
Validation Framework

for RDF-based Constraint Languages

PHD THESIS APPENDIX

Department of Economics and Management

Karlsruhe Institute of Technology (KIT)

M.Sc. Thomas Hartmann

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197526255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This paper serves as appendix for the PhD thesis entitled Validation Framework
for RDF-based Constraint Languages, submitted to the Department of Economics
and Management at the Karlsruhe Institute of Technology (KIT).

The formulation of constraints and the validation of RDF data against these
constraints is a common requirement and a much sought-after feature, particularly
as this is taken for granted in the XML world. Recently, RDF validation as a re-
search field gained speed due to shared needs of data practitioners from a variety
of domains. For constraint formulation and RDF data validation, several languages
exist or are currently developed. Yet, there is no clear favorite and none of the
languages is able to meet all requirements raised by data professionals. Therefore,
further research on RDF validation and the development of constraint languages is
needed.

There are different types of research data and related metadata. Because of the
lack of suitable RDF vocabularies, however, just a few of them can be expressed
in RDF. We have developed three missing vocabularies to represent all types of
research data and its metadata in RDF and to validate RDF data according to
constraints extractable from these vocabularies.

Data providers of many domains still represent their data in XML, but expect to
increase the quality of their data by using common RDF validation tools. In order to
be able to directly validate XML against semantically rich OWL axioms when using
them in terms of constraints and extracting them from XML Schemas adequately
representing particular domains, we propose on formal logics and the XML Schema
meta-model based automatic transformations of arbitrary XML Schemas and corre-
sponding XML documents into OWL ontologies and conforming RDF data without
any information loss and without having any additional manual effort defining con-
straints.

We have published a set of constraint types that are required by diverse stake-
holders for data applications and which form the basis of this thesis. Each constraint
type, from which concrete constraints are instantiated to be checked on the data,
corresponds to one of the requirements contained in a community-driven database
of requirements to formulate constraints and validate RDF data. We have initiated
this database to collaboratively collect case studies provided by various data insti-
tutions, use cases, requirements, and solutions in a comprehensive and structured

way. We use this collection of constraint types to gain a better understanding of
the expressiveness of existing and currently evolved solutions, identify gaps that
still need to be filled, recommend possible solutions for their elimination, and give
directions for the further development of constraint languages.

SPARQL is generally seen as the method of choice to validate RDF data, al-
though it is not ideal for constraint formulation. In contrast, high-level constraint
languages are comparatively easy to understand and allow to formulate constraints
in a more concise way, but either lack an implementation to actually validate RDF
data against constraints expressed in these languages or are based on different im-
plementations.

We introduce a validation framework that enables to consistently execute RDF-
based constraint languages on RDF data and to formulate constraints of any type in
a way that mappings from high-level constraint languages to an intermediate generic
representation can be created straight-forwardly. The framework reduces the rep-
resentation of constraints to the absolute minimum, is based on formal logics, and
consists of a very simple conceptual model using a small lightweight vocabulary.
We demonstrate that using another layer on top of SPARQL ensures consistency re-
garding validation results and enables constraint transformations for each constraint
type across RDF-based constraint languages.

The constraint types form the basis to investigate the role that reasoning plays
in practical data validation, when reasoning is beneficial for RDF validation, and
how to overcome the major shortcomings when validating RDF data by performing
reasoning prior to validation. For each constraint type, we investigate (1) if reasoning
may be executed to enhance data quality, (2) how efficient in terms of runtime
validation is performed with and without reasoning, and (3) if validation results
differ when different semantics is assumed.

We evaluate the usability of constraint types for assessing RDF data quality by
(1) collecting and classifying constraints on vocabularies, either from the vocabu-
laries themselves or from domain experts, and (2) validating 15,694 data sets (4.26
billion triples) of research data according to these constraints. Based on the large-
scale evaluation, we formulate several findings to direct the further development of
constraint languages.

Contents

Appendix . 1

A Types of Constraints on RDF Data . 1

B Constraint Type Specific Expressivity of Constraint
Languages . 48

C Classification of Constraints according to the RDF
Constraints Vocabulary . 52

D CWA and UNA Dependency of Constraint Types 55

E Constraining Elements for Constraint Types 58

F Software . 63

G Publications . 64
G.1 Publications by Chapter . 64
G.2 Publications by Publication Type . 68

References . 73

A

Types of Constraints on RDF Data

We initiated a community-driven database of requirements to formulate con-
straints and validate RDF data against these constraints. The intention of
this database is to collaboratively collect case studies provided by various
data institutions, use cases, requirements, and solutions in a comprehensive
and structured way. The database is publicly available at http://purl.org/net/
rdf-validation, continuously extended, and open for further contributions.

Based on our work in the DCMI RDF Application Profiles Task Group1

and the W3C RDF Data Shapes Working Group2 and the requirements jointly
identified within these working groups, we have published by today 81 types
of constraints that are required by various stakeholders for data applications;
each constraint type, from which concrete constraints are instantiated to be
checked on the data, corresponds to a specific requirement in the database.

For each constraint type, we give a formal definition and a detailed ex-
planation in form of intuitive example constraints. In a technical report, we
provide additional examples for each constraint type represented in different
constraint languages [18].

We instantiate each constraint type at least once and thereby demon-
strate how to generically express constraints (1) in Description Logics (DL),3

on condition that their constraint type is expressible in DL, and (2) using
the RDF Constraints Vocabulary (RDF-CV),4 a small lightweight vocabulary
introduced within the developed validation framework.

For each constraint type, we provide templates showing how arbitrary
constraints of a given constraint type are representable using the RDF-CV in
a generic way. In case a particular constraint must hold for all individuals of

1 http://wiki.dublincore.org/index.php/RDF-Application-Profiles
2 http://www.w3.org/2014/rds/charter
3 DL statements are contained in a DL knowledge base K which is a collection of

formal statements corresponding to facts or what is known explicitly.
4 Formal specification, HTML documentation, and UML class diagram online avail-

able at: https://github.com/github-thomas-hartmann/phd-thesis

http://purl.org/net/rdf-validation
http://purl.org/net/rdf-validation
http://wiki.dublincore.org/index.php/RDF-Application-Profiles
http://www.w3.org/2014/rds/charter
https://github.com/github-thomas-hartmann/phd-thesis

2 A Types of Constraints on RDF Data

the graph to be validated, the context class of the generic representation is
set to the DL top concept J, a special concept with every individual as an
instance.

A.1 Functional Properties

Constraints of the constraint type functional properties (R-57/65) state
that the object or data properties pi (1 ¤ i ¤ n) are functional within the con-
text of the class Ccontext - that is, for each individual i1 of the class Ccontext,
there can be at most one distinct individual i2 such that i1 is connected by
pi to i2. As the property title is functional, a book can have at most one
distinct title. The data property isbn is functional, since books can only have
one ISBN.

K � t funct (isbn) }

Table A.1. Generic Representation of the Constraint of the Constraint Type Func-
tional Properties

context class left p. list right p. list classes c. element c. value
Book isbn - - functional properties -

Table A.2. Generic Representation of the Constraint Type Functional Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - functional properties -

A.2 Inverse-Functional Properties

Constraints of the constraint type inverse-functional properties (R-58)
state that the object properties pi (1 ¤ i ¤ n) are inverse-functional within
the context of the class Ccontext - that is, for each individual i1, there can
be at most one individual i2 such that i2 is connected by pi with i1. In DDI-
RDF, resources are uniquely identified by the property adms:identifier, which
is therefore inverse-functional.

K � t funct pidentifier) }

Table A.3. Generic Representation of the Constraint of the Constraint Type
Inverse-Functional Properties

context class left p. list right p. list classes c. element c. value
J adms:identifier - - inverse-functional properties -

A.4 Subsumption 3

Table A.4. Generic Representation of the Constraint Type Inverse-Functional
Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - inverse-functional properties -

A.3 Primary Key Properties

The primary key properties (R-226) constraint type is often useful to de-
clare a given (data) property p as the primary key of a class Ccontext, so that
a system can enforce uniqueness. Books, e.g., are uniquely identified by their
ISBN, i.e., the property isbn is inverse functional pfunct isbn q. The mean-
ing of this constraint is that ISBN identifiers can only have isbn relations
to at most one distinct book. Keys, however, are even more general, i.e., a
generalization of inverse functional properties [32]. A key can be a data, an
object property, or a chain of properties. For these generalization purposes,
as there are different sorts of keys, and as keys can lead to undecidability, DL
is extended with a special construct keyfor (isbn keyfor Book) [28].

K � t funct pisbn) }

Table A.5. Generic Representation of the Constraint of the Constraint Type Pri-
mary Key Properties

context class left p. list right p. list classes c. element c. value
Book isbn - - primary key -

Table A.6. Generic Representation of the Constraint Type Primary Key Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - primary key -

A.4 Subsumption

The subsumption (R-100) constraint type corresponds to concept inclusion
in DL terminology. Sub-class axioms are a fundamental type of axioms in OWL
2 and can be used to construct class hierarchies. If C1 is a sub-class of C2,
i.e., C1 is more specific than C2, then each instance of C1 must also be an
instance of C2. Each book, e.g., must also be of the type publication.

K � t Book � Publication }

Table A.7. Generic Representation of the Constraint of the Constraint Type Sub-
sumption

context class left p. list right p. list classes c. element c. value
Book - - Publication sub-class -

4 A Types of Constraints on RDF Data

Table A.8. Generic Representation of the Constraint Type Subsumption

context class left p. list right p. list classes c. element c. value
 C1¡ - - C2¡ sub-class -

A.5 Sub-Properties

Sub-properties (R-54/64) (role inclusion in DL) are analogous to subsump-
tion, i.e., sub-class relationships. With sub-properties, one can state that the
property p1 is a sub-property of the property p2 - that is, if an individual i1 is
connected by p1 to an individual i2 or a literal l, then i1 is also connected by p2

to i2/l. If a journal volume has an editor relationship to a person, e.g., then the
journal volume must also have a creator link to the same person, i.e., editor is
a sub-property of creator. If we validate against this sub-properties constraint
and the data contains the triple editor (A+Journal-Volume, A+Editor), then
the triple creator (A+Journal-Volume, A+Editor) has to be stated explicitly
to prevent the constraint to be violated. In contrast, if the second triple is not
present in the data, a violation occurs.

K � t editor � creator }

Table A.9. Generic Representation of the Constraint of the Constraint Type Sub-
Properties

context class left p. list right p. list classes c. element c. value
J editor creator - sub-property -

Table A.10. Generic Representation of the Constraint Type Sub-Properties

context class left p. list right p. list classes c. element c. value
J p1¡ p2¡ - sub-property -

A.6 Object Property Paths

Object property paths (R-55) (or object property chains and in DL termi-
nology complex role inclusion or role composition) is the more complex form
of the sub-properties constraint type. With object property paths, one can
state that, if an individual i1 is connected by a sequence of object properties
p1, ..., pn with an individual i2, then i1 is also connected with i2 by the object
property p. As Stephen-Hawking is the author of the book A-Brief-History-
Of-Time whose genre is Popular-Science, the object property path authorOf �

genre � authorOfGenre infers that Stephen-Hawking is an author of the genre
Popular-Science. In case the last triple is not present in the data, the object
property paths constraint is violated.

K � t authorOf � genre � authorOfGenre }

A.8 Not Allowed Values 5

Table A.11. Generic Representation of the Constraint of the Constraint Type
Object Property Paths

context class left p. list right p. list classes c. element c. value
J authorOf, genre authorOfGenre - object property path -

Table A.12. Generic Representation of the Constraint Type Object Property Paths

context class left p. list right p. list classes c. element c. value
J pi¡ (1 ¤ i ¤ n) p¡ - object property path -

A.7 Allowed Values

It is a common requirement to narrow down the value space of proper-
ties by an exhaustive enumeration of valid values - both literals or resources
(R-30/37: allowed values). This is often rendered in drop down boxes or ra-
dio buttons in user interfaces. Allowed values for property values may be
IRIs, IRIs matching specific patterns, IRIs matching one of multiple patterns,
any literals, literals of a list of allowed literals, or typed literals of a certain
datatype. A constraint of this type ensures that all instances of a given class
Ccontext can only have relations via a specific object or data property p to
individuals ii or literals li (1 ¤ i ¤ n) of a set of allowed individuals/literals.
Consider the following example of a constraint of this type which states that
books on the topic computer science can only have Computer-Science and
Informatics as allowed subjects.

K � t Computer-Science-Book � @ subject.{Computer-Science} \ {Informatics} }

Table A.13. Generic Representation of the Constraint of the Constraint Type
Allowed Values

context class left p. list right p. list classes c. element c. value
Computer-Science-Book subject - Computer-Science, Informatics allowed values -

Table A.14. Generic Representation of the Constraint Type Allowed Values

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - ii¡ | li¡ (1 ¤ i ¤ n) allowed values -

A.8 Not Allowed Values

A constraint of the constraint type not allowed values (R-33/200) ensures
that all instances of a given class Ccontext cannot have relations via a specific
object or data property p to individuals ii or literals li (1 ¤ i ¤ n) of a
set of not allowed individuals/literals. Consider the following example of a

6 A Types of Constraints on RDF Data

constraint of this type which states that books on the topic computer science
cannot have Economic-Sciences or Business-Sciences as subjects.

K � t Computer-Science-Book � D subject.{Economic-Sciences} \ {Business-Sciences} }

Table A.15. Generic Representation of the Constraint of the Constraint Type Not
Allowed Values

context class left p. list right p. list classes c. element c. value
Computer-Science-Book subject - Economic-Sciences, not allowed values -

Business-Sciences

Table A.16. Generic Representation of the Constraint Type Not Allowed Values

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - ii¡ | li¡ (1 ¤ i ¤ n) not allowed values -

A.9 Class Equivalence

Constraints of the constraint type class equivalence (R-3), or concept equiv-
alence in DL terminology, assert that two classes have the same instances.
While synonyms are an obvious example of equivalent classes, in practice,
class equivalence is more often used to give a name to complex expressions
[27]. Class equivalence is indeed subsumption from left to right and from right
to left (C1 � C2 and C2 � C1 implies C1 � C2). Constraints of this constraint
type state that all of the classes Ci, 1 ¤ i ¤ n, are semantically equivalent to
each other. This constraint type allows one to use each C i as a synonym for
each Cj - that is, any class Ci can be replaced with Cj without affecting the
meaning of a constraint. Each person is a human and each human is a person,
is an example of a constraint of the type class equivalence.

K � t Person � Human }

Table A.17. Generic Representation of the Constraint of the Constraint Type Class
Equivalence

context class left p. list right p. list classes c. element c. value
Person - - Human equivalent classes -

Table A.18. Generic Representation of the Constraint Type Class Equivalence

context class left p. list right p. list classes c. element c. value
 C1¡ - - C2¡ equivalent classes -

A.11 Literal Value Comparison 7

A.10 Equivalent Properties

A constraint of the constraint type equivalent properties (R-4/5) states
that all of the object or data properties pi (1 ¤ i ¤ n) are semantically
equivalent to each other. This constraint type allows one to use each pi as a
synonym for each pj — that is, in any constraint, pi can be replaced with pj
without affecting the meaning of the constraint. The property author, e.g.,
should be handled as a synonym of the property hasAuthor.

K � t author � hasAuthor }

Table A.19. Generic Representation of the Constraint of the Constraint Type
Equivalent Properties

context class left p. list right p. list classes c. element c. value
J author, hasAuthor - - equivalent properties -

Table A.20. Generic Representation of the Constraint Type Equivalent Properties

context class left p. list right p. list classes c. element c. value
J pi¡ (1 ¤ i ¤ n) - - equivalent properties -

A.11 Literal Value Comparison

Constraints of the constraint type literal value comparison (R-43) en-
sure that, depending on the datatype DT of data properties p1 and p2,
two different literal values of the data properties p1 and p2 have a specific
ordering with respect to an operator like ¡, ¥, , ¤, =, and �. Con-
straints of this constraint type are checked for each instance of a given
class Ccontext which may be J in case constraints should be checked for
each individual of the input graph. It has to be guaranteed, e.g., that
birth dates of persons are before (<) death dates. If the birth and the
death date of Albert-Einstein are interchanged (birthDate(Albert-Einstein,

"1955-04-18"), deathDate(Albert-Einstein, "1879-03-14")), a violation is
thrown.

Table A.21. Generic Representation of the Constraint of the Constraint Type
Literal Value Comparison

context class left p. list right p. list classes c. element c. value
Person birthDate deathDate xsd:date is less than -

Table A.22. Generic Representation of the Constraint Type Literal Value Com-
parison

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p1¡ p2¡ DT¡ mathematical symbol¡ -

8 A Types of Constraints on RDF Data

A.12 Value is Valid for Datatype

Constraints of the constraint type value is valid for datatype (R-223) en-
able to make sure that for Ccontext individuals each literal of the property p is
valid for its datatype DT . It has to be ensured, e.g., that a literal is actually
(1) a date, (2) numeric, (3) a string, or (4) an integer which is allowed to be
negative or not. By means of this type it can be checked if all literal values of
all properties of the datatype xsd:date which are used within the context of
DDI-RDF (e.g., disco:startDate, disco:endDate, and dcterms:date) are really
of the datatype xsd:date. The subsequent constraint of this type enforces that
stated numbers of pages of publications must be integer values which must
not be negative.

Table A.23. Generic Representation of the Constraint of the Constraint Type Value
is Valid for Datatype

context class left p. list right p. list classes c. element c. value
Publication numberPages - xsd:nonNegativeInteger value is valid for datatype -

Table A.24. Generic Representation of the Constraint Type Value is Valid for
Datatype

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - DT¡ value is valid for datatype -

A.13 Property Domains

Constraints of the property domains (R-25) constraint type restrict the
domain of object or data properties. In DL terminology, this constraint type
is also called domain restrictions on roles. The purpose of this constraint type
is to declare that a given object or data property p is associated with a class
C, e.g., to populate input forms with appropriate widgets. In object-oriented
terms, this is the declaration of a member field, attribute, or association. Dp.J
� C is the object property restriction where p is the object property whose
domain is restricted to the class C. A constraint of the type property domains
states that the domain of the object or data property p is the class C - that is,
if an individual i is connected by p with some other individual or some literal,
then i is an instance of C. The property domains constraint D author.J �

Publication, e.g., ensures that only publications can have author relationships.
The triple author(Alices-Adventures-In-Wonderland, Lewis-Carroll) leads to
a violation if it is not explicitly stated that Alices-Adventures-In-Wonderland
is a publication.

K � t D author.J � Publication }

A.15 Class-Specific Property Range 9

Table A.25. Generic Representation of the Constraint of the Constraint Type
Property Domains

context class left p. list right p. list classes c. element c. value
J author - Publication property domain -

Table A.26. Generic Representation of the Constraint Type Property Domains

context class left p. list right p. list classes c. element c. value
J p¡ - C¡ property domain -

A.14 Property Ranges

Constraints of the constraint type property ranges (R-35) restrict the
range of object and data properties. In DL terminology, this constraint type is
also called range restrictions on roles. J � @p.C is the range restriction on the
object property p, restricted by the class C. The property ranges constraint
type states that the range of the object or data property p is either (1) the
class C - that is, if some individual is connected by p with an individual i, then
i is an instance of C, or (2) the datatype DT - that is, if some individual is
connected by p with a literal l, then l is in DT . By means of a property ranges
constraint it can be restricted that author relations can only point to persons.
If Doyle, the author of the book Sherlock-Holmes (author(Sherlock-Holmes,

Doyle)), e.g., is not explicitly declared to be a person, a constraint violation
is caused.

K � t J � @ author.Person }

Table A.27. Generic Representation of the Constraint of the Constraint Type
Property Ranges

context class left p. list right p. list classes c. element c. value
J author - Person property range -

Table A.28. Generic Representation of the Constraint Type Property Ranges

context class left p. list right p. list classes c. element c. value
J p¡ - C¡ property range -

A.15 Class-Specific Property Range

Constraints of the constraint type class-specific property range (R-29/36)
restrict the range of object and data properties only for individuals of a given
class Ccontext. Constraints of the class-specific property range constraint type
state that for Ccontext individuals the range of the object or data property p

10 A Types of Constraints on RDF Data

is either (1) the class C - that is, if some Ccontext individual is connected by
p with an individual i, then i is an instance of C, or (2) the datatype DT -
that is, if some Ccontext individual is connected by p with a literal l, then l
is in DT . Constraints of this type must only hold for individuals of a given
class Ccontext. By means of a class-specific property range constraint it can
be restricted that books can only have author relations that point to persons.
As Doyle, the author of the book Sherlock-Holmes (author(Sherlock-Holmes,

Doyle), Book(Sherlock-Holmes)), e.g., is not explicitly declared to be a per-
son, a constraint violation is caused.

K � t Book � @ author.Person }

Table A.29. Generic Representation of the Constraint of the Constraint Type
Class-Specific Property Range

context class left p. list right p. list classes c. element c. value
Book author - Person property range -

Table A.30. Generic Representation of the Constraint Type Class-Specific Property
Range

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - C¡ property range -

A.16 Data Property Facets

Similar to the facets of XML Schema datatypes, it should be easy to de-
fine frequently needed facets for data properties p within the scope of classes
Ccontext to drive user interfaces and validate input against simple conditions,
including min/max values (similar to xsd:maxInclusive, xsd:maxExclusive,
xsd:minExclusive, and xsd:minInclusive), pattern matching against regular
expressions (xsd:pattern), and string length (xsd:length, xsd:minLength, and
xsd:maxLength). Additional constraining facets to restrict datatypes of RDF
literals are xsd:enumeration, xsd:whiteSpace, xsd:total, xsd:totalDigits, and
xsd:fractionDigits. An example constraint of the constraint type data prop-
erty facets (R-46) is to restrict the abstract of studies to have a minimum
length (xsd:minLength) of 20 characters in order to be useful for researchers.

Table A.31. Generic Representation of the Constraint of the Constraint Type Data
Property Facets

context class left p. list right p. list classes c. element c. value
Study abstract - - xsd:minLength 20

A.19 IRI Pattern Matching 11

Table A.32. Generic Representation of the Constraint Type Data Property Facets

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - SPARQL function¡ | c. value¡

 XML Schema constraining facet¡

A.17 Literal Ranges

Constraints of the constraint type literal ranges (R-45) ensure that for
Ccontext individuals the literal values of the data property p of the datatype
DT are within the literal range of [Vmin,Vmax]. The latitude of a spatial
feature, e.g., must be within the literal range of [-90,90].

Table A.33. Generic Representation of the Constraint of the Constraint Type
Literal Ranges

context class left p. list right p. list classes c. element c. value
Spatial-Feature latitude - xsd:nonNegativeInteger xsd:minInclusive -90
Spatial-Feature latitude - xsd:nonNegativeInteger xsd:maxInclusive 90

Table A.34. Generic Representation of the Constraint Type Literal Ranges

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - DT¡ XSD constraining facet on values¡ literal range¡

A.18 Negative Literal Ranges

Constraints of the constraint type negative literal ranges (R-142) ensure
that for individuals of a given class Ccontext the literal values of a particu-
lar data property p of the datatype DT are outside a specific literal range
of [Vmin,Vmax]. The longitude of a spatial feature, e.g., must not be within
[181,360].

Table A.35. Generic Representation of the Constraint of the Constraint Type
Negative Literal Ranges

context class left p. list right p. list classes c. element c. value
Spatial-Feature longitude - xsd:nonNegativeInteger not xsd:minInclusive 181
Spatial-Feature longitude - xsd:nonNegativeInteger not xsd:maxInclusive 360

Table A.36. Generic Representation of the Constraint Type Negative Literal
Ranges

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - DT¡ not XSD constraining facet on values¡ negative literal range¡

A.19 IRI Pattern Matching

Constraints of the constraint type IRI pattern matching (R-21/22/23) can
be applied on subjects, predicates, and objects.

12 A Types of Constraints on RDF Data

Applied on subjects, constraints of this type enable to check if IRIs of
individuals of a given class Ccontext¡ correspond to a specific IRI pattern
which must be a valid pattern argument for the SPARQL REGEX function.
The IRIs of Semantic Web books, e.g., should contain the character sequence
Semantic-Web.

Table A.37. Generic Representation of the Constraint of the Constraint Type IRI
Pattern Matching - Applied on Subjects

context class left p. list right p. list classes c. element c. value
Semantic-Web-Book - - - IRI pattern matching ”\bSemantic-Web\b”

Table A.38. Generic Representation of the Constraint Type IRI Pattern Matching
- Applied on Subjects

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - - IRI pattern matching IRI pattern¡

Applied on predicates, constraints of this type enable to check if IRIs of
object or data properties pi (1 ¤ i ¤ n), from which individuals of a given class
 Ccontext¡ are pointing, correspond to a specific IRI pattern which must be
a valid pattern argument for the SPARQL REGEX function.

Table A.39. Generic Representation of the Constraint Type IRI Pattern Matching
- Applied on Predicates

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - IRI pattern matching IRI pattern¡

Applied on objects, constraints of this type enable to check if IRIs of
objects, to which individuals of a given class Ccontext¡ are pointing via a
certain object property p, correspond to a specific IRI pattern which must be
a valid pattern argument for the SPARQL REGEX function.

Table A.40. Generic Representation of the Constraint Type IRI Pattern Matching
- Applied on Objects

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - IRI pattern matching IRI pattern¡

A.20 Literal Pattern Matching

Constraints of the constraint type literal pattern matching (R-44) ensure
that individuals of a given class Ccontext can only have relations via a specific
data property p to literals of a specific datatype DT that match a certain literal
pattern. A constraint of this type is used to validate whether all literals of a
given data property p within the context of the class Ccontext match a given
regular expression which must be a valid pattern argument for the SPARQL
REGEX function. The subsequent literal pattern matching constraint ensures

A.21 Negative Literal Pattern Matching 13

that books can only have valid ISBN identifiers, i.e., strings that match a given
regular expression. Even though constraints of this type cannot be expressed
in DL, OWL 2 can be used to formulate this constraint:

1 ISBN a rdfs:Datatype ; owl:equivalentClass [a rdfs:Datatype ;
2 owl:onDatatype xsd:string ;
3 owl:withRestrictions ([xsd:pattern "^\d{9}[\d|X]$"])] .

The first OWL 2 axiom explicitly declares ISBN to be a datatype. The
second OWL 2 axiom defines ISBN as an abbreviation for a restriction on
the datatype xsd:string. The datatype ISBN can be used just like any other
datatype like in the universal quantification Book � @ isbn.ISBN. This, all
literals, to which the data property isbn is pointing from books, must satisfy
the literal pattern matching constraint.

Table A.41. Generic Representation of the Constraint of the Constraint Type
Literal Pattern Matching

context class left p. list right p. list classes c. element c. value
Book isbn - xsd:string REGEX ”ˆzdt9u[zd|X]$”

Table A.42. Generic Representation of the Constraint Type Literal Pattern Match-
ing

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - DT¡ REGEX literal pattern¡

A.21 Negative Literal Pattern Matching

Constraints of the constraint type negative literal pattern matching (R-
230) ensure that Ccontext individuals cannot have relations via a given data
property p to literals in the datatype DT that match a certain literal pattern.
A constraint of this type is used to validate whether all literals of a given
data property p within the context of the class Ccontext do not match a given
regular expression which must be a valid pattern argument for the SPARQL
REGEX function. With a constraint of this type it can be ensured that an
ISSN of a journal does not have be conform to a valid 10- or 13-digit ISBN,
where the literal pattern for a valid ISBN is ”(ISBN[-]*(1[03])*[]*(:)0,1)*(([0-
9Xx][-]*)13—([0-9Xx][-]*)10)”.

Table A.43. Generic Representation of the Constraint of the Constraint Type
Negative Literal Pattern Matching

context class left p. list right p. list classes c. element c. value
Journal issn - xsd:string negative literal pattern matching literal pattern¡

14 A Types of Constraints on RDF Data

Table A.44. Generic Representation of the Constraint Type Negative Literal Pat-
tern Matching

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - DT¡ negative literal pattern matching literal pattern¡

A.22 Existential Quantifications

Constraints of the constraint type existential quantifications (R-86) (ex-
istential restrictions in DL) enforce that instances of given classes Ccontext

must have some property relation to individuals/literals of a certain class C
or datatype DT via the object or data property p. An existential quantifi-
cation consists of an object or data property p and a class C or a datatype
DT , and defines a class Ccontext that contains all those individuals that are
connected by p to either (1) an individual that is an instance of C or (2) a
literal that is an instance of the datatype DT . If the existential quantifica-
tion is checked to ensure that each book must have at least one author and if
the book The-Hound-Of-The-Baskervilles has no author relationship, then a
constraint violation is raised.

K � t Book � D author.Person }

Table A.45. Generic Representation of the Constraint of the Constraint Type
Existential Quantifications

context class left p. list right p. list classes c. element c. value
Book author - Person existential quantification -

Table A.46. Generic Representation of the Constraint Type Existential Quantifi-
cations

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - C¡ | DT¡ existential quantification -

A.23 Universal Quantifications

Universal quantifications (R-91) (value restrictions in DL) are used to
enforce that all individuals of a given class Ccontext are connected by particular
properties p only to instances/literals of certain classes C or datatypes DT .
A universal quantification consists of an object or data property p and a class
C or a datatype DT , and it defines a class Ccontext which contains all those
individuals that are connected by p only to either (1) individuals that are
instances of C or (2) literals that are instances of DT . Publications, e.g.,
can only have persons as authors. The triples author(The-Lord-Of-The-Rings,

Tolkien) and rdf:type(The-Lord-Of-The-Rings, Publication) let a validation

A.25 Use Sub-Super Relations in Validation 15

engine cause a violation, in case it is not explicitly stated that Tolkien is a
person.

K � t Publication � @ author.Person }

Table A.47. Generic Representation of the Constraint of the Constraint Type
Universal Quantifications

context class left p. list right p. list classes c. element c. value
Publication author - Person universal quantification -

Table A.48. Generic Representation of the Constraint Type Universal Quantifica-
tions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - C¡ | DT¡ universal quantification -

A.24 Value Restrictions

A constraint of the constraint type value restrictions (R-88) consists of
an object or data property p and an individual i or a literal l, and it ensures
that all individuals of the class Ccontext are connected by p to i respectively
l. Books on computer science, e.g., must have the topic Computer-Science.

K � t Computer-Science-Book � D subject.{Computer-Science} }

Table A.49. Generic Representation of the Constraint of the Constraint Type Value
Restrictions

context class left p. list right p. list classes c. element c. value
Computer-Science-Book subject - Computer-Science value restriction -

Table A.50. Generic Representation of the Constraint Type Value Restrictions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - i¡ | l¡ value restriction -

A.25 Use Sub-Super Relations in Validation

Constraints of the constraint type use sub-super relations in validation
(R-224) enforce the validation of instance data to exploit sub-class and sub-
property relationships which may indicate when the data is redundant or
expressed on a too general level, and therefore could be improved.

With regard to sub-super relations of properties, values of super-properties
p are checked against values of each sub-property pi (1 ¤ i ¤ n) within the

16 A Types of Constraints on RDF Data

scope of classes Ccontext. If a dcterms:coverage link is present, e.g., it could be
suggested to use one of its sub-properties dcterms:spatial or dcterms:temporal.
If dcterms:date and one of its sub-properties dcterms:created or dcterms:issued
are present, e.g., it is checked if the value for dcterms:date is not redundant
with one of the values for the sub-properties dcterms:created or dcterms:issued.

Table A.51. Generic Representation of the Constraint of the Constraint Type Use
Sub-Super Relations in Validation - with regard to sub-super Relations of Properties

context class left p. list right p. list classes c. element c. value
J dcterms:date dcterms:created, dcterms:issued - use sub-super relations -

Table A.52. Generic Representation of the Constraint Type Use Sub-Super Rela-
tions in Validation - with regard to sub-super Relations of Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ pi¡ (1 ¤ i ¤ n) - use sub-super relations -

With regard to sub-super relations of classes, it is checked if instances of
the super-class Ccontext are also assigned to at least one of its sub-classes Ci

(1 ¤ i ¤ n). Publications, e.g., may be more specifically assigned to one of its
sub-classes.

Table A.53. Generic Representation of the Constraint of the Constraint Type Use
Sub-Super Relations in Validation - with regard to sub-super Relations of Classes

context class left p. list right p. list classes c. element c. value
Publication - - Book, Journal-Article, Technical-Report use sub-super relations -

Table A.54. Generic Representation of the Constraint Type Use Sub-Super Rela-
tions in Validation - with regard to sub-super Relations of Classes

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - Ci¡ (1 ¤ i ¤ n) use sub-super relations -

A.26 Negative Property Constraints

According to constraints of the constraint type negative property con-
straints (R-52/53), instances of a specific class Ccontext must not have certain
object or data properties pi (1 ¤ i ¤ n). Books, for instance, cannot have an
ISSN.

K � t Book � (D issn.string) }

Table A.55. Generic Representation of the Constraint of the Constraint Type
Negative Property Constraints

context class left p. list right p. list classes c. element c. value
Book issn - - negative properties -

A.28 Language Tag Cardinality 17

Table A.56. Generic Representation of the Constraint Type Negative Property
Constraints

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - negative properties -

A.27 Language Tag Matching

For particular data properties p within the context of given classes Ccontext,
values have to be stated for predefined languages. There must be an English
variable name (skos:notation) for each disco:Variable within disco:LogicalDataSets
is an example of a constraint of the constraint type language tag matching (R-
47). Another constraint of this type restricts that there must exist a value of
the data property germanLabel with a German language tag. The scope of the
constraint includes all instances of the class Country. For each country, the
constraint verifies that the data property, indicating its German label, points
to at least one literal with a German language code.

Table A.57. Generic Representation of the Constraint of the Constraint Type
Language Tag Matching

context class left p. list right p. list classes c. element c. value
Country germanLabel - - language tag matching ”de”

Table A.58. Generic Representation of the Constraint Type Language Tag Match-
ing

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - language tag matching language tag¡

A.28 Language Tag Cardinality

For data properties, it may be desirable to restrict that values of predefined
languages must be present for determined number of times. Some example
constraints of the constraint type language tag cardinality (R-48/49) are: (1)
It is checked if literal language tags are set. Some controlled vocabularies, e.g.,
contain literals in natural language, but without information what language
has actually been used. (2) Some thesaurus concepts are labeled in only one,
others in multiple languages. It may be desirable to have each concept labeled
in each of the languages that are also used on the other concepts, as language
coverage incompleteness for some concepts may indicate shortcomings of the-
sauri [29]. (3) It should be checked if all concepts of a thesaurus have at least
one common language, i.e., they have assigned at least one literal in the same
language.

The constraint type language tag cardinality is used to restrict data prop-
erties p within the scope of classes Ccontext to have a minimum, maximum,

18 A Types of Constraints on RDF Data

or exact number of relationships to literals with selected language tags. The
subsequent constraint of this type, e.g., enforces that there must be exactly
one English title for each book.

Table A.59. Generic Representation of the Constraint of the Constraint Type
Language Tag Cardinality

context class left p. list right p. list classes c. element c. value
Book title - - language tag exact cardinality ”en”, 1

Table A.60. Generic Representation of the Constraint Type Language Tag Cardi-
nality

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - language tag minimum | language tag¡, cardinality¡

maximum | exact¡ cardinality

A.29 Whitespace Handling

The constraint type whitespace handling (R-50) can be used to avoid lead-
ing and trailing whitespaces in literals of data properties p in the context of
classes Ccontext by checking if literals include whitespaces and automatically
delete them. This way, whitespaces of publication abstracts may automatically
be deleted.

Table A.61. Generic Representation of the Constraint of the Constraint Type
Whitespace Handling

context class left p. list right p. list classes c. element c. value
Publication abstract - - whitespace handling -

Table A.62. Generic Representation of the Constraint Type Whitespace Handling

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - whitespace handling -

A.30 HTML Handling

With constraints of the constraint type html handling (R-51/167), it is
possible to check (1) if there are no html tags included in literals of data
properties p within the context of classes Ccontext (in case the constraining
value is false) and (2) if all HTML tags, included in literals of data prop-
erties p within the context of classes Ccontext, are closed properly (in case
the constraining value is true). It is also imaginable to validate RDF in an
RDF literal containing HTML with RDFa markup. As abstracts of publica-
tions, e.g., may include HTML tags, it is desirable to ensure that the HTML
markup is well-formed which enables web frontends to adequately represent
abstracts of publications.

A.32 Minimum Unqualified Cardinality Restrictions 19

Table A.63. Generic Representation of the Constraint of the Constraint Type
HTML Handling

context class left p. list right p. list classes c. element c. value
Publication abstract - - html handling true

Table A.64. Generic Representation of the Constraint Type HTML Handling

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - html handling boolean¡

A.31 Structure

For assessing the quality of thesauri, we concentrate on the graph-based
structure and apply graph- and network-analysis techniques. An example of
such constraints of the constraint type structure (R-235) on Ccontext instances
is that a thesaurus should not contain many orphan concepts, i.e., concepts
without any associative or hierarchical relations, lacking context information
valuable for search. As the complexity of this constraint is relatively high, it
is only expressible by plain SPARQL:

1 SPARQL:
2 SELECT ?concept WHERE {
3 ?concept a [rdfs:subClassOf* skos:Concept] .
4 FILTER NOT EXISTS { ?concept ?p ?o .
5 FILTER (?p IN (skos:related, skos:relatedMatch,
6 skos:broader, ...)) . } }

Table A.65. Generic Representation of the Constraint of the Constraint Type
Structure

context class left p. list right p. list classes c. element c. value
skos:Concept - - - SPARQL SPARQL¡

Table A.66. Generic Representation of the Constraint Type Structure

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - - SPARQL SPARQL¡

A.32 Minimum Unqualified Cardinality Restrictions

¥ np.J (¥ np in short) is a minimum unqualified cardinality restriction
where n P N. A constraint of the constraint type minimum unqualified cardi-
nality restrictions (R-81) consists of a non-negative integer n and an object or
data property p, and it defines a class Ccontext which contains all those individ-
uals that are connected by p to at least n different individuals/literals. Mini-
mum unqualified cardinality restrictions must hold for all instances of the class

20 A Types of Constraints on RDF Data

Ccontext. The minimum unqualified cardinality restrictions constraint type can
be used to ensure that books on computer science (Computer-Science-Book)
have at least one assigned topic. In case The-C-Programming-Language is a
computer science book without any associated subject, a constraint violation
triple is generated.

K � t Computer-Science-Book � ¥1 subject.J }

Table A.67. Generic Representation of the Constraint of the Constraint Type
Minimum Unqualified Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
Computer-Science-Book subject - J minimum cardinality 1

Table A.68. Generic Representation of the Constraint Type Minimum Unqualified
Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - J minimum cardinality n¡

A.33 Minimum Qualified Cardinality Restrictions

¥ np.C is a minimum qualified cardinality restriction where n P N. A
constraint of the constraint type minimum qualified cardinality restrictions
(R-75) consists of a non-negative integer n, an object or data property p, and
a class C or a datatype DT , and it defines a class Ccontext which contains all
those individuals that are connected by p to at least n different (1) individuals
that are instances of C or (2) literals in DT . Minimum qualified cardinality
restrictions must hold for all instances of the class Ccontext. The constraint
type minimum qualified cardinality restrictions can be instantiated to formu-
late the concrete constraint that publications must have at least one author
which must be a person.

K � t Publication � ¥1 author.Person }

Table A.69. Generic Representation of the Constraint of the Constraint Type
Minimum Qualified Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
Publication author - Person minimum cardinality 1

Table A.70. Generic Representation of the Constraint Type Minimum Qualified
Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - C¡ | DT¡ minimum cardinality n¡

A.35 Maximum Qualified Cardinality Restrictions 21

A.34 Maximum Unqualified Cardinality Restrictions

¤ np.J (¤ np in short) is a maximum unqualified cardinality restriction
where n P N. A constraint of the constraint type maximum unqualified cardi-
nality restrictions (R-82) consists of a non-negative integer n and an object
or data property p, and it defines a class Ccontext which contains all those
individuals that are connected by p to at most n different individuals/literals.
Maximum unqualified cardinality restrictions must hold for all instances of
the class Ccontext. If a person is not considered as a bestseller author, this
person has sold at most 999,999 books. In other words, it should not be possi-
ble for a person that is not considered as a bestseller author having sold more
than 999,999 books.

K � t Non-Bestseller-Author � ¤999,999 sellsBook }

Table A.71. Generic Representation of the Constraint of the Constraint Type
Maximum Unqualified Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
Non-Bestseller-Author sellsBook - J maximum cardinality 999,999

Table A.72. Generic Representation of the Constraint Type Maximum Unqualified
Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - J maximum cardinality n¡

A.35 Maximum Qualified Cardinality Restrictions

¤ np.C is a maximum qualified cardinality restriction where n P N. A
constraint of the constraint type maximum qualified cardinality restrictions
(R-76) consists of a non-negative integer n, an object or data property p, and
a class C or a datatype DT , and it defines a class Ccontext which contains all
those individuals that are connected by p to at most n different (1) individuals
that are instances of C or (2) literals in DT . Maximum qualified cardinality
restrictions must hold for all instances of the class Ccontext. Children can have
at most 2 parents is an example constraint of the type maximum qualified
cardinality restrictions.

K � t Child � ¤2 childOf.Parent }

Table A.73. Generic Representation of the Constraint of the Constraint Type
Maximum Qualified Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
Child childOf - Parent maximum cardinality 2

22 A Types of Constraints on RDF Data

Table A.74. Generic Representation of the Constraint Type Maximum Qualified
Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - C¡ | DT¡ maximum cardinality n¡

A.36 Exact Unqualified Cardinality Restrictions

¥ np.J [¤ np.J is an exact unqualified cardinality restriction where n P
N. A constraint of the constraint type exact unqualified cardinality restrictions
(R-80) consists of a non-negative integer n and an object or data property
p, and it defines a class Ccontext which contains all those individuals that are
connected by p to exactly n different individuals/literals. Exact unqualified
cardinality restrictions must hold for all instances of the class Ccontext. An
author of a one-hit wonder book can only be an author having written exactly
one successful book is an example constraint of the constraint type exact
unqualified cardinality restrictions.

K � t
One-Hit-Wonder-Book-Author �
¥1 author-Of-Successful-Book [¤1 author-Of-Successful-Book }

Table A.75. Generic Representation of the Constraint of the Constraint Type Exact
Unqualified Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
One-Hit-Wonder-Book-Author author-Of-Successful-Book - J exact cardinality 1

Table A.76. Generic Representation of the Constraint Type Exact Unqualified
Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - J exact cardinality n¡

A.37 Exact Qualified Cardinality Restrictions

¥ np.C [¤ np.C is an exact qualified cardinality restriction where n P N.
A constraint of the constraint type exact qualified cardinality restrictions (R-
74) consists of a non-negative integer n, an object or data property p, and a
class C or a datatype DT , and it defines a class Ccontext which contains all
those individuals that are connected by p to exactly n different (1) individuals
that are instances of C or (2) literals in DT . Exact qualified cardinality re-
strictions must hold for all instances of the class Ccontext. Every person, e.g.,
is a child of exactly two parents.

K � t Person � ¥2 childOf.Parent [¤2 childOf.Parent }

A.39 Vocabulary 23

Table A.77. Generic Representation of the Constraint of the Constraint Type Exact
Qualified Cardinality Restrictions

context class left p. list right p. list classes c. element c. value
Person childOf - Parent exact cardinality 2

Table A.78. Generic Representation of the Constraint Type Exact Qualified Car-
dinality Restrictions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - C¡ | DT¡ exact cardinality n¡

A.38 Cardinality Shortcuts

In most library applications, cardinality shortcuts (R-228) tend to appear
in pairs, with optional / mandatory establishing minimum cardinality restric-
tions on properties pi (1 ¤ i ¤ n) within the context of classes Ccontext and
repeatable / non-repeatable for maximum cardinality restrictions (see Table
A.79 for the possible pairs of cardinality shortcuts). For publications, e.g.,
information about their authors should be mandatory and repeatable.

Table A.79. Pairs of Cardinality Shortcuts

cardinality shortcuts [min,max]
optional & non-repeatable [0,1]
optional & repeatable [0,*]
mandatory & non-repeatable [1,1]
mandatory & repeatable [1,*]

Table A.80. Generic Representation of the Constraint of the Constraint Type
Cardinality Shortcuts

context class left p. list right p. list classes c. element c. value
Publication author - - mandatory and repeatable properties -

Table A.81. Generic Representation of the Constraint Type Cardinality Shortcuts

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - cardinality shortcut pair¡ -

A.39 Vocabulary

The constraint type vocabulary (R-220) serves to ensure that for Ccontext

individuals neither deprecated vocabulary terms are used nor elements which
are not specified in listed namespaces. Constraints of this type are easier to
check in case IRIs of used vocabulary terms are dereferenceable. The next
concrete constraint of this type enables to check if each skos:Concept of the

24 A Types of Constraints on RDF Data

input graph is connected to resources/literals via properties which are actually
defined within current versions of used vocabulary namespaces.

Table A.82. Generic Representation of the Constraint of the Constraint Type
Vocabulary

context class left p. list right p. list classes c. element c. value
skos:Concept - - - vocabulary -

Table A.83. Generic Representation of the Constraint Type Vocabulary

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - - vocabulary -

A.40 Provenance

According to constraints of the constraint type provenance (R-24), some
provenance information like dcterms:provenance must be available for in-
stances of a given class Ccontext. Series, studies, data sets, data files, or pub-
lications, for instance, should have provenance information associated with
them.

Table A.84. Generic Representation of the Constraint of the Constraint Type
Provenance

context class left p. list right p. list classes c. element c. value
Publication - - - provenance -

Table A.85. Generic Representation of the Constraint Type Provenance

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - - provenance -

A.41 Required Properties

Resources of a given type Ccontext sometimes must be accompanied by
specified mandatory object or data properties pi (1 ¤ i ¤ n). Places must
have the properties latitude and longitude, persons must have a birth date,
organizations must have a name, and publications must have a title are ex-
ample constraints of the constraint type required properties (R-68).

K � t Publication � D title.string }

Table A.86. Generic Representation of the Constraint of the Constraint Type
Required Properties

context class left p. list right p. list classes c. element c. value
Publication title - - required properties -

A.43 Repeatable Properties 25

Table A.87. Generic Representation of the Constraint Type Required Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - required properties -

A.42 Optional Properties

Constraints of the constraint type optional properties (R-69) serve to de-
fine that it is optional to link instances of the class Ccontext via object or data
properties pi (1 ¤ i ¤ n) to any other resources or literals. For instance, it
should be optional to state a DOI for books.

K � t D doi.string � Book }

Table A.88. Generic Representation of the Constraint of the Constraint Type
Optional Properties

context class left p. list right p. list classes c. element c. value
Book doi - - optional properties -

Table A.89. Generic Representation of the Constraint Type Optional Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - optional properties -

A.43 Repeatable Properties

With constraints of the constraint type repeatable properties (R-70), one
can formulate that for individuals of classes Ccontext object or data properties
pi (1 ¤ i ¤ n) are repeatable, i.e., their cardinality is at least one. The object
property author, e.g., is repeatable for individuals of the class Publication.

K � t Publication � ¥1 author.J }

Table A.90. Generic Representation of the Constraint of the Constraint Type
Repeatable Properties

context class left p. list right p. list classes c. element c. value
Publication author - - repeatable properties -

Table A.91. Generic Representation of the Constraint Type Repeatable Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - repeatable properties -

26 A Types of Constraints on RDF Data

A.44 Conditional Properties

The constraint type conditional properties (R-71) is used to specify for
Ccontext instances that if the properties pi (1 ¤ i ¤ n) are present, then
the properties pj (1 ¤ j ¤ n) also have to be present. If an individual has
a parentOf relationship, then this individual must also have an ancestorOf
relation is an example of a constraint of this type.

K � t parentOf � ancestorOf }

Table A.92. Generic Representation of the Constraint of the Constraint Type
Conditional Properties

context class left p. list right p. list classes c. element c. value
J parentOf ancestorOf - conditional properties -

Table A.93. Generic Representation of the Constraint Type Conditional Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) pj¡ (1 ¤ j ¤ n) - conditional properties -

A.45 Recommended Properties

Optional properties pi (1 ¤ i ¤ n) can be marked as recommended within
a particular context Ccontext so that a report of missing recommended prop-
erties may be generated. An example of a constraint of the constraint type
recommended properties (R-72) is to recommend to specify the number of
pages for publications.

Table A.94. Generic Representation of the Constraint of the Constraint Type
Recommended Properties

context class left p. list right p. list classes c. element c. value
Publication numberOfPages - - recommended properties -

Table A.95. Generic Representation of the Constraint Type Recommended Prop-
erties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - recommended properties -

A.46 Severity Levels

A concrete constraint is instantiated from one of the 81 constraint types
and is defined for a specific vocabulary. It does not make sense to deter-
mine the severity of constraint violations of an entire constraint type, as the

A.47 Labeling and Documentation 27

severity depends on the individual context and vocabulary. We use the clas-
sification system of log messages in software development like Apache Log4j
2 [3], the Java Logging API,5 and the Apache Commons Logging API 6 as
many data practitioners also have experience in software development and
software developers intuitively understand these levels. We simplify this com-
monly accepted classification system and distinguish the three severity lev-
els (1) informational, (2) warning, and (3) error. Violations of informational
constraints point to desirable but not necessary data improvements to achieve
RDF representations which are ideal in terms of syntax and semantics of used
vocabularies. Warnings are syntactic or semantic problems which typically
should not lead to an abortion of data processing. Errors, in contrast, are
syntactic or semantic errors which should cause the abortion of data process-
ing. Although default severity levels should be provided for each constraint to
indicate how serious the violation of the constraint is within the context of a
specific vocabulary, validation environments should enable users to adapt the
severity levels of constraints according to their individual needs.

With constraints of the constraint type severity levels (R-158), one can
associate certain severity levels with particular classes Ccontext to indicate
that individuals of these classes always cause constraint violations of a certain
kind of severity. For instances of the class High-Severity, e.g., the severity of
constraint violations should always be high independently of the severity of
violated constraints. Such a constraint makes sense for all those instances
which are considered to be essential within the data to be validated.

Table A.96. Generic Representation of the Constraint of the Constraint Type
Severity Levels

context class left p. list right p. list classes c. element c. value
High-Severity - - - severity level ”error”

Table A.97. Generic Representation of the Constraint Type Severity Levels

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - - severity level severity level¡

A.47 Labeling and Documentation

It should be possible to provide human-readable labels (intended for hu-
man consumption such as documentation or user interfaces) for (1) a prop-
erty not just globally but also within the context of a class Ccontext or (2)
a class Ccontext under certain conditions expressible in SPARQL. This way,
human-readable documentation can be offered for first order elements of an
application profile. The goal is to provide a documentation or comments area
that is intended for human readers where a description of a property or a class

5 http://docs.oracle.com/javase/7/docs/api/java/util/logging/Level.html
6 http://commons.apache.org/proper/commons-logging/

http://docs.oracle.com/javase/7/docs/api/java/util/logging/Level.html
http://commons.apache.org/proper/commons-logging/

28 A Types of Constraints on RDF Data

can be made. This could both define a property or a class as well as include
other information such as the date of its publication.

Example constraints of the constraint type labeling and documentation (R-
208), against which Ccontext individuals are validated, are: (1) Undocumented
concepts: The SKOS standard defines a number of properties which are useful
for documenting the meaning of concepts in a thesaurus in a human-readable
form. An intense use of these properties leads to a well-documented thesaurus
which should also improve its quality. (2) Overlapping labels: Two concepts
having the same preferred lexical label in a given language when they belong to
the same concept scheme, could indicate missing disambiguation information
and thus lead to problems in auto-completion applications. (3) Missing labels:
To make a vocabulary more convenient for humans to use, instances of SKOS
classes (skos:Concept, skos:ConceptScheme, skos:Collection) should be labeled
using, e.g., skos:prefLabel, skos:altLabel, rdfs:label, and dc:title. (4) Concepts
within the same concept scheme should not have identical skos:notation liter-
als:

1 SPARQL:
2 SELECT ?subject WHERE {
3 ?subject
4 a skos:Concept ;
5 skos:inScheme ?conceptScheme ;
6 skos:notation ?l .
7 ?concept
8 a skos:Concept ;
9 skos:inScheme ?conceptScheme ;

10 skos:notation ?l .
11 FILTER (?subject != ?concept) . } }

As the complexity of constraints of this type is high in general, they have
to be expressed using plain SPARQL.

Table A.98. Generic Representation of the Constraint of the Constraint Type
Labeling and Documentation

context class left p. list right p. list classes c. element c. value
skos:Concept - - - SPARQL SPARQL¡

Table A.99. Generic Representation of the Constraint Type Labeling and Docu-
mentation

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - - SPARQL SPARQL¡

A.48 Context-Specific Property Groups

Constraints of the constraint type context-specific property groups (R-66)
enforce that instances within a given context must have relations of all prop-
erties pi (1 ¤ i ¤ n) defined within a group of properties. The context may be

A.49 Context-Specific Exclusive OR of Properties 29

an application profile, a shape, or in most cases a class Ccontext. A constraint
of this type consists of a list of object or data properties pi (1 ¤ i ¤ n) and
defines a class Ccontext that contains all those individuals that are connected
by each of these properties pi to resources/literals. A book, e.g., must have
an isbn and a title link.

K � t Book � D isbn.string [D title.string }

Table A.100. Generic Representation of the Constraint of the Constraint Type
Context-Specific Property Groups

context class left p. list right p. list classes c. element c. value
Book isbn, title - - property group -

Table A.101. Generic Representation of the Constraint Type Context-Specific
Property Groups

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - property group -

A.49 Context-Specific Exclusive OR of Properties

Exclusive or is a logical operation that outputs true whenever both in-
puts differ (one is true, the other is false). Constraints of the constraint type
context-specific exclusive OR of properties (R-11) restrict individuals within a
specific context to have exactly one property relationship of multiple mutually
exclusive properties pi (1 ¤ i ¤ n). The context may be an application profile,
a shape, or in most cases a class Ccontext. Publications, e.g., are either identi-
fied by an ISBN (for books) or by an ISSN (for periodical publications), but
it should not be possible to assign both identifiers to a given publication. In
case Moby-Dick is a publication with an ISBN without an ISSN, Moby-Dick
is considered as a valid publication.

K � t
Publication � (A [B) \ (A [B),
A � ¥ 1 isbn.string [¤ 1 isbn.string,
B � ¥ 1 issn.string [¤ 1 issn.string }

Table A.102. Generic Representation of the Constraint of the Constraint Type
Context-Specific Exclusive OR of Properties

context class left p. list right p. list classes c. element c. value
Publication isbn, issn - - exclusive or -

30 A Types of Constraints on RDF Data

Table A.103. Generic Representation of the Constraint Type Context-Specific Ex-
clusive OR of Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - exclusive or -

A.50 Context-Specific Exclusive OR of Property Groups

Exclusive or is a logical operation that outputs true whenever both in-
puts differ (one is true, the other is false). Constraints of the constraint type
context-specific exclusive OR of property groups (R-13) restrict individuals
within a specific context to have property relationships of all properties pi (1
¤ i ¤ n) defined within exactly one of multiple mutually exclusive property
groups Ci (1¤ i¤ n). The context may be an application profile, a shape, or in
most cases a class Ccontext. Publications, e.g., are either identified by an ISBN
and a title (for books) or by an ISSN and a title (for periodical publications),
but it should not be possible to assign both identifiers to a given publication.
In case The-Great-Gatsby is a publication with an ISBN and a title without an
ISSN, The-Great-Gatsby is considered as a valid publication. The subsequent
DL statements demonstrate that the constraint is complex as it is composed
of many other simple constraints (minimum (R-75) and maximum qualified
cardinality restrictions (R-76), intersection (R-15/16), disjunction (R-17/18),
and negation (R-19/20)).

K � t
Publication � (E [F) \ (E [F),
E � A [B , F � C [D,
A � ¥ 1 isbn.string [¤ 1 isbn.string,
B � ¥ 1 title.string [¤ 1 title.string,
C � ¥ 1 issn.string [¤ 1 issn.string,
D � ¥ 1 title.string [¤ 1 title.string }

Table A.104. Generic Representation of the Constraint of the Constraint Type
Context-Specific Exclusive OR of Property Groups

context class left p. list right p. list classes c. element c. value
Publication - - E, F exclusive or -

E - - A, B intersection -
F - - C, D intersection -
A isbn - string exact cardinality 1
B title - string exact cardinality 1
C issn - string exact cardinality 1
D title - string exact cardinality 1

Table A.105. Generic Representation of the Constraint Type Context-Specific Ex-
clusive OR of Property Groups

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - Ci¡ (1 ¤ i ¤ n) exclusive or -

A.52 Context-Specific Inclusive OR of Property Groups 31

A.51 Context-Specific Inclusive OR of Properties

Inclusive or is a logical connective joining two or more predicates that
yields the logical value true when at least one of the predicates is true. Con-
straints of the constraint type context-specific inclusive OR of properties (R-
202) are used to check if individuals within a specific context match at least
one of multiple inclusive properties, i.e., to ensure that individuals within that
context must have at least one property relationship of listed properties pi (1
¤ i ¤ n). The context may be an application profile, a shape, or in most cases
a class Ccontext. A person, e.g., must have either exactly one name or exactly
one given name. In contrast to an exclusive or of properties, a person should
also be considered to be valid if both a name and a given name are stated.

K � t
Person � A \ B,
A � ¥ 1 name.string [¤ 1 name.string,
B � ¥ 1 givenName.string [¤ 1 givenName.string }

Table A.106. Generic Representation of the Constraint of the Constraint Type
Context-Specific Inclusive OR of Properties

context class left p. list right p. list classes c. element c. value
Person name, givenName - - inclusive or -

Table A.107. Generic Representation of the Constraint Type Context-Specific In-
clusive OR of Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - inclusive or -

A.52 Context-Specific Inclusive OR of Property Groups

Inclusive or is a logical connective joining two or more predicates that
yields the logical value true when at least one of the predicates is true. Con-
straints of the constraint type context-specific inclusive OR of property groups
(R-227) are used to check if individuals within a specific context match at
least one of a set of inclusive property groups, i.e., to ensure that individuals
within that context must have all property links pi (1 ¤ i ¤ n) of at least
one of the inclusive property groups Ci (1 ¤ i ¤ n). The context may be an
application profile, a shape, or in most cases a class Ccontext. A person, e.g.,
must have either exactly one name or at least one given name and exactly
one family name. In contrast to an exclusive or of property groups, a person
should also be considered to be valid if, e.g., a name, a given name, and a
family name are stated.

32 A Types of Constraints on RDF Data

K � t
Person � A \ B,
A � ¥ 1 name.string [¤ 1 name.string,
B � C [D,
C � ¥ 1 givenName.string,
D � ¥ 1 familyName.string [¤ 1 familyName.string }

Table A.108. Generic Representation of the Constraint of the Constraint Type
Context-Specific Inclusive OR of Property Groups

context class left p. list right p. list classes c. element c. value
Person - - A, B inclusive or -

A name - string exact cardinality 1
B - - C, D intersection -
C givenName - string minimum cardinality 1
D familyName - string exact cardinality 1

Table A.109. Generic Representation of the Constraint Type Context-Specific In-
clusive OR of Property Groups

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - Ci¡ (1 ¤ i ¤ n) inclusive or -

A.53 Mathematical Operations

Constraints of the constraint type mathematical operations (R-41/42) en-
able to check for individuals of a particular class Ccontext if the outcomes of
mathematical operations are correct. Mathematical operations are executed
on literals of a certain datatype DT , the output argument of mathematical
operations is the literal of the data property p, and the input arguments are
literals of the data properties pi (1 ¤ i ¤ n).

Example constraints of this constraint type are to check the addition of
date literals, the addition of days to a start date, or statistical computations
like average, mean, and sum. For a given variable, e.g., the sum of valid cases
and invalid cases has to be equal to the total number of cases. For rectangles,
the literal of the data property area must exactly be the outcome of the
multiplication of literals of the data properties width and height, whereby the
multiplication is performed on literals of the datatype xsd:nonNegativeInteger.

Table A.110. Generic Representation of the Constraint of the Constraint Type
Mathematical Operations

context class left p. list right p. list classes c. element c. value
Rectangle area width, height xsd:nonNegativeInteger multiplication -

Table A.111. Generic Representation of the Constraint Type Mathematical Oper-
ations

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ pi¡ (1 ¤ i ¤ n) DT¡ mathematical operation¡ -

A.55 Inverse Object Properties 33

A.54 Ordering

With constraints of the constraint type ordering (R-121/217), objects of
the class C or literals of the datatype DT can be declared to be ordered
for given properties p within the context of given classes Ccontext. If objects
should be ordered, they must be represented as skos:Concepts and be members
(skos:memberList) in an ordered collection (skos:OrderedCollection).

Variables, questions, codes, and categories, e.g., are typically organized in
a particular order. If disco:Questions of a given disco:Questionnaire should
be ordered, a collection of questions, the questionnaire, must be of the type
skos:OrderedCollection which may contain multiple questions - each repre-
sented as skos:Concept in a skos:memberList. If codes/categories of a given
disco:Representation of a given disco:Variable should be ordered, the vari-
able representation must be of the type skos:OrderedCollection which may
contain multiple codes/categories - each represented as skos:Concept in a
skos:memberList. If disco:Variables of a given disco:LogicalDataSet should be
ordered, a collection of variables must be of the type skos:OrderedCollection
which may contain multiple variables - each represented as skos:Concept in a
skos:memberList.

Table A.112. Generic Representation of the Constraint of the Constraint Type
Ordering

context class left p. list right p. list classes c. element c. value
LogicalDataSet variable - Variable ordered values -

Table A.113. Generic Representation of the Constraint Type Ordering

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - C¡ | DT¡ ordered values -

A.55 Inverse Object Properties

In many cases, properties are used bi-directionally and then accessed in
the inverse direction, e.g., parent � child�. There should be a way to declare
the value type and the cardinality of those inverse relations without having to
declare a new property IRI. A constraint of the constraint type inverse object
properties (R-56) states that the object property p1 is an inverse of the object
property p2. Thus, if an individual i1 is connected by p1 to an individual i2,
then i2 is also connected by p2 to i1, and vice versa. The object property
authorOf, e.g., is an inverse of the object property author.

K � t author � authorOf� }

34 A Types of Constraints on RDF Data

Table A.114. Generic Representation of the Constraint of the Constraint Type
Inverse Object Properties

context class left p. list right p. list classes c. element c. value
J author authorOf - inverse property -

Table A.115. Generic Representation of the Constraint Type Inverse Object Prop-
erties

context class left p. list right p. list classes c. element c. value
J p1¡ p2¡ - inverse property -

A.56 Symmetric Object Properties

A property is symmetric if it is equivalent to its own inverse [27]. A con-
straint of the constraint type symmetric object properties (R-61) states that
the object property p is symmetric - that is, if an individual i1 is connected by
p to an individual i2, then i2 is also connected by p to i1. The object property
coAuthorOf is symmetric.

K � t coAuthorOf � coAuthorOf� }

Table A.116. Generic Representation of the Constraint of the Constraint Type
Symmetric Object Properties

context class left p. list right p. list classes c. element c. value
J coAuthorOf - - symmetric property -

Table A.117. Generic Representation of the Constraint Type Symmetric Object
Properties

context class left p. list right p. list classes c. element c. value
J p¡ - - symmetric property -

A.57 Asymmetric Object Properties

A property is asymmetric if it is disjoint from its own inverse [27]. A con-
straint of the constraint type asymmetric object properties (R-62) states that
the object property p is asymmetric - that is, if an individual i1 is connected
by p to an individual i2, then i2 cannot be connected by p to i1. The object
property author is asymmetric.

K � t author [author� � K }

A.59 Self Restrictions 35

Table A.118. Generic Representation of the Constraint of the Constraint Type
Asymmetric Object Properties

context class left p. list right p. list classes c. element c. value
J author - - asymmetric property -

Table A.119. Generic Representation of the Constraint Type Asymmetric Object
Properties

context class left p. list right p. list classes c. element c. value
J p¡ - - asymmetric property -

A.58 Transitive Object Properties

Transitivity in DL is a special form of complex role inclusion. A constraint
of the constraint type transitive object properties (R-63) states that the object
property p is transitive - that is, if an individual i1 is connected by p to
an individual i2 that is connected by p to an individual i3, then i1 is also
connected by p to i3. The object property ancestorOf is an example of a
transitive object property.

K � t ancestorOf � ancestorOf � ancestorOf }

Table A.120. Generic Representation of the Constraint of the Constraint Type
Transitive Object Properties

context class left p. list right p. list classes c. element c. value
J ancestorOf - - transitive property -

Table A.121. Generic Representation of the Constraint Type Transitive Object
Properties

context class left p. list right p. list classes c. element c. value
J p¡ - - transitive property -

A.59 Self Restrictions

A constraint of the constraint type self restrictions (R-89) consists of an
object property p, and it makes sure that all individuals of the class Ccontext

are connected by p to themselves. If authors are known to always cite them-
selves, i.e., they are assigned to the class Citing-Themselves, they must be
linked to themselves via the object property cite.

K � t Citing-Themselves � D cite.Self }

36 A Types of Constraints on RDF Data

Table A.122. Generic Representation of the Constraint of the Constraint Type
Self Restrictions

context class left p. list right p. list classes c. element c. value
Citing-Themselves cite - - self restriction -

Table A.123. Generic Representation of the Constraint Type Self Restrictions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - self restriction -

A.60 Valid Identifiers

With constraints of the constraint type valid identifiers (R-98/171) the
validity of URIs/IRIs of Ccontext resources is checked by dereferencing which
could be done from a syntactical, semantic, or functional point of view. We
keep the functional aspect, which means to check whether HTTP URIs are
dereferenceable (without HTTP 404 errors) or not. A reference can be (1) a
real HTTP URI redirecting to a LOD resource, (2) an HTTP URI that is not
dereferenceable, (3) a local URI that is not dereferenceable, or (4) an identifier
that is not dereferenceable. Dereferencing URIs returns either a resource or
an error in case an HTTP error code occurs. In the context of Linked Data,
we restrict ourselves to using HTTP URIs/IRIs only and avoid other URI
schemes such as URNs and DOIs.

Table A.124. Generic Representation of the Constraint of the Constraint Type
Valid Identifiers

context class left p. list right p. list classes c. element c. value
J - - - valid identifiers -

Table A.125. Generic Representation of the Constraint Type Valid Identifiers

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - - valid identifiers -

A.61 Recursive Queries

ReSh and ShEx are recursive constraint languages, i.e., the value shape of
a resource shape is in turn another resource shape. There is no way to express
that in SPARQL as SPARQL can’t express recursive queries, e.g., to test
if a publication and all referenced publications are valid. Nevertheless, most
SPARQL engines already have functions that go beyond the official SPARQL
1.1 specification. In addition, [30] recently proposed an extension operator to
SPARQL to include recursion. A publication (Ccontext), e.g., may reference
(p) another publication which may also reference another publication and so

A.63 Class-Specific Reflexive Object Properties 37

forth is an example of a constraint of the constraint type recursive queries
(R-222), since the referenced publications are recursively validated as well.

1 ShEx:
2 Publication {
3 references @Publication* }

Table A.126. Generic Representation of the Constraint of the Constraint Type
Recursive Queries

context class left p. list right p. list classes c. element c. value
Publication references - - recursive -

Table A.127. Generic Representation of the Constraint Type Recursive Queries

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - recursive -

A.62 Reflexive Object Properties

The constraint type reflexive object properties (R-59) corresponds to re-
flexive roles or global reflexivity in DL. Global reflexivity can be expressed by
imposing local reflexivity on the top concept [27]. A constraint of the con-
straint type reflexive object properties states that the object property p is
reflexive - that is, each individual is connected by p to itself. Each individual
knows itself is a reflexive object properties constraint.

K � t J � D knows.Self }

Table A.128. Generic Representation of the Constraint of the Constraint Type
Reflexive Object Properties

context class left p. list right p. list classes c. element c. value
J knows - - reflexive property -

Table A.129. Generic Representation of the Constraint Type Reflexive Object
Properties

context class left p. list right p. list classes c. element c. value
J p¡ - - reflexive property -

A.63 Class-Specific Reflexive Object Properties

In DL terminology, the constraint type class-specific reflexive object prop-
erties (R-231) is called local reflexivity - a set of instances of a specific concept

38 A Types of Constraints on RDF Data

that are related to themselves via a given role [27]. A constraint of this con-
straint type states that the object property p is reflexive within the context
of a particular class Ccontext - that is, each individual of the class Ccontext is
connected by p to itself. The class Talking-To-Themselves, e.g., denotes the
set of individuals that are talking to themselves.

K � t Talking-To-Themselves � D talksTo.Self }

Table A.130. Generic Representation of the Constraint of the Constraint Type
Class-Specific Reflexive Object Properties

context class left p. list right p. list classes c. element c. value
Talking-To-Themselves talksTo - - reflexive property -

Table A.131. Generic Representation of the Constraint Type Class-Specific Re-
flexive Object Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - reflexive property -

A.64 Irreflexive Object Properties

A property is irreflexive if it is never locally reflexive [27]. Constraints
of the irreflexive object properties (R-60) constraint type (irreflexive roles in
DL) state that the object property p is irreflexive - that is, no individual is
connected by p to itself. With the irreflexive object property constraint J �

 DauthorOf.Self , e.g., one can state that individuals cannot be authors of
themselves.

K � t J � DauthorOf.Self }

Table A.132. Generic Representation of the Constraint of the Constraint Type
Irreflexive Object Properties

context class left p. list right p. list classes c. element c. value
J authorOf - - irreflexive property -

Table A.133. Generic Representation of the Constraint Type Irreflexive Object
Properties

context class left p. list right p. list classes c. element c. value
J p¡ - - irreflexive property -

A.65 Class-Specific Irreflexive Object Properties

A property is irreflexive if it is never locally reflexive [27]. A constraint of
the constraint type class-specific irreflexive object properties (R-232) states

A.67 Handle RDF Collections 39

that the object property p is irreflexive within the context of a given class
Ccontext - that is, no individual of the class Ccontext is connected by p to
itself. Persons, e.g., cannot be married to themselves.

K � t Person � DmarriedTo.Self }

Table A.134. Generic Representation of the Constraint of the Constraint Type
Class-Specific Irreflexive Object Properties

context class left p. list right p. list classes c. element c. value
Person marriedTo - - irreflexive property -

Table A.135. Generic Representation of the Constraint Type Class-Specific Ir-
reflexive Object Properties

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - irreflexive property -

A.66 Data Model Consistency

The purpose of data model consistency (R-234) constraints is to ensure
the integrity of data according to the intended semantics of vocabularies’ data
models. Constraints of this type are evaluated for each individual of the class
Ccontext. Every qb:Observation, e.g., must have a value for each dimension
declared in its qb:DataStructureDefinition and no two qb:Observations in the
same qb:DataSet can have the same value for all dimensions. If a qb:DataSet
D has a qb:Slice S, and S has an qb:Observation O, then the qb:DataSet
corresponding to O must be D. As the complexity of constraints of this type
is high in general, they have to be expressed using plain SPARQL.

Table A.136. Generic Representation of the Constraint of the Constraint Type
Data Model Consistency

context class left p. list right p. list classes c. element c. value
qb:DataSet - - - SPARQL SPARQL¡

Table A.137. Generic Representation of the Constraint Type Data Model Consis-
tency

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - - SPARQL SPARQL¡

A.67 Handle RDF Collections

RDF collections can be used in data as well as in constraint expressions.
Example constraints of the handle rdf collections (R-120) constraint type are:

40 A Types of Constraints on RDF Data

(1) all elements of a collection must be of a specific class or datatype, (2)
the first/last element of a given list must be a specific literal or object, (3)
elements of collections are compared in a certain way, (4) collections must
be identical, (5) actions on lists like retrieving the nth member or all mem-
bers are automatically executed, (6) the i. list element must be equal to a
particular value, (7) a given collection must have more than, less than, or
exactly a determined number of elements. With the subsequent constraint of
this type, the element ”Computer Science” of the datatype xsd:string (C |
DT) is automatically added to the list the property topics (p) is pointing to
from instances of the class Computer-Science-Publication (Ccontext).

Table A.138. Generic Representation of the Constraint of the Constraint Type
Handle RDF Collections

context class left p. list right p. list classes c. element c. value
Computer-Science-Publication topics - xsd:string add element to list ”Computer Science”

Table A.139. Generic Representation of the Constraint Type Handle RDF Collec-
tions

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - C¡ | DT¡ action on RDF collection¡ argument¡

A.68 Membership in Controlled Vocabularies

In some cases, resources must be members of listed controlled vocabular-
ies. Constraints of the constraint type membership in controlled vocabularies
(R-32) guarantee that individuals of a given class Ccontext are assigned to
the class skos:Concept and are included in at least one of possibly multi-
ple controlled vocabularies. In other words, these skos:Concepts can only be
related to controlled vocabularies contained in a list of allowed controlled
vocabularies ii (1 ¤ i ¤ n) via the object properties skos:inScheme and/or
skos:hasTopConcept. Furthermore, listed controlled vocabularies must be as-
signed to the class skos:ConceptScheme.

If a QB dimension property, e.g., has a qb:codeList, then the value
of the dimension property on every qb:Observation must be in that code
list. Resources of the type disco:SummaryStatistics, e.g., can only have
disco:summaryStatisticType relationships to skos:Concepts which must be
members of the controlled vocabulary ddicv:SummaryStatisticType. Objects
like Computer-Science, Informatics, and Information-Technology, to which the
object property subject is pointing, e.g., have to be of the class skos:Concept
and must be contained in at least one of the allowed controlled vocab-
ularies Computer-Science-Book-Subjects, Computer-Science-Book-Topics, or
Computer-Science-Book-Categories.

A.70 Disjoint Classes 41

K � t
Computer-Science-Book-Subject � Concept [@ inScheme.Controlled-Vocabulary,
Controlled-Vocabulary � ConceptScheme [({Computer-Science-Book-Subjects} \
{Computer-Science-Book-Topics} \ {Computer-Science-Book-Categories}) }

Table A.140. Generic Representation of the Constraint of the Constraint Type
Membership in Controlled Vocabularies

context class classes c. element
Computer-Science-Book-Subject Computer-Science-Book-Subjects, membership in controlled vocabularies

Computer-Science-Book-Topics,
Computer-Science-Book-Categories

Table A.141. Generic Representation of the Constraint Type Membership in Con-
trolled Vocabularies

context class left p. list right p. list classes c. element c. value
 Ccontext¡ - - ii¡ (1 ¤ i ¤ n) membership in controlled vocabularies -

A.69 Disjoint Properties

A constraint of the constraint type disjoint properties (R-10) states that
all of the object or data properties pi, 1 ¤ i ¤ n, are pairwise disjoint; that
is, no individual i1 can be connected to an individual i2 or a literal l by both
pi and pj for i � j. The properties author and title, e.g., may be defined to be
disjoint.

K � t author � title }

Table A.142. Generic Representation of the Constraint of the Constraint Type
Disjoint Properties

context class left p. list right p. list classes c. element c. value
J author, title - - disjoint properties -

Table A.143. Generic Representation of the Constraint Type Disjoint Properties

context class left p. list right p. list classes c. element c. value
J pi¡ (1 ¤ i ¤ n) - - disjoint properties -

A.70 Disjoint Classes

The constraint type disjoint classes (R-7) states that all of the classes Ci,
1 ¤ i ¤ n, are pairwise disjoint; that is, no individual can be at the same time
an instance of both Ci and Cj for i � j. Nothing can be a book and a journal
article at the same time is an example of a constraint of this type.

K � t Book � Journal-Article }

42 A Types of Constraints on RDF Data

Table A.144. Generic Representation of the Constraint of the Constraint Type
Disjoint Classes

context class left p. list right p. list classes c. element c. value
J - - Book, Journal-Article disjoint classes -

Table A.145. Generic Representation of the Constraint Type Disjoint Classes

context class left p. list right p. list classes c. element c. value
J - - Ci¡ (1 ¤ i ¤ n) disjoint classes -

A.71 String Operations

Some constraints require building new strings out of existing strings. Re-
stricting the string length of literals of certain data properties within the
context of certain classes would be another constraint of the constraint type
string operations (R-194). This constraint type enables to provide an im-
plementation for each SPARQL string function. Constraints of this type are
checked for each instance of the class Ccontext and take the properties pi (1 ¤
i ¤ n) and the constraining value as arguments for individual SPARQL string
functions. There are cases, e.g., where the length of human-readable labels of
studies (rdfs:label) like ”2005” must exactly be 4.

Table A.146. Generic Representation of the Constraint of the Constraint Type
String Operations

context class left p. list right p. list classes c. element c. value
disco:Study rdfs:label - - STRLEN 4

Table A.147. Generic Representation of the Constraint Type String Operations

context class left p. list right p. list classes c. element c. value
 Ccontext¡ pi¡ (1 ¤ i ¤ n) - - SPARQL string function¡ argument(s)¡

A.72 Aggregations

Some constraints require aggregating multiple values of an object or data
property p within the context of a class Ccontext, especially using the SPARQL
aggregation set functions Count, Min, Max, Sum, and Avg or equivalents in
other languages. (1) The number of codes of a given variable must be below
a maximum value, (2) the sum of percentages of all codes of a given variable
must exactly be 100, (3) the absolute frequency of all valid codes of a given
variable must be equal to a given value, or (4) the number of questions of a
given questionnaire must be exactly the value 20 are example constraints of
the constraint type aggregations (R-233).

A.74 Individual Inequality 43

Table A.148. Generic Representation of the Constraint of the Constraint Type
Aggregations

context class left p. list right p. list classes c. element c. value
disco:Questionnaire disco:question - - count 20

Table A.149. Generic Representation of the Constraint Type Aggregations

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - aggregation function¡ argument¡

A.73 Individual Equality

Individual equality in DL indicates that two different names are known to
refer to the same individual [27]. A constraint of the constraint type individual
equality (R-6) states that all of the individuals ii (1 ¤ i ¤ n) are equal to
each other which allows one to use each ii as a synonym for each ij — that
is, in any constraint, ii can be replaced with ij without affecting the meaning
of the constraint. The English book The-Lord-Of-The-Rings, e.g., should be
handled as a synonym of the German book Der-Herr-Der-Ringe.

K � t {The-Lord-Of-The-Rings} = {Der-Herr-Der-Ringe} }

Table A.150. Generic Representation of the Constraint of the Constraint Type
Individual Equality

context class left p. list right p. list classes c. element c. value
The-Lord-Of-The-Rings, Der-Herr-Der-Ringe - - - equal individuals -

Table A.151. Generic Representation of the Constraint Type Individual Equality

context class left p. list right p. list classes c. element c. value
 ii¡ (1 ¤ i ¤ n) - - - equal individuals -

A.74 Individual Inequality

A constraint of the constraint type individual inequality (R-14) states that
all of the individuals ii (1 ¤ i ¤ n) are different from each other; that is, no
individuals ii and ij with i � j can be derived to be equal which may be
the case in an nUNA setting. With the next constraint of this type, it can
be formalized that the books The-Adventures-Of-Sherlock-Holmes and The-
Memoirs-Of-Sherlock-Holmes are actually different.

K � t {The-Adventures-Of-Sherlock-Holmes} � {The-Memoirs-Of-Sherlock-Holmes} }

44 A Types of Constraints on RDF Data

Table A.152. Generic Representation of the Constraint of the Constraint Type
Individual Inequality

context class left p. list right p. list classes c. element c. value
The-Adventures-Of-Sherlock-Holmes, - - - different individuals -

The-Memoirs-Of-Sherlock-Holmes

Table A.153. Generic Representation of the Constraint Type Individual Inequality

context class left p. list right p. list classes c. element c. value
 ii¡ (1 ¤ i ¤ n) - - - different individuals -

A.75 Context-Specific Valid Classes

With constraints of the constraint type context-specific valid classes (R-
209), one can state which classes Ci (1 ¤ i ¤ n) of resources are valid to be
used within a certain context. The context can be a graph, an application pro-
file, an input stream, a data creation function, or an API. For future versions
of RDF vocabularies, out-dated classes can indirectly be marked as depre-
cated. Within the context of the currently validated application profile, e.g.,
it should only be allowed to use the classes Book, Journal, and Proceedings.

Table A.154. Generic Representation of the Constraint of the Constraint Type
Context-Specific Valid Classes

context class left p. list right p. list classes c. element c. value
J - - Book, Journal, Proceedings context-specific valid classes -

Table A.155. Generic Representation of the Constraint Type Context-Specific Valid
Classes

context class left p. list right p. list classes c. element c. value
J - - Ci¡ (1 ¤ i ¤ n) context-specific valid classes -

A.76 Context-Specific Valid Properties

With constraints of the constraint type context-specific valid properties
(R-210), one can state which properties pi (1 ¤ i ¤ n) are valid to be used
within a certain context. The context can be a graph, an application profile,
a data receipt function, a data creation function, or an API. For future ver-
sions of RDF vocabularies, out-dated properties can indirectly be marked as
deprecated. Within the context of the currently validated application profile,
e.g., it should only be allowed to use the properties author, subject, and title.

Table A.156. Generic Representation of the Constraint of the Constraint Type
Context-Specific Valid Properties

context class left p. list right p. list classes c. element c. value
J author, subject, title - - context-specific valid properties -

A.78 Intersection 45

Table A.157. Generic Representation of the Constraint Type Context-Specific Valid
Properties

context class left p. list right p. list classes c. element c. value
J pi¡ (1 ¤ i ¤ n) - - context-specific valid properties -

A.77 Property Assertions

The constraint type property assertions (R-96) includes positive property
assertions and negative property assertions. A positive object property asser-
tion states that the individual i1 is connected by the object property p to the
individual i2. A negative object property assertion states that the individual
i1 is not connected by the object property p to the individual i2. A positive
data property assertion states that the individual i1 is connected by the data
property p to the literal l. A negative data property assertion states that the
individual i1 is not connected by the data property p to the literal l. The
author of the book The-Hunger-Games, e.g., must be Suzanne-Collins.

K � t author(The-Hunger-Games, Suzanne-Collins) }

Table A.158. Generic Representation of the Constraint of the Constraint Type
Property Assertions

context class left p. list right p. list classes c. element c. value
The-Hunger-Games author - Suzanne-Collins property assertion -

Table A.159. Generic Representation of the Constraint Type Property Assertions

context class left p. list right p. list classes c. element c. value
 i1¡ p¡ i2¡ | l¡ property assertion -

A.78 Intersection

DLs allow new concepts and roles to be built using a variety of differ-
ent constructors. We distinguish concept and role constructors depending on
whether concept or role expressions are constructed. In the case of concepts,
one can further separate basic boolean constructors, role restrictions and nom-
inals/enumerations. Boolean concept constructors provide basic boolean oper-
ations that are closely related to the familiar operations of intersection, union,
and complement of sets, or to conjunction, disjunction, and negation of logical
expressions [27].

Concept inclusions allow us to state that all mothers are female and that
all mothers are parents, but what we really mean is that mothers are exactly
the female parents. DLs support such statements by allowing us to form com-
plex concepts such as the intersection (R-15/16) (also called composition or
conjunction) which denotes the set of individuals that are both female and

46 A Types of Constraints on RDF Data

parents. A complex concept can be used in exactly the same way as an atomic
concept, e.g., in the equivalence Mother � Female [Parent. When using this
intersection in terms of a constraint, a constraint violation is raised if a mother
is not at the same time female and a parent.

A constraint of the constraint type intersection defines either (1) a class
Ccontext which contains all individuals that are instances of all classes Ci for
1 ¤ i ¤ n or (2) a datatype DT context which includes all literals that are
contained in each datatype DT i for 1 ¤ i ¤ n.

K � t Mother � Female [Parent }

Table A.160. Generic Representation of the Constraint of the Constraint Type
Intersection

context class left p. list right p. list classes c. element c. value
Mother - - Female, Parent intersection -

Table A.161. Generic Representation of the Constraint Type Intersection

context class left p. list right p. list classes c. element c. value
 Ccontext¡ | - - Ci¡ (1 ¤ i ¤ n) | intersection -
 DT context¡ DT i¡ (1 ¤ i ¤ n)

A.79 Disjunction

Synonyms for disjunction (R-17/18) of classes or datatypes are union
and inclusive or. A union of classes Ccontext contains all individuals that
are instances of at least one of these classes Ci for 1 ¤ i ¤ n. A union of
datatypes DT context contains all literals that are instances of at least one of
these datatypes DT i for 1 ¤ i ¤ n. A publication, e.g., is either a book or a
journal article or an article in conference proceedings or an article in workshop
proceedings or a technical report.

K � t
Publication � Book \ Journal-Article \ Article-In-Conference-Proceedings \ }
Article-In-Workshop-Proceedings \ Technical-Report }

Table A.162. Generic Representation of the Constraint of the Constraint Type
Disjunction

context class left p. list right p. list classes c. element c. value
Publication - - Book, Journal-Article, ... disjunction -

Table A.163. Generic Representation of the Constraint Type Disjunction

context class left p. list right p. list classes c. element c. value
 Ccontext¡ | - - Ci¡ (1 ¤ i ¤ n) | disjunction -
 DT context¡ DT i¡ (1 ¤ i ¤ n)

A.81 Default Values 47

A.80 Negation

With constraints of the constraint type negation (R-19/20), which cor-
responds to complement of classes or data ranges in DL terminology, it can
be stated that (1) instances of class C1 do not have to be instances of class
C2 or (2) literals of datatype DT 1 do not have to be of the datatype DT 2.
Individuals of the type Publication-Not-Book, e.g., must only be publications
that are not books.

K � t Publication-Not-Book � Book }

Table A.164. Generic Representation of the Constraint of the Constraint Type
Negation

context class left p. list right p. list classes c. element c. value
Publication-Not-Book - - Book negation -

Table A.165. Generic Representation of the Constraint Type Negation

context class left p. list right p. list classes c. element c. value
 C1¡ | DT 1¡ - - C2¡ | DT 2¡ negation -

A.81 Default Values

Default values for objects (R-31) or literals (R-38) of given properties p
within the context of given classes Ccontext are inferred automatically when
these properties are not present in the data. It should be possible to declare the
default value for a given property, so that input forms can be pre-populated
and to insert a required property that is missing in a web service call. A
default value is normally used when creating resources. A service should use
the default value to provide a value for a property if none is provided in the
creation request. A default value may be used by consumers of a described
resource if the defined property is not present in the representation of the
described resource. Per default, the status of a book should be marked as
published, i.e., the value of the property isPublished should be true for books
in case the property is not stated.

Table A.166. Generic Representation of the Constraint of the Constraint Type
Default Values

context class left p. list right p. list classes c. element c. value
Book isPublished - - default value true

Table A.167. Generic Representation of the Constraint Type Default Values

context class left p. list right p. list classes c. element c. value
 Ccontext¡ p¡ - - default value default value¡

B

Constraint Type Specific Expressivity of
Constraint Languages

We evaluated to which extend the most common constraint languages fulfill
each of the 81 requirements to formulate constraints and to validate RDF
data. We also evaluated to which extend a specific requirement is satisfied
by the better performing OWL 2 profile OWL 2 QL or if the more expressive
OWL 2 sub-language OWL 2 DL is needed. In case a constraint type is marked
with an asterisk, reasoning may be performed prior to the validation of RDF
data on constraints of that particular type to enhance data quality.

In case a constraint language does not directly support a given constraint
type, but nevertheless is capable to express that particular constraint type,
either by limitations, workarounds, or extensions, we mark that combination
of constraint type and constraint language with the tilde symbol and consider
the constraint type as being covered by the language.

For the constraint type negative literal pattern matching (R-230), e.g.,
there is no dedicated term in the SHACL vocabulary. Nevertheless, this con-
straint type is expressible with SHACL in terms of a workaround by com-
bining multiple language constructs. By combining the negation constraint
(sh:NotConstraint) and the property sh:pattern, e.g., it can be ensured that
an ISSN of a journal does not have be conform to a valid 10- or 13-digit ISBN.
The property sh:pattern is used to validate whether all values of a given prop-
erty match a given regular expression. The values of sh:pattern must be valid
pattern arguments for the SPARQL REGEX function:

1 SHACL Shapes Graph:
2 :JournalShape
3 a sh:Shape ;
4 sh:constraint [
5 a sh:NotConstraint ;
6 sh:shape [
7 a sh:Shape ;
8 sh:property [
9 sh:predicate :issn ;

10 sh:pattern "(ISBN[-]*(1[03])*[]*(:)0,1)*(([0-9Xx][-]*)
11 13|([0-9Xx][-]*)10)" ;] ;]] .
12

13 Valid journal:

B Constraint Type Specific Expressivity of Constraint Languages 49

14 :Journal-Of-Web-Semantics
15 :issn "1570-8268" .
16

17 Invalid journal:
18 :International-Journal-Of-Metadata-Semantics-And-Ontologies
19 :issn "978-3-642-35172-3" .

Table B.1. Constraint Type Specific Expressivity of Constraint Languages (1)

Constraint Types DSP OWL2-DL OWL2-QL ReSh SHACL ShEx SPIN

*Functional Properties 7 7 7 7 7

*Inverse-Functional Properties 7 7 7 7 7

*Primary Key Properties 7 7 7 7 7

*Subsumption 7 �

*Sub-Properties 7 7 7 7

*Object Property Paths 7 7 7 7 7

Allowed Values 7

Not Allowed Values 7 7 7 �

*Class Equivalence 7 7 7 7

*Equivalent Properties 7 7 7

Literal Value Comparison 7 7 7 7

Value is Valid for Datatype 7 7 7 7 7

*Property Domains 7 7 7 7

*Property Ranges 7 7 7

*Class-Specific Property Range 7

Data Property Facets 7 7 7

Literal Ranges 7 7 7 7

Negative Literal Ranges 7 7 7 � 7

IRI Pattern Matching 7 7 7 7 7

Literal Pattern Matching 7 7 7 7

50 B Constraint Type Specific Expressivity of Constraint Languages

Table B.2. Constraint Type Specific Expressivity of Constraint Languages (2)

Constraint Types DSP OWL2-DL OWL2-QL ReSh SHACL ShEx SPIN

Negative Literal Pattern Matching 7 7 7 � 7

*Existential Quantifications 7 7 � �

*Universal Quantifications 7 7 7 7

*Value Restrictions 7

Use Sub-Super Relations in Validation 7 7 7 7 7 7

Negative Property Constraints 7 7 7 �

Language Tag Matching 7 7 7 7 7 7

Language Tag Cardinality 7 7 7 7 7 7

Whitespace Handling 7 7 7 7 7 7

HTML Handling 7 7 7 7 7 7

Structure 7 7 7 7 7 7

*Minimum Unqualified Cardinality 7 �

*Minimum Qualified Cardinality 7 �

*Maximum Unqualified Cardinality 7 �

*Maximum Qualified Cardinality 7 �

*Exact Unqualified Cardinality 7 �

*Exact Qualified Cardinality 7 �

*Cardinality Shortcuts 7 7 7

Vocabulary 7 7 7 7 7 7

Provenance 7 7 7 7 7 7

Table B.3. Constraint Type Specific Expressivity of Constraint Languages (3)

Constraint Types DSP OWL2-DL OWL2-QL ReSh SHACL ShEx SPIN

Required Properties 7 �

Optional Properties 7 �

Repeatable Properties 7 �

Conditional Properties 7 7 7 7 7

Recommended Properties 7 7 7 7 7 7

Severity Levels 7 7 7 7 7

Labeling and Documentation 7 7 7 7 7

Context-Sp. Property Groups 7 � �

Context-Sp. Exclusive OR of P. 7 7 7 7

Context-Sp. Exclusive OR of P. Groups 7 � 7 7

Context-Sp. Inclusive OR of P. 7 � � 7 7

Context-Sp. Inclusive OR of P. Groups 7 � � 7 7

Mathematical Operations 7 7 7 7 7 7

Ordering 7 7 7 7 7 7

*Inverse Object Properties 7 � 7

*Symmetric Object Properties 7 7 7 7

*Asymmetric Object Properties 7 7 7 7

*Transitive Object Properties 7 7 7 7 7

*Self Restrictions 7 7 7 7 7

Valid Identifiers 7 7 7 7 7 7

B Constraint Type Specific Expressivity of Constraint Languages 51

Table B.4. Constraint Type Specific Expressivity of Constraint Languages (4)

Constraint Types DSP OWL2-DL OWL2-QL ReSh SHACL ShEx SPIN

Recursive Queries �

*Reflexive Object Properties 7 7 7 7

*Class-Sp. Reflexive Object P. 7 7 7 7 7

*Irreflexive Object Properties 7 7 7 7

*Class-Specific Irreflexive Object Properties 7 7 7 7 7

Data Model Consistency 7 7 7 7 7 7

Handle RDF Collections 7 7 7 7 7 7

Membership in Controlled Vocabularies 7 7 7 7 7

Disjoint Properties 7 7 7

Disjoint Classes 7 7 7 7

String Operations 7 7 7 7 � 7

Aggregations 7 7 7 7 7 7

*Individual Equality 7 7 7 7 7

Individual Inequality 7 7 7 7

Context-Specific Valid Classes 7 7 7 7 7 7

Context-Specific Valid Properties 7 7 7 7 7

Property Assertions 7 � 7 � 7

*Intersection 7 7

*Disjunction 7 7 7 7

*Negation 7 7 7 7

*Default Values 7 7 7 7

C

Classification of Constraints according to the
RDF Constraints Vocabulary

Constraints on RDF data are either simple constraints or complex constraints.
Simple constraints denotes the set of atomic constraints with respect to a sin-
gle constraining element. In contrast, there are complex constraints, i.e., the
set of constraints which are created out of simple and/or other complex con-
straints. DL denotes the set of constraints which are expressible in Description
Logics (DL).

Table C.1. Classification of Constraints according to the RDF Constraints Vocab-
ulary (1)

Constraint Types Simple DL

Functional Properties

Inverse-Functional Properties 7

Primary Key Properties �

Subsumption

Sub-Properties

Object Property Paths

Allowed Values

Not Allowed Values 7

Class Equivalence 7

Equivalent Properties 7

Literal Value Comparison 7

Value is Valid for Datatype 7

Property Domains �

Property Ranges �

Class-Specific Property Range �

Data Property Facets 7

Literal Ranges 7 7

Negative Literal Ranges 7 7

IRI Pattern Matching 7

Literal Pattern Matching 7

Negative Literal Pattern Matching 7 7

C Classification of Constraints according to the RDF Constraints Vocabulary 53

Table C.2. Classification of Constraints according to the RDF Constraints Vocab-
ulary (2)

Constraint Types Simple DL

Existential Quantifications

Universal Quantifications

Value Restrictions

Use Sub-Super Relations in Validation 7

Negative Property Constraints 7

Language Tag Matching 7

Language Tag Cardinality 7

Whitespace Handling 7

HTML Handling 7

Structure 7 7

Minimum Unqualified Cardinality

Minimum Qualified Cardinality

Maximum Unqualified Cardinality

Maximum Qualified Cardinality

Exact Unqualified Cardinality �

Exact Qualified Cardinality �

Cardinality Shortcuts

Vocabulary 7

Provenance 7

Required Properties

Optional Properties �

Repeatable Properties

Conditional Properties

Recommended Properties 7

Severity Levels 7

Labeling and Documentation 7 7

Context-Sp. Property Groups 7

Context-Sp. Exclusive OR of P. 7

Context-Sp. Exclusive OR of P. Groups 7

Context-Sp. Inclusive OR of P. 7

54 C Classification of Constraints according to the RDF Constraints Vocabulary

Table C.3. Classification of Constraints according to the RDF Constraints Vocab-
ulary (3)

Constraint Types Simple DL

Context-Sp. Inclusive OR of P. Groups 7

Mathematical Operations 7

Ordering 7

Inverse Object Properties

Symmetric Object Properties

Asymmetric Object Properties �

Transitive Object Properties

Self Restrictions 7

Valid Identifiers 7

Recursive Queries

Reflexive Object Properties �

Class-Sp. Reflexive Object P.

Irreflexive Object Properties �

Class-Specific Irreflexive Object Properties �
Data Model Consistency 7 7

Handle RDF Collections 7

Membership in Controlled Vocabularies 7

Disjoint Properties

Disjoint Classes 7

String Operations 7

Aggregations 7

Individual Equality 7

Individual Inequality 7

Context-Specific Valid Classes 7

Context-Specific Valid Properties 7

Property Assertions

Intersection

Disjunction

Negation

Default Values 7

D

CWA and UNA Dependency of Constraint
Types

Validation and reasoning assume different semantics which may lead to differ-
ent validation results when applied to particular constraint types. Reasoning
requires the open-world assumption (OWA) with the non-unique name as-
sumption (nUNA), whereas validation is classically based on the closed-world
assumption (CWA) and the unique name assumption (UNA). Therefore, we
investigate for each constraint type if validation results differ (1) if the CWA
or the OWA and (2) if the UNA or the nUNA is assumed, i.e., we examine
for each constraint type (1) if it depends on the CWA and (2) if it depends
on the UNA.

Table D.1. CWA and UNA Dependency of Constraint Types (1)

Dependency

Constraint Types C
W

A

U
N

A

Functional Properties

Inverse-Functional Properties

Primary Key Properties

Subsumption

Sub-Properties

Object Property Paths

Allowed Values 7

Not Allowed Values 7

Class Equivalence

Equivalent Properties
Literal Value Comparison 7 7

Value is Valid for Datatype 7 7

Property Domains

Property Ranges

56 D CWA and UNA Dependency of Constraint Types

Table D.2. CWA and UNA Dependency of Constraint Types (2)

Dependency

Constraint Types C
W

A

U
N

A

Class-Specific Property Range
Data Property Facets 7 7

Literal Ranges 7 7

Negative Literal Ranges 7 7

IRI Pattern Matching 7

Literal Pattern Matching 7 7

Negative Literal Pattern Matching 7 7

Existential Quantifications

Universal Quantifications 7

Value Restrictions

Use Sub-Super Relations in Validation 7

Negative Property Constraints 7

Language Tag Matching 7

Language Tag Cardinality
Whitespace Handling 7 7

HTML Handling 7 7

Structure

Minimum Unqualified Cardinality

Minimum Qualified Cardinality

Maximum Unqualified Cardinality 7

Maximum Qualified Cardinality 7

Exact Unqualified Cardinality

Exact Qualified Cardinality

Cardinality Shortcuts

Vocabulary

Provenance

Required Properties
Optional Properties 7 7

Repeatable Properties 7

Conditional Properties

Recommended Properties

Severity Levels 7

Labeling and Documentation

D CWA and UNA Dependency of Constraint Types 57

Table D.3. CWA and UNA Dependency of Constraint Types (3)

Dependency

Constraint Types C
W

A

U
N

A

Context-Sp. Property Groups

Context-Sp. Exclusive OR of P. 7

Context-Sp. Exclusive OR of P. Groups 7

Context-Sp. Inclusive OR of P.

Context-Sp. Inclusive OR of P. Groups
Mathematical Operations 7 7

Ordering 7

Inverse Object Properties

Symmetric Object Properties
Asymmetric Object Properties 7 7

Transitive Object Properties

Self Restrictions

Valid Identifiers 7

Recursive Queries 7 7

Reflexive Object Properties

Class-Sp. Reflexive Object P.
Irreflexive Object Properties 7 7

Class-Specific Irreflexive Object Properties 7

Data Model Consistency
Handle RDF Collections 7 7

Membership in Controlled Vocabularies
Disjoint Properties 7 7

Disjoint Classes 7

String Operations 7 7

Aggregations 7 7

Individual Equality 7

Individual Inequality 7 7

Context-Specific Valid Classes 7 7

Context-Specific Valid Properties 7 7

Property Assertions

Intersection

Disjunction
Negation 7 7

Default Values

E

Constraining Elements for Constraint Types

The simple structure of its conceptual model using a small lightweight vocab-
ulary plus the constraining elements form the building blocks of our proposed
validation framework for RDF-based constraint languages. In this chapter, we
list for every constraint type its representation in our framework which not
only shows that constraints of any constraint type can indeed be described
generically in this way, but which also forms the starting point for any map-
ping to SPIN using this framework.

Simple constraints denotes the set of atomic constraints with respect to a
single constraining element. Constraining elements are, e.g., taken from DL.
Another example of a constraining element is the SPARQL function REGEX
where a regular expression is checked against some property value. Complex
constraints, i.e., the set of constraints which are created out of simple and/or
other complex constraints, need several constraining elements to be expressed.
The constraining element is an intuitive term which indicates the actual type
of constraint. Constraining elements are closer to atomic elements of con-
straints.

In most cases, a constraining element directly corresponds to a single con-
straint type, sometimes it is shared by several constraint types, and in a few
cases only the interplay of multiple constraining elements ensures that each
possible constraint of a certain type can be expressed. For only three con-
straints types, the constraining element SPARQL indicates that constraints
of these types may be of such complexity that only plain SPARQL can be
used for their proper formulation.

If constraint types are expressible in DL, constraining elements are for-
mally based on DL constructs like concept and role constructors (�, �, [,
\, , D, @, ¥, ¤), equality (=), and inequality (�). In case constraint types
cannot be expressed in DL, we reuse widely known terms from SPARQL (e.g.,
REGEX) or XML Schema constraining facets (e.g., xsd:minInclusive) as con-
straining elements. In this chapter, we also list for each in DL expressible
constraint type the DL constructs needed to formulate constraints of that
particular type.

E Constraining Elements for Constraint Types 59

Table E.1. Expression of Constraint Types in DL (1)

Constraint Types Expression in DL

Functional Properties functional
Inverse-Functional Properties inverse, functional
Primary Key Properties inverse, functional
Subsumption �

Sub-Properties �

Object Property Paths �

Allowed Values \
Not Allowed Values \,
Class Equivalence �
Equivalent Properties �
Literal Value Comparison ¡ or ¥ or or

¤ or = or �
Value is Valid for Datatype -
Property Domains D, �
Property Ranges �, @
Class-Specific Property Range �, D,
Data Property Facets -
Literal Ranges -
Negative Literal Ranges -
IRI Pattern Matching -
Literal Pattern Matching -
Negative Literal Pattern Matching -
Existential Quantification D
Universal Quantification @
Value Restrictions D
Use Sub-Super Relations in Validation -
Negative Property Constraints , D
Language Tag Matching -
Language Tag Cardinality -
Whitespace Handling -
HTML Handling -
Structure -
Minimum Unqualified Cardinality ¥
Minimum Qualified Cardinality ¥
Maximum Unqualified Cardinality ¤
Maximum Qualified Cardinality ¤
Exact Unqualified Cardinality (¥, ¤, [) or =
Exact Qualified Cardinality (¥, ¤, [) or =
Cardinality Shortcuts -
Vocabulary -
Provenance -
Required Properties D

60 E Constraining Elements for Constraint Types

Table E.2. Expression of Constraint Types in DL (2)

Constraint Types Expression in DL

Optional Properties D, �
Repeatable Properties ¥
Conditional Properties �

Recommended Properties -
Severity Levels -
Labeling and Documentation -
Context-Sp. Property Groups [
Context-Sp. Exclusive OR of P. , [, \
Context-Sp. Exclusive OR of P. Groups , [, \
Context-Sp. Inclusive OR of P. \
Context-Sp. Inclusive OR of P. Groups \, [
Mathematical Operations -
Ordering -
Inverse Object Properties inverse
Symmetric Object Properties symmetric
Asymmetric Object Properties asymmetric
Transitive Object Properties �

Self Restrictions D
Valid Identifiers -
Recursive Queries -
Reflexive Object Properties reflexive
Class-Sp. Reflexive Object P. reflexive
Irreflexive Object Properties reflexive,
Class-Specific Irreflexive Object Properties reflexive,
Data Model Consistency -
Handle RDF Collections -
Membership in Controlled Vocabularies @, [, \
Disjoint Properties �,
Disjoint Classes [, �
String Operations -
Aggregations -
Individual Equality =
Individual Inequality �
Context-Specific Valid Classes -
Context-Specific Valid Properties -
Property Assertions = or �
Intersection [
Disjunction \
Negation
Default Values -

E Constraining Elements for Constraint Types 61

Table E.3. Constraining Elements for Constraint Types (1)

Constraint Types Constraining Elements

Functional Properties functional properties
Inverse-Functional Properties inverse-functional properties
Primary Key Properties primary key
Subsumption sub-class
Sub-Properties sub-property
Object Property Paths object property path
Allowed Values allowed values
Not Allowed Values not allowed values
Class Equivalence equivalent classes
Equivalent Properties equivalent properties
Literal Value Comparison mathematical symbols:

is greater than, is greater than or equal to, is less than,
is less than or equal to, is equal to, is not equal to

Value is Valid for Datatype value is valid for datatype
Property Domains property domain
Property Ranges property range
Class-Specific Property Range property range
Data Property Facets SPARQL functions:

REGEX, STRLEN
XML Schema constraining facets:
xsd:length, xsd:minLength, xsd:maxLength,
xsd:enumeration, xsd:whiteSpace, xsd:maxInclusive,
xsd:maxExclusive,xsd:minExclusive, xsd:minInclusive,
xsd:pattern, xsd:totalDigits, xsd:fractionDigits

Literal Ranges XML Schema constraining facets on values:
xsd:minInclusive, xsd:maxExclusive
xsd:maxInclusive, xsd:minExclusive

Negative Literal Ranges not XML Schema constraining facet on values¡
XML Schema constraining facets on values:
xsd:minInclusive, xsd:maxExclusive
xsd:maxInclusive, xsd:minExclusive

IRI Pattern Matching IRI pattern matching
Literal Pattern Matching REGEX, xsd:pattern
Negative Literal Pattern Matching negative literal pattern matching
Existential Quantification existential quantification
Universal Quantification universal quantification
Value Restrictions value restriction
Use Sub-Super Relations in Validation use sub-super relations
Negative Property Constraints negative properties
Language Tag Matching language tag matching
Language Tag Cardinality language tag minimum cardinality,

language tag maximum cardinality,
language tag exact cardinality

Whitespace Handling whitespace handling
HTML Handling html handling
Structure SPARQL
Minimum Unqualified Cardinality minimum cardinality
Minimum Qualified Cardinality minimum cardinality
Maximum Unqualified Cardinality maximum cardinality
Maximum Qualified Cardinality maximum cardinality
Exact Unqualified Cardinality exact cardinality
Exact Qualified Cardinality exact cardinality

62 E Constraining Elements for Constraint Types

Table E.4. Constraining Elements for Constraint Types (2)

Constraint Types Constraining Elements

Cardinality Shortcuts pairs of cardinality shortcuts:
optional and non-repeatable properties,
optional and repeatable properties,
mandatory and non-repeatable properties,
mandatory and repeatable properties

Vocabulary vocabulary
Provenance provenance
Required Properties required properties
Optional Properties optional properties
Repeatable Properties repeatable properties
Conditional Properties conditional properties
Recommended Properties recommended properties
Severity Levels severity level
Labeling and Documentation SPARQL
Context-Sp. Property Groups property group
Context-Sp. Exclusive OR of P. exclusive or
Context-Sp. Exclusive OR of P. Groups exclusive or
Context-Sp. Inclusive OR of P. inclusive or
Context-Sp. Inclusive OR of P. Groups inclusive or
Mathematical Operations Mathematical operations:

addition, subtraction,
multiplication, division

Ordering ordered values
Inverse Object Properties inverse property
Symmetric Object Properties symmetric property
Asymmetric Object Properties asymmetric property
Transitive Object Properties transitive property
Self Restrictions self restriction
Valid Identifiers valid identifiers
Recursive Queries recursive
Reflexive Object Properties reflexive property
Class-Sp. Reflexive Object P. reflexive property
Irreflexive Object Properties irreflexive property
Class-Specific Irreflexive Object Properties irreflexive property
Data Model Consistency SPARQL
Handle RDF Collections actions on RDF collections:

add element to list, ...
Membership in Controlled Vocabularies membership in controlled vocabularies
Disjoint Properties disjoint properties
Disjoint Classes disjoint classes
String Operations SPARQL string functions:

STRLEN, SUBSTR, UCASE, LCASE,
STRSTARTS, STRENDS, CONTAINS,
STRBEFORE, STRAFTER, ENCODE FOR URI,
CONCAT, langMatches, REGEX, REPLACE

Aggregations aggregation functions:
count

Individual Equality equal individuals
Individual Inequality different individuals
Context-Specific Valid Classes context-specific valid classes
Context-Specific Valid Properties context-specific valid properties
Property Assertions property assertion
Intersection intersection
Disjunction disjunction
Negation negation
Default Values default value

F

Software

XSD 2 OWL

Stand-alone application to automatically transform arbitrary XML Schemas
into OWL ontologies based on formal logics and the XML Schema meta-model.

• Source code online available at:
https://github.com/github-thomas-hartmann/phd-thesis

Validation Environment

Validation environment to (1) define constraints expressed in arbitrary RDF-
based constraint languages and (2) validate RDF data according to these
constraints.

• Online available at: http://purl.org/net/rdfval-demo
• Source code online available at:

https://github.com/github-thomas-hartmann/phd-thesis

https://github.com/github-thomas-hartmann/phd-thesis
http://purl.org/net/rdfval-demo
https://github.com/github-thomas-hartmann/phd-thesis

G

Publications

Main aspects of this thesis have been published in form of research papers.
To make the research results of this thesis available in a sustainable way, all
research results together with direct links to them can be found on a GitHub
repository with the base URL https://github.com/github-thomas-hartmann/
phd-thesis, so the complete set of publications. In this chapter, we list the
references to these publications and group them by chapter (see Section G.1)
and publication type (see Section G.2). Please note that in 2015, the last name
of the author of this thesis changed from Bosch to Hartmann.

G.1 Publications by Chapter

Chapter 3:
Vocabularies for Representing Research Data and its Metadata

1. Block, W., Bosch, Thomas, Fitzpatrick, B., Gillman, D., Greenfield, J.,
Gregory, A., Hebing, M., Hoyle, L., Humphrey, C., Johnson, J., Linnerud,
J., Mathiak, B., McEachern, S., Radler, B., Risnes, Ø., Smith, D., Thomas,
W., Wackerow, J., Wegener, D., & Zenk-Möltgen, W. (2012). Developing
a Model-Driven DDI Specification. DDI Working Paper Series

2. Bosch, Thomas, Cyganiak, R., Gregory, A., & Wackerow, J. (2013a).
DDI-RDF Discovery Vocabulary: A Metadata Vocabulary for Document-
ing Research and Survey Data. In Proceedings of the 6th Workshop
on Linked Data on the Web (LDOW 2013), 22nd International World
Wide Web Conference (WWW 2013), volume 996 Rio de Janeiro, Brazil.
http://ceur-ws.org/Vol-996/

3. Bosch, Thomas, Cyganiak, R., Wackerow, J., & Zapilko, B. (2012).
Leveraging the DDI Model for Linked Statistical Data in the Social, Be-
havioural, and Economic Sciences. In Proceedings of the 12th DCMI
International Conference on Dublin Core and Metadata Applications

https://github.com/github-thomas-hartmann/phd-thesis
https://github.com/github-thomas-hartmann/phd-thesis
http://ceur-ws.org/Vol-996/

G.1 Publications by Chapter 65

(DC 2012) Kuching, Sarawak, Malaysia. http://dcpapers.dublincore.org/
pubs/article/view/3654

4. Bosch, Thomas, Cyganiak, R., Wackerow, J., & Zapilko, B. (2016). DDI-
RDF Discovery Vocabulary: A Vocabulary for Publishing Metadata about
Data Sets (Research and Survey Data) into the Web of Linked Data. DDI
Alliance Specification, DDI Alliance. http://rdf-vocabulary.ddialliance.
org/discovery

5. Bosch, Thomas & Mathiak, B. (2015). Use Cases Related to an Ontology
of the Data Documentation Initiative. IASSIST Quarterly, 38(4) & 39(1),
25–37. http://iassistdata.org/iq/issue/38/4

6. Bosch, Thomas, Olsson, O., Gregory, A., & Wackerow, J. (2015c). DDI-
RDF Discovery - A Discovery Model for Microdata. IASSIST Quarterly,
38(4) & 39(1), 17–24. http://iassistdata.org/iq/issue/38/4

7. Bosch, Thomas, Wira-Alam, A., & Mathiak, B. (2011). Designing an
Ontology for the Data Documentation Initiative. In Proceedings of the
8th Extended Semantic Web Conference (ESWC 2011), Poster-Session
Heraklion, Greece. http://www.eswc2011.org/content/accepted-posters.
html

8. Bosch, Thomas, Wira-Alam, A., & Mathiak, B. (2014). Designing an
Ontology for the Data Documentation Initiative. Computing Research
Repository (CoRR), abs/1402.3470. http://arxiv.org/abs/1402.3470

9. Bosch, Thomas & Zapilko, B. (2015). Semantic Web Applications for
the Social Sciences. IASSIST Quarterly, 38(4) & 39(1), 7–16. http://
iassistdata.org/iq/issue/38/4

10. Bosch, Thomas, Zapilko, B., Wackerow, J., & Gregory, A. (2013b). To-
wards the Discovery of Person-Level Data - Reuse of Vocabularies and
Related Use Cases. In Proceedings of the 1st International Workshop on
Semantic Statistics (SemStats 2013), 12th International Semantic Web
Conference (ISWC 2013), Sydney, Australia. http://semstats.github.io/
2013/proceedings

11. Schaible, J., Zapilko, B., Bosch, Thomas, & Zenk-Möltgen, W. (2015).
Linking Study Descriptions to the Linked Open Data Cloud. IASSIST
Quarterly, 38(4) & 39(1), 38–46. http://iassistdata.org/iq/issue/38/4

12. Vompras, J., Gregory, A., Bosch, Thomas, & Wackerow, J. (2015). Sce-
narios for the DDI-RDF Discovery Vocabulary. DDI Working Paper Se-
ries. http://dx.doi.org/10.3886/DDISemanticWeb02

13. Wackerow, J., Hoyle, L., & Bosch, Thomas (2016). Physical Data De-
scription. DDI Alliance Specification, DDI Alliance. http://rdf-vocabulary.
ddialliance.org/phdd.html

Chapter 4:
RDFication of XML Enabling to use RDF Validation Technologies

1. Bosch, Thomas (2012). Reusing XML Schemas’ Information as a
Foundation for Designing Domain Ontologies. In P. Cudré-Mauroux, J.

http://dcpapers.dublincore.org/pubs/article/view/3654
http://dcpapers.dublincore.org/pubs/article/view/3654
http://rdf-vocabulary.ddialliance.org/discovery
http://rdf-vocabulary.ddialliance.org/discovery
http://iassistdata.org/iq/issue/38/4
http://iassistdata.org/iq/issue/38/4
http://www.eswc2011.org/content/accepted-posters.html
http://www.eswc2011.org/content/accepted-posters.html
http://arxiv.org/abs/1402.3470
http://iassistdata.org/iq/issue/38/4
http://iassistdata.org/iq/issue/38/4
http://semstats.github.io/2013/proceedings
http://semstats.github.io/2013/proceedings
http://iassistdata.org/iq/issue/38/4
http://dx.doi.org/10.3886/DDISemanticWeb02
http://rdf-vocabulary.ddialliance.org/phdd.html
http://rdf-vocabulary.ddialliance.org/phdd.html

66 G Publications

Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. Parreira,
J. Hendler, G. Schreiber, A. Bernstein, & E. Blomqvist (Eds.), The Se-
mantic Web - ISWC 2012, volume 7650 of Lecture Notes in Computer
Science (pp. 437–440). Springer Berlin Heidelberg. http://dx.doi.org/10.
1007/978-3-642-35173-0 34

2. Bosch, Thomas & Mathiak, B. (2011). Generic Multilevel Approach
Designing Domain Ontologies Based on XML Schemas. In Proceedings of
the 1st Workshop Ontologies Come of Age in the Semantic Web (OCAS
2011), 10th International Semantic Web Conference (ISWC 2011) (pp.
1–12). Bonn, Germany. http://ceur-ws.org/Vol-809/

3. Bosch, Thomas & Mathiak, B. (2012). XSLT Transformation Gen-
erating OWL Ontologies Automatically Based on XML Schemas. In
Proceedings of the 6th International Conference for Internet Technology
and Secured Transactions (ICITST 2011), IEEE Xplore Digital Library
(pp. 660–667). Abu Dhabi, United Arab Emirates. http://edas.info/web/
icitst2011/program.html

4. Bosch, Thomas & Mathiak, B. (2013a). Evaluation of a Generic Ap-
proach for Designing Domain Ontologies Based on XML Schemas. Gesis
Technical Report 08, Gesis - Leibniz Institute for the Social Sciences,
Mannheim, Germany. http://www.gesis.org/publikationen/archiv/gesis-
technical-reports/

5. Bosch, Thomas & Mathiak, B. (2013b). How to Accelerate the Process
of Designing Domain Ontologies based on XML Schemas. International
Journal of Metadata, Semantics and Ontologies - Special Issue on Meta-
data, Semantics and Ontologies for Web Intelligence, 8(3), 254 – 266.
http://www.inderscience.com/info/inarticle.php?artid=57760

Chapter 5:
RDF Validation Requirements and Types of Constraints on RDF
Data

1. Alonen, M., Bosch, Thomas, Charles, V., Clayphan, R., Coyle, K.,
Dröge, E., Isaac, A., Matienzo, M., Pohl, A., Rühle, S., & Svensson, L.
(2015a). Report on the Current State: Use Cases and Validation Require-
ments. DCMI Draft, Dublin Core Metadata Initiative (DCMI). http://
wiki.dublincore.org/index.php/RDF Application Profiles/UCR Deliverable

2. Alonen, M., Bosch, Thomas, Charles, V., Clayphan, R., Coyle, K.,
Dröge, E., Isaac, A., Matienzo, M., Pohl, A., Rühle, S., & Svensson,
L. (2015b). Report on Validation Requirements. DCMI Draft, Dublin
Core Metadata Initiative (DCMI). http://wiki.dublincore.org/index.php/
RDF Application Profiles/Requirements

3. Bosch, Thomas & Eckert, K. (2014a). Requirements on RDF Constraint
Formulation and Validation. In Proceedings of the 14th DCMI Interna-
tional Conference on Dublin Core and Metadata Applications (DC 2014)

http://dx.doi.org/10.1007/978-3-642-35173-0_34
http://dx.doi.org/10.1007/978-3-642-35173-0_34
http://ceur-ws.org/Vol-809/
http://edas.info/web/icitst2011/program.html
http://edas.info/web/icitst2011/program.html
http://www.inderscience.com/info/inarticle.php?artid=57760
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/UCR_Deliverable
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/UCR_Deliverable
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/Requirements
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/Requirements

G.1 Publications by Chapter 67

Austin, Texas, USA. http://dcevents.dublincore.org/IntConf/dc-2014/
paper/view/257

4. Bosch, Thomas, Nolle, A., Acar, E., & Eckert, K. (2015b). RDF Val-
idation Requirements - Evaluation and Logical Underpinning. Comput-
ing Research Repository (CoRR), abs/1501.03933. http://arxiv.org/abs/
1501.03933

Chapter 6:
Providing Consistent Implementations for any RDF-based
Constraint Language

1. Bosch, Thomas & Eckert, K. (2014b). Towards Description Set Profiles
for RDF using SPARQL as Intermediate Language. In Proceedings of
the 14th DCMI International Conference on Dublin Core and Metadata
Applications (DC 2014) Austin, Texas, USA. http://dcevents.dublincore.
org/IntConf/dc-2014/paper/view/270

Chapter 7:
Validation Framework for RDF-based Constraint Languages

1. Bosch, Thomas & Eckert, K. (2015). Guidance, Please! Towards a
Framework for RDF-based Constraint Languages. In Proceedings of the
15th DCMI International Conference on Dublin Core and Metadata Ap-
plications (DC 2015) São Paulo, Brazil. http://dcevents.dublincore.org/
IntConf/dc-2015/paper/view/386/368

2. Bosch, Thomas, Nolle, A., Acar, E., & Eckert, K. (2015b). RDF Val-
idation Requirements - Evaluation and Logical Underpinning. Comput-
ing Research Repository (CoRR), abs/1501.03933. http://arxiv.org/abs/
1501.03933

Chapter 8:
The Role of Reasoning for RDF Validation

1. Bosch, Thomas, Acar, E., Nolle, A., & Eckert, K. (2015a). The Role of
Reasoning for RDF Validation. In Proceedings of the 11th International
Conference on Semantic Systems (SEMANTiCS 2015) (pp. 33–40). Vi-
enna, Austria: ACM. http://doi.acm.org/10.1145/2814864.2814867

2. Bosch, Thomas, Nolle, A., Acar, E., & Eckert, K. (2015b). RDF Val-
idation Requirements - Evaluation and Logical Underpinning. Comput-
ing Research Repository (CoRR), abs/1501.03933. http://arxiv.org/abs/
1501.03933

http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/257
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/257
http://arxiv.org/abs/1501.03933
http://arxiv.org/abs/1501.03933
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/270
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/270
http://dcevents.dublincore.org/IntConf/dc-2015/paper/view/386/368
http://dcevents.dublincore.org/IntConf/dc-2015/paper/view/386/368
http://arxiv.org/abs/1501.03933
http://arxiv.org/abs/1501.03933
http://doi.acm.org/10.1145/2814864.2814867
http://arxiv.org/abs/1501.03933
http://arxiv.org/abs/1501.03933

68 G Publications

Chapter 9:
Evaluating the Usability of Constraint Types for Assessing RDF
Data Quality

1. Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2015a).
Constraints to Validate RDF Data Quality on Common Vocabularies
in the Social, Behavioral, and Economic Sciences. Computing Research
Repository (CoRR), abs/1504.04479. http://arxiv.org/abs/1504.04479

2. Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2015b).
Evaluating the Quality of RDF Data Sets on Common Vocabularies in the
Social, Behavioral, and Economic Sciences. Computing Research Reposi-
tory (CoRR), abs/1504.04478. http://arxiv.org/abs/1504.04478

3. Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2016).
Validating RDF Data Quality using Constraints to Direct the Develop-
ment of Constraint Languages. In Proceedings of the 10th International
Conference on Semantic Computing (ICSC 2016) Laguna Hills, Califor-
nia, USA: IEEE. http://www.ieee-icsc.com/

G.2 Publications by Publication Type

Journal Articles

1. Bosch, Thomas & Mathiak, B. (2015). Use Cases Related to an Ontology
of the Data Documentation Initiative. IASSIST Quarterly, 38(4) & 39(1),
25–37. http://iassistdata.org/iq/issue/38/4

2. Bosch, Thomas, Olsson, O., Gregory, A., & Wackerow, J. (2015c). DDI-
RDF Discovery - A Discovery Model for Microdata. IASSIST Quarterly,
38(4) & 39(1), 17–24. http://iassistdata.org/iq/issue/38/4

3. Bosch, Thomas & Zapilko, B. (2015). Semantic Web Applications for
the Social Sciences. IASSIST Quarterly, 38(4) & 39(1), 7–16. http://
iassistdata.org/iq/issue/38/4

4. Schaible, J., Zapilko, B., Bosch, Thomas, & Zenk-Möltgen, W. (2015).
Linking Study Descriptions to the Linked Open Data Cloud. IASSIST
Quarterly, 38(4) & 39(1), 38–46. http://iassistdata.org/iq/issue/38/4

5. Bosch, Thomas & Mathiak, B. (2013b). How to Accelerate the Process
of Designing Domain Ontologies based on XML Schemas. International
Journal of Metadata, Semantics and Ontologies - Special Issue on Meta-
data, Semantics and Ontologies for Web Intelligence, 8(3), 254 – 266.
http://www.inderscience.com/info/inarticle.php?artid=57760

Articles in Conference Proceedings

1. Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2016).
Validating RDF Data Quality using Constraints to Direct the Develop-
ment of Constraint Languages. In Proceedings of the 10th International

http://arxiv.org/abs/1504.04479
http://arxiv.org/abs/1504.04478
http://www.ieee-icsc.com/
http://iassistdata.org/iq/issue/38/4
http://iassistdata.org/iq/issue/38/4
http://iassistdata.org/iq/issue/38/4
http://iassistdata.org/iq/issue/38/4
http://iassistdata.org/iq/issue/38/4
http://www.inderscience.com/info/inarticle.php?artid=57760

G.2 Publications by Publication Type 69

Conference on Semantic Computing (ICSC 2016) Laguna Hills, Califor-
nia, USA: IEEE. http://www.ieee-icsc.com/

2. Bosch, Thomas & Eckert, K. (2015). Guidance, Please! Towards a
Framework for RDF-based Constraint Languages. In Proceedings of the
15th DCMI International Conference on Dublin Core and Metadata Ap-
plications (DC 2015) São Paulo, Brazil. http://dcevents.dublincore.org/
IntConf/dc-2015/paper/view/386/368

3. Bosch, Thomas, Acar, E., Nolle, A., & Eckert, K. (2015a). The Role of
Reasoning for RDF Validation. In Proceedings of the 11th International
Conference on Semantic Systems (SEMANTiCS 2015) (pp. 33–40). Vi-
enna, Austria: ACM. http://doi.acm.org/10.1145/2814864.2814867

4. Bosch, Thomas & Eckert, K. (2014a). Requirements on RDF Constraint
Formulation and Validation. In Proceedings of the 14th DCMI Interna-
tional Conference on Dublin Core and Metadata Applications (DC 2014)
Austin, Texas, USA. http://dcevents.dublincore.org/IntConf/dc-2014/
paper/view/257

5. Bosch, Thomas & Eckert, K. (2014b). Towards Description Set Profiles
for RDF using SPARQL as Intermediate Language. In Proceedings of
the 14th DCMI International Conference on Dublin Core and Metadata
Applications (DC 2014) Austin, Texas, USA. http://dcevents.dublincore.
org/IntConf/dc-2014/paper/view/270

6. Bosch, Thomas, Cyganiak, R., Wackerow, J., & Zapilko, B. (2012).
Leveraging the DDI Model for Linked Statistical Data in the Social, Be-
havioural, and Economic Sciences. In Proceedings of the 12th DCMI
International Conference on Dublin Core and Metadata Applications
(DC 2012) Kuching, Sarawak, Malaysia. http://dcpapers.dublincore.org/
pubs/article/view/3654

7. Bosch, Thomas (2012). Reusing XML Schemas’ Information as a
Foundation for Designing Domain Ontologies. In P. Cudré-Mauroux, J.
Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. Parreira,
J. Hendler, G. Schreiber, A. Bernstein, & E. Blomqvist (Eds.), The Se-
mantic Web - ISWC 2012, volume 7650 of Lecture Notes in Computer
Science (pp. 437–440). Springer Berlin Heidelberg. http://dx.doi.org/10.
1007/978-3-642-35173-0 34

8. Bosch, Thomas & Mathiak, B. (2012). XSLT Transformation Gen-
erating OWL Ontologies Automatically Based on XML Schemas. In
Proceedings of the 6th International Conference for Internet Technology
and Secured Transactions (ICITST 2011), IEEE Xplore Digital Library
(pp. 660–667). Abu Dhabi, United Arab Emirates. http://edas.info/web/
icitst2011/program.html

9. Bosch, Thomas, Wira-Alam, A., & Mathiak, B. (2011). Designing an
Ontology for the Data Documentation Initiative. In Proceedings of the
8th Extended Semantic Web Conference (ESWC 2011), Poster-Session
Heraklion, Greece. http://www.eswc2011.org/content/accepted-posters.
html

http://www.ieee-icsc.com/
http://dcevents.dublincore.org/IntConf/dc-2015/paper/view/386/368
http://dcevents.dublincore.org/IntConf/dc-2015/paper/view/386/368
http://doi.acm.org/10.1145/2814864.2814867
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/257
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/257
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/270
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/270
http://dcpapers.dublincore.org/pubs/article/view/3654
http://dcpapers.dublincore.org/pubs/article/view/3654
http://dx.doi.org/10.1007/978-3-642-35173-0_34
http://dx.doi.org/10.1007/978-3-642-35173-0_34
http://edas.info/web/icitst2011/program.html
http://edas.info/web/icitst2011/program.html
http://www.eswc2011.org/content/accepted-posters.html
http://www.eswc2011.org/content/accepted-posters.html

70 G Publications

Articles in Workshop Proceedings

1. Bosch, Thomas, Cyganiak, R., Gregory, A., & Wackerow, J. (2013a).
DDI-RDF Discovery Vocabulary: A Metadata Vocabulary for Document-
ing Research and Survey Data. In Proceedings of the 6th Workshop
on Linked Data on the Web (LDOW 2013), 22nd International World
Wide Web Conference (WWW 2013), volume 996 Rio de Janeiro, Brazil.
http://ceur-ws.org/Vol-996/

2. Bosch, Thomas, Zapilko, B., Wackerow, J., & Gregory, A. (2013b). To-
wards the Discovery of Person-Level Data - Reuse of Vocabularies and
Related Use Cases. In Proceedings of the 1st International Workshop on
Semantic Statistics (SemStats 2013), 12th International Semantic Web
Conference (ISWC 2013), Sydney, Australia. http://semstats.github.io/
2013/proceedings

3. Bosch, Thomas & Mathiak, B. (2011). Generic Multilevel Approach
Designing Domain Ontologies Based on XML Schemas. In Proceedings of
the 1st Workshop Ontologies Come of Age in the Semantic Web (OCAS
2011), 10th International Semantic Web Conference (ISWC 2011) (pp.
1–12). Bonn, Germany. http://ceur-ws.org/Vol-809/

Specifications

1. Bosch, Thomas, Cyganiak, R., Wackerow, J., & Zapilko, B. (2016). DDI-
RDF Discovery Vocabulary: A Vocabulary for Publishing Metadata about
Data Sets (Research and Survey Data) into the Web of Linked Data. DDI
Alliance Specification, DDI Alliance. http://rdf-vocabulary.ddialliance.
org/discovery

2. Wackerow, J., Hoyle, L., & Bosch, Thomas (2016). Physical Data De-
scription. DDI Alliance Specification, DDI Alliance. http://rdf-vocabulary.
ddialliance.org/phdd.html

Technical Reports

1. Vompras, J., Gregory, A., Bosch, Thomas, & Wackerow, J. (2015). Sce-
narios for the DDI-RDF Discovery Vocabulary. DDI Working Paper Se-
ries. http://dx.doi.org/10.3886/DDISemanticWeb02

2. Alonen, M., Bosch, Thomas, Charles, V., Clayphan, R., Coyle, K.,
Dröge, E., Isaac, A., Matienzo, M., Pohl, A., Rühle, S., & Svensson,
L. (2015b). Report on Validation Requirements. DCMI Draft, Dublin
Core Metadata Initiative (DCMI). http://wiki.dublincore.org/index.php/
RDF Application Profiles/Requirements

3. Alonen, M., Bosch, Thomas, Charles, V., Clayphan, R., Coyle, K.,
Dröge, E., Isaac, A., Matienzo, M., Pohl, A., Rühle, S., & Svensson, L.
(2015a). Report on the Current State: Use Cases and Validation Require-
ments. DCMI Draft, Dublin Core Metadata Initiative (DCMI). http://
wiki.dublincore.org/index.php/RDF Application Profiles/UCR Deliverable

http://ceur-ws.org/Vol-996/
http://semstats.github.io/2013/proceedings
http://semstats.github.io/2013/proceedings
http://ceur-ws.org/Vol-809/
http://rdf-vocabulary.ddialliance.org/discovery
http://rdf-vocabulary.ddialliance.org/discovery
http://rdf-vocabulary.ddialliance.org/phdd.html
http://rdf-vocabulary.ddialliance.org/phdd.html
http://dx.doi.org/10.3886/DDISemanticWeb02
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/Requirements
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/Requirements
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/UCR_Deliverable
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/UCR_Deliverable

G.2 Publications by Publication Type 71

4. Bosch, Thomas, Nolle, A., Acar, E., & Eckert, K. (2015b). RDF Val-
idation Requirements - Evaluation and Logical Underpinning. Comput-
ing Research Repository (CoRR), abs/1501.03933. http://arxiv.org/abs/
1501.03933

5. Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2015a).
Constraints to Validate RDF Data Quality on Common Vocabularies
in the Social, Behavioral, and Economic Sciences. Computing Research
Repository (CoRR), abs/1504.04479. http://arxiv.org/abs/1504.04479

6. Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2015b).
Evaluating the Quality of RDF Data Sets on Common Vocabularies in the
Social, Behavioral, and Economic Sciences. Computing Research Reposi-
tory (CoRR), abs/1504.04478. http://arxiv.org/abs/1504.04478

7. Bosch, Thomas, Wira-Alam, A., & Mathiak, B. (2014). Designing an
Ontology for the Data Documentation Initiative. Computing Research
Repository (CoRR), abs/1402.3470. http://arxiv.org/abs/1402.3470

8. Bosch, Thomas & Mathiak, B. (2013a). Evaluation of a Generic Ap-
proach for Designing Domain Ontologies Based on XML Schemas. Gesis
Technical Report 08, Gesis - Leibniz Institute for the Social Sciences,
Mannheim, Germany. http://www.gesis.org/publikationen/archiv/gesis-
technical-reports/

9. Block, W., Bosch, Thomas, Fitzpatrick, B., Gillman, D., Greenfield, J.,
Gregory, A., Hebing, M., Hoyle, L., Humphrey, C., Johnson, J., Linnerud,
J., Mathiak, B., McEachern, S., Radler, B., Risnes, Ø., Smith, D., Thomas,
W., Wackerow, J., Wegener, D., & Zenk-Möltgen, W. (2012). Developing
a Model-Driven DDI Specification. DDI Working Paper Series

http://arxiv.org/abs/1501.03933
http://arxiv.org/abs/1501.03933
http://arxiv.org/abs/1504.04479
http://arxiv.org/abs/1504.04478
http://arxiv.org/abs/1402.3470

References

[1] Alonen, M., Bosch, Thomas, Charles, V., Clayphan, R., Coyle, K.,
Dröge, E., Isaac, A., Matienzo, M., Pohl, A., Rühle, S., & Svensson, L.
(2015a). Report on the Current State: Use Cases and Validation Require-
ments. DCMI Draft, Dublin Core Metadata Initiative (DCMI). http://wiki.
dublincore.org/index.php/RDF Application Profiles/UCR Deliverable.

[2] Alonen, M., Bosch, Thomas, Charles, V., Clayphan, R., Coyle, K.,
Dröge, E., Isaac, A., Matienzo, M., Pohl, A., Rühle, S., & Svensson,
L. (2015b). Report on Validation Requirements. DCMI Draft, Dublin
Core Metadata Initiative (DCMI). http://wiki.dublincore.org/index.php/
RDF Application Profiles/Requirements.

[3] Apache Software Foundation (2015). Apache Log4j 2 v. 2.3 User’s Guide.
Technical report, Apache Software Foundation. http://logging.apache.org/
log4j/2.x/log4j-users-guide.pdf.

[4] Block, W., Bosch, Thomas, Fitzpatrick, B., Gillman, D., Greenfield, J.,
Gregory, A., Hebing, M., Hoyle, L., Humphrey, C., Johnson, J., Linnerud,
J., Mathiak, B., McEachern, S., Radler, B., Risnes, Ø., Smith, D., Thomas,
W., Wackerow, J., Wegener, D., & Zenk-Möltgen, W. (2012). Developing a
Model-Driven DDI Specification. DDI Working Paper Series.

[5] Bosch, Thomas (2012). Reusing XML Schemas’ Information as a
Foundation for Designing Domain Ontologies. In P. Cudré-Mauroux, J.
Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J. Parreira, J.
Hendler, G. Schreiber, A. Bernstein, & E. Blomqvist (Eds.), The Seman-
tic Web - ISWC 2012, volume 7650 of Lecture Notes in Computer Sci-
ence (pp. 437–440). Springer Berlin Heidelberg. http://dx.doi.org/10.1007/
978-3-642-35173-0 34.

[6] Bosch, Thomas, Acar, E., Nolle, A., & Eckert, K. (2015a). The Role
of Reasoning for RDF Validation. In Proceedings of the 11th International
Conference on Semantic Systems (SEMANTiCS 2015) (pp. 33–40). Vienna,
Austria: ACM. http://doi.acm.org/10.1145/2814864.2814867.

[7] Bosch, Thomas, Cyganiak, R., Gregory, A., & Wackerow, J. (2013a).
DDI-RDF Discovery Vocabulary: A Metadata Vocabulary for Document-

http://wiki.dublincore.org/index.php/RDF_Application_Profiles/UCR_Deliverable
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/UCR_Deliverable
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/Requirements
http://wiki.dublincore.org/index.php/RDF_Application_Profiles/Requirements
http://logging.apache.org/log4j/2.x/log4j-users-guide.pdf
http://logging.apache.org/log4j/2.x/log4j-users-guide.pdf
http://dx.doi.org/10.1007/978-3-642-35173-0_34
http://dx.doi.org/10.1007/978-3-642-35173-0_34
http://doi.acm.org/10.1145/2814864.2814867

74 References

ing Research and Survey Data. In Proceedings of the 6th Workshop
on Linked Data on the Web (LDOW 2013), 22nd International World
Wide Web Conference (WWW 2013), volume 996 Rio de Janeiro, Brazil.
http://ceur-ws.org/Vol-996/.

[8] Bosch, Thomas, Cyganiak, R., Wackerow, J., & Zapilko, B. (2012).
Leveraging the DDI Model for Linked Statistical Data in the Social, Be-
havioural, and Economic Sciences. In Proceedings of the 12th DCMI Inter-
national Conference on Dublin Core and Metadata Applications (DC 2012)
Kuching, Sarawak, Malaysia. http://dcpapers.dublincore.org/pubs/article/
view/3654.

[9] Bosch, Thomas, Cyganiak, R., Wackerow, J., & Zapilko, B. (2016). DDI-
RDF Discovery Vocabulary: A Vocabulary for Publishing Metadata about
Data Sets (Research and Survey Data) into the Web of Linked Data. DDI
Alliance Specification, DDI Alliance. http://rdf-vocabulary.ddialliance.org/
discovery.

[10] Bosch, Thomas & Eckert, K. (2014a). Requirements on RDF Con-
straint Formulation and Validation. In Proceedings of the 14th DCMI Inter-
national Conference on Dublin Core and Metadata Applications (DC 2014)
Austin, Texas, USA. http://dcevents.dublincore.org/IntConf/dc-2014/
paper/view/257.

[11] Bosch, Thomas & Eckert, K. (2014b). Towards Description Set Pro-
files for RDF using SPARQL as Intermediate Language. In Proceedings
of the 14th DCMI International Conference on Dublin Core and Metadata
Applications (DC 2014) Austin, Texas, USA. http://dcevents.dublincore.
org/IntConf/dc-2014/paper/view/270.

[12] Bosch, Thomas & Eckert, K. (2015). Guidance, Please! Towards a
Framework for RDF-based Constraint Languages. In Proceedings of the
15th DCMI International Conference on Dublin Core and Metadata Ap-
plications (DC 2015) São Paulo, Brazil. http://dcevents.dublincore.org/
IntConf/dc-2015/paper/view/386/368.

[13] Bosch, Thomas & Mathiak, B. (2011). Generic Multilevel Approach
Designing Domain Ontologies Based on XML Schemas. In Proceedings of
the 1st Workshop Ontologies Come of Age in the Semantic Web (OCAS
2011), 10th International Semantic Web Conference (ISWC 2011) (pp. 1–
12). Bonn, Germany. http://ceur-ws.org/Vol-809/.

[14] Bosch, Thomas & Mathiak, B. (2012). XSLT Transformation Gener-
ating OWL Ontologies Automatically Based on XML Schemas. In Proceed-
ings of the 6th International Conference for Internet Technology and Se-
cured Transactions (ICITST 2011), IEEE Xplore Digital Library (pp. 660–
667). Abu Dhabi, United Arab Emirates. http://edas.info/web/icitst2011/
program.html.

[15] Bosch, Thomas & Mathiak, B. (2013a). Evaluation of a Generic Ap-
proach for Designing Domain Ontologies Based on XML Schemas. Gesis
Technical Report 08, Gesis - Leibniz Institute for the Social Sciences,

http://ceur-ws.org/Vol-996/
http://dcpapers.dublincore.org/pubs/article/view/3654
http://dcpapers.dublincore.org/pubs/article/view/3654
http://rdf-vocabulary.ddialliance.org/discovery
http://rdf-vocabulary.ddialliance.org/discovery
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/257
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/257
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/270
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/270
http://dcevents.dublincore.org/IntConf/dc-2015/paper/view/386/368
http://dcevents.dublincore.org/IntConf/dc-2015/paper/view/386/368
http://ceur-ws.org/Vol-809/
http://edas.info/web/icitst2011/program.html
http://edas.info/web/icitst2011/program.html

References 75

Mannheim, Germany. http://www.gesis.org/publikationen/archiv/gesis-
technical-reports/.

[16] Bosch, Thomas & Mathiak, B. (2013b). How to Accelerate the Pro-
cess of Designing Domain Ontologies based on XML Schemas. Interna-
tional Journal of Metadata, Semantics and Ontologies - Special Issue on
Metadata, Semantics and Ontologies for Web Intelligence, 8(3), 254 – 266.
http://www.inderscience.com/info/inarticle.php?artid=57760.

[17] Bosch, Thomas & Mathiak, B. (2015). Use Cases Related to an On-
tology of the Data Documentation Initiative. IASSIST Quarterly, 38(4) &
39(1), 25–37. http://iassistdata.org/iq/issue/38/4.

[18] Bosch, Thomas, Nolle, A., Acar, E., & Eckert, K. (2015b). RDF Val-
idation Requirements - Evaluation and Logical Underpinning. Computing
Research Repository (CoRR), abs/1501.03933. http://arxiv.org/abs/1501.
03933.

[19] Bosch, Thomas, Olsson, O., Gregory, A., & Wackerow, J. (2015c). DDI-
RDF Discovery - A Discovery Model for Microdata. IASSIST Quarterly,
38(4) & 39(1), 17–24. http://iassistdata.org/iq/issue/38/4.

[20] Bosch, Thomas, Wira-Alam, A., & Mathiak, B. (2011). Designing an
Ontology for the Data Documentation Initiative. In Proceedings of the 8th
Extended Semantic Web Conference (ESWC 2011), Poster-Session Herak-
lion, Greece. http://www.eswc2011.org/content/accepted-posters.html.

[21] Bosch, Thomas, Wira-Alam, A., & Mathiak, B. (2014). Designing
an Ontology for the Data Documentation Initiative. Computing Research
Repository (CoRR), abs/1402.3470. http://arxiv.org/abs/1402.3470.

[22] Bosch, Thomas & Zapilko, B. (2015). Semantic Web Applications for
the Social Sciences. IASSIST Quarterly, 38(4) & 39(1), 7–16. http://
iassistdata.org/iq/issue/38/4.

[23] Bosch, Thomas, Zapilko, B., Wackerow, J., & Gregory, A. (2013b).
Towards the Discovery of Person-Level Data - Reuse of Vocabularies and
Related Use Cases. In Proceedings of the 1st International Workshop on Se-
mantic Statistics (SemStats 2013), 12th International Semantic Web Con-
ference (ISWC 2013), Sydney, Australia. http://semstats.github.io/2013/
proceedings.

[24] Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2015a).
Constraints to Validate RDF Data Quality on Common Vocabularies in the
Social, Behavioral, and Economic Sciences. Computing Research Repository
(CoRR), abs/1504.04479. http://arxiv.org/abs/1504.04479.

[25] Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2015b).
Evaluating the Quality of RDF Data Sets on Common Vocabularies in the
Social, Behavioral, and Economic Sciences. Computing Research Repository
(CoRR), abs/1504.04478. http://arxiv.org/abs/1504.04478.

[26] Hartmann, Thomas, Zapilko, B., Wackerow, J., & Eckert, K. (2016).
Validating RDF Data Quality using Constraints to Direct the Development
of Constraint Languages. In Proceedings of the 10th International Confer-

http://www.inderscience.com/info/inarticle.php?artid=57760
http://iassistdata.org/iq/issue/38/4
http://arxiv.org/abs/1501.03933
http://arxiv.org/abs/1501.03933
http://iassistdata.org/iq/issue/38/4
http://www.eswc2011.org/content/accepted-posters.html
http://arxiv.org/abs/1402.3470
http://iassistdata.org/iq/issue/38/4
http://iassistdata.org/iq/issue/38/4
http://semstats.github.io/2013/proceedings
http://semstats.github.io/2013/proceedings
http://arxiv.org/abs/1504.04479
http://arxiv.org/abs/1504.04478

76 References

ence on Semantic Computing (ICSC 2016) Laguna Hills, California, USA:
IEEE. http://www.ieee-icsc.com/.

[27] Krötzsch, M., Simanč́ık, F., & Horrocks, I. (2012). A Description Logic
Primer. In J. Lehmann & J. Völker (Eds.), Perspectives on Ontology Learn-
ing. IOS Press.

[28] Lutz, C., Areces, C., Horrocks, I., & Sattler, U. (2005). Keys, Nominals,
and Concrete Domains. Journal of Artificial Intelligence Research, 23(1),
667–726. http://dl.acm.org/citation.cfm?id=1622503.1622518.

[29] Mader, C., Haslhofer, B., & Isaac, A. (2012). Finding Quality Issues in
SKOS Vocabularies. In Proceedings of the Second International Confer-
ence on Theory and Practice of Digital Libraries, TPDL’12 (pp. 222–233).
Berlin, Heidelberg: Springer-Verlag. http://link.springer.com/chapter/10.
1007%2F978-3-642-33290-6 25.

[30] Reutter, J. L., Soto, A., & Vrgoč, D. (2015). Recursion in SPARQL. In
M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas,
P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, K. Thirunarayan, &
S. Staab (Eds.), The Semantic Web - ISWC 2015, volume 9366 of Lecture
Notes in Computer Science (pp. 19–35). Springer International Publishing.

[31] Schaible, J., Zapilko, B., Bosch, Thomas, & Zenk-Möltgen, W. (2015).
Linking Study Descriptions to the Linked Open Data Cloud. IASSIST
Quarterly, 38(4) & 39(1), 38–46. http://iassistdata.org/iq/issue/38/4.

[32] Schneider, M. (2009). OWL 2 Web Ontology Language RDF-Based Se-
mantics. W3C recommendation, W3C. http://www.w3.org/TR/2009/
REC-owl2-rdf-based-semantics-20091027/.

[33] Vompras, J., Gregory, A., Bosch, Thomas, & Wackerow, J. (2015).
Scenarios for the DDI-RDF Discovery Vocabulary. DDI Working Paper
Series. http://dx.doi.org/10.3886/DDISemanticWeb02.

[34] Wackerow, J., Hoyle, L., & Bosch, Thomas (2016). Physical Data De-
scription. DDI Alliance Specification, DDI Alliance. http://rdf-vocabulary.
ddialliance.org/phdd.html.

http://www.ieee-icsc.com/
http://dl.acm.org/citation.cfm?id=1622503.1622518
http://link.springer.com/chapter/10.1007%2F978-3-642-33290-6_25
http://link.springer.com/chapter/10.1007%2F978-3-642-33290-6_25
http://iassistdata.org/iq/issue/38/4
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
http://dx.doi.org/10.3886/DDISemanticWeb02
http://rdf-vocabulary.ddialliance.org/phdd.html
http://rdf-vocabulary.ddialliance.org/phdd.html

	Appendix
	Types of Constraints on RDF Data
	Functional Properties
	Inverse-Functional Properties
	Primary Key Properties
	Subsumption
	Sub-Properties
	Object Property Paths
	Allowed Values
	Not Allowed Values
	Class Equivalence
	Equivalent Properties
	Literal Value Comparison
	Value is Valid for Datatype
	Property Domains
	Property Ranges
	Class-Specific Property Range
	Data Property Facets
	Literal Ranges
	Negative Literal Ranges
	IRI Pattern Matching
	Literal Pattern Matching
	Negative Literal Pattern Matching
	Existential Quantifications
	Universal Quantifications
	Value Restrictions
	Use Sub-Super Relations in Validation
	Negative Property Constraints
	Language Tag Matching
	Language Tag Cardinality
	Whitespace Handling
	HTML Handling
	Structure
	Minimum Unqualified Cardinality Restrictions
	Minimum Qualified Cardinality Restrictions
	Maximum Unqualified Cardinality Restrictions
	Maximum Qualified Cardinality Restrictions
	Exact Unqualified Cardinality Restrictions
	Exact Qualified Cardinality Restrictions
	Cardinality Shortcuts
	Vocabulary
	Provenance
	Required Properties
	Optional Properties
	Repeatable Properties
	Conditional Properties
	Recommended Properties
	Severity Levels
	Labeling and Documentation
	Context-Specific Property Groups
	Context-Specific Exclusive OR of Properties
	Context-Specific Exclusive OR of Property Groups
	Context-Specific Inclusive OR of Properties
	Context-Specific Inclusive OR of Property Groups
	Mathematical Operations
	Ordering
	Inverse Object Properties
	Symmetric Object Properties
	Asymmetric Object Properties
	Transitive Object Properties
	Self Restrictions
	Valid Identifiers
	Recursive Queries
	Reflexive Object Properties
	Class-Specific Reflexive Object Properties
	Irreflexive Object Properties
	Class-Specific Irreflexive Object Properties
	Data Model Consistency
	Handle RDF Collections
	Membership in Controlled Vocabularies
	Disjoint Properties
	Disjoint Classes
	String Operations
	Aggregations
	Individual Equality
	Individual Inequality
	Context-Specific Valid Classes
	Context-Specific Valid Properties
	Property Assertions
	Intersection
	Disjunction
	Negation
	Default Values

	Constraint Type Specific Expressivity of Constraint Languages
	Classification of Constraints according to the RDF Constraints Vocabulary
	CWA and UNA Dependency of Constraint Types
	Constraining Elements for Constraint Types
	Software
	Publications
	Publications by Chapter
	Publications by Publication Type

	References

