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Abstract: We study experimentally and theoretically the electromagnetic 
field in amplitude and phase behind ball-lenses across a wide range of 
diameters, ranging from a millimeter scale down to a micrometer. Based on 
the observation, we study the transition between the refraction and 
diffraction regime. The former regime is dominated by observables for 
which it is sufficient to use a ray-optical picture for an explanation, e.g., a 
cusp catastrophe and caustics. A wave-optical picture, i.e. Mie theory, is 
required to explain the features, e.g., photonic nanojets, in the latter regime. 
The vanishing of the cusp catastrophe and the emergence of the photonic 
nanojet is here understood as the refraction limit. Three different criteria are 
used to identify the limit: focal length, spot size, and amount of cross-
polarization generated in the scattering process. We identify at a wavelength 
of 642 nm and while considering ordinary glass as the ball-lens material, a 
diameter of approximately 10 µm as the refraction limit. With our study, we 
shed new light on the means necessary to describe micro-optical system. 
This is useful when designing optical devices for imaging or illumination. 
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1. Introduction 

When light interacts with matter, it typically exhibits ray and wave optical characteristics at 
the same time. Which of the both characteristics dominates, implying different effects that 
occur predominantly, may vary depending on the characteristic dimension of the object with 
respect to the wavelength of light. Furthermore, the character of light waves evolves from a 
scalar to a vector under a tighter confinement. A good example for the coexistence of ray and 
wave characteristics can be found in an aberrated focus. When a monochromatic light wave 
propagates through an imperfect focusing system, a cusp catastrophe occurs, in which caustics 
and a cusp are a manifestation of catastrophe theory in optics [1]. Intuitive explanations of 
this phenomenon rely on geometrical optics. Such theory is usually applicable in the short-
wave limit, i.e., when all geometrical features are much larger than the wavelength. More 
precise descriptions require considering the wave nature of light. For instance, the fold and 
cusp catastrophes explain the disappearance of the caustic singularity by demonstrating that it 
is an artifact of the geometrical optics limit [1]. In theory, Pearcey has found an exact solution 
for waves near a cusp in 1946 [2]. Experimentally, the cusp catastrophe can be observed with 
a lens possessing a spherical aberration. Numerous studies have been carried out and textbook 
examples for waves near the focus of an imperfect lens are available [3, 4]. However, an 
experimental study of the cusp catastrophe beyond the short-wave limit has not been reported. 
Here, we study the cusp catastrophe beyond the conventional short-wave limit by decreasing 
the characteristic dimension of the object that causes it. This allows us to distinguish optical 
regimes, where either wave-optical or ray-optical features dominate the observables. 

In this study, we employ one of the most natural examples for an imperfect lens that can 
produce the cusp catastrophe: a dielectric sphere. Dielectric spheres are generally described 
by a double-convex-type thick lens, commonly called a ball-lens [5]. Note that its spherical 
surface profile intrinsically leads to a strong spherical aberration. As mentioned before, the 
cusp catastrophe can be caused by such an aberrated focus. Relatively large ball-lenses have 
been intensively studied for optical-fiber communication systems [6–8]. Its characteristics are 
well studied by geometric optics under paraxial approximation [5]. The origins of the 
numerical aperture (NA) and the spherical aberration of the wavelength-scale ball-lens have 
been reported using rigorous theory and numerical simulations [9]. Interestingly, when the 
size of the sphere becomes comparable to the illuminating wavelength leading to the 
scattering domain, a specific light confinement occurs, named photonic nanojet [10, 11]. Such 
a phenomenon is proven to support super-resolution effects, for instance, super-resolution 

#254854 Received 1 Dec 2015; revised 7 Mar 2016; accepted 8 Mar 2016; published 22 Mar 2016 
© 2016 OSA 4 Apr 2016 | Vol. 24, No. 7 | DOI:10.1364/OE.24.006996 | OPTICS EXPRESS 6997 



imaging capability of nanoscopes [12] and can be modulated by nano-structures on a sphere 
[13]. 

We are particularly interested in the transition region between a refractive focusing effect 
of the ball-lens and a tighter confinement of the photonic nanojet effect. The regimes are 
distinguished in a sense that both the focal length and width of the focal spot depend on the 
diameter of the ball-lens in the refraction domain, whereas they are size-independent in the 
diffraction domain. Then, the dominant mechanism of the light confinement shifts from 
refraction that is modeled by geometrical optics to the scattering regime which is described 
rigorously by Mie theory. Meanwhile, the short-wave approximation gradually becomes 
invalid as this transition occurs. At the point of transition, the cusp catastrophe, which is the 
canonical proof of refraction in an aberrated focus, vanishes and the form of the light 
confinement mimics an aplanatic focus without aberrations. Furthermore, the strong 
confinement of the photonic nanojet pushes the vector nature of light more noticeable, which 
can be proven by a depolarization effect of a high NA focus system [14–16]. This transitional 
point is understood here as the refraction limit. 

2. Experiment and simulation details 

Experiments are carried out using a high-resolution interference microscope (HRIM) [17, 18] 
to measure the 3D amplitude and phase distributions near a focus, which is a cusp (i.e., the 
peak confinement). We use a 100X/NA0.9 objective (Leica Microsystems, HC PL 
FLUOTAR) which assures the highest resolution of microscopy systems in air. The HRIM is 
equipped with a laser diode light source emitting at 642 nm wavelength (CrystaLaser, DL640-
050-3). More details of the experimental setup are reported elsewhere [17, 18]. Dielectric 
spheres of diameters from 2 mm down to 1 µm are considered. Due to a broad range of the 
sphere size, spheres made from an identical material were not available. However, materials 
were chosen that possess only a marginal difference in optical properties. Microspheres made 
from polystyrene (n = 1.59), borosilicate glass (n = 1.56), N-BK7 (n = 1.52) and soda lime 
glass (n = 1.51) were considered. The sphere sizes for polystyrene, borosilicate and soda lime 
glass are 1 µm - 100 µm, 1 µm - 22 µm, and 100 µm - 400 µm, respectively, purchased from 
Duke Scientific Inc. For large-size spheres (diameter from 0.5 mm to 2 mm), N-BK7 spheres 
are purchased from Edmund Optics. For experimental convenience, spheres are dispersedly 
deposited on a glass substrate (Carl Roth, Borosilicate coverslip with thickness of 150 μm). 
For the experiment, we choose a single sphere, which is well isolated from other spheres. In 
experiments, a plane wave propagating along the positive z-direction and polarized in the x–
direction illuminates the spheres from the substrate side. Surrounding medium of the sphere is 
air. Since the planar surface of the glass substrate does not affect in good approximation the 
spatial distribution of the plane wave but only changes its amplitude by imposing a Fresnel 
reflection coefficient, we consider in the simulations a plane wave as illumination for the 
sphere without substrate. Depending on the sphere size, numerical simulations using either a 
ray tracing (a commercial tool, FRED) or a full wave solution (i.e., Mie theory, see details in 
[18, 19]) are used to compare measurements to theoretical predictions. In brief, Mie 
simulations are carried out taking into account the optical imaging system using scalar 
propagation techniques in spatial frequency space. We calculate at first the electric field 
Ex(x,y,z,ω) and Ey(x,y,z,ω) with Mie theory in the x-y-plane at a distance z far away from the 
sphere, for instance, z = 10 μm for 1-μm sphere. After Fourier transforming the field to the 
spatial frequency space [Ex(kx,ky,z = 10μm) and Ey(kx,ky,z = 10μm)], we suppress all 
contributions of spatial frequencies (kx and ky) whose absolute value is larger than the 
numerical aperture of the observing objective divided by the incident wavelength. This 
mimics the behavior of the objective in the experiments. This modified electric field 
components are propagated to the slice of interest in z-direction by means of free space 
propagation. 
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3. Geometrical representation of the ball-lens: ray optics 

We start our discussion with a ray-optical representation of the ball-lens problem visualized in 
Fig. 1(a). For simplicity, the position of the peak intensity on the optical axis is defined as the 
focal point. The principal planes are set at the center of the sphere. Under paraxial 
approximation, an effective focal length (EFL) and a back focal length (BFL) can be found as 
[5, 9]: 

 ,
2( 1)

nR
EFL

n
=

−
 (1) 

 – ,BFL EFL R=  (2) 

where n is the refractive index of the sphere and R the radius of the sphere. The EFL [Eq. (1)] 
is measured from the center of the ball lens, and the BFL [Eq. (2)] from its rear surface. The 
back focal length will be examined as a criterion for the refraction limit in Section 5.1. Figure 
1(b) shows a ray diagram emerging from the rear surface of a glass ball-lens (n = 1.5) 
calculated by FRED. One can see a typical cusp catastrophe represented by caustics forming a 
cusp in a triangular shape. 

 

Fig. 1. (a) Geometrical optical parameters of a ball-lens, where EFL is effective focal length, 
BFL back focal length, and R the radius of the sphere. (b) FRED ray diagram emerging from 
the rear surface of a glass ball-lens. 

4. Cusp catastrophe 

4.1 Coexistence of the ray and wave nature of light: geometrical wavefront 

An exemplary measurement of amplitude and phase distributions of the cusp catastrophe is 
shown in Fig. 2, using a 200-µm soda lime glass ball-lens. In the lower half of Figs. 2(a) and 
2(b), we can observe the typical footprint of the spherical aberration in both intensity and 
phase measurements. 

 

Fig. 2. (a) Measured x-z intensity and (b) phase distributions near the focus. The cusp 
catastrophe is created by a 200-µm soda lime glass ball-lens. Intensity is normalized and the 
surface of the ball-lens is on z = 0 plane 

The short-wave approximation starts to be invalid and the wave nature of light becomes 
stronger. Consequently, the caustic lines are not prominent anymore. However, the vague 
footprint of the triangular area (see the dashed triangle in Fig. 2), where two caustics meet and 
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form a cusp, is still observable. Outside this triangular area, the geometrical wavefronts 
appear, which are the iso-phase curves perpendicular to the single rays [1]. They demonstrate 
the coexistence of the ray and wave natures of light. In catastrophe theory [1], these 
geometrical wavefronts are singular at caustics and have a parabolic shape in the far field. In 
Fig. 2(b), such singularities of the geometric wavefront can be found near the triangular area 
and the parabolic shape in the area of z > 47 μm. 

The spherical aberration broadens the size of the focal spot along both the axial (z) and 
lateral (x and y) directions and causes an asymmetry in the axial field distribution. A typical 
phase singularity of the focal spot is also found near the focal plane (i.e., near the cusp) due to 
the destructive interference that causes amplitude zeros around the focal spot. The strong 
amplitude of the side lobes in the out-of-focus planes, z from 0 to 10 μm, leads to additional 
wavefront dislocations, which are predictable by Pearcey’s diffraction patterns [1, 2]. In the 
measurement of Fig. 2, the focal point is found approximately 42 µm away from the rear 
surface of the ball-lens, while Eq. (2) predicts 48 µm. This discrepancy can be explained by 
diffraction effects and spherical aberrations, as they are well-known causes to shift the focal 
point toward the lens [20, 21]. 

4.2 The vanishing of the cusp catastrophe 

To visualize the evolution of the cusp catastrophe, we take a close look at the transient region 
between the refractive focusing of the ball-lens and the photonic nanojet. Spheres of diameter 
from 10 μm to 30 μm are considered. Figure 3 shows the x-z intensity distributions near the 
focus of those spheres. 

 

Fig. 3. The x-z intensity distributions of the focal spots created by the polystyrene ball-lens of 
(a) 10-µm, (b) 15-µm, (c) 20-µm, and (d) 30-µm diameters: (upper row) linear-scale intensity 
and (lower row) logarithmic-scale intensity maps. For easy comparison, the spot is aligned in 
the middle of each image and intensities are all normalized. 

Logarithmic-scale intensity maps, shown in the lower row, emphasize the low intensity 
region compared to the maps in the upper row. The transition from the refractive focal spots 
shown in Figs. 3(b)-3(d) to the photonic nanojet in Fig. 3(a) is clearly observed as the 
disappearance of the triangular footprint of caustics. This means that for diameter D ≤ 10 μm 
the cusp catastrophe vanishes. The measurements of the smaller spheres are not shown in this 
section, but they show similar intensity distributions to that of Fig. 3(a). In this region, the 
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intensity distribution remains symmetric with respect to the focal plane and no traces of the 
caustics are observed. 

5. Criteria for the refraction limit 

In the previous section, we discussed the particular features of the cusp catastrophe and its 
vanishing upon emergence of the photonic nanojet. In this section, we focus on identifying 
criteria for the refraction limit of the ball-lens by investigating focal length, spot size, and 
amount of cross-polarization. 

5.1 Focal length 

Figure 4 plots the extracted BFL from the measurements together with results of Eq. (2), 
which are represented by lines. For a more in-depth comparison, a commercial ray-tracing 
tool FRED is applied to calculate the focal length and the spot size for the corresponding ball-
lens materials, and results are plotted as black open squares. Experimental results of the BFL 
show a good agreement with Eq. (2) for the ball-lens sizes down to 100 µm. For ball-lenses of 
D < 100 μm, the discrepancy between experiments and ray-optic calculations starts to be more 
notable. For smaller diameters (D ≤ 20 μm), the Mie simulation leads to a better agreement 
with experiments, which is plotted as red asterisks. For D ≤ 10 μm, the experimental focal 
points are found in the vicinity of the rear surface of the ball-lenses (BFL < 1μm), see the 
inset of Fig. 4. In this region, the photonic nanojet effect overwhelms the refractive focusing 
effect of the ball-lens by dragging the focal point to the ball-lens rear surface. In experiment, 
the BFL < 1 μm is subject of the measurement limit. Eventually, it has been measured as if the 
back focal plane sits on the rear surface of the sphere. 

 

Fig. 4. Focal length vs sphere diameter. Lines are calculated data by Eq. (2) and markers are 
measured data. Open squares of black color are results from the FRED calculation and colored 
asterisks are from Mie simulation. 

5.2 Spot size 

We turn our attention to the spot size that was extracted from the same measurements of Fig. 
4. Since the spherical aberration shortens focal length, so-called focal shift [20, 21], the NA, 
which is a ratio between focal length and half aperture size, is difficult to be defined. 
Moreover, the spherical aberration widens the spot size and causes asymmetry of the spot 
shape along the optical axis. Due to those effects, it is not a trivial task to derive a simple 
equation for the spot size of the ball-lens. Therefore, numerical calculations and high-
resolution measurements are applied to verify the spot size of the ball-lenses. In Fig. 5, the 
measured full width at half maximum (FWHM) spot size along the x-axis is plotted with 
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respect to the diameter of the ball-lens. Similar to the case of the focal length, the ball-lenses 
smaller than 15 µm (i.e., D ≤ 10 μm) show a particular behavior. The spot size persists to be 
close to 400 nm independent on the ball-lens diameter. Such a uniform behavior of the spot 
size is originated from the resolution limit of the measurement system, whose nominal 
resolution limit is 0.5λ/NA = 357 nm, when the NA = 0.9 objective is employed. However, 
imperfections of the experimental conditions limit the resolution limit to approximately 400 
nm in this case. Nevertheless, it is not expected that this resolution limit significantly affects 
the conclusion, since the emerging photonic nanojets in theory are expected to lead to a 
slightly sub-diffraction limited spot size for small spheres (see dark cross markers in Fig. 5, 
which are the Mie simulation results without the NA filtering). Therefore, even though we 
reach asymptotically a slightly larger value in the FWHM due to the finite numerical aperture 
of the system, the conclusion that the measurable FWHM is size independent below a specific 
diameter will persist. The upper diameter for which this happens is only slightly larger than 
the one we observe in the experiments, since we are already close to the lower bound of the 
admissible FWHM. In order to emphasize the photonic nanojet regime, the diameter of the 
ball-lens is displayed in logarithmic scale in Fig. 5. For the ball-lenses of D ≥ 15 μm, the spot 
size increases with the diameter. For D < 500 μm, the ray-tracing tools do not produce 
appropriate results due to the lack of rigorous wave theory. In contrast, for the wavelength-
scale spheres, results of the rigorous Mie simulation show a good agreement with 
experimental results of the spot size, which are plotted with red asterisks in Fig. 5. 

 

Fig. 5. Measured FWHM spot size in the x-axis vs sphere diameter. The diameters are 
displayed in logarithmic scale in order to emphasize the photonic nanojet regime [D ≤ 10 µm]. 

From the analysis of Figs. 4 and 5, we can identify the photonic nanojet regime as the 
parameter space where the focal length and the spot size tend to be independent of the ball-
lens size, i.e., the back focal plane stays in the vicinity of the rear surface (BFL < 1 μm) and 
the measured FWHM spot size is independent of the ball-lens diameter, which occurs from D 
≤ 10 μm in this study. 

5.3 Amount of cross-polarization: depolarization effect [14–16] 

We can also verify the emergence of the photonic nanojet effect by probing the vector 
characteristic of the light in the focal plane. In the transverse plane of the vector electric 
fields, the polarization is divided into parallel and orthogonal field components. In our case, x- 
and y-directions, respectively. With the help of an analyzing polarizer, the orthogonal field 
component (Ey) can be detected by suppressing the parallel field component (Ex). In 
experiments, a Glan-Taylor polarizer (nominal extinction ratio = 1:105) is inserted just after 
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the observation objective lens in the HRIM setup. By rotating the analyzer orthogonal to the 
incident polarization in the x-axis, the Ex can be suppressed to render the amplitude of the Ey 
component measurable. In experiments, the polystyrene spheres of diameter from 1, 2, 6 and 
20 μm are considered. Figure 6 shows the transverse intensity distributions of Et = Ex + Ey 
(measured without analyzer) in the upper row and Ey (measured with analyzer) in the lower 
row. The plotted data are the intensity, which is the square of the field amplitudes 

 
22

,t x yI E E= +   (3) 

 
2

.y yI E=  (4) 

 
Fig. 6. The measured transverse intensity distributions of the total field components (Et = Ex + 
Ey) and the orthogonal field component (Ey) in the lower row: (a) D = 1 μm, (b) D = 2 μm, (3) 
D = 6 μm, and (d) D = 20 μm. The white scale bar indicates 1 μm. 

The images are taken in the peak intensity plane along the z-axis. Measurement conditions 
are set to obtain comparable gray-scale maps of It and Iy of each sphere. The four bright spots 
separated by zero amplitude lines along the x-y axes are the typical feature of the orthogonal 
field component of focal spots produced by a linearly polarized incidence [15, 16]. This 
feature is well observed in the lower row of Figs. 6(a)-6(c). Practical extinction ratio of a 
polarizer is usually limited by imperfection of experimental conditions, such as, alignment 
and quality of all optical elements. For the 20-μm sphere shown in Fig. 6(d), such 
experimental errors limit the practical extinction ratio to 1:103. When this extinction ratio is 
taken into account, the Mie simulation reproduces very well the measurement of Fig. 6(d) and 
shows an excellent agreement, as shown in Fig. 7. 

 
Fig. 7. Reproduced intensity distribution of Ey for the 20-μm sphere shown in Fig. 6(d) using 
Mie simulation, where the extinction ratio of the polarizer 1:103 is taken into account. Intensity 
is normalized. 
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For quantitative investigation, we extract the peak intensity ratio of orthogonal (Ey) and 
total field (Et) components from the experiments, and the results are plotted in Fig. 8. Here, 
practical extinction ratio of a polarizer could be different in each sphere measurement due to 
imperfect experimental conditions. For the theoretical counterparts, we plot the peak intensity 
ratio of Ey/Et from Mie simulation results, which are not subjective to the practical extinction 
ratio. Larger experimental discrepancy is observed for D = 2 μm and 6 μm cases assumably 
due to unfavorable experimental conditions. In spite of such a discrepancy, we can clearly see 
that the amount of the orthogonal field component gets quickly higher for smaller spheres. In 
this way, we confirm that spheres smaller than 10 μm clearly show a strong vector nature of 
the fields. In the transition point D ≤ 6 μm, the peak intensity ratio of Ey/Et becomes larger 
than 0.5x10−3. Beyond this refraction limit, the spheres are operated in the photonic nanojet 
regime and the cusp catastrophe of the ball-lens vanishes. 

 

Fig. 8. Peak intensity ratio of Ey/Et from experiments and Mie simulations. 

6. Conclusions 

We have studied the refraction limit of the ball-lens, where the cusp catastrophe of imperfect 
refractive focusing is suppressed by the vector nature of the photonic nanojet effect. In 
experiments, the existence of the geometrical wavefront has been demonstrated by measuring 
the phase distributions of the cusp catastrophe, and we observed the disappearance of caustics 
which are replaced by phase dislocations. In that region, the ray and wave characteristics 
coexist. In the transitional region, logarithmic-scale intensity maps visualized the vanishing of 
the cusp catastrophe for the ball-lens diameter D ≤ 10 μm. Three parametric criteria were 
considered to identify this transitional region as the refraction limit of the ball-lens. First, the 
focal length shows such a transition as the back focal length becomes close to zero (i.e., the 
focal plane stays on the vicinity of the rear surface of the ball-lens). Second, the spot size 
demonstrates that the refraction limit occurs when the FWHM spot size becomes independent 
of the size of the ball-lenses. Third, the vector nature of light decomposes the field 
components in parallel and orthogonal ones, in our case, Ex and Ey, respectively. A relatively 
strong orthogonal component, for instance, a peak intensity ratio of Ey/Et > 0.5x10−3 for D ≤ 6 
μm was confirmed, verifies the emergence of the photonic nanojet effect, where the refraction 
effect of the spherical aberration is suppressed by the vector character of light and it leads to a 
tighter confinement. We confirm that wavelength-scale spheres are driven in an operational 
regime beyond the refraction limit. The aberration effects in the ball-lens focusing start to 
vanish, and consequently an annihilation of the cusp catastrophe occurs. For glass ball-lenses, 
the diameter of approximately 10 μm is identified for the refraction limit at λ = 642 nm. 
Beyond this limit, the refraction of the ball-lens is overwhelmed by diffraction and scattering 
effects of the photonic nanojet. Note that different material properties could vary the result 
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due to dispersion but otherwise the scaling with respect to the wavelength is preserved since 
Maxwell’s equations are scalable. 
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