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Abstract
Active microrheology is a valuable tool to determine viscoelastic properties of polymer networks. Observing the response of the

beads to the excitation of a reference leads to dynamic and morphological information of the material. In this work we present an

expansion of the well-known active two-point microrheology. By measuring the response of multiple particles in a viscoelastic

medium in response to the excitation of a reference particle, we are able to determine the force propagation in the polymer network.

For this purpose a lock-in technique is established that allows for extraction of the periodical motion of embedded beads. To exert a

sinusoidal motion onto the reference bead an optical tweezers setup in combination with a microscope is used to investigate the

motion of the response beads. From the lock-in data the so called transfer tensor can be calculated, which is a direct measure for the

ability of the network to transmit mechanical forces. We also take a closer look at the influence of noise on lock-in measurements

and state some simple rules for improving the signal-to-noise ratio.
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Introduction
The dynamic shear modulus describes properties of polymer

networks. It can be determined by recording and mathemati-

cally transforming the thermal motion of a particle embedded in

a viscoelastic medium into the frequency domain. Since no

external forces are applied to the motion of the particle, this

method is named passive microrheology [1-4]. The resulting

shear modulus shows the elastic and diffusive behavior of the

investigated medium over the frequency range accessible by the

measuring setup. This output is the result of different methods

handling the unilateral Laplace transform [5-7]. By exciting a

particle with an oscillating force, the shear modulus at a specif-

ic frequency can be determined by measuring the response of
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the particle. The motion of the particle also includes informa-

tion about the damping and the viscosity of the surrounding me-

dium. This method is known as active microrheology [8-10].

Both the passive and the active method provide an insight into

the storage and the loss modulus of the medium. An extension

to the single particle active method is achieved by the measure-

ment of two or more particles. It was observed that the move-

ment of two particles embedded in a matrix is correlated

[11,12]. There, it was shown for fibronectin that this correla-

tion leads to calculated viscoelastic parameters in good agree-

ment with classical rheology. Actin networks exhibit a similar

correlated movement [13]. It was shown that the single-particle

and the multi-particle techniques can lead to equal results [14].

For some networks characteristic differences between one-point

and two-point microrheology data were found. It was

mentioned that inhomogeneities could be determined. An

overview over these techniques is given in [15,16].

We present a novel active multi-point microrheology method

that allows one to determine the periodic motion of beads in a

network responding to an oscillatory excitation of a laser-

trapped bead. Our method does not depend on correlations be-

tween particle motions, but analyzes the mutual displacements

directly. Via the recorded motions of a group of particles locat-

ed and connected to each other in the viscoelastic medium, it is

possible to determine the transfer tensor of motion, the relation-

ship of response amplitudes, phase shifts and frequency changes

to higher harmonics with the help of the lock-in technique. A

closer look at the signal-to-noise ratio (SNR) is also necessary

in order to to ensure applicability of the method over the whole

range of experimentally accessible parameters. With this tech-

nique we characterized keratin networks with crosslinks of dif-

ferent strength. The concept of the lock-in technique as well as

the transfer tensor can be used to improve displacement resolu-

tion in all classical single-point and two-point active microrhe-

ology methods. However, there will be no contribution to the

ongoing discussion about the different results obtained on iden-

tical samples by applying different microrheological methods

[12,17]. A closer look on the impact of inhomogeneities in

networks detected with a similar technique as described here

can be found in [18]. Parts of this work were already published

in the doctoral thesis of Tobias Paust [19] and in a preliminary

communication on the arXiv preprint server [20].

Results and Discussion
Theoretical aspects
In this section we have a deeper look at the theory behind the

lock-in technique and show how to calculate the transfer tensor.

Prior to the determination of the lock-in amplitude one particle

has to be trapped and excited by optical tweezers. Then the

motion of the excited particle and the particles in the surround-

ing is captured by a high speed camera and the positions of each

particle over time are determined. In a group of particles, one

particle – the reference particle R – is excited to sinusoidal

oscillations at a specific frequency ω, amplitude A and direc-

tion θ. Consequently, the motion of the reference particle is a

superposition of thermal noise and the sinusoidal oscillation.

The motion of the response particles is also a superposition of

thermal noise, the same sinusoidal function and additionally

several terms of the sinusoidal function with doubled, tripled or

n-fold frequencies. These are the higher order harmonics whose

amplitudes depend on the nonlinearity of the system [21] and

can be calculated using a Taylor series expansion combined

with the addition theorems for sines and cosines. The motion of

the response particle can be written as

(1)

with a0 to an and b0 to bn being the Fourier coefficients for the

individual terms depending on the k-fold frequency. The multi-

plication of the excitation function f(t) with sine and cosine, and

its time averaging leads to the Fourier coefficients

(2)

The response function can be expressed as a sum of sine func-

tions under the assumption that the series converges in time.

With the coefficients ak and bk the relationship of the response

amplitudes xk and phases φk to the reference can be gained. In

all spatial directions the response vector is

(3)

In this equation xikθ, yikθ and zikθ denote the amplitudes of the

response particle i for the specific spatial direction x, y or z with

the excitation direction θ at harmonic k. The phase information

for a corresponding k is φxikθ, φyikθ and φzikθ. The transfer

tensor , which contains information about the material, links

both the reference motion and the response motion. Then it is



Beilstein J. Nanotechnol. 2016, 7, 484–491.

486

Figure 1: Simulations of the accuracy of the lock-in method. The red line shows the ratio between expected oscillation amplitude and simulated ampli-
tude in the presence of 1% noise. In the case when the expected and simulated amplitudes match, the ratio converges to one. Other values show a
misleading amplitude due to a SNR that is too high. With the used parameters the ratio increases for oscillation amplitudes smaller than 10−2 μm. The
blue line depicts the 5% deviation with 3σ accuracy. Inset: Minimal detectable amplitude, when the calculated amplitude is in the range of 1% (brown)
and 5% (green) compared to the expected one (with 3σ accuracy).

with

(4)

with  being the reference matrix and  the response matrix

of particle i. The number of columns of both matrices depends

on the amount of excited directions. In order to solve the

overdetermined linear equation, the minimum least squares

method is taken into account. To infer a unique solution, Equa-

tion 4 is transposed and left-hand sided multiplied by the refer-

ence matrix. If the reference matrix is left-invertible, the matrix

product can be inverted and put on the other side of the equa-

tion [22]. This leads to

(5)

The transfer tensor describes the change of the excitation vector

to the response vector of the particles.

Simulations
The accuracy of a measurement with a lock-in amplifier

depends on the noise [23]. Simulations were performed to test

how a bad SNR leads to a failure of the method. For this, noise

with Gaussian distribution was generated in such a way that the

calculated potential matches the theoretical potential of the trap

with a stiffness kTr = 1 pN/µm. Afterwards, the noise was added

to a generated sinusoidal motion with a frequency f = 10 Hz and

a data length of 16000 points. The calculation of the SNR in the

lock-in method was repeated several times and averaged.

Figure 1 shows the ratio between expected and calculated

amplitude plotted versus the excitation amplitude. The inset

depicts the minimal amplitude, when the calculated amplitude is

in the range of 1% and 5% compared to the expected one. This

minimal amplitude is determined with 3σ (95%) accuracy and

depends on the stiffness of the trap. However, with this method

it is possible to measure with trap stiffnesses and applied dis-

placements that are at the lower limit of what is experimentally

possible and to still obtain a satisfying SNR.

At an excitation of 10−2 µm the calculated amplitude starts to

differ from the expected one. This can be seen in Figure 1

where the ratio becomes larger than one. For smaller ampli-

tudes this discrepancy increases rapidly. This means that the

SNR is too low to gain a meaningful result from a measure-

ment. In order to improve the SNR and to shift the error to

smaller amplitudes, data sets with a length of 106 data points

have to be generated. With this change a minimum amplitude of

about 1 nm can be achieved. Another possibility to improve the

measurement is the change of the trap stiffness. This can be

seen in the inset of Figure 1, where a higher stiffness results in a

lower minimum amplitude. To reach the best measurement

system, both ideas mentioned above have to be considered. If

the number of data points and the trap stiffness are low, the

lock-in method fails because of a SNR that is too high.
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Measurements
To confirm the functionality of the setup, measurements in

bi-distilled water were carried out. The advantage of water is

that it is a purely viscous and, even more important, homoge-

neous liquid, which serves well as a model system for testing

the method. In this system a sinusoidal motion of the optical

trap leads to a similar motion of the reference particle. A lack of

motion of the particle in axial direction confirms that the trap

focus stays at constant height. Furthermore, the expected

response amplitudes for different angles should always be the

same as of the trap. This is valid if the oscillation frequency is

small so that the viscosity of the medium does not influence the

particle motion.

To show the correctness of the method, reference and response

particle are chosen to be the same bead and the transfer matrix

of itself is calculated. The calculated transfer matrix is pre-

dicted to be the identity matrix because of the calculation with

equal matrices. Calculation of the amplitudes corresponding to

the higher frequency modes leads to zero because a linear

response is assumed. The measured particle motion was in

accordance with the calculated particle motion via the lock-in

method in the direction of excitation because the Brownian

motion was small compared to the oscillations. The diagonal

oscillations (45°, 135°) led to amplitudes of . Hence, the

measured values were in accordance with theory. The ampli-

tude in the non-excited direction always resulted in minor

values. This shows that the method works in the case of a

viscous fluid.

Afterwards, the transfer matrix was calculated via the reference

and response matrix of the observed motions. This led to

and

The columns of matrix  and  contain the amplitudes

(Aexcited = 0.638 µm) at an excitation frequency of 10 Hz for

different oscillation angles (0, 45, 90 and 135°). The resulting

transfer matrix shows the predicted values apart from rounding

artifacts which are in the range of 10−6 to 10−8.

Similar to the calculations of the transfer matrix in bi-distilled

water, the transfer matrices of three types of in vitro assembled

keratin 8/18 networks were determined. The first network was

assembled without any additional crosslinker. The second and

the third network contained 0.25 mM Mg2+ and 1 mM Mg2+ as

crosslinker, respectively. Since an increasing amount of

crosslinker evokes a denser and stiffer network [22], the

motions of both the reference and response particles decrease.

Furthermore, this results in a change of the transfer tensor and

the isotropy of the network. Figure 2 shows the motions of

reference and response particle in the direction of excitation for

the three different networks.

Without any crosslinker the calculated lock-in motion of the

reference particle overlaps with the recorded motion of the

CCD camera. A response particle, in a distance of 3 µm to the

reference, moves with similar sinusoidal motion as the refer-

ence, but with decreased amplitude and phase shift due to the

influence of the network. This can be seen for the motion calcu-

lated with the lock-in technique as well as for the motion re-

corded with the camera. In the second case, when a crosslinker

is added to the network, the amplitude of the reference motion

is smaller than the excitation. While at a concentration of

0.25 mM Mg2+ this decrease is very small, at a concentration of

1 mM Mg2+ only one tenth of the excitation amplitude deforms

the network. At a distance of 3 µm the response motion is

reduced because of the decreased excitation and the density of

the network. Furthermore, the Brownian motion becomes larger

than the response motion, which leads to a decreasing SNR. In

the case of 1 mM Mg2+ this results in a dramatic increase of

calculation errors. The exemplary transfer matrices calculated

for particles at a distance of 3 µm for all three cases show that

the system is not isotropic. This anisotropy of the assembled

network has been investigated thoroughly in [23]. In addition to

that, the decrease of the diagonal entries for higher crosslinker

concentrations can be explained by lower responses of the parti-

cles.
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Figure 2: Motion of particles in networks due to the excitation of the oscillating optical trap (A = 0.127 µm). The red line denotes the calculated motion
via the lock-in method whereas the blue line is the recorded motion. A) Response motion of the reference particle depending on the amount of added
crosslinker (laser beam oscillating in the same direction with equal strength). The amplitudes decrease due to a stiffer network. B) Response motion
of particles with a distance of 3 µm to the reference particle, dependent on the crosslinker concentration. Since for higher concentrations of Mg2+ the
reference particle shows a smaller amplitude, the response of a neighboring particle decreases. This implies a decrease of the SNR and introduces
errors. The thermal motion becomes more dominant.

For further calculations the transfer tensors of the networks

were separated and averaged dependent on the distance of refer-

ence and response particle. Afterwards, a displacement of arbi-

trary amplitude ai in the X*-direction, the connecting line be-

tween reference and response particle, was chosen to calculate

the output vector. The output vector  was determined via the

multiplication of the arbitrary input vector  and the average

transfer tensor  at a specific distance of particles:

(6)

As ratio the absolute values of output and input vectors 

are taken into account and weighted by the standard deviation.

Figure 3 depicts the ratio of response and reference amplitude

for different distances between response and reference particle.

The distance values are averaged over 2 µm bins.

For concentrations of 0 and 0.25 mM MgCl2 the ratio of ampli-

tudes decreases, which means that the displacement of the parti-

cle gets smaller with increasing distances between reference and

response particle. This behavior is quiet intuitive and compa-

rable to theoretical predictions, e.g., from the Thomson model

[25]. The larger the distance, the higher the error becomes

because the deformation propagation is highly dependent on the

Figure 3: Ratios of excitation and response dependent on the binned
distance between reference and response particle. Different markers
show varying crosslinker concentrations. Red circles: 0.00 mM MgCl2,
green squares: 0.25 mM MgCl2, blue diamonds: 1.00 mM MgCl2.
Higher crosslinker concentrations evoke a stiffer network [22].

morphology of the network. For distances larger than 6 µm

networks containing 0.25 mM Mg2+ crosslinker show the

highest ratios of amplitudes. This means, on one hand, that the

network can be deformed more easily than after addition of

1 mM Mg2+, and on the other hand, that the SNR is higher so

that the errors become less important.
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In 0 mM Mg2+ measurements the ratio decays very fast to one

tenth of the initial value and hence reaches the noise level. This

can be explained by a closer look at the network architecture:

Without crosslinks the network is very soft and the reference

bead can follow the excitation almost completely (Figure 2, low

Brownian noise compared to sinusoidal motion). The particles

in the direct vicinity of the excited bead also follow the motion

almost completely. However, due to the lack of crosslinks the

forces are not transmitted well over larger distances.

Measurements at a concentration of 0.25 mM Mg2+ show a very

smooth behavior, which can be compared to that of the

Thomson model [25]. Since this model is for purely elastic ma-

terials, one could conclude that for the parameter set chosen

(frequency and amplitude of excitation, distance in the low-

micrometer range) the network can be well approximated by a

continuous elastic material. Although passive microrheology

data shows that over large frequency ranges and for small (ther-

mal) forces, the network is viscoelastic [24].

For measurements with 1.0 mM Mg2+ the prediction is that

the response of the stiff network is very low for short

distances, assuming that the deformation force is the same as

above. In addition to that the propagation of forces is strongly

damped due to the great amount of crosslinks and the very

dense network. An additional point is that for such high

crosslinker concentrations the diameter of single filaments in-

creases [26] and the network forms thick bundles of different

sizes [27], which transmit forces only along their alignment

direction. Hence, the assumption of an isotropic medium is not

valid and for every position it is not known if the response parti-

cle is located in a bundle or next to it. It is also obvious that the

errors were very high for the 1 mM Mg2+ network. This is due

to the low response amplitudes of the reference particle, which

deformed the network and lead to a high ratio of reference SNR

and response SNR. This resulted in high contributions to the

transfer tensor. Between measurements the contributions to the

transfer matrices varied a lot and this resulted in the uncertain-

ties.

To improve the results and decrease the error it might be recom-

mended to additionally investigate the amplitudes of the higher

harmonics of the measurement. If those amplitudes are compa-

rable to the first harmonic, nonlinear effects play a role, which

complicate the interpretations. With the simulation we can

calculate the influence of the SNR to the ratio of amplitudes and

estimate a lower limit of SNR, below which the error leads to

meaningless results. In the case of 1.0 mM Mg2+ this limit was

exceeded for distances larger than 8 µm so that the response of

the particles was not recorded. Only the Brownian motion and

surrounding noise was measured.

Conclusion
With the novel active method new insights into the dynamics of

cytoskeletal networks can be gained. Properties such as the

response amplitude propagation through the network, the

isotropy of the network or the phase change while deforming

the network can be determined by one set of measurements.

These parameters help in the understanding of network architec-

ture and can be used to estimate the force propagation caused

by external stress. In living cells, this force propagation plays an

important role for cell migration, reaction to external influences

and transport of vesicles. In this work we showed the theoreti-

cal idea behind the method, the experimental implementation

and in addition its limits via calculations of the SNR. These pre-

liminary results open a wide field of applications in all kinds of

different viscoelastic media.

Experimental
Human keratins 8 and 18 were isolated and purified according

to [28,29]. They were assembled into networks in 10 mM Tris-

HCl buffer with a protein concentration of 0.5 g/L. Polystyrene

beads with 1 µm diameter were incorporated in the network as

measuring probes for microrheology techniques and to ensure

three-dimensional networks in scanning electron microscopy

(SEM). Furthermore, 0, 0.25 or 1 mM MgCl2 was added to

prepare crosslinked networks with varying stiffness. For further

details on network preparation for microrheology see [23]. The

equipment used for recording the particle motion is described in

[7,24,30].

The laser trapping was realized with an optical tweezers setup

consisting of a Nd:YAG laser (Coherent Compass 1064-500)

with a wavelength of 1064 nm and maximal power of 500 mW.

The used trap stiffness of 9.8 pN/μm was calibrated and

adjusted prior to measurement according to [31]. The test of the

functionality of the setup was performed in bi-distilled water by

observing only the trapped particle.

For SEM measurements the networks were fixed with 2.5%

glutaraldehyde (in 0.1 M phosphate buffer with 1% saccharose)

for 30 min and contrasted with OsO4 (2% in PBS) for 10 min.

The filament buffer was replaced by propanol and then the

network was critical point dried at 38 °C and 80 bar. The sam-

ples were coated with ca. 3.5 nm platinum and imaged with a

Hitachi S-5200 scanning electron microscope.

For the determination of the transfer tensor at specific media an

external force is needed. This external force was applied by

using optical tweezers. The excitation of the reference particle

to oscillations was realized by the sinusoidal motion of the

optical trap. The laser beam is deflected by an acousto-optical

deflector to control the movement of the trap. To ensure beam
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Figure 4: A) Three types of in vitro assembled keratin networks with different amounts of crosslinker (left 0 mM, center 0.25 mM, right 1 mM Mg2+).
The scale bar for all three pictures shows a length of 500 nm. B) Setup of the measurement device (optical tweezers). The laser beam is focused into
the sample to allow for the trapping of microspheres. An acousto-optical deflector (AOD) ensures the oscillation of the laser beam with its pivot in the
back focal plane of the objective. The CCD high-speed camera records the motion of the microspheres embedded in the examined medium. An addi-
tional photodiode is used for the calibration of the trap. C) Image of a microrheology measurement. The white lines show the trajectories of the parti-
cle motion. The length of the scale bar is 10 µm.

symmetry, the trapping beam pivots at the back focal plane of

the objective. The setup of the optical tweezers and a screen-

shot of the measurement of several particles in an in vitro

assembled intermediate filament network are shown in

Figure 4B,C. SEM images of the crosslinked networks can be

seen in Figure 4A. From left to right the amount of crosslinker

increases from 0 to 0.25 and to 1 mM MgCl. With increasing

crosslinker concentration the network gets denser. Bundling of

the filaments can be also seen for high crosslinker concentra-

tions.
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