
A Framework for the Automatic Analysis and Interactive Exploration
of Document Aesthetics

Technical Report, April 21, 2016

Guido Reina Sebastian Grottel Carsten Dachsbacher
University Stuttgart TU Dresden Karlsruhe Institute of Technology

Abstract— Modern word processing software and typesetting systems such as TeX enable the quick creation of documents of various
kinds. Although the quality of the software packages varies, all can produce aesthetically pleasing documents in terms of layout and
type setting. Problems typically originate from the large number of parameters which are exposed to the user. These range from
simple settings like typeface, font size and column width to more elaborate ones, such as kerning and leading. Most often default
values are modified without grasping the consequences for readability and aesthetic appeal of the resulting document.In this paper,
we present a system for interactive visualization and exploration of quantifiable aspects of document aesthetics such as alignment,
spacing, gray values, but also of image color harmony. This system also allows for comparative analysis of multiple documents and
document versions side-by-side. The documents are rated using an extensible and parameterizable plug-in system allowing the user
to define a task-specific processing pipeline interactively. The rating is hierarchically organized such that the user can drill down into
the different aspects that influence the final score. Our system takes standard document formats such as Adobe PDF or Microsoft
XPS as input. Our system serves as a platform for further research on document aesthetics as well as a utility to sensibilize authors
for these often underestimated aspects of scientific publishing.

Index Terms—Document Aesthetics, Aesthetics in Visualization, Text and Document Data.

1 INTRODUCTION

The creation of visually pleasing and pleasingly readable documents
is the goal of designers of magazines, newspapers, scientific articles,
and books. The broad availability of word processing software and
typesetting systems allows almost everybody to be a designer of a doc-
ument of any kind. The guidelines for an aesthetically pleasing layout
and typographic design can be found in any respective textbook, such
as [10]. However, technical writers and researchers cannot be expected
to be well-versed in all aesthetic implications of document layout. This
is the reason why professional designers are involved in publications
in book form, where a high value is set on an aesthetic appearance.
In the publication process of typical conference proceedings the final
layout quality is mostly dictated by the given document templates and
aesthetics may still suffer from shortfalls of the software, space limi-
tations (ignoring appropriate spacing and layouts), or simply from not
paying enough attention.

In this paper we present a system providing an extensible frame-
work for the automatic, quantitative evaluation of document aesthet-
ics. Our system takes standard electronic document formats as input,
performs the analysis, and presents a summary of the analysis and rat-
ings to the user. The user can also explore multiple documents or a
document history side-by-side, and examine and compare all analysis
results interactively; e.g. to evaluate the evolution of a document over
time or compare different documents. The system offers a plug-in in-
terface allowing for integration of further aesthetics metrics. Such ex-
tensions can be easily prototyped and tested in our environment since
all intermediate analysis data can be retained and accessed from all
modules.

The remainder of this paper is structured as follows. In the next
section we discuss related work, and describe the aesthetical aspects
considered in our analysis and the rating scheme in Section 3. The im-
plementation details are presented in Section 4. Thereafter we present
the results in Section 5, and point to future research in Section 6.

2 RELATED WORK

The pursuit of creating aesthetically pleasing documents – preferably
even generated automatically – is not new [14], but becomes more
and more important, e.g. in the context of on-demand printing of elec-
tronic publications. Depending on the targeted media and the circle of
authors there might be templates defining many aspects of the layout,

e.g. TEX templates for conference submissions. Sometimes publish-
ers simply take text files of any format and designers take over the
typography and layout. There have been many efforts to alleviate this
process by creating document layouts automatically. Iwai et al. [13]
developed a document layout system based on the extraction of logi-
cal and reference structures of documents. It has been implemented in
a Japanese word processor and automatically formats text and creates
layout of text, figures, and tables. However, we are not aware of a com-
mercial word processor exposing this feature to the user. Oliveira [5]
presents two algorithms for placing rectangular items on pages for
sales brochures and similar documents, and for positioning free-form
elements in documents with a multi-column layout. Purvis et al. [19]
and Goldenberg [9] use genetic algorithms to generate page layouts,
e.g. by minimizing white space and maximizing alignment of element
edges.

Creating a “good” layout requires the measuring of the aesthetic
quality which is a non-trivial task as aesthetic appeal is highly sub-
jective. However, from experience it is known which aspects entail
bad layout, and based on these observations this topic has been in-
vestigated [20, 12]. An automatic measurement of the aesthetics of
document layout has been described by Harrington et al. [11]. They
combine heuristic measures of attributes degrading the aesthetic qual-
ity, among others misalignment or irregular spacing of paragraphs, to
obtain a final score for a document. Faria and Oliviera [7] measure
the quality of an adaptive document (an instance of a template) with
respect to the template itself by computing a score penalizing displace-
ment of elements and modification of attributes, such as font sizes. If
the score drops below a certain threshold the document is sent to fur-
ther (possibly human) review.

Related to our system is the analysis of documents such as scanned
books or newspapers which exhibits many challenges: Pages have to
be decomposed and text blocks and images have to be identified and
separated [3, 6, 16]. In contrast, we take electronic documents as in-
put and thus can access the internal data structures largely leaping the
tedious task of typography extraction from scanned images [15] (see
Section 4 for the subtleties arising from electronic documents).



Fig. 1. !!! rewrite, pfeilchen, beschreibungen !!! The main window of our application, designed to resemble other digital document viewers. Detected
text blocks and figures are outlined, problematic parts highlighted in red, a global histogram of the text parts is shown at the page borders. The top
right control allows for tweaking of rating and detection, the tree at the bottom right summarizes the problems and the subsequent scores.

Plugin

input Data

e.g. Paragraphs, Pixel Data

⁞ ⁞

new Data

e.g. Histograms, Problems

Fig. 2. General structure of a plugin of our system: an arbitrary number
of typed input and output ‘slots’ can be defined. Produced data can be
utilized by other plugins, drawn into the document view, or evaluated
and rated as an aesthetics problem.

3 DOCUMENT AESTHETICS

In this section we will describe the aspects considered in our document
analysis. Prior to the analysis itself we need to access the document
data, i.e. glyphs, images and figures, as input to the analysis algo-
rithms. The input data format is the first design choice when imple-
menting a system for document analysis. The options range from di-
rectly integrating the analysis in a word processor, to just taking raster-
ized pages as input. We found that using a page description language,
such as Postscript, Adobe PDF, or Microsoft XPS is a very good com-
promise as it provides fine grained access to the document data, as well
as flexible document import. All of them describe the page contents
and locations of glyphs, images and vector graphics. We decided to
use the Microsoft XPS format for two reasons: First, we can easily
create XPS documents from any word processing software, and con-
vert from Postscript or PDF to XPS by using the officially provided
virtual printer device (under Windows). The main advantage, how-
ever, is that Microsoft provides an easy-to-use library for reading and
writing XPS files, and for rasterizing them into bitmaps.

Our system consists of a user-definable chain of plugins that grad-
ually process the data extracted from an XPS file. Each plugin de-
fines typed input and output slots for required and produced data (see

XPS input Figure Detector Paragraph Detector Figure Histogram
Generator

Figure Color
Harmony
Calculator

Gap Detector

aesthetic
problems

XPS Data Figure Data Paragraph
Data

visual
elements

Figure
Histograms

Fig. 3. Exemplary pipeline configuration for the detection of color har-
mony and text gap problems. The order in which the plugins are pro-
cessed is implicitly determined by the required input data.

Fig. 2). The output can be used by multiple subsequently employed
modules, and as such reducing the processing overhead for frequently
required data. Output data can be overlaid on the document view, indi-
cating the extracted information, e.g. paragraph bounds, spacing etc.
Additionally, plugins can also produce aesthetic problems with a nor-
malized score. These problems are grouped by the categories which
can later be weighted individually depending on their overall visual
impact. These weights can be adjusted interactively in the document
viewer without re-processing the data. Figure 3 shows an exemplary
pipeline, along with the produced data, for color harmony and text gap
rating.

!!! grobe systembeschreibung !!! !!! pipeline-bild? !!!
hier muss ein überblick her: In our analysis we examine typograph-

ical aspects such as .. .. .. (see Figure...), as well as color harmony of
images.

3.1 Typography

The analysis of the textual parts of the document is based on data ob-
tained from glyph runs which are sequences of glyphs and their po-

8

6

31

2

9

10

5

7

4

Fig. 1. The user interface of our system. In general, there are 3 types of windows: the Document Explorer (1), the Processor Editor (3), and the
Document Viewer (6). The Document Explorer contains multiple previews (2) of opened documents, allowing for rough comparison of documents
and the respective scores. The main part of the Processor Editor is the editing area (4) depicting the active plugins, the data interconnects and
the produced data. On the right (5), parameters of the selected plugin can be adjusted. Since multiple Document Views can be opened, each one
contains its own preview (7). The selected page is shown in detail with overlaid information (8). On the right, the problem tree summarized the
rating of the document hierarchically (9). The weighting of the class of the selected aesthetic problem can be manipulated interactively (10).

plugin

input data

e.g. paragraphs, pixel data

⁞ ⁞

new data

e.g. histograms, problems

Fig. 2. General structure of a plugin of our system: an arbitrary number
of typed input and output ‘slots’ can be defined. Produced data can be
utilized by other plugins, drawn into the document view, or evaluated
and rated as an aesthetics problem.

3 DOCUMENT AESTHETICS

In this section we will describe the aspects considered in our docu-
ment analysis. Prior to the analysis itself we need to access the doc-
ument data, i.e. glyphs, images, and figures, as input to the analysis
algorithms. The input data format is the first design choice when im-
plementing a system for document analysis. The options range from
directly integrating the analysis in a word processor, to just taking ras-
terized pages as input. We found that using a page description lan-
guage, such as Postscript, Adobe PDF, or Microsoft XPS is a very
good compromise as it provides fine grained access to the document
data, as well as flexible document import. All of them describe the
page contents and locations of glyphs, images, and vector graphics.
We decided to use the Microsoft XPS format for two reasons: First, we
can easily create XPS documents from any word processing software,
and convert from Postscript or PDF to XPS by using the officially pro-
vided virtual printer device (under Windows). The main advantage,
however, is that Microsoft provides an easy-to-use library for reading
and writing XPS files, and for rasterizing them into bitmaps.

Our system consists of a user-definable chain of plugins that grad-
ually process the data extracted from an XPS file. Each plugin de-

XPS input figure detector paragraph detector
figure histogram 

generator

figure color 

harmony calculator
gap detector

aesthetic 

problems

XPS data figure data
paragraph 

data

visual 

elements

figure 

histograms

Fig. 3. Exemplary pipeline configuration for the detection of color har-
mony and text gap problems. The order in which the plugins are pro-
cessed is implicitly determined by the required input data.

fines typed input and output slots for required and produced data (see
Fig. 2). The output can be used by multiple subsequently employed
modules, and as such reducing the processing overhead for frequently
required data. Output data can be overlaid on the document view, indi-
cating the extracted information, e.g. paragraph bounds, spacing etc.
Additionally, plugins can also produce output on aesthetic problems
with a normalized score. These problems are grouped by the cate-
gories which can later be weighted individually depending on their
overall visual impact. These weights can be adjusted interactively in
the document viewer without re-processing the data. Figure 3 shows
an exemplary pipeline along with the produced data for color harmony
and text gap rating.

3.1 Typography

The analysis of the textual parts of the document is based on data ob-
tained from glyph runs which are sequences of glyphs and their po-
sition, which we directly obtain from the XPS document. From this
information we can easily compute the base lines and deduce informa-



Fig. 4. Unsatisfactory justification may cause text gaps that are un-
pleasant for the reader. This example exhibits many such flaws due to a
narrow columns width. Rivers caused by unfortunate alignment of white
space are highlighted.

tion about the paragraph layout, i.e. analyze the glyph extents to esti-
mate the text alignment. However, sometimes the XPS writer partially
decomposes text into individual spline paths. In this case our system
uses heuristics to compensate for this missing information on glyphs,
their kerning, and baselines. After re-assembling text lines from glyph
runs and paths, we detect (large) gaps between words which might
arise from justification with small column-width and bad automatic
hyphenation (Fig. 4).

We also rasterize the document to extract further information about
the text blocks (implementation details are outlined in Section 4):

• We determine row-wise and column-wise histograms for distin-
guishing textual parts belonging to different paragraphs (Fig. 7)
and for determining paragraph gray values. The gray value is a
typical criterion for evaluating document aesthetics and it should
not vary strongly across the document (see Fig. 9).

• We also detect the geometry of whole paragraphs including
bounding boxes (shown blue in Fig. 1), first line indents, and
the used length of the last line (which do both not count towards
the gray value).

• We compare the width of individual lines to the paragraphs’
bounding boxes to determine the alignment and to detect over-
hangs of text (Fig. 7) and figures (Fig. 11).

3.2 Color Harmony
For many technical documentations and articles it is desirable that the
images and figures in the document exhibit an aesthetically pleasing
coloring or choice of colors. Likewise, when multiple illustrations are
used we would like their colors to go well together. Cohen-Or et al. [4]
analyzed the hue histograms of images and harmonize colors by mod-
ifying them to fit into a set of experimentally determined templates.
We adapt this idea and compute a color harmony score by comparing
the actual hue histogram to the best-fitting template yielding a score for
every image (Fig. 5) based on those hues that do not fit the template. A
large score means inharmonic colors. To determine the color harmony
across figures, the user can select multiple images and the application
displays a pairwise color harmony, i.e. how harmonic the result would
be if the images were merged prior to computing the histogram. Also,
for every page of the document all combinations of figures are ana-
lyzed to derive the overall color harmony. Our implementation also
creates a harmony matrix (presented in a separate window, see Fig. 8)
which shows the pairwise harmony of all images in the document.

Fig. 5. For selected figures we show their saturation-weighted hue his-
togram and the best-fitting harmonic template along with a score and
the derived rating icon: ok (checkmark), warning (warning sign), bad
(red cross) – see also figure 8 or the summary tree in figure 12.

The harmony matrix supports synchronized selection (linked views),
i.e. when the user clicks on images in the main window, the respec-
tive entries of the matrix are highlighted, and clicking into the matrix
opens the respective page and selects the corresponding figure.

3.3 Rating Scheme

Our application presents a quick overview of the estimated aesthetic
quality to the user by providing a structured summary of all possible
problematic document locations that have been detected. The rating is
categorized into warning and error, which contribute accordingly to
the overall rating. These ratings are linearly accumulated for a docu-
ment to give a concise overall impression.

The (relative) thresholds we refer to can be customized by the user,
however, the default values in combination with automatically de-
tected text parameters generally work well. The individual aspects
which contribute to the overall score, or generate warnings or errors,
are the following:

• Gray value deviation: The gray values of all text blocks in the
document are collected and the global median gray value is de-
termined, as well as the global median deviation thereof. If any
block has a higher deviation from the global median than the
median deviation, it will generate a warning.

• Text gaps: If two glyphs or two glyph runs on a single line are
separated by too large an empty space, a gap error is generated.
We count the detected gaps for each document page and generate
a warning or an error if the number exceeds the thresholds.

• Boundary violations: These are items jutting out of the deter-
mined paragraph bounds. Such violations usually happen due to
strings which are not hyphenated (such as URLs), equations, and
considerable tweaking of figure placement. Typically the user is
responsible for such flaws and thus we create an error.

• Color harmony: The hue histogram of each figure is considered
individually and might generate a warning or an error if it is in-
harmonic, i.e. it creates a high score. All pair-wise combinations
of figures can generate an additional warning or error.

The result is displayed in a tree view (see Fig. 6) such that the user
can expand the interesting parts and interactively navigate the docu-
ment preview by selecting the different reported problems. By click-
ing an item the application automatically navigates to and highlights
the respective document portion.



Fig. 6. An excerpt from an exemplary document rating. The problems
are listed hierarchically, with the respective sub-scores in parentheses.

4 IMPLEMENTATION

If the input file is in PDF format it will be converted into XPS using
Microsoft’s virtual printer device. All document processing in our ap-
plication uses the XPS format as it makes the document structure very
comfortable to access via a dedicated API. The first step is to extract
(and re-assemble if required) bitmap images in the document in their
native resolution. We also crop figures as there might be empty or
white borders overlapping the surrounding text.

Subsequent to the image extraction we gather information about the
textual parts. For this, we generate a fixed-resolution preview of every
page and compute horizontal and vertical histograms. Then we use the
xy-cut method [17] to detect text blocks on the (rasterized) document
pages. Please note that images are ignored during this detection. This
implies that all blocks that we detect now are initially considered as
textual parts. To detect other document structures, such as tables, we
rely on heuristics (disussed below). Typically the xy-cuts create too
many text blocks, e.g. headings where the numbering is distant from
the label create two blocks, or justified text with large gaps is not de-
tected as belonging together. We complement this step by rejoining
those text blocks which are connected by a glyph run.

As previously mentioned, we use a heuristic to detect non-textual
parts: e.g. we assume that a table has been found if we detect several
thin horizontal and vertical paths nearby. Please note that no such
information is stored explicitly in PDF or XPS documents. Tables are
currently removed from further analysis and are not rated.

All glyph runs and paths inside the textual parts (from the previous
xy-cuts step) are used to detect the individual text lines therein. Again,
no such information is stored explicitly in the electronic document. A
glyph run always belongs to one line only. Thus we detect the lines by
considering all glyph runs one after another: A glyph run belongs to an
already detected text line if it has a pronounced vertical overlap with it
or its baseline is roughly equal to that of the line. If neither is the case,
then the glyph is part of a new line. As mentioned before, characters
might be represented by paths (splines or line segments) instead of
glyphs. For paths there is no baseline information and we do not even
have information how they form characters. In this case we determine
an approximate baseline by averaging their respective lowest bound-
ary. This simple approach proved to work well in our experiments (see
Fig. 7), however, more advanced (and costly) algorithms can be used,
such as the line-finder described by Breuel [1]. It is also imaginable
to rely on clustering techniques taking the text block histogram into
account.

Next, our application extracts the median font size for each text
block directly if it contains at least one glyph run, otherwise we use
the average line height detected in the previous step.

Using the information that has been gathered so far, we can decide

Fig. 7. For selected paragraphs we show extracted information, like
the baseline of the detected lines, a local histogram and the estimated
horizontal extents (shown as arrows on top) that can be used to de-
rive the paragraph alignment. A border violation caused by an URL is
highlighted in this example.

whether a text block represents a single paragraph, or if it has to be
further split. The text blocks are separated if the distance between
two consecutive baselines is larger than a certain threshold (implies a
regular leading), if an indent is detected on a line, or if a line is shorter
than the previous one (for left flushed text). Alignment is determined
by analyzing the boundary variance of text lines: High variance at
both sides indicates centered text, high variance at only one side is
interpreted as ragged text (i.e. flush to the opposite side), and no (very
low) variance indicates justified paragraphs.

To compute the gray values in a later step, we generate a tight
bounding box for every paragraph, excluding leading and trailing
spaces. Both glyph runs and single paths in every line are analyzed
to detect large gaps which point at problems with the layout. Using
the spacing information (both small and large gaps), each paragraph
is searched for rivers, i.e. whitespace vertically spanning several lines.
Text columns are detected using the median bounds of the text blocks.
These bounds are then used to detect figures, equations, and text vio-
lating the column widths.

For the analysis of the color harmony we create a saturation-
weighted hue histogram for every image. Next we find the best-fitting
harmonic template using Brent’s algorithm [18]. The score for a figure
is determined by the sum of the hue distance of every contained color
to the best template, as described in [4] (Fig. 5) and normalized by the
number of pixels in the image:

1
#pixels ∑

h
H(h) ·D(T,α,h) ·S(h), (1)

where H(h) is the histogram for hue h in degrees, S(h) its total satu-
ration, and D(T,α,h) the distance to the nearest edge in template T
at the (optimal) orientation α . Perfect matches get a score of 0 and
our application creates warnings or errors for each figure if the score
exceeds the respective thresholds. In addition to the per-figure color
harmony, the inter-figure color harmony is computed for all pair-wise
combined figures in the whole document. This yields a figure matrix
as shown in Fig. 8. The harmony between two images is defined by
merging them (identical to combining the histograms and saturations)
and then find matching templates.

The last analysis steps include the computation of the text block
gray value and the rating of the single blocks based on their deviation
from the median gray value across the whole document.



Fig. 8. A separate window shows the color harmony matrix for all possi-
ble combinations of figures, which are also used to derive the total color
harmony score for the entire document.

Fig. 9. Left: the document visualized in ‘gray mode’: text box contents
are replaced by boxes with its average gray value. The option to double
the deviation from the median gray value of the document (for easier
comparison) is active in this example. Right: a part of the associated
summary tree.

5 RESULTS

The document analysis with our application requires several seconds
(for an 8-page paper) for the full processing pipeline. Please note that
the analysis results can be saved for later use without processing the
source document again. The navigation and exploration of the docu-
ment analysis results is interactive at all times.

Fig. 12 shows a sample output from our prototype. Even though a
LATEX template has been used, two long rivers can be seen (both at least
6 lines high, which is the threshold for error-grade rivers), as well as
several gaps. The accompanying video illustrates the interactive usage
of the software and the presentation of the detected problems. The
detection-based navigation as well as the interactive manipulation of
thresholds and ratings can also be observed in real-time.

6 FUTURE WORK

A logical next step is to analyze the use of type families, as it is known,
for example, that long consecutive use of italic fonts has negative im-
pact on the readability and frequent changes interrupt the text flow.
Further, combinations of typefaces can be regarded – often too many
of them are combined, or inappropriate typefaces with different char-
acteristic styles are selected [10].

The presented approach can also be combined with OCR and more

Fig. 10. Extents with strong deviation hint at lines which exceed the
overall bounds.

Fig. 11. Figures violating the detected column bounds are shown in this
example, highlighted in yellow and red.

involved layout analysis algorithms to extend the range of supported
document formats to nearly arbitrary input. Along the same lines, the
table and vector figure detection heuristic (a weak point of the current
implementation) is subject to future work to make it more robust.

In addition to this pure “mechanical” analysis we could imagine to
extend our system to analyze if the selected typefaces are appropriate
for the document content (although this is not relevant for all kinds
of documents, e.g. scientific papers). We believe that a full semantic
analysis and understanding of the text is most often not required for
this. Instead we would like to search the document for characteristic
terms or words, and find matching semantic profiles which allow to
assess the chosen type faces.

7 CONCLUSIONS

In this paper we presented a novel, extensible system for the automatic
analysis of document aesthetics. It allows the user to interactively
browse and explore the document and the analysis results. Our im-
plementation is very easy to use and even unexperienced users quickly
find layout and typographic shortfalls in their documents and can de-
velop a better understanding for the underlying problems. The param-
eters required for the document analysis are kept to a minimum and
their values can be intuitively altered, if required. Lastly, our imple-
mentation is flexible and extensible and thus a starting point for a more
comprehensive document analysis.

REFERENCES

[1] T. M. Breuel. A review of branch-and-bound algorithms for geometric
and statistical layout analysis. In Colloque International Francophone
sur l’ecrit et le Document CIFED 2004, 2004.

[2] L. Caponetti, C. Castiello, and P. Górecki. Document page segmenta-
tion using neuro-fuzzy approach. Applied Soft Computing, 8(1):118–126,
2008.



Fig. 12. Our application has analyzed a preliminary version of this paper. Although it has been produced with LATEX(typically a very consistent type
setting system), a couple of gaps and rivers are still noticeable.

[3] R. Cattoni, T. Coianiz, S. Messelodi, and C. M. Modena. Geometric
layout analysis techniques for document image understanding: A review.
Technical Report TR9703-09, ITC-irst, 1998.

[4] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y.-Q. Xu. Color har-
monization. ACM Transactions on Graphics, 25(3):624–630, 2006.

[5] J. B. S. de Oliveira. Two algorithms for automatic document page layout.
In DocEng ’08: Proc. ACM Symposium on Document Engineering, pages
141–149, 2008.

[6] A. Dengel. Automatic visual classification of printed documents. In
Proc. International Workshop on Industrial Applications of Machine In-
telligence and Vision, pages 276–281, 1989.

[7] A. C. Faria and J. B. S. de Oliveira. Measuring aesthetic distance be-
tween document templates and instances. In DocEng ’06: Proc. ACM
Symposium on Document Engineering, pages 13–21, 2006.

[8] A. C. Faria and J. B. S. de Oliveira. Measuring aesthetic distance between
document templates and instances. In DocEng ’06: Proceedings of the
2006 ACM Symposium on Document Engineering, pages 13–21, 2006.

[9] E. Goldenberg. Automatic layout of variable-content print data. Technical
Report HPL-2002-286, HP Laboratories Bristol, 2002.

[10] L. Graham. Basics of Design: Layout and Topography for Beginners.
Delmar, 2nd edition, 2005.

[11] S. J. Harrington, J. F. Naveda, R. P. Jones, P. Roetling, and N. Thakkar.
Aesthetic measures for automated document layout. In DocEng ’04:
Proc. of ACM Symposium on Document Engineering, pages 109–111,
2004.

[12] M. Y. Ivory and M. A. Hearst. Improving web site design. IEEE Internet
Computing, 6(2):56–63, 2002.

[13] I. Iwai, M. Doi, K. Yamaguchi, M. Fukui, and Y. Takebayashi. A doc-
ument layout system using automatic document architecture extraction.
In CHI ’89: Proc. SIGCHI Conference on Human Factors in Computing

Systems, pages 369–374, 1989.
[14] C. Jacobs, W. Li, E. Schrier, D. Bargeron, and D. Salesin. Adaptive grid-

based document layout. ACM Transactions on Graphics, 22(3):838–847,
2003.

[15] F. LeBourgeois and H. Emptoz. Document analysis in gray level and ty-
pography extraction using character pattern redundancies. In ICDAR ’99:
Proc. International Conference on Document Analysis and Recognition,
page 177. IEEE Computer Society, 1999.

[16] S. Mao, A. Rosenfeld, and T. Kanungo. Document structure analysis
algorithms: A literature survey, 2003.

[17] G. Nagy and S. Seth. Hierarchical representation of optically scanned
documents. In Proc. International Conference on Pattern Recognition,
pages 347–349, 1984.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, 1992.

[19] L. Purvis, S. Harrington, B. O’Sullivan, and E. C. Freuder. Creating per-
sonalized documents: an optimization approach. In DocEng ’03: Proc.
ACM Symposium on Document Engineering, pages 68–77, 2003.

[20] K. Schriver. Dynamics in document design: creating text for readers.
John Wiley and Sons, Inc., 1997.


