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76131 Karlsruhe, Germany

Abstract

Data in business processes is becoming more and more important. Current
standards for process-modeling languages like BPMN 2.0 which include the
data flow reflect this. Ensuring the correctness of the data flow in processes
is challenging. Model checking, i. e., verifying properties of process models, is
a well-known technique to this end. An important part of model checking is
the construction of the state space of the model. State-space explosion however
typically is in the way of an effective verification. We study how to overcome this
problem in our context by means of reduction. More specifically, we propose a
reduction on the level of the process model. To our knowledge, this is new for the
data-flow analysis of processes. To accomplish this, we specify regions relevant
for the verification of properties describing the data flow. Our evaluation shows
that our approach works well on real process models.

Keywords: Workflow Management, Business Process, Data-Flow Correctness,
Property Verification, State-Space Reduction for High-Level Languages

1. Introduction

Recent business-process-modeling languages like BPMN 2.0 [1] do not only
support the control flow but also the handling of data. Ensuring the correctness
of the data flow in processes is challenging. Existing approaches tend to focus
on data flow in languages like Petri Nets, e.g., [2]; formal verification techniques
are mature for this type of language. In industry and elsewhere however, process
designers use high-level modeling languages like BPEL, BPMN, EPC or OTX [3].
This paper features an approach for the data-flow correctness for such languages.

Example 1. Our application scenario is commissioning of vehicles. Commis-
sioning means configuring and testing the (electronic) components of a vehicle
right after its production. The BPMN graph on the left of Figure 1 contains
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Figure 1: BPMN Workflow Graph with Data. Tasks not in the Table do not Use Any Data.

tasks which typically are part of the commissioning. For instance, a factory
worker has to configure the transmission and to activate the anti-theft system.
The transmission can either be manual, i. e., Task M does the configuration, or
automatic (Task A). Task T activates the anti-theft system. Before the activation,
a central computer needs to generate a master key (Task G), and it opens the
connection to the specific control unit (Task O). The connection has to be closed
before the process finishes (Task C). The configuration of the transmission and
the activation of the anti-theft system require a running engine; Task E turns it
on.

Data objects are part of the process, as input or output of tasks, of gateways
or of the process itself. They can be optional or mandatory DataInput or
DataOutput of a task.

Example 2. The table in Figure 1 specifies the usage of two data objects DO1 and
DO2 in the example. DO1 is mandatory DataOutput of Task E and mandatory
DataInput of the XOR-node, DO2 is mandatory DataOutput of Tasks E and A.

In this article, we use tables to specify the usage of data objects, rather than
the "official” BPMN diagram elements. This is because the graphical notation
of BPMN only allows to express the usage of a data object as input or output of
a task or of an event, but not whether its use is optional or mandatory. BPMN
diagrams also do not allow to specify the usage of a data object as input of a
gateway.

Assigning data to the control-flow elements of a process specifies its flow.
Correctness of data flow is a crucial issue. In this article, correctness of the data
flow of a process model means that certain anti-patterns are guaranteed to not
appear in the model. To verify the data flow, one typically has to inspect all
execution paths where tasks use a data object.

Example 3. Think of the execution path <E, A, G, O, T, C>. Here, the write
done by Task E on DO2 gets lost. This is because A writes DO2 as well without
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reading it previously. With <E, M, G, O, T C> in turn, the write by E of DO2
does not get lost. This is the well-known data-flow error "Weakly Lost Data” [2].

Verification techniques like model checking require building the state space.
They typically transform a high-level process model into a formal representation,
e. g., Petri Nets. Then the construction of that space is feasible. However, there
is state-space explosion [4], i. e., the space grows exponentially with the size of the
model. This renders those techniques impractical for large or even medium-sized
models. One problem is parallel branches in the model. Taking data objects into
account makes this problem much more serious. This is because expanding the
Petri Net to cover the data-flow semantics yields several parallel paths reflecting
whether a certain object already exists or not.

To overcome state-space explosion, reduction techniques can be used. Reduc-
tion is feasible either (a) during construction of the state space or (b) on the
level of the process model. In preliminary experiments by ourselves, methods of
Category (a) do not do away with state-space explosion. Approaches of Category
(b) in turn rely on the notion of relevance. A task (or a subprocess) is not relevant
if there is no relationship to the property to be verified, i. e., this part of the
model does not need to be expanded for verification. Relevance depends on the
properties the model checker must prove. Thus, a core challenge is the definition
of relevance in the data-flow context. One must identify a process abstraction
where the data-flow semantics is representable and the block structure of the
high-level process model is not lost. The representation should be abstract
enough to give way to reduction for high-level languagues. One important con-
tribution of this article is the specification of relevance functions for data-flow
errors. These functions help to reduce the state space of the process model, to
facilitate checking its data-flow correctness. Process models used in industry,
in vehicle manufacturing in particular, often have a certain size that is in the
way of model checking without any reduction. To accomplish the reduction, we
classify the anti-patterns based on characteristics such as the kinds of usage of
data objects. More specifically, we propose two classifications. The second one
is a refinement of the first one, in that it takes the data object in question into
account. A class of the first classification contains all anti-patterns of a data
object, so that the relevant regions of the process are identical. The second
classification reflects the kinds of usage of a data object by the anti-patterns.
We hypothesize that its reduction tends to be more effective. To illustrate, the
anti-pattern for "Weakly Lost Data” of Example 3 has the same data usage as
the anti-pattern "Strongly Lost Data”, see Table 2, and thus they are in the
same class.

Example 4. To verify the data flow of the process in Figure 1, one has to
analyze all execution paths where tasks use a data object. Task E and the upper
branch of the AND-node with the lower branch of the XOR-node containing
Task A is a path/a possible execution containing DO2. It will be important to
differentiate between the cases that a data object is used or not. An example for
the first case is the path <E, M, G, O, T, C>. For this path, there does not exist
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any task after Task E writing DO2. To illustrate the second case, see the path
<E, A, G, O, T, C>. The states representing this path typically are not needed
to check for data-flow correctness, as will be explained.

Other contributions of this article are the following ones: Our goal is to
enable checking of data-flow correctness for processes not only in BPMN, but also
in other process-modeling languages. To this end, we propose an approach that
uses an intermediate representation for processes with data. We have exemplarily
implemented it for BPMN and OTX. Next, we provide an evaluation of the
impact of our relevance functions on the verification of dataflow correctness
of process models. We have used criteria like the size of the process models,
the number of data objects used in the process, number of tasks that need a
certain data object, the kind of usage, i.e., optional or mandatory, and several
data-flow errors occurring in the process models. Our evaluation shows that our
approach works well with processes in our domain, vehicle commissioning, which
is comparable with other scenarios of vehicle manufacturing.

Our study leverages several recent research results. In particular, there is
the insight that only parts of the process model typically are needed to verify
a property [5], i. e., the general notion of relevance, and there exist proposals
to detect data-flow errors in BPMN 2.0 processes using anti-patterns [6]. But
relevance for data-flow constraints and the efficiency of verification approaches
building on it have not been investigated yet. This however is necessary for
data-flow verification of processes comparable in size and complexity to the ones
examined here.

2. Notations for Process Models

This section lists the conceptual building blocks of this paper. We assume
that the reader is familiar with the core notions that follow; our intention
mainly is to introduce certain specifics and the notation used subsequently. The
following also is rather broad, because we want to provide an approach for
several high-level process model languages. To this end, we use an intermediate
representation for high-level process models with data, namely an extended
version of workflow graphs; the extension is that there is a separate table
specifying the data usage, see the discussion of Figure 1. This will facilitate
reducing the model to relevant parts to check data-flow correctness. Another
motivation for this intermediate representation is to transform the process model
into a representation compatible with existing model-checking tools, namely
Petri Nets and CTL, see Subsections 2.4 and 2.5. Because the pruning step of our
approach builds on the tree structure of a process and not on a graph structure,
we propose a two-step transformation. The first step is a transformation to an
RPST, see Subsection 2.2, which identifies hierarchically structured parts of
the process. The second step is the transformation to a process tree. For the
transformation of an RPST to a process tree, we propose a new algorithm in
Subsection 2.3.
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Figure 2: Three Different States s,s′ and s′′ of a Workflow Graph

2.1. Workflow Graph
We use the notion of workflow graph from [7]. N stands for its nodes, E for

its edges, s for its state, and W for the graph itself. Here, a node can be a task
node or an AND- or XOR-gateway. We use a BPMN-like graphical notation,
i. e., gateways are represented as diamonds, where the symbol + stands for AND,
and no decoration stands for XOR. A workflow graph with data is a graph W
together with a set DW of data objects and a function that maps each task to a
set of objects that the task reads or writes optionally or mandatorily. We refer
to these sets as InputSets, respectively OutputSets of the task. The function
also maps a split XOR gateway to a set of data objects read mandatorily. XOR
uses these objects to evaluate branching conditions. DO1 in Figure 1 serves as
an example. The state of W is represented by tokens on the edges of the graph,
as with Petri Nets.

Example 5. The left graph of Figure 2 shows the initial state s of a workflow
graph, i. e., with one token in the one outgoing edge and no token anywhere else.
s changes to s′ by executing the AND-node (in black in the second graph). This
results in removing one token from each incoming edge and generating a token
in each outgoing edge of the AND-node. Next, s′ changes to s′′ by executing the
XOR-node (in black in the right graph of Figure 2).

2.2. Refined Process Structure Tree
A fragment F is a subset of the edges of W that forms a connected subgraph

of W with an entry and an exit node. A fragment of W is canonical if it does
not overlap with any other fragment of W . The set of all canonical fragments
of W is the RPST decomposition of W [7]. The corresponding parse tree is
the refined process structure tree (RPST) of W , i. e., the tree of the canonical
fragments such that the parent tree node of a canonical fragment F properly
contains F . For an example see Figure 3 b); rectangles represent inner nodes
and rectangles with round corners leaf nodes.

2.3. Process Tree
In a process tree, the inner nodes are the gateways of the RPST, and the leaves

are the tasks. Transforming an RPST into a process tree is straightforward if the
RPST does not have loops. With loops, one must consider the following points:
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Figure 3: A Workflow Graph with a Loop (a) and the Corresponding RPST (b) and Process
Tree (c).

An XOR-gateway with an edge from the split gateway XORS to the join gateway
XORJ represents a loop in an RPST, see Figure 3 for an example. Such a loop
results in the fragments A and B and an RPST where the following holds for the
RPST node A and one of its children B: A.exit.type = B.exit.type = XORS

and A.entry.type = B.entry.type = XORJ and A contains XORS → XORJ .
See our Algorithm 1 that transforms an RPST including loops to a process
tree. We first transform the root of the RPST into a SEQ node and then call
Transform-RPST2PT(root). Creating a process-tree node (PT-node) includes
connecting it to its parent-node.

Algorithm 1 Transform-RPST2PT(parent-node)
1: for all children n of parent-node do
2: if n.entry.type = n.exit.type ∈ {XOR, AND} then
3: t ← n.entry.type
4: if n has a child c with c.entry = n.entry and c.exit = n.exit then
5: if n.contains(n.exit → n.entry) then
6: create PT-node of type LOOP
7: else create PT-node of type SEQ
8: end if
9: Transform-RPST2PT(c)

10: else
11: create PT-node of type t
12: Transform-RPST2PT(n)
13: end if
14: else
15: if n.exit.type = TASK then
16: create PT-node of type TASK
17: end if
18: end if
19: end for
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Figure 4: The Canonical Fragments for a Workflow Graph and the Resulting Process Tree

Example 6. Figure 4 shows the set of all canonical fragments for a workflow
graph W , one fragment per dotted box, and the corresponding process tree.

2.4. Petri Nets
Our definition of Petri Nets is the one from [8]. P stands for its places, T for

its transitions, and A for its arcs. Its state is a function M : P → N0 that maps
every place to a nonnegative number of tokens. The set of possible states from a
start state of a Petri Net is its state space.

2.5. CTL
We use CTL [9] to express a property φ to be verified. Its syntax is as follows:

An atomic proposition p is a CTL formula. If φ1 and φ2 are CTL formulas then
¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, AX φ1, EX φ1, AG φ1, EG φ1, AF φ1, EF φ1, A[φ1 U φ2],
E[φ1 U φ2] are CTL formulas. The operators always occur in pairs: a path
operator (A or E) and a state operator (X, G, F or U). A means that the formula
holds in all succeeding execution paths. E means that at least one execution
path exists where the formula holds. X means that the formula holds in the
next state, G means the formula holds in all succeeding states, F means that
the formula holds at least in one succeeding state, and [φ1 U φ2] means that φ1
holds until φ2 is reached.

3. Data-Flow Correctness of High-Level Process Models

High-level process models are graph-based, e. g., BPMN 2.0, or block-based
like OTX. The latter one is a subset of the first one. In BPMN 2.0, data objects
are DataInputs and DataOutputs of tasks, events and XOR-gateways. They
can be either optional or mandatory. Additionally, it is possible to have several
alternative InputSets or OutputSets. Splits like XOR-gateways can have data
objects only as DataInputs that are mandatory. OTX, which we use in our
evaluation, allows to specify block-based models with similar characteristics
of data, i.e., data as optional or mandatory inputs or outputs of tasks, but
not alternative sets of data objects. A verification approach for data flows of
high-level languages that is sufficiently general must be able to deal with a
language that comprises graph-based and block-based models. The approach
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must not be restricted to a specific existing process-modeling language. A design
decision of ours has been to take workflow graphs as starting point. However, as
we need process models with data, and workflow graphs do not support data
objects, the graph must be enhanced with data.

Definition 1 (Kinds of Data Object Usage). A flow node n uses a data object
if n reads or writes the object. We discern between four kinds of data-object
usage, namely reading or writing optionally or mandatorily.

To define correctness of a data flow of a business process, we use so-called
anti-patterns. If such an anti-pattern for a certain data object can be detected
during the execution of a process, the respective error occurs in the data flow. A
model checker allows to prove before process execution whether the process model
fulfills an anti-pattern. Table 1 lists the data-flow errors that we support. The
anti-patterns are defined as generic data-flow anti-patterns (DAP) in CTL, i.e.,
they are not yet instantiated for a certain process model and a certain data object.
IM (d) means that d is a mandatory data input of a task, IO(d) that d is an
optional input. OM (d) and OO(d) are analogous for outputs. IS(f) and OS(f)
denote InputSets and OutputSets of flow element f . exec(f) means that f is
ready to be executed, i. e., the respective transition is activated. term denotes
the termination of the process. If an anti-pattern is fulfilled, the corresponding
error occurs in the process.

We refer to anti-patterns with their acronyms. For instance, MD stands
for Missing Data. DAP is the set of all generic anti-patterns in Table 1. For
verification, the anti-patterns must be instantiated with the data objects of
W , respecting the semantics of the data usage. The instantiation result is
CTL formulas on the state of the Petri Net that in turn is the result of the
transformation of the workflow graph with data. For a ∈ DAP and data object
d ∈ DW , a(d) is the instantiation of a with d, i. e., a CTL formula that must be
verified against the Petri Net. For example, MD(d) is the property that must be
verified to check whether a Missing Data error with respect to d occurs in W .

Definition 2 (Set of properties for a data object d). For a data object d in a
workflow graph W and a set of generic data-flow anti-patterns A′ ⊆ DAP , the
set of properties of d is φA′(d) := {a(d) | a ∈ A′}, the set of all elements of A′
instantiated with d.

The transformation of a BPMN process model with data to Petri Nets, in
order to do data-flow verification, is feasible, see [6]. In what follows, we propose
an algorithm for data-flow verification respecting alternative and optional data
usage for workflow graphs, verify_wg. It works analogously to the approach
for BPMN and consists of the following steps:

1. It transforms the workflow graph into a Petri Net and inserts subnets
representing the data usage. These subnets reflect the execution semantics
of the optional or mandatory usage of the objects as input or output of the
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Table 1: BPMN 2.0 Generic Data-Flow Anti-Patterns for a Data Object d

Anti-Patterns Formalization

1 MD: Missing E
(
¬OM (d) U IM (d)

)
Data

2 MOD: Missing E
(
¬(OO(d) ∨OM (d)) U IO(d))

)
Optional Data
3 SRD: Strongly EF

(
OM (d) ∧AX(A[¬(IM (d) ∨ IO(d)) U term])

)
Redundant Data
4 WRD: Weakly EF

(
OM (d) ∧ EX(E[¬(IM (d) ∨ IO(d)) U term])

)
Redundant Data
5 ROD: Redundant EF

(
OO(d) ∧ EX(E[¬(IM (d) ∨ IO(d)) U term])

)
Optional Data
6 SLD: Strongly EF

(
OM (d) ∧AX(A[¬(IM (d) ∨ IO(d)) U OM (d)])

)
Lost Data
7 WLD: Weakly EF

(
OM (d) ∧ EX

(
E[¬(IM (d) ∨ IO(d)) U OM (d)]

))
Lost Data
8 LOD: Lost EF

(
OO(d) ∧ EX

(
E[¬(IM (d) ∨ IO(d)) U OM (d)]

))
Optional Data
9 OLD: Optionally EF

((
OM (d) ∨OO(d)

)
∧
(
EX(E[¬(IM (d) ∨ IO(d))

Lost Data U OO(d)])
))

10 ID: Inconsistent
∨

f∈{E∪T}∧d∈OS(f)} EF
[
exec(f)∧

Data
∨

f ′ 6=f∧(d∈IS(f ′)∨d∈OS(f ′)) exec(f
′)
]

nodes. Table 2 lists the data usage according to the CTL formula given
for each data-flow error.

2. For each generic data-flow anti-pattern of Table 1 for each data object of
the model, verify_wg does the following:

(a) It instantiates the anti-pattern with the object usage.

(b) A model checker verifies whether the anti-pattern holds in the resulting
Petri Net.

4. Verification of High-Level Process Models with Data

To deal with state-space explosion, a general idea is to reduce the process
model before transforming it to a Petri Net. The hope is that the state space
of these reduced Petri Nets is small. To this end, it is necessary to identify
regions of a process relevant for verification of a property, in our case data-
flow properties. Subsection 4.1 introduces our scheme for practical data-flow
verification, featuring pruning of irrelevant regions. Our core contribution is
the specification of a relevance function for data-flow errors, see Subsection 4.2.
(The algorithm to verify the data flow without taking relevance into account,

9



Table 2: Data Usage of the BPMN 2.0 Generic Data-Flow Anti-Patterns for a Data Object d

Anti-Patterns Data Usage

1 MD: Missing Data IM , OM

2 MOD: Missing Optional Data IO, OM , OO

3 SRD: Strongly Redundant Data IM , IO, OM

4 WRD: Weakly Redundant Data IM , IO, OM

5 ROD: Redundant Optional Data IM , IO, OO

6 SLD: Strongly Lost Data IM , IO, OM

7 WLD: Weakly Lost Data IM , IO, OM

8 LOD: Lost Optional Data IM , IO, OM , OO

9 OLD: Optionally Lost Data IM , IO, OM , OO

10 ID: Inconsistent Data IM , IO, OM

namely verify_wg, has been in Section 3.) Our transformation of a reduced
process tree to a workflow graph with data that incorporates relevance is in
Subsection 4.3.

4.1. Practical Data-Flow-Error Detection
Algorithm 2 gives an overview of our approach. Our starting point is a

workflow graph W with data usage for tasks. Φ is the properties to be verified,
specified in CTL. The algorithm consists of the following steps: Line 1 is
the transformation of W into a process tree. More specifically, there is a
transformation to an RPST as a first step and from the RPST to a process tree
as a second step. For the first step, we use the algorithm from [10]. It allows to
decompose any workflow graph. The only assumption is that each node must
be on a path from a source to a sink, which is not a restriction in reality. The
transformation is necessary because the prune algorithm works on a process-tree
representation. See Example 7. Our transformation preserves the usage of data
objects by tasks and XOR-gateways.

Example 7 (Process-Tree Transformation). Figure 5 shows the process tree
resulting from the transformation of our running example.

10



Algorithm 2 DataFlowVerification(W )
1: P ← graph2tree(W )
2: for all φ ∈ Φ do
3: P’ ← prune_df(P , φ)
4: W’ ← tree2graph(P ′, φ)
5: verify_wg(W ′, φ)
6: output: data flow correct
7: or data-flow error detected
8: end for

SEQ

E AND

XOR

M A

G O

T C

Figure 5: The Process Tree of the Commissioning Process of Figure 1.

In Line 2, the algorithm starts the reduction of W for every φ in Φ, i.e.,
the data-flow anti-patterns. The reduction algorithm prune_df in Line 3 relies
on the relevance function, see Subsection 4.2. To apply verify_wg, in Line 4
the reduced process tree needs to be retransformed into a workflow graph. See
Subsection 4.3. Line 5 is the call of verify_wg. This is the algorithm to check
the correctness of the data flow, i.e., the data-flow anti-patterns, see Section 3.
This verification is performed for each property. Line 6 returns whether the
data-flow error is present or not.

4.2. Process-Model Reduction by Relevance Criteria
The question which regions of the process (subtrees of the process tree) are

relevant depends on the properties to be verified. We observe that there are
groups of properties where certain characteristics are identical. For all properties
in one group, the relevance of process regions can be defined in the same way.

4.2.1. Characteristics of the Properties
Let W be a workflow graph with data and DAP the set of data-flow anti-

patterns of interest. The derivations that follow rely on the following two
important observations:

Observation 1. Each data-flow anti-pattern refers only to one data object.
Interdependencies between data objects do not exist in the data-flow anti-patterns.

Observation 2. There exist anti-patterns that only specify some kind of data-
object usage.

11



An example for Observation 2 is that Missing Data considers only mandatory
usage of data objects, in contrast to optional usage. This is because the CTL
formula of this anti-pattern in Table 1 only refers to the mandatory usage of
data objects, i.e., to IM and to OM , see also Table 2.

4.2.2. Classification of the Properties
Based on these observations, we now specify two characteristics of properties,

allowing to classify them.

Classification ΦDAP . Taking Observation 1 into account, we define the classi-
fication ΦDAP as follows. It contains |DW | classes, i.e., a class of equivalent
anti-patterns for each data object.

Definition 3 (Classification of properties by data objects). For the set of data-
flow anti-patterns DAP we define the classification
ΦDAP := {φDAP (d) | d ∈ DW }.

For the definition of the sets of properties φDAP (d), see Definition 2. Note
that Definition 3 relies on Observation 1: All instantiated data-flow anti-patterns
belonging to one data object form a class. Therefore, ΦDAP is a partitioning of
the properties, without any overlap.

Classification Φ(DAP/∼). Taking Observation 2 into account, we define classes
of equivalent anti-patterns based on data usage as follows.

Definition 4 (Classification of anti-patterns by data usage). a, a′ ∈ DAP are
equivalent, written as a ∼ a′, iff a has the same kinds of data usage as a′. We
define DAP/ ∼ as set of all equivalence classes of DAP with respect to ∼.
Example 8 (Classification of anti-patterns). Weakly Lost Data ∼ Weakly Re-
dundant Data holds, because both anti-patterns consider just flow nodes which
have mandatory DataOutputs and optional or mandatory DataInputs, see Ta-
ble 2. Analogously, all anti-patterns in {WLD, SLD, WRD, SRD} are equivalent
according to Definition 4, defining the equivalence class [WLD].

The other classes can be established in the same way. We get five disjoint
classes. I. e., DAP/ ∼ splits DAP into five disjoint subsets. The five subsets are:
[MD] = {MD}, [MOD] = {MOD}, [WLD] = {WLD, SLD, WRD, SRD}, [ROD]
= {ROD}, and [OLD] = {OLD, LOD, ID}. This gives way to Definition 5:

Definition 5 (Classification of properties by data object and data usage). We
define Φ(DAP/∼) := {φÃ(d) | d ∈ DW , Ã ∈ (DAP/ ∼)}.

Φ(DAP/∼) contains 5 · |DW | classes. The factor 5 corresponds to the fact that
there are five disjoint subsets.

Example 9 (Classification by data object and data usage). In our running
example (see Figures 1 and 5), DW = {DO1, DO2}. For DO2, there exist only
operations where the write is mandatory. Therefore, φÃ(d) is identical for all
A ∈ {[MD], [WLD], [ROD], [OLD]}, and there are only two equivalence classes
regarding DO2 and its usage.

12



4.2.3. Relevance for Data-Flow Anti-Patterns
A relevance function states whether a node in the process tree is necessary

for verifying a φ ∈ Φ or not, i.e., whether this node is part of an execution path
of the process that renders an anti-pattern true. We also say that the node
influences the verification of the property.

Definition 6 (Abstract relevance function). Let Φ be a classification of the
properties to be verified. relevant is a function for a class φ ∈ Φ and n ∈ N :

relevant(φ, n) =


true n may influence the verification of a property

contained in φ
false otherwise

Now we propose the concrete relevance functions implied by Definitions 3
and 5.

Lemma 1 (Relevance function for Φ = ΦDAP ). Let φDAP (d) ∈ ΦDAP and
n ∈ N . Then relevant(φ = φDAP (d), n) is as follows:

relevant(φ, n) =


n uses d n is a task
n has at least one relevant child n is an XOR or a Loop
∨ n reads d mandatorily

n has at least one relevant child n is an AND or a SEQ

Proof. Let φDAP (d) ∈ ΦDAP and n ∈ N . In a process tree, a node n is either
an XOR, AND, SEQ, Loop or a task. While tasks use data objects in different
ways (e.g., optionally vs. mandatorily), this distinction is not important here.
So relevance is given iff the task uses the data object in question. An inner node
(XOR, AND, Loop, or SEQ) of the tree is always relevant if any child of the node
is relevant. Next, AND and SEQ nodes do not use data objects and therefore
do not have to be considered further, in contrast to tasks, XORs and Loops. So,
from now on, n is a Loop or anXOR-node. Loops and XORs have just one kind
of data usage: They only can read a data object mandatorily. The properties in
φDAP (d) take all kinds of data usage into account, including mandatory read.
So n might influence the verification.

Example 10. In our running example (see Figures 1 and 5), DW = {DO1, DO2}.
I.e., φA(DO1) is a set of properties of DO1 in ΦDAP = {MD,MOD,SRD,WRD,
ROD,SLD,WLD,LOD,OLD, ID}. relevant(φDAP (DO1),M) is false, be-
cause task M does not use the object DO1.

On the other hand, relevant(φDAP (DO1),E) returns true, because E writes
DO1 mandatorily. For the inner node XOR, relevant(φDAP (DO2),XOR) re-
turns true as well. This is because A, which belongs to the subgraph of XOR,
writes DO2 mandatorily.
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Note that the relevance function in this case is independent from the anti-
pattern. For the classification Φ(DAP/∼), coming up with the relevance is more
complex. To take the usage characteristics of the anti-patterns into account,
there will be a different function for each equivalence class. We exemplarily
show the relevance function for φÃ(d) with Ã = [WLD]. For the definition of
[WLD], see Example 8. We use the following notation: For n ∈ N , DIO(n)
is the set of all optional DataInputs of n. DOM (n) and DIM (n) are defined
analogously. E.g., d ∈ DIO(n) if n has an InputSet which contains d as an
optional DataInput.

Lemma 2 (Relevance function for φÃ(d) with Ã = [WLD]). Let n ∈ N
and Ã = [WLD] ∈ Φ(DAP/∼). Then relevant(φ = φÃ(d), n) is as follows:

relevant(φ, n) =



d ∈ DIO(n) ∨ d ∈ DIM (n) n is a task
∨ d ∈ DOM (n)

n has at least one relevant child n is an XOR or Loop
∨ n reads d mandatorily

n has at least one relevant child n is an AND or SEQ

Proof. Let n ∈ N and Ã = [WLD] ∈ Φ(DAP/∼). Analogously to the proof of
Lemma 1, inner nodes are relevant if any of their children is relevant. Let n
be a task, an XOR or a Loop. Differently from Lemma 1, where it only is
important whether n does use d or not, we now must additionally consider
the kinds of data usage. First, let n be a task. All anti-patterns in the class
[WLD] only take mandatory DataOutputs but both kinds of DataInputs into
account. Therefore, in contrast to Lemma 1, n is not relevant if n only writes d
mandatorily. Otherwise, it is relevant. Now let n be an XOR or a Loop. All
anti-patterns in the class Ã take mandatory DataInputs into account, see above.
Thus the relevance in this case is analogous to the one in Lemma 1.

For the other φÃ(d) ∈ Φ(DAP/∼) the relevance functions are analogous, see
Appendix Appendix A. Most of the functions only differ for the task case.
With Missing Optional Data however, i.e., Ã =[MOD] = {MOD}, there is a
complication with the XOR-nodes: For this anti-pattern, mandatory DataInputs
are not relevant. Thus, an XOR-node is not relevant because it only reads d.

Example 11. In our running example, the XOR-node reads DO1 mandatorily,
and none of its children, i.e., neither M nor A, uses DO1. Hence, the XOR-node
is not relevant to verify Missing Optional Data with respect to DO1.

4.2.4. The prune-Algorithm
Algorithm 3, borrowed from [5], is the reduction algorithm. It starts with

the root of the process tree (Line 1) and then calls two subalgorithms (Lines
2 and 3). Algorithm 4 recursively traverses the process tree. It executes the
relevance function on each node (Line 1). If the function evaluates to false, and
the parent of the node is not an XOR-node, the algorithm deletes the node
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(Line 9). Otherwise, the node is replaced by λ, i.e., an empty node (Line 7).
We discuss the reason for this later. If the function evaluates to true, the node
is kept (Lines 2 - 4). Algorithm 4 decides whether to prune a node, using our
results from Lemma 1 or 2. Algorithm 5 trims the pruned tree, i.e., it replaces
inner nodes with only one child by this child (Lines 2 - 4) – prune does not
prune XOR-nodes in a straightforward way. This is not feasible for XOR-nodes
in order to detect, say, Strongly Lost Data and Weakly Lost Data correctly.

In the next two examples we first illustrate the reduction of our running
example, and then motivate a slightly adapted data usage that illustrates the
pruning of XOR-gateways.

Example 12. For our example from Figure 1 we get the tree in Figure 6 a)
after the reduction for φDAP (d) = φDAP (DO2). See Figure 1 for the data usage.

Example 13. Assume that for our example from Figure 1, task A does not write
DO2 mandatorily but optionally. This does not have any impact on Example 12.
But if we perform a reduction for φ[WLD](DO2), task A does not appear in the
reduced process tree, so that it only contains the nodes i, E and o.

In the following, relevantDAP denotes the function from Lemma 1 and
relevant(DAP/∼) the one from Lemma 2.

SEQ

E XOR

λ A
a)

i E
λ

A
o

b)

Figure 6: a) The Tree from Figure 5 after the Execution of Algorithm 3 φDAP (DO2). b) The
Corresponding Workflow Graph.

Algorithm 3 prune(P , φ)
1: n0 ← get root of P
2: pruneNode(n0, φ)
3: trimTree(n0, φ)
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Algorithm 4 pruneNode(n, φ)
1: if relevant(φ, n) then
2: for all children n′ of n do
3: pruneNode(n′, φ)
4: end for
5: else
6: if type of parent of n = XOR

then
7: replace n with λ
8: else
9: delete n

10: end if
11: end if

Algorithm 5 trimTree(n, φ)
1: if |n.children| = 1 and type of n is

not loop then
2: connect the children of n to
n.parent

3: delete n
4: trimTree(n.parent, φ)
5: else
6: for all children n′ of n do
7: trimTree(n′, φ)
8: end for
9: end if

4.2.5. Discussion
We discuss whether to select ΦDAP or Φ(DAP/∼) for Φ, i. e., using relevantDAP

or relevant(DAP/∼) for reduction. We are aware of two factors. First, the num-
ber of resulting reduced process trees is interesting, because the verify_wg
algorithm must transform each different tree into a Petri Net representation
as a prerequisite to run the model checker. So, we first derive the number of
resulting reduced trees. We have to execute prune(P, φ) for every φ ∈ Φ. This
yields a reduced tree for every φ ∈ Φ. As shown before, the number of classes
in ΦDAP (i.e., the elements of ΦDAP ) is five times smaller than the one for
Φ(DAP/∼). Second, the size of the resulting reduced process trees determines
the size of the state space; this in turn affects the costs of the model checking.
Using relevant(DAP/∼) has a higher potential of reduction resulting in smaller
process trees. But this higher potential is not as high as one might expect. In
particular, if no optional data usage occurs in W , there is no improvement with
relevant(DAP/∼). This is because all classes of equivalence fall together, see
Lemma 3.

Lemma 3. Let W be a workflow graph with data without any optional data
usage. Then all anti-patterns in A’ = {MD, SRD, WRD, SLD, WLD, ID} are
equivalent.

Proof. The anti-patterns in A’ all take mandatory reads and writes into account.
They only differ in the optional data usage, which does not occur in W.

Lemma 4. If W is a workflow graph with data without any optional data usage,
it suffices to verify the anti-patterns in A’ = {MD, SRD, WRD, SLD, WLD,
ID}.

Proof. All the anti-patterns not in A’ can only evaluate to true if there is optional
data usage in the workflow graph. This is not the case in W’.
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Lemmata 3 and 4 give way to a simplified verification for such workflow
graphs.

Corollary 1. If W is a workflow graph with data without any optional data
usage, all anti-patterns belong to the same relevance class, i.e., the pruned
workflow graph to be verified is the same for all data-flow anti-patterns.

Next, think of an object d that is read and written mandatorily as well as
optionally within W . First, consider class [WLD]. The anti-pattern Weakly Lost
Data takes all kinds of data usage into account and uses the Allpath-Quantifier,
see the CTL formula formalizing DAP 7 in Table 1. This means that all paths
are relevant for this anti-pattern, and then no pruning is possible. The anti-
pattern for Redundant Optional Data behaves analogously for all but mandatory
DataOutputs. So pruning is not possible either in this case. I. e., the difference
between the reduction for φ[WLD](d) and φ[ROD](d) is that, for the second
property, the tasks with d as mandatory DataOutput can be pruned. However,
the resulting reduced trees do not differ much in general, see Example 13. Thus,
in this case the improvement from relevant(DAP/∼) in general is not large.

4.3. Transformation of a Process Tree to a Workflow Graph
To analyze the data flow, we have developed a transformation from the

reduced tree back into a workflow graph. This transformation is straightforward
except for the handling of XOR-nodes. Let n be an XOR-node in the reduced
process tree. Let relevantDAP be the relevance function used. We discern
between two cases:

1. n has only λ-nodes (i.e., empty nodes resulting from the prune-Algorithm,
see Algorithm 3) as children: This means that n does not have any relevant
children, but reads d. Then a task with d as mandatory DataInput replaces
n.

2. n has at least one λ as a child, but not all children are λ: In this case, we
must keep one of the λs but can transform it to a task with no data usage.

If relevant(DAP/∼) has been used, this differentiation is also valid except for
the special treatment in the second case. This treatment is not necessary for
Ã ∈ {[MD], [MOD], [ROD], [OLD]}, because these anti-patterns do not use an
Allpath-quantifier.

Example 14. To illustrate the data-flow verification steps for our running
example, see Figure 6 b). It is the workflow graph corresponding to the tree in
Figure 6 a). This graph is input of the verification algorithm, which then checks
the properties in φDAP (d) = φDAP (DO2) = {MD(DO2),WLD(DO2), ..}. Af-
ter that, our verification scheme goes on with the next class of properties.

5. Evaluation

We quantify the impact of our approach on the number of states of the Petri
Nets. From another perpective, we demonstrate that it is now possible to detect
data-flow errors in processes where data-flow analysis has not been possible
before.
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Table 3: Statistics of the Processes Used in Our Evaluation.
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P2 9 303 13 4 > 6.8 mio.
P3 24 310 7 1 > 6.3 mio.
PI4 43 582 25 2 > 5.9 mio.

bpmn 1 7 0 1 444

5.1. Preliminaries
Table 3 summarizes the statistics of the processes used. The first three are

OTX processes. OTX is an international standard to describe test plans for
vehicles. The processes are real commissioning processes. They have differ-
ent numbers of tasks, gateways and data objects. In OTX, DataInputs and
DataOutputs are mandatory. Thus, we use relevantDAP for the first three
processes. To experiment with relevant(DAP/∼) we use a BPMN process with
optional data usage (the fourth process in the table), see Figure 7.

We first transform our processes to Petri Nets and count their states. We use
the model checker [11] and stop the counting when 95 percent of the capacity of
our 24 GB main memory is reached.

5.2. Results
Without reduction, the computation of the state space has not been possible

for any of the OTX processes given. We now reduce the process with our
approach and again compute the number of states. For the OTX processes, we
introduce a differentiation between (1) the results for the data objects which are
used in up to 13 tasks in the processes, i. e., used rarely, and (2) the results for
the frequently used objects, used by nearly half of the tasks.
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i 1

2

3

4

5

6

7 o

node DIO(n) DIM (n) DOO(n) DOM (n)

1 ∅ ∅ ∅ {DO}
2 ∅ ∅ {DO} ∅
3 ∅ ∅ {DO} ∅
4 ∅ ∅ {DO} ∅
5 ∅ ∅ {DO} ∅
6 ∅ ∅ ∅ {DO}
7 ∅ {DO} ∅ ∅

XOR ∅ {DO} ∅ ∅

Figure 7: The BPMN Process Used for Evaluation as a Workflow Graph.

Table 4: Results for the first three processes from Table 3.
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14 1 0 0 8 RD
17 2 0 0 12 -
2 2 0 0 13 RD, LD
15 3 0 0 16 -
1 3 0 0 16 RD
1 3 0 0 18 RD, LD
4 4 0 0 20 -
5 5 0 0 24 -
1 6 0 0 31 LD
1 6 0 0 28 -
1 7 3 0 798 -
1 8 1 0 118 -
1 9 0 0 40 -
1 10 0 0 44 -
1 10 1 0 254 -
1 11 1 0 98 -
1 12 0 0 52 -
1 13 2 1 1.007 RD
1 13 1 0 138 -
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Table 5: Results for the Frequently Used Data Objects in the OTX Processes.
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P2 152 10 1 > 7.3 mio.
P2 149 9 1 > 8.0 mio.

P3 114 6 0 > 8.8 mio.
P3 131 6 0 > 9.0 mio.

PI4 239 21 2 > 6.2 mio.
PI4 204 20 1 > 6.1 mio.

Table 6: Results for the BPMN Process with Optional Data Usage.
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MD 4 0 0 21
SLD 4 0 1 84
ROD 5 0 1 153

5.2.1. Case (1)
In every OTX process, all objects except for two are used by at most 13 tasks.
See Table 4 for results with relevantDAP . Note that each of our processes W
results in |DW | trees, i.e., in |DW | processes to be verified. Each row represents a
set of processes ("frequency” is the number of processes in the set) with a similar
number of tasks, gateways and Petri Net states and the same data-flow errors
detected. RD means that we have detected Strongly and Weakly Redundant
Data, LD the same for Strongly and Weakly Lost Data.

The numbers of tasks in the resulting processes are much smaller than the
original ones. Before reduction, the processes contained at least 300 tasks, after
reduction at most 13. The reduced processes also are less complex, because they
all contain at most three splits. Before they had up to 27. The number of Petri
Net states has decreased by orders of magnitude. Another very important point
is that we have detected errors that have not been detected before.

5.2.2. Case (2)
To begin with, the two data objects used frequently are used for procedure

testing exclusively. In other words, these objects could have been omitted without
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confining functionality. We report on this rather unimportant case nevertheless,
because it is a setting where reduction is not expected to help much, i. e., reveals
the limits of our approach. As Table 5 shows, nearly half of the tasks stay in
the process after reduction, and the complexity of the process in terms of the
number of split gateways is not reduced. This in turn leads to a large state
space which is not computable in total. However, we could compute at least two
million states more than without reduction.

5.2.3. BPMN Process with Optionality
In the process bpmn, just one object occurs. Table 6 shows the results with

relevantDAP . Each row stands for the reduction for an anti-pattern class. We
do not consider the class OLD because we do not expect any reduction, see
Section 4.2. MOD is not listed either. The reason is that, while instantiating
the CTL-formula for Missing Optional Data, the program discovers that there is
not any optional DataInput in the process. Thus, the process will never fulfill
the anti-pattern.

For the other classes, we perform our reduction. It is significant for the
number of control-flow elements and also for the size of the state spaces. The
reduction for MD removes all XOR-paths where the only object of the process
is only used as an optional DataOutput. This is the case for the paths including
just Tasks 2 to 5. The result is that only one path, the one with Task 6, remains.
Additionally, Missing Data does not use an Allpath-quantifier, and therefore
a task could replace the XOR-gateway. The result is a process with only four
sequentially ordered tasks. All in all, the state space had 444 states; after
reduction the number is between 21 to 153.

5.2.4. Discussion
The effects of our reduction approach are significant. Where no analysis of

the data-flow has been possible so far, we now have detected several data-flow
errors. Speaking more generally, we have shown the potential of a reduction
with an anti-pattern based definition of relevance.

21



6. Related Work

Correctness of data-flow in processes. There are other approaches for data-flow
verification, e. g., [12], which uses BPEL processes, or [2] using Workflow Nets. In
principle, they could profit from our verification scheme as well. This is possible
as long as they use model checking for data-flow correctness. [13] features an
approach to verify complex business processes in BPMN notation with multiple
instances, exception handling and cancellation activities. They transform BPMN
into an enhanced Petri net formalism, so-called RECATNets, which allows to
handle the semantics of those complex BPMN concepts. However, data flow is
only handled for data-based XOR-decision gateways. In contrast to our approach,
they do not provide a mechanism for general data-flow correctness. Other
definitions of correctness of data in process models exist as well. These definitions
consider, say, properties restricting the allowed values of data objects [14] but
not the data flow defined with data usage, or life-cyles of data objects with states
[15, 16, 17]. To apply our scheme to these correctness definitions, one has to
define respective properties as, e.g., anti-patterns and then to come up with a
specific formula for relevance. For instance, this seems to be feasible for life-cycles
of data objects. For artifact-centric business-process models, [18] proposes an
integration of artifacts into the model by pre- and post-conditions. They model
life-cycles of data objects and numerical data with these conditions using the
constraint programming paradigm, and provide correctness checking regarding
reachability and so-called weak termination. In contrast to our approach they
rely on artifact-centric process models, but do not focus on control-flow centric
models like BPMN.

Transformation of process models. Transformations from high-level process mod-
els to Petri Nets are described in [19]. An overview on transformations from
block-based to graph-based process models gives [20]. These transformations
do not comprise the data flow. Therefore, we use such transformations for the
control-flow and have enhanced it, respectively. Abstraction of process models
is a related topic, see for example [21, 22, 23].

Reduction for enabling process-model verification. Reduction on the level of
the state space is orthogonal to the one of the process model, see [5]. In
our evaluation we actually have used such a technique, namely stubborn set
reduction [24], which is available in LoLA. However, this does not work for
the data-flow anti-patterns, as the state space remains too large. In [5], a
reduction of a high-level process model to relevant regions confines the state
space. Relevance depends on the properties to be proven. Thus, one challenge
behind our work has been the specification of relevance in the data-flow context,
which has not been investigated yet. [5] also uses a scenario with properties
called resource conditions. This means that a task needs certain data. Including
this additional information into the relevance function could reduce the Petri Net
further. However, resource conditions only concern one issue of data semantics
in process models and thus of data-flow correctness. Other work on the level of
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the process model, e. g., [25, 26, 27], mostly covers structural conditions of the
model and is not applicable to more complex properties expressed in temporal
logic. 1 [14, 28] speeds up the verification of data-aware properties by considering
the states of a variable. It does so by abstracting from the possible values of
a data object in a preprocessing step. This work is orthogonal to ours, and a
combination seems feasible.

7. Conclusions

This paper has proposed a data-flow verification scheme for business processes.
To deal with state-space explosion, it has reduced the process models. To do so,
we have relied on the insight that only parts of the model typically are required
to verify a property, i. e., use the notion of relevance. We have derived relevance
for data-flow constraints and have studied the efficiency of respective verification
approaches. Our evaluation has demonstrated that our approach works nicely
for processes of realistic size.
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Appendix A. Relevance Functions for the Equivalence Classes of
Φ(DAP/∼)

This appendix defines the relevance functions for the classes in Φ(DAP/∼)
not defined in Section 4. Their proofs are analogous to the proof of Lemma 1 in
Section 4 .

Lemma A1 (Relevance function for φÃ(d) with Ã = [MD]). Let n ∈ N
and Ã = [MD] ∈ Φ(DAP/∼). Then relevant(φ = φÃ(d), n) is as follows:

relevant(φ, n) =


d ∈ DIM (n) ∨ d ∈ DOM (n) n is a task
n has at least one relevant child n is an XOR or Loop
∨ n reads d mandatorily

n has at least one relevant child n is an AND or SEQ

Lemma A2 (Relevance function for φÃ(d) with Ã = [MOD]). Let n ∈ N
and Ã = [MOD] ∈ Φ(DAP/∼). Then relevant(φ = φÃ(d), n) is as follows:

relevant(φ, n) =


d ∈ DIO(n) ∨ d ∈ DOM (n) n is a task
∨d ∈ DOO(n)

n has at least one relevant child n is an XOR or Loop
or AND or SEQ

Lemma A3 (Relevance function for φÃ(d) with Ã = [ROD]). Let n ∈ N
and Ã = [ROD] ∈ Φ(DAP/∼). Then relevant(φ = φÃ(d), n) is as follows:

relevant(φ, n) =



d ∈ DIO(n) ∨ d ∈ DOO(n) n is a task
∨d ∈ DIM (n)

n has at least one relevant child n is an XOR or Loop
∨ n reads d mandatorily

n has at least one relevant child n is an AND or SEQ

Lemma A4 (Relevance function for φÃ(d) with Ã = [OLD]). Let n ∈ N
and Ã = [OLD] ∈ Φ(DAP/∼). Then relevant(φ = φÃ(d), n) is as follows:
relevant(φ, n) = relevant(φDAP (d), n)
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