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Preface

In 2015, the annual joint workshop of the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation (IOSB) and the Vision and Fu-
sion Laboratory (IES) of the Institute for Anthropomatics, Karlsruhe Institute of
Technology (KIT) has again been hosted by the town of Triberg-Nussbach in
Germany.

For a week from July, 19 to 26 the PhD students of the both institutions deliv-
ered extended reports on the status of their research and participated in thorough
discussions on topics ranging from computer vision and world modeling to data
fusion and human-machine interaction. Most results and ideas presented at the
workshop are collected in this book in the form of detailed technical reports.
This volume provides a comprehensive and up-to-date overview of the research
program of the IES Laboratory and the Fraunhofer IOSB.

The editors thank Matthias Richter, Julius Pfrommer and other organizers for
their efforts resulting in a pleasant and inspiring atmosphere throughout the week.
We would also like to thank the doctoral students for writing and reviewing the
technical reports as well as for responding to the comments and the suggestions
of their colleagues.

Prof. Dr.-Ing. Jürgen Beyerer
Alexey Pak, PhD
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Framework for Modeling Medical
Guidelines Based on the Translation

of UML Activities into YAWL

Patrick Philipp

Vision and Fusion Laboratory (IES)
Institute for Anthropomatics and Robotics (IAR)

Karlsruhe Institute of Technology (KIT), Germany
p.philipp@kit.edu

Technical Report IES-2015-01

Abstract: In several fields of the medical domain guidelines are used, open-
ing up scope of actions for the medical practitioner. However, there is a
gap between the theoretical knowledge they provide and practical solutions
performed by the medical expert. Furthermore, barriers of implementation
can arise. We propose a framework for modeling medical guidelines which
takes these challenges into account. It is based on activities of the Unified
Modeling Language (UML). These UML activities serve as an interface for
more complex models, that can be used for advanced assistance functions.
In this report we focus on translation rules transferring UML activities into
Yet Another Workflow Language (YAWL).

1 Introduction

Guidelines are used in several fields of the medical domain – e.g. for the diagno-
sis of cancer [PFHB15a, PFHB15b, PFHB16]. Figure 1.1 depicts the stages of a
medical guideline in such a context. Aside from the development and dissemina-
tion, the actual implementation of a guideline by the medical practitioner plays a
decisive role.

That means, the medical expert has to adapt the recommendations to the given
boundary conditions (patient, equipment, etc.)[FL92, SGM+11]. Consequently,
there is a gap between the theoretical knowledge (provided by a guideline) on the
one side and practical solutions (performed by the medical expert) on the other
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Development Dissemination Implementation

Evaluation

Gap

Barriers

Figure 1.1: Stages of a medical guideline. The recommendations are developed and dis-
seminated. However, there is a gap between theoretical knowledge and practical solutions
carried out by the medical expert. Furthermore, barriers of guideline implementation can
arise [PFHB16].

2 Modeling Approach

Typically, guidelines contain knowledge provided by schematic illustrations or
continuous text that can not be translated into models offhand. We believe, that
the formalization of this medical knowledge can be implemented by a dialog of
experts (see Figure 2.1).

With the help of medical as well as technical domain experts, a guideline model
in the form of an activity of the Unified Modeling Language (UML) is developed.
A bypass is added to allow an interpretation of a guideline by the medical expert
him- or herself. By proceeding in this way, barriers of guideline implementation
are lowered.

In earlier publications ([PFHB15a, PFHB16]), we demonstrated the benefit of
our approach by using only one comprehensible UML activity to (semi-) auto-
matically generate more advanced models. These models, namely Petri nets and

side. Additionally, barriers of guideline implementation can arise e.g. due to the
fear of regimentation on part of the medical practitioner [PFHB15b].

Regardless of the specific medical domain, we propose a framework for model-
ing medical guidelines which allows the realization of assistance functions that
reduce the gap between theoretical knowledge and practical solutions. To over-
come barriers of guideline implementation, our modeling approach enables the
medical expert to modify a guideline by him- or herself. Therefore, modifica-
tions – e.g. due to personal preferences or an individual surgical planning – can
be incorporated in a guideline model.
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Bayesian nets, where used to provide the actual assistance functions in context of
a cancer diagnosis. These functions propose suitable examination values to the
practitioner during the diagnostic process.

In our present work, we provide translation rules which transfer a UML activity
of a medical guideline into a specification of Yet Another Workflow Language
(YAWL). By this, a guideline can be used for assistance functions that are based
on YAWL without the need to formalize it by using YAWL.

Despite the fact that intuitive YAWL editors for medical applications are devel-
oped [DHS+16], we believe that our approach is more universal since it only
relies on comprehensible UML activities for the process of formalization. This
is the starting point to perform translation processes to elaborate more advanced
models from just one given UML activity.

The automatic translation of a UML activity into a YAWL specification is based
on the work of Han et. al [HZL10, HZLH12].

3 UML Activities

A huge benefit of UML is its acceptance in software industry worldwide
[OMG11]. This, together with the fact that the syntax of UML activities is for-
malized and analyzed by various experts [RQ+12] is one reason for choosing
them as an interface in our framework. Furthermore, UML activities offer a high
comprehensibility for the medical as well as the technical domain expert. This
is a necessary precondition for making the experts’ dialog work smoothly and to
allow modifications by the medical expert on his own [PFHB15b].

3.1 Fundamentals

The 14 chart types which are offered by UML 2.4 can be divided into structural
and behavioral diagrams [RQ+12]. Activity diagrams are among the latter and
therefore are able to answer the question of how a particular process or algorithm
proceeds. To specify such an activity the modeler can use control flows, object
flows, actions, decisions and forks [OMG11].

Typical routings appearing in the guideline models for cancer diagnosis are
shown in [PFHB15a, PFHB15b, PFHB16]. With respect to the specification
of general guideline models e.g. for surgical interventions, this common rout-
ings can be adopted. That is because the underlying principles of decision as
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Medical guideline

Dialog between 
domain experts

UML 
activity

YAWL
 specification

Interpretation by 
medical expert

Automatic 
translation

Assistance function

Figure 2.1: A medical guideline can be formalized via a dialog of experts from the med-
ical as well as the technical domain. Additionally, the guideline can be interpreted by the
medical expert on his- or her own.

Figure 3.1 depicts three typical routings appearing in the guideline models of can-
cer diagnosis shown in [PFHB15a, PFHB15b, PFHB16]. The initial node (black
dot) represents the start of an activity whereas the activity final is represented by
a double circle. Performed actions are shown as rounded rectangles, while the
flow is represented by arrows.

Subfigure a) shows a case where actions are carried out sequentially (i.e. one
after another). Subfigure b) depicts a selective routing. That means only one of
the two actions A and B is performed. The corresponding decision is represented

well as sequential and parallel processing are the same. For an example refer to
[BSRW16, SPG+16], where routings of surgical inventions for cholecystectomy
(the removal of the gallbladder) or hip replacement are shown.
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  Activity 3

  Activity 2

  Activity 1

B

A[x > 1]

[x <= 1]

B

A

A Ba)

b)

c)

Figure 3.1: The three typical routings appearing in the guideline models of cancer diag-
nosis [PFHB16]. In Subfigure a) the actions A and B are performed sequentially (i.e. one
after another). In Subfigure b) a decision has to be made in order to perform either A or
B. Subfigure c) shows a routing where the actions A and B are performed concurrently.
Consequently both actions are performed, but in any arbitrary order.

3.2 Modeling of Guidelines

Figure 3.2 depicts the model of a surgical intervention. More precisely, it is the
model of a minimally invasive surgery: a cholecystectomy.

by a diamond (decision node) and depends in this example on a variable x which
is either greater 1 or not. The second diamond is called a merge node as it merges
the two possible flows.

Subfigure c) shows a routing where two actions can be performed concurrently.
The flow is split up by a so called fork node (black bar on the left), whereas the
join node (black bar on the right) synchronizes the two flows. The flow continues
and therefore the activity ends, only if both actions have been performed in any
arbitrary order [PFHB15b].
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 Cholecystectomy

Patient
 Positioning

Introduction of Initial 
Trocar and Generation 
of Pneumoperitoneum

Placement of Accessory 
Trocars

Adhesiolysis and 
Exposing the Cystic 

Duct and Artery

Dissection and Division 
of Cystic Duct and 

Artery

Intraoperative 
Cholangiogram

Dissection of the 
Gallbladder from the 

Liver Bed

Extraction of the 
Gallbladder

[Otherwise]

[Imaging indicated]

Figure 3.2: The UML activity of a cholecystectomy. At the biginning there is a sequential
order of actions. The action “Intraoperative Cholangiogram” is optionally performed. The
activity is derived from a graphical description in ref. [BSRW16].

In the upper part of this UML activity, a sequence of actions is shown (cf. sub-
figure a) in figure 3.1 ). Specifically, that means that the patient is positioned on
the operating table. Then a sharpened tube to break through the abdominal wall
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Figure 3.3: In the background of this figure, the first part of the diagnosis algorithm for
blood cancer is shown [PFHB15b]. Because of the size of the guideline, a magnifying
glass is used to emphasize the most important part – which is modeled as a stand-alone
pseudo activity “Simplified Diagnosis of MDS”. This activity will be used for the further
translation process.

for the placement of other medical instruments (trocar) is used. By this, carbonic
acid gas can be injected to inflate the abdomen.

After this, in action 3, more trocars are placed to enable the insertion of various
medical instruments. In the following action, the cystic duct and the artery are
exposed and clipped. As a consequence, they can be dissected in the subsequent
action.

A decision has to be made, whether or not a radiographic imaging of the bile
ducts with contrast medium (intraoperative cholangiogram) is performed (cf.
subfigure b) in figure 3.1 ). After merging the two possible flows, another
sequence of actions is performed, which includes the final extraction of the
gallbladder.

Figure 3.3 shows a part of a diagnostic algorithm elaborated in [PFHB15b].
The corresponding activity basically consists of several sequences of actions and
decisions. But in contrast to figure 3.2, there is a concurrent routing.
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Moreover, there are several activity final nodes, i.e. the whole activity ends,
if only one of the final nodes is executed. Since there are various final nodes
inside the concurrent routing, all other (concurrent) actions are canceled as soon
as the activity ends. For example, the depicted cutout in figure 3.3 shows two
diagnoses: Megaloblastic Anemias and Toxic Bone Marrow Damage. Both of
them can be excluded concurrently. Once one of these diagnoses is verified, the
whole diagnostic algorithm ends. However, if none of these two diagnoses is
verified, the diagnostic algorithm continues.

In the context of a surgical intervention such constructs can be used for an opt-out
option, e.g. if some condition holds, the whole intervention is canceled.

4 YAWL

There are many reasons for choosing YAWL (Yet Another Workflow Language)
as a target language for our framework [HRAA10]. One aspect is the expres-
sive power and its formal semantics. Therefore analysis tools like WofYAWL
[VvdAtH06] can be applied to verify the resulting model.

A key aspect is the use of YAWL as an intermediate language. I.e. the translated
model can be used as an input for further assistance functions which are build
upon a YAWL specification.

4.1 Fundamentals

A YAWL specification is a non-empty set of extended workflow nets (EWF-nets).
An EWF-net is given by the following tuple [VvdAtH06, HRAA10]:

EWF = (i, o, C, T, F, fsplit, fjoin, frem, fnofi) ,

where

• i ∈ C is the input condition,

• o ∈ C is the output condition,

• C is a set of conditions,

• T is a set of tasks,

• F ⊆ ((C \ {o})× T ) ∪ (T × (C \ {i})) ∪ (T × T ) is the flow relation,
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• Every node in the graph (C ∪ T, F ) is on a directed path from i to o,

• fsplit : T � {AND, OR, XOR} 1 specifies the split behavior of each task,

• fjoin : T � {AND, OR, XOR} specifies the join behavior of each task,

• frem : T � P+ (T ∪ C \ {i, o}) 2 specifies the tokens to be removed by
emptying a part of the net,

• fnofi : T � N × Ninf × Ninf × {dynamic, static} specifies the multiplicity
of each task.

4.2 Translation from UML Activity to YAWL

Given a UML activity represented as a graph U = (N,E). The set N can be
further divided into different sets of nodes:

• A: Set of actions,

• I, E : Set of initial node, set of final nodes,

• B: Set of decision and merge nodes (branch nodes),

• C: Set of fork and join nodes (concurrency nodes),

• O: Set of object nodes.

The set of object nodes is given by the set of data pins. A node that is part of
one of the node sets S, E ,B, C is called a control node. Furthermore, the set E is
given by:

• KF : Control flow, i.e. activity edges connecting actions and control nodes,
as well as edges between themselves.

• DF : Object flow, i.e. activity edges connecting actions and object nodes
or between control nodes and object nodes.

1 Please note: � denotes a partial function. This means that a task can have no split behavior.
2 Please note: P+(X) denotes the power set of X without the empty set, i.e. P+(X) = P(X)\{∅}
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Formally the translation [[U ]] of a UML activity U to an EWF-net is given by:

[[(N , E)]] = (i, o, C, T, F, fsplit, fjoin, frem, fnofi) ,

where the graph (C ∪ T, F ) is given by:

i = I, (4.1)
o = cout, (4.2)
C = {i} ∪ {o}, (4.3)
T =A ∪ {tcncl} ∪ {te | (e1, e2) ∈ KF , {e1, e2} ∩ {B, C} 

= ∅}, (4.4)
F = { (e1, e2) | (e1, e2) ∈ KF , e2 /∈ E ,

(e1, e2) ⊆ ({o} × T ) ∪ (T × {i}) ∪ (T × T ) } (4.5)
∪ { (e.source, te), (te, e.target) | e ∈ KF } (4.6)
∪ { (e1, tcncl) | (e1, e2) ∈ KF , e2 ∈ E } (4.7)
∪ { (tcncl, cout) }. (4.8)

Equation (4.1) shows, that the initial node I of a UML activity is translated into
an input condition i of the EWF-net. This makes sense, since we assume that the
corresponding UML activity has only one single initial node – just like the EWF-
net has only one single input condition. Activity final nodes are not translated,
instead one single output condition cout is generated (4.2). That is, because we
will bundle up all activity finals F in only one single condition (i.e. the output
condition cout). Finally, equation (4.3) shows, that the set of conditions C only
consists of the input and the output condition since we do not need additional
conditions for the translation process.

The set of tasks T results from the fact, that actions of the UML activity are
translated into tasks of the EWF-net (4.4). Furthermore, an additional task tcncl is
added. This task is used to merge different flows of several activity finals of the
corresponding UML activity. In addition, auxiliary tasks te are added to translate
concurrency and branching nodes of the activity. These tasks are indexed by the
edge e of the UML activity. This procedure is necessary, to be able to derive the
flow relation in a further step.

The flow relation F contains all directed edges starting in e1 and ending in e2 –
on the condition, that the edge is part of the activities’ control flow and does not
end in an activity final node (4.5). Moreover, the resulting edge must be valid in
the sense that it is part of the flow specification. That means, for example, that
there is no directed edge with the input condition as destination node (4.5).
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All auxiliary tasks te are connected to their adjacent nodes by using the index e
– i.e. for each task two edges are added (4.6). There is an edge (e.source, te)
having task te as target and there is another edge (te, e.target) having task te as
source.

All directed edges of the UML activity pointing to a final node (at the same time
the edge must be part of the control flow) are bend to one cancel task tcncl of the
resulting EWF-net (4.7). The cancel task tcncl is connected to the output condition
cout (4.8).

After specifying the translation rules of the graph by equations (4.1) – (4.8), now,
the functions fsplit, fjoin, frem, fnofi are defined. We are using the fact that a partial
function f ′ : X � Y with domain Dom(f ′) ⊆ X can be modeled by a total
function f : X → Y ∪ {⊥} with domain Dom(f) = X:

f(x) =

{
f ′(x), if x ∈ Dom(f ′)

⊥, otherwise

That means, we are using a total function f to model the partial behavior, i.e.
only a subset Dom(f ′) is mapped to an element of Y , whereas all other elements
of X /∈ Dom(f ′) are mapped to ⊥ (undefined). In our case, that means, we can
define the necessary functions for all tasks t ∈ T :

fsplit(t) =




AND, if t = te : e = (e1, e2) ∈ KF , e2 ∈ C
XOR, if t = te : e = (e1, e2) ∈ KF , e2 ∈ B
⊥, otherwise

fjoin(t) =




AND, if t = te : e = (e1, e2) ∈ KF , e1 ∈ C
XOR, if t = tcncl ∨ t = te : e = (e1, e2) ∈ KF , e1 ∈ B
⊥, otherwise

frem(t) =

{
T \ {tcncl}, if t = tcncl with T \ {tcncl} 

= ∅
⊥, otherwise

fnofi(t) = ⊥

The function fsplit(t) specifies the split behavior of each task t. For newly added
tasks te an AND split behavior is assigned, if the target e2 of the edge e of
the UML activity is a concurrency node. Additionally, an exclusive or (XOR)
behavior is assigned if the target of edge e is a branch node. If a task t has no
split behavior, it is assigned to ⊥.
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Analogously, the function fjoin(t) assigns an AND behavior if the source of an
indexed task te is a concurrency node. And, if the source is a branch node, an
XOR behavior is assigned. Finally, ⊥ is assigned if task t has no join behavior.

The function frem(t) assigns no removal behavior to all tasks t, except for task
tcncl. For this, it must hold: T \ {tcncl} 66= ∅. I.e. no removal behavior is needed
if no task t is present – consequently frem(t) does not assign the empty set ∅.
The removal behavior is needed, since all actions must be canceled as soon as
an activity final is reached (cf. figure 3.3, page 7). Consequently, all tasks in the
corresponding EWF-net must be canceled if task tcncl is reached. Besides, since
no task has a multiplicity, function fnofi(t) assigns all tasks t to ⊥.

5 Verification

Figure 5.1 depicts the result of the translation rules applied to the UML guideline
model of a cholecystectomy (cf. figure 3.2, page 6). The EWF-net starts with
an input condition and ends with an output condition. The sequential order of
actions has been directly translated into a sequential order of YAWL tasks.

One auxiliary task is added to model the decision node – another auxiliary task
is added to model the merge node of the UML activity. In the first case the task
is assigned to an XOR split behavior – in the latter case, an XOR join behavior
is assigned. Figure 5.2 shows the result of the translation process for a simplified
model of the diagnostic algorithm. As the UML activity ends if one activity final
is executed, the corresponding YAWL model must comprise a cancellation area
(dotted area) assigned to tcncl. By this, all tasks inside the area can be canceled
as soon as tcncl is reached. That means, e.g., if “Toxic Bone Marrow Damage” is
confirmed, all other tasks are canceled.

To sum up, we can say that the translation rules work as expected. Please note that
figure 5.2 only depicts a simplified version of the diagnostic algorithm. More-
over, the UML data flow is omitted. Modeling the data flow is part of our fu-
ture work – just like the extension of the YAWL model in figure 5.1 concerning
probabilistic transitions to enable a situation detection based on various sensor
data.
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Patient Positioning

Placement of Accessory
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Figure 5.1: The model of a cholecystectomy after applying translation rules which trans-
fer a UML activity to a YAWL specification. A sequential order of actions is translated
into a sequential order of tasks. Auxiliary nodes are added to model a decision or a merge
node.
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Suspicion of MDS

Verify
Megaloblastic
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Verify Toxic
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Damage

Confirm
Megaloblastic

 Anemia

Confirm
Toxic Bone
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Confirm
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Figure 5.2: The simplified model of MDS diagnsosis after applying the proposed trans-
lation rules. Auxiliary nodes are added to model decision, fork and join nodes. Several
edges are pointing to the cancel task, since the activity contains several final nodes.

6 Conclusion

In this technical report we introduced a framework for modeling medical guide-
lines. The framework utilizes UML activities as an interface for YAWL models.
Activities are used because of their comprehensibility for the medical as well as
the technical domain expert. By using only one comprehensible activity, several
advanced models can be obtained by using translation rules. In the present work
we focused on the translation of a UML activity into a YAWL specification. This
specification can then be used as a basis for advanced assistance functions which
are based on YAWL models.
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Abstract: A linear measurement model is used to describe the measure-
ment system where the measurements are linear combinations of the target
signal. Due to its simplicity, it can be applied to various measurement sys-
tems. In this article, a comprehensive review of linear measurement model
with a focus on optical systems is conducted by considering three differ-
ent situations. Firstly, the assumption of signal sparsity is made, which
turns the model into a compressive sensing problem. In spite of the various
potentials demonstrated by the compressive sensing approach, it has been
shown that compressive sensing is not fully ready for real-time applications
yet due to its computational cost. Secondly, prior information of the tar-
get signal is taken into consideration to transform the linear measurement
model into a linear manifold learning problem. With classical methods like
principal component analysis (PCA), it has been demonstrated with two ex-
amples that such approach could simplify the measurement and the recovery
process. Last but not least, the postprocessing step for the retrieval of infor-
mation within the signal is further reduced through holistic design of the
measurement system, granting systems with optical computation to make
measurement faster and more robust against noise.

1 Introduction

Various real-world signals can be viewed as an n-dimensional vector x ∈ Rn,
such as sound, image, etc. In a linear measurement model, each measurement of
the target signal is a linear combination of all values in the vector x. The complete
measurements of the signal can be written as an m-dimensional vector y = Ax ∈
Rm with an m×n measurement matrix A. Such formulation is very convenient as
it covers many practical situations. For example, under the traditional Nyquist-
Shannon sampling frame, the dimension of the signal x can be considered as
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tending to infinity, which represents a continuous function. Each row of the
measurement matrix A is constructed as a bandpass filter which represents the
sampling step.

The ultimate goal of the linear measurement model, like any other measurement
systems, is to retrieve the signal x and the information it is carrying. Formulation
of the linear measurement model as a linear system naturally leads to a classical
problem of linear algebra: conditions for solving the equation y = Ax. In this
context, this problem is equivalent to determining which kind of measurements
are needed in order to recover the signal.

According to the classical theory of linear algebra, if there are at least as many
measurements as unknowns (m ≥ n) and A has full rank, the problem is deter-
mined or overdetermined. Then the equation y = Ax can be solved uniquely
(e.g. by Gaussian elimination). If there are fewer measurements than unknowns
(m < n), the problem is underdetermined even with A having full rank. The
knowledge of y = Ax restricts x to an affine subspace of Rn, but does not de-
termine x completely. Nevertheless, if A has full rank and x is believed to be
“small”, the least square approach yields x# = AT (AAT )−1y, which is the
solution of the `2-minimization problem:

minimize
z

‖z‖2
subject to Az = y

However, the assumption that the signal vector x is “small” does not apply to
most of the signals in practice. Therefore, in order to solve an underdetermined
linear system, many researchers have proposed various methods to solve this
problem in unconventional ways, such as compressive sensing. This problem
has profound practical value as the number of measurements could potentially be
much smaller than the length of the signal to be measured.

The following content of the report is divided into several sections. In the second
section, a theoretical review of compressive sensing is conducted with the help
of an exemplary algorithm. The third section considers a more practical setting
where prior information can be utilized to further simplify the recovery of the
signal. In the fourth section, possibility is proposed that the information behind
the signal can sometimes be retrieved directly without the recovery of the signal,
which leads to a measurement system with optical computation capability.
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2 Compressive Sensing

Compressive sensing (also known as compressed sensing, compressive sampling,
or sparse sampling) consists of reconstructing an s-sparse vector x ∈ CN from
y = Ax, where A ∈ Cm×N is the so-called measurement matrix representing
an underdetermined linear system (m < N ). Suppose vector x is the unique
s-sparse solution of Az = y with y = Ax, the vector x can be reconstructed as
the solution of:

minimize
z∈CN

‖z‖0

subject to Az = y
(2.1)

Unlike the assumption of the signal vector x as “small” mentioned in Sec. 1,
the sparsity assumption is much more useful as it applies to most of the real-
world signals. Many signals are naturally sparse, such as the signal from a heart
beat monitor in the hospital where only values inside the peak are non-zero. For
signals which are not sparse, there often exists a certain basis, with which the
signal can be transformed into a sparse one. In the worst case, most of the signals
can be well approximated by a sparse signal. This is the fundamental reason why
compressive sensing has received increasing attention in recent years.

The problem of �0-minimization described by Eq. (2.1) can be split into two
aspects. Firstly, it has to be guaranteed that the recovered signal x is the unique
solution to the problem. Secondly, algorithms have to be developed to perform
such recovery.

In order to fulfill the first condition, the measurement matrix has to be constructed
according to the sparsity of the signal. This involves both the size of the signal,
which is directly linked to the number of measurements, and the property of
the matrix. Generally speaking, the measurement matrix has to be incoherent,
in order to guarantee that the reconstruction is unique [FR13]. The Restricted
Isometry Property (RIP) proposed by Emmanuel J. Candes [Can08] is generally
considered as a canonical measure of the coherence of a measurement matrix.
Deliberate construction of a matrix with RIP is a very hard problem but fortu-
nately with statistical tools it has been proven that random matrices tend to have
RIP with high probability [FR13].

The progress of algorithm development for �0-minimization problem has not
been easy as it has been proven that the problem is NP-hard [FR13]. The break-
through is made by Emmanuel J. Candes et al. with their discovery of theo-
retically guaranteed equivalence between �0-minimization and �1-minimization
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under certain conditions [CRT06]. This leads to a branch of optimization meth-
ods based on �1-minimization, often referred to as Basis Pursuit. As a convex
optimization problem, it can be solved fairly fast with linear programming meth-
ods. Another major branch of methods are greedy methods, based on iterative
construction/modification/thresholding of the support of x, such as Orthogonal
Matching Pursuit [TG07] and Iterative Hard Thresholding [BD09].

As a fairly new paradigm, compressive sensing has shown great potential. Firstly,
the linear sampling scheme serves as an alternative to the traditional Nyquist-
Shannon sampling theory, which allows for much reduced number of measure-
ments under many situations. Secondly, the optimization nature of compressive
sensing grants itself intrinsic tolerance against noise, which is very important in
practical situations. Such features have helped to realize the application of com-
pressive sensing in various fields, especially in optical imaging/measurement led
by the development of the single-pixel camera [DDT+08].

In spite of its popularity, there are various factors preventing compressive sensing
from being applied in real-time measurement systems. To begin with, the com-
putational cost of the reconstruction algorithms is still relatively high, in terms
of both time and space. Since most algorithms are based on iterative processes
in an optimization loop and each step often consists of considerable amount of
computational task, the reconstruction process is very time consuming even for
state-of-the-art algorithms, which are already thousands of times faster than pri-
mary algorithms invented at the beginning of compressive sensing. For example,
TVAL3 is an algorithm developed by Chengbo Li with the specific target of im-
age reconstruction [Li09], which can be applied in implementations like single
pixel camera. Although it is among the fastest and best performing algorithms
for compressive sensing, reconstruction of a single image with 64 × 64 pixels
using 30% measurements still takes 1.9 second on a consumer laptop. To in-
crease the size of the image to 640× 640 pixels, the measurement matrix would
be 122880× 409600 large and takes a memory space of 375GB with double pre-
cision. Additionally, empirical experiences have shown that the efficiency of the
algorithms relies heavily on the tuning of the input parameters. Therefore, it is
in the author’s opinion that compressive sensing is still not ready for real-time
measurement areas.

3 Linear Manifold Learning

Conventional compressive sensing theories rely only on the sparsity of the signal,
whereas in reality more a priori information could be linked to the target signal to
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facilitate reconstruction. To further utilize such information, model-based com-
pressive sensing is proposed by R.G. Baraniuk et al. [BCDH10], where depen-
dencies between values and locations in the signal are taken into consideration to
allow for even less measurements with robust recovery.

To push it even further, in the extreme case that all possible forms of the signal are
known a priori, the linear measurement model can be transformed into a linear
manifold learning problem, denoted by Y = AX , where X ∈ Rn×p contains
p possible n-dimensional signals and Y ∈ Rm×p contains p corresponding m-
dimensional measurements, which are linked through the linear measurement
matrix A ∈ Rm×n. Since X is considered known a priori, various linear methods
can be used to construct the measurement matrix A to yield best measurements
for recovery, such as principal components analysis, metric multidimensional
scaling, etc.

3.1 Chromatic Confocal Signal

In a chromatic confocal system, an objective lens with controlled chromatic aber-
ration is used to separate different spectral components of the illumination light
on to different focal planes. The reflected light from the sample, after the con-
focal filtering, will be concentrated around the spectral component that is in fo-
cus, generating a quasi-Gaussian peak in the spectrum, which is traditionally
measured with a spectrometer.

In a predefined optical system, such quasi-Gaussian peaks can be considered as
known a priori. All possible peak functions can be collected to form the ma-
trix X . Principal component analysis can be performed on matrix X yielding
a series of principal components, the largest of which are used to construct the
measurement matrix A. The pseudo-inverse matrix of A can be applied on the
measurement Y for the reconstruction of the signals: XR = ATY = ATAX .

As shown by the simulation results in Fig. 3.1, it is possible to recover the shape
of the peak function with only three linear measurements. Due to the fact that the
calculation of the pseudo-inverse of A is rank deficient, ATA is not an identity
matrix, thus the reconstruction is not exact. Nevertheless, the peak position is
well aligned with the original signal, and therefore preserving the information
within. By increasing the number of linear measurements, the recovery accuracy
will be much improved.

With application of the linear measurement model on a chromatic confocal setup,
the spectrometer with thousands of pixels could potentially be replaced by a
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Figure 3.1: Simulation results of Gaussian signals.

3.2 Shape from Focus

Shape from focus is yet another field where linear measurement model with prior
information could potentially be applied to enhance the efficiency of the tech-
nique. Depending on the size of the aperture, focal length of the objective, focal
plane position and size of the imaging pixel, an imaging system has a certain
depth of focus so that objects out of focus get blurred. The measure of how well
an object is in focus can serve as a datum for measuring the distance of this object
to the imaging system. When the measurement is taken across the complete field
of the imaging system, the three dimensional profile of the object surface could
be retrieved.

Conventional shape from focus methods generally involve several steps. Firstly,
an image sequence is captured while the focal plane of the imaging system is

limited set of filter combinations, allowing much less data flow and thus in-
creased measurement speed. Compared with conventional compressive sensing,
the reconstruction process is dramatically simplified as it involves only matrix
multiplication.
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shifted by either mechanical scanning of camera/sample or motorized focus shift-
ing within the objective lens. Secondly, focus measure values for each pixel in
every image are computed to construct a 3D data cube with 2D transverse spatial
coordinates corresponding to camera pixels and 1D axial shift coordinate. Var-
ious algorithms have been developed for this purpose [PPG13]. Lastly, the 3D
profile of the sample is reconstructed from these focus measure values in the data
cube. This can be conducted through either simple approaches like taking axial
location with maximum focus value as the target position [PPG13], or with more
sophisticated approaches by encoupling optimization algorithms such as Total
Variation regularization [Mah13].

Regardless of the focus measure algorithms, the focus measure values of one
specific pixel at different axial locations typically form a quasi-Gaussian shape,
similar to that of the (chromatic) confocal signal. Therefore in principal, it is
possible to apply the same linear measurement model to the process of shape
from focus. Instead of taking a complete sequence of axially shifted images,
only a limited number of images are required, which are linear combinations of
the original image sequence. The complete focus measure signal can be retrieved
from the focus measure of these synthetic images provided that the focus measure
operation is linear.

Image Op#1 Op#2 Reconstruction

Op#3Op#4Focus Measure

Figure 3.2: Exemplary processes of shape from focus with linear measurement model.
Op#1 and Op#2 are linear operations on the image while Op#3 and Op#4 are non-linear.

However, modern focus measure algorithms often consist of multiple steps of
operations on the image, many of which are non-linear operations. This prevents
direct recovery of the original focus measure signal from the synthetic images.
Nevertheless, for an algorithm with multiple steps of operations, as long as there
exists one linear operation before all non-linear steps, a reconstruction step can
be inserted to recover not the focus measure value directly, but rather the result
of the last linear operation. An example is illustrated by the diagram in Fig. 3.2.

Fortunately, many efficient focus measure algorithms indeed have at least one
linear operation before all non-linear operations. Take the Modified Lapla-
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Figure 3.3: Simulation result of compressed shape from focus.

Simulation with this method is performed with synthetic images for two surface
profiles. One is a linear ramp while the other one is part of a sphere. Both surface
profiles are overlaid with the same texture map for the synthesizing of an axial
image sequence with 50 images. With the conventional shape from focus method,
LAPM is applied to all 50 images for focus measure, and axial position with the
maximum value is taken as the axial position for each pixel. Meanwhile, based
on the prior information provided by LAPM and the imaging system, a measure-
ment matrix is constructed to linearly combine the image sequence to form six
compressed images. LAPM is applied to these six images with reconstruction
before the absolute value operation. The result of both approaches are illustrated
in Fig. 3.3. It is clearly demonstrated that such compressed measurement yields
comparable result to conventional methods, but largely reduces the number of
images to be taken as well as the following image processing tasks.

[−1 2 −1 ] is firstly constructed. Then the image is filtered in both x and y di-
rections respectively. The absolute value of the two filtered images are summed
as the final focus measure value. Apparently the 1D filtering operation as a con-
volution is linear while taking the absolute value is non-linear. Therefore the
reconstruction step must be inserted before taking the absolute value.

cian (LAPM) for example [PPG13]. A one dimensional Laplacian filter M =
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In practice, the realization of the linear measurement can be achieved in many
different ways. One possible implementation is to take a chromatic objective
coupled with spectrally filtered illumination/detection. Another approach could
be to change the focus position within each exposure with varying speed derived
from the constructed measurement matrix, possibly through liquid lenses.

Fundamentally, the conventional compressive sensing is closely related to such
linear measurement model with prior knowledge. Both can be compared in a
classical linear algebra picture. Conventional compressive sensing considers the
linear projection from a collection of hyperplanes (derived from sparsity of the
signal) to a lower dimensional manifold and the recovery of the point in such
hyperplanes through its counter part in such lower dimensional manifold. As
a manifold learning problem, linear measurement model with prior knowledge
considers the linear projection from a particular subspace (derived from prior
knowledge of the signal) to a lower dimensional manifold and the recovery of
the point in such subspace through its counter part in such lower dimensional
manifold.

4 Optical Computation

It has been shown that with the linear measurement model, the process of con-
ducting a measurement is much simplified. In compressive sensing, this is real-
ized under the assumption of the signal sparsity while in a linear manifold learn-
ing problem, this is achieved with the help of prior knowledge. Nevertheless,
signal reconstruction is a necessary step in both approaches.

Fig. 4.1 lists three different information embedding and recovery schemes. In
the first case, the signal to be measured and the information to be retrieved are
equivalent, for example an image taken for the pure target of recording the scene.
In most situations, the information and the signal are not exactly the same thing,
like illustrated in the second and third cases. Both Sec. 2 and Sec. 3 are dealing
with the second case where the signal is reconstructed from the measurement and
then a postprocessing step is implemented to retrieve the target information from
the signal. This is often not the optimum case since the process between mea-
surement and signal and the process between signal and information are treated
separately. In this section, a different approach is proposed to treat the complete
process holistically to further improve the efficiency of the measurement. A ma-
jor assumption made beforehand is that in many practical measurement scenarios,
the information embedded in the signal residing in a high dimensional manifold
is often of lower dimensions by itself.
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Figure 4.1: Different information embedding and recovery schemes.

Take the quasi-Gaussian signal for example. In the scenarios discussed in pre-
vious sections, a one dimensional target information, the axial position of the
sample, is embedded in this peak function with a non-linear and implicit manner.
After the peak function (signal) is reconstructed from the measurement, a further
step is required to retrieve the information, such as through the location of the
peak/centroid of the signal.

In fact, this postprocessing step can be effectively reduced/minimized by cou-
pling it into the sampling process. To retrieve the centroid of the signal, a “cen-
troid” preserving measurement matrix can be constructed for the measurement.
Construction of such a matrix can be performed using Bernstein Polynomials.

For example, Fig. 4.2 illustrates the measurement results of a Gaussian signal
with measurement matrices constructed from Bernstein Polynomials of different
degrees. Regardless of the degrees of the polynomials, it can be proven math-
ematically that the measurement always preserves the centroid of the original
signal. One idea to implement such a measurement is to build a chromatic probe
using one linear interference filter as the first degree Bernstein polynomial. In
this case the height of the sample can be retrieved with minimum processing.
Schematic of such optical system is shown in Fig. 4.3

The fundamental difference of this approach with respect to the approaches pro-
posed in previous sections is that the computation/processing part is largely
shifted to the optical system through holistic design of the measurement setup.
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Figure 4.2: Linear measurement of a Gaussian signal with different degrees of Bernstein
Polynomials.

Figure 4.3: Schematic of a two-channel chromatic confocal measurement setup using first
degree Bernstein Polynomials to retrieve centroid location directly.



28 Ding Luo

In the proposed chromatic system, the measurement matrix is achieved by op-
tical filters. This not only alleviates the computational burden in many sys-
tems, but more importantly, reduces the effect of the optoelectronic noises which
propagates in the processing chain in conventional optical measurement systems.

5 Conclusion

The discussion presented in this paper is centered around the linear measurement
model y = Ax, where the measurements are linear combinations of the target
signal. By making the assumption that the target signal is sparse, this model turns
into a compressive sensing problem. In spite of the potential it has demonstrated,
the computational cost has prevented compressive sensing from being applied in
real-time measurement systems at the moment. With prior information of target
signal taken into consideration, the linear measurement model is transformed into
a linear manifold learning problem, where classical methods like PCA can be
utilized to construct the measurement matrix which allows direct recovery of the
signal from the measurement. Examples of chromatic confocal measurement and
shape from focus are presented to demonstrate the potential of such approach in
real world optical measurement systems. Last but not least, a holistic approach
is proposed in order to retrieve the information with minimum postprocessing,
allowing optical computation in measurement systems, which is both faster and
more robust against noise.
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Abstract: When facing real world data, domain shift is a significant chal-
lenge for face recognition methods. A domain mismatch between the
datasets used to train a recognition model in the lab and the target data leads
to a negative impact on the performance of the recognitions system. Be-
cause it is difficult for some domains, like surveillance footage, to collect
sufficiently large training datasets, a concept to generalize from data orig-
inating from a set of given domains to novel domains is proposed. The
critical difference to most existing learning strategies under these condi-
tions is the additional constraint that no data is available from the target
domain which is called unsupervised domain adaptation. The suggested
concept combines large-margin dimension reduction with an SVM-based
framework for unsupervised domain adaptation. This unified strategy bene-
fits by using more of the available knowledge about the training data in the
sense of dataset/domain membership of the training samples compared to
simply combining all available training datasets into one large dataset.

1 Introduction

When considering practical applications of face recognition systems, one faces
a rather obvious, but tough problem. In contradiction to scientific evaluations,
where training and testing is performed on the same dataset, e.g. the well-known
Labeled Faces in the Wild (LFW) [HRBLM07] or YouTube Faces Database
(YTF) [WHM11] benchmarks, systems that will eventually be shipped to a cos-
tumer need to generalize from a specific dataset, i.e. the training data must be
generalized in a way that solving the trained task on novel data coming from a dif-
ferent domain is still possible. Current scientific and publicly available datasets
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were often collected from professional sources such as TV, movies, newspa-
pers, magazines or commercials, because such data is easily accessible in large
amounts through the Internet nowadays. This includes the image data as well as
according meta data regarding the identity of the shown persons, basically elim-
inating the necessity for manual annotation of the data. On the other hand, there
are the domains where face recognition should be applied, most prominently pri-
vate smartphone shots or videos and surveillance data, where the collection of
similar amounts of annotated data suitable for training purposes is very hard.
This is mostly restricted by privacy and economical reasons. First, privacy issues
preventing the easy collection of large amounts of such data and, second, due to
the lack of meta data, the economic inefficiency to manually prepare the collected
data with annotations for training purposes. This means, the inherent differences
between the data from different domains are also existent between the training
data and the application data of a face recognition system. There are obvious
differences like a wider range of head poses in surveillance data compared to
TV data, and less obvious ones like artistic color corrections in movies or failed
white balancing in low-quality smartphone cameras.

This problem of domain shift is well-known [QCSSL09, PGLC15] and adapta-
tion strategies under favorable conditions are quite popular and known as Semi-
supervised Learning, Transfer Learning, Self-taught Learning or Covariate Shift,
depending on how much and what specific information is available from the train-
ing domains and the target domain [PGLC15]. Semi-supervised Learning, for
example, assumes fully annotated data from the training domains and unlabeled
data from the target domain.

In the addressed case of face recognition, we are challenged by the tougher prob-
lem of unsupervised domain adaptation, where fully annotated data from the
training domains is assumed, but no data at all from the target domain. This
prevents the common strategy of learning a complete model from the training
data and then adjusting the model to the target domain by re-training with data
out of it. The problem of unsupervised domain adaptation can only be solved
by proper generalization from the training data and that is where a lot of cur-
rent supervised face recognition systems fail. In the case of object classification,
the problem was prominently illustrated a few years ago [TE+11], however, the
number of potential solutions remained limited [KZM+12, GLC11, FHST13]. In
terms of face recognition, this issue appears to be out of the scientific focus.

To address this lack of attention, we present a modification of the unsupervised
domain adaptation method proposed by [KZM+12] to match the scenario of face
recognition. The method from [KZM+12] is an extension of a linear SVM and
thus able to solve classification problems. Using the large-margin dimension
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Figure 2.1: Both combined approaches are based on the linear SVM.

2 Unsupervised domain adaptation
for face recognition

Previously, we published a face recognition system suitable for low-resolution
and large scale data [HB15a]. The key component in terms of machine learning
is a linear dimension reduction of high dimensional fisher vectors ϕ to low di-
mensional target vectors v by a matrix W : v = Wϕ. The projection matrix W
is trained by stochastic sub-gradient descent and a max-margin based loss func-
tion, which will be explained in detail later on. Consequently, this part has to be

reduction concept from [HB15a, SPVZ13] and combining it with the unsuper-
vised domain adaptation makes this approach suitable for face recognition tasks.
The main benefit of the proposed strategy compared to a combined learning on
all available training datasets is the better usage of the available information. It
specifically uses the information which domain (i.e. training dataset) each sample
comes from, which can be seen as an additional label. So instead of only using
the identity label for each training sample when doing a combined training, the
domain adaptation training strategy uses the identity label as well as the domain
label of each training sample to get a better generalization. Getting this domain
label comes at no additional cost because the knowledge that samples from dif-
ferent datasets come from different domains is used. This results in better usage
of the limited training data.



34 Christian Herrmann

1 

𝒘𝑇𝒙 + 𝑏 = 0 

𝑥1 

𝑥2 

𝑦𝑖 = 1 

𝑦𝑖 = −1 

Figure 2.2: Basic concept of a linear SVM: maximizing the margin (bright green) around
the hyperplane (green) to separate the feature vectors from two classes (red and blue).

2.1 Linear SVM

Given is a set of feature vectors {x1 , ... , xn}, each describing an object that
belongs to one of two classes. Let yi = {−1, 1} be the indicator to which class
the object that is described by xi belongs. Then the basic idea of a linear SVM
for classification is to find a separating hyperplane wTx + b = 0 in the feature
space that maximizes the margin between the samples of both classes as shown
by Fig. 2.2. The maximization of the margin can be formulated as

min
w,b

1

2
||w||22 , where yi ·

(
wTxi + b

)
≥ 1, ∀i. (2.1)

robust against domain shifts. The difficulty in terms of face recognition appli-
cations is usually that no data is available from the target domain, leading to the
demand of an unsupervised domain adaptation approach. The concept proposed
by [KZM+12] can be merged with the previously used dimension reduction strat-
egy because they are both based on the linear SVM (Fig. 2.1). In the following
sections the principle of the base methods are revisited in the necessary detail and
finally combined into the proposed approach.
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This constrained optimization problem is hard to solve, which is why the hinge
loss l is a popular choice for the loss function for the optimization:

l =
∑
i

max
(
0, 1− yi ·

(
wTxi + b

))
. (2.2)

Loss minimization can then be performed by stochastic sub-gradient descent.
The update step using the learning rate α is given by

wt+1 =

{
wt , for 1− yi ·

(
wTxi + b

)
< 0

wt + αyixi , otherwise .

2.2 Unsupervised domain adaptation

Khosla et al. presented a strategy to extend the basic linear SVM to unsupervised
domain adaptation [KZM+12]. Based on the typical scenario that only a lim-
ited amount of training datasets, each from a different domain Dk, is available,
the authors construct a framework that tries to generalize from the set of these
domain-specific datasets to data from novel domains. The basic assumption is
that each domain Dk is only a part of the visual world V and each domain Dk

has a bias vector ∆k, common for all examples from that domain, that describes
the bias of this domain compared to the visual world. A domain specific model
wk is built by the sum of the global visual world model wg and the domain spe-
cific bias ∆k. Under the assumption that the bias is captured in the feature space
and the same feature space is used for all domains, the authors propose an SVM-
based framework to address the domain bias. A set of n + 1 SVMs is trained
for n available training domains, including one local SVM for each domain and
additionally one for the visual world. The local SVMs are modeled as

wk = wg +∆k (2.3)

leading to a coupled formulation and training of all n+1 SVMs. The basic linear
SVM equation (2.1) is extended to

min
wg,∆k,bg,bk

1

2
||wg||22 +

λ

2

n∑
k=1

||∆k||22 , where (2.4)

yi ·
(
wT

g xik + bg
)
≥ 1, i = 1 , ... , sk and k = 1 , ... , n

yi ·
(
wT

k xik + bk
)
≥ 1, i = 1 , ... , sk and k = 1 , ... , n

where sk denotes the number of available samples from domain Dk. In this for-
mulation we omit the slack variables included by [KZM+12] for simplification
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reasons and because they are unnecessary here for the further formulations. The
parameter λ balances the influence of the global and the local models. Small
values of λ lead to a high influence of the first term, thus in the course of opti-
mization wg → 0 which means the local models are only weakly coupled. Vice
versa, for λ → ∞ this results in a regular linear SVM trained on the combined
data from all domains. The optimization by stochastic sub-gradient descent is of
no interest at this point, refer to [KZM+12] for details. Previously unseen data
from novel domains is processed by the global visual world model.

2.3 Large-margin dimension reduction

Face recognition is no closed-world two-class problem, but an open-world n-
class problem where open-world means the number of classes is usually un-
known. In most cases the question to be answered is if two samples belong
to the same class, meaning: Do they show the same person? Let zi ∈ N be the
indicator variable that denotes the unique class-ID for each object, then

yij =

{
1 , if zi = zj
−1 , if zi 
= zj

indicates if a sample pair shows the same person. One possibility to address this
problem is by projecting the feature vectors into a discriminative target space
where the distance between samples can be used to decide whether they are the
same class [HB15a, SPVZ13]. In this case, the projection includes a dimension
reduction based on the max-margin thought of SVMs. High dimensional features
ϕi are projected to low dimensional features vi by a projection matrix W

vi = Wϕi

such that the squared euclidean distance d2(vi,vi) = d2W (ϕi,ϕj) in the target
space is discriminative for face recognition tasks. Specifically, W should be
chosen in a large-margin manner:

d2W (ϕi,ϕj) = (ϕi −ϕj)
T
WTW (ϕi −ϕj)

{
< b− 1 , if yij = 1
> b+ 1 , if yij = −1

(2.5)

This forces the distance between samples of the same class to lie below the
threshold b minus a margin and the distance between samples of different classes
to lie above the threshold b plus a margin, as also shown in Fig. 2.3. Similar to
the hinge-loss formulation of the linear SVM in equation (2.2), this can also be
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Figure 2.3: Visualization of the idea behind the max-margin dimension reduction strategy.
The intra-class distances in the target space should be less than b− 1 while the inter-class
distances should be larger than b+ 1.

2.4 Large-margin dimension reduction
with unsupervised domain adaptation

When analyzing the approach from [HB15a, SPVZ13], it becomes clear that the
supervised dimension reduction step is responsible for possible domain depen-
dencies. Consequently, a novel approach based on the combination of the unsu-
pervised domain adaptation strategy presented in section 2.2 and the large-margin

expressed as hinge-loss

l =
∑
ij

max
(
0, 1− yij ·

(
b− d2W (ϕi,ϕj

))
(2.6)

and a stochastic sub-gradient descent update of

W t+1 =

{
W t , if 1− yij ·

(
b− d2W (ϕi,ϕj

)
< 0

W t − αyijW
tΨij , otherwise ,

where

Ψij = (ϕi −ϕj) (ϕi −ϕj)
T

and W 0 is initialized by a PCA.
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dimension reduction presented in the previous section, is proposed for the di-
mension reduction. First, we transfer the concept of local domain models from
equation (2.3), which consist of a global visual world model and a bias, to the
large-margin dimension reduction model:

Wk = Wg +∆k

bk = bg + δk.

Because the model (W, b) consists of a projection matrix W and a threshold b,
two bias components are necessary here, a bias matrix ∆k and a scalar bias δk.
Let ϕik denote the i-th sample from the k-th domain, then the distances in the
target space are

dg (ϕik,ϕjk) = (ϕik −ϕjk)
T
WT

g Wg (ϕik −ϕjk)

dk (ϕik,ϕjk) = (ϕik −ϕjk)
T
WT

k Wk (ϕik −ϕjk) .

The requirements regarding the thresholds bg and bk are analog to equa-
tion (2.5). Together with the equations (2.4) and (2.6), this leads to the hinge-loss
formulation

l =
∑
i,j,k

max (0, 1− yijk(bg − dg (ϕik,ϕjk))+

λ
∑
i,j,k

max (0, 1− yijk(bk − dk (ϕik,ϕjk)) .

Again, λ balances the influence of the global visual world and local domain mod-
els. For λ = 0 this collapses to the solution from equation (2.6) trained on the
combined data from different domains.

Optimization is performed by a stochastic sub-gradient method. At each iteration
sampling with equal frequency from each dataset and positive/negative samples.
Given a pair of samples ϕik and ϕjk, the updates are

W t+1
g = W t

g − αyijkWgΨijk − βλyijkWkΨijk

∆t+1
k = ∆t

k − βλyijkWkΨijk

bt+1
g = btg + yijkb0

δt+1
k = δtk + yijkb0
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where

α =

{
0 , if yijk

(
bg − d2g (ϕik,ϕjk)

)
> 1

α0 , otherwise
,

β =

{
0 , if yijk

(
bk − d2k (ϕik,ϕjk)

)
> 1

β0 , otherwise and

Ψijk = (ϕik −ϕjk) (ϕik −ϕjk)
T

.

Both, α0 and β0 are arbitrary learning rates. Initialization for W 0
g is performed

by PCA and W 0
k are initialized all zero. Finally, the local models (Wk, bk) are

discarded and the global model (Wg, bg) which represents the whole visual world
is kept for application on novel domains.

3 Conclusion

Two different strategies using the concept of a linear SVM were revisited, each
solving one specific problem in terms of face recognition. The common underly-
ing concept allowed a unified formulation, which includes both, a large-margin
dimension reduction and an unsupervised domain adaptation. This method ad-
dresses the issue to better generalize from training data in order to build super-
vised face recognition applications that will also work well on previously unseen
data.
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Abstract: The SPARC concept for fully-automated driving was introduced
in 2012 as a way to overcome the highly discretized maneuver planning
approaches that had previously dominated the DARPA Grand and Urban
Challenges. The aim was to define a single planner that is responsible for all
forward driving tasks, including intersections, highways and pre-crash situa-
tions; that is based on a sound statistical framework including prediction and
sensing uncertainties; and that can trade off between goals like safety, com-
fort and efficiency in a unified and transparent way. Since then, several sim-
ilar approaches have been presented, most notably the Bertha Benz drive of
2013, in which the 100 km distance between Mannheim and Pforzheim was
covered autonomously in a Mercedes–Benz S-500 Intelligent Drive. During
the same time, the SPARC approach has been refined in several respects,
including its vehicle models and optimization techniques. This technical re-
port provides an overview of the avenues explored to motivate the current
form of the SPARC concept, based on frequently-asked questions that arose
during the various technical presentations of the concept.

1 Background and Motivation of SPARC

The SPARC (Situation Prediction and Reacting Control) concept (introduced in
[Zie12, RZR+14]) was created within the V50 project aimed at developing solu-
tions for fully-automated inner-city driving; the specific task assigned to Fraun-
hofer IOSB was to provide two modules – situation detection and maneuver
planning. The project structure is shown in Fig. 1.1. The approach was cho-
sen to overcome drawbacks with highly discretized approaches that were com-
monly used previously to this and, for example, dominated the DARPA Grand
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SPARCmapstat.
obj.

dyn.
obj.

sensor data

nav. IMU actuator
cmds.

Figure 1.1: Overview of the V50 project. Sensor data is processed to detect dynamic
objects (cars, pedestrians, cyclists, ...) and static objects (walls, signs, traffic lights, roads,
road markings, ...) in the environment. The information is combined in a dynamic map,
which presents the basis for SPARC. The Situation Prediction (SP, red) stage predicts the
future development of the scene, determines applicable traffic rules and sets waypoints
based on navigation instructions. The Reaction Control (RC, green) stage uses this in-
formation to compute an optimal trajectory and execute it using the actuators (steering,
acceleration, lights, ...).

The SPARC module receives information from a dynamic map of tracked static
and dynamic objects and features detected in the vicinity of the ego vehicle. The
Situation Prediction (SP) stage predicts the behavior of dynamic objects into the
near future (5–10 seconds), and estimates for each object at every (future) time
step the severity of a possible collision (cf. [RZW+14a]). It also determines
applicable traffic rules (such as speed limits, overtaking rules or stop signs) and

and Urban Challenges (cf. [RZR+14]). Examples include the use of discrete ve-
locity profiles for the ego vehicle [UAB+08], discrete “situation states” in which
the ego vehicle can be [MBB+08, CSA+09], or arbitrating the responsibility
for the driving task dynamically between various dedicated planning systems
[UAB+08, MBB+08, WSM09, BBF+08]. The goal of SPARC was to express
all driving tasks in a unified (“holistic”) way, governed by a universal set of rules
that remains constant from parking to pre-crash, and from urban intersections to
interstate highways.
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coarse waypoints for the ego vehicle. All of this information is passed to the
Reaction Control (RC) stage, which uses it to plan an optimal trajectory for the
ego vehicle to the proximity of the waypoints, by minimizing collision risks,
traffic rule violations, passenger inconvenience, fuel consumption and wear of
vehicle parts ([RZR+14, RZW+15]). The earliest control inputs of the optimized
maneuver are passed to the vehicle actuators.

This process is repeated at a rate of 10 Hz, so that the planning horizon of the tra-
jectory does not just cover the gap between updates, but assures that the currently
executed actuator commands are part of a long-term plan that is considered safe
by the currently best prediction. Any unforeseen developments will be accounted
for in the following update.

Should the environment predictions not be updated due to a significant system
failure (e.g. sensor blackout or crash of the SP stage), during each cycle, the
RC stage also computes a fail-safe emergency trajectory that is also based on the
same predictions but will not lead the ego vehicle to the next waypoint, but to a
safe place on the side of the road (see [RZW+15] for details).

Since the original publications [Zie12, RZR+14], several similar approaches
have been presented, most notably [ZBDS14], which successfully completed
the fully-automated 100 km Bertha-Benz drive from Mannheim to Pforzheim
in 2013. Despite using equivalent models with a similar motivation, the SPARC
approach is unique in several design decisions that have aroused some discus-
sion during previous presentations, and shall thus be motivated in the following
sections with particular respect to possible alternatives.

2 Model Decisions in SPARC

This section will motivate key decisions and discuss alternatives related to two
main areas of SPARC: The problem formulation over predicted, expected risks
traded off against comfort, ecology and traffic rule compliance, integrated in an
Euler-Lagrange model (Sec. 2.1); and the optimization of this Euler-Lagrange
model through a Hidden Markov Model, instead of an iterative solver (Sec. 2.2).

2.1 Use of Expected Risks and the Euler-Lagrange Model

The most basic motivation of the SPARC approach was to define an evaluation
functionalH[ξ] that maps a given trajectory ξ(t) onto non-negative real numbers,

assigns penalties to their violation. Finally it uses navigation instructions to set
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leastH[ξ∗]. This section will present the choice ofH, the alternatives considered,
and the rationale behind the eventual choice.

To embed SPARC into well-developed theoretical frameworks, two key features
were considered relevant: Additivity and a stochastic foundation. These two
individual properties, along with the combination as additive stochastic models,
will be motivated and illustrated in this section.

Additivity An evaluation functional based exclusively on a function H whose
value is additive

H[ξ] =

∫ tend

tstart

dt H(ξ(t), ξ̇(t), ξ̈(t), ..., dn

dtn ξ(t), t) (2.1)

restricts the expressiveness of H considerably. Its application is limited to ξ ∈
Cn, and it is impossible to model long-term dependencies, such as requiring that
ξ have exactly three roots. It is also impossible to evaluate a dynamic range of
derivatives, such as requiring that ξ have an arbitrarily great but even number of
nonzero derivatives at each point.

These limitations however bring about a significant advantage: It originally arose
from the physical study of particle trajectories, both for photons and matter, and
therefore has been studied extensively. A particularly relevant result is the Euler-
Lagrange equation [VB10], which provides an efficiently computable necessary
criterion for the optimality of a trajectory ξ~, namely

δξH :=
∂H

∂ξ
− d

dt

∂H

∂ξ̇
+ ...+ (−1)n

dn

dtn
∂H

∂ dn

dtn ξ
, (2.2)

such that, if ξ~ is optimal, δξH
∣∣
ξ~
≡ 0, which allows to find solutions analyti-

cally. In numerical solutions of (2.1), where ξ is a vector in R#t over #t discrete
time steps, δξH takes the role of a gradient (in fact, [ZRR+15] shows that (2.2)
can be derived directly as a gradient) that can be used to iteratively optimize from
an “initial guess” ξ(0) towards a local optimum ξ∗. At the same time, this for-

such that the most desired functions ξ
∗

(t) are recognized by having assigned the

mulation of H allows to cover a wide range of optimality criteria that arise in
(automated) driving situations, namely
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• Safety, by penalizing combinations of ξ and t that represent a possible
future collision with another traffic participant, or lane departures.

• Comfort and ecology, by penalizing strong accelerations ξ̈ and jerks ξ.

• Traffic rule compliance, e.g. by penalizing exceeding speed limits via ξ̇.

Furthermore, [RZW+14b] shows that a significant number of vehicle parameters,
such as wheel speeds and steering wheel angles, can be analytically expressed in
terms of derivatives, and are thus available for use in H . These parameters can
be used inside an Euler-Lagrange model (ELM) if lateral and longitudinal wheel
slip are not considered.1 Simulation results presented therein show, that even
under highly dynamic conditions, these simplifications (necessary to make the
vehicle model compatible with the ELM) provide a good approximation to the
actual vehicle behavior (cf. Fig. 2.1).

Additionally, various types of boundary conditions can be added to express prop-
erties of ξ at tstart and tend, in particular constraining ξ to the current vehicle po-
sition at tstart and penalizing deviations from a goal position at tend. The only key
limitation that remains is that all time instances of ξ must be evaluated indepen-
dently through H , so that non-local dependencies between any values attained
by ξ cannot be modeled.

Stochastical Models Most established mathematical models in artificial in-
telligence-related fields are equipped with a stochastic interpretation. While
their computation often relies heavily on simplifications to preserve tractabil-
ity (such as the assumption of conditional independence), all simplifications can
be made explicit, and thus can be validated or falsified in comparision with real-
world statistics. The stochastic interpretation also provides a convenient way
of combining different models on a well-understood basis. On the other hand,
models that circumvent stochastic modeling are usually less easily analyzed in
terms of assumptions and quality of results, and thus less easily combined. For

1 Estimating the current and future grip of a vehicle under practical driving conditions is considered
a highly difficult problem. Therefore, any predicted grip value would likely be speculative anyway.

fully-automated driving, the main aspects to be combined through stochastical
modeling are:
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Figure 2.1: The C2 model presented in [RZW+14b]. (a) Estimated steering wheel angles
(white) compared to steering wheel angles obtained in a state-of-the-art physical simula-
tion of the Hockenheimring race track (black). The red section shows deviations during
to lateral slip in a bend driven at 170 km/h. Everywhere else, the estimations of the C2

model match the simulation closely. (b) The geometry of the C2 model is based on the
tangent coordinate system T of the trajectory ξ, and its circle of curvature R centered at
p. This allows to describe a multi-track vehicle with Ackermann steering; the left wheel
angle δL is indicated.

• Sensor uncertainties (such as noise, blur and occlusion)

• Sensor processing uncertainties (e.g., remaining classification ambiguity)

• Prediction uncertainty (such as uncertain lane changes in other cars)

• Actuator uncertainty (such as unknown friction for a braking maneuver)

Stochastical models must thus be found that both allow to express these
uncertainties and fit the limitations of the ELM (2.1).
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Additive Stochastic Models The two most prominent stochastic models that
aim or allow for additivity are log-linear models and independent expected val-
ues, both of which rely on assumptions of stochastic independence. We will intro-
duce stochastic independence, and briefly discuss log-linear models, to motivate
why expected values were instead preferred for the use in SPARC.

Probabilities that are stochastically independent can be multiplied to ob-
tain the joint probability. A common example is the cast of two dice.
Both dice have a probability p(d=n) = 1/6, n∈{1, ..., 6} of rolling an
“n”. The probability of one dice rolling a 1, the other a 6, is given as
p(d1 =1∧ d2 =6)= p(d1 =1) · p(d2 =6)=1/36 by virtue of the assumption of
stochastic independence; the cast of either dice is not expected to influence the
other. A counterexample is rolling a single dice once, and giving the probability
of the same dice producing both values in a single cast ( p(d1 = 1 ∧ d1 = 6) ).
While both individual probabilities remain 1/6, their joint probability is 0 – the
results are not independent, as one will strictly rule out the other.

More often than not in practical applications, stochastic independence is taken
as a convenient simplification rather than the true system behavior. For exam-
ple, motion tracking algorithms may describe their next target motions as inde-
pendent from previously observed motions, while in most cases the targets are
known to not act randomly. However, this assumption allows each timestep to
be treated in a uniform fashion, and the corresponding models can be more eas-
ily parametrized since complex and long-term behavior patterns can be ignored,
and individual transition probabilities can be multiplied repeatedly over time to
obtain the probability distribution of future locations.

Log-linear models are based on the realization that this multiplicative accu-
mulation corresponds to an additive accumulation in the space of logarithmic
proabilities:

log

(∏
n∈N

pn

)
=

∑
n∈N

log(pn)

Thus by taking the logarithm of each probability, a quantity is obtained that
can be summed while retaining the stochastic interpretation in the result. The
stochastic model is said to be log-linear. In this way, models that rely exclu-
sively on probabilities can be subject to linear optimization, usually to maximize
probabilities.

However, many applications cannot be adequately modeled through probabili-
ties. It stands to reason that automotive traffic (or locomotion in general) is not
intuitively a pure maximation or minimization of probabilities. While occasion-
ally argued, a desirable trajectory is not that which minimizes the probability of



48 Miriam Ruf

an accident, since this trajectory would in most cases remain stationary forever
and not even attempt to reach a faraway destination. We can further conceive
the case of a pre-crash situation, where the driver can choose between a certain
(p1 = 1) rear-end collision with the car in front of him at low speed, or taking
an evasive maneuver to the opposite lane and stopping the car amid oncoming
traffic. The probability of an accident is “worst” for the rear-end collision, yet
this option will usually be preferred to the lower but more severe risk of colliding
with oncoming cars at high speed.

The key alternative thus appears to be risk, used here as the expected value of
detriment, however the latter may be defined. For illustration purposes only we
can consider the detriment H of a collision as given purely by the costs of the
damage, which for the low-speed rear-end collision may be H1 = $5 000, while
a high-speed head-on collision may cost H2 = $100 000. Now considering a
p2 = 1/10 chance of colliding with oncoming traffic, we have an expected cost
of p1 · H1 = $5 000 for the rear-end collision (which is, as stated, certain), and
p2 ·H2 = $10 000 for the head-on collision, which is considerably higher.

Let us assume that in this case the driver chooses to accept the rear-end collision,
but finds himself in almost the same situation on the same road one month later.
The collision costs remain the same, but this time he evades to the opposite lane.

Now we can expect the total damage arising from these two situations to be
p1 ·H1 + p2 ·H2 = $15 000. We realize that the expected costs were added,
based on the intuition that the outcomes of the two accidents are independent.
But are they?

Not strictly: Had the driver decided differently, and collided with an oncoming
car in the first case, the damaged car is less likely to be repaired by then, and
thus the collision risk is lower since one possible collision partner is missing.
The outcomes are not independent, but considering the sheer number of possible
collision partners, the dependence is slight and difficult to model. Whether or not
expected values can be added thus also relies on stochastic independence, and
whether or not possible dependencies (as in this case) must be included in the
model depends on an understanding of the model.

What is gained by modeling with expected values, however, is the inclusion of
two parameters – the detriment and the probability – which provides a bridge
between pure probabilities and their real-world implications. Once a unit for
detriment (here the costs in $) has been set, stochastic events (such as collisions)
and deterministic events (such as detriment from high fuel consumption or un-
comfortable accelerations) can be directly compared: What makes human drivers
accept risks that are inherent to participating in road traffic is a trade-off between
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the risks and the gains. For example, human drivers pass pedestrians on the side-
walk even if there is a risk of them jumping onto the road before them in the last
second; the probability is considered extremely low and the detriment of braking
to walking speed before passing any pedestrian is considerable in terms of travel
time and fuel consumption.

Using expected values, these trade-offs, that are implicit to human driving can
be rendered explicit and quantitative for automated driving. Details on how the
predicted occupancy probabilities of other traffic participants are obtained can be
found in [RZW+14a].

2.2 Local vs. Global Optimization

Given a functional based on the previous criteria, the optimization goal

ξ∗ = argmin
ξ

H[ξ]

uniquely identifies a trajectory or a set of trajectories which are, based on the
model, of indistinguishable quality. Obtaining a minimal element, however, is
not trivial. The most commonly used method for optimization, an iterative de-
scent such as a gradient descent or extensions of Newton’s method (SQP, BFGS,
L-BFGS), are risky to apply in automated driving, for reasons that will be de-
tailed in this section based on [RZW+15]. An alternative model is outlined that
mitigates these risks while retaining real-time capability.

2.2.1 Risks Associated to Iterative Optimization

Iterative solvers start from an “initial guess” ξ(0), and apply an optimization step
ξ(n−1) �→ ξ(n), usually with the goal that H[ξ(n)] < H[ξ(n−1)]. The process
terminates based on criteria for ξ(n), and possibly n, ξ(n−1) and other properties.
Common termination criteria are

H[ξ(n)] < TA (sufficiently low value)

|H[ξ(n)]−H[ξ(n−1)]| < TB (sufficiently small value step)

dH

dξ

∣∣∣∣
ξ(n)

< TC (sufficiently small gradient)

n > N (computation time exhausted)
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The main problems associated with this are already apparent from the above for-
mulation. Firstly, none of the above uses truly global properties, i.e. the relation
of ξ(n) to arbitrary other members of the function space. At best, a small sub-
set of dimension 1 is evaluated. Thus, the process can terminate in a stationary
point or local optimum that is far from the global optimum. Secondly, not even
local convergence can be strictly measured, but is given in terms of thresholds.
Thus, the process can terminate even in points that are not stationary, but merely
too slightly sloped. Thirdly, the process can terminate after a fixed number N of
iterations disregarding any properties that ξ(N) might hold – or run an arbitrarily
long time.2

In total, it can be said that properties of the obtained solution ξ̃∗ are difficult to
predict. Beside the problem structure (which is the only desirable influence), they
depend significantly on the initial guess and the optimization step; in many cases,
these even dominate the solution. The influence is generally not intuitive, as ξ(0)

will not necessarily converge to (e.g.) the closest local optimum, or the optimum
towards which the first gradient points.

This uncertainty about the quality of the optimization result, combined with the
possibility of strongly varying optimization times, suggests a high risk of apply-
ing local iterative optimization to high-risk real-time applications such as auto-
mated driving. Examples of all of the above claims, arising in simple, everyday
traffic situations, will be given in detail in an upcoming publication.

2.2.2 Strategies to Improve Iterated Optimization

One method considered as a candidate for the generation of initial guesses is the
partition of the planning space by Voronoi lines between local risk maxima.

As used here, a (Euclidean) Voronoi diagram on a space Σ ⊆ Rn, based on a
finite set P ⊂ Σ of points, partitions Σ into cells C such that |P | = |C|,

σ ∈ ci ⇐= pi ∈ arg min
p∈P

‖p− σ‖2

which implies ⋃
c∈C

c = Σ

2 It should also be noted that divergence can take many different forms, from infinite loops over
increasingly bad solutions up to chaotic behavior. It is thus difficult to detect and even harder
to resolve.
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(a) Local optimum (b) Stationary point (c) Divergence

Figure 2.2: Increasingly undesirable convergence behaviors of an iterative solver. (a) The
solver converges to a local optimum that is considerably worse than the global optimum.
(b) The solver converges to a stationary point instead of any optimum. (c) The solver does
not converge at all. Each case can occur under realistic conditions; in real-time high-risk
scenarios, the consequences can be serious.

3 Proof: As |P |> 1 (and finite) then ∀p1 ∈Σ ∃p2 ∈Σ s.t. p2 ∈ arg minp∈P ‖p1− p‖2. Then, as
Σ is convex, ∃σm = (p1 +p2)/2 ∈ Σ; also arg minp∈P ‖p−σm‖2 ⊇ {p1, p2}. Thus σm ∈ V .

but also provides

V =
⋃

c′,c′′∈C
c′ ∩ c′′

such that for |P | > 1 and a convex Σ it holds3 that V 6= ∅ and dim(V ) =
dim(Σ)− 1. We also introduce a finite set

I = {v ∈ V | ∃c′, c′′, c′′′ ∈ C : v = c′ ∩ c′′ ∩ c′′′}

of intersections in V , i.e. points at which at least three cells intersect.

For a two-dimensional risk field HR : X × T → R, a Voronoi diagram between
the local maxima ofHR provides a one-dimensional V , which resembles a lattice
of lines over X × T between the local maxima, as shown in Fig. 2.3. As these
lines avoid local maxima of HR, they can be used to provide initial guesses for
trajectories ξ : T → X . A straightforward approach would be to perform a graph
search by using the elements of I as nodes in a graph G, with edges denoting
direct connections in V . Then paths in G can be used to hint at initial guesses for
ξ∗.
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Figure 2.3: Inabilities in the Voronoi enumerating the local optima. (a) V (light blue) and
a path throughG (white dashed, dotted) using an edge backward through time (dotted) that
would be omitted. No valid connection in G between source and goal point exists, even
though there is a potential local optimum (arrow). (b) Effect of some α > 0 (weighting
factor of some goal speed) limiting even all local optima to within the dashed band of
width 2d. The Voronoi diagram cannot account for this limitation.

• V does not generally include the point in X × T that is considered the
initial position of the vehicle ξ(0). Thus a new connection between ξ(0)
and V must be created that is difficult to motivate within the model.

• Paths in G can move backwards through time. These cases can and must
be excluded, but this issue hints at a deeper problem:

• Paths in G are based on geometric considerations that consider the two
space dimensions as interchangeable. Therefore, temporal distances and
spatial distances are considered equal, which requires the choice of a con-
version factor. This factor determines the solution (cf. Fig. 2.5) even
though it is unlikely to stem from any physical motivation. In this case,
the number of free parameters, that are not motivated through the problem,
increases. This is generally undesirable, as these parameters are not easily
adapted to changes in the problem.

This, however, entails a series of problems:
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• Paths inG depend exclusively on the structure ofHR but have generally no
relation to, for example, the dynamical model of the vehicle or target po-
sitions, speeds and accelerations. Thus, in particular the notion of locality
can differ significantly: The basically possible paths through V (moving
forward through time, respecting speed limits, ...) do not enumerate the
local optima ofH[ξ] sinceH[ξ] has a (significantly) higher dimension than
HR, and this dimension is highly relevant, as can be seen in the following
examples:

– Additional local optima can arise from penalties on, e.g., speeds,
that cannot be derived from HR. Fig. 2.3 gives an example where
significant local optima would be missed this way.

– When paths “backwards in time” are simply removed, possible lo-
cal optima are ignored, since V does not consider the “best” path
between the optima in terms of the optimization functional, but
the one with the highest space-time distance regardless of physical
possibility. Consider the risk field4

HR(x, t) = (cos(x)− cos(t))
2
, x ∈ [0, 5π], t ∈ [0, 5π] (2.3)

Then i1 = [π, π]T, i2 = [2π, 2π]T, i3 = [3π, π]T, i4 = [4π, 2π]T with
i1, i2, i3, i4 ∈ I , but no edge between i1 and i4. There exists a path
i1 → i2 → i3 → i4, but this is not physically possible since i2 → i3
moves backwards in time. It would thus naı̈vely be discarded, but
(unlike in other similar cases, which are discarded rightfully) there
exists a potentially locally optimal direct path connecting i1 and i4
that is physically possible and avoids all local maxima (albeit not at
the furthest possible distance).

– It is even possible that the number of local optima is lower than
the paths through V . Consider again Fig. 2.3 and HR as in (2.3),
combined with the Lagrangian

H(ξ, ξ̇, t) = HR(ξ, t) + α · (ξ̇ − 1)2, α > 0

which penalizes, in addition to HR, deviations from the goal speed
of ξ̇ = 1, weighted by α. Analytically we obtain the Euler-Lagrange

4 And do notice that the lack of physical dimensions is not the fault of the example, but rather
symptomatic of what a purely geometric model allows and, in a sense, requires.
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equation as

2 sin(ξ)
(
cos(t)− cos(ξ)

)︸ ︷︷ ︸
A

− α · ξ̈︸ ︷︷ ︸
B

≡ 0 (2.4)

which is, for the boundary conditions
ξ(0) = 0, ξ̇(0) = 1, ξ(5π) = 5π, trivially satisfied for ξ∗(t) = t, a
global optimum regardless of the choice of α, as H ≥ 0 and here
H = 0. Other local optima may exist that also satisfy (2.4). However
there exists some αT such that for any α > αT, all local optima but
the global optimum vanish. This can be proven by contradiction.
Assume there exists some ξ~ 6≡ ξ∗ such that (2.4) is satisfied, so
there exists t ∈ T and some d 6= 0 such that ξ~(t)− ξ∗(t) = d.
Reaching a given d within T from the fixed starting point requires
an acceleration of |ξ̈~(t)| > |4d/25π2| at some instant t,5 and thus,
in (2.4), |α4d/25π2| < |B|, presenting a lower bound for |B| given
α and d. In turn, A of (2.4) lies strictly within [−3

√
3/2,+3

√
3/2].

For A−B to vanish, it is thus necessary that

min |B| ≤ max |A| ⇒
∣∣∣∣α 4d

25π2

∣∣∣∣ ≤ ∣∣∣∣3√3

2

∣∣∣∣⇒ |d| ≤ 75
√

3π2

8α

Intuitively, to reach a larger d (given α), there exists at least one B(t)
so great that no position gradient A(ξ, t) can outweigh it to satisfy
(2.4). Thus for large α, |d| can be forced arbitrarily small, limiting
any ξ~ to |ξ∗ − ξ~| ≤ d. Solutions outside this band are impossible,
but present valid paths inG, as it is based exclusively onHR and does
not vary with α. Thus, while the choice of α can reduce the number
of local optima down to 1, the number of paths in G is invariant to α.

There is no obvious way to remedy these issues: The practical disadvantages of
the Voronoi approach lie in the fact that it treats space and time as equivalent (and
not in a relativistic sense) and cannot account for vehicle dynamics – which are
a significant part of the topology of the trajectory space. Extending the dimen-
sionality of V so that it is not based on HR alone, but on the abstract trajectory
space Ξ, is generally possible; however, building a Voronoi diagram in Ξ requires

5 In fact, only when applied during all t this acceleration achieves d; and only at tend, not the true goal
point. Thus the inequality marks no tight lower bound, just some definitive lower bound. Any valid
ξ~ visiting ξ~(t′) = t′ ± d and returning to ξ(5π) = 5π would even require a higher acceleration.
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(a) γ = 2.5 (b) γ = 1.5

Figure 2.4: Brownian noise fields with different power spectrum distributions S(ω) ∝
ω−γ (color map), local maxima (dots) and corresponding V (lines). Assuming (as used
throughout this paper) the current position to be the lower left corner, it must be noted
that V does not include this point. Next, in (a), V does not provide a path to the upper
right corner even though it is intuitively desirable. In (b), V is a highly complex structure
including many intersections and many paths along highHR values. A valuable reduction
of complexity with respect to the original pixel grid is not apparent.

(a) (b) (c)

Figure 2.5: Voronoi diagrams for different aspect ratios between the horizontal and the
vertical axis. It can be seen that the resulting topology differs in each case. If the axes
represent different physical quantities, as time and space, this means that the solution is
not invariant to the choice of units.
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finding the local maxima, which corresponds to enumerating all worst trajecto-
ries in Ξ. If this initial step was efficiently possible, one could simply reverse
the problem to enumerate all the best trajectories, and pick the global optimum
directly, without the additional step of creating and searching a Voronoi diagram.

On the whole, while the paths through the Voronoi diagram certainly correlate
with the true local optima, they provide neither an upper nor a lower bound. It
was shown that the assumptions governing the Voronoi solution are not sound
within the original model; therefore, extensive post-processing is necessary to
make the Voronoi solutions even just valid candidates for the original model; in
particular, a significant part of solutions must be discarded as they are physically
impossible. Given all its inaccuracy, setting up and searching the Voronoi graph is
anything but simple for complex environments (see Fig. 2.4). While eliminating
the free parameter of ξ(0) (the “initial guess”), the Voronoi diagram introduces
at least one new free parameter (the relative scale of time and space) that has an
even less intuitive effect on the solution; further free parameters lie in how the
obtained solutions are discarded or transformed into valid solutions of the ELM.
For these reasons, the Voronoi approach was abandoned in favor of a solution
that would both retain the key model features throughout the solution process
(as, for example, the distinction between time and space), and that would provide
clear algorithmic properties (computational effort and quality of results) to be
compared with the previous ELM.

2.2.3 Global Optimization

The previous considerations suggest that iterative optimization is generally not
able to guarantee the quality of a solution, or that it is found in limited time. Any
obtained solution depends critically on parameters that cannot be determined by
the problem understanding alone.

In this section, an approach to global optimization that provides global optima in
finite time to the given problem will be presented. It can help address the issues
with iterative optimization in two ways. First of all, the obtained global optimum
can be used directly in maneuver planning. However, global optimization of
sufficiently general problems comes at a price in computational effort, that may
exceed either real-time constraints or acceptable hardware costs. Should global
optimization prove too costly for real-time series integration (which has not been
established yet, since this section will shed light on significant parallelization
potential), global optimization can still provide benchmarks for iterative solvers,
in the sense that previously, the true global solution of such a problem was not
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known at all, and thus the evaluation of iterative solvers had to rely on comparing
different iterative solutions to each other.

To address the named pitfalls of iterative optimization without abandoning key
properties of the original model, an approach based on [ZRR+15] is chosen: The
ELM is transformed into an equivalent Hidden Markov Model (HMM) such that,
given a sufficiently fine discretization,

1. Globally optimal trajectories of the ELM correspond directly to the glob-
ally optimal state sequence attained by decoding the HMM through the
Viterbi algorithm.

2. Values of H[ξ] are provided a one-to-one mapping to sequence probabili-
ties, such that in particular H[ξ∗] can be obtained.

[ZRR+15] shows that an ELM, whose Lagrangian can be separated into

H(ξ, ξ̇, t) = H1(x, t) +H2(x, ẋ),

can be transformed into an equivalent HMM by choosing sufficiently fine dis-
cretizations X ′ = {xmin, xmin + ∆x, xmin + 2∆x, ..., xmin + n∆x} (x1 ∈ X)
and T ′ = {tstart, tstart +∆t, tstart + 2∆t, ..., tstart +m∆t} and choosing emission
probabilities p(στ |x2) and transition probabilities p(x2 ←x1|x1) as follows

p(στ |x2) =
1

Z1
· exp(−H1(x2, τ ·∆t+ tstart))

p(x2 ←x1|x1) =
1

Z2
· exp(−H2(x2,

x2−x1

∆t ))

where the normalization constants Z1 and Z2 are uniquely defined. The corre-
spondence in [ZRR+15] extends to more general cases, but the above formulation
was found sufficient to represent the SPARC approach for generalized coordi-
nates including first-order derivatives. This transformation allows to apply the
Viterbi algorithm, which determines the optimal sequence of states in X ′ over
time T ′ within a fixed space of memory and in a fixed number of time steps:

VITERBI ∈ TIME(T ′·|X ′|2) ∩ SPACE(T ′·|X ′|).

This can be contrasted with the computational complexity of iteratively solving
the original ELM with a gradient descent (EL1) or a variant of SQP using a full
Hessian (EL2), which can be written as

EL1 ∈ SPACE(T ′) and EL2 ∈ SPACE(T ′2),
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if convergence occurs – however there is no limit on the TIME complexity, as
arbitrarily many iterations can be required until then, and divergence (an infinite
number of steps) may occur as well.

So, the HMM formulation addresses several key issues of the iterative optimiza-
tion, namely:

• The HMM formulation does not require an “initial guess”, an iteration step
function ξ(n) �→ ξ(n+1) or termination criteria as presented in Sec. 2.2.1.
Their role as free parameters is replaced by the choice of a discretiza-
tion ∆x, which is considered considerably more intuitive in its results (cf.
[ZRR+15, RZW+15]).

• The HMM solution through the Viterbi algorithm cannot diverge or require
an arbitrary number of computation steps; instead, the solution is known
to be found after a fixed number of computations.

• The Viterbi algorithm cannot get stuck in undesirable local optima. Its
result is always the global optimum given the discretization, which does
not directly equal the continuous global optimum, but is considerably less
sensitive to parameters and the shape of the underlying problem H.

Despite this, it can be said that on average, the HMM optimization requires
more computations to finish than a gradient descent or SQP, and it scales
particularly badly with the state space X ′, such that optimizing a pure two-
dimensional path can already be prohibitively expensive ([RZW+15] provides
an adequate choice of X ′ that limits the computational effort while retaining
sufficient expressiveness to model a multilane road).

However, comparing the number of necessary computations can be misleading,
as parallelization can be a significant factor. For the ELM, the parallelization
dimension is T ′, since for a vector in R|T ′|, each component of the gradient (2.2)
can be computed in parallel to all others. However, the number of iterations (the
critical factor of the iterative solver) must always be computed in sequence (for
obvious reasons), so that the classical ELM approach can only benefit to a limited
extent from parallel capabilities. For the HMM on the other hand, the situation
is entirely different. The bottleneck of the HMM is the size of the state space
|X ′|, which enters the TIME complexity quadratically. In this case, however,
the state space is the parallelization dimension of the Viterbi algorithm, as all
states can be evaluated in parallel, but the |T ′| time steps of the model must
be computed in sequence. Therefore, unlike for the ELM, the bottleneck of the
HMM can successfully be addressed by parallelization; provided that sufficient
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parallel capabilities exist, the state space of an HMM can grow arbitrarily large
with little impact on computational effort. The sequential time dimension in turn
is, for both ELM and HMM, of |T ′| ≈ 20, considering a practical prediction
horizon of 5–10 seconds.

While the HMM version of SPARC has yet to be implemented on a parallel
platform (a GPU or an FPGA), the above considerations indicate that the HMM
is more suited for real-time high-risk applications (such as automated driving)
than the iterative optimization of an ELM.

3 Conclusion and Outlook

This paper has reviewed several key decisions in modeling and solving the
SPARC concept whose early version was presented in [Zie12, RZR+14]. Two
main points were considered of particular interest: Firstly the motivation of trad-
ing off estimated collision risks and comfort, which has been considered con-
troversial in many instances; and secondly the decision to replace the iterative
solver of the ELM with a global solver based on Hidden Markov Models, instead
of improving the iterative solver heuristically. The decisions discussed here are
considered the main points that set the SPARC approach apart from related ap-
proaches that have been published since then, and thus provide a reference for
comparing the respective models.

Research and development on SPARC is still in progress. Current topics include
validating the C2 model for vehicle dynamics in actual test drives, not in simula-
tions as presented in [RZW+14b]; collecting statistical traffic data for developing
the prediction framework based on the principles presented in [RZW+14a]; ex-
tending the SPARC model to incorporate predictive interaction between the ego
vehicle trajectory and trajectories of other traffic participants, both in cases of
uncertain interaction and of coordinated cooperation between fully-automated
vehicles using Car2Car communication; implementing the HMM-based solver
on parallel hardware and evaluating the resulting speedup and costs; and finally
integrating SPARC into a real vehicle, and validating its performance.
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Abstract: The aim of dimensionality reduction is to reduce the number of
considered variables without removing the information needed to perform
a given task. In explorative data analysis, this translates to preserving the
clustering properties of the data, while in a classification setting, only class
separation has to be preserved. By far the most popular tools are principal
component analysis (PCA) for the former and linear discriminant analysis
(LDA) for the latter. Both transform the data to a linear subspace. With
PCA, the subspace is chosen so that most of the variance is preserved. How-
ever, there is no guarantee that clustering properties or even class separation
are preserved too. With LDA, the data is projected to a C − 1 dimensional
(where C denotes the number of classes) subspace so that class separation is
maximized. Apart from unnecessarily restricting the number of dimensions,
LDA might destroy discriminative information if its implicit assumptions
(normally distributed data) are violated. In this technical report, we present
a novel approach to linear dimensionality reduction. The approach is formu-
lated as an optimization problem, which is solved using stochastic gradient
descent (SGD). Like LDA, the aim is to maximize class separability. Like
PCA, the dimensionality of the subspace can be specified by the user. As
SGD is very sensitive to the initial conditions, we further present a method
to determine suitable starting points for the gradient descent.

1 Introduction

Dimensionality reduction is the process of reducing a potentially large set of fea-
tures F to a smaller set of features F ′ to be considered in a given machine learn-
ing or statistics problem. In an unsupervised setting, dimensionality reduction is
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often used for exploratory data analysis, for example to visualize the distribution
of high dimensional data in human-digestible two or three dimensions. In a su-
pervised setting, the main use is to reduce the number of parameters a learning
machine has to determine. In other words: The goal of dimensionality reduction
is to overcome the curse of dimensionality [Hug68].

A straightforward approach, feature selection, is to select only certain features,
i.e., to choose a selection F ′ ⊆ F , according to some optimality criterion, e.g.,
related to the information content of the features in F ′ in regard to the data. More
general approaches find F ′ by mapping the feature space F that is defined by F
into a lower-dimensional space F′ corresponding to F ′.

In this report, we will focus on the latter category in a supervised setting. In
particular, we present a method to learn a linear mapping that approximately
maximizes the distance between classes.

1.1 Related Work

Arguably the two most well known dimensionality reduction techniques are the
unsupervised principal component analysis (PCA) and Fisher’s supervised linear
discriminant analysis (LDA). A discussion of both PCA and LDA is out of scope
of this report, but can be found in numerous sources, e.g., in [DHS01].

Briefly, PCA finds a linear mapping x′ = A(x − x) so that the squared projec-
tion error from x to x′ is minimized. The effect is that most of the data’s variance
in the original feature space is also represented in the reduced space F′. Here,
x denotes the data’s empirical mean and the columns of the matrix A are the
eigenvectors of the data’s scatter matrix (also known as the data’s principal com-
ponents, hence the name PCA) that correspond to the largest eigenvalues. While
PCA does preserve variance, it does not necessarily preserve class separability in
the projected space.

LDA, on the other hand, finds a projection so that the scatter between samples
of different classes is maximized while the scatter between samples of the same
class is minimized. The projection does not necessarily represent the high dimen-
sional variation of the data well, but it does preserve information necessary to
separate the classes. However, LDA makes the implicit assumption that the data
of a given class are normally distributed. Coupled with the restriction that the
dimensionality of F′ is one less than the number of classes C, dim(F′) = C − 1,
this means that too much information may be discarded and the classes are not
separable in F′.
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There are also nonlinear methods that project the data onto a low dimensional
manifold embedded in F. Examples of such methods include multidimensional
scaling [Kru64], Isomap [TDSL00], local Fisher discriminant analysis [Sug07]
and t-distributed stochastic neighbor embedding [VdMH08].

Dimensionality reduction also has close ties to metric learning, where the goal
is to learn a function that realizes a distance from a given dataset. The metric is
then to be used in a subsequent distance-based classifier like nearest centroid or
k-nearest neighbor. Examples of metric learning methods include large margin
nearest neighbor [WBS05] and information-theoric metric learning [DKJ+07].
Both methods find a metric of the form d(x,y) = (x− y)>M(x− y). Al-
though not directly applicable, metric learning can be used for dimensionality
reduction if one finds a decomposition M = A>A. This idea will be revisited
in Section 2.4.

1.2 Contributions

In this technical report, we present an approach to learn a linear dimensionality
reduction from a given dataset. Like LDA, the projection aims to maximize class
separability. Like PCA, it allows to freely specify the dimensionality of the tar-
get space. The method is formulated as an optimization problem, which is solved
using stochastic gradient descent. Furthermore, we lay a bridge between dimen-
sionality reduction and metric learning and show how the latter can be used to
aid finding solutions to the former.

2 Methods

Our method can be formalized as follows: Given a set of n-dimensional train-
ing data D = {x1, . . . ,xN} ⊂ Rn, and a partition of this set into two1 disjoint
classes X and Y , the goal is to find a linear projection x′ = Ax into an m-
dimensional space, where m << n, so that class separation is best preserved in
the lower dimensional space.

1 The method is easily extended to more than two classes, but for the sake of clarity we restrict
ourselves to binary classification in this report
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In other words, the goal is to find a matrix A ∈ Rm×n so that the squared
Euclidean distance of two reduced feature vectors,

dA(x,y) = ‖x′ − y′‖22 = ‖Ax−Ay‖22 = (x− y)
�
A�A(x− y),

is large if x and y belong to different classes, and small otherwise. Note that this
goal is very similar to that of metric learning. However, here we are explicitly
interested in the dimensionality reduction so that subsequent learning algorithms
do not have to be distance-based. One could use the method in [WBS05] or
[DKJ+07] and decompose the matrix M as described in Section 2.4, but there is
no guarantee that the resulting dimensionality reduction is optimal in the sense
of our goal.

In this report, we instead take inspiration from LDA and find the projection ma-
trix A = argminA J(A) that minimizes the distance between feature vectors of
the same class while simultaneously maximizing the distance between samples
of different classes, measured by the unweighted ratio between intra-class and
inter-class distance (like LDA),

J(A) =
Sw

Sb
=

∑
xu,xv∈X dA(xu,xv) +

∑
yu,yv∈Y dA(yu,yv)∑

x∈X ,y∈Y dA(x,y)
. (2.1)

Unfortunately, a closed form solution of the above minimization problem is not
readily available. Therefore, we choose to iteratively optimize eq. (2.1) instead.
In particular, we employ the well known method of gradient descent to find a
(local) minimum,

At+1 = At +∆At = At − ηt ∇AJ(At)︸ ︷︷ ︸
=:Gt

,

where At and ∆At denote the solution candidate and update at time step t,
Gt := ∇AJ(At) denotes the gradient of the target function with respect to A,
and the hyper-parameter ηt is the learning rate at step t.

2.1 The Gradient

Key ingredient is the gradient of the target function with respect to the parame-
ters A. Although an approximation of the gradient using numerical differentia-
tion (e.g., finite differences) would be possible, it would introduce a large run-
time overhead as well as numerical instabilities due to discretization and round-
off errors [BPR15] and should therefore be avoided. Automatic differentiation
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promises accurate results with negligible computational overhead [BPR15], but
in our experiments we found that available implementations are still too slow for
our application.

What follows is a derivation of the gradient ∇AJ(A). Using the quotient rule of
differentiation, the gradient expands as

∇AJ(A) = ∇A
Sw

Sb
=

∇ASw · Sb − Sw · ∇ASb

S2
b

, (2.2)

which means that we derive the gradient of Sw and Sb independently and
combine the results.

As both Sw and Sb have a common structure, i.e., they are the sum of pairwise
distances, we consider the gradient of the general case,

f(A) =
∑
x∈U
y∈V

(x− y)
�
AA�(x− y) =

∑
x∈U
y∈V

m∑
i=1

(x− y)
�
a:ia

�
:i (x− y)

= |V|
∑
x∈U

m∑
i=1

(a�:ix)
2
+ |U|

∑
y∈V

m∑
i=1

(a�:iy)
2 − 2

∑
x∈U
y∈V

m∑
i=1

a�:ixa�:iy

(2.3)

where U ,V ⊆ D denote arbitrary, not necessarily disjoint subsets of the data and
a:i denotes the column-vector corresponding to the i-th column of A. The partial
derivative of eq. (2.3) with respect to aik is given as

∂

∂aik
f(A) = 2|V|

∑
x∈U

xka
�
:ix+ 2|U|

∑
y∈U

yka
�
:iy − 2

∑
x∈U
y∈V

(
xka

�
:iy + yka

�
:ix

)
.

(2.4)

To see that the above is valid, consider the function g(A) =
∑m

i=1

(
a�:ix

)2
. The

partial derivative of this function with respect to aik is

∂

∂aik
g(A) =

∂

∂aik

m∑
j=1

(
n∑

l=1

ajlxl

)2

= 2xka
�
:ix,

which explains the first two terms of equation (2.4). Similar reasoning can be
applied to derive the rightmost term. In the special case that U = V , i.e., the sum
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is over pairwise distances of the same set, the derivative further simplifies to

∂

∂aik
f(A) = 4(|U| − 1)

∑
x∈U

xka
�
:ix− 2

∑
x,y∈U
x �=y

(xka
�
:iy + yka

�
:ix). (2.5)

Putting together equations (2.4) and (2.5) yields the partial derivatives

∂Sw

∂aik
= 4(|X | − 1)

∑
x∈X

xka
�
:ix− 2

∑
x,y∈X
x �=y

(
xka

�
:iy + yka

�
:ix

)
+

4(|Y| − 1)
∑
x∈Y

xka
�
:ix− 2

∑
x,y∈Y
x �=y

(
xka

�
:iy + yka

�
:ix

)
and (2.6)

∂Sb

∂aik
= 2|Y|

∑
x∈X

xka
�
:ix+ 2|X |

∑
y∈Y

yka
�
:iy − 2

∑
x∈X
y∈Y

(
xka

�
:iyyka

�
:ix

)
. (2.7)

The partial derivatives are plugged into equation (2.2) to compute the full
gradient ∇AJ(A).

Note, however, that the gradient requires (m·n) computations – one computation
for each aik – of both equations (2.6) and (2.7). Furthermore, the computation
of both terms is quadratic in the number of training samples, which implies a
very long run-time of the gradient descent, especially when large datasets are
considered or a small learning rate is used.

2.2 Stochastic Gradient Descent

The field of deep learning [LBH15] faces similar, yet bigger, challenges. Here,
stochastic gradient descent (SGD) has become a popular tool to speed up the
learning process of deep neural networks. The main insight of SGD is that, due to
the linearity of the differential operator ∇A, the gradient of an objective function
that sums over several sub-goals, J(A) =

∑N
i=1 Ji(A), can be written as

∇AJ(A) =

N∑
i=1

∇AJi(A).

In empirical risk minimization, one of the main pillars in machine learning, the
objective function typically takes this form, where each sub-goal corresponds to
minimizing the loss on one single training example.
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SGD utilizes this structure by approximating the gradient with a random
subsample of the training data at each step of the gradient descent,

Gt ≈
K∑
i=1

∇AJσt(i)(A),

where K << N is the number of samples to consider each step and σt is a ran-
dom permutation of the set {1, . . . , N}. The intuition is that, while the individual
approximations of the gradient do not point in the same direction as the true gra-
dient, the approximation error averages out when a large number of iterations are
performed. SGD requires more iterations to converge than gradient descent, but
each iteration is much less computationally expensive. Thus, the overall conver-
gence speed is generally faster, especially with large datasets or when the Ji are
expensive to compute.

Unfortunately, the objective function in eq. (2.1) does not have the required struc-
ture. Both the nominator and denominator, however, do. This suggests that the
general idea is applicable regardless: At each step of the gradient descent, we
sample a small subset of the data, so that an equal number of samples is drawn
from both X and Y . The gradient Gt is approximated using only these samples.

2.3 AdaGrad

Stochastic gradient descent, like regular gradient descent, is very susceptible to
the choice of learning rate. If the learning rate is too large, then good solutions
may be missed; if it is too small, and the algorithm will converge very slowly.
Ideally, the learning rate should be large in the beginning, but small when the
intermediate solution is near an optimum in order not to oscillate around it.

AdaGrad [DHS11] defines a learning rate schedule that takes previous parameter
updates into account. The learning rate for the (ik)-th component of the gradient
is chosen as

∆at,ik = − η√∑t
τ=1 g

2
τ,ik

gt,ik,

where η is a global learning rate, τ denotes the time steps before t, and gτ,ik
denotes the (ik)-th component of the historical gradient Gτ . The intuition is
that larger updates will result in a smaller learning rates in the future, which
effectively smoothes out extreme parameter updates due to locally steep gradi-
ents. Much like with the momentum method [RHW88] or the Newton-Raphson
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method, each parameter aik is associated with a different learning rate sched-
ule, which means that the progress along each dimension of the parameter space
evens out over time. A drawback is that, depending on the global learning rate,
the learning rates eventually approach zero and the optimization may stop before
a minimum is reached.

2.4 Initial Conditions

Another drawback of the AdaGrad schedule is that the optimization outcome is
very dependent on the initial parameter estimate A1 [DHS11]: If the first few
gradients are large (even in opposing directions), the learning rate will be slow
for the remainder of the training. Additionally, in this work, the error surface
defined by J(A) is non-convex and, depending in the starting point, the gradient
descent may become stuck at a shallow local minimum or saddle point.

Ideally, a good initialization would put J(A) near a good local optimum so that
the gradient descent will quickly converge towards this optimum. As was already
mentioned in Section 1.1, metric learning can be used to obtain such an initializa-
tion. Given some (diagonalizable and positive semidefinite) matrix M ∈ Rn×n,
the goal is to find a decomposition M ≈ A�A with A ∈ Rm×n and m ≤ n.
The matrix A will be used as starting point for the gradient descent.

How can such a decomposition be found? First, observe that because M is
diagonalizable, it has the eigendecomposition

M = WΛW� = Wdiag(λ1, . . . , λn)W
�,

where, W contains the eigenvectors of M and, by convention, the eigenvalues
λi are sorted in descending order, λ1 ≥ λ2 ≥ . . . ≥ λn. Note that because M is
positive semidefinite, all eigenvalues are non-negative, λi ≥ 0. Similarly, A can
be factorized using singular value decomposition,

A = USV� = Udiag(σ1, . . . , σm)V�

where S contains the singular values σk and the orthonormal matrices V and
U contain the corresponding right- and left-singular vectors of A. Again, the
singular values are sorted in descending order by convention. Combining both
equations yields:

A�A = (USV�)
�
(USV�) = VS�SV�

= Vdiag(σ2
1 , . . . , σ

2
m)V�

≈ Wdiag(λ1, . . . , λn)W
� = M,
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(a) Synthetic dataset (b) MNIST

Figure 3.1: Examples of the datasets used in the experiments.

3 Experiments

A prototypical implementation of our method was realized in the Julia lan-
guage [BEKS14]. We implemented regular gradient descent as well as stochastic
gradient descent with a fixed learning rate and with the AdaGrad learning rate
schedule. In all cases, the starting point of the optimization was computed from

2 Since then λk = 0 holds for k > m.

where equality holds true if rank(M) ≤ m2. As the λk are non-negative, it is
possible to identify each σk =

√
λk and A can be computed from a given M as

A� = W1:m,1:mΛ
1
2
1:m,1:m =



e�1
...

e�m


 diag

(√
λ1, . . . ,

√
λm

)
.

Here, W1:m,1:m denotes the (m × m) upper left sub-matrix of W (likewise
Λ1:m,1:m). For most practical purposes, rank(M) ≤ m does not hold. However,
the approximate decomposition is still possible by ignoring the eigenvectors cor-
responding to λk with k > m. As we are only interested in a starting point for
the gradient descent, an exact factorization is not necessary.

the precision matrix of the dataset, i.e.,
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A>A ≈ Σ−1 =

(∑
x∈D

(x− x)(x− x)>

)−1

.

Two experiments, one with synthetic data and one with the well known MNIST
of handwritten digit dataset were carried out. In the first experiment, both X
and Y were drawn from three-dimensional Gaussian distributions with different
means and covariance matrices. The data was generated so that the two classes
were linearly separable; hence a good dimensionality reduction should be easy
to obtain. Figure 3.1(a) shows a qualitative plot of the data. The MNIST dataset
contains gray value images of handwritten digits, where each image 28 × 28
pixels in size. In our experiments, the first class contained the digits 1 and 2, and
the second class contained the digits 3 and 4. As both the digits 1 and 4 as well
as 2 and 3 share similar features (e.g., vertical strokes in 1 and 4, curved lines
in 2 and 3, cf. fig. 3.1(b)), the optimization is expected to produce poor results.
Figure 3.1(b) show examples of the digits used in our experiment.

In both experiments, the 3- and 784-dimensional data was reduced to a 2-
dimensional feature space, i.e., the projection matrix A had size 3× 2 or 784× 2
respectively.

3.1 Results

Figure 3.2 shows the value of the objective function for each iteration. With
the synthetic dataset (fig. 3.2(a)), all three methods reach a local optimum very
quickly. Gradient descent initially overshoots the optimum, but finds it within the
next 20 iterations. SGD also overshoots, but much less so than regular gradient
descent. SGD with the AdaGrad schedule finds the optimum almost immediately.
With MNIST (fig. 3.2(b)), the full gradient descent did take too long to converge
and is therefore missing from the plot. SGD with and without AdaGrad schedule
both converge to an optimum. However the methods reach different optima, as
can be seen in figure 3.3. Both methods show noisy development of the objective
function that is characteristic for SGD. With AdaGrad, however, the training rate
schedule suppresses larger perturbations in later iterations.

Figure 3.3 also reflects an implicit bias of our approach: it favors projections
that put samples close to a linear one-dimensional manifold. This bias could
be addressed by re-weighting the optimization goals, i.e., by putting more em-
phasis on class separation than small intra-class distance, or by introducing a
non-linear projection. The latter, however, comes at the cost of a significantly
more complicated gradient.
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(a) Synthetic dataset (b) MNIST

Figure 3.2: Value of the objective function by iteration (best viewed in color).

(a) SGD (b) SGD + AdaGrad

Figure 3.3: Final projection of the MNIST dataset (best viewed in color).
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4 Conclusion

In this technical report, we have presented a method for linear dimensionality
reduction. The method takes inspiration from both PCA and Fisher LDA and
tries to minimize the pairwise distances between samples of the same class while
simultaneously maximizing the distance between samples of different classes.
Instead of providing a closed form solution, we chose to employ the well known
gradient descent optimization algorithm. In order to speed up computation, we
used stochastic gradient descent with an AdaGrad learning rate schedule.

The biggest issue with our approach is the bias to effectively reduce the features
to a one-dimensional feature space. In the future, we plan to tackle this issue by
re-weighting the terms of the objective function and introducing non-linearities
in the projection. As this will result in a severely more complicated gradient, we
will re-evaluate usage of automatic differentiation tools.

Another interesting research question concerns the use of step-wise dimensional-
ity reduction: Instead of a direct reduction from n to m dimensions, the algorithm
would first reduce the n features to n − 1 features, then the intermediate n − 1
features to n − 2 features, etc., until the desired number of features is reached.
The hope is that each of the intermediate reductions is easier to solve well than
the full dimensionality reduction – especially if non-linearities are introduced as
well.
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Abstract: A new measurement system for imaging ellipsometry has been
developed with the ability of taking fast measurements on planar and even
highly curved surfaces. This is achieved by a special laser scanner contain-
ing four photodetectors to measure the state of polarization with a sampling
rate in the megahertz range. Up to now only three of four Stokes parameters
can be measured simultaneously. In this work some modifications to the
actual detector are proposed which provide the opportunity to measure the
whole Stokes parameter. In contrast to the previous work on the division-
of-amplitude photopolarimeter (DOAP) using a special optical beam split-
ter, the polarization state detector presented here uses only standard optical
components while keeping the adjustment effort low.

1 Introduction

Ellipsometry is a sensitive technique for thickness measurement of thin films.
Most measuring systems based on ellipsometry require a precise adjustment of
the input and output heads down to 0.1◦ to satisfy the reflection condition. There-
fore, measurements are performed only at nearly flat surfaces. Recently, a new
measurement system for ellipsometry has been developed at Fraunhofer IOSB,
which circumvents this restriction by using a retroreflector as shown in Fig-
ure 1.1. The differences and similarities to an usual ellipsometer are explained
in [Neg15, NH14], especially the change of the ellipsometric parameters Ψ,∆
and the number of occuring ambiguities.
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A precise measurement of the thickness or other material properties requires a
precise measurement of the state of polarization i.e. Stokes parameter of the re-
flected light by the polarization state detector (PSD). It can be shown that the
four elements of the Stokes parameter can be measured by four measurements.
One possibility for the realization of the PSD is the division-of-amplitude pho-
topolarimeter (DOAP) [Azz82]. One element of this PSD is a special beam
splitter. There are optimality constraints on the optical properties of the beam
splitter [AD03] to maximize the sensitivity of the PSD. In [YSZL14] a beam
splitter was realized and validated consisting of 46 dielectric layers whose opti-
cal properties are near the theoretical optimum. One drawback of this multilayer
beam splitter is the high production cost which increases the cost for the PSD.
In [AS05] a single-layer beam splitter was proposed which also has good polar-
ization properties. A drawback of both beam splitters is the need for a special
single- or multilayer coating. The production costs for optical coatings are only
low if several beam splitters are coated simultaneously and hence several PSDs
are produced.

To build up a PSD in a prototypical manner for measuring the full Stokes parame-
ter, an alternative configuration is proposed consisting only of standard and cheap
optical components like quarter-wave plates and standard beam splitters while
still reaching 91% of the theoretical optimal value. Furthermore, a beam splitter
is proposed which has no special coating despite of the antireflective coating on
the front- and backside. The optical polarization properties of this beam splitter
in combination with four quarter-wave plates would be also near the optimum.

1.1 Design of an Ellipsometer with a Retroreflector

In contrast to the standard ellipsometry configuration, the usage of a retroreflector
circumvents the need for a separate detector head to measure the state of polar-
ization. Instead, the excitation head for the light source and the detector head
with the PSD are combined together into a transceiver. The outgoing and ingo-
ing beams are made collinear by a nonpolarized beam splitter. In Figure 1.2 the
optical path inside the transceiver is depicted. By a fast rotating polygon mirror
in the deflection unit a laser line is obtained from a laser beam. This allows the
appliance of the laser scanner for imaging ellipsometry. The line frequency of
the prototype is 1 kHz and the line width 12 cm. The pixel frequency rate is
approximately 2 MHz. The input beam is further split up by beam splitters so
that four intensity measurements are obtained by four photomultipliers for the
detection of the state of polarization. The advantage of using photomultipliers as
photodetectors is a high sampling rate at low intensities. This is needed because
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(a) (b)

Figure 1.1: Scheme of the beam path with retroreflection (a) and an image of the
ellipsometry scanner (b).

1.2 Stokes Parameter and Mueller Calculus

One convenient way describing the state of polarization for totally, as well as
partly polarized light, is by a four-dimensional Stokes parameter S ∈ R4. The
Stokes parameter of a light ray is referenced to a fixed right-handed coordinate
system (x, y, z) while the z-axis points to the observer. The conventions about the
coordinate systems and transformations used in this paper follow the Nebraska
ellipsometry conventions [HMS80]. The definition of the Stokes parameter S
is [Fuj07]:

S =



S0

S1

S2

S3


 =




I0◦ + I90◦

I0◦ − I90◦

I45◦ − I−45◦

IR − IL




the light is reflected twice off the sample surface. If the sample is illuminated by
nonpolarized light and R is the reflectance of the sample, R2 is the reflectance
measured in the configuration with a retroreflector. The intensity is furthermore
lowered because a non-ideal retroreflector reflects an incident light beam as a
light cone.
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Beamsplitters

Photomultipliers
Light source

Deflection
unit

Non-polarizing
beamsplitter

PSD

Figure 1.2: Design of the PSD inside the transceiver.

whereas I0◦ , I90◦ , I45◦ , I−45◦ are the measured light intensities after the light ray
passes rotated linear polarizers at 0◦, 45◦, 90◦,−45◦ and IR, IL are the measured
intensities after it passes left and right circular polarizers. Therefore, the defini-
tion already gives one possibility to measure the Stokes parameter, although six
measurements would be needed. Orthogonal polarization states are coupled by
the following identity which gives the intensity S0 of the light:

S0 = I0◦ + I90◦ = I45◦ + I−45◦ = IL + IR

Furthermore the following inequality holds:

S2
1 + S2

2 + S2
3 ≤ S2

0 . (1.1)

From the Stokes parameter the degree of polarization P can be defined as:

P =

√
S2
1 + S2

2 + S2
3

S0
.

For completely polarized light (P = 1) the less-or-equal sign in Equation (1.1)
is replaced by the equal sign.

The transformation of the Stokes parameter of a light ray when it passes an op-
tical element can be described by the so-called Mueller matrix M ∈ R4×4. The
Stokes parameter Sin of a light ray successively passing through several opti-
cal components with the Mueller matrices M1, . . . ,Mn is transformed into the
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Stokes parameter

Sout = Mn ·Mn−1 · . . . ·M1︸ ︷︷ ︸
=:M

·Sin

whereas Sout is the Stokes parameter of the outgoing light ray. If the light ray
hits a photodetector after it passes several optical elements only the intensity part
Sout
0 of Sout is measured, because most photodetectors are insensitive to the state

of polarization. The measured intensity Sout
0 can be computed by:

Sout
0 = [M](1,1..4) · S

in

while [M](1,1..4) is the first row of M.

If the Mueller matrix M of an optical element is given which changes the Stokes
parameter of an incoming light ray, the Mueller matrix of an optical element
rotated around the z-axis (directional vector of the light ray) can also be com-
puted. For an optical element with the Mueller matrix M given in (x′, y′) coor-
dinates which is rotated by an angle α relative to the x-axis as shown in Figure 1.3
the Mueller matrix MR(M, α) of the rotated optical component given in (x, y)
coordinates becomes:

MR(M, α) = R(−α) ·M ·R(α) (1.2)

where

R(α) =



1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1


 . (1.3)

Equation (1.2) results from two transformations. First the Stokes parameter of
the emitted light ray in (x, y) coordinates is transformed to (x′, y′) coordinates
by multiplying the Stokes parameter with R(α). The Stokes parameter in (x′, y′)
coordinates can then be multiplied by the Mueller matrix M of the rotated optical
element which is defined in (x′, y′) coordinates. To compute the Stokes param-
eter according to the primary coordinate system (x, y) a second transformation
is applied by multiplying the Stokes parameter with R(−α) which changes the
(x′, y′) coordinates back to (x, y) coordinates. It should be noted that the same
Mueller matrix is obtained if an optical element is rotated by 180◦ degrees (see
Equation (1.3)) because the total phase of a light wave is disregarded in Mueller
calculus.
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Figure 1.3: Transformation of the coordinate system for a rotated polarizer.

Two important ellipsometry parameters that are measured by ellipsometers are
the ellipsometric parameters Ψ and ∆ which can be combined to a complex
value ρ. Ψ describes the change in the amplitude quotient and ∆ the change
in the phase difference of two orthogonal linearly polarized waves. Because the
coordinate system of the ellipsometer is adjusted according to the plane of inci-
dence (see Figure 1.4), the two linearly polarized waves correspond to the s- and
p-polarization. The ellipsometric parameters Ψ,∆ are then related to the com-
plex reflection coefficients rp, rs of the sample by the fundamental equation of
ellipsometry [TM99]:

ρ
r
:= tanΨre

i∆r =
rp

rs
.

where the subscript r denotes that the measurements are made in reflection.
Ellipsometry can also be applied in transmission and in this case we get:

ρ
t
:= tanΨte

i∆t =
tp

ts
.

where the variables tp, ts are the complex transmission coefficients.

From the reflection coefficients rp, rs describing the ratio of amplitudes of the
electric fields, the reflectance R2

s, R
2
p describing the ratio of intensities can be

computed by Rs = |rs|2, Rp = |rp|2. An averaged value of the reflectance can
further be defined as R = (Rs+Rp)/2 which corresponds to the overall intensity
ratio for nonpolarized or circularly polarized incident light. In the nonabsorbing
case (e.g. nonabsorbing beam splitters) the reflectance R and transmittance T
satisfy the following condition R+ T = 1.

When measuring a sample in reflection, which is isotropic and nondepolariz-
ing, the corresponding Mueller matrix MS(Ψr,∆r, R) for the ellipsometric
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Figure 1.4: Conventional configuration of an ellipsometer.

2 Previous Work

2.1 Optical Properties of the Actual Detector

The actual design of the detector splits the incoming light ray into four rays
through nonpolarizing and polarizing beam splitters (see Figure 1.2). First the in-
coming light ray is split up by a nonpolarizing beam splitter 1© with R = T = 0.5
thus obtaining two rays with equal polarization and half of the intensity which
corresponds to the Mueller matrix

MN =
1

2



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

parameters Ψr,∆r and the reflectance R is:

MS(Ψr,∆r, R) = R




1 − cos 2Ψr 0 0
− cos 2Ψr 1 0 0

0 0 sin 2Ψr cos∆r sin 2Ψr sin∆r

0 0 − sin 2Ψr sin∆r sin 2Ψr cos∆r


 .

The sample could also be a beam splitter and Ψr,∆r, R the parameters for the
reflected ray. Analogous, a sample (e.g. a beam splitter) could also be mea-
sured in transmission and if Ψt,∆t are the ellipsometric parameters and T the
transmittance of the transmitted ray the Mueller matrix becomes MS(Ψt,∆t, T ).
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One of the two rays is further split up by a polarizing beam splitter 2© rotated at
0◦. The other by a polarizing beam splitter 3© rotated at 45◦. The polarizing beam
splitters split up the state of polarization of the incoming ray in a p-polarized
transmitted and s-polarized reflected ray (see Figure 2.1).

The Mueller matrix MPol,t for the transmitted ray of an ideal polarizing beam
splitter with a transmittance of 100% for the p-polarization (Tp = 1) and 0% for
the s-polarization (Ts = 0) is

MPol,t =
1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


whereas the Mueller matrix MPol,r for the reflected ray with reflectance ofRp = 0
and Rs = 1 is

MPol,r =
1

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 .

MPol,t is the Mueller matrix of a polarizer rotated at 0◦ because the x-axis cor-
responds to the p-polarization and the y-axis to the s-polarization according to
convention. Therefore, MPol,r is the Mueller matrix of a polarizer rotated at 90◦

according to Equation (1.3). More generally MPol,α will denote the Mueller ma-
trix of a polarizer rotated at an angle α. For the polarizing beam splitter rotated
at 45◦ the Mueller matrix for the transmitted ray is

MPol,45◦ =
1

2


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


and for the reflected ray

MPol,−45◦ =
1

2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 .
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Figure 2.1: Transmission and reflection at a polarizing beam splitter.

plane of incidence changes from the first to the second beam splitter (rotated at
45◦).

The intensities I1, . . . , I4 measured by the photodetectors, which can be com-
bined to a vector I , can be computed from the Stokes parameter Sin by the
so-called instrument matrix A ∈ R4×4

I = A · Sin .

The instrument matrix of the actual design of the detector is

AAct =




[MN ·MPol,0◦ ](1,1..4)
[MN ·MPol,90◦ ](1,1..4)
[MN ·MPol,45◦ ](1,1..4)
[MN ·MPol,−45◦ ](1,1..4)


 =



1 1 0 0
1 −1 0 0
1 0 −1 0
1 0 1 0


 .

As can be seen AAct is not invertible. Therefore it is not possible to compute all
four elements of the Stokes parameter Sout from the measurements. It is neither
possible to compute the degree of polarization to study samples with depolariza-
tion nor to compute ∆ in the maximum possible range from [0◦, 180◦] – just in
the range from [0◦, 90◦]. The full interval [0◦, 360◦] of ∆ which can be measured
with conventional ellipsometers cannot be determined in the configuration with
a retroreflector [Neg15, NH14].

A special mounting has been constructed to fix the photomultipliers and the beam
splitter at an angle of rotation of 45◦. A special mounting is needed because the
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2.2 Division-of-Amplitude Photopolarimeter

A very similar design of the polarization state detector to the one presented in
Section 2.1 has been proposed in [Azz82] as the division of amplitude photopo-
larimeter. In contrast to the nonpolarized beam splitter 1© used in the previous
section, a special beam splitter is used which is optimal regarding the optimality
criterion. As the optimality criterion the absolute value of the determinant of the
instrument matrix [AD03] has been chosen, which has to be maximized. Despite
of the nonpolarizing beam splitter the design of the DOAP also differs from the
one presented in Section 2.1 by the polarizing beam splitters 2© and 3© which
are both rotated at 45◦1. The effect of the beam splitter 1© on the state of polar-
ization can be characterized by (Ψr,∆r, R) for the reflected ray and (Ψt,∆t, T )
for the transmitted ray which results in the Mueller matrices MS(Ψr,∆r, R)
and MS(Ψt,∆t, T ), respectively. For this configuration the instrument matrix
becomes

ADOAP =




[MPol,45◦ ·MS(Ψr,∆r, R)](1,1..4)
[MPol,−45◦ ·MS(Ψr,∆r, R)](1,1..4)
[MPol,45◦ ·MS(Ψt,∆t, T )](1,1..4)
[MPol,−45◦ ·MS(Ψt,∆t, T )](1,1..4)




and the determinant

detADOAP =
1

4
R2T 2(cos 2Ψr−cos 2Ψt) sin 2Ψr sin 2Ψt sin(∆r−∆t) . (2.1)

For nonpolarizing beam splitters the equality Ψr = Ψt = 45◦ holds and in that
case the determinant becomes zero independent of ∆r,∆t and R, T . This is also
true for the case where the beam splitters 2© and 3© are rotated by an arbitrary
angle. Therefore an unpolarizing beam splitter cannot be used to measure all
elements of the Stokes parameter. It should also be noted that the determinant
becomes zero independent of the optical properties of the beam splitter when the
beam splitters 2© and 3© are rotated by 0◦ instead of 45◦. The optimal values
which maximizes | detADOAP| are [AD03]

∆r −∆t = ±π/2,

R = T = 0.5,

Ψr =
1

2
arccos(±1/

√
3)

Ψt = π/2−Ψr (2.2)

1 Instead of polarizing beam splitters Wollaston prisms are used, but the Mueller matrices are equal.
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and detmax is defined by2 detmax := max| detADOAP| =
√
3/144. The equation

Ψt = π/2 − Ψr is always true if R = T = 0.5 i.e. the beam splitter is non-
absorbing and the intensities in both optical paths are split equally. For this case
Equation (2.1) simplifies to:

detADOAP =
1

64
sin 2Ψr sin 4Ψr sin(∆r −∆t) . (2.3)

In the rest of the paper the focus will rely on beam splitters with R = T = 0.5.

To measure how close a special design of the PSD reaches the optimal value, the
normalized determinant can be defined as follows:

| detA|norm :=
| detA|
detmax

(2.4)

A special beam splitter prism with a single-layer coating was proposed in [AS05]
which has a normalized determinant of 0.85 at 633 nm. The angle of incidence
is 77◦ so a special alignment as well as a special geometry of the beam splitter is
needed.

3 An Alternative Design of the PSD

In this work another configuration of the PSD is proposed where quater-wave
plates are mounted at the transmitted as well as the reflected optical path of
the beam splitter 1©. Furthermore, the polarizing beam splitters 2© and 3© are
both rotated at 0◦. The Mueller matrix of an ideal quarter-wave plate (with
antireflective coating) is

Mλ
4
=



1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0




and the Mueller matrix of a quarter-wave plate rotated by an angle α will be
denoted as Mλ

4 ,α.

2 The factor 1/4 is disregarded in the referenced literature
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When one quarter-wave plate is mounted at each optical path and rotated by
angles αr and αt, respectively, the instrument matrix becomes

Aλ
4
=




[
MPol,0◦ ·Mλ

4 ,αr
·MS(Ψr,∆r, R)

]
(1,1..4)[

MPol,90◦ ·Mλ
4 ,αr

·MS(Ψr,∆r, R)
]
(1,1..4)[

MPol,0◦ ·Mλ
4 ,αt

·MS(Ψt,∆t, T )
]
(1,1..4)[

MPol,90◦ ·Mλ
4 ,αt

·MS(Ψt,∆t, T )
]
(1,1..4)




whereas T = 1−R and Ψt = π/2−Ψr. If ∆r = π and ∆t = 0 the determinant
of the Mueller matrix Aλ

4
becomes:

detAλ
4
=

1

64
sin 2Ψr sin 4Ψr sin 2αr sin 2αt(cos 2αt − cos 2αr)︸ ︷︷ ︸

=:f(αr,αt)

. (3.1)

Comparing Equation (3.1) with (2.1) reveals that optimal solutions for αr, αt

can be found in Equation (2.2) e.g. αr = 1
2 arccos(1/

√
3) ≈ 27.37◦ and αt =

π/2 − αr ≈ 62.63◦. The maximum value of |f(αr, αt)| is approximately 0.77
and this is also the maximum of | detAλ

4
|norm which results from Equation (2.3).

There are two differences of the DOAP in Section 2.2 and the DOAP with
quarter-wave plates presented here. First, the polarizing beam splitters 2© and 3©
are not tilted, hence all light rays remain in one single plane of incidence, which
simplifies the mounting of the photodetectors. Second, ∆r = π and ∆t = 0,
which is more natural for an uncoated surface illuminated by light at an angle of
incidence of 45◦, because 45◦ is below the brewster angle of glasses (> 50◦). In
both cases the instrument matrix ADOAP in the previous section is singular.

To get better results for the normalized determinant from Equation (2.4) one pos-
sibility is to add two more quarter-wave plates as shown in Figure 3.1. The angles
of rotation of the second quarter-wave plates in comparison to the first quarter-
wave plates differ by α∆. In this case it is possible to find angles of rotation
(αr, αt, α∆) for which the normalized determinant is equal to 1. The instrument
matrix A′

λ
4

with four quarter-wave plates is
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Figure 3.1: Design of the PSD with quarter-wave plates.

A′
λ
4
=




[
MPol,0◦ ·Mλ

4 ,αr+α∆
·Mλ

4 ,αr
·MS(Ψr, π, R)

]
(1,1..4)[

MPol,90◦ ·Mλ
4 ,αr+α∆

·Mλ
4 ,αr

·MS(Ψr, π, R)
]
(1,1..4)[

MPol,0◦ ·Mλ
4 ,αt+α∆

·Mλ
4 ,αt

·MS(Ψt, 0, T )
]
(1,1..4)[

MPol,90◦ ·Mλ
4 ,αt+α∆

·Mλ
4 ,αt

·MS(Ψt, 0, T )
]
(1,1..4)




whereas the determinant of A′
λ
4

becomes

detA′
λ
4
=

1

64
sin 2Ψr sin 4Ψrf

′(αr, αt, α∆) .

while f ′ is a function of the angles of rotation (αr, αt, α∆) and is not presented
here due to its length. In contrast to f the maximum value of |f ′(αr, αt, α∆)| is
1 and hence the PSD is optimal because its normalized determinant is 1. Instead
of an analytical solution optimal values for the angles of rotation can be simply
found by nonlinear optimization. This was tested in Mathematica where optimal
values were always found. For example the following solution

Ψr = 27.4◦

αr = 0◦

αt = 45◦

α∆ = 45◦

would result in a normalized determinant of ≈ 1− 10−5.
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When the phase differences ∆r and ∆t are not 0 or π as defined above, it is also
possible to find an optimal configuration for the angles of rotation of the quarter-
wave plates. In this case (αr, αt, α∆t

) 6= (0◦, 45◦, 45◦) but the optimal values
can be found with the same nonlinear optimization algorithm. Simulations with
random values for ∆r and ∆t show that it is always possible to find a configu-
ration for which the normalized determinant of the instrument matrix becomes 1
as long as Ψr is optimal as defined in Equation (2.2). For many commercially
available beam splitters Ψr and Ψt are specified but ∆r and ∆t are not. In this
case they could be measured with an ellipsometer and afterwards (αr, αt, α∆)
could be adjusted according to the measured values of ∆r and ∆t to get optimal
results to maximize the normalized determinant.

4 Conclusion

In contrast to previous designs of the PSD all light rays are traversing a single
plane of incidence and the angles of the refracted and reflected rays are always
90◦ which makes it easy to build up and test the PSD on a microbench in a
prototypical manner. No restriction on ∆r and ∆t is needed anymore, which
makes it more easy to find cheap beam splitters with optical properties near the
optimum. A standard beam splitter cube from Edmund Optics with Rp = 0.88
and Rs = 0.27 at λ = 633 nm costs < 200$ and would still reach 91% of the
optimal value of the determinant of the instrument matrix. The cost for the optical
components of the PSD would be therefore much cheaper than specially coated
beam splitters with single or multi-layers which could reach several thousands of
dollars. This applies in particular to single pieces such as prototypes while the
cost for the production of several beam splitters with a special multilayer coating
would be lower.

What is even more important than the saving of costs is the wavelength depen-
dency of Ψ,∆ especially for multilayer coatings. For beam splitters with mul-
tilayer coatings it was shown in previous work that the normalized determinant
decreases if the wavelength differs from the design wavelength. It is probably
very difficult to satisfy the optimality conditions on Ψr,∆r, R and Ψt,∆t, T
over a broad wavelength range in one multilayer coating because usually they are
chosen to obtain only one given wavelength-dependent function e.g. R(λ). By
decoupling the optical properties of the PSD from a single (multilayer) coating
into three optical elements, it is easier to get near-optimal results over a broad
wavelength range. Furthermore, if the wavelength is tuned over time the ratar-
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dance at the transmitted and refracted ray could also be tuned to get optimal
results by replacing the quarter-wave plates by photoelectric modulators (PEM).

The only drawback of the presented DOAP is the need for additional quarter-
wave plates but in contrast to special beam splitters they are manufactured in
bulk and are therefore cheap. They are also available with special holders which
allows the fixation at given angles of rotation.
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Abstract: Super-resolution (SR) offers an effective approach to boost qual-
ity and details of low-resolution (LR) images to obtain high-resolution (HR)
images. Despite the theoretical and technical advances in the past decades,
it still lacks plausible methodology to evaluate and compare different SR
algorithms. The main cause to this problem lies in the missing ground
truth data for SR. Unlike in many other computer vision tasks, where ex-
isting image datasets can be utilized directly, or with a little extra annotation
work, SR requires that the dataset contain both LR and the corresponding
HR ground truth images of the same scene captured at the same time. This
work presents a novel prototype camera system to address the aforemen-
tioned difficulties of acquiring ground truth SR data. Two identical camera
sensors equipped with a wide-angle lens and a telephoto lens respectively,
share the same optical axis by placing a beam splitter in the optical path.
The back-end program can then trigger their shutters simultaneously and
precisely register the region of interests (ROIs) of the LR and HR image
pairs in an automated manner free of sub-pixel interpolation. Preliminary
experiments conducted on the captured face data demonstrate the special
characteristics of the ground truth images compared to the simulated ones.

1 Introduction

In general, existing computer vision algorithms can only be applied to image data
of standard size and quality. When the resolution of the test images goes under
a certain limit, the performance is expected to drop dramatically, since resizing
these low-resolution (LR) images back to a larger size alone cannot bring back the
crucial high-frequency details, which are not present in the original LR images.
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Straightforward solutions to the problem include adapting the employed specific
algorithms to LR data [DBK06, HYBK08, PRF10], or upgrading the camera sys-
tem to high-resolution (HR) models. As an alternative, though, super-resolution
(SR) provides the possibility of reusing the existing data and tools. As opposed
to interpolation-based methods, SR is able to recover the missing information in
the original LR image by combining multiple images of the same scene, which
have sub-pixel shifts among them [FREM04], or through inference of local HR
structure from similar HR–LR pairs from external training data [BK02] or from
the internal pyramid of the LR image itself [GBI09]. The reader is referred to
[NM14, WTG+14] for an overview of state-of-the-art SR approaches.

Considering the surge of interest in SR research, datasets for evaluation purposes
have received significantly less attention. Despite the fact that a huge number of
datasets have been built in the computer vision society and many of them can be
leveraged in various tasks [GMC+10, RDS+15], unfortunately, SR cannot take
the advantage, because evaluation of SR requires a pair of HR–LR images of
the same scene, one as input for the algorithms, and the other as ground truth for
quantitative assessment of the output. Therefore, to the best of our knowledge, all
of the previous work has made a compromise by synthetically generating the LR
images using the available HR images in existing datasets, pretty much like the
recently published benchmark paper [YMY14]. Nonetheless, if and how much
the simulated LR image can model the complicated optical properties of the real
image is yet to be justified.

On the other hand, strict conditions must be met when a new SR dataset is col-
lected, of which the biggest challenges include temporal and spatial consistency.
Thus the possibility of taking two images consecutively or the adoption of a par-
allel multi-camera system similar to stereo vision is eliminated, as different cap-
turing time is not suitable for most scenes which are not completely static, and
parallax of the latter setup is also not preferred for quantitative evaluation.

To circumvent these challenging requirements, a prototype of a novel dual-
camera setup is proposed in this paper. The key idea is to avail of a half-silvered,
semipermeable mirror, or a beam splitter, which converts the original optical path
into two identical ones and redirects them towards the sensors of two identical
cameras respectively. In this way, as long as the images are taken simultaneously,
both the temporal and spatial prerequisites are fulfilled. The exploitation of a
beam splitter is found in many optical interferometer systems, of which the most
famous application is perhaps the sensor in CD/DVD/BluRay players [BLF16].
Capturing of LR and HR images is realized by a wide-angle lens and a telephoto
lens mounted on the cameras respectively. Automatic image registration based
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Beam splitterWide-angle lens

Figure 2.1: Scheme of the proposed system for capturing ground truth SR data

2 Hardware Setup

Capturing ground truth image data for evaluating SR algorithms is not a trivial
task. The LR image is given as input to compute the SR result with higher resolu-
tion, which is compared with the original HR image for quantitative or qualitative
assessment. Since the SR image is directly computed from the LR input, in order
to conduct valid evaluation, the HR image is required to be captured exactly for
the same scene at the same instant of time as that of the LR image. Some existing
schemes, e.g., taking the HR–LR image pairs in sequence, or on the basis of a
stereo camera setup, can only partly meet the prerequisites. Violation of tem-
poral consistency due to unsynchronized recording in the first case, and spatial

on the Lukas-Kanade algorithm [LK81, BM04] returns the same region of inter-
ests (ROIs) for the pairs of images, which are experimentally analyzed in diverse
aspects.

The remainder of this paper is organized as follows. The hardware setup of the
proposed prototype is demonstrated in §2. After acquiring the raw image pairs
with our camera system, the algorithmic details for registration and analysis of
the images are discussed in §3 and §4 respectively. Following this, qualitative
results on the sample data are shown in §5. Finally, we conclude our work with
directions for future research in §6.
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Figure 2.2: Image formation with a thin lens

The scheme of the system is depicted in Fig. 2.1. The core idea is the introduction
of a semipermeable mirror into the optical path, which splits the incident light
from the scene in two. This can be realized with a half-silvered mirror, or in our
case, a beam splitter with 50:50 split ratio. Its common form is a cube with two
halves of triangular glass prisms glued together using resin or the like. When the
light beam enters through the entrance face of the cube to the glue layer, half of
the light is reflected and the rest is transmitted through the prisms on account of
total internal reflection within the layer. In our prototype system, a beam splitter
with 50:50 split ratio is deployed. Two identical cameras are directed at the exit
faces of the beam splitter and the cameras are equipped with a wide-angle lens
and a telephoto lens respectively, such that the one camera with larger field of
view (FOV) captures a larger scene with lower resolution, and the other camera
with smaller FOV captures zoomed HR details.

The upcoming problem is the choice of lenses and the positions of the cameras
to achieve the desired magnification factor for the HR–LR image pairs in SR.
According to the thin lens formula [Hec01] depicted in Fig. 2.2, magnification
factor mObject, i.e., the size of the image in proportion to the size of the original
object is

mObject = −S2

S1
=

f

f − S1
=
f − S2

f
,

consistency due to parallax in the second case, forces the method to be applicable
to completely static scenes or those with a very large distance, respectively. In
comparison, the novel dual-camera setup we present bypasses these limitations.
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factormSR which we are more interested in, the following approximation applies

mSR =
fHR

fHR − S1

/
fLR

fLR − S1
≈ fHR

fLR
, (2.1)

where the object distance is similar for both cameras and much larger than the
focal length, i.e., S1 � f . On the other side, since mObject for non-macro lenses
is very small, one has S2 ≈ f , then from Fig. 2.2, the camera positions can be
determined by

S2,HR − S2,LR = fHR − fLR, (2.2)

when the focal lengths for HR and LR cameras are approximately computed by
Eq. (2.1) for the given magnification factor mSR.

However, by virtue of the complex optical elements in real objectives, the thin
lens approximation does not always apply. As a consequence, Eqs. (2.1) and (2.2)
do not necessarily hold. Instead of employing prime lenses with the exact fixed
focal lengths from Eq. (2.1), zoom lenses are utilized as a workaround, so that
the true focal lengths and camera positions can be fine-tuned in the proximity of
the theoretical values. An interactive adjustment process is presented in §3.

The built prototype system for the scheme in Fig. 2.1 is illustrated in Fig. 2.3. A
50:50 beam splitter for visible light in the range of 400–700 nm is located at the
intersection of the two camera axes. The C-mount cameras possess a relatively
large 1/1.2′′ CMOS sensor with merely 2 megapixels (1920×1200), which allows
for higher signal-to-noise ratio (SNR) thanks to larger pixel size. An ultra-wide
angle 4.8 mm f/1.8 prime lens, which serves as the LR lens, and a 12.5–75 mm
f/1.2 zoom lens for the HR images are mounted on each camera. The 6× zoom
ratio is ideal to experiment with different magnification factors mSR. The large
aperture of both lenses is also fast enough for low-light indoor scenarios. In
order to mitigate in-plane rotational discrepancy between the pair of images, one
camera is installed on a kinetic mounting surface for pitch and roll adjustment.

In summary, the final prototype is able to account for scaling and rotation in
the registration process, leaving only the translational offset to be determined
algorithmically. As such, concerns that a posterior compensation in scaling
and rotation with interpolation could deteriorate the original image quality are
addressed.

where f denotes the focal length of the lens, and S1 and S2 are the distances from
the lens center to the object and the image respectively. For the magnification
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Figure 2.3: Prototype of the proposed system for capturing ground truth SR data

3 Image Registration

The hardware prototype in §2 performs a rough presetting of the desired SR
ground truth capturing workflow. Raw HR–LR image pairs with approximately
the desired magnification factor can be acquired. However, further processing
must be done, before the images are ready for the evaluation purpose. Since
the HR image covers only a small region in the center of the corresponding LR
image, the surrounding irrelevant part should be filtered out. In the meantime,
fine-tuning of the magnification factor mSR obtained in Eq. (2.1) can also be
conducted during the registration procedure.

Given a coarse alignment in scaling and rotation from the hardware system, only
translational motion needs to be estimated, which greatly reduces the degree of
freedom (DOF) and computational complexity to exploit the classical but yet
powerful Lukas-Kanade algorithm [Sze11, LK81, BM04]. The objective is to
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obtain the update ∆θ of the parametrized motion θ by minimizing the sum of
squared differences (SSD) between the fixed template T and moving image I

∑
ξ

‖I(W(ξ;θ +∆θ))−T(ξ)‖22

subject to warping W(ξ;θ) of the pixels ξ [LK81]. Leveraging Taylor series
expansion and the partial derivatives with respect to θ, closed-form solution can
be obtained. Later, it is proved that performing inverse update on the template T
instead of I

∑
ξ

‖I(W(ξ;θ))−T(W(ξ;∆θ))‖22

can substantially boost the efficiency, as the inverse Hessian and steepest descent
images can be precomputed at the initial (ξ;0) instead of the current iteration
(ξ;θ) [BM04].

Concretely, with a pair of HR–LR images, we first set our template T as the
center of the LR image, or as the ROI detected by some algorithm (e.g., faces
by [VJ04]). The moving image I to be aligned is obtained by downsampling the
HR image with the desired magnification factor mSR. The initial translation θ

(0)
t

for I is set as the HR image, or again based on the localized ROI. Subsequently,
continuous Lukas-Kanade translational registration is conducted and the result
error image is shown to the user. After manual tuning of tip and tilt on the kinetic
platform and the focal length fHR for the HR camera, precise alignment of HR–
LR image pairs without any sub-pixel interpolation is computed. The whole
image registration procedure is summarized in Alg. 3.1.

4 Image Analysis

In SR, the observation model of the conventional image acquisition process turns
an HR image x of dimension mSRN1×mSRN2 into the captured LR image z of
dimension N1 ×N2 with

z = (Bk ◦Wθ(x)) ↓mSR + n, (4.1)

where W first warps the original scene via the parametrized motion θ. Then B
models the blurring effect by the K ×K kernel k and ↓mSR denotes decimation
with factor mSR. The additive system noise, often assumed to be white with
zero-mean Gaussian distribution, is represented by n. The objective of SR is to
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Algorithm 3.1 Interactive HR–LR image registration

Input: Roughly registered HR–LR image pair
Output: Precisely registered HR–LR image pair

1: Initialize ROIs for HR and LR images
2: Crop template T from the LR image
3: Shrink the HR image with factor mSR as image I

4: Initialize translation θ
(0)
t for I

5: while not aligned do
6: Compute θt using Lukas-Kanade algorithm
7: Crop I based on θt
8: Compare error image of T and cropped I
9: if in-plane rotation not aligned then

10: Adjust tip and tilt of the kinetic platform
11: end if
12: if magnification not aligned then
13: Adjust fHR

14: end if
15: end while

reversely model the image formation process in Eq. (4.1) given the LR image
z, which is an ill-posed problem with only the subsampling factor mSR being
known. Hence extra knowledge from internal or external sources is required
[NM14, WTG+14].

In this work, since both the ground truth HR–LR image pairs x and z are captured
and the motion θ is compensated by the image registration process in §3, analysis
of the images is a lot easier compared to SR, which simplifies Eq. (4.1) into

z = (k ∗ x) ↓mSR + n, (4.2)

where ∗ denotes 2D-convolution. Manipulation of Eq. (4.2) must be performed
to convert both of the intractable operators into matrix multiplication to allow for
further calculation

vec(z) = SmSRTx vec(kmirror) + vec(n),

where the square blurring kernel k is mirrored and vectorized by vec(kmirror) ∈
RK2

. Tx vectorizes each K × K sliding window in the HR image x as a row
vector and stacks them in vertical direction, yielding a m2

SRN1N2 ×K2 matrix.
As such, the 2D-convolution is replaced exactly by a matrix multiplication. Fi-
nally, SmSR

∈ ZN1N2×m2
SRN1N2 is a sparse mapping matrix to shrink the HR
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image to LR using nearest neighbor, i.e., for each LR pixel represented by the
row i in SmSR

, only column j corresponding to the selected HR pixel is set to
one.

Assuming independent noise n with uniform variance facilitates straightfor-
ward least squares solution of the blurring kernel k with maximum-likelihood
estimation (MLE) by minimizing the SSD

‖SmSR
Tx vec(kmirror)− vec(z)‖22,

which can also be found in blind deconvolution [LWDF11]. A globally optimal
solution for the kernel exists by solving for the convex quadratic programming
problem [NW06] in the form of

min
y

‖Ay − b‖22 = min
y

y�A�Ay − 2b�Ay + c.

Imposing non-negative and unit �1-norm constraints ensures a valid estimate
of the blurring kernel. Optionally to resemble Gaussian kernels, additional
symmetry constraint is applicable.

5 Experiments

The presented camera system is deployed in an indoor environment to take sam-
ple HR–LR images for evaluation. The most commonly used magnification fac-
tor mSR = 4 is chosen as in the survey [NM14]. Accordingly, the focal length
for the HR lens fHR and the relative camera positions are initialized based on
Eqs. (2.1) and (2.2) respectively. Subsequently, Alg. 3.1 takes care of interactive
hardware tuning and cropping of the registered HR–LR pairs. A face detec-
tor [VJ04] is employed to automatically extract the ROIs from the captured raw
image pairs.

An example of the captured and registered images is illustrated in Fig. 5.1. By
dropping the outer region of the LR image, the FOV in Fig. 5.1(b) is roughly
equivalent to the HR image in Fig. 5.1(a) with 1/4 of the pixels in both dimen-
sions. The resulting LR face has a width of approximately 30 pixels, cover-
ing only the central 1.5% of the total 1920 pixels, which is critical to diminish
distortion and chromatic aberration of the 4.8 mm ultra-wide angle lens.

We recover the blurring kernels with the techniques introduced in §4 and the
results are demonstrated in Fig. 5.2. Because the kernels in Fig. 5.2(b) do not
impose any further constraints, they are considered to be optimal for the given
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(a)

(b)

(c) (d)

Figure 5.1: An example pair of (a) HR and (b) LR images captured by the prototype
system with cropped (c) HR and (d) LR ROIs

(a) (b) (c) (d)

Figure 5.2: Results analyzed on two sample HR–LR image pairs: (a) the error images
between the LR images and the HR images blurred with the recovered kernels without
symmetry constraint in (b) and downsampled, (c) the recovered kernels with symmetry
constraint, (d) the Gaussian kernel with the lowest HR–LR reconstruction errors
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HR–LR image pair. At first sight, it is obvious that the registration process in-
tegrating hardware and algorithmic solutions reveals nearly perfect precision in
both magnification and translational offset. Solely at the boundary of the hair,
where aliasing effect could happen in LR images, more visible error can be seen
(see Fig. 5.2(a)). Furthermore, the true blurring kernels are far from the widely
applied Gaussian kernels. Even by enforcing symmetry constraint in quadratic
programming, the recovered kernels in Fig. 5.2(c) do not resemble the Gaussian
in Fig. 5.2(d) with the best kernel width σ = 2.4 in terms of reconstruction er-
ror. The importance of true ground truth SR data and reliable blurring kernel
estimation for SR algorithms hereby justify the contribution of this work.

6 Conclusions and Future Work

The problem of acquiring ground truth SR datasets is addressed in this paper. A
dual-camera imaging system featuring a beam splitter to allow for capturing of
HR and LR images with temporal and spatial synchronization is proposed. An
interactive process is presented for the nontrivial pixel-accurate registration of the
HR–LR image pairs. The necessity of such ground truth data for SR is confirmed
by the analysis of the image characteristics.

The SR community has paid relatively less attention to the effect of blurring
kernel. Those that do often assume Gaussian kernels with the width known a
priori. It is proved in [EGA+13] that this problem actually matters. Our future
work will focus on building a larger SR dataset with the prototype system and
conducting systematical evaluation of kernel and noise properties to spur more
interest for these important aspects.
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Abstract: Machine vision methods are widely and successfully used for
assuring the quality of any produced goods. Many of these methods re-
quire the test object’s surface to be either nearly Lambertian or specular.
Since transparent materials do not meet these requirements, suitable ap-
proaches for the inspection of transparent materials are needed. This paper
provides an overview on existing methods for testing transparent objects for
enclosed impurities, defects affecting the shape or anomalies of the index
of refraction. Besides, possible topics for conducting further research are
identified.

1 Introduction

Transparent materials play an important role in many fields of industries. They
are often used in tasks or to create products that require high material quality and
reliability, e.g., windshields for aircrafts and automobiles or high-precision opti-
cal elements like lenses used for guiding laser beams in medical surgery applica-
tions [Mey14]. Therefore, it is a common visual inspection task to check trans-
parent objects for (enclosed) contaminants like absorbing particles (e.g., dust),
scattering structures (e.g., air bubbles, surface scratches) or defects affecting the
macroscopic 3D-geometry. For many applications, also the homogeneity of the
material’s refractive index is of utter importance. However, it cannot be evaluated
by the naked human eye since it is not capable of observing phase effects. In gen-
eral, the visual inspection of transparent objects is a fatiguing task for humans.
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Camera system IlluminationTransparent test object
with absorbing impurity

Figure 2.1: Conventional transmission inspection setup: An undirected light source il-
luminates the test object from one side. The transmitted light is observed by a camera
system from the other side. Absorbing defects present in the test object appear as dark
structures in the camera image.

period of inspection time. This clarifies the importance of automated methods for
the visual inspection of transparent objects.

There are many elaborated methods for inspecting opaque or specular objects.
However, these methods are not applicable to transparent objects, for example,
the laser lines employed by many active pattern projection systems cannot be
observed on the test objects surface due to its transparency. Research has been
performed to develop inspection methods suitable for transparent objects. This
paper reviews the research results of the past years with respect to the automated
testing of transparent objects for absorbing or scattering impurities, surface flaws,
defects affecting the object’s macroscopic 3D-geometry and for anomalies of the
index of refraction. Since many of the reviewed methods follow an individual
and complex approach they are described in dedicated sections.

2 Transmission setup

In common transmission setups for visual inspection, an undirected light source
illuminates the test object from one side and a camera system observes the trans-
mitted radiation on the test object’s other side (see Fig. 2.1) [BLF15, ANW+09].

The risk that the inspector oversees a material flaw increases notably after a small
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Camera system

Light source

Light source

Transparent test object
with scattering impurity

Figure 3.1: Conventional dark field inspection setup: One or more light sources, which
are not in the camera’s view, illuminate the test object. Any scattering impurity inside or
on the test object will scatter some light into the camera and will result in bright structures
in the observed image.

If the camera is focused on the test object, such setups are able to visualize ab-
sorbing contaminants. However, depending on the object’s shape and index of
refraction, some parts of the test object might not be inspected because the illu-
minating light rays can partly miss the camera [Hec13]. The setup cannot visual-
ize scattering defects as – due to the undirected illumination – the light rays that
miss the camera because of the scattering will not lead to a local intensity drop
since other rays with another angle of incidence are likely to be scattered into the
camera instead.

3 Dark field setup

In dark field setups the test object is usually illuminated in such a way, that in
the case of a defect-free test object, no light reaches the camera (see Fig. 3.1).
So, a defect-free test object results in a dark inspection image. Conversely, any
scattering defect present in the transparent object will scatter the incident light
into multiple directions – especially into the camera [BLF15, ANW+09, Hec13].

In general, dark field illumination is also capable of visualizing surface flaws
like scratches. However, defects affecting the macroscopic 3D-geometry or
inhomogeneities of the object’s index of refraction cannot be visualized.
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4 Retroreflection system

In order to overcome the limitations of the transmission setup (see Sect. 2)
regarding test objects of complex geometry and with a high index of refrac-
tion, Hartrumpf et al. proposed an approach – the so-called Purity system
[HH09, HVLS08, MLP+10] – that employs a retroreflective foil. Besides, their
approach is able to simultaneously capture a dark field illuminated image by
means of color multiplexing the different illumination sources.

Figure 4.1 shows a sketch of the respective optical setup. For obtaining the trans-
mission image, a bright field illumination shines onto the test object out of the
camera’s direction via a beam splitter. The retroreflector – which is placed be-
hind the test object – reflects any incident light ray back into its original direction.
Since the Helmholtz reciprocity principle [Hec13] holds, the retroreflector com-
pensates the refraction effect occuring at the interface between the transparentn
object and the surrounding medium. This is why the Purity system is also ca-
pable of inspecting test objects having a complex geometry or a high index of
refraction.

Besides the common dark field illumination described in Sect. 3, the approach
uses an additional dark field illumination that shines on the test object with an
angle of incidence that is close to Brewster’s angle. This illumination visual-
izes small scattering contaminants located on the test object’s surface. By em-
ploying individual colors (red, green, blue) for the different illumination compo-
nents, a single acquired color camera image contains the information of all three
illumination setups in separate channels.

Although it can capture absorbing or scattering impurities and surface flaws,
the Purity system is not capable of visualizing defects affecting the test object’s
macroscopic 3D-geometry or its index of refraction. However, since the resulting
inspection images require only simple image processing routines, the method’s
implementation is suitable for real-time applications.

5 Structured illumination system

In order to check complex-shaped transparent objects, e.g., headlamp lenses
of automobiles, for absorbing or scattering impurities and for surface defects,
Martı́nez et al. employ a robotic platform that moves a so-called ‘binary active
lighting system’ around the test object [MOGG12]. Their illumination approach
uses a monitor displaying a moving binary black and white stripe pattern (see
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Figure 4.1: Setup of the Purity system: Via a beam splitter, the test object is illuminated
from the direction of the camera’s optical axis (red). A retroreflective foil placed behind
the test object mitigates refraction effects occurring at the interfaces between the test ob-
ject and the surrounding medium. A dark field illumination (blue) visualizes scattering
defects. A third light source (green) illuminates the test object under Brewster’s angle in
order to visualize surface contaminants, e.g., dust particles.

Fig. 5.1). They require the test object to have no cavities and that the front and
back surface are parallel to each other. Any scattering defect on or inside the test
object will result in a deflection of rays. The deflection causes that some light of
a displayed bright strips produces a bright spot in the camera image of one of the
adjacent dark stripes (see Fig. 5.2). Conversely, an absorbing defect will result in
a dark structure in the image of the corresponding bright stripe. By phase shifting
the binary pattern and capturing multiple images, the test object is successively
scanned.

Because of the robot platform, the setup can inspect even objects with a complex
3D-geometry. However, a sensor planning strategy has to be found for every
type of test object. The proposed approach is not capable of visualizing defects
affecting the macroscopic 3D-geometry of the object or its index of refraction.
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Robotic arm Camera Test object
Monitor

with stripe
pattern

Figure 5.1: Structured illumination setup: A monitor realizes the ‘binary active lighting
system’ and illuminates the test object. A camera observes the transmitted light. In order
to inspect the whole test object, a robotic arm moves the camera to precomputed positions.

Test object with

Lighting system

Camera image

absorbing defect
scattering defect

Figure 5.2: Defect visualization by means of the ‘binary active lighting system’: Ab-
sorbing defects are imaged to dark structures if illuminated by a bright stripe. Scattering
defects are visualized by causing bright regions in the images of adjacent black stripes.
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Figure 6.1: Transmissive optical shearing interferometer: An expanded coherent laser
beam illuminates the test object. The transmitted light is collected by a microscope lens
that magnifies the test object. A shearing element tilted by 90◦ directs the light onto a
sensor, where the reflections from the shearing element’s front and back surface interfere
with each other. The resulting hologram is captured by the sensor.

6 Transmissive optical shearing interferometer

Seo et al. employ digital holographic microscopy in order to detect surface
scratches on transparent cover glasses with a magnitude of less than 10−6 m
[SKKK14, SKK14]. Their proposed setup is based on a transmission-type optical
shearing interferometer as shown in Fig. 6.1.

An expanded coherent laser beam illuminates the test object. The transmitted
light is collected by a microscope lens and directed onto a shearing element,
i.e., a high-quality glass-plate with a thickness smaller than the laser’s coherence
length. The reflections from the front and back surface create hologram patterns
on the sensor by interfering with each other.

By acquiring two holograms – one with the inserted test object and one without
it – the thickness of the investigated object can be reconstructed and can reveal
surface scratches.

Although the author has only applied the presented approach to find defects af-
fecting the test object’s surface structure, it should also be appropriate to detect
inhomogeneities of the index of refraction. However, the method cannot visu-
alize absorbing or scattering impurities and defects affecting the macroscopic
3D-geometry.
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Figure 7.1: Phase shifting interferometer: A coherent laser beam is split into a reference
arm (upper path) and a probe arm (lower path) by a polarizing beam splitter (BS). The
probe arm passes the test object that is immersed in a liquid matching the test object’s
index of refraction. Another beam splitter recombines the two arms. A quarter-wave plate
(QWP) and a rotatable linear polarizer induce an adjustable phase shift to the transmitted
beam. A camera observes the interference pattern created by the two beams on a rotating
diffuser screen.

7 Phase shifting interferometer

Chatterjee used a polarization phase shifting interferometer in order to test high-
quality optical glass slabs for inhomogeneities of the local distribution of the
index of refraction [Cha15]. An expanded laser beam is split into a reference
arm and a probe arm. The test object is immersed into a liquid that matches
the object’s index of refraction. After the probe beam traversed the test object,
it passes a quarter-wave plate and a rotatable linear polarizer together with the
reference beam. In concert, the two beams create an interference pattern on a
rotating diffuser screen that is used to reduce speckle. The screen is observed by
a camera. Figure 7.1 shows the principle optical inspection setup.

By employing polarizing beam splitters and the quarter-wave plate, an adjustable
phase-shift can be induced by rotating the linear polarizer. Capturing and pro-
cessing images for different rotation angles of the linear polarizer allows to un-
wrap the phase information of the optical path difference conveyed in the inter-
ference patterns. The unwrapped phase can be used to detect inhomogeneities of
the index of refraction with an accuracy of 10−6.
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Absorbing Scattering Shape Macr.3D- Index of
impurities impurities flaws geometry refraction

Transmission + - - - -
Dark field - + + - -
Retroreflection + + + - -
Structured
illumination + + + - -

Shearing
interferometer - - + - -

Phase shifting
interferometer - - - - +

Table 8.1: Summary of the different approaches for defect visualization in transparent
objects. +: the type of defect is visualized; -: the type of defect is not visualized.

8 Conclusion and future work

This contribution discussed some of the recent works regarding the automated
visual inspection of transparent objects. Table 8.1 lists the covered methods and
summarizes their suitability for industrial inspection applications.

Each of the presented approaches is capable of visualizing one or more of the
considered defect types but none of them is sensitive to them all. Therefore, a
possible topic for future research could be to find an inspection method that is
able to capture all mentioned defect types.

Besides, industrial inspection tasks often pose challenging timing conditions that
cannot be met by some of the discussed approaches. Hence, improving the
image acquisition and processing speed of automated inspection methods for
transparent objects represents another open research question.
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Abstract: Sample-based online algorithms are state of the art for solv-
ing Partially Observable Markov Decision Problems (POMDP). But also
the state of the art solver POMCP still suffers from the curse of dimen-
sionality and curse of history. In Distributed POMDP, independent agents
jointly optimise their actions under some coordination mechanism where
every agent has access to a subset of the observations. In this work, we in-
troduce Graphical POMDP (GPOMDP) drawing from existing Distributed
POMDP appraoches as well as graph-based formulations as found in graph-
ical probabilistic models. Further, we propose the Graphical POMCP
(GPOMCP) algorithm that combines POMCP with message passing similar
to the Belief Propagation (BP) algorithm from Graphical Probabilistic Mod-
els. In preliminary tests, GPOMCP shows good performance on a common
Distributed POMDP benchmark.

1 Introduction

Partially Observable Markov Decision Problems (POMDP) [KLC98] capture
planning scenarios with both nondeterministic system dynamics and uncer-
tainty about the current state. The Partially Observable Monte-Carlo Planning
(POMCP) algorithm [SV10] is a current state of the art technique for solving
POMDP. On some benchmarks, it led to several magnitudes of speed improve-
ments compared to previous point-based planning methods such as SARSOP
[KHL08]. A recent publication by Amato and Oliehoek [AO15] applies POMCP
to Distributed POMDP in the Dec-POMDP model. In this technical report, we
present preliminary findings on a novel variation of POMCP for Distributed
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POMDP where value estimates are propagated in a graph structure representing
a decomposition of the POMDP. The resulting algorithm combines ideas from
POMCP and message-passing approaches from Graphical Probabilistic Models.

The paper is structured as follows: First, we present relevant background material
in Section 2. Then, in Section 3, we present the Graphical Partially Observable
Markov Decision (GPOMDP) model and in Section 4 the Graphical Partially Ob-
servable Monte-Carlo Planning (GPOMCP) algorithm. The runtime behavior of
the algorithm is evaluated based on a common benchmark scenario in Section 5.
The paper concludes in Section 6 with a summary and future outlook.

2 Background

2.1 Partially Observable Markov Decision Problems

Markov Decision Processes (MDP) represent scenarios for decision-making un-
der uncertainty where the system dynamics are dependent only on its current
state and chosen actions, but not on the past history that lead to the current
state [Put94]. Partially Observable Markov Decision Problems (POMDP) gen-
eralize MDP to situations where the underlying state is latent and can only
be observed indirectly [KLC98]. Partially Observable Monte-Carlo Decision
Problems (POMDP) are defined as n-tuples

〈V = S ∪A ∪R ∪O, {Xv}, P 0
S , PS , PO, R, T 〉 .

The variables v ∈ V are made up of the latent-state S, actions A, rewards R
and observations O. In every period t ∈ {1, . . . , T}, they take on a value from
a discrete domain in the state vector xt ∈ XV = ×v∈V Xv . For brevity, the
components of the state vector are referred to as st, at, rt and ot. Alternatively,
we index components with a subscript, e.g. xt

J for some set J ⊆ V . The initial
latent-state s0 is drawn from the distribution P 0

S . Afterwards, at the beginning of
every period t, the actions at are selected. The following latent-state, as well as
the resulting rewards and observations are drawn according to

PS(s
t+1 | st, at), rt = R(st, at, st+1), PO(o

t | st, at, st+1) .

The latent-state variables are not known to the choice-making entity and only the
history ht = (XA ×XR ×XO)

t−1 of previous actions, rewards and observations
can be used for action selection. Histories can be concatenated with values from
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the current period and the empty history is written as ε. A policy π is a determin-
istic mapping from the history of previous periods to current actions. Rewards
are included in the history so that we may refer to them in algorithms that im-
prove policies based on sampled scenario rollouts. But rewards are treated as
unobservable for the policies themselves. The value of a policy is the expected
reward over the T periods given by Bellman’s equation. The goal of solving a
POMDP is to find a policy of maximum value.

V t
π(s

t, ht) = E


 ∑
ρ∈xt

R

ρ+
t<T

V t+1
π (st+1, htatrtot)

∣∣∣∣ at = π(ht)




V (π) =
∑
s∈XS

P 0
S(s)V

0
π (s, ε)

The so-called Q-value is defined as the expected rewards for choosing action a
after an observed history h and following the policy π afterwards.

Qt
π(h

t, at) =
∑
st

P (st |ht)E

[∑
r∈rt

r +
t<T

V t+1
π (st, htatrtot)

]

2.2 Monte-Carlo Tree Search and POMCP

Monte-Carlo Tree Search (MCTS) [BPW+12] is a recent approach to search for
an optimal policy in multi-period scenarios. MCTS cyclically generates example
rollouts and updates the estimation for the value of actions at a specific posi-
tion in the scenario tree. If the scenario is deterministic, then the scenario tree
has a branching factor according the number of possible action-choices in ev-
ery period. If the scenario is stochastic, then the possible state-transitions lead
to an additional branching. Algorithm 2.1 shows the generic MCTS algorithm
with rollout for POMDP scenarios. The performance of MCTS largely depends
on the selection of actions for exploration. The question is whether to select
actions that have shown good performance in the past, or whether to analyze
less-explored branches of the scenario tree that might contain some undiscovered
potential. Recently, the Upper-Confidence Bound (UCB) princple originally de-
veloped for bandit-games [ACBF02] has become a popular choice. In UCB,
actions are evaluated according to their past performance with an additional bias
that favors actions for which less empirical evidence is available.

Q̂[ha] + α

√
log(n[h])

n[ha]
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Algorithm 2.1 The Monte-Carl Tree Search Algorithm with rollout for POMDP

1: procedure MCTS
2: INITIALIZE
3: while enough time do
4: h ← ROLLOUT
5: UPDATE(h)
6: end while
7: return BESTACTION
8: end procedure
1: procedure ROLLOUTPOMDP
2: h ← ε
3: s ∼ P 0

S

4: for t ∈ {1, . . . , T} do
5: a ← EXPLORATIONACTION(h)
6: s′ ∼ PS(s, a); r ← R(s, a, s′); o ∼ PO(s, a, s

′)
7: h ← haro
8: s ← s′

9: end for
10: return h
11: end procedure

Variables indexed with square brackets denote maps. The default value for any
index is zero. The map Q̂ contains estimations of Q-values and is updated after
every rollout. The counter n is increased by one every time a certain history oc-
curs during the rollouts. The exploration/exploitation tradeoff can be tuned with
the weighting parameter α. This leads to an exploration strategy that prunes less
promising branches implicitly. Still, convergence is guarantueed for many algo-
rithms employing UCB since every branch is visited infinitely often in the limit.
UCB-based exploration has led to huge performance increases for many game-
playing AIs, in particular those for games with large branching factors, such as
Go [GKS+12]. Partially Observable Monte-Carlo Planning (POMCP, [SV10])
is the application of UCB to solving POMDP in the MCTS framework (see Al-
gorithm 2.2). Note that the value estimation update in POMCP is relatively sim-
plistic. It just gives the average rewards experienced after a given history/action
combination during the rollouts. This converges to the actual Q-value of optimal
play since the UCB-based action selection will choose optimal actions infinitely
more often in the limit. More complex update mechanisms, e.g. updating beliefs
on the value of an action in a Bayesian setting, may lead to better estimations
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Algorithm 2.2 The POMCP algorithm in the MCTS framework

1: procedure INITIALIZEPOMCP
2: n[ · ]← 0; Q̂[ · ]← 0
3: end procedure
1: procedure UPDATEPOMCP(h)
2: ρ← 0
3: for t ∈ {T, . . . , 1} do
4: ρ← ρ+

∑
r∈R x

t
r

5: n[ht]← n[ht] + 1
6: n[htat]← n[htat] + 1

7: Q̂[htat]← Q̂[htat] + ρ−Q̂[htat]
n[htat]

8: end for
9: end procedure
1: procedure EXPLORATIONACTIONPOMCP(h)
2: if ∃a : n[ha] = 0 then
3: return ∼ U({a : n[ha] = 0})
4: end if
5: return arg maxa Q̂[ha] + α

√
log(n[h])
n[ha]

6: end procedure
1: procedure BESTACTIONPOMCP
2: return arg maxa∈XA Q̂[a]
3: end procedure

2.3 Decentralized and Multiagent POMDP

Decentralized planning in POMDP settings requires superexponential time to
solve in the worst case [BGIZ02]. Thus, recent work has focused on heuristic
solvers and specific classes of Distributed POMDP where some underlying struc-
ture can be exploited. Examples for such models are ND-POMDP [NVTY05],
Dec-POMDP [OSWV08] and I-POMDP [GD05]. Readers are referred to [SZ08]

for a given set of samples. However, empirical evidence shows an advantage for
algorithms with fast updates that process more rollout/update cycles for the same
computational effort. Competitive implementations of POMCP process several
hundred thousand rollouts per second.
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for an in-depth discussion and equivalence results. A comparison between Dec-
POMDP, ND-POMDP and our approach GPOMDP is given at the end of the
following section.

3 Graphical POMDP

Graphical POMDP (GPOMDP) are defined as n-tuples comprised of a standard
POMDP with an additional set of agents I .

〈V = S ∪A ∪R ∪O, {Xv}, P 0
S , PS , PO, R, T, I〉 .

Agents I ∈ 2V are choice-making entities. Every agent i ⊆ V \ S has access to
a subset of the actions Ai = A ∩ i, rewards Ri = R ∩ i and observations Oi =
O ∩ i. Agents may overlap by sharing some variables (i, j) ∈ I2,∆ij = i ∩ j.
Overlapping agents are in the set of neighbours N(i) = {j ∈ I : ∆ij 
= ∅}. In
distributed settings, variable sharing can be achieved via lossless communication
of action choices and observations. Every agent i has access to a reduced history
ht
i ∈ (Xi)

t−1 in time period t. The action-choices are made by either assigning
disjoint controlled actions AC

i ⊆ Ai and local policies πt
i : (Xi)

t−1 → XAC
i

to
every agent or via some additional online coordination mechanism.

Relation to Dec-POMDP In Decentralized POMDP (Dec-POMDP)
[BGIZ02], all action and observation variables are assigned to exactly one agent,
so that A = ×iAi, O = ×iOi. Agents have access to their own actions and
observations only. So all Dec-POMDP are GPOMDP, but GPOMDP are Dec-
POMDP if and only if all agents are disjoint, i.e. ∀(i, j) ∈ I2, i 
= j ⇒ i∩j = ∅.
However, it is possible to construct additional actions and observations in Dec-
POMDP in a way that mimicks communication channels between agents [SZ08].
In consequence, for any given GPOMDP, a Dec-POMDP can be constructed that
recovers sharing of actions via communication channels. Shared observations
can be achieved by duplication of observation variables P (xo′ |xo) = δ{xo′=xo}.
This structure is however lost in the general Dec-POMDP and has to be
rediscovered by the solvers.

Relation to ND-POMDP Networked Distributed POMDP (ND-POMDP)
[NVTY05]) factorize the latent-state so that the variables are either controlled
by exactly one agent or are unobservable S = ×iSi × Su. Action and observa-
tion variables are each assigned to a unique agent, so that A = ×iAi, O = ×iOi.
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The agents are transition and observation independent and coupled only by the
reward function.

P (st+1 | st, at) = P (st+1
u | stu)

∏
i∈I

P (st+1
i | sti, ati)

P (ot | st, at) =
∏
i∈I

P (oti | stu, sti, ati)

R(s, a) =
∑
c∈C

Rc(u, sc, ac)

The reward function R in ND-POMDP is made up of components that depend
on a cluster of agents C ∈ 2I . With a slight abuse of notation, the latent-state of
a cluster is sc ∈ ×v∈∪ciXv and similarle for actions. The resulting locality of
interaction between agents is characterized by a graph GC = (I, C := {(i, j) ∈
I2 : ∃c ∈ C, i ∈ c, j ∈ c}). Most papers assuming the ND-POMDP model
further allow agents to communicate observations with some or all the other
agents. According to this definition, all ND-POMDP are GPOMDP. The reverse
is not necessarily true, since GPOMDP do not impose transition and observation
independence between agents.

4 Graphical POMCP

We now introduce the Graphical Partially Observable Monte-Carlo Planning
(GPOMCP) algorithm for solving GPOMDP online in a distributed fashion. It
draws from two main sources of inspiration: The POMCP algorithm [SV10],
one of the state of the art online POMDP solvers, and message-passing ap-
proaches based on the Generalized Distributive Law (GDL) [AM00, KFL01].
Variants of the latter are known for example the Belief Propagation (BP) al-
gorithm [Pea88] in Graphical Probabilistic Models and the Max-Plus algorithm
used for Distributed Constraint Optimization (DCOP) [PF05].

Assume a GPOMDP where the agents form a hypergraph tree H = (I, E) with
agents as vertices and neighborhood relations as edges E = {(i, j) ∈ I2 : j ∈
N(i)}. This assumption is motivated by BP, where convergence is also only
guaranteed on trees. Still, BP on loopy graphs often achieves good results in
practice [YFW+00]. The theoretical insight and empirical evidence to draw the
analogy for GPOMCP is however not in the scope of this contribution. Since
the visible actions Ai overlap, agents can select contradicting sets of actions. In
Algorithm 4.1 this is resolved by giving precedence to agents who make their
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Algorithm 4.1 Action selection in GPOMCP

1: procedure EXPLORATIONACTIONGPOMCP(h)
2: xA ∈ XA
3: for i ∈ I do
4: y

Ai
← AGENTEXPLORATIONACTIONGPOMCP(i, hi)

5: for a ∈ Ai do
6: xa ← ya
7: end for
8: end for
9: return xA

10: end procedure
1: procedure AGENTEXPLORATIONACTIONGPOMCP(i, hi)
2: if ∃ai : n[hiai] = 0 then
3: return ∼ U({ai : n[hiai] = 0})
4: end if
5: return arg maxai Q̂i[hiai] + α

√
log(n[hi])
n[hiai]

6: end procedure
1: procedure BESTACTIONGPOMCP(h)
2: xA ∈ XA
3: for i ∈ I do
4: y

Ai
← arg maxai Q̂i[hiai]

5: for a ∈ Ai do
6: xa ← ya
7: end for
8: end for
9: return xA

10: end procedure

choice later. That is necessary, since the UCB-based action selection may other-
wise lead to situations where two agents have each a strong preference for differ-
ent but overlapping set of actions. Selecting a mixture of the two action sets can
lead to a blocking situations where the same actions are selected indefinitely in a
row as both agents were not able to see the action for which they have a strong
preference. By giving precedence to later agents, at least one agent gets to see
the results of his preferred action set and will eventually move on to a different
choice.
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The update procedure of the POMCP algorithm consists of a message passing and
an estimation update phase. The message passing phase uses a forward/backward
schedule. Recall that the agents form a tree hyper-graph. The schedule S(I) con-
tains an ordered list of sender/receiver relations where the agents i wait until they
have received messages from their |N(i)| − 1 children in the graph. Then they
send out a messages to their parent. Once they have received a message from their
parent, messages are sent out to all children. This is called the forward/backward
schedule since the message exchange starts at the leaf of the tree, propagates
through the graph and finally returns to the leafs. Note that the schedule can
be efficiently implemented to run in parallel on distributed agents. But we omit
discussing this possibility in this text.

Algorithm 4.2 Initialization and estimation update in GPOMCP

1: procedure INITIALIZEGPOMCP(I)
2: n[ · ] ← 0

3: ∀i ∈ I, R̂i[ · ] ← 0, Q̂i[ · ] ← 0
4: ∀i ∈ I, ∀j ∈ N(i), nij [ · ] ← 0, mi→j [ · ] ← 0
5: end procedure
1: procedure UPDATEGPOMCP(h)
2: ∀i ∈ I, ρi ← 0
3: ∀i ∈ I, ∀j ∈ N(i), ρij ← 0
4: for t ∈ {T, . . . , 1} do
5: for (i, j) ∈ S(I) do
6: ρij ← ρij +

∑
r∈(R∩Oi)\∆ij

xt
r

7: nij [h
t
ija

t
ij ] ← nij [h

t
ija

t
ij ] + 1

8:
mi→j [h

t
ija

t
ij ] ← mi→j [h

t
ija

t
ij ] +

(ρij+
∑

l∈N(i)\j ml→i[h
t
ila

t
il])−mi→j [h

t
ija

t
ij ]

nij [ht
ija

t
ij ]

9: end for
10: for i ∈ I do
11: ρi ← ρi +

∑
r∈R∩Oi

xt
r

12: n[ht
i] ← n[ht

i] + 1
13: n[ht

ia
t
i] ← n[ht

i, a
t
i] + 1

14: R̂i[h
t
ia

t
i] ← R̂i[h

t
ia

t
i] +

ρi−R̂i[h
t
ia

t
i]

n[ht
ia

t
i]

15: Q̂i[h
t
ia

t
i] ← R̂i[h

t
ia

t
i] +

∑
j∈N(i) mj→i[h

t
ija

t
ij ]

16: end for
17: end for
18: end procedure
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Figure 5.1: Illustration of the Firefighting benchmark problem taken from [OSWV08]

Similar to POMCP, the reward from the later periods is accumulated in a scalar
ρi. However, ρi takes only the rewards into account that are visible to the agent
i. In addition, we accumulate a set of summed rewards ρij for every neighbour
with the rewards that were visible to i, but not to the neigbhour j ∈ N(i). The
message from agent i to agent j then becomes an estimate for the amount of
rewards the subtree behind the edge (i, j) is expected to receive during the current
period and afterwards, conditioned on the joint history htij ∈ (X∆ij

)t and action
aij ∈ XA∩∆ij

. The messages and the locally visible rewards are then used to
update the local estimates for the true Q-Value.

5 Benchmark Results

We compare our results on the Firefighting domain introduced in [OSWV08]. It
models a team of n firefighters that have to extinguish fires in a row of nH = n+1
houses. In this work, we will take n = 8 and T = 3. Each house H has a fire
level lH ∈ {0, . . . , 2}. The latent-state is an assignment of fire levels to every
house. See Figure 5.1 for an illustration of the scenario.

At every time step, each firefighter f can choose to fight fires at house f or f +1.
If a house H is burning (lH > 0) and no firefighting agent is present, its fire level
will increase by one point with probability 0.8 if any of its neighboring houses
are burning, and with probability 0.4 if none of its neighbors are on fire. A house
that is not burning can only catch fire with probability 0.8 if one of its neighbors
is on fire. When two firefighters are at the same house, they will extinguish
any present fire completely, setting the house’s fire level to zero. A single agent
present at a house will lower the fire level by one point with probability 1 if no
neighbors are burning, and with probability 0.6 otherwise. Each firefighter can
only observe whether there is a fire or not at its location. Fire is observed with
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Figure 5.2: Benchmark results of the firefighting scenario.

probability 0.2 if lH = 0, with probability 0.5 if lH = 1, and with probability
0.8 otherwise. Rewards are 2 − lH for each house according to the burn level
reached in that period. Initially, the fire level lH of each house is drawn from a
uniform distribution. Each firefighter is represented by an agent that perceives
the actions, rewards and observations of himself and of his neighbours f − 1 and
f + 1 if they exist.

Figure 5.2 compares the performance of three approaches in the firefighting
benchmark scenario. In all cases, we estimate Q-values with the given num-
ber of rollouts. Then, the resulting performance is evaluated as the mean reward
of 500 rollouts where we choose the action with maximum estimated Q-value
in every period. The first appraoch employs standard POMCP where all actions,
rewards and observations are visible to a central learning an planning entity. The
second approach is the FT-FV-MPOMDP algorithm from [AO15] where the first
application of MCTS to Dec-POMDP in was given. The factored tree (FT) ver-
sion of their algorithm is equal to GPOMCP when omitting the message passing
step, therefore having each agent build up a separate evaluation. The last ap-
proach compared in the benchmark is our GPOMCP. All algorithms ran with an
exploration weight factor of α = 10.

The benchmark shows the results for running the rollout and update step for the
given number of repetitions and then using the resulting Q-value estimates to
guide the action selection during the T periods. Comparing the algorihtms in a
pure online-planning scenario is planned for the near future.It can be seen that
GPOMCP outperforms the other algorithms in the firefighting scenario. Both
GPOMCP and FV-POMCP converge to a stable solution within 50,000 rollouts.
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However, GPOMCP achieves a substantially better solution. This is due to the
coordination where agents also consider expected rewards even in parts of the
POMDP that are not visible to them. The convergence of POMCP is even slower
than what the graph indicates since POMCP has to iterate over all possible joint
actions in every period. Since the number of joint actions grows exponentially in
the number of action variables, the rollouts are computationally more expensive
for POMCP.

6 Summary

In this contribution, we presented the Graphical Partially Observable Markov
Decision Problem (GPOMDP) to capture the structure of Distributed POMDP
where agents may overlap in their observable variables. Whe further introduced
an algorithm for solving GPOMDP based on the well-known POMCP algorithm
[SV10] and the message passing approach known from Graphical Probabilistic
Models. First empirical evidence hints at favorable convergence properties for
factorizable POMDP. Future work will apply GPOMCP to further benchmark
problems from the literature and characterise its theoretical properties. Further-
more, we intend to apply GPOMCP to problems with continuous state and action
spaces according to the principles developed in [BDMB13].
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Abstract: The important role of automated visual methods in industrial
product inspection necessitates the design of optimized and precise mea-
surement setups. Due to the high dimensionality of the design space, the
manual choice of the geometrical and optical parameters is tedious and often
not optimal. In this article we study the problem of inspection planning for
laser line scanners which are affordable and widely-used inspection tools.
To this end, the measurement model is defined and appropriate evaluation
metrics are introduced, which formulate the optimization problem in terms
of a number of constrains and cost functions. Visibility analysis, lateral res-
olution, range resolution, and the measurement uncertainty are of the main
metrics we cover. Computer graphics simulations are utilized to simulate
the measurement in different setup configurations and estimate the evalu-
ation metrics. We also propose a general uncertainty model which can be
applied for modeling the uncertainty in laser scanners. The optimum laser
scanner setup can be achieved by optimizing the defined evaluation metrics
using a multi-objective approach.

1 Introduction

In the manufacturing process, an inspection is the process of determining if
a product deviates from a set of given specifications [NJ95]. Depending on
the product, different features can be of interest including completeness of the
components, surface properties such as texture, and the geometrical dimensions.
Based on the application, the desired geometrical features are also diverse. They
can include 1D properties such as length, 2D profiles such as a circle, the 3D
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structure of the product, or other geometrical characteristics like flatness, cylin-
dricity and parallelism. This report is mainly dedicated to the applications with
the purpose of 3D geometrical inspection to acquire the spatial structure of the
target product.

Depending on the application and the surface properties of the product as well
as the allowed tolerances, different inspection techniques can be applied. Touch-
trigger probes mounted on the coordinate measuring machines (CMMs) are a
classical solution in industry. CMMs sample the product surface by touching
it at specific points and provide micro-scale measurements [WPH06] with well-
studied performance characteristics [ISO09], however, at a very low scan rate
[NJ95]. In addition, the touch-probes are not applicable to deformable surfaces
. Automated visual inspection methods (AVI), on the other hand, provide fast
and contactless scanning of dense point-clouds, but typically achieve a lower
accuracy [PLBR03]. Moreover, the performance of AVI methods can be af-
fected by many environmental factors such as surface properties (e.g. reflectivity,
roughness), illumination, and sensor calibration quality. These factors lead to an
uncertainty in measurement whose analysis is rather complex [CBL02].

Due to the desired benefits that AVI methods provide, a precise setup design and
planning is needed to optimize the acquisition and guarantee the measurement
uncertainty. However, the design space for AVI setups are often very large. To
this end, sensor planning methods have been developed to optimize the setups in
terms of sensor view-points and optical parameters. Based on the application, a
number of optimization criteria have been applied. Sensor visibility and optimum
surface coverage are of the important issues frequently discussed in this context
[Pit99]. A few planning methods have also included the measurement uncertainty
metric into their optimization[PLBR03, Sco09].

In this report, we focus on the problem of CAD-based planning for laser line
scanners, which are affordable and widely-used inspection tools based on the
principle of triangulation [BLF15]. To discuss the issue, we have organized the
main content of the article in five sections. Section 2 introduces the geometry
and the measurement model of laser line scanners. We elaborate on the topic
of inspection planning and discuss the different optimization criteria in section
3. The measurement uncertainty metric is particularly discussed and a proposed
uncertainty modeling for laser line scanners is presented. Section 4 introduces
our multi-objective approach for the optimization in brief. Finally, we conclude
the discussion in section 5. Throughout this article, bold letters denote vectors
and uppercase letters correspond to matrices.
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2 Laser Line Scanners

Laser line scanners are a variant of structured-light scanners, in which a known il-
lumination pattern is projection on the object and captured by a camera [BLF15].
In the case of laser line scanners, the structured light is a laser fan made by
spreading the light of a laser beam through special lenses. Figure 2.1 illustrates
the geometry of a laser line scanner. In this figure, the laser l emits a laser fan
with an opening angle θl. This causes a 2D illuminated profile on the target sur-
face which is captured by a camera located at oc. The received image is then
processed to extract the intersection of the laser plane with the object surface
with sub-pixel accuracy, using different peak detection algorithms [FN96].

The coordinate frame of the camera is spanned by the vectors r, u, and v, and
has a distance dc with the world origin ow. The angle τ is referred to as the
triangulation angle and θc is the angle between the camera axis and the horizon.
During the inspection, the object is moved along the x-axis. The parameters d,
θc and τ are important degrees of freedom in designing a laser scanner setup.

x

v

u
roc

ow

θl

dc

τ

θc

Figure 2.1: Geometry of a laser line scanner.
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2.1 Measurement Model

The measurement model describes both the camera and the laser plane, as well
as the way these models are connected to derive the 3D coordinates of a mea-
surement point. In this section, we describe the parametrization and modeling of
a laser scanner which is flexible to changing the setup parameters.

The camera projection is modeled by the well-known pin-hole camera model
[MSKS12]. This model defines the relation between the world coordinates of a
measurement point (xw, yw, zw) and the 2D coordinates (xp, yp) of its projection
on the image plane by:

λ

xpyp
1

 = KP


xw
yw
zw
1

 =

fx s cx
0 fy cy
0 0 1

 [R t
] 
xw
yw
zw
1

 .

The projection matrix of a camera in this model is obtained by the multi-
plication of the matrix K3×3, containing the intrinsic calibration parameters
(fx, fy, s, cx, cy), and the matrix P 3×4, built by the concatenation of a 3D ro-
tation matrix R, and a translation vector t. In this equation, R and t determine
the relative transformation of world to camera coordinate frame and λ is a scale
factor. For simplicity, the skew parameter s is often considered to be zero.

The space illuminated by the laser is theoretically a part of a 3D plane. However
in practice, the laser plane is obviously not infinitely thin, but rather it occupies a
volume which depends on a number of factors including the lens used to spread
the laser beam. Nevertheless, since the peak intensity at the lateral center of the
illuminated profile is estimated and extracted on the image, we can still model
the detected points as part of a 3D plane in space using

xTn = d, (2.1)

in which n is the plane normal vector, x = [xw yw zw]
T is a point in the world

coordinate frame, and d is a scalar.

Equation (2.1) leads to two independent linear equations which are not enough to
recover 3D coordinates. In the structured light scanning, the known structure of
the emitted light serves as an additional information. In this case, the additional
information is the laser plane equation, since the 2D detected points both fulfill
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previously obtained equations, the system of linear equationsrT − vT (xp−cx)
fx

uT − vT (yp−cy)
fy

nT


xwyw
zw

 =


(xp−cx)
fx

t3 − t1
(yp−cy)
fy

t3 − t2
d

 (2.2)

results, which is used to reconstruct the 2D detected points in the image. Vectors
rT,uT, and vT (see Figure 2.1) are the row vectors of the rotation matrix or
equivalently RT = [r u v], and ti refers to an element of the translation vector
t = [t1 t2 t3]T. To keep the notation concise, we use the expression Ax = b
to refer to Eq. (2.2). Thus, to obtain the 3D measurement point x, one can build
matrix A and vector b accordingly and compute

x = A−1b.

3 Evaluation Metrics in Sensor Planning

The possible design space for an AVI system is often very large. This includes
the position and orientation of the camera(s) and illumination(s), and possibly the
intrinsic camera parameters (e.g. focus, aperture). Therefore, manually selecting
a configuration for this high-dimensional space is tedious and in most cases not
optimal. Inspection planning seeks to automatically select a sensor configuration
(or a sequence of them) which optimally fulfills some evaluation metrics. The
majority of the works in this area is only devoted to optimizing the view-points
of the sensors; however, a few authors have also included some optical constraints
[Cow88] or the measurement uncertainty [MJR+11] in their planning.

The rest of this section is dedicated to introducing and reviewing the major op-
timization metrics which can potentially be used in view-point planning for de-
signing 3D scanners. In addition, we point out our approach on how to include
each metric in planning a laser line scanner.

3.1 Surface Coverage

The optimum surface coverage is of the main goals pursued in almost all planning
methods. The aim is to select the sensor configurations automatically so as to
cover the whole surface with a minimal number of acquisitions. This problem is

the camera and laser plane equations. Therefore, by adding (2.1) to the two
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to be an NP-complete problem. Therefore, the approaches are usually greedy or
approximate.

Based on the a priori available information, the methods with the purpose of
full surface coverage fall into model-based and non-model-based categories
[SRR03]. Non-model-based methods assume no a priori knowledge about the
target object. This is usually the case when no CAD model is available, such
as model acquisition of ancient statues or reverse engineering. An important va-
riety of these methods are known as next-best view planning [Pit99], in which
the next best view-point is the one that maximizes the information gain of the
next measurement. Model-based methods, however, [Sco09] [PLBR03] base the
planning on an a priori object model usually in the form of a CAD model. The
view-point space is then discretized and the optimization is carried out in this
space by means of different ray tracing algorithms to determine the visibility of
each view-point and avoid occlusion.

Due to the availability of CAD models and the prior knowledge about the in-
spection work-space in industries, planning for industrial inspection purposes is
typically model-based. Therefore, we also follow a model-based approach for the
current application. To analyze the visibility based on a CAD model, one needs
to determine the visibility of each surface primitive (e.g. mesh triangles) in ev-
ery desired view-point. Based on the complexity of the model, the number of
triangles in a model can be arbitrarily high. For instance, the CAD model of the
cylinder head in Figure 3.1 contains more than 2 million triangles. Therefore, it
is crucial that the visibility check for each triangle be efficient. To do so, we have
implemented the Rasterizing Simulation Library (RSL) which is a hardware ac-
celerated rendering tool based on Open Graphics Library (OpenGL). Figure 3.1
displays an image rendered by RSL which simulates the camera image during
the inspection of a cylinder head. In each desired view-point, RSL enables us to
determine the surface triangles which are seen by the camera and/or hit by the
laser within milliseconds.

3.2 Lateral Resolution

Lateral resolution is a metric to evaluate the density of the scanned point-cloud
based on the distance between adjacent 3D measured points. The sensor distance
and the camera resolution are of the dominant factors influencing this metric.
As the visibility metric prefers the view-points with a broader view, longer sen-
sor distances are often preferred. Lateral resolution plays a complementary role
in ensuring that the resulting point-cloud has the required resolution. Cowan

equivalent to a set-cover problem in which finding the global optimum is known
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estimation model based on the target distance and the camera pixel size. Scott
[Sco09] has also proposed a model for a range scanner based on the distance,
viewing angle and the image resolution.

For an arbitrary surface, the intersection of the laser on the surface can form an
arbitrary curve whose scan resolution we want to estimate. During the simulation
for the visibility analysis, we are able to obtain the true 3D points on the CAD
model which are hit by the laser plane and projected on each column of the image.
Therefore, the distance calculation for the adjacent 3D points in the resulting
point-cloud is straightforward.

3.3 Range Resolution

Every measurement is assigned a resolution which indicates the smallest value
that the measuring method is able to distinguish. For a laser line scanner, the
range resolution can be defined as the minimum change of the target height which
can be distinguished by the sensor. To determine the range resolution one needs
to determine the change in the surface height which induces the minimum al-
lowed change in the position of the laser line on the image, which is in turn equal
to the precision of the peak detection algorithm.

Figure 3.1: Rendering an image from the camera view using RSL.

[Cow88] considers the lateral resolution as a constraint and proposes a simple
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The sensitivity of laser scanners typically increases as the triangulation angle is
increased in the interval (0, π) [BLF15]. This fact can be utilized as a priority for
the sensor view-point during the planning. To the best of our knowledge, range
resolution has not yet been considered in the previous planning methods.

3.4 Measurement Uncertainty

Every measurement is subject to some level of uncertainty. According to the
Guide to the Expression of Uncertainty in Measurement (GUM) [JCG08], every
measurement needs to be accompanied with a statement about its uncertainty so
that one is able to assess the measurement reliability. An uncertainty is expressed
in terms of a standard deviation (for a single measurement) or a covariance matrix
(for multi-variable measurements such as the 3D coordinates) which describes
the dispersion of the measurement around the mean value.

Methodologies to evaluate the measurement uncertainty are generally catego-
rized into two types. Type A methods are based on the calculation of sample
mean and variance of repeated measurements. Type B methods on the other
hand, rely on a scientific judgment based on all of the available information on
the possible variability of the measurement. This is often done by propagating
the input uncertainties through the measurement model. Despite of the standard
uncertainty evaluation methods, the inclusion of the uncertainty metric in the
sensor planning is not straightforward since one needs an uncertainty model that
thoroughly describes the measurement uncertainty in each configuration.

In the rest of this section, we review and analyze the methodologies for estimat-
ing and modeling the uncertainty. In Section 3.4.3, we introduce our approach
towards modeling the uncertainty of a laser line scanner.

3.4.1 Type A Uncertainty Evaluation Methods

The methods following a type A uncertainty evaluation typically include a large
amount of experimental work and the measurement uncertainty is estimated by
analyzing repeated measurements in different configurations. Most of the pre-
vious works in modeling the uncertainty of laser scanners belong to the type A
category.

The experimental uncertainty model used by Scott [Sco09] is experimentally ob-
tained during the calibration. This model grows quadratically with the distance
and has an inverse cosine relation with the incident angle. Prieto et al. [PLBR03]
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by Mahmud et al. [MJR+11] depends only on the laser beam incidence angle.
Contri et al. [CBL02] experimentally analyze the uncertainty of reference point
detection during the calibration, which is further propagated to the reconstruction
of the points using type B methods.

Since the inaccuracies in the detection of the laser line on the image highly de-
pend on the surface reflection and micro-structure, the laser detection process is
an important source of uncertainty. The previously mentioned works depend on
reference objects to analyze the error and therefore, their models are biased by
the surface properties of the reference objects and the quality of their calibration.
Moreover, the differences in their resulting models indicate that one cannot make
a general statement about the behavior of the sensor uncertainty and therefore,
the experiments need to be repeated for every individual sensor.

3.4.2 Type B Uncertainty Evaluation Methods

Type B analysis is often used to propagate the estimated input uncertainties to
the output measurement. Clarke [Cla98] presents two alternatives for modeling
and propagation of uncertainties: Monte-Carlo simulation and first order error
propagation, which we review below. We also discuss about a third alternative
with a non-probabilistic approach.

Monte Carlo Simulations are based on the repeated sampling of the input ran-
dom variables according to their probability distribution, to estimate the proba-
bility distribution of the output measurement. This method has a low implemen-
tation overhead and can be applied to all types of distributions [Cla98]; how-
ever, the sampling space grows exponentially with the input dimension which
slows down the run-time as the number of uncertainty parameters increase. Us-
ing Monte Carlo simulations for sensor planning implies that the process should
be repeated in each constellation and for every measurement point, which is not
feasible. However, it can be utilized to evaluate the validity of other approximate
methods.

Taylor-Based Uncertainty Propagation methods rely on direct mathematical
propagation of the covariance matrix of the sources of uncertainty through the
Taylor series expansion of the measurement function. Since the covariance prop-
agation through nonlinear functions is cumbersome, these methods are most of-
ten based on a linear approximation, which can be valid as long as the input
uncertainties are small. The method leads to a closed form mathematical expres-
sion which can be evaluated efficiently for each desired set of model parameters.

suggest an empirical model depending quadratically on the distance and expo-
nentially on the orientation angles of the sensor. The uncertainty model proposed
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However, the approximation is less valid for highly nonlinear measurement mod-
els and large input uncertainties. In this approach, both input and output variables
are typically considered to be Gaussian.

The measurement covariance matrix Σy obtained by a first-order approximation
is given by

Σy = JfΣxJ
T
f .

In this equation, y = f(x) is the measurement function, Σx is the covariance
matrix of the input x, and the Jacobian matrix of the measurement function is
denoted by Jf =

∂f
∂x .

Non-probabilistic methods typically assume fixed intervals to bound the disper-
sion of each input variable. Interval analysis methods, for example, use interval
arithmetic operations [AM00]. The intervals are further propagated through the
model to obtain the resulting measurement interval. However, the arithmetic op-
erations are typically limited to a set of basic operations. These methods do
not have a probabilistic point of view and are more adequate for worst-case sys-
tem analysis. Nevertheless, by replacing the probability distributions with in-
tervals, these methods relieve the assumption of Gaussian distributions. Telle
et al. [TSY+05] have followed an interval analysis approach to propagate the
uncertainties through a stereo visual system.

3.4.3 Proposed Uncertainty Modeling

In this section, we propose an uncertainty modeling for a laser line scanner, which
can be used as one of the evaluation functions in sensor planning. Our intention
is to present a general model where most of the differences in various setups
(e.g. target object properties, sensor parameters, different calibration methods
and positioning devices) can be addressed.

The prerequisite of an uncertainty modeling is the correct recognition and model-
ing of the sources of uncertainty. Since the sources can be numerous, it is tedious
or even impossible to model every single factor. Every source of uncertainty,
regardless of its properties, can eventually influence the resulting measurement
by perturbing either of the parameters in the measurement model. Therefore, our
approach is to model the effect of the uncertainty factors, rather than modeling
the factors themselves. With all the sources of uncertainty taken into account, the
error-free equation of the form Ax = b (see Section 2.1) will be replaced by the
perturbed form:

(A+ δA)(x+ δx) = (b+ δb).
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The first step is the modeling and estimation of input uncertainties δA and δb.
By propagating the uncertainty using a type B method, the resulting measurement
uncertainty δx can be obtained. To model the input uncertainties, we group the
input parameters based on the part of the measurement they influence. This ap-
proach simplifies the incorporation of the numerous influencing factors and helps
explain the differences in the previous models [Sco09, PLBR03]. We model the
uncertainties in three categories which we briefly describe below:

Laser Detection Uncertainty: The inaccuracies in the detection of the 2D co-
ordinates {xp, yp} of the laser line on each column of the image are modeled by
Gaussian additive noise parameters {xp+exp , yp+eyp}. This uncertainty can be
caused by several factors such as surface properties, laser speckle, sensor noise,
quantization effects, and the sub-pixel peak detection algorithm. This model can
be used to incorporate the target surface effect in the uncertainty model.

Positioning Uncertainty: Positioning devices are subject to some level of geo-
metrical uncertainties in positioning the sensor. We model the geometrical un-
certainties of the camera and laser independently, so as to allow a high degree of
freedom in the view-planning. As shown in Figure 3.2, the positioning uncertain-
ties lead to a transformation of the camera coordinate frame by a vector eo and
some rotation matrix Re, both modeled as multivariate Gaussian distributions.
The position and orientation of the laser plane is also affected by geometrical un-
certainties. The deviations of the laser plane normal vector is modeled by a cone
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Figure 3.2: Positioning uncertainty models for camera coordinate frame (a) and laser
plane (b).
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parameterized by two independent random variables eθ and eφ. The random vari-
able eθ is considered to be a Gaussian variable and eφ is uniformly distributed on
the interval [−π ,π ].

Intrinsic Calibration Uncertainty: The process of camera calibration is an im-
portant source of uncertainty. We assume that the camera model has no sys-
tematic bias and the variance and covariance of the uncertainties involved with
the camera model parameters are extracted during the calibration using methods
such as the one proposed by Leo and Paolillo [DP11]. Using such methods, the
uncertainties in the intrinsic camera parameters can be modeled and integrated to
the sensor uncertainty model.

Based on the uncertainty modeling discussed above, each original measurement
parameter is perturbed by a number of random variables. Therefore, we can
augment the measurement model by replacing each parameter with its perturbed
form. By doing so, the augmented measurement model will be defined by the
original parameters as well as the random variables describing the uncertainties.
Using appropriate type B methods (e.g. first-order propagation), one can prop-
agate the uncertainties of the random variables through the measurement model
and estimate the covariance matrix of the resulting 3D measurement. This leads
to a mathematical expression which can be evaluated for each measurement point
and each desired setup constellation.

4 Optimization Approach

We carry out the optimization by searching in the discretized parameter space.
The parameters of interest mainly include the camera position, orientation, and
the triangulation angle, which together define a constellation. We use a multi-
objective optimization approach, in which we try to find the optimum configu-
ration of the laser and the camera according to the different metrics discussed
in Section 3. The minimum required lateral resolution and range resolution are
formulated in terms of optimization constraints. The measurement uncertainty
and visibility metrics are the main optimization cost functions which need to be
optimized by taking the constraints into account. Using RSL, the measurable sur-
face points in each constellation can be extracted. The simulated point-cloud can
be used to evaluate the visibility and the lateral resolution. The range resolution
can also be judged according to the constellation parameters. Using the proposed
uncertainty modeling and a first-order uncertainty propagation, the measurement
uncertainty can be propagated to the simulated measurement points to obtain a
covariance matrix. The covariance matrix describes the point’s 3D dispersion el-
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lipse, which can be used to evaluate the dispersion along any direction of interest
by a linear transformation. The uncertainty along the surface normal is a good
metric to evaluate the deviation of the measurement from the nominal surface.
By computing all the needed metrics, the optimum setup design parameters can
be found in a multi-objective optimization.

5 Conclusion

In this report, we studied the problem of setup design and optimization for laser
line scanners. We first introduced the mathematical measurement model which
maps a 2D detected point in the image to a 3D measurement point. We fur-
ther studied different evaluation metrics, namely the visibility, lateral resolution,
range resolution, and measurement uncertainty, which can be utilized to evaluate
the setup from different evaluation perspectives. To analyze the visibility and
the lateral resolution, the Rasterizing Simulation Library (RSL) was introduced
which is used to render images from the camera view. An uncertainty model was
also proposed in which appropriate random variables model the sources of uncer-
tainty. By propagating the uncertainties, the induced uncertainty in the resulting
3D measurement can be estimated and expressed in terms of a covariance matrix.
We finally discussed the optimization approach where we take all the evaluation
metrics into account and optimize the setup in a multi-objective optimization.
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Abstract: Measuring the volume of dirt particles within the context of tech-
nical cleanliness is an important task. The estimated 3D shape yields signif-
icant information about material properties and can highlight potential risks
while using the produced goods within the final product. The results of this
analysis are used to optimize the production steps to eliminate such harm-
fully shaped particles already in the early stages. Estimating 3D volume of
particles with just a few microns of surface area normally implies an expen-
sive microscope measuring device. This report investigates on hardware and
software approaches to implement a cost efficient sensor consisting of stan-
dard components. A hardware setup using eight LED lights for illuminating
the specimen from various known directions while using the shadow casts
to reconstruct the object surface are proposed and evaluated. By manipu-
lating the intensity of these LEDs the setup can be adjusted to be useful for
various specimen with different reflection properties. The height of a parti-
cle is estimated at discrete positions based on a global model. Measurement
results acquired by established state-of-the-art microscopes are analyzed for
incorporation into the donated model for initial ground-truth. During the
calibration process those results are used to map measured height values to
the scalar z-values used for height estimation of the given specimen.

1 Introduction

Technical cleanliness is used to document and identify contamination on pro-
duced parts and surfaces. Quality assurance in other applications is directly ap-
plied on the examined object with optical or tactile measurement devices like
camera systems, light-microscopy and interferometry. In technical cleanliness
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(a) (b)

Figure 1.1: In the extraction step dirt particles are washed out of the examined technical
good (a). A complete cleaning setup can be seen in (b). Images source: Gläser Company
(Horb).

this approach is not feasible, because the particles of interest are not visible from
the outside. Engine blocks, tubes and closed housings need special constructions
and automation solutions in order to examine these goods with given measure-
ment sensors directly. Therefore an intermediate step for extracting the particles
out of the specimen (extraction) is introduced [dA14]. The part is washed with
e.g. demineralized or alcohol assorted water and the outflow is filtered. The con-
tamination in form of dirt particles is examined with given inspection devices
after this extraction. Depending on the optical contrast conditions, filter material
and dirt particle properties, the filter needs to be dried in a further post-processing
step. Figure 1.1 is illustrating where the initial extraction process takes place.

There are different particles to be measured as shown in Figure 1.1. This non
complete selection of different particle-types outlines several problems. Threads
as seen in Figure 1.2(c) need to be unwrapped and their length needs to be es-
timated. Because of the extraction process, particles might conglomerate. This
puts high demands on the software algorithms to segment the particle from the
background and to segment the particles from each other 1.2(b). In this report
we concentrate on single particles, well separated from the background by using
established segmentation methods, as we are interested in finding an estimation
of particle’s height. Though the lateral dimensions are also relevant as the shape
of the particle is needed to segment it from the background.
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(a) (b) (c)

Figure 1.2: An overview acquired with a Leica Z-16 microscope is shown on (a). A
detailed view of a conglomerate of particles in (b). It is further mandatory to unwrap
eventual threads as seen in (c).

Estimating volume and 3D shape of dirt particles in the context of technical clean-
liness is a crucial task as it yields important information concerning the risks
such particles might cause inside technical components. [dA14] defines particles
within a range of 50 to 1000 µm diameter as mandatory to be detectable. The
inspection system therefore needs to provide a sufficient acquisition resolution
and suitable optical properties like depth of focus in combination with a movable
z-axis to reconstruct height information as shown in [FKB14]. A typical particle
filter has a diameter of around 7 cm, which makes a moving table mandatory
when examining the complete filter. Though estimation of 3D shape and vol-
ume is not yet a mandatory specification demanded by the standards [dA14], it is
quite clear that the impact of harmful shaped particles occurring as conglomer-
ations emerged by accumulations in the use-case scenario is quite considerable.
Because of this reason 3D shape measurement and volume estimation was added
into the appendix of the above specification and is likely to be mandatory in
upcoming revisions.

This technical report describes an image processing approach in combination
with a developed hardware illumination for detecting and analyzing clotted resid-
uals on particle filters after the initial extraction and drying process as seen
in figure 1.2. Those ideas were summarized and presented at the 3rd Interna-
tional Multidisciplinary Microscopy and Microanalysis Conference in October
2015 [FSB16]. This report at hand extends these results and examines the robust-
ness of the described approach. It also presents errors in the volume estimation
when shadow detection fails through misinterpretation of contours or noise in
the acquired image. It formulates ideas to limit regions with suitable shadow per
particle out of given geometry.
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Figure 1.3: Alicona InfinitFocus reconstruction of the lateral area shown as 2.5D (a) and
the corresponding profile of the selected particles (b).

Figure 1.3 is showing a randomly selected particle filter analyzed with an Alicona
InfinitFocus microscope. It can be seen, that estimating height information is a
demanding task even for specialized measurement devices. The height of one of
the particles seen in 1.3(a) is around 20 µm. Imitating professional measurement
devices by replicating such a depth from focus setup is not feasible from a cost-
efficient point of view, as accurate, e.g. a few microns moving z-axis within a low
uncertainty level are expensive. Furthermore the optical lenses needed would be
counterproductive against the need to examine a rather large lateral area.

1.1 Experimental setup and software implementation

The experimental setup consists of three components, a custom-built double LED
ring light in combination with an industrial camera equipped with a bi-telecentric
objective lens. The LEDs used in this setup are fabricated by Nichia company
having a color temperature of 5000 K while providing 4.16 W electrical power.
The angle of radiation is specified as 120◦ and therefore suitable for uniform
illumination. Based on experimental results those LEDs are also suitable to pro-
duce sharp shadows, which is the most important criterion when segmenting the
shadow contours from the background. The illumination is a combination of
two separate rings, the lowermost ring consists of eight LEDs arranged equally
spaced to illuminate the specimen from a flat angle as shown in Figure 1.4(c).
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(a) Ringlight with LED rings (b) Overview image (c) Shadow demonstration

Figure 1.4: The illumination ring consists of two separately controllable LED rings (a). It
can be used for uniformly illuminated overview images (b), while the lower ring produces
sharp shadows (c).

This ring is used for generating the shadow contours. An upper ring is utilized to
acquire homogeneous illuminated overview images (Figure 1.4(b)).

The second component is an industrial color camera Manta G-419C of
ALLIED Vision Technologies with a resolution of 2048 × 2048 pixels. In our
experiments the color sensor is not used. Segmentation and shadow detection is
computed on the gray-scale image only. This camera was combined with the bi-
telecentric objective TC 2M HR 016-C manufactured by Opto Engineering. The
setup allows a pixel size of 4.5 µm2 and a depth of view of 2.0 mm. Therefore the
field of view is 9.2 × 9.2 mm2. In order to scan larger surfaces, this setup can be
extended with a motorized stage as shown in [FSB15]. The software implemen-
tation, which consists of the shadow detection, calibration and 3D estimation,
was realized in C++ using the opencv image processing library [Bra00].

2 Algorithm and implementation

Essential to the 3D reconstruction is a robust calibration. In the initial algo-
rithm step an estimation of the light positions Li in three-dimensional space is
computed. Our coordinate-system fixates the center point pc =

(
cx, cy, z

)T
of the spanned vector space 0 at the center of the projected image scene. The
unit of this vector is pixel in the x and y dimension. The z dimension is a scalar
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value mapped to a metric scale by comparing to ground-truth height measure-
ments or a-priori known height measurement of a common specimen, acquired
with a standardized microscope. We furthermore assume a punctual light source
Li and a list of correspondences Ci = {cjk} with |Ci| ≥ 2, cjk represent-
ing a point on the object oj and a corresponding shadow contour point sk. It
is possible to construct equations of lines l(cjk) with oj as support vector and
t · (sk − oj) with t ∈ R as the direction vector. The light source Li can then be
estimated by finding the intersection points by pairwise constructing lines l(cjk)
and l(cj′k′), j′ 
= j, k′ 
= k. Because of deviations when computing the corre-
sponding points a single intersection point might not necessarily exist. Therefore
the problem is solved by finding the point p with minimal euclidean distance
to all given lines out of Ci, donated as dist(p, l) to yield an estimation for Li.
In a next iteration to this optimization problem outliers, lines that increase the
variance of the distance deviation, can be filtered out to compensate incorrectly
mapped correspondences. The non weighted optimization problem, where ev-
ery correspondence has the same influence on the estimation position of Li is
provided as follows:

Li = argmin
p

∑
j,k
j �=k

dist(p, l(cjk))

An example correspondence mapping is shown in Figure 2.1(a). The calibration
needs to be estimated for all LEDs in the given setup. To find the correspon-
dence points, knowledge of the light source’s position can be incorporated. It is
helpful to choose simple specimens for calibration. In our example the corre-
sponding points could be estimated by using a Harris corner detector as shown in
[BPLF12] and [GW08]. In combination with the overview image Figure 1.4(b)
corner candidates located on the object and others introduced by shadow can be
distinguished as those appear in both images. False positives can be eliminated
by taking previously known symmetric constraints into account. As the calibra-
tion is a crucial part concerning the accuracy of this method a manual calibration,
implemented as a wizard in software is highly recommended. Figure 2.1(b) il-
lustrates the algorithm for determining the height value at different positions (red
circles) on the image plane. The outer contour of a shadow area Si introduced
by LED Li can be estimated by masking the segmented specimen itself with
the post-processed overview image Figure 2.2(b). After applying a threshold to
segment the shadow from the background the contour can be estimated by com-
puting its outline with morphological operators and edge detection. As we are
only interested in those parts of the outer boundary, that have at least a minimum
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(a) Ringlight
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(b) overviewlights

Figure 2.1: Correspondences object (red) and shadow points (green) are maintained in
a correspondence list Ci (a). The height at every position on the object is iteratively
estimated through LED Li and shadow boundary points Bi by finding the minimum z-
value (b).

distance from the specimen itself in the direction of light position, those non rel-
evant candidates are removed by multiplying the contour image with a slightly
enlarged mask. The result can be seen in Figure 2.2(a). With the position of
Li and the shadow boundary points Bi = {s0, . . . , sn}, containing all shadow
points sn produced by the light source out of the direction Li, a height value
can be assigned to every pixel position q =

(
x, y, 0

)T
on the image plane.

The height value is computed by an orthogonal projection of the lines of sight
lii(Li, Bi) between the LED Li and all corresponding shadow boundary points
Bi as shown in Figure2.1(b). This procedure is repeated for all calibrated LEDs
in this setup. While computing the height values produced by a single light-
source Li a maximum rule is assumed, which means that a larger height value is
kept. This cares for artifacts introduced by the assumption of a point light source,
which would produce borders of the specimen with a height h of zero, because
the shadow path starts right next to the edge of the specimen. This maximum
rule is only applied if there was no better height, e.g. lower height assigned by
another light-source Lj . That means, height values assigned by the computation
of a different light-source are evaluated by maintaining a minimum rule. The
height value h′ at position q′ is therefore only updated whenever the new height
value is lower than the current value, which assigned by different light-source.
The algorithm iterates over all light-sources, starting with on randomly selected



148 Peter Frühberger

(a) (b)

Figure 2.2: Outline is extracted by image processing algorithms (a). A mask is computed
for later segmentation of the resulting height estimation (b).

3 Results

When directly comparing the results with measurements acquired by a profes-
sional system as illustrated in Figure 3.1(a) one can directly see that the height
resolution of the microscope is much higher than the reconstruction seen in Fig-
ure 3.1(b) and 3.1(c). The microscope reconstructs the surface in much greater
detail, taking properties of the surface like roughness into account. As seen on
the result images, initial calibration yields results that fit into the expected range
of the values measured before. The chip and its cuboid shape are accurately re-
constructed. The height, which is specified at around 6 mm according to the
data-sheet is in the same range as the height computed by the presented method.
When looking at Figure 3.1(c), it becomes evident that the calibration needs to
be optimized as currently single outliers in the list of corresponding points re-
sult in a displacement of the estimated LED position, which directly influences

light. The order does not matter, but every light and corresponding shadow points
are only evaluated once. The line is constructed from the direction of the light-
source and ends on the particle filter with height z = 0. After the iteration is
finished the mask computed in a prior step multiplied by the image to eliminate
artifacts located outside of the object.
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(a) (b) (c)

Figure 3.1: Alicona’s InfiniteFocus reconstruction with clear surface details (a) and
reconstructions estimated with the methods presented in this report (b) and(c).

4 Conclusion and discussion

There are two critical parts in this setup. The first part is for sure the initial cal-
ibration of the experimental setup, which will be examined in future research.
The other critical part is the estimation of the shadow boundaries, because these
directly influence the height estimation. In the presented approach every pixel is
used with the same weight, meaning every pixel has the same impact in the algo-
rithm to estimate the height values. As seen in Figure 4.1 the algorithm is very
sensitive to noise. Every pixel, that is segmented from the background is directly

height estimation. Another point for improvement is the shadow edge detection,
as single artifacts worsen the measurement results. This cannot alone be achieved
by changing the edge detection algorithms or further post-processing but needs
to be incorporated into a model approach which uses sanity checks to remove
falsely detected contours. As shown in Figure 3.1 on flat objects, that are known
before hand, these calibration errors can be corrected after the reconstruction by
averaging the height values. But for rough surfaces, this compensation approach
will lower the reproduction granularity of the surface and therefore the height
resolution will be further reduced. Hence it is suggested to reduce possible er-
rors in each image processing step. When comparing the given results with the
microscope’s measurement one can see, that the height dimensions are in a sim-
ilar range but still way off when micrometer accuracy is required. A really big
advantage of the donated setup is the large lateral range 1000 × 1000 µm2 that
can be measured without stitching partial results together.
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(a) (b) (c) (d)

Figure 4.1: From left to right the original contour (a) produced by L6 was modified by
extending the original contour (b), adding noise around the contour (c) and by adding
noise onto the complete image (d). All images are colored with the same color scale. All
images use the same color-map and are directly comparable.

Besides the issues concerning robustness, the approach shown in section 2 is
already producing results. It was implemented as a software and hardware pro-
totype with the goal to realize a cost-efficient sensor for estimating height and
volume information of dirt particles. As demonstrated in section 3, it is possi-
ble to estimate this information with a quite simple setup. In the future, these
results need to be further compared and benchmarked in detail against ground-
truth measurements to determine the accuracy and robustness of this approach.
On the qualitative side the introduced model should also be extended by surface
properties like roughness or material characteristics to improve the height esti-
mation. The artifacts introduced by assuming a linear relation between shadow

added into the boundary list Bi and therefore used for computing the height-
value. As of now there is no regularization that could work around wrongly
detected pixels or noise. Figure 4.1(c) especially shows that noise will highly
influence the measurement. As the noise has a large impact on the error, this
issue violates the conditions of a well-posed problem, according to [Rie03] the
given problem is ill-posed out of that reason. Future methods therefore need to
propose a way for regularization. This could be by defining proximity rules for
boundary pixel within a neighborhood. Fixating the area around a particle out
of given geometric preconditions and the already known light position Li is also
suggested.
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contour candidate, the point light position and the resulting height could be
post-processed by introducing these surface characteristics.

Estimating height information while maintaining high-throughput measurements
in the context of an industrial in-line QA process is still a critical task today.
Hence a huge demand for measurement systems, that can ensure persistence in
industrial environments while also keeping service costs low exists. The solution
shown in this paper yields great potential for those kind of systems in the near
future.
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Abstract: Wide area motion imagery (WAMI) facilitates the surveillance
of several tens of square kilometers while using only one airborne sen-
sor platform. Typical applications such as automatic behavior recognition,
scene understanding, or traffic monitoring depend on precise multiple ob-
ject tracking. Therefore, moving object detection is generally used as initial
step. However, reliable moving object detection for WAMI is challenging
as imprecise image alignment, low object resolution and a large number of
moving objects lead to split, merged, and missing detections. In the con-
text of this report, a detailed overview of existing methods for moving ob-
ject detection proposed for WAMI is given. Ten existing methods as well
as a novel combination of short-term background subtraction and suppres-
sion of image alignment errors by pixel neighborhood consideration are sys-
tematically evaluated on the WPAFB 2009 dataset that contains more than
160,000 ground truth detections. Parameters that contribute most to the per-
formance of each method, the influence of related pre-processing steps as
well as the impact of varying traffic density and scenery on the performance
are discussed.

1 Introduction

In recent years, wide area motion imagery (WAMI) has been attracting an in-
creased amount of research attention as WAMI enables large area surveillance
while using only one airborne sensor platform. The sensor is comprised of a
matrix of multiple cameras. Images of neighboring cameras with partially over-
lapping field of view are stitched to form the image with large ground coverage.
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The stitched images are typically collected at 1-2 Hz due to the large volume
(up to 100 megapixels). As WAMI data like the publicly available WPAFB 2009
dataset [U.S09] cover several tens of square kilometers and can contain thou-
sands of moving objects per frame, applications such as driver behavior analysis
or traffic monitoring are facilitated at large scale. These applications generally
depend on multiple object tracking and consequently on object detections that
are used at different stages in the tracking algorithm such as track initialization or
object-to-track association [BTX+14]. Object detections are obtained by object
segmentation approaches based frame differencing or background subtraction.

However, moving object detection in WAMI is very challenging: The moving
objects are typically in the order of 10x20 pixels due to the low spatial reso-
lution. Thus, detection approaches based on appearance features and machine
learning are unreliable in WAMI so far [PM14]. The object detection is further
complicated by weak contrast between object and background, shadows and oc-
clusions that can lead to missed detections. Although image alignment is applied
for camera motion compensation, residual errors of the alignment process as well
as parallax effects can result in false positive detections. Additional challenges
are sudden changes in camera gain and seam artifacts due to image stitching.
Seam artifacts are caused by radiometric changes across different sensors and
can produce false positive detections as sweeping seams can cause bands of large
difference in the difference image [KGS13]. All these challenges can affect the
performance of moving object detection. Nevertheless, there exists no systematic
evaluation of moving object detection in WAMI so far even though missed detec-
tions emerge the need for track linking or false positive detections can cause the
initialization of false positive tracks.

In this report, several moving object detection methods that are presented in
WAMI literature are summarized and extended by a novel combination of short-
term background subtraction and suppression of image alignment. In total, eleven
methods are systematically evaluated on four image regions of the WPAFB 2009
dataset that comprises 1,025 frames. The different image regions contain more
than 160,000 ground truth detections and offering different challenges such as
traffic density and varying scenery.

2 Object Detection Methods

Object classification methods that are applied on WAMI data can be distinguished
into frame differencing and background subtraction. As frame differencing re-
quires less frames, residual errors of the alignment process are reduced compared
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to background subtraction [SS13]. A drawback of frame differencing compared
to background subtraction is the sensitivity to detect slow moving objects whose
positions partially overlap in consecutive frames and consequently can lead to
missed detections. Further approaches that are widely used in aerial videos such
as methods based on optical flow vectors and appearance feature based methods
are not applicable [APK14] or unreliable [PM14], respectively. Thus, only frame
differencing and background subtraction approaches that are presented in WAMI
literature are summarized and discussed in the following subsections.

2.1 Frame Differencing

Moving object detection methods based on frame differencing can be classified
into two-frame and three-frame differencing. Two-frame differencing calculates
the pixel-wise intensity difference between two consecutive frames by:

D(x, y) = |It(x, y)− Ît−1(x, y)|,

where D(x, y) is the intensity value difference at pixel (x, y) and It and Ît−1

denote the intensity values of frame t and the aligned frame t−1. The difference
image for three-frame differencing is given by the minimum of the differnece
image between frame t and t − 1 and the difference image between frame t and
t+ 1:

D(x, y) = min(|It(x, y)− Ît−1(x, y)|, |It(x, y)− Ît+1(x, y)|)

As two-frame differencing requires only two consecutive frames, the residual
errors of the alignment process are minimal. However, each moving object pro-
duces two motion blobs in the difference image. One blob represents the object
position in the current frame and an additional one represents its position in the
previous frame. Saleemi and Shah [SS13] applied two-frame differencing on
WAMI data and proposed to handle this so called ghosting effect by rejecting
blobs with smaller mean gradient magnitude and intensity standard deviation in
the current frame compared to the previous frame. Xiao et al. [XCSH10] applied
instead three-frame differencing to avoid multiple blobs for each moving object.
Additional residual errors caused by the alignment process can be suppressed by
using the minimum differences of each pixel in small neighborhoods as proposed
by Pollard and Antone [PA12]. Keck et al. [KGS13] extended three-frame dif-
ferencing by applying a box filter to the difference image to reduce false positive
detections caused by seam artifacts.
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2.2 Background Subtraction

In general, moving object detection based on background subtraction is per-
formed by calculating the difference image D(x, y) between an image It and
its corresponding background model IBG :

D(x, y) = min(|It(x, y)− IBG(x, y)|)

A straightforward method to acquire a background model is to calculate the
pixel-wise intensity median of consecutive frames. The number of frames used
for background modeling applied on WAMI data range from 8 [LLB+13] to
16 [PDM11] and is thus clearly higher than the number of frames required for
frame differencing. Incorporating background gradient information can be used
to suppress noise in the difference image caused by parallax effects or residual
errors due to the alignment process. Reilly et al. [RIS10] proposed to subtract
the background gradient magnitudes from the difference images whereas Liang
et al. [LLB+13] modified this approach by replacing the subtraction with an ad-
ditional threshold operation. Pixels that corresponding background magnitude
exceeds a given threshold are expected as noise and set to 0 in the difference
image.

Calculating the pixel-wise intensity mean of consecutive frames is not consid-
ered as this approach requires four times the number of frames than median
background modeling for comparable results [RIS10]. Kent et al. [KMP+12]
proposed an alternative mean background approach. Instead of calculating the
pixel-wise intensity mean of consecutive frames, Kent et al. [KMP+12] proposed
to calculate the running mean and the standard deviation with a recursive filter.
Pixels considered as moving are detected by comparing the difference between
the intensity value It and the local mean µ to a local threshold which is given by
the standard deviation multiplied with a set scaling factor.

More sophisticated approaches such as Gaussian mixture models are inapplicable
for object detection in WAMI due to the high number of required frames [RIS10]
as well as the sensitivity to illumination changes [SS13], parallax and registration
drift [PA12]. Pollard and Antone [PA12] replaced the traditional GMM with an
Interval Gaussian Mixture Model (IGMM). Each pixel is described as an interval
limited by a minimum value µmin and maximum value µmax , instead of model-
ing each pixel as a mixture of Gaussians. The interval boundaries for each pixel
are continuously updated by incorporating the minimum and maximum intensity
values in a small neighborhood around the pixel in the current frame. Pixels that
deviate more than a single global standard deviation value σ from this interval
are considered as pixels belonging to a moving object.
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A static background model based on an inpainting algorithm is proposed by
Aeschliman et al. [APK14] Therefore, pixels assigned as objects by an initial
difference image between the current and the previous image as well as pixels
that correspond to objects in the previous frame are replaced based on directional
and smoothness constraints to complete the background model.

2.3 Proposed Method

The combination of median background modeling and neighborhood considera-
tion is expected to be a powerful approach that has not been reported yet. Pre-
liminary experiments indicated good recall values in case of median background
subtraction even for sequences with slow moving objects whose positions par-
tially overlap between consecutive frames. However, median background mod-
eling causes a high number of false positive detections due to parallax effects and
the image alignment process. Neighborhood consideration seems to be an appro-
priate alternative for incorporating background gradient information to suppress
false positive detections as noise caused by parallax effects as well as image
alignment are in the order of a few pixels. Thus, the intensity value difference
D(x, y) between the current frame It and the corresponding median background
model IBG is given by the minimum difference between pixel (x, y) in the cur-
rent frame and all pixels (xi, yj) in a given neighborhood N of the background
model:

D(x, y) = min
i,j

(|It(x, y)− IBG(xi, yj)|)

3 Experimental Results

In total, eleven object detection methods are considered for the evaluation. An
overview of these methods is listed in Table 3.1. The performance of the selected
methods is evaluated on four image regions of the WPAFB 2009 dataset [U.S09].
The image regions are selected with regard to the image regions evaluated by
Basharat et al. [BTX+14] and Keck et al. [KGS13]. The WPAFB 2009 dataset
comprises 1,025 frames with annotated GT. In the context of this report, stopping
and parked objects are removed from the GT in order to determine the correct
number of missing detections. The four image regions shown in Fig. 3.1 consist
of 2,278×2,278 pixels and represent different challenges such as traffic density
and varying scenery. The performance of each method is evaluated by means of

precision =
TP

FP + TP
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Source Object Detection Method
Saleemi [SS13] 2-frame Differencing + Ghost Handling
Xiao [XCSH10] 3-frame Differencing
Keck [KGS13] 3-frame Differencing + Box Filter
Pollard [PA12] 3-frame Differencing + Neighborhood
Pollard [PA12] Interval Gaussian Mixture Model
Shi [SLBH12] Median Background
Reilly [RIS10] Median Background + Gradient Magnitude Suppression
Liang [LLB+13] Median Background + Gradient Magnitude Thresholding
Kent [KMP+12] Mean Background + Local Thresholding
Aeschliman [APK14] Inpaint
Proposed Median Background + Neighborhood

Table 3.1: Evaluated methods for moving object detection.

Prior to moving object detection, the camera motion is compensated by image
alignment. After image alignment global histogram matching (HM) [GW02] is
used to adjust camera gain and illumination variation, followed by local Gaus-
sian mean filtering (MF) [SKS14] to reduce seam artifacts. Fig. 3.2 shows the
impact of histogram matching and Gaussian mean filtering exemplarily for two-
frame differencing by means of difference images. Large intensity differences
are markedly reduced by HM (Fig. 3.2(b)) compared to no HM (Fig. 3.2(a)).
However, the left image region still exhibits large differences in intensity. The
reason for these differences is intensity discontinuities in the images due to stitch-
ing. These so called seam artifacts are suppressed by additional MF as depicted
in Fig. 3.2(c). The impact of HM and MF on the performance is illustrated in

and

recall =
TP

TP + FN
,

where TP, FP and FN are the number of true positive, false positive and false
negative detections. In order to be consistent with the literature, the centroid of
each blob is considered as a detection. Thus, each detection is represented by a
point. Detections with annotated GT within a radius of 20 pixels are defined as
TP otherwise as FP. GT objects without associated detection are defined as FN.
The distance is set to 20 pixel, since GT annotations can differ from the center of
the object. Furthermore, the blob centroid is often shifted from the annotated GT
position due to appendant shadows.
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(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Figure 3.1: Image sections offering different challenges such as traffic density and varying
scenery used for evaluation.

Fig. 3.3(a). As thresholding is used to distinguish pixels into objects and non-
objects, it is expected that the threshold value has the highest impact on the per-
formance. Thus, the shown precision-recall curves are generated by varying the
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(a) no HM/MF (b) HM (c) HM+MF

Figure 3.2: Difference images for two-frame differencing without global histogram
matching (HM) and local Gaussian mean filtering (MF) (a), with HM (b) and with HM
and MF (c).

threshold value. The performance without HM and MF is considerably increased
by applying HM whereas HM is outperformed by additional MF. Similar results
are obtained for the other object detection methods as well for all scenes.

The performance of each object detection method is influenced by several pa-
rameters. The influence of relevant parameters is separately evaluated and op-
timized for each object detection method with regard to precision and recall.
Thus, precision-recall curves are generated by varying the threshold value. In
the following the parameters that contributed most to the performance are dis-
cussed. The corresponding precision-recall curves are given in Fig. 3.3(b)-3.3(f)
exemplarily by means of scene 1.

In addition to the threshold value, all methods are affected by the minimum blob
size. The minimum blob size is the minimal object size in pixels that is ex-
pected. Thus, detections with fewer pixels are associated as false detections and
are rejected. The impact of the blob size on the performance of three-frame dif-
ferencing is shown in Fig. 3.3(b). More false positives due to noise are rejected
for larger minimum blob sizes. Consequently, the precision is increasing with
increasing minimum blob sizes. In contrast, the recall is decreasing, since more
small objects or partially detected objects are discarded.

The further parameters that are discussed are only relevant for particular methods.
Methods based on median background modeling are affected by the number of
frames used for modeling the median background. The precision-recall curve for
various number of frames is depicted in Fig. 3.3(c). The precision is increasing



Systematic Evaluation of Moving Object Detection for WAMI 161

0.5 0.6 0.7 0.8 0.9 1.0
0.5

0.6

0.7

0.8

0.9

1.0

HM
no

HM+MF

pr
ec
is
io
n

recall

(a) Various pre-processing

recall

pr
ec

is
io

n

1.0

0.9

0.8

0.7

0.6

0.5
0.5 0.6 0.7 0.8 0.9 1.0

b = 30
b = 50
b = 70

(a) various minimum blob sizes b

(b) Various minimum blob sizes b

recall

pr
ec

is
io

n

1.0

0.9

0.8

0.7
0.6 0.7 0.8 0.9 1.0

f = 4
f = 6
f = 8
f = 10

(b) various number of frames f

(c) Various number of frames f

recall

pr
ec

is
io

n

1.0

0.9

0.8

0.7
0.6 0.7 0.8 0.9 1.0

N = 3x3
N = 5x5
N = 7x7

(d) Various neighborhood sizes N

recall

pr
ec

is
io

n

1.0

0.9

0.8

0.7
0.6 0.7 0.8 0.9 1.0

N = 5x5
N = 9x9
N = 13x13

(e) Various neighborhood sizes N

recall

pr
ec

is
io

n

1.0

0.9

0.8

0.7

0.6 0.7 0.8 0.9 1.0
0.6

δ = 20
δ = 40
δ = 60
δ = 80

(f) Various gradient thresholds δ

Figure 3.3: Variation of pre-processing steps (a) and optimization of parameters that con-
tributed most to the object detection performance: (b) minimal blob size (in pixels), (c)
number of frames used for median background modeling, (d)-(e) neighborhood size (in
pixels) in case of 3-frame differencing and median background subtraction and (f) gradient
magnitude threshold value δ in case of median background subtraction.
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with fewer frames as the number of false positive detections caused by parallax
effects or image alignment is reduced. The recall is almost the same for 6 to 10
frames. However, even less frames result in more missed detections. Reason for
this is an inadequate estimated background especially in areas with dense traffic
or intersections.

False positive detections caused by parallax effects or image alignment can be
suppressed by neighborhood consideration. The impact of the applied neigh-
borhood size on the performance of three-frame differencing and median back-
ground subtraction is shown in Fig. 3.3(d) and Fig. 3.3(e), respectively. More
false positive detections are suppressed with increasing neighborhood sizes.
However, the recall is decreasing with increasing neighborhood sizes as more
small objects or partially detected objects are suppressed as well. Practical
sizes are in the range of 3×3 to 5×5 pixels in case of three-frame differenc-
ing and slightly larger in case of median background subtraction as more errors
are accumulated due to the number of used frames.

Background gradient information can be used to suppress false positive detec-
tions caused by parallax effects or image alignment as well. The impact of the
gradient magnitude threshold δ on the performance of median background sub-
traction is illustrated in Fig. 3.3(f). As described in Section 2.2 gradient magni-
tudes above this threshold are expected to be caused by parallax and alignment
errors and set to 0. The precision increases with lower threshold values as more
errors are suppressed. In contrast, the recall is almost constant for threshold val-
ues between 40 and 80, but decreases considerably for lower threshold values as
more objects are suppressed.

Fig. 3.4 shows the precision-recall curves of all methods for Scene 1-4. The pa-
rameters optimized for Scene 1 are adjusted for all Scenes. Median background
subtraction without suppression of errors due to parallax effects or image align-
ment exhibits the worst performance of all methods for Scene 1,2,4. In contrast,
the best performances are achieved for methods based on background subtraction
that suppress these errors. Median background subtraction with neighborhood
consideration outperforms both background gradient information based methods.
Three-frame differencing with neighborhood consideration exhibits worse per-
formance for Scene 1-3, whereas the performance is slightly better for Scene 4.
The reason for the better performance is that Scene 4 showing a residential area
densely covered with buildings and tree is more error prone to image alignment
and parallax effects that are accumulated by the number of used frames. The
weaker recall for Scene 1 indicates instead that median background models are
more effective to detect slow moving objects especially in dense traffic. The
other frame differencing methods show markedly worse performance compared
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(c) Scene 3
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(d) Scene 4

2-frame [SS13]
3-frame [XCSH10]
3-frame + BF [KGS13]
3-frame + N [PA12]
Median BG [SLBH12]
Median BG + GMS [RIS10]

Median BG + GMT [LLB  13]
Median BG + N
IGMM [PA12]
Mean BG [KMP  12]
Inpaint [APK14]
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Figure 3.4: Precision-recall curves of all object detection methods for all four image
regions.

to Three-frame differencing with neighborhood consideration. The impact of the
locally applied box filter to suppress seam artifacts is marginal since these arti-
facts are partially suppressed during the pre-processing. The performance of the
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further background subtraction based methods is comparable to the frame dif-
ferencing methods without neighborhood consideration except for Scene 3. The
precision of IGMM for Scene 3 that is expected to be less challenging is consid-
erably worse. The adaptive interval model and the fixed standard deviation used
to segment pixels in object and non-object is not able to compensate for severe
illumination changes and consequently results in a large number of false positive
detections. The same difficulty is observed for the running mean approach which
shows even poorer performance for this Scene.

4 Conclusion

In the context of this report, eleven object detection methods were evaluated on
four different challenging image regions of the WPAFB 2009 dataset. For this
purpose, the impact of pre-processing steps as well as parameters contributing
most to the performance was discussed. The performance can be considerably
increased by applying histogram matching and local Gaussian mean filtering to
adjust camera gain and illumination variation and to suppress seam artifacts. The
strong impact of various parameters on the object detection performance exhibits
that the adjustment of these parameters is not neglible with regard to the fol-
lowing applications. The best performance overall is achieved by median back-
ground subtraction with neighborhood consideration that slightly outperforms
other approaches for the suppression of errors caused by imprecise image align-
ment and parallax effects. The fact that other methods exhibit considerably worse
performance indicates the importance of the suppression of these kinds of er-
rors. Nevertheless, the impact of optimized moving object detection on existing
multiple object tracking algorithms itself has to be analyzed.
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Abstract: If a moving camera observes a specular surface in which some
environment is reflected, the pixel values per se do not directly characterise
the surface. However, the associated optical flow, or specular flow (SF),
as it is called in this situation, is an environment-agnostic observable that
depends on the surface position, orientation, and curvature. The derivation
of the SF in the limit of an infinitely remote environment has been published
earlier by the authors, but in a relatively opaque coordinate-dependent form.
In this report, we present a simpler and a more general derivation of the SF
as a function of the surface structure, where the crucial part is played by the
so-called Weingarten map. This result allows us to formulate the conditions
when the SF diverges, and to derive a simple formula to relate the Gaussian
curvature of the surface to the SF.

1 Introduction

The shape-from-specular flow (SFSF) approach has been suggested [RB06] as
a convenient tool to estimate the 3D shape of moving reflecting objects while
abstracting away from the details of the environment. One first estimates the op-
tical flow (OF) field – the apparent displacements of prominent image elements
between the subsequent video frames – and uses it to reconstruct the shape. If
the camera observes a curved mirror, the motion field may exhibit smooth distor-
tions, infinities, discontinuities etc., which may warrant the adaptation of the
common OF algorithms. Such OF is commonly referred to as specular flow
(SF) [AZBS11, CnVA+09].

The first SFSF methods were able to estimate the parameters of simple known
shapes [RB06]. Later, the problem was theoretically re-formulated in terms
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of global variational reconstruction [LBRB08]. More recently, Adato et
al [AVBSZ07, AVZBS10, CnVA+09, VZGBS11] provided a practical general
solution for a special setup where a telecentric camera is fixed with respect to the
object and the infinitely remote textured environment undergoes a global rigid ro-
tation. The flow field is obtained from the camera images with the common OF
algorithms, and the resulting system of coupled linear partial differential equa-
tions is discretized and solved with standard tools. The improvements introduced
in that series of papers lead to significant relaxation of the original requirements
to the system calibration and the needed data, and reduced the problem to a
system of linear partial differential equations (PDEs) [CnVA+09].

While very elegant, such an approach is not yet suitable for the common indus-
trial settings. A more realistic setup would use e.g. a pinhole camera, moving
along some trajectory with respect to the object that reflects a distant static envi-
ronment. In this formulation, the problem has an additional dimensional param-
eter that is missing in the orthographic model – the distance between the camera
and the object. The motion of isolated specularities relative to the fixed sur-
face features in this case has been studied in [BB91], but no attempt has been
made to recover the arbitrary surface shapes from the observed data. More
recently, [Pak14a] introduced the paraxial formalism for the SF in perspective
projection but did not present the final results.

In what follows we reproduce the derivation of the main results of [Pak14a] with
the help of an alternative approach developed in [BB91]. We further analyze
the structure of the resulting SF equations and in particular outline the relation
between the Gaussian curvature of the surface and the observed specular flow.

c

s

r

n̂t̂
l̂

O

S
C

Figure 2.1: Geometry of a camera’s view ray after a single specular reflection.
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2 Notation

Let us assume an observation setup shown in Fig. 2.1. A camera C with the pro-
jection center located at point c observes a reflection of a light source S located
at s. A light ray originates at S and follows the (unit) direction l̂ until it hits the
specular object O at some surface point r, and then reflects towards the camera.
The unit direction from the camera to the reflection point is t̂, and the normalized
surface normal vector at the reflection point is n̂. The distances from the camera
and the source to the reflection point are λ and µ, respectively, i.e.

r = c+ λ t̂ = s+ µ l̂. (2.1)

In what follows, we will heavily use a linear operator π[d̂] that projects an arbi-
trary vector x on the subspace orthogonal to d̂ (some unit vector such as n̂, t̂, or
l̂):

π[d̂] · x ≡ x⊥d̂ = x− d̂ (x · d̂), or
(
π[d̂]

)
ij

= δij − didj , (2.2)

where δij is the Kronecker symbol and di, dj are the components of d̂. For the
product of two projectors, we reserve the special notation Π = π[n̂]·π[t̂]/

(
n̂ · t̂

)
.

We will also need a projector P whose action on a vector x is as follows:

P · x =
n̂×

(
x× t̂

)
n̂ · t̂

, or (P)ij = δij −
ti nj

n̂ · t̂
.

The latter expression may be obtained by contracting antisymmetric tensors1

in the more explicit form (P)ij = εikl nk εljm tm/
(
n̂ · t̂

)
. From the above

definitions and the matrix forms of the projectors, one easily finds their trivial
properties:

π[d̂] · x = 0 for x ‖ d̂, π[d̂] · x = x for x ⊥ d̂, (2.3)

P · x = 0 for x ‖ t̂, P · x = x for x ⊥ n̂, P · π[t̂] = P, and Π · P = Π.

Since the SF is related to motion, we use the “dotted”notation for time deriva-
tives. For example, the camera’s velocity is ċ ≡ ∂c/∂t. In a scene of Fig. 2.1,
in general, if the camera moves, only the source location remains constant, i.e.
ṡ ≡ 0.

1 A fully antisymmetric tensor, or a Levi-Civita symbol, is defined here as follows: ε123 = 1, and
εijk = −εjik = −εikj . It is commonly used to define vector products: (a× b)i = εijkajbk .
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Finally, we introduce the Weingarten map W that connects the variation of a point
r on a surface and the respective change in the normal vector n̂. In particular,

˙̂n = W · ṙ. (2.4)

The coordinate representation of W is frame-dependent, but its eigenvalues and
eigenvectors are the intrinsic invariant properties of the surface at the point r.

3 Specular flow for a moving pinhole camera

With the introduced notation, we are now in the position to derive the specular
flow perceived by the moving camera (the object O and the source S remain
static) in terms of the camera motion ċ and the local surface parameters at point
r. Our guideline will be to prevent the proliferation of the source parameters to
the result.

According to Fig. 2.1, the directions t̂, ŝ, and n̂ satisfy the reflection law, i.e.

t̂+ l̂ = ν n̂ (3.1)

for some ν. Let us differentiate Eq. (3.1) with respect to time and apply π[n̂]:

π[n̂] ·
(
˙̂t+

˙̂
l
)
= π[n̂] ·

(
ν̇ n̂+ ν ˙̂n

)
= ν ˙̂n. (3.2)

The latter equality holds since ‖n̂‖ = 1, thus ˙̂n · n̂ = 0 and π[n̂] · ˙̂n = ˙̂n. Next,
let us multiply Eq. (3.1) with n̂ and use n̂ · t̂ = n̂ · l̂:

ν = n̂ ·
(
t̂+ l̂

)
= 2n̂ · t̂. (3.3)

Substituting ν from Eq. (3.3) into Eq. (3.2), we arrive at

˙̂n = π[n̂] ·
(
˙̂t+

˙̂
l
)
/
(
2n̂ · t̂

)
. (3.4)

Next, let us differentiate the first equality in Eq. (2.1) and project it using π[t̂]:

π[t̂] · ṙ = π[t̂] ·
(
ċ+ λ̇ t̂+ λ ˙̂t

)
= π[t̂] · ċ+ λ ˙̂t, or

˙̂t = λ−1π[t̂] · (ṙ − ċ) . (3.5)

Again, we exploit that ˙̂t · t̂ = 0 and π[t̂] · ˙̂t = ˙̂t. By analogy, we may differentiate
the second equality of Eq. (2.1), project it with π[l̂], and use ṡ ≡ 0 to find

˙̂
l = µ−1π[l̂] · ṙ. (3.6)
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Now we may substitute Eqs. (3.5) and (3.6) into Eq. (3.4):

˙̂n = π[n̂] ·
[
λ−1π[t̂] · (ṙ − ċ) + µ−1π[l̂] · ṙ

]
/
(
2n̂ · t̂

)
. (3.7)

This expression involves the operator products π[n̂] ·π[t̂] and π[n̂] ·π[l̂]. In order
to eliminate the source-dependent operator π[l̂], we must prove that

π[n̂] · π[l̂] · ṙ = π[n̂] · π[t̂] · ṙ. (3.8)

Indeed, since ṙ is tangential, and n̂ is orthogonal to the mirror surface, then
ṙ · n̂ = 0. Further, the reflection law Eq. (3.1) implies that t̂ = t‖n̂ + t⊥n̂ and
l̂ = t‖n̂ − t⊥n̂, where n̂ · t⊥n̂ = 0 and t‖n̂ = (ν/2) n̂. Combined, this leads to
the equality

t̂ · ṙ = t⊥n̂ · ṙ = −l̂ · ṙ. (3.9)

Using Eq. (2.2) and (3.9), we than establish that

π[n̂] · π[t̂] · ṙ = π[n̂] ·
[
ṙ − t̂

(
t̂ · ṙ

)]
= ṙ − t⊥n̂

(
t̂ · ṙ

)
, and

π[n̂] · π[l̂] · ṙ = π[n̂] ·
[
ṙ − l̂

(
l̂ · ṙ

)]
= ṙ + t⊥n̂

(
l̂ · ṙ

)
= ṙ − t⊥n̂

(
t̂ · ṙ

)
.

This proves Eq. (3.8) and allows us to transform Eq. (3.7) into

˙̂n = π[n̂] · π[t̂] ·
[
λ−1 (ṙ − ċ) + µ−1ṙ

]
/
(
2n̂ · t̂

)
. (3.10)

Our primary quantity of interest is the SF, defined as f ≡ ˙̂t, i.e. it is the variation
of the sight ray direction caused by the motion of the camera. From Eq. (3.5),

λ f = π[t̂] · (ṙ − ċ) . (3.11)

Applying P on Eq. (3.11), using Eq. (2.3) and the fact that ṙ ⊥ n̂, we find:

λP · f = P · π[t̂] · (ṙ − ċ) = ṙ − P · ċ, or ṙ = P · (λf + ċ) . (3.12)

Now we may plug ˙̂n of Eq. (2.4) and ṙ of Eq. (3.12) into Eq. (3.10) and simplify:

˙̂n = W · ṙ = W · P · (λf + ċ) =
1

2
Π ·

[
κ P · (λf + ċ)− ċ

λ

]
, and

λ2 [2W − κΠ] · P · f = [−2λW · P + λκΠ · P −Π] · ċ.
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(In the above formula, we introduce κ = λ−1+µ−1). Using again the properties
of the projectors Eq. (2.3), we arrive at the final invariant SF equation:

λ2 [2W − κΠ] · P · f = [(λκ− 1)Π− 2λW · P] · ċ. (3.13)

In case the source S is located very far away from the mirror and the camera
(µ → ∞), then κ = λ−1, and we obtain an even simpler expression

[2λW −Π] · P · f = −2W · P · ċ.

4 Two-dimensional SF equation

First of all, we notice that Eq. (3.13) is linear in the SF and the camera velocity,
as should be expected from the lowest-order approximation. Further, since both
ċ and f are multiplied with P or Π, their components parallel to t̂ do not play
any role, and Eq. (3.13) is equivalent to a system of two equations. We therefore
cannot e.g. solve Eq. (3.13) for f , since the matrix [2W − κΠ] ·P has no inverse.

In order to move further, let us assume some coordinate frame such that c =
(0, 0, 0)T and t̂ = (0, 0, 1)T . The SF and the camera motion in this frame are
f = (f1, f2, f3)

T and ċ = (ċ1, ċ2, ċ3)
T . Since only the components of f , ċ

orthogonal to t̂ (i.e. the first and the second) matter, we may re-write Eq. (3.13)
as follows:

λ2
[
2W(2) − κΠ(2)

]
· f(2) =

[
(λκ− 1)Π(2) − 2λW(2)

]
· ċ(2). (4.1)

Here f(2) = (f1, f2)
T , ċ(2) = (ċ1, ċ2)

T , and all operators with subscript (2) are
2 × 2 matrices obtained by dropping the last row and the last column from the
3×3 representation. In particular, P(2) becomes a unit matrix and drops out, and
W(2) is a matrix known as the second fundamental form of the surface.

Since the SF equation is two-dimensional, we may at any camera position record
at most two independent SF vectors f

(1)
(2) and f

(2)
(2) , corresponding to the two

independent motion vectors ċ (1)
(2) and ċ

(2)
(2) . Having made two such observations,

we combine them into the matrices F =
(
f

(1)
(2) ,f

(2)
(2)

)
and Ċ =

(
ċ

(1)
(2) , ċ

(2)
(2)

)

so that

λ2
[
2W(2) − κΠ(2)

]
· F̃ = (λκ− 1)Π(2) − 2λW(2), (4.2)

where F̃ = F ·
(
Ċ
)−1

is a normalized SF corresponding to the two orthogo-
nal unit camera motions. Now the criterion for the existence of a finite SF is
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straightforward: if the matrix
[
2W(2) − κΠ(2)

]
is singular, the SF diverges. This

happens, when κ is an eigenvalue of the matrix 2W(2) · Π−1
(2). Such condition is

more complex than the identification of “parabolic points”, commonly believed
to cause infinite SF, and involves (via κ) the positions of the camera and the
source.

In case µ → ∞ Eq. (4.2) simplifies to:
[
2λW(2) −Π(2)

]
· F̃ = −2W(2). (4.3)

5 Gaussian curvature and the SF

Let us re-write Eq. (4.2) as

2λW(2) ·
[
λF̃ + I(2)

]
= Π(2) ·

[
(λκ− 1)I(2) + λ2κF̃

]
, (5.1)

where I(2) is a 2 × 2 unit matrix. If we introduce explicitly the components of
the unit normal vector n̂ = (n1, n2, n3)

T , the projector becomes

Π(2) =
1

n3

(
1− n2

1 −n1n2

−n1n2 1− n2
2,

)
,

which implies detΠ(2) = 1. Taking the determinant of Eq. (5.1), we end up with

detW(2) = det
[
(λκ− 1)I(2) + λ2κF̃

]
det

[
2λ

(
λF̃ + I(2)

)]−1

,

or, in the limit µ → ∞,

detW(2) = det
[
F̃
]
det

[
2
(
λF̃ + I(2)

)]−1

. (5.2)

Eq. (5.2) is quite remarkable: detW(2) is the Gaussian curvature, which is an
intrinsic property of the surface at point r, independent of how the surface is
embedded in the 3D space. The right-hand side depends only on the measured
SF matrix F̃ and the distance λ. Let us now consider three special cases:

• If the surface is nearly flat, the observed SF should be close to zero, and
‖λF̃‖ � 1. The distance-dependent term then drops out, and we get

detW(2) =
1

4
det F̃ .

This equation suggests a direct method to measure small residual curva-
tures of nearly planar surfaces.
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• If instead ‖λF̃‖ � 1, which happens e.g. for a camera positioned near
the focus point of a spherical mirror of radius 2λ (i.e. all camera sight
rays are reflected in the same direction), the SF-dependence disappears, as
expected:

detW(2) =
1

4λ2
.

• If the surface is developable, i.e. it may be locally “unfolded” into a
flat sheet without stretching (this happens when it is locally a cylinder),
its Gaussian curvature is zero. According to Eq. 5.2, this implies that
det F̃ = 0. The two recorded SF vectors then must be collinear, or, al-
ternatively, there must exist a direction of the camera motion such that the
respective SF vanishes. Intuitively, if the camera moves along the cylinder
axis, then indeed the reflection of the infinitely remote environment must
remain static on the sensor, and the SF is zero.

On a more general level, the derived relations between the SF and the curvature
allow us to differentiate the SF-based reconstruction from the other optical shape
measurement techniques as follows. The triangulation-based methods (as well as
interferometry) are directly sensitive to the point position in space (or the zeroth-
order derivative). In deflectometry, the primary measured quantity is the normal
vector (the first-order surface derivatives). The SF, as shown above, is directly
sensitive to the second order derivatives which enter the Weingarten map and the
curvatures. Therefore, the error profiles and the dominant error sources of any
SF-based methods will be different from the alternatives and may justify their
use in some applications.

6 Explicit coordinate form

In order to obtain the explicit expressions for the Weingarten map and the normal
vector, we need to assume some parametrization of the reflecting surface near
r in terms of two intrinsic surface coordinates u and v. Given some function
r(u, v),

W(2) =
1

EG− F 2

(
eG− fF fG− gF
fE − eF gE − fF

)
,

where E = ru ·ru, F = ru ·rv , G = rv ·rv , e = ruu ·n̂, f = ruv ·n̂, g = rvv ·n̂,
and the subscripts stand for the partial derivatives such as ruv ≡ ∂u∂vr.
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One convenient parametrization identifies u and v with the sensor coordinates
of a pinhole camera located at c such that its central direction coincides with t̂,
and the u- and v-axes are collinear with the global x- and y-axes, respectively.
The surface geometry near r(0, 0) is described by a two-dimensional depth map
s(u, v):

r(u, v) = s(u, v) (u, v, 1)T ,where

s(u, v) = s0 + usu + vsv +
u2

2
suu +

v2

2
svv + uv suv.

This is precisely the parametrization suggested in [Pak14a]. If one expresses
W(2) and the components of the normal vector n̂ = (rv × ru) / |rv × ru| in
terms of the shape parameters s0, ..., suv , and substitutes them into Eq. (4.1) in
the limit µ → ∞, one arrives at the explicit form of variables and the operators
in Eq. (4.3):

λ = s0, W(2) = s−1
(
s20 + s2u + s2v

)−3/2
M, where

M = s20

(
suu suv
suv svv

)
− 2s0

(
s2u susv
susv s2v

)

+

(
sv (svsuu − susuv) sv (svsuv − susvv)
−su (svsuu − susuv) −su (svsuv − susvv)

)
, and

Π(2) = s−1
(
s20 + s2u + s2v

)−1/2
(
−s20 − s2v susv
susv −s20 − s2u

)
.

Solving Eq. (4.1) with these operators for the components of f(2) as a func-
tion of ċ(2), one exactly reproduces f(0, 0) in Eq. (3.1) of that reference. Our
present calculation is therefore equally powerful, but provides more insight into
the structure of the SF equations.

7 Conclusion

In this report, we provided a detailed derivation of how the SF in a point depends
on the observation parameters and the properties of the reflecting surface. Unlike
previous results, the presented equations are explicitly invariant and compact,
allowing a deeper insight into their structure. In particular, we formulated the
simple condition for the SF to diverge, and highlighted the relation between the
SF and the Gaussian curvature of the surface. The future work will be related to
finding ways to recover the 3D shape of the surface based on the observed SF.
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