data correspond to an inte-
grated luminosity of up to 19.4 fb−1 collected with the CMS detector at the LHC. Higgs bosons produced 
in gluon–gluon fusion and in association with a Z boson are investigated, using models in which the 
Higgs boson decays into a gravitino and a neutralino or a pair of neutralinos, followed by the decay of 
the neutralino to a gravitino and a photon. The selected events are consistent with the background-only 
hypothesis, and limits are placed on the product of cross sections and branching fractions. Assuming a 
standard model Higgs boson production cross section, a 95% confidence level upper limit is set on the 
branching fraction of a 125 GeV Higgs boson decaying into undetectable particles and one or two iso-
lated photons as a function of the neutralino mass. For this class of models and neutralino masses from 
1 to 120 GeV an upper limit in the range of 7 to 13% is obtained. Further results are given as a function 
of the neutralino lifetime, and also for a range of Higgs boson masses.
© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The detailed studies of the properties of the observed Higgs bo-
son [1–3] are key components of the LHC physics program. In the 
standard model (SM) and for a given mass of the Higgs boson, all 
properties of the Higgs boson are predicted. Physics beyond the 
SM (BSM) might lead to deviations from these predictions. Thus 
far, measurements of the Higgs bosons couplings to fermions and 
bosons and of the tensor structure of the Higgs boson interaction 
with electroweak gauge bosons show no significant deviations [4,5]
with respect to SM expectations.

Measurements of Higgs boson couplings performed for visible 
decay modes provide constraints on partial decay widths of the 
Higgs boson to BSM particles. Assuming that the couplings of the 
Higgs boson to W and Z bosons are smaller than the SM values, 
this indirect method provides an upper limit on the branching frac-
tion of the 125 GeV Higgs boson to BSM particles of 57% at a 95% 
confidence level (CL) [4,6]. An explicit search for BSM Higgs bo-
son decays presents an alternative opportunity for the discovery of 
BSM physics. The observation of a sizable decay branching fraction 
of the Higgs boson to undetected (e.g. invisible or largely invisible) 
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final states would be a clear sign of BSM physics and could provide 
a window on dark matter [7–10].

Several BSM models predict Higgs boson decays to undetectable 
particles and photons. In certain low-scale supersymmetry (SUSY) 
models, the Higgs bosons are allowed to decay into a gravitino 
(G̃) and a neutralino (χ̃0

1 ) or a pair of neutralinos [11,12]. The 
neutralino then decays into a photon and a gravitino, the lightest 
supersymmetric particle and dark matter candidate. Fig. 1 shows 
Feynman diagrams for such decay chains of the Higgs boson (H) 
produced by gluon–gluon fusion (ggH) or in association with a Z
boson decaying to charged leptons (ZH).

As the gravitino in these models has a negligible mass [11,12], 
the remaining parameter is the neutralino mass. If its mass is in 
the range mH/2 < mχ̃0

1
< mH, with mH = 125 GeV the mass of the 

observed Higgs boson, the branching fraction B(H → χ̃0
1 G̃ → γ G̃G̃)

can be large. For mχ̃0
1

< mH/2, the decay H → χ̃0
1 χ̃0

1 → γ γ G̃G̃

is expected to dominate. The same discussion can be applied to 
heavy neutral Higgs bosons with masses larger than 125 GeV. The 
lifetime of the neutralino can be finite in some classes of BSM sce-
narios, leading to the production of one or more photons displaced 
from the primary interaction.

In the SM, the signature equivalent to the signal arises when 
the Higgs boson decays as H → Zγ → νν̄γ with a branching frac-
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Fig. 1. Feynman diagrams for the H → undetectable + γ final state produced via ggH (left) and ZH (right).
tion of 3 ×10−4. The decay H → Zγ has been studied in Z → e+e−
and Z → μ+μ− final states. Upper limits on the product of the 
cross section and branching fraction of about a factor of ten larger 
than the SM expectation have been set at the 95% CL [13,14]. With 
the available data set the search presented is not sensitive to this 
decay, but it is sensitive to enhancements in the Higgs boson de-
cay rates to undetectable particles and photons arising from BSM 
physics.

Various background processes lead to the signal signatures and 
are estimated from simulation or from control samples in data. The 
dominant background processes are from γ + jets events and di-
boson events in the ggH and ZH search, respectively. Details of the 
background estimation techniques are discussed in Section 5. The 
strength of the ZH channel analysis is an almost background-free 
selection leading to a larger sensitivity in the model-dependent 
interpretation. While both the ggH and the ZH channels provide 
sensitivity to BSM Higgs boson signatures, the ggH channel allows 
a model-independent interpretation of the results.

This analysis presents a first search for decays of a scalar bo-
son to undetectable particles and one or two isolated photons. The 
scalar boson is produced in ggH or in ZH. The data used corre-
spond to an integrated luminosity of up to 19.4 ± 0.5 fb−1 at a 
center-of-mass energy of 

√
s = 8 TeV in 2012 collected with the 

CMS detector at the CERN LHC.
The results of the search are presented in terms of the low-scale 

SUSY breaking model for mH = 125 GeV and mχ̃0
1

between 1 GeV

and 120 GeV, and for mH between 125 GeV and 400 GeV for the 
example case where mχ̃0

1
= mH − 30 GeV. The effect of a finite χ̃0

1

lifetime (τχ̃0
1

) is studied for the example case where mH = 125 GeV

and mχ̃0
1

= 95 GeV.

2. The CMS experiment

The CMS detector, definitions of angular and spatial coordinates, 
and its performance can be found in Ref. [15]. The central fea-
ture of the CMS apparatus is a superconducting solenoid, of 6 m
internal diameter, providing a magnetic field of 3.8 T. The field 
volume contains a silicon pixel and strip tracker, a crystal electro-
magnetic calorimeter (ECAL), and a brass and scintillator hadron 
calorimeter. Muons are measured in gas-ionization detectors em-
bedded in the steel flux-return yoke of the magnet. The first level 
of the CMS trigger system, composed of specialized hardware pro-
cessors, is designed to select the most interesting events within 
3 μs, using information from the calorimeters and muon detectors. 
A high-level trigger processor farm is used to reduce the rate to a 
few hundred events per second before data storage.

A particle-flow algorithm [16,17] is used to reconstruct all ob-
servable particles in the event. The algorithm combines all subde-
tector information to reconstruct individual particles and identify 

them as charged hadrons, neutral hadrons, photons, and leptons. 
The missing transverse energy vector �Emiss

T is defined as the neg-
ative vector sum of the transverse momenta of all reconstructed 
particles (charged or neutral) in the event, with Emiss

T = |�Emiss
T |. Jets 

are reconstructed using the anti-kT clustering algorithm [18] with 
a distance parameter of R = 0.5, as implemented in the FastJet

package [19,20]. A multivariate selection is applied to separate 
jets from the primary interaction and those reconstructed due to 
energy deposits associated with pileup interactions [21]. The dis-
crimination is based on the differences in the jet shapes, on the 
relative multiplicity of charged and neutral components, and on 
the different fraction of transverse momentum which is carried by 
the hardest components. Photon identification requirements and 
other procedures used in selecting events can be found in Sec-
tion 4.

3. Data and simulation events

In the search for Higgs bosons produced in ggH, the trigger 
system requires the presence of one high transverse energy (Eγ

T ) 
photon candidate and significant Emiss

T . The presence of a photon 
candidate with Eγ

T > 30 GeV is required within the ECAL barrel 
region (|ηγ | < 1.44). At the trigger level Emiss

T is calculated from 
calorimeter information, and is not corrected for muons. A se-
lection requirement of Emiss

T > 25 GeV is applied. The efficiency 
of the trigger is monitored and measured with two control trig-
gers for the photon and the Emiss

T trigger requirement. The data 
recorded with this trigger correspond to an integrated luminosity 
of 7.4 fb−1 and were part of the CMS “data parking” program im-
plemented for the last part of the data taking at 

√
s = 8 TeV in 

2012. In that program, CMS recorded additional data with relaxed 
trigger requirements, planning for a delayed offline reconstruction 
in 2013 after the completion of the LHC Run 1.

For the search for Higgs bosons produced in ZH, collision 
events were collected using single-electron and single-muon trig-
gers which require the presence of an isolated lepton with pT in 
excess of 27 GeV and 24 GeV, respectively. Also a dilepton trigger 
was used, requiring two leptons with pT thresholds of 17 GeV and 
8 GeV. The luminosity integrated with these triggers at 

√
s = 8 TeV

is 19.4 fb−1.
Several Monte Carlo (MC) event generators are used to simu-

late signal and background processes. The simulated samples are 
used to optimize the event selection, evaluate selection efficiencies 
and systematic uncertainties, and compute expected event yields. 
In all cases the MC samples are reweighted to match the trigger 
efficiency measured in data.

The Vγ , WZ, ZZ, VVV (where V represents W or Z bosons), 
Drell–Yan (DY) production of qq̄ → Z/γ ∗ , and qq̄ → W+W− pro-
cesses are generated with the MadGraph 5.1 event generator [22]
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at leading-order (LO), the gg → W+W− process is generated with 
the LO event generator gg2ww 3.1 [23], and the tt̄ and tW pro-
cesses are generated with powheg 1.0 at next-to-leading-order 
(NLO). The signal samples are also produced with MadGraph. The 
cross sections at NLO or higher orders if available are used for a 
given process to renormalize the MC event generators. All pro-
cesses are interfaced to the pythia 6.4 generator [24] for parton 
shower and hadronization.

The CTEQ6L set of parton distribution functions (PDF) [25] is 
used for LO generators, while the CT10 [26] PDF set is used for 
NLO generators. For all processes, the detector response is simu-
lated with a detailed description of the CMS detector, based on the
Geant4 package [27]. Additional pp interactions overlapping the 
event of interest in data, denoted as pileup events, are accounted 
for by simulating pp interactions with the pythia generator and 
adding them to each MC sample. The MC samples are tuned to re-
produce the distribution in the number of pileup events in data. 
The average number of pileup events is about 26 for the collected 
data used in the ggH channel, and is about 21 for the collected 
data used in the ZH channel.

4. Event selection

Two strategies are followed to isolate the Higgs boson events 
produced by ggH and by ZH from the background processes. The 
signal cross sections are several orders of magnitude smaller than 
the major reducible background processes, whose contributions are 
greatly reduced using the event selections described in the follow-
ing sub-sections.

4.1. Event selection in the ggH channel

In the ggH channel, each selected event is required to have at 
least one photon candidate with Eγ

T > 45 GeV and |ηγ | < 1.44 us-
ing a cut-based selection [28,29]. To reduce the SM backgrounds 
arising from the leptonic decays of W and Z bosons, a lepton veto 
is applied. Events are rejected if they have one or more electrons 
fulfilling a loose identification requirement [30] and pe

T > 10 GeV
and |ηe| < 2.5, excluding the transition region of 1.44 < |ηe| ≤ 1.57
since the reconstruction of an electron object in this region is 
not optimal. Similarly, events containing muon candidates with 
pμ

T > 10 GeV, |ημ| < 2.1, and well separated from the photon can-

didate requiring �R(γ , μ) = √
(�η)2 + (�φ)2 > 0.3 (where the φ

is azimuthal angle in radians), are rejected. In addition to the se-
lection requirements described above, the Emiss

T is required to be 
greater than 40 GeV. This level of selection is referred to as the 
preselection. Additional selection criteria are applied to search for 
new physics in either a quasi model-independent way or opti-
mized for a SUSY benchmark model. In this channel jets can arise 
from initial-state radiation. For both search strategies jets are re-
quired to have p j

T > 30 GeV and |η j | < 2.4. These jets must not 
overlap with the photon candidate below �R(γ , jet) < 0.5.

In the model-independent analysis, events with two or more 
jets are rejected. For events with one jet the azimuthal angle be-
tween the photon and the jet (�φ(γ , jet)) is required to be smaller 
than 2.5. This selection requirement rejects the dominant γ + jet
background, where the photon and the jet tend to be back-to-back
in the transverse plane.

In the model-dependent analysis developed for SUSY scenarios, 
no requirement is applied on jet multiplicity. In order to mini-
mize the contribution from processes such as γ + jets and multijet 
events, two methods are used for identifying events with mismea-
sured Emiss

T . The Emiss
T significance method [31] takes account of 

reconstructed objects for each event and their known resolutions 
to compute an event-by-event estimate of the likelihood that the 

observed Emiss
T is consistent with zero. In addition, a minimization 

method [29] constructs a χ2 function of the form

χ2 =
∑

i=objects

(
(pT

reco)i − (̃pT)i

(σpT)i

)2

+
(

Ẽmiss
x

σEmiss
x

)2

+
(

Ẽmiss
y

σEmiss
y

)2

,

(1)

where (pT
reco)i are the scalar transverse momenta of the recon-

structed objects, such as jets and photons that pass the above-
mentioned identification criteria, the (σpT )i are the expected res-
olutions in each object, the σEmiss

x,y
are the resolutions of the Emiss

T

projection along the x-axis and the y-axis, and the (̃pT)i are the 
free parameters allowed to vary in the minimization of the χ2

function. The ̃E
miss
x,y terms are functions of the free parameters ̃px,y ,

Ẽmiss
x,y = Emiss,reco

x,y +
∑

i=objects

(preco
x,y )i − (̃px,y)i . (2)

In events with no genuine Emiss
T , the mismeasured quantities 

are re-distributed back into the particle momenta to minimize the 
χ2 value. Events are rejected if the minimized Emiss

T ( Ẽ
miss
T ) is less 

than 45 GeV and the chi-square probability is larger than 10−3.
To further suppress multijet backgrounds, events are not con-

sidered if the scalar sum of the transverse momenta of the identi-
fied jets in the event (HT) is greater than 100 GeV. An additional 
requirement is applied on the angle (α) between the beam direc-
tion and the major axis of the supercluster [28] in order to reject 
non-prompt photons that have showers elongated along the beam 
line.

Finally, the transverse mass,

m
γ Emiss

T
T ≡

√
2Eγ

T Emiss
T [1 − cos�φ(γ , Emiss

T )],
formed by the photon candidate, �Emiss

T , and their opening angle, is 
required to be greater than 100 GeV. Photons from the continuum 
Zγ background have a harder spectrum than the photons resulting 
from the Higgs decay in the SUSY benchmark models considered. 
To further reduce the continuum Zγ background and for models 
with mH = 125 GeV a cut of Eγ

T < 60 GeV is applied. For higher 
masses the cut is optimized depending on each mass hypothesis 
going from 60 GeV up to 200 GeV for mH = 400 GeV.

The list of selection criteria used in the model-independent and 
the SUSY benchmark model analyses are given in Table 1, together 
with the cumulative efficiencies relative to the preselection for sig-
nal and background processes.

4.2. Event selection in the ZH channel

The leptonic decays of the Z boson, consisting of two oppositely 
charged same-flavor high-pT isolated leptons (e+e− , μ+μ−), are 
used to tag the Higgs boson candidate events. Large missing trans-
verse energy from the undetectable particles, at least one isolated 
high-ET photon, and little or moderate jet activity are required to 
select the signal events.

The details of the lepton candidate selection and missing trans-
verse energy reconstruction are given in Ref. [32]. In addition, 
photon requirements based on a multivariate selection discussed 
in Refs. [28,33] have been used. The kinematic selection requires 
two leptons with pT > 20 GeV and one photon with Eγ

T > 20 GeV. 
Furthermore, the dilepton mass must be compatible with that of a 
Z boson within 15 GeV of the pole mass.

To reduce the background from WZ events, events are removed 
if an additional loosely identified lepton is reconstructed with 
pT > 10 GeV. To reject most of the top-quark background, an event 
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Table 1
Summary of ggH selection for both the quasi model-independent analysis and the analysis with the SUSY benchmark model with the cumulative efficiencies of the selection 
requirements relative to the preselection for Zγ → νν̄γ , γ + jet and for a signal in a SUSY benchmark model with ggH production of a Higgs boson with mass 125 GeV
decaying into a neutralino of mass 120 GeV and a photon.

Selection requirements
Model-independent SUSY benchmark model

Zγ → νν̄γ γ + jet Zγ → νν̄γ γ + jet mχ̃0
1

= 120 GeV

Number of jets < 2 0.909 0.769 – – –
�φ(γ , jet) < 2.5 radians 0.834 0.262 – – –
Transverse mass > 100 GeV – – 0.867 0.292 0.829
HT < 100 GeV – – 0.785 0.188 0.804
Ẽmiss

T > 45 GeV – – 0.761 0.071 0.743
Prob(χ2) < 10−3 – – 0.626 0.033 0.467
Emiss

T significance > 20 – – 0.440 0.001 0.195
α > 1.2 – – 0.390 0.001 0.165
Eγ

T < 60 GeV – – 0.074 0.0002 0.106
Table 2
Summary of ZH selection.

Variable Selection

Leptons 2 leptons, pT > 20 GeV
Photons 1 photon, Eγ

T > 20 GeV
|m�� − mZ| <15 GeV
Anti b-tagging applied

Jet veto 0 jets with p j
T > 30 GeV

�φ
��,�Emiss

T +�Eγ
T

>2.7 radians

|p �Emiss
T +�Eγ

T
T − p��

T |/p��
T <0.50

�φ�� <2.25 radians
p��

T >60 GeV
Emiss

T >60 GeV

is rejected if it passes the b-tagging selection (anti b-tagging) or 
if there is a selected jet with pT larger than 30 GeV (jet veto). 
The b-tagging selection is based on the presence of a muon in the 
event from the semileptonic decay of a bottom-quark, and on the 
impact parameters of the constituent tracks in jets containing de-
cays of bottom-quarks [34]. The set of b-tagging veto criteria retain 
about 95% of the light-quark jets, while rejecting about 70% of the 
b-jets.

The signal topology is characterized by a Z(��) system with 
large transverse momentum balanced in the transverse plane by 
a �Emiss

T + �Eγ
T system from the Higgs boson decay. To reject back-

ground from Zγ and Z + jets events with misreconstructed Emiss
T

the azimuthal angle �φ
��,�Emiss

T +�Eγ
T

is required to be greater than 

2.7 radians, the variable |p �Emiss
T +�Eγ

T
T − p��

T |/p��
T is required to be 

smaller than 0.5, and the azimuthal angle between the two leptons 
�φ�� is required to be smaller than 2.25 radians. Finally, p��

T is re-
quired to be larger than 60 GeV, and Emiss

T is required to be larger 
than 60 GeV. A summary of the selection for the analysis is shown 
in Table 2.

The signal-to-background fraction depends on the |ηγ |, the 
pseudorapidity of the photon, with greater discrimination at lower 
values. To exploit this effect and improve sensitivity, the selected 
events are subdivided according to whether the photon is recon-
structed in the barrel or endcap regions, as explained in Sec-
tion 7.2.

5. Background estimation

The background estimation techniques and the composition of 
all backgrounds in the search with the ggH and ZH signatures are 
discussed below. The yield for the irreducible background from 
H → Zγ → ννγ is negligible and is therefore ignored in the anal-
ysis.

5.1. Background estimation in the ggH channel

The dominant background for the γ + Emiss
T signal in the ggH

channel is the process γ + jet. Other SM backgrounds include 
Zγ → νν̄γ , Wγ , W → eν , W → μν , W → τν , multijet, and dipho-
ton events. Background events that do not arise from pp collisions 
are also considered in the analysis. These backgrounds can be cat-
egorized broadly into three categories, as described below.

5.1.1. Background estimates from simulation
The γ + jet process surviving the various Emiss

T selection re-
quirements is one of the most significant backgrounds in this 
analysis due to the presence of an isolated photon and its large 
production cross section. The MC normalization of this background 
is corrected using control samples in data for two event classes, 
events without jets and those with one or more jets. The con-
trol samples in data are obtained using events collected with a 
prescaled single-photon trigger and with the Emiss

T requirement re-
versed to ensure orthogonality to the signal phase space, where 
the contamination from other processes is minimal. Multiplica-
tive correction factors (C ) are obtained after normalizing the event 
yield in the simulation to match the data in the control region, 
separately for events with no jets (C = 1.7) and one or more jets 
(C = 1.1). These correction factors are used to normalize the sim-
ulated γ + jet event yield in the signal region. An uncertainty of 
16% is obtained for these correction factors based on the differ-
ence between the corrected and uncorrected simulation and the 
relative fraction of no jet events (about 10% of the events in the 
control region) and one or more jet events. The background pro-
cesses Zγ → ��γ and W → μν contribute only a small fraction of 
the total background prediction, due to the lepton veto applied at 
the preselection stage, and are modeled using simulated samples.

To take into account differences between data and simulation 
due to imperfect MC modeling, various scale factors (SF) are ap-
plied to correct the estimates from simulation. These SFs are de-
fined by the ratio of the efficiency in data to the efficiency in 
simulation for a given selection. The SF for photon reconstruction 
and identification is estimated from Z → e+e− decays [35] and is 
consistent with unity.

5.1.2. Background estimates from data
The contamination from jets misidentified as photons (jet → γ ) 

is estimated in a data control sample enriched with multijet events 
defined by Emiss

T < 40 GeV. This sample is used to measure the ra-
tio of the number of candidates that pass the photon identification 
criteria to those failing the isolation requirements. The numera-
tor of this ratio is further corrected for the photon contamination 
due to direct photon production using an isolation side band. The 
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Table 3
Summary of all relative systematic uncertainties in percent for the signal and background estimates for the Higgs model (model-independent in parenthesis) selection in the 
ggH analysis.

Source Signal Jet → γ Electron → γ γ + jet Zννγ Wγ

PDF 10 (0) – – – 4 (4) 4 (4)
Integrated luminosity 2.6 (2.6) – – 2.6 (2.6) 2.6 (2.6) 2.6 (2.6)
Photon efficiency 3 (3) – – 3 (3) 3 (3) 3 (3)
Photon energy scale ±1% 4 (0.5) – – 4 (0.5) 4 (0.5) 4 (0.5)
Emiss

T energy scale 4 (2) – – 4 (2) 4 (2) 4 (2)
Jet energy scale 3 (2) – – 5 (5) 3 (2) 3 (2)
Pileup 1 (1) – – 1 (1) 1 (1) 1 (1)
Zννγ normalization – – – – 3 (3) –
γ + jet normalization – – – 16 (16) – –
Wγ normalization – – – – – 3 (3)
Jet → γ – 35 (35) – – – –
Electron → γ – – 6 (6) – – –
corrected ratio is applied to data events which pass the denom-
inator selection and all other event requirements in the signal 
region.

The systematic uncertainty of this method is dominated by the 
choice of the isolation sideband, and is estimated to be 35% by 
changing the isolation criteria in the sideband region definition. 
The other sources of systematic uncertainty are determined by 
changing the Emiss

T selection for the control region, and the loose 
identification requirements on the photons, all of which are found 
to be comparatively small.

Events with single electrons misidentified as photons
(electron → γ ) are another major source of background. This back-
ground is estimated with a tag-and-probe method using Z → e+e−
events [36]. The efficiency to identify electrons (εγe ) is estimated 
in the Z boson peak mass window of 60–120 GeV. The ineffi-
ciency (1 −εγe ) is found to be 2.31 ±0.03%. The ratio (1 −εγe )/εγe , 
which represents the electron misidentification rate, is applied to 
a sample where candidates are required to have hits in the pixel 
detector, and is used to estimate the contamination in the signal 
region. The misidentification rate is found to be dependent on the 
number of vertices reconstructed in the event and the number of 
tracks associated with the selected primary vertex. The difference 
in the final yields taking this dependence into account or neglect-
ing it, using the inclusive measurement of εγe , is less than 5%.

5.1.3. Non-collision background estimates from data
The search is susceptible to contamination from non-collision 

backgrounds, which arise from cosmic ray interactions, spurious 
signals in the ECAL, and accelerator-induced secondary particles. 
The distribution of arrival-times of photons from these back-
grounds is different from that of prompt photons produced in hard 
scattering. To quantify the contamination from these backgrounds 
a fit is performed to the candidate-time distribution using back-
ground distributions from the data [29]. The contamination due to 
out-of-time background contributions is found to be less than one 
percent of the total background and is therefore not included in 
the final event yield.

5.2. Background estimation in ZH channel

Processes that contribute significantly to the SM expectation in 
the ZH channel are listed below.

5.2.1. Non-resonant dilepton backgrounds
The contributions from W+W− , top-quark, W + jets, and 

Z/γ ∗ → τ+τ− processes are estimated by exploiting the lepton 
flavor symmetry in the final states of these processes [37]. The 
branching fraction to the e±μ∓ final state is twice that of the 
e+e− or μ+μ− final states. Therefore, the e±μ∓ control region 

is used to extrapolate these backgrounds to the e+e− and μ+μ−
channels. The method considers differences between the electron 
and muon identification efficiencies. The data driven estimates 
agree well with the number of background events expected when 
applying the same method to simulation. The small difference 
between the prediction and the obtained value using simulated 
events is taken as a systematic uncertainty.

The limited number of simulated events is also considered as 
part of the systematic uncertainty. In summary, the total system-
atic uncertainty is about 75%. Only two events were selected in the 
data control region.

5.2.2. Resonant background with three leptons in the final state
The WZ → �ν�� process dominates the resonant backgrounds 

with three leptons in the final state. The electron → γ misidentifi-
cation rate is measured in Z → e+e− events by comparing the ra-
tios of electron–electron versus electron–photon pairs in data and 
in simulation, as described in Section 5.1.2. The average misidenti-
fication rate is 1–2% with the larger values at higher |η|γ .

5.2.3. Resonant background with two leptons in the final state
The WZ → �ν�� process with failure to identify the lepton from 

W boson decays and the ZZ → 2�2ν process dominate these types 
of events. The jet → γ misidentification rate is measured in a sam-
ple containing a muon and a photon. This sample is expected to be 
dominated by jets misidentified as photons, with some contamina-
tion from W/Zγ events, which are subtracted in the study using 
the simulated prediction. The misidentification rate is similar to 
the obtained values in the ggH channel.

5.2.4. Resonant background with no genuine missing transverse energy
The background from Zγ or Z + jets events is predicted by the 

simulation to be about 15% of the total background. Several data 
regions are studied to verify that the background is estimated cor-
rectly. A good agreement between data and simulation is found 
in all cases. A 50% uncertainty, the statistical uncertainty of the 
control region, is taken for these backgrounds estimated from sim-
ulation.

6. Summary of systematic uncertainties

Systematic uncertainties in the background estimates from con-
trol samples in data are described in Section 5. A summary of the 
systematic uncertainties considered in each channel are listed in 
Tables 3 and 4.

A common source of systematic uncertainty is associated with 
the measurement of the integrated luminosity, determined to 
2.6% [38]. The uncertainties in the normalization of signal and 
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Table 4
Summary of relative systematic uncertainties in percent for the signal and background estimates in the ZH analysis.

Source ZH Zγ or Z + jets WZ ZZ WW + top-quark

Integrated luminosity 2.6 – 2.6 2.6 –
Lepton efficiency 3.6 – 3.6 3.6 –
Photon efficiency 3.0 – – – –
Momentum resolution 0.5 – 1 1 –
Emiss

T energy scale 0.5 – 0.6 0.1 –
Jet energy scale 2 – 4 4 –
b-tagging 0.7 – 0.7 0.7 –
Underlying event 3 – – – –
PDF 7.1 – 6.3 7.7 –
Renorm. and factor. scales 7.0 – 10.7 6.5 –
Z/γ ∗ → �+�− normalization – 50 – – –
Non-resonant dilepton bkg. norm. – – – – 70
Jet → γ – – 30 30 –
Electron → γ – – 10 10 –
Amount of simulated events 3.5 60 10 30 40
simulation-based backgrounds are obtained by varying the renor-
malization and factorization scales, and the parton distribution 
functions [26,39–43].

Because the model-independent and model-specific selections 
differ significantly in the ggH channel, the systematic uncertain-
ties are evaluated separately for each selection. The photon energy 
scale uncertainty [28] of about 1% affects the signal and back-
ground predictions by 4% for the model-specific selection and by 
0.5% for the model-independent selection. Similarly, the jet energy 
scale uncertainty affects the signal and background predictions by 
2–5% depending on the process and selection. After changing the 
photon or jet energy scales, the Emiss

T is also recomputed. In addi-
tion, the systematic uncertainty associated with the jet energy res-
olution and unclustered energy scale are propagated to the Emiss

T
computation, and affect the signal and background predictions by 
2–4%. As described in the previous section, a 16% uncertainty is 
applied to the γ + jet normalization due to the difference in the 
jet multiplicity distribution between the data and background pre-
dictions in the γ + jet control region. The uncertainty due to the 
pileup modeling is found to be 1%, and is estimated by shifting 
the central value of the total inelastic cross section within its un-
certainty.

In the ZH channel, lepton-reconstruction and identification 
scale factors are measured using a control sample of Z/γ ∗ → �+�−
events in the Z peak region [36]. The associated uncertainty is 
about 2% per lepton. The photon identification uncertainty is taken 
to be 3% [33]. The effect of uncertainties in jet energy scale and 
Emiss

T on the analysis is also considered. The uncertainty in the 
b-tagging efficiency is estimated to be about 0.7% comparing in-
clusive Z/γ ∗ → �+�− samples in data and simulation. The total 
uncertainty in the background estimates in the signal region is 
36%, which is dominated by the statistical uncertainties in the data 
control samples from which they are derived.

The impact of the systematic uncertainties in the ggH channel 
is relatively important: the sensitivity is increased by about 50% 
if all the systematic uncertainties are removed, where the nor-
malization uncertainties on the γ + jet and jet → γ background 
processes dominate. The ZH channel is limited by the statistical 
uncertainty, and the effect of the systematic uncertainties reduce 
the sensitivity by less than 10%.

Correlations between systematic uncertainties in the two chan-
nels are taken into account. In particular, the main sources of 
correlated systematic uncertainties are those in the experimental 
measurements such as the integrated luminosity, photon identifi-
cation, the jet energy scale, and missing transverse energy resolu-
tion. All other systematic uncertainties are uncorrelated between 
them given the different signal and background processes.

Table 5
Observed yields and background estimates at 8 TeV in the 
ggH channel after the model-independent selection. Statisti-
cal and systematic uncertainties are shown.

Process Event yields

γ + jets (313 ± 50) × 103

jet → γ (910 ± 320) × 102

e → γ 10 350 ± 620
W(→ �ν) + γ 2239 ± 111
Z(→ νν̄) + γ 2050 ± 102
Other 1809 ± 91

Total background (420 ± 82) × 103

Data 442 × 103

7. Results

The results from the two searches and their combination are 
reported in this section. In the absence of deviations from the 
standard model predictions, the modified frequentist method, 
CLs [44–46], is used to define the exclusion limits.

7.1. Model-independent results in the ggH channel

Because of the variety of possible BSM signals that could con-
tribute to this final state, the results are presented for a signal with 
the model-independent selection described in Section 4. The total 
number of observed events and the estimated SM backgrounds are 
summarized in Table 5, and found to be compatible within their 

uncertainties. Fig. 2 shows the m
γ Emiss

T
T and Emiss

T distributions for 
the model-independent selection.

Fig. 3 shows the observed and expected model-independent 
95% CL upper limits for the ggH analysis on the product of cross 

section, acceptance, and efficiency for m
γ Emiss

T
T > 100 GeV, as a 

function of Emiss
T threshold.

7.2. Model-specific results in the ggH channel

Imposing the model-specific selection described in Section 4 for 
the ggH channel, 1296 events are selected in data with a total 
estimated background of 1232 ± 188. The yields for this selec-
tion are shown in Table 6 and estimated for Higgs boson decays 
(H → G̃χ̃0

1 , ̃χ0
1 → G̃γ ) assuming the ggH production rate for SM 

Higgs bosons and a 100% branching fraction for this decay. Fig. 4
shows the transverse energy distribution of photons for data, the 
background estimates, and signal after the model-dependent se-
lection, except the upper selection on the photon, for the ggH
channel.
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Fig. 2. The mγ Emiss
T

T and Emiss
T distributions for data, background estimates, and sig-

nal after the model-independent selection for the ggH channel. The bottom panels 
in each plot show the ratio of (data − background)/background and the gray band 
includes both the statistical and systematic uncertainties in the background pre-
diction. The signal is shown for mH = 125 GeV and mχ̃0

1
= 120 GeV and a 100% 

branching fraction.

7.3. Results in the ZH channel and combinations

A total of four events are selected with the search in ZH. The 
background yield is estimated to 4.1 ± 1.8. The numbers of ob-
served and expected events are shown in Table 7. The signal 
model assumes a SM ZH production rate and a 100% branching 
fraction to undetectable particles and one or two photons. The 
expected signal yield is larger for cases where mχ̃0

1
is smaller 

than mH/2 since there are two photons in the final state (H →
χ̃0

1 χ̃0
1 → γ γ G̃G̃), and as a result the sensitivity improves for 

smaller masses. Good agreement between the data and the back-

ground prediction is observed. The transverse mass, m
��Emiss

T
T ≡

Fig. 3. The expected and observed 95% CL upper limit on the product of cross sec-

tion, acceptance, and efficiency (σ(pp → γ + Emiss
T )Aε) for m

γ Emiss
T

T > 100 GeV, as 
function of the Emiss

T threshold for the ggH channel.

Table 6
Observed yields, background estimates, and signal predictions at 8 TeV in the ggH
channel for different values of the mχ̃0

1
and for different cτχ̃0

1
of the χ̃0

1 . These 
correspond to B(H → undetectable + γ ) = 100%, assuming the SM cross section at 
the given mH hypothesis. The combination of statistical and systematic uncertainties 
is shown for the yields.

Process Event yields

ggH(mH = 125 GeV,mχ̃0
1

= 65 GeV) 653 ± 77

ggH(mH = 125 GeV,mχ̃0
1

= 95 GeV) 1158 ± 137

ggH(mH = 125 GeV,mχ̃0
1

= 120 GeV) 2935 ± 349

ggH(mH = 125 GeV,mχ̃0
1

= 95 GeV) cτχ̃0
1

= 100 mm 983 ± 116

ggH(mH = 125 GeV,mχ̃0
1

= 95 GeV) cτχ̃0
1

= 1000 mm 463 ± 55

ggH(mH = 125 GeV,mχ̃0
1

= 95 GeV) cτχ̃0
1

= 10 000 mm 83 ± 10

ggH(mH = 150 GeV,mχ̃0
1

= 120 GeV) 4160 ± 491

ggH(mH = 200 GeV,mχ̃0
1

= 170 GeV) 5963 ± 704

ggH(mH = 300 GeV,mχ̃0
1

= 270 GeV) 5152 ± 608

ggH(mH = 400 GeV,mχ̃0
1

= 370 GeV) 4057 ± 479

γ + jets 179 ± 28
jet → γ 269 ± 94
e → γ 355 ± 28
W(→ �ν) + γ 154 ± 15
Z(→ νν̄) + γ 182 ± 13
Other 91 ± 10

Total background 1232 ± 188

Data 1296

√
2p��

T p
�Emiss

T +�Eγ
T

T [1 − cos(�φ
��,�Emiss

T +�Eγ
T
)], and |ηγ | distributions dis-

criminate signal and background and are shown in Fig. 5 at the 
final step of the selection.

The 95% CL upper limits are extracted from counting exper-
iments in three categories: the model-specific selection in the 
ggH channel, and photons identified in the barrel and the end-
cap calorimeters for the ZH channel. Results are combined using a 
binned-likelihood method. The 95% CL upper limits on (σ B)/σSM, 
where σSM is the cross section for the SM Higgs boson, are eval-
uated for different mass values of χ̃0

1 ranging from 1 GeV to 
120 GeV for the individual searches and their combination and are 
shown in Fig. 6. The upper limits for mχ̃0

1
< mH/2 are not shown 

for the ggH channel because the sensitivity is very low due to the 
combination kinematic properties and the corresponding selection; 
in particular the Emiss

T and photon pT values tend to be outside the 
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Fig. 4. The transverse energy distribution of photons for data, the background es-
timates, and signal after the model-dependent selection (except the upper selec-
tion on the photon) for the ggH channel. The bottom panel shows the ratio of 
(data − background)/background and the gray band includes both the statistical 
and systematic uncertainties in the background prediction. The signal is shown for 
mH = 125 GeV and mχ̃0

1
= 120 GeV.

Table 7
Observed yields, background estimates, and signal predictions at 8 TeV in the ZH
channel for different values of the mχ̃0

1
and for different cτχ̃0

1
of the χ̃0

1 . The sig-

nal predictions correspond to B(H → undetectable + γ ) = 100% assuming the SM 
ZH cross section at the given mH hypothesis. The combination of statistical and sys-
tematic uncertainties is shown for the yields.

Process Event yields

ZH(mH = 125 GeV,mχ̃0
1

= 1 GeV) 69.2 ± 8.4

ZH(mH = 125 GeV,mχ̃0
1

= 10 GeV) 68.6 ± 8.4

ZH(mH = 125 GeV,mχ̃0
1

= 30 GeV) 53.5 ± 6.5

ZH(mH = 125 GeV,mχ̃0
1

= 60 GeV) 47.7 ± 5.8

ZH(mH = 125 GeV,mχ̃0
1

= 65 GeV) 40.0 ± 4.9

ZH(mH = 125 GeV,mχ̃0
1

= 95 GeV) 40.3 ± 4.9

ZH(mH = 125 GeV,mχ̃0
1

= 120 GeV) 39.0 ± 4.8

ZH(mH = 125 GeV,mχ̃0
1

= 95 GeV) cτχ̃0
1

= 100 mm 39.3 ± 4.8

ZH(mH = 125 GeV,mχ̃0
1

= 95 GeV) cτχ̃0
1

= 1000 mm 17.6 ± 2.2

ZH(mH = 125 GeV,mχ̃0
1

= 95 GeV) cτχ̃0
1

= 10 000 mm 2.6 ± 0.3

ZH(mH = 200 GeV,mχ̃0
1

= 170 GeV) 13.1 ± 1.6

ZH(mH = 300 GeV,mχ̃0
1

= 270 GeV) 3.5 ± 0.4

ZH(mH = 400 GeV,mχ̃0
1

= 370 GeV) 1.2 ± 0.1

Zγ + Z + jets 0.6 ± 0.4
WZ 1.2 ± 0.3
ZZ 0.3 ± 0.1
WW + top-quark 2.0 ± 1.7

Total background 4.1 ± 1.8

Data 4

selected ranges. A 95% CL upper limit on the branching fraction of 
10% is set for a neutralino mass of 95 GeV.

Expected and observed limits are also shown for the decay of 
possible heavier scalar Higgs bosons as a function of the Higgs bo-
son mass in Fig. 7. The requirement on Eγ

T used in the ggH channel 
is removed. A lower threshold on Eγ

T is added, optimized to max-

Fig. 5. Distributions in signal where mH = 125 GeV and mχ̃0
1

= 95 GeV, backgrounds 
and data for m

��Emiss
T

T (top) and |ηγ | (bottom) after applying all requirements. The 
uncertainty band for the backgrounds includes both statistical and systematic un-
certainties. The signal model assumes a SM ZH production rate for a Higgs boson 
with mH = 125 GeV and a 10% branching fraction.

imize the sensitivity for each mass hypothesis. A combination of 
the two channels is not performed because the assumption of a 
common SM Higgs boson cross section is not justified.

As discussed in the introduction, some BSM models predict χ̃0
1

neutralinos with sizable lifetimes. The performance of the searches 
has been evaluated for finite lifetimes without modifying the anal-
ysis strategy. The expected and observed limits are shown in Fig. 8
as function of cτχ̃0

1
. The results are shown for mH = 125 GeV and 

mχ̃0
1

= 95 GeV. As seen in Tables 6 and 7, the selection efficiency 
is roughly constant for values of cτχ̃0

1
less than 10 cm, and drops 

rapidly for larger values. The default timing criteria applied in the 
ECAL energy reconstruction are the cause for the decrease in the 
efficiency. In particular, there is a requirement of a maximum of 
3 ns on the photon arrival time relative to the nominal time-of-
flight for prompt photons. The delayed arrival time of the photon 
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Fig. 6. Expected and observed 95% CL upper limits on σ B/σSM for mH = 125 GeV
as a function of mχ̃0

1
assuming the SM Higgs boson cross sections, for the ZH and 

ggH channels and their combination, with B ≡B(H → χ̃0
1 χ̃0

1 ) B(χ̃0
1 → G̃ +γ )2 for 

mχ̃0
1

< mH/2 and B ≡B(H → χ̃0
1 G̃) B(χ̃0

1 → G̃ + γ ) for mχ̃0
1

≥ mH/2.

Fig. 7. Expected and observed 95% CL upper limits on σgg→H B as a function of the 
Higgs boson mass with mχ̃0

1
= mH − 30 GeV in ggH channel (top) and in the ZH

channel (bottom).

Fig. 8. Expected and observed 95% CL upper limits on σH B as a function of cτχ̃0
1

for mH = 125 GeV and mχ̃0
1

= 95 GeV, where B ≡B(H → χ̃0
1 G̃) B(χ̃0

1 → G̃ + γ ).

can be caused by a kink in the trajectory or by a lower velocity of 
the neutralino.

8. Summary

A search is presented for exotic decays of a Higgs boson into 
undetectable particles and one or two isolated photons in pp col-
lisions at a center-of-mass energy of 8 TeV. The data correspond 
to an integrated luminosity of up to 19.4 fb−1 collected with the 
CMS detector at the LHC. Higgs bosons produced in gluon–gluon 
fusion or in association with a Z boson are investigated. Models 
including Higgs boson decays into a gravitino and a neutralino or 
a pair of neutralinos, followed by the neutralino decay to a grav-
itino and a photon, are tested. The measurements for the selected 
events in data are consistent with the background-only hypoth-
esis, and the results are interpreted as limits on the product of 
cross sections and branching fractions. Assuming a standard model 
Higgs production cross section, a 95% CL upper limit is set on the 
branching fraction of a 125 GeV Higgs boson decaying into unde-
tectable particles and one or two isolated photons as a function of 
the neutralino mass. For neutralino masses from 1 to 120 GeV an 
upper limit in the range of 7 to 13% is obtained. Further results are 
given as a function of the neutralino lifetime, and also for a range 
of Higgs boson masses.
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