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CHAPTER1

Introduction

1.1 Motivation

Atrial fibrillation (AF) is the most common sustained arrhythmia in humans [1].
Although not being lethal itself, AF is associated with severe complications,
such as cerebral stroke and increased mortality. 25% percent of all strokes are
accounted to AF [2]. With more than 8 million people affected in the European
Union alone, AF represents a huge socio-economic burden. Besides the higher
mortality and impaired quality of life, AF causes estimated costs of ≈26 bil-
lion � in the European Union [3, 4]. As an age-related arrhythmia, the number
of patients is estimated to double within the next decades [4, 5]. Therefore,
good therapeutic and preventive strategies are of paramount importance.
Despite considerable research efforts and progress regarding the understanding
of mechanisms driving AF, state-of-the-art therapy comprising pharmacologi-
cal treatment and catheter ablation is not effective in up to 50% of patients in
the long run [6, 7]. The development of post-ablational atrial flutter (AFlut)
poses a particular problem [8]. Besides further clinical and wet-lab research,
computational models of atrial electrophysiology are a promising complement
and might serve as a remedy for the AF burden [9, 10].
Mathematical representations of the cardio-vascular system spanning multiple
spatio-temporal scales and levels of integration provide means to gain mecha-
nistic insight [9, 11, 12]. Therefore, computational modeling is an emerging
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Chapter 1. Introduction

and aspiring complementary approach to animal experiments and clinical
trials [13]. In silico methods have the advantage of yielding quantitative re-
sults, of providing a controlled environment allowing to study how changes of
certain parameters affect the system, of causing no harm to patients or animals,
and of being capable of bridging gaps across levels of integration [14]. The
latter is of particular importance considering that a lot of the fundamental
changes happen on very low levels of integration: e.g. mutations of genes
altering the properties of cardiac ion channels or drug therapies targeting spe-
cific binding sites of ion channels. The phenomena of interest, e.g. AF, often
happen on the organ level on the other hand. Multi-scale simulations of such
effects are often insightful and imperative for a comprehensive assessment
because the altered fundamental biophysical properties enter the system in a
complex and mostly non-linear way, often resulting in non-intuitive changes
on higher levels of integration. Moreover, experimental data are available
on very low levels of integration (e.g., ion currents) and very high levels of
integration (e.g., the ECG) with missing links on intermediate levels in many
cases. Model-based approaches can bridge this gap arising from a lack of
data, thus foster our understanding and facilitate the development of tailored
therapeutic approaches.
Within the scope of this thesis, computational models of human atrial patho-
electrophysiology ranging from the ion channel level up to the electrocardiogram
(ECG) on the body surface are developed, advanced, and employed aiming at
tailored therapies at different levels of individualization:

◦ Mechanism-specific: Elucidate basic mechanisms, such that the physi-
cians can apply them to a patient’s individual situation.

◦ Group-specific: Develop therapeutic approaches that are optimal for a
specific sub-population of patients (e.g. specific atrial substrates defined
by comorbidities, genetic variations, or disease induced remodeling).

◦ Patient-specific: Optimize a therapy based on a personalized model of
the patient.

By employing the models and applying the insight derived from them, both
the patients’ and the socio-economical burden of AF can hopefully be reduced
eventually.

2
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1.2 Aims of the Thesis

The following major challenges are addressed in this thesis:
• Development of a method to integrate measured ion current data into models

of cardiac electrophysiology robustly by means of parameter estimation.
• Multi-scale characterization of atrial substrates regarding their arrhythmic

potential. Substrates comprise effects of remodeling due to chronic AF
and familial AF substrates represented by two mutations of the human
ether-à-go-go-related gene (hERG).

• Investigation of the dynamic mode of action of antiarrhythmic agents on
pathologic substrates.

◦ Comparison of amiodarone and dronedarone under consideration of
the atrial substrate, as well as the circadian variation of heart rate and
drug concentration.

◦ Evaluation of the experimental data base regarding the mode of action
of vernakalant.

• Optimization of pharmacotherapy considering the genetic profile of the
patient aiming at the prevention and therapy of familial AF.

• Implementation of a mesh-type-agnostic pipeline to augment anatomical
models with a priori knowledge regarding myocyte orientation, interatrial
connections, and ablation lesions.

• Development of a comprehensive methodology to determine the vulnera-
bility to AFlut considering individual anatomical and electrophysiological
properties aiming at an in silico evaluation of planned AF ablation patterns
to overcome the learning by burning paradigm and reduce the incidence of
post-ablational AFlut.

• Evaluation of factors influencing P-wave morphology in the body
surface ECG.

◦ Contribution of the left and the right atrium.
◦ Effect of the location of the earliest activated site in the right atrium

and the conductive properties of the posterior interatrial connections.
◦ Influence of left atrial hypertrophy.

3



Chapter 1. Introduction

1.3 Structure of the Thesis

Part I outlines the medical fundamentals and the basic principles of computa-
tional cardiac electrophysiology.

◦ Chapter 2 gives a brief introduction to cardiac anatomy and electro-
physiology. The atrial arrhythmias flutter and fibrillation are introduced
and state-of-the-art pharmacological and interventional therapeutical
approaches are presented.

◦ Chapter 3 provides an overview of state-of-the-art techniques regard-
ing computational models of cardiac electrophysiology. The models
cover various scales ranging from single ion channels via integrated
cell models and excitation propagation in tissue up to the body surface
potential level.

Part II presents studies regarding the effect of alterations of cellular electro-
physiological properties using in silico methods.

◦ Chapter 4 presents and evaluates methods to integrate experimental
data in mathematical models by reparametrizing the mathematical for-
mulations. In this way, models reflecting gene mutations, the effect of
pharmacological agents, or the distinct properties of sub-populations
can be obtained.

◦ Chapter 5 characterizes different atrial substrates leveraging computa-
tional models. Besides two gain-of-function mutations of the human
ether-à-go-go-related gene (hERG), a model representing chronic atrial
fibrillation induced remodeling is formulated and characterized.

◦ Chapter 6 introduces methods to investigate the mode of action of
pharmacological agents in silico. The compounds amiodarone and
dronedarone are characterized regarding their dynamic effects on patho-
logical substrates. Regarding vernakalant, relevant gaps in the experi-
mental data are identified. Finally, hypothetic and existing multi-channel
blockers are designed and optimized paving the way for tailored phar-
macotherapy of familial atrial fibrillation.

4
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Part III describes a novel method to quantify the vulnerability to atrial flutter
in personalized models.

◦ Chapter 7 presents methods to augment anatomical models with a
priori knowledge regardless of the underlying type of mesh. In this way,
information regarding myocyte orientation and interatrial connections
can be included in the models. Moreover, methods to introduce standard
ablation patterns, as well as user-defined lesions are presented.

◦ Chapter 8 presents a pipeline of methods to identify vulnerable paths in
the atria along which atrial flutter can be sustained. The novel approach
considers the individual anatomy of the patient as well as heterogeneous,
anisotropic, and heart rate dependent tissue properties.

Part IV presents three studies elucidating the genesis of the P-wave and
determinants of morphology.

◦ Chapter 9 quantifies the contribution of the two atria to the P-wave in
different leads in a temporally resolved manner.

◦ Chapter 10 shows how the location of the earliest activated site and the
conductive properties of the posterior interatrial connections affect the
P-wave. In particular, the effect of these two contributors on P-wave
terminal force in ECG lead V1 is evaluated.

◦ Chapter 11 presents methods to dissect the effects of left atrial hyper-
trophy and dilation on the P-wave.

Chapter 12 summarizes the findings presented in this thesis.

During the almost three years of research leading to this thesis, I published four
journal papers and 13 conference contributions as first author and an additional
journal publication is under review. As a co-author, one journal paper and eight
conference contributions were published and two papers are under review. Five
conference contributions are currently under review. Moreover, I supervised
eight student theses that partly form the basis of the work presented here (cf.
List of Publications and Supervised Theses at the end of this thesis).
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CHAPTER2

Medical Fundamentals

In this chapter, the basic medical fundamentals are presented that are essential
to understand the studies presented in Parts II to IV and put them into context.
After a brief discussion of atrial anatomy and physiology, cardiac electrophysi-
ology is summarized. Then, the atrial arrhythmias flutter and fibrillation are
introduced and state-of-the-art pharmacological and interventional treatments
are presented. The interested reader is referred to the cited references for a
more in-depth introduction to the different topics.

2.1 Atrial Anatomy and Physiology

The heart is a cone-shaped, hollow muscle and located in the pericardial sac
within the thorax. The four-chambered system is anatomically and functionally
divided in two halves by the septum. Each half consists of an atrium and a
ventricle that are separated by the atrioventricular plane and connected via
valves controlling the blood flow (Figure 2.1). While the ventricles fulfill the
pumping function of the heart by ejecting blood from the left ventricle into
the aorta and from the right ventricle into the pulmonary arteries, the atria are
in the focus of this thesis. The atria collect the blood continuously flowing
from the veins and entering the heart. In this way, they allow uninterrupted
venous blood flow to the heart and prevent circulatory inertia [16]. The right
atrium (RA) collects blood from the systemic circuit via the superior vena

9



Chapter 2. Medical Fundamentals

cava (SVC), the inferior vena cava (IVC), and also the blood perfusing the
heart itself from the coronary sinus (CS). The RA ejects and passes blood
to the right ventricle via the tricuspid valve (TV). The right ventricle ejects
into the pulmonary circuit which leads back to the left atrium (LA) via the
lungs where the blood is oxygenated. Blood enters the LA through (normally)
four pulmonary veins (PVs) and leaves it via the mitral valve (MV) into
the left ventricle. The left ventricle pumps blood out of the heart into the
systemic circuit via the aorta. As the systemic circuit leads back to the RA,
the circulatory loop is closed.

Interventricular septum

Figure 2.1: The human heart and the great vessels. Blood flow is indicated by dashed red
arrows. Reproduced from [15] with permission.
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Figure 2.2: Schematic representation of the major muscular bundles in the atria. Blue:
septo-atrial bundle in the subendocardium, red: septo-pulmonary bundle in the subepi-
cardium, light blue: BB, green: CT, pink: PMs, black: circular myocyte orientation around
the appendages, as well as vessel and valve orifices, blue CS. Reproduced from [23] with
permission.

2.1.1 Atrial Anatomy

The atrial anatomy is characterized by prominent muscular bundles, particu-
larly in the RA, and regions with distinct properties (Figure 2.2). The LA is
located posteriorly in the thorax with its posterior wall being adjacent to the
oesophagus. As the endocardial surface of the LA is smooth [17], it exhibits
a simpler structure than the RA. The ear-shaped left atrial appendage (LAA)
being located supero-anterior of the left superior pulmonary vein (LSPV) is
an exception with its rough endocardial surface [18].
The RA can be divided in four regions: the smooth and the rough parts of
the posterior wall, the septum, and the right atrial appendage (RAA). The
most important bundles in the RA are the crista terminalis (CT) [19, 20], 15
to 20 pectinate muscles (PMs) [21], the intercaval bundle [22], Bachmann’s
bundle (BB) [19], and the tricuspid valve ring (TVR). The CT separates the
rough free wall from the smooth part and runs on the posterior wall from the
right side of the SVC orifice via the right side of the IVC orifice towards the
CS region where it smooths out. The width of the CT reduces from the SVC to
the IVC [20]. The vestibule supports the leaflets of the TV. The PMs run from
the CT along the lateral and anterior wall to the vestibulum. The tent-shaped
RAA overlaps the root of the aorta [20].
The atrial wall exhibits a spatially varying thickness ranging from 1 mm to
3 mm. In the RA, the prominent muscular bundles dominate the wall thickness
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Chapter 2. Medical Fundamentals

distribution. In the LA, the wall is thicker on the posterior and the inferior side
compared to the roof (2.9±1.3 mm vs. 2.3±1.0 mm) [24, 25]. The existing
literature on atrial wall thickness is reviewed in [23].

2.1.1.1 Interatrial Connections

The atria are electrically isolated from the ventricles by a valve plane and
isolated from each other by the atrial septum. While both sides of the sep-
tum are covered with myocardium, an isolating layer separates the RA from
the LA [26, 27]. Interatrial conduction is thus only possible via distinct
interatrial connections (IACs). BB is the most prominent IAC with a width
of 4.6 mm [28] and is located supero-anteriorly. It extends between the atrial
appendages and even encircles them partly after splitting in two branches [19].
The inferior part of BB in the RA connects with the TVR. BB serves as an
IAC by bridging the interatrial groove [29, 30]. As the outer surface of the CS
is covered with myocardium, it forms an IAC as well [31].
While the IACs formed by BB and the CS are present and conductive in most
humans, additional IACs on the anterior and posterior side show significant
interindividual variability in terms of presence, location, and conductive prop-
erties [26, 32–34]. Particularly the middle and lower IACs on the posterior
side that are present in 67% and 87% of the population [23] are vulnerable
to conduction block due to their thin and fragile nature and are thus often
non-conductive in elderly or diseased subjects [35].

2.1.1.2 AtrialMyocyteOrientation

Atrial myocardial tissue is composed of discrete myocytes. The myocardium
forms a functional syncytium because myocytes are electrically coupled to,
on average, eleven neighbors via gap junctions [36]. Single myocytes are not
spherical but have a shape which roughly corresponds to a prolate spheroid
and tend to align along their longest semi-principal axis. As the gap junctions
are concentrated at the poles of the cells and because the number of membrane
crossing per unit length is lower, the conductivity is higher along the principal
axis than perpendicular to it [36].
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2.1. Atrial Anatomy and Physiology

A B

C D

E F

Figure 2.3: Major muscular bundles in the atria indicated by dashed lines overlaid on
photographs of hum atrial dissections. Stars indicate bundles bridging the interatrial
groove. Reproduced from [23] with permission.

The orientation of myocytes within atrial tissue is not distributed uniformly.
The cells are rather aligned along major bundles determining the preferential
orientation. These bundles are visible on a macroscopic scale (Figure 2.3) and
follow distinct patterns [19, 22, 37, 38].
The most prominent bundles can be found in the RA with myocytes aligned
along the CT, PMs, and BB (Figure 2.3A). At the junction of the PMs with
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the CT and the TVR, perpendicular orientation can be observed (Figure 2.3B).
The tissue between the discrete PMs is aligned similarly. Myocytes are aligned
tangentially around the TVR and the SVC [38]. The intercaval bundle is
located in the RA between the CT and the septum. The superior part encircles
the SVC while the inferior part extends towards the IVC orifice and connects
with the CT on the posterior wall [22] (Figure 2.3E). Around the IVC, no
preferential orientation can be identified [37].
The LA wall is composed of two layers: the subepicardial and the suben-
docardial layer with discontinuous myocyte orientation between the layers.
The most prominent structures are the septo-pulmonary bundle in the subepi-
cardium (Figure 2.3C+D) and the septo-atrial bundle in the subendocardium
(Figure 2.3E+F).

2.1.1.3 Sinus Node

The sinus node (SN) driving the heart under physiological conditions is a
complex structure in crescent shape within the RA wall reaching from the
SVC orifice downward in the projection of the terminal groove [39]. Its size
has been reported to be 29.5 mm in length, 1.8 mm in height, and 6.4 mm in
width measure using immunohistochemical methods [40]. Earlier electron
microscopy measurements reported 13.5±2.5 mm in length, 1.2±0.3 mm in
height, and 5.6±1.4 mm in width [41]. Functional studies indicated signifi-
cantly bigger surface areas as large as 75 mm × 15 mm [42]. The location
where the excitation of the SN is captured by the RA myocardium is defined
as the earliest activated site (EAS) and has been shown to express tremendous
interindividual variability. The EAS ranged from the mid-septal region to the
junction with the RAA during epicardial mapping studies [42, 43]. Moreover,
interindividual variability has been described and is accounted to vagal stim-
ulation, different exit pathways in the SN, and switching between different
distinct groups of pacemaker cells [44, 45].
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2.1. Atrial Anatomy and Physiology

2.1.2 Atrial Electrophysiology

This section introduces the basic concepts governing cardiac electrical activity
from the single ion channel via integrated cardiac myocytes, and excitation
propagation in tissue up to the body surface electrocardiogram (ECG).
The plasma membrane confines the intracellular space of each myocyte. The
membrane itself is built of a phospholipid bilayer and impermeable for ions
and most water-soluble molecules. However, dedicated, selectively permeable
ion channels, pumps, and transporters are integrated in the membrane allow-
ing for exchange between the intracellular and the extracellular space. The
plasma membrane allows to maintain different ion concentrations inside and
outside the cell causing a non-zero transmembrane voltage Vm according to
the Goldman-Hodgkin-Katz equation [46]:

Vm =−R ·T
F

ln
(

PK+ · [K+]i +PNa+ · [Na+]i +PCl− · [Cl−]o
PK+ · [K+]o +PNa+ · [Na+]o +PCl− · [Cl−]i

)
, (2.1)

with R being the gas constant, T being the absolute temperature, F being
Faraday’s constant, and Px being the membrane permeabilites for sodium,
potassium, and chloride ions. [X ]i and [X ]o are the respective intracellular
and extracellular concentrations. Under resting conditions, Vm accounts to
approximately –80 mV in human atrial myocytes.
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Figure 2.4: The course of the transmembrane voltage Vm during a cardiac action potential
with its different phases (A) and themembrane currents carried by the different ions (B).
The sodium current reaches an amplitude of≈–70pA/pF. The calcium exchangewith the
sarcoplasmic reticulum is not considered. Courseswere computedusing theCourtemanche
et al. model [47]. Figure inspired by [48].
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Ions can flow passively through the membrane along their electro-chemical
gradient if ion channels that are permeable for the specific type of ion are open.
Ion channels are composed of several subunits with the α-subunit forming the
pore, while β , γ , and potential further subunits serve auxiliary functions [49].
Passage through the pore is goverened by gates that open and close depending
on Vm, the presence of ligands, temperature, or mechanical force. Voltage-
sensitive channels change their conformation depending on Vm. The interested
reader is referred to [50] for a detailed review of ion channels in the heart.
Vm can not only be influenced by changes of parameters in Equation (2.1)
but also by applying external stimuli. If a stimulus raises Vm above a certain
threshold ranging between –50 mV and –60 mV, fast sodium channels open
and initiate an action potential (AP) (Figure 2.4A). After this depolarization
phase carried by outward INa, sodium channels inactivate and the AP plateau
is entered due to the balance of repolarizing currents carrying K+ out of the
cell and depolarizing currents carrying Ca2+ from the sarcoplasmic reticulum
into the cytosol (Figure 2.4A+B). After an AP was elicited, the cell is in a
refractory state for a certain time. The time before a new AP can be elicited is
called the effective refractory period (ERP) and is mainly determined by the
state of the inactivation sodium gates. The initial state is restored due to active
ion transport by the sodium calcium exchanger (INaCa), the sodium potassium
ATPase (INaK), and the sarcoplasmic endoplasmic reticulum calcium ATPase
(SERCA) [51].
As introduced in Section 2.1.1.2, adjacent myocytes are connected via gap
junctions and form a functional syncytium. The gap junctions are non-selective
connections formed by one connexon in each plasma membrane. In this way,
excitation propagates within cardiac tissue once one cell is activated and the
current sink formed by the adjacent cells is not too large to be driven by the
active cells. The gap junction density and their distribution in combination
with the AP upstroke velocity dVm/dt determines the conduction velocity (CV)
in the tissue and its anisotropy.
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2.1. Atrial Anatomy and Physiology

2.1.2.1 Sinus Rhythm

The cells of the cardiac conduction system do not exhibit a stable resting mem-
brane voltage but depolarize spontaneously. The cells of the SN are the ones
that depolarize the fastest and thus drive the cardiac rhythm as the primary
pacemaker. In rest, the autorhythmicity rate of the SN is about 60 to 100 beats
per minute (bpm).
From the EAS where the RA myocardium captures the excitation originating
from the SN, the wave propagates fastest along the CT, BB, and the PMs due
to the higher conductivity and pronounced anisotropy within these anatomical
structures [42, 52–54]. Earliest LA breakthrough is normally conducted via
BB, thus the LA is activated from the supero-anterior side [55]. Physiological
CV values are reported to be between 500 mm/s and 1200 mm/s (see [23] for a
review of available literature) and tend to exhibit larger variance under patho-
logic conditions [9]. Anisotropy is commonly assumed as 2:1 to 3:1 for the
common myocardium [56–58] and between 4:1 and 12:1 for fast conducting
bundles [23, 54, 59].

2.1.2.2 The Electrocardiogram

The spread of the depolarization wave is carried by electrical currents. Sodium
influx at the back of the wavefront in combination with capacitive outflow at
the front depolarizing adjacent cells causes a positive current in the intracellu-
lar domain in direction of wave propagation. The broader repolarization front
gives rise to currents from regions that are still active to already repolarized
regions in combination with potassium outflow at the waveback leading to
a negative current in direction of wave propagation. These currents act as
sources for an electrical field reaching to the body surface. Thus, the electrical
activity in the heart can be measured on a macroscopic scale by evaluating the
potential differences on the body surface in the ECG. The depolarization of
the atria is reflected in the P-wave of the ECG. The interested reader is referred
to [60] for a detailed description of the genesis of the body surface potentials.
Routinely, a 12 lead ECG is recorded using nine electrodes. The three
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of the two other limb leads is used as a reference signal. The Wilson leads on
the chest are measured with respect to Wilson’s central terminal defined as the
mean of the three limb leads I, II, and III.
The vectorcardiogram (VCG) is the projection of the field integral vector on
the frontal, sagittal and transversal plane. The VCG can be estimated from a
subset SECG of the 12 lead ECG (V1-V6, I, II) using the inverse Dower matrix
D [61]:

ŜVCG = D SECG , (2.2)

with

D =

⎛
⎝
−0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010
0.057 −0.019 −0.106 −0.022 0.041 0.048 −0.227 0.887
−0.229 −0.310 −0.246 −0.063 0.055 0.108 0.022 0.102

⎞
⎠ .

(2.3)

2.2 Atrial Flutter

Atrial Flutter (AFlut) is a supraventricular tachycardia with a consistent excita-
tion pattern. It is perpetuated around a large central obstacle, which can be an
anatomical structure, unexcitable scar tissue, or a functional line of block [62].
The cycle length is between 250 ms and 135 ms [63]. As this fast rhythm can
not be sustained by the ventricles, 2:1 or 3:1 conduction block at the AV node
is frequently observed. AFlut is categorized in two major types: typical AFlut
(also termed type I) and atypical AFlut (type II).
Typical AFlut is maintained in the RA by mostly counterclockwise reentry
around the TV annulus (Figure 2.5A). The CT acts as a conduction barrier due
to the slow transversal conduction. The floor of the RA between the inferior
TV annulus and the IVC forms the critical isthmus for this type of reentry
(cavotricuspid isthmus) [64]. In ≈15% of the cases, the excitation rotates in a
clockwise direction [62].
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A BTypical right atrial flutter Lower loop re-entry

Cavotricuspid isthmus
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central area of block
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typical right atrial flutterA lower loop reentryB
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the IVC forms the 
central area of 
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Figure 2.5: Pathsmaintaining AFlut in the RA (red arrows). Flutter is sustained along the
TV annulus in typical flutter (A). Both atrioventricular annuli have been removed for clearer
visualization. The blue arrow indicates the cavotricuspid isthmus representing the crucial
narrowest part in typical AFlut (A) and lower loop reentry (B). Yellow arrows indicate
pathways activating the atrial myocardium but not driving the flutter. The dark gray arrow
in (B) indicates a zone of slow conduction allowing to sustain the flutter along the shorter
circuit compared to (A)where theCT forms a line of functional block in transverse direction.
Reproduced from [62] with permission from the publisher.

A B CPerimitral flutter Left atrial flutter circuits After previous atrial surgery
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Figure 2.6: Atypical flutter circuits. Red arrows indicate the driving circuit whereas the
remainingmyocardium is activated via pathways indicated by yellow arrows. Gray areas
indicate non-excitable scar tissue. Perimitral flutter is sustained around theMV annulus
(A), whereas the flutter circuits in (B) and (C) anchor around smaller obstacles formed by
the PVs, scar tissue, surgical suture lines, or patches covering atrial septal defects (ASD).
Reproduced from [62] with permission from the publisher.
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Atypical AFlut develops often after corrective atrial surgery (congenital and
valvular heart disease) and atrial fibrillation (AF) ablation [8, 65–68] with the
driving reentry circuit determined by the lesions (Figure 2.6C). However, it
can also occur without previous surgery driven by various reentry circuits. The
dominant paths in the RA include the lateral wall (free wall flutter), and the
IVC (lower loop reentry, Figure 2.5B). In the LA, AFlut is mostly observed
in patients with enlarged atria [69]. Areas of fibrotic tissue, e.g. induced by
chronic dilation, serve as stabilizers of the reentry due to the slowed conduction.
Driving circuits are found around the MV (perimitral flutter, Figure 2.6A) or
the PVs (Figure 2.6B).
The incidence of AFlut in the general population is 88/100,000 person-years
and significantly higher for elderly (587/100,000 person-years in subjects
older than 80 years) [70]. AFlut is associated with a significantly increased
risk for stroke and other negative events with a comparable risk scenario as
AF [1], which is described in more detail below. AFlut can be approached with
antiarrhythmic drugs. However, pharmacological therapy is often ineffective
and more than half of the patients are treated with rate-control strategies due to
the failure to maintain sinus rhythm [71]. Catheter ablation (see Section 7.3) is
recommended for patients with a first episode of typical AFlut and for flutter
appearing after antiarrhythmic treatment of AF [62].

2.3 Atrial Fibrillation

AF is the most common sustained arrhythmia affecting over 8 million people
in the European Union [72]. It is characterized by irregular and rapid excita-
tion patterns with frequencies above 300 bpm [1] caused by the interplay of a
vulnerable substrate and at least one initiating trigger. AF has a prevalance of
2% to 3% of the general population [73] and is associated with a significantly
higher mortality and five-fold increase of the risk of stroke [72] accounting
for 25% of all strokes in the general population [2]. Moreover, AF impairs LV
function severely even though the AV node prevents the tachyarrhythmia from
affecting the ventricles directly [74, 75]. As AF prevalence increases with age,
the number of patients is estimated to double within the next decades due to
demographic change [5].
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Figure 2.7:Mechanisms contributing to the initiation and perpetuation of AF by affecting
the arrhythmia-initiating trigger and the arrhythmia-sustaining substrate. Abbreviations:
delayed afterdepolarization (DAD), early afterdepolarization (EAD), action potential dura-
tion (APD), effective refractory phase (ERP). Reproduced from [76] with permission from
the publisher.

AF is a progressive disease typically starting with short silent paroxysms
translating to symptomatic and longer episodes of AF [1, 77]. Clinically, AF is
categorized as paroxysmal if episodes are self-terminating within a maximum
of 7 days (typically within 48 hours). Persistent AF does not terminate within
7 days without pharmaceutical or electrical cardioversion. AF is categorized
as long-lasting persistent if it lasts longer than one year. If no rhythm control
strategy is pursued but only the rate is controlled, the term permanent AF is
used [1].
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Figure 2.8: Reentrymechanisms: circus movement reentry (A), leading circle concept (B),
spiral wave reentry (C), andmultiple wavelet hypothesis (D). Reproduced from [77] with
permission from the publisher.

The mechanisms initiating and perpetuating AF are far from being under-
stood completely. Despite considerable research efforts, the role of calcium
handling, atrial fibrosis, and the drivers of AF are under discussion [76, 78]
(Figure 2.7). Regarding the triggers, enhanced and abnormal autorhythmicity
particularly in the myocardial sleeves of the PVs are a known contributor [79].
Moreover, triggered activity (early and delayed afterdepolarizations) can elicit
excitation [80–82]. Several concepts regarding the perpetuation of fibrillatory
activity in the atria (partly complementary, partly contradicting) are being
discussed [77, 78, 83].
Reentry around an anatomical obstacle is called circus movement reentry (Fig-
ure 2.8). A necessary condition is that the wavefront always has some excitable
tissue ahead of it. Thus, the waveback has to have regained excitability after
the ERP. Hence, low CV and short ERP favor this kind of reentry by widening
the excitable gap for a given reentry path. The leading circle concept does
not require a clearly defined anatomical obstacle. Rather, reentry is sustained
around a non-activated center, which shows electrotonic depolarizations, such
as a functional line of block (Figure 2.8B). Circus movement reentry and
the reentry according to the leading circle concepts are also observed during
atrial flutter.
The concept of spiral wave reentry was inspired by chemical reactions in
excitable media [84]. Today, the term rotor is used as well for this kind
of functional reentrant activity (Figure 2.8C). While the cells in the core of
the rotor are excitable in general, the CV is dramatically reduced from the
tip towards the core due to the increasing source-sink imbalance eventually
causing conduction block. Reentry can therefore be sustained around the
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core. While rotors were observed in human AF during electroanatomical map-
ping [85], several experimental studies reported multiple unstable excitation
patterns supporting the multiple wavelet hypothesis (Figure 2.8D) [86–88].
If several fibrillation waves are present and meander through the tissue, con-
tinuous wavefront-wavetail interactions cause the generation and termination
of wavefronts winding up in a self-sustaining, chaotic pattern [89]. While
additional fibrillation waves emerge due to wavebreak, others cease due to
block, collision, or fusion of wavefronts.
Dissociation between the endocardial and the epicardial layer and breakthrough
from one layer into the other contributes to this phenomenon, as well [90–92].
Short ERP, pronounced heterogeneity of refractoriness, slow CV, and a large
substrate favor multiple wavelet reentry [77].
Current state-of-the-art therapies for AF include antiarrhythmic drug ther-
apy (see Section 2.4) and substrate modification by catheter ablation (see
Section 2.5).

2.3.1 Remodeling

The rapid excitation rate during AF drives several long-term adaptation mech-
anisms in the cardiovascular system [93–95]. While these mechanisms partly
prevent intracellular Ca2+ overload [96 ,97] and allow to minimize the metabolic
cost [98], they also promote the perpetuation of the reentry. This so-called
remodeling process contributes to the progressive nature of AF and coined
the term AF begets AF [99]. Figure 2.9 summarizes the four main positive-
feedback loops driving AF-induced remodeling. In the scope of this thesis,
electrical remodeling and structural remodeling (to a lesser extent, though) are
in the focus.
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Figure 2.9: Overview of themain driving forces of AF and AF-induced remodeling. Four
positive-feedback loops cause the remodeling process. Reproduced from [77] with permis-
sion from the publisher.

Electrophysiologically, the main effects are a reduction of ICa,L, Ito, and IKur,
as well as an increase of IK1, IK,ACh, and IKs [77]. Table 2.1 gives an overview
of experimental data regarding functional reduction and changes in mRNA
levels obtained in humans. mRNA levels serve as a surrogate measure for
the conductivity but do not allow to draw quantitative conclusions regarding
functionality as protein expression and trafficking can be affected as well. No
functional data from humans were available for IKr. However, measurements
in dogs revealed no change in maximum conductivity [100, 101]. In combina-
tion, the changes of ion channel conductivities lead to a shortening of the ERP.
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Table 2.1: Altered maximum conductivity values and mRNA levels due to cAF induced
remodeling in humans. Values given are relative changes of measured current amplitudes.
Tissue samples were taken from either left (L) or right (R) human atrial appendages (hAA)
or unspecified human atrial tissue including the free walls.

Current Tissue Change

IK1 hRAA ±0% [102], + 75% [103], + 75% [104], + 83% [105],
+ 91% [106], + 100% [107], + 105% [108], + 137% [109]

hLAA +106% [102]

ICa,L hRAA –73% [108], – 73% [110], –50% [111], – 43% [112],
– 42% [113]

hAA –63% [103]

Ito hRAA –84% [114], – 83% [108], – 67% [115], – 66% [102],
– 65% [103], – 45% [116], – 44% [117]

hLAA –74% [116], – 61% [102]

IKr human atria – 27%mRNA [118]
hAA –34%mRNA [119]
hRAA –30%mRNA [120],±0%mRNA [121]

IKur hRAA - 55% [117], – 50% [115], – 25% to –50% [108],
– 25% to –50% [114],±0% [103]

hLAA –53% [102], – 43% [116]

IKs hRAA +150% [116], + 56%mRNA [121]
hLAA +80% [116]
human atria – 30%mRNA [118]

INa hRAA ±0% [108]

INaCa hRAA +60% [113], + 85% [112],
+ 43%mRNA [122], + 67%mRNA [123]

Ileak hRAA +50% [113], + 280% [122]

INaK hRAA ±0% [124]

The reported increase of cell capacitance ranged from +5% to +71% [102,
104, 106, 108–111, 114–116, 125]. On the structural level, the increase of
interstitial fibrosis [77] and potentially altered connexin connections [126]
cause a reduction of CV macroscopically. Through the reduction of the CV and
the ERP, the wavelength (WL) as the product of the two measures is affected
quadratically. The interested reader is referred to [127] for a detailed literature
review of remodeling of ion currents (also concerning gating kinetics), cell
capacitance, and connexin expression.
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As the different stages of AF are not completely selective and experimental
data regarding the remodeling effects of the distinct stages are sparse, the
remodeling due to persistent, long-standing persistent, and permanent AF
is subsumed as chronic atrial fibrillation (cAF) induced remodeling in the
remainder of this thesis.

2.4 Atrial Antiarrhythmic Drugs

2.4.1 Amiodarone

Amiodarone is an antiarrhythmic agent classified as class III according to the
Vaughan Williams classification [128] due to its pronounced effect on outward
potassium currents. However, it exhibits inhibitory effects on other cardiac
ion currents, such as INa, or ICa,L, as well [129]. Thus, it has to be considered
a multi-channel blocker. Amiodarone has been used for the treatment of
ventricular and supraventricular tachycardia for over 50 years and is still one
of the recommended agents for pharmacological AF cardioversion, as well as
rate and rhythm control in current guidelines [1, 72, 130].
While exhibiting a high anti-arrhythmic efficacy, amiodarone is associated
with several side effects, such as corneal micro-deposits, thyroid dysfunction,
and bradycardia [131, 132]. The interested reader is referred to e.g. [133, 134]
for a more in-depth description of amiodarone.

2.4.2 Dronedarone

Dronedarone is a benzofuran derivative, structurally related to amiodarone and
was designed as a less thyrotoxic alternative to amiodarone [135]. Towards
this end, iodine was removed and the lipophilicity was reduced. It has been
introduced to the market in 2009 [135]. Despite being classified as class III, it
is as well a multi-channel blocker that inhibits sodium, potassium, and calcium
channels. Besides certain differences in the inhibitory effects on ion channels,
both drugs differ markedly in their pharmacokinetic properties: Amiodarone
has a biological half-life of several weeks, caused mainly by accumulation

26



2.4. Atrial Antiarrhythmic Drugs

in a third compartment due to its lipophilic properties [136]. In contrast,
dronedarone is less lipophilic and has a much shorter biological half-life of
24 h [136].
Regarding the maintenance of sinus rhythm after AF, dronedarone has proven
to be superior to placebo but inferior to amiodarone [72]. In patients with
longer lasting AF, dronedarone is not recommended according to current
guidelines. However, it is the favorable antiarrhythmic drug for patients
with certain structural heart diseases, such as left ventricular hypertrophy in
combination with hypertensive heart disease [72]. The interested reader is
referred to e.g. [137–139] for more detailed information on dronedarone.

2.4.3 Vernakalant

Vernakalant is a relatively new antiarrhythmic agent and was approved in
Europe in 2010 [140]. Because of its effect on cardiac potassium and sodium
channels, it is classified as class III and class I according to the Vaughan
Williams classification [128]. Due to the pronounced inhibition of the atria-
selective IKur, vernakalant acts preferentially in the atria and is thus less likely
to cause ventricular torsade de pointes arrhythmia due to prolonged repolarazi-
ation [72].
It proved to be superior to placebo and more effective than amiodarone re-
garding the conversion of recent onset AF. Patients were 8.4× more likely
to convert to sinus rhythm within 90 minutes after intravenous infusion of
vernakalant than after infusion of amiodarone or a placebo without increased
risk of severe adverse events [141]. AF after cardiac surgery was converted
in 47% of patients using vernakalant compared to 14% converting sponta-
neously [142]. However, vernakalant was ineffective in converting AF of more
than 7 days duration and typical atrial flutter in several studies [143–145].
Vernakalant has an elimination half-life of 3 to 5 hours [72]. The interested
reader is referred to [72, 146] for more information regarding vernakalant.
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2.5 Ablation Therapy

In patients with recurrent AF that are resistant to antiarrhythmic drugs, catheter
ablation of atrial tissue is the recommended therapy [1]. Tissue is rendered
non-excitable by heating the tissue via radio-frequency currents (RF ablation)
or cooling it (cryo ablation) with comparable success rates [147].
As in the majority of patients, focal discharges from the PVs trigger AF or at
least contribute to the initiation, PV isolation is the standard approach since
the seminal work of Haïssaguerre et al. almost 20 years ago [79]. Many
paroxysmal AF patients maintain sinus rhythm and are free from arrhythmic
episodes after PV isolation. The AF recurrence rate is up to 60% in patients
with persistent and long-standing persistent AF [6] and was recently reported
to be 45% within one year in 2306 paroxysmal AF patients in Germany [7].
Therefore, several other strategies aiming at a modification of the atrial sub-
strate have been proposed [148]: isolation of the LA posterior wall, ablation of
sites exhibiting complex fractionated atrial electrograms (CFAEs) or signals
of low voltage, ablation of ganglionated plexuses where the adrenergic fibers
from the central nervous system end, ablation of sites exhibiting a high domi-
nant frequency, as well as most recently ablation of rotors identified through
panoramic mapping or non-invasive electrocardiographic imaging (ECGI).
However, the success rates of PV isolation in persistent AF patients could not
be increased by additional CFAE ablation as well as linear lesions in a big
randomized multi-center study [149]. Therefore, a controversial discussion
regarding the optimal strategy in different patient population is ongoing and
was fueled by recently reported remarkable success rates of rotor ablation that
remain to be reproduced [150, 151].
The interested reader is referred to e.g. [148] for a review of current ablation
strategies.
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CHAPTER3

Computational CardiacModeling

In this chapter, the basic concepts of computational models of cardiac elec-
trophysiology are introduced. The mathematical formulations range from the
single ion channel level via integrated cell models and excitation propagation
in tissue up to the electric fields on the whole body scale.

3.1 ElectrophysiologicalModeling

Hodgkin and Huxley were the first to describe ionic membrane currents by
a mathematical model in their seminal work from 1952 [152]. They repre-
sented the membrane of giant squid axons by an equivalent electric circuit
(Figure 3.1).

Figure 3.1: Equivalent electric circuit of a giant squid axon according to Hodgkin and Hux-
ley [152]. Under physiological conditions, the Nernst potential for potassium is negative
whereas those for sodium and leak are positive. Adapted from [15] with permission.
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The transmembrane voltage Vm is defined as the difference between the intra-
cellular potential Φi and the extracellular potential Φe. The cell membrane
is represented by a capacitor and the different ion channels by variable re-
sistors in line with the respective Nernst voltages EX represented by voltage
sources. Thus, the membrane current is given as the sum of the ionic cur-
rents plus the capacitive current resulting in the following ordinary differential
equation (ODE) for Vm:

dVm

dt
=− Iion + Istim

Cm
, (3.1)

considering an additional stimulus current Istim, as well. For electrophysio-
logical models, Cm is regularly defined as membrane capacity per unit area in
F/m2 resulting in current densities Ix in A/m2:

Ix = gx (Vm −Ex) . (3.2)

The conductivity gx is defined as the product of a maximum conductivity
ĝx of all channels carrying Ix and the open probability of this channel type.
The dimensionless open probability of a channel ∈ [0,1] is determined as the
product of all gating variables γi involved:

gx = ĝx ∏
i

γi . (3.3)

The evolution of each gating variable γi over time is described by the following
first order ODE through transition rates αγi from the closed to the open state
and βγi vice versa:

dγi

dt
= αγi (1− γi)−βγiγ . (3.4)

As the rate constants depend on Vm, the channels exhibit a voltage dependency.
During steady-state, the derivative equates to zero yielding the steady-state
open probability γi,∞:

γi,∞ =
αγi

αγi +βγi

. (3.5)
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Figure 3.2: Schematic representation of the Courtemanche et al. model of human atrial
myocytes [47]. Ion channels (red), pumps (green), and transporters (yellow) allow the
exchange of ions between the intracellular space (cytosol), the extracellular space and the
calcium subspaces (NSR and JSR). Reproduced from [155] with permission.

Using energy arguments, the steady-state open probability can be described by
a Boltzmann equation [153]:

γi,∞ =
1

1+ exp
(V1/2,γi

−Vm

kγi

) , (3.6)

with V1/2,γi being the transmembrane voltage at which the gate γi exhibits an
open probability of 0.5 (the so-called half-activation voltage) and kγi being the
slope at the half-activation voltage. k is determined by the ratio zF/RT , with z
being the valency of the gating ion, F being Faraday’s constant, R being the
gas constant, and T being the absolute temperature.
Discrete further states (e.g. inactive states) and state-dependent transitions
can be represented in Markov models with explicit representations of single
ion-channel states. The number of gates and the number of states depends on
the ion channel being modeled and the degree of complexity desired to cover.
The interested reader is referred to e.g. [60, 154] for more detailed information
regarding mathematical models of ion channels.
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The ion channels present in distinct cells are integrated in computational cell
models by coupling the ODEs via the transmembrane voltage and the ion
concentrations. Within the scope of this thesis, the Courtemanche et al. model
of human atrial myocytes [47] is mainly used as it convinced in a benchmark of
the five currently available models of human atrial myocytes [156]. Figure 3.2
gives an overview of the ion channels, transporters, and pumps considered in
the Courtemanche et al. model. Besides the extracellular and the intracellular
space (cytosol), two calcium subspaces in the sarcoplasmic reticulum are
represented in the model. The junctional sarcoplasmic reticulum compartment
(JSR) releases Ca2+ while the network sarcoplasmic reticulum compartment
(NSR) is responsible for Ca2+ uptake. The intracellular ion concentrations
and the Ca2+ concentration in the sarcoplasmic reticulum compartments are
computed dynamically whereas the extracellular concentrations are assumed
to be constant.
While most current formulations in the Courtemanche et al. model are based
on human experimental data, the pumps INaCa, INaK , Ip,Ca, the background
currents Ib,Na and Ib,Ca, and the intracellular calcium handling build on the
Luo-Rudy model representing guinea pig ventricular myocytes [157]. Krueger
et al. presented a heterogeneous version of the Courtemanche et al. model
comprising 13 distinct regions in the atria [158].

3.2 Simulating Excitation Propagation

As cardiac myocytes form a syncytium as described in Section 2.1.1.2, excita-
tion can propagate through cardiac tissue. To investigate excitation propagation
phenomena on the tissue level in silico, a mathematical formulation of the
coupling between cells is required. Several approaches exist that range from
very microscopic descriptions up to macroscopic, phenomenological models.
While very low-level descriptions provide the means to cover phenomena on
the sub-cellular scale, as e.g. intracellular calcium waves [159], the focus of
this thesis is on tissue and organ level phenomena as far as excitation propaga-
tion is concerned. For this purpose, the bidomain model and the monodomain
model proved to be suitable for complex excitation patterns including e.g.
wave break [160]. For simpler activation patterns, the fast marching scheme
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based on the eikonal equation can provide reasonable activation sequences at
significantly reduced computational cost [161, 162].

3.2.1 The BidomainModel and the
Monodomain Simplification

The bidomain model introduced by Tung [163] represents cardiac tissue as a
homogeneous medium with two coupled domains: the intracellular and the
extracellular space. In this way, the complex microstructure of the cardiac
tissue is disregarded and homogenized. The two computational domains
coexist and interfere at each point, thus occupying the same geometrical
space [164]. A transmembrane current per volume im can flow from one
domain into the other at each point serving as the source for the current
densities j(i/e) in the two domains. The potentials in the intracellular and
extracellular domain are defined by Poisson’s equation of stationary electrical
fields:

∇ · ji = ∇ · (σi∇Φi) = im , (3.7)

∇ · je = ∇ · (σe∇Φe) =−im , (3.8)

with Φi being the intracellular potential and Φe the extracellular potential, and
σi and σe being the respective conductivity tensors, which are composed of
conductivities along (σ‖) and transversal (σ⊥) to the myocardial fibre direction.
The ratio k = σ‖/σ⊥ is called anisotropy ratio (see also Section 3.2.2).
Using the definition of the transmembrane voltage Vm = Φi −Φe, transfor-
mations on Equation (3.7) and Equation (3.8) [165] yield the following two
coupled equations that are called the bidomain equations:

∇ · ((σi +σe)∇Φe) =−∇ · (σi∇Vm) , (3.9)

∇ · (σi∇Vm)+∇ · (σi∇Φe) = im . (3.10)

The transmembrane current density per volume im is normally composed
of an ionic transmembrane current density (per surface) Iion defined by a
cell model (such as the Courtemanche et al. model of human atrial my-
ocytes), a capacitive current density, and an optional external stimulus current
density Istim:
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im = β
(

Cm
dVm

dt
+ Iion + Istim

)
, (3.11)

with β being the cell surface to volume ratio translating surface current densi-
ties to volume current densities.
If the anisotropy ratio k is equal for the intracellular and the extracellular con-
ductivity tensors, σi can be expressed as κσe and the bidomain formulation can
be simplified to the so-called monodomain equation, which is computationally
less expensive to solve:

∇ · (σi∇Vm) = (κ +1)β
(

Cm
dVm

dt
+ Iion + Istim

)
(3.12)

The monodomain equation coupled to a membrane model such as the Courte-
manche et al. model represents a reaction-diffusion system. By computing
the currents flowing within the computational domain explicitly, effects like
source-sink balance due to convex or concave wavefronts leading to CV modu-
lation (Figure 3.3), wave break, and conduction block can be considered [165].
Finite difference discretizations of the monodomain equation or finite ele-
ment schemes with mass lumping do not require to solve systems of linear
equations but can be formulated using matrix vector multiplications [166–168].

Figure 3.3: Influence of wavefront curvature-based source-sink balance on CV. A convex
wavefront represents a smaller source at the tip and leads to lowCVwhereas the larger
source in a concave wavefront results in high CV. A planar wave requires matched source
and sink. Reproduced from [77] with permission from the publisher.
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As the assumption σi = κσe holds within the scope of this thesis, all excitation
propagation simulations were conducted using the monodomain model. The
formulation was implemented at IBT in the parallel modular solver acCELLer-
ate [169], which was verified by an N-version benchmark [170].

3.2.2 The Eikonal Equation and the Fast
Marching Scheme

While the monodomain reaction-diffusion model provides the means to capture
behavior of complex excitation patterns, it is also computationally expensive.
Simpler schemes like cellular automata or eikonal-based approaches do not
provide the means to reflect the diffusion processes but are suitable to compute
the spread of activation for scenarios in which source-sink balance does not
play an important role [161].
The eikonal equation governs the spread of an activation wave in a possibly
anisotropic medium resulting in a scalar field ta (xi) – the activation map:

c
√

∇taG∇ta = 1 , (3.13)

with c(xi) being the speed function defined for each node xi, ta (xi) being the
activation time, and G being a tensor creating anisotropy. G provides the
means to account for faster conduction along the principal axis of myocytes
(cf. Section 2.1.1.2) than perpendicular to it. Towards this end, the euclidean
distance ‖diso‖2 between two points representing the isotropic case is scaled
according to the myocyte orientation and the angle between the two points.
A transformation aligning the positive x-axis with the myocyte orientation
given by the angles φ and θ ′ can be established using conventional rotation
matrices Ry and Rz:

Ry(θ ′) =

⎛
⎝

cosθ ′ 0 sinθ ′

0 1 0
−sinθ ′ 0 cosθ ′

⎞
⎠ , (3.14)

Rz(φ) =

⎛
⎝

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

⎞
⎠ . (3.15)
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At IBT, φ ∈ [0,π], is defined as the angle in the x-y-plane with respect to the
positive x-axis as we only care about the direction but not the orientation of
the myocyte orientation. θ ∈ [0,π] is defined as the angle with respect to the
x-y-plane. Thus, θ ′ needs to be substituted by θ := θ ′+270◦ to follow the
conventional spherical coordinate system defined with respect to the positive
z-axis. When only applied within trigonometrical functions, θ = θ ′ − 90◦

holds, which gives us:

Ry(θ) =

⎛
⎝

cos(θ −90◦) 0 sin(θ −90◦)
0 1 0

−sin(θ −90◦) 0 cos(θ −90◦)

⎞
⎠=

⎛
⎝

sinθ 0 −cosθ
0 1 0

cosθ 0 sinθ

⎞
⎠ .

(3.16)

To align the positive x-axis with the principal myocyte orientation, we need to
apply Ry followed by Rz.

coordslocal = R(φ ,θ) ·
⎛
⎝

1
0
0

⎞
⎠ , (3.17)

with:

R(φ ,θ) := Rz(φ) ·Ry(θ) =

⎛
⎝

sinθ cosφ −sinφ −cosθ cosφ
sinθ sinφ cosφ −cosθ sinφ

cosθ 0 sinφ

⎞
⎠ . (3.18)

If we want to transform from the global coordinate system to the local coordi-
nate system with the fiber direction aligned with the x-axis, we need to apply
the inverse operation using the identity R−1 = RT . After this transformation
is established, appropriate scaling can be applied using the anisotropy factor
k. Transformation back to the global coordinate system yields daniso with the
anisotropic distance measure ‖daniso‖2:

daniso = R(φ ,θ)

⎛
⎝

k−1 0 0
0 1 0
0 0 1

⎞
⎠R(φ ,θ)T diso . (3.19)
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Algorithm 3.1 The fast marchingmethod. N (X) denotes the neighborhood of X .

while T RIAL �= /0 do
X ← argminX∈T RIAL {ta (X)}
T RIAL ← T RIAL\{X}
KNOWN ← KNOWN ∪{X}
for all (Xi ∈ N (X))∧ (Xi /∈ KNOWN) do

ta (Xi)← update(Xi,X)
if Xi /∈ T RIAL then

T RIAL ← T RIAL∪{Xi}
end if

end for
endwhile

Hence, G in Equation (3.13) is defined as:

R(φ ,θ)

⎛
⎝

k 0 0
0 1 0
0 0 1

⎞
⎠R(φ ,θ)T . (3.20)

The fast marching method is a scheme to solve Equation (3.13) in an efficient
way taking advantage of the causality relationship between nodes. Only ad-
jacent nodes with an activation time ta (x j) smaller than the current estimate
for the node in question ta (xi) can influence its activation. In this way, the
complexity of the algorithm is reduced to O(N logN) with N being the num-
ber of nodes compared to O(N2) for a naïve Newton method. Algorithm 3.1
gives an overview of the fast marching scheme to solve the eikonal equation
Equation (3.13).
Compared to Dijkstra’s algorithm [171, 172] and other graph-based meth-
ods [161, 173], a different relaxation scheme is used yielding unique solutions
that are not necessarily restricted to the edges of the mesh. This is achieved
by considering the anisotropic distance measure ‖daniso‖2 (Equation (3.19),
solve1D) and quadratically approximating the activation time of nodes for
which activation times of several other nodes in the same element are already
known (solve2D) according to Algorithm 3.2 (Figure 3.4) [174, 175].
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Algorithm 3.2 update(Xi,X ) for triangular surface meshes. N (X) denotes the neighbor-
hood of X .

ta (Xi)←+∞
ΔX

Xi
←{Y | (Y ∈ N (X))∧ (Y ∈ N (Xi))}

for allY ∈ ΔX
Xi
do

ifY ∈ KNOWN then
ta (Xi)← min{ta (Xi) ,solve2D (X ,Xi,Y )}

else
ta (Xi)← min{ta (Xi) ,solve1D (X ,Xi)}

end if
end for

Start

Finish

Dijkstra

Eikonal

Figure 3.4: Comparison of Dijkstra’s algorithm and the solution of the eikonal equation
regarding the shortest path between two nodes on a triangular mesh. Dijkstra’s algorithm
considers only edges of the mesh as segments of the path yielding non-unique results
that deviate significantly from the geometrical shortest path between the two nodes. The
eikonal approach interpolates activation times considering all adjacent nodes yielding a
better result on the samemesh.

Sermesant et al. proposed an extension to the fast marching scheme allowing to
include multiple wavefronts [176] (Algorithm 3.3). The extension summarized
in Algorithm 3.3 introduces a refractory state in which the nodes remain for the
length of the effective refractory period (ERP) after being activated. Moreover,
nodes can only activate adjacent nodes within a certain activity period after the
activation, which has to be shorter than the ERP. The assignment of the nodes
to the classes REFRACTORY and UNKNOWN is checked and updated after
a fixed time step. The simulation runs as long as there are nodes in the T RIAL
list and the maximum integrated time has not been reached.
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Algorithm 3.3Multifront fast marching. Abbreviations: integrated time (IT), elapsed time
(ET), activity period (AcP).

IT ← 0.0
while (T RIAL �= /0)∧ (IT < maxTime) do

ET ← 0.0
while (T RIAL �= /0)∧ (ET < timeStep) do

X ← argminX∈T RIAL {ta (X)}
T RIAL ← T RIAL\{X}
KNOWN ← KNOWN ∪{X}
for all (Xi ∈ N (X))∧ (Xi ∈UNKNOWN) do

ta (Xi)← update(Xi,X)
if Xi /∈ T RIAL then

T RIAL ← T RIAL∪{Xi}
end if
ET ← ta (Xi)− IT

end for
endwhile
IT ← IT + timeStep
for all X ∈ KNOWN do

if (IT − ta (X))> AcP(X) then
KNOWN ← KNOWN \{X}
REFRACTORY ← REFRACTORY ∪{X}

end if
end for
for all X ∈ REFRACTORY do

if (IT − ta(X))> ERP(X) then
REFRACTORY ← REFRACTORY \{X}
UNKNOWN ←UNKNOWN ∪{X}

end if
end for

endwhile
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3.3 AnatomicalModeling

The activation pattern of the atria is strongly dependent on their anatomical
properties. Moreover, mechanisms of arrhythmia initiation and perpetuation
interfere with the geometrical substrate [9]. Therefore, a realistic model
of human atrial anatomy is required to study such phenomena in silico. If
body surface potentials are of interest (cf. Section 3.4), also a torso model
comprising the most important organs is required [177].
While very detailed, microstructure-based models of single regions of the
atria are available, organ models on the atrial or whole heart scale represent
only their shape normally [9]. The shape can either be composed of simple
geometrical bodies (e.g. surfaces of a sphere with holes for the vessel and valve
orifices) or derived from segmentations of imaging data. Gadolinium-enhanced
magnetic resonance imaging (MRI) is one of the few methods allowing to
include information regarding the substrate in models (e.g. the degree of
fibrosis) [178–182]. Three-dimensional models of the atria can be divided in
volumetric models comprising an atrial wall with a finite thickness and surface
models. Another distinguishing feature are the conductive properties of the
atrial septum. While it is modeled as a continuous, fully conducting connection
in some models, others include an isolating layer, thus allowing interatrial
conduction only via well-defined, discrete connections. The interested reader
is referred to e.g. [9, 23] for a comprehensive review of available anatomical
models and their features.
Within the scope of this thesis, a virtual population of eight heterogeneous
torso models presented by Krueger et al. was used [183]. Torso models and
atrial models were segmented from MRI data and augmented with a priori
knowledge using the approaches presented in Chapter 7. Figure 3.5 shows two
examples of torso models comprising several organs. The characteristics of
the virtual study population are introduced in more detail in Section 9.1.1.
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A B

Figure 3.5: Heterogeneous tetrahedral torsomeshes ofmodel #5 (A) andmodel #6 (B). The
volumes of the different segmented organs are shown in distinct color: lungs (blue), bone
(gray), heart (red), great vessels (pink), liver (brown), kidneys (yellow), intestines (green).
Model #6 (B) also comprised a segmented spleen (orange).

3.4 Forward Calculation of the ECG

The spatial gradient of the transmembrane voltages impresses a volume current
density iimp on the tissue:

iimp =−∇ · (σi∇Vm) . (3.21)

This impressed volume current density serves as the source for the extracel-
lular field in the surrounding according to the parabolic part of the bidomain
formulation (Equation (3.9)) [184]:

∇ · ((σi +σe)∇Φe) = iimp. (3.22)

Thus, the body surface potentials can be calculated based on the distribu-
tion of Vm using this reduced bidomain formulation under the assumption of
a passive, purely resistive volume conduction representing the torso [177].
This so-called forward problem of electrocardiography is linear and quasi-
stationary. A fixed potential at a reference node serves as a Dirichlet boundary
condition whereas the thorax-air boundary poses a Neumann boundary con-
dition. Equation (3.22) is usually discretized by finite element or boundary
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element schemes [9]. While finite element approaches are computationally
more expensive, they can handle unequal anisotropy in the volume conductor.
The resulting body surface potential maps (BSPMs) can be evaluated for each
time instant, as an integral over time [185], or by tracing the potential dif-
ference between electrodes over time as performed during electrocardiogram
(ECG) recordings.
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ELECTROPHYSIOLOGY





CHAPTER4

Parameter Estimation of Ion
CurrentModels

While computational models of cardiac electrophysiology elucidated patho-
physiological mechanisms and provided insight into arrhythmogenesis during
the last years, most models represent healthy cells. In order to fully leverage
the potential of in silico cardiology, the models have to be adapted to reflect
pathologies, genetic defects (channelopathies), the effects of pharmacological
agents, or distinct properties of specific regions of the heart.
Voltage and patch clamp techniques [186, 187] allow to record the response of
cells or single channels to a voltage step in terms of current. As the current is
proportional to the channel open probability, these experiments allow to assess
the channel kinetics, i.e. activation, deactivation and inactivation under specific
conditions. The altered gating behavior often translates to counter-intuitive
changes on higher levels of integration due to the complex and mostly non-
linear structure of the biophysical systems. Thus, an integration of these ion
channel data into comprehensive cellular models is imperative for a thorough
evaluation of the systemic effects (e.g. on the whole cell, tissue, or organ level)
of altered gating behavior (see e.g. [188]).
A common approach is to reparameterize established models (see Section 3.1)
while leaving their structure unaltered. The parameter estimation aims to
minimize the difference between the model output and the measured data, thus
at a model parameter set optimally reflecting the data. This process can be

45



Chapter 4. Parameter Estimation of Ion Current Models

computationally expensive and time-consuming depending on the complexity
of the model, the number of parameters to estimate, and the abundance of
measurement data. Particularly the high-dimensional, highly non-linear, and
often non-convex nature of the problem renders this a challenging task.
The advent of automated high-throughput patch clamping techniques [189]
led to a significant increase of the amount of available ion channel data. In
many cases, experimental data are available on very low levels of integration
(e.g. ion currents) and very high levels of integration (e.g. the body surface
electrocardiogram (ECG)). Multi-scale simulations can aid to bridge the gap
of missing links on intermediate levels arising from a lack of data. In this way,
model-based approaches can foster our understanding of patho-mechanisms
and pave the way for the development of tailored therapeutic approaches.
Thus, there is a need for automated, accurate, efficient, and robust parameter
estimation techniques.
In this chapter, two algorithms from different families are evaluated regarding
their suitability for the scenario sketched above. First, optimization-based
approaches are evaluated and advanced in Section 4.1. Then, an approach
based on multivariate metamodeling is evaluated in Section 4.2.

4.1 Hybrid Optimization

Besides classical gradient-based optimization approaches, derivative-free al-
gorithms have been proposed to tackle high-dimensional, non-linear, and
non-convex minimization problems. In this study, gradient-based trust-region-
reflective (TRR) optimization [190] and derivative-free, population-based
particle swarm optimization (PSO) are evaluated. Using idealized synthetic
input data as well as measured current data, the shortcomings of each of the
approaches when being applied to different cardiac ion currents are identified.
Thus, a new hybrid approach coupling PSO and TRR is proposed aiming at
an optimization scheme being minimally dependent on the initial parameter
guess.
Previous work by other authors suggested different algorithms to estimate
parameters of ion current formulations or whole cell models to reproduce
measured currents, action potentials or restitution curves (e.g. [191, 192]).
Also derivative-free metaheuristic algorithms were used in the field of cardiac
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electrophysiology: e.g. particle swarm optimization (PSO) in [193, 194] and a
genetic algorithm in [195–197]. However, the study presented here is the first
to combine the two approaches in a coupled hybrid scheme [198, 199] for this
purpose to the best of my knowledge.
Parts of this study have been published as a journal article [200] as well as con-
ference contributions [201–203] and are based on earlier work [127, 204, 205].

4.1.1 Methods

4.1.1.1 Ion Current Formulations

The parameter estimation algorithms were evaluated using ion current formu-
lations from the Courtemanche et al. human atrial cell model (see Section 3.1).
The currents are formulated using Hodgkin-Huxley type equations [152]:

IX = ĝX x(Vm −EX ) (4.1)

with ĝX being the maximum conductance of all channels conducting the
current IX , x being the open probability of the channels, and EX being the
Nernst potential of the ion type carrying the current IX . Based on pilot studies,
the parameters of the rapid delayed rectifier potassium current IKr, the ultra-
rapid delayed rectifier potassium current IKur, and the slow delayed rectifier
potassium current IKs were chosen to be estimated because they span a wide
range of characteristics (e.g. fast IKur kinetics compared to IKr).
For IKr, the Courtemanche et al. formulation [47] being used was:

IKr = gKrxr(Vm −EK)
1

1+ exp
(

Vm+15
22.4

) , (4.2)

with gKr being the maximal conductance, xr the activation gating variable,
and EK the potassium Nernst voltage, and Vm the transmembrane voltage in
mV. Besides the instantaneous inactivation gate represented by the fraction in
Equation (4.2), the formulation comprises the time-dependent gating variable
xr governed by the following ordinary differential equation (ODE):

dxr

dt
=

xr∞ − xr

τxr

, (4.3)
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with xr∞ being the steady-state value and τxr the time constant of the gating
variable xr. These two parameters depend on Vm again:

xr∞ =
1

1+ exp
(
−Vm+14.1

6.5

) , (4.4)

τxr =
1

αxr +βxr

. (4.5)

The rate constants αxr and βxr are defined as a function of Vm as well:

αxr = 0.0003
Vm +14.1

1− exp
(
−Vm+14.1

5

) , (4.6)

βxr = 7.3898×10−5 Vm −3.3328

exp
(

Vm−3.3328
5.1237

)
−1

. (4.7)

For each current, the parameters to be estimated were identified and classified
as additive or multiplicative depending on whether they enter the equation in a
sum or a product. Maximum conductances are an example for multiplicative
parameters whereas half-activation voltages are an example for additive param-
eters (cf. Section 3.1). For IKr, 12 parameters were estimated. The complete
set of equations for IKr, IKur, and IKs together with the estimated parameters,
their original Courtemanche et al. values, and their classification as additive or
multiplicative are given in Section A.1.
The gating ODEs as e.g. Equation (4.3) are normally solved numerically in
computational cardiology. This is necessary as the steady-state value xr∞ and
the time constant τxr are voltage-dependent and change during the cardiac
cycle. Thus, no closed analytical solution can be obtained. During clamp
experiments with classical voltage protocols however, Vm is a piecewise con-
stant function. Therefore, an analytical solution for Equation (4.3) can be
derived [206]:

xr (t − t0) = xr∞ +(xr0 − xr∞) exp
(
− t − t0

τxr

)
, (4.8)

with t0 being the time of a step of Vm and xr0 the corresponding initial value
at that time. Using the analytical solution, the calculation of the current is
computationally far less expensive as compared to numerical approximation.
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All current formulations were implemented in Matlab (R2015a, The Math-
Works, Natick, MA, USA).

4.1.1.2 Voltage ClampData

For the evaluation of the algorithms, two sets of data were used: synthetic and
measured currents. Synthetic data were generated using the original formu-
lations and parameters from Courtemanche et al. [47]. These synthetic data
had the advantage that it was known that a parameter set exists which exactly
reproduces the input data allowing to optimally assess the accuracy of the
estimation. Moreover, the parameter values used to generate the input data
were available for comparison of the estimated parameters even though the
optimization algorithm was blinded to these values. This allowed to assess
parameter identifiability. In addition, noise was added to the synthetic signals
to evaluate the robustness regarding the influence of noise under controlled
conditions. Synthetic data were generated for IKr which was identified as
rather easy to fit in a pilot study and for IKur which was identified as hard to fit.
The voltage protocol is shown in Figure 4.1 and was composed of 13 traces
consisting of 20 ms at –80 mV resting voltage, 400 ms at the respective step
voltage ranging from –70 mV to +50 mV in steps of 10 mV, and 400 ms at
–110 mV resulting in a total length of 10.66 s. The resulting currents were
sampled every 2 ms. For the sensitivity analysis regarding noise, the non-noisy
signals were corrupted with additive white Gaussian noise resulting in signal
to noise ratios (SNRs) of 10, 20, 35, and 65 dB.
The study also comprised a second set of data which were acquired in wet-lab
experiments. Measured data pose additional challenges in terms of noise and
other artifacts. Moreover, the biophysical entity being measured will not be
perfectly replicated by the model as opposed to synthetic data. The inves-
tigation performed in the group of Eberhard Scholz at University Hospital
Heidelberg conformed to the “Guide for the Care and Use of Laboratory Ani-
mals” published by the US National Institutes of Health (NIH publication No
85-23, revised 1996) and was approved by the regional administrative council
(Regierungspräsidium Karlsruhe, Karlsruhe, Germany, application number
G-221/12). The details of the acquisition procedures for the human ether-à-go-
go-related gene (hERG) (IKr), KCNA5 (IKur), and KCNQ1+KCNE1 (IKs) are
given in Section A.2.
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Figure 4.1: Synthetic ((A) and (C)) andmeasured ((B), (D), and (E)) input current data used
to estimate parameters together with the corresponding voltage protocols. (A) and (B)
show IKr, (C) and (D) show IKur, (E) shows IKs.

4.1.1.3 Optimization Algorithms

In this study, the estimation of model parameters was treated as a minimiza-
tion problem aiming at an optimal fit of the model output to the input data.
Therefore, the following cost function was used:

min
p

(
M

∑
j

N

∑
i

(
I
(
ti,Vj (ti) ,p

)− I∗
(
ti,Vj (ti)

))2

)
, (4.9)

with I being the output of the ion current model using the vector of adjustable
parameters p aiming to match the measured current I∗, ti being a discrete time,
and Vj the transmembrane voltage trace, which is described by a piecewise
constant function for each step voltage. Thus i covered all N time instants for
which samples were considered and j covered all M step voltages.
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The parameter search spaces were restricted. Two sets of ranges were evaluated.
For the “narrow” range, additive values were allowed to vary between –60
and +60 of their standard Courtemanche et al. values [47] in the unit of the
standard value. Multiplicative values were restricted to the interval of 0.1
and 10 times their standard value in the “narrow” case. For the “wide” range,
limits were ±120 and 0.01..100×, respectively. All optimization code was
implemented in Matlab (R2015a, The MathWorks, Natick, MA, USA). In order
to obtain statistics regarding the dependency on the parameter vector used to
initialize the optimization (“initial guess”), all experiments were run 25 times
with uniformly distributed random initial values.

Trust-Region-Reflective The TRR optimization algorithm is a second or-
der scheme, which approximates the function f (p) quadratically as qi (p).
Thus, it requires the values of the first and the second derivative in the cur-
rent parameter vector pi. The quadratic approximation is considered within a
region of trust around that point:

qi (p) = f (pi)+∇ f (pi)
T (p−pi)+

1
2
(p−pi)

T ∇2 f (pi)(p−pi) , (4.10)

min
‖s‖2≤rΔ

qi (pi + s) . (4.11)

The size of the region of trust rΔ is varied depending on the quality of the
second order approximation. The more accurate the approximation was in the
current iteration, the larger rΔ will be in the next iteration. TRR is provided by
the Matlab function lsqnonlin and can terminate due to several criteria. The
minimum change of the norm of the parameter vector p (pTol) and the mini-
mum change of the cost function value (fTol) were set to 1×10−11 (pA/pF)2.
The number of iterations (maxIter) was limited to 1×105 and the number of
cost function evaluations (maxFunEval) to 5×105. Each TRR experiment
comprised 22 parallel instantiations with random start vectors.
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bg

bi pi,last iteration

pi, next iteration

pi

Figure 4.2: Basic principle of the PSO. Each particle with its position pi experiences attract-
ing forces towards the best position found so far by the entire swarm bg, the best position
found so far by itself bi, and an inertia force defined by the difference between the current
position pi and the one in the last iteration pi,last iteration. These three forces are weighted
using uniformly distributed numbers∈ [0,1] and added vectorially to obtain the position
for the next iteration (pi,next iteration).

Particle SwarmOptimization Derivative-based algorithms such as TRR
introduced above are prone to get stuck in local minima as shown in [201].
As a consequence, the result is sensitive to the choice of the initial parameter
vector, which is undesirable. Thus, a population-based algorithm, which does
not use gradient information, was implemented in addition. PSO is inspired
by the swarming behavior observed in nature as e.g. flocking birds or fish
schools [207]. A population of “particles” swarms through the parameter
space searching for the globally best solution. Each particle i knows about the
best position it has found so far itself (bi) and the best position found so far by
the entire swarm (bg). The particles experience attracting forces towards bi

and bg with random weights. Moreover, inertia tries to keep particles moving
in a similar direction as before as shown e.g. in [208]. Thus, the parameter
vectors are updated as follows in each iteration:

vi ← χ(vi +U(0,φ1)⊗ (bi −pi)+U(0,φ2)⊗ (bg −pi)) , (4.12)

pi ← pi +vi , (4.13)

with U(0,φ1) and U(0,φ2) being vectors of the same length as p of uni-
formly distributed random numbers (between 0 and φ1 or φ2) and ⊗ being
a component-wise multiplication. Clerc and Kennedy showed that a choice
of φ1 = φ2 = 2.05 is optimal together with the following definition of the
constriction coefficient χ:
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χ =
2

φ −2+
√

φ 2 −4φ
≈ 0.73 , (4.14)

with φ = φ1 +φ2 [209].
In this study, PSO was adjusted in order to handle restricted search spaces. If
one of the parameters was out of the prescribed ranges after the update step
Equation (4.13), a correction step was performed. The particular elements of p
which crossed a boundary were placed randomly within a 25% margin starting
at this boundary.
The number of particles N was varied between 24 and 12,288 with the number
being doubled from one setup to the next. The algorithm was run for a
fixed number of iterations L. The approach was implemented in Matlab with
parallelized computation of the cost function across the particles.

Combination of Algorithms As it turned out that none of the algorithms
alone performed satisfactory for all investigated currents (see Section 4.1.2.1),
combinations were evaluated. In the “two-stage PSO+TRR” approach, the
algorithms were combined in a sequential manner. Motivated by the fact that
TRR was sensitive to the initial guess and thus dependent on a good start
vector, the best M = 12 parameter vectors yielded by PSO were used as initial
guesses for subsequent TRR optimization as shown in Figure 4.3A.
The “two-stage PSO+TRR” approach was not superior compared to pure PSO
or pure TRR for some of the current formulations and the resulting error using
the synthetic data deviated significantly from zero (see Section 4.1.2.1). Thus,
a hybrid approach coupling TRR and PSO in each PSO iteration was devel-
oped and implemented as shown in Figure 4.3B and detailed in Algorithm 4.1.
After each PSO update step Equation (4.13), each of the N particles with
their respective parameter vectors were subject to a fixed number of K TRR
iterations. This approach is being referred to as “hybrid (PSO+TRR)”. For

“hybrid (PSO+TRR)+TRR”, TRR was additionally run until convergence for
the best M = 12 particles after PSO termination. Three different combinations
of the number of TRR iterations in each PSO iteration K, the number of PSO
iterations L, and the number of particles N were evaluated: “low” (K = 5,
L = 250, N = 96), “medium” (K = 10, L = 500, N = 192), and “high” (K = 20,
L = 1000, N = 384).
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Trust Region 
Reflective

Particle 
Swarm

for K 
iterations

for L iterations

all N particles

Trust Region 
Reflectiveuntil 

convergence

best M particlesTrust Region 
Reflective

Particle 
Swarm

until 
convergence

for L iterations

best M particles

A B

Figure 4.3: Flow chart of the two-stage PSO+TRR algorithm (A) and the hybrid
(PSO+TRR)+TRR algorithm (B). The steps above the horizontal, dashed line in (B) are re-
ferred to as hybrid (PSO+TRR).

Algorithm 4.1 “hybrid (PSO+TRR)+TRR” optimization approach

for itPSO < L do
for i < N do

vi ← χ(vi +U(0,φ1)⊗ (bi −pi)+U(0,φ2)⊗ (bg −pi))
p̃i ← pi +vi

enforce boundary constraints on p̃i

for itT RR < K do
perform TRR iteration on p̃i

end for
vi ← p̃i −pi

pi ← pi +vi

end for
end for
sort b[] by ascending squared error
for i < M do

while (not converged)∧ (itT RR < maxIter) do
perform TRR iteration on bi

endwhile
end for
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Figure 4.4: Sum of squared errors achieved by pure PSO and pure TRR optimization for
synthetic IKr ((A) and (B)) and IKur ((C) and (D)) data. The number of particles N for PSO
was varied. In (A) and (C), narrow parameter ranges were usedwhereas in (B) and (D) the
search space was wider. Box plots represent 25 experiments each; the green lines indicate
linear regressions of themedian values in the graph coordinate system.

4.1.2 Results

4.1.2.1 Results Using Synthetic Data

In a first step, the different algorithms and their combinations were evaluated
using synthetic input data. For these data, a parameter set yielding an error of
exactly zero exists and was available for comparison.

One-Stage Approach Regarding the pure variants of PSO and TRR (one-
stage approaches), TRR yielded lower errors and less variance than PSO for
IKr. For IKur on the other hand, PSO performed better by four orders of magni-
tude (see Figure 4.4).
The squared errors obtained using pure PSO and the narrow IKr parameter
intervals ranged between 1×10−4 (pA/pF)2 and 0.18 (pA/pF)2. For higher
numbers of particles N, a tendency toward lower errors was observed (median
error 6.4×10−2 (pA/pF)2 for N = 24 and 9.5×10−3 (pA/pF)2 for N = 12,288).

55



Chapter 4. Parameter Estimation of Ion Current Models
sq

ua
re

d 
er

ro
r 

(p
A

/p
F

)2
sq

ua
re

d 
er

ro
r 

(p
A

/p
F

)2

A B

C D

1

1

1

1

PSO

hybrid (PSO+TRR), medium hybrid (PSO+TRR), high

hybrid (PSO+TRR), low

Figure 4.5: Sum of squared errors convergence behavior of pure PSO (A) and hybrid
(PSO+TRR) (B-D) for synthetic IKr data. 25 experiments using thewide parameter ranges
were performed. The black line indicates themedian, the green lines theminimum and the
maximum. The green area covers the two central quartiles. The number of particlesN, the
number of PSO iterations L, and the number of inner TRR iterationsK was increased from
low (B) viamedium (C) to high (D).

The squared errors obtained by pure TRR were lower (5.1×10−3) and showed
smaller variance compared to pure PSO in the 25 experiments with random
start vectors (see Figure 4.4A). By extending the search space to the wide
ranges, the squared error was increased by about three orders of magnitude for
pure PSO (see Figure 4.4B). For pure TRR, the median error was unaffected
by the wider ranges. However, five of the experiments yielded significantly
higher errors (see Figure 4.4B).
The convergence behavior of pure PSO is shown in Figure 4.5A. While the
median error decreased until around 8,500 iterations, the maximum error
remained almost unchanged after the very first iterations. Regarding the
TRR convergence criteria introduced in Section 4.1.1.3, the change of the
norm of p (pTol) caused termination for all experiments using the narrow
parameter ranges. This criterion was decisive for only 19% of cases using
the wide ranges where the norm of the squared error (fTol) terminated the
remaining cases.
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Figure 4.6: Sum of squared errors convergence behavior of pure PSO (A) and hybrid
(PSO+TRR) (B-D) for synthetic IKur data. 25 experiments using the wide parameter ranges
were performed. The black line indicates themedian, the green lines theminimum and the
maximum. The green area covers the two central quartiles. The number of particlesN, the
number of PSO iterations L, and the number of inner TRR iterationsK was increased from
low (B) viamedium (C) to high (D).

Using synthetic IKur current data as input, two differences were observed
compared to IKr. First, PSO performed better by more than 4 orders of
magnitude in terms of squared error (see Figure 4.4C). Second, extending the
parameter search space to the wide ranges led to a lower squared error (see
Figure 4.4D). Compared to the narrow ranges, the squared error was lower by
80% for PSO (N = 12,288) and by 12% for TRR.
PSO converged to almost the final value of the cost function within 6,000
iterations (see Figure 4.6A). The maximum error did not decrease significantly
after the first 500 iterations as was the case for IKr. The decisive termination
criterion for TRR was fTol in 66% of the cases, the number of iterations
(maxIter) in 31% of the cases, and pTol in 3% of the cases using the narrow
ranges. For the wide ranges, the distribution was 50/40/10%, respectively.
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Figure 4.7: Sum of squared errors achieved by two-stage PSO+TRR optimization for syn-
thetic IKr ((A) and (B)) and IKur ((C) and (D)) data. The number of particlesN was varied. In
(A) and (C), narrowparameter rangeswere usedwhereas in (B) and (D) the search spacewas
wider. Box plots represent 25 experiments each. The green lines indicate linear regressions
of the median values in the graph coordinate system. The green dot on the left of each
panel represents themedian of pure TRR optimization, the dotted green lines represent
linear regressions of themedian values of pure PSO (compare Figure 4.4).

Two-Stage PSO+TRR Approach A combination of PSO and TRR in a
sequential manner by using the best M = 12 particles as start vector for sub-
sequent TRR optimization improved the results compared to pure PSO in all
cases and compared to pure TRR in most cases (see Figure 4.7). The advantage
of the two-stage PSO+TRR approach compared to the one-stage approaches
was bigger for IKur than for IKr and bigger for the wide parameter ranges than
for the narrow ones.
The squared error was reduced by 87% for N = 24 and by 56% for N = 12,288
using the narrow IKr ranges (see Figure 4.7A). Thus, the median error of
the two-stage PSO+TRR approach was smaller than for any one-stage ap-
proach for N ≥ 1536. The worst result yielded by pure TRR, however, was
better than the worst result obtained using two-stage PSO+TRR. Extending
the parameter search space to the wide ranges increased the variance of the
resulting squared errors accompanied by a slight increase of the median error
(1.2×10−2 (pA/pF)2 vs. 4.2×10−3 (pA/pF)2, see Figure 4.7B). This behavior
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of the two-stage PSO+TRR approach is in contrast to pure PSO for which
the median error was significantly increased together with a slight increase of
the variance (see Section 4.1.2.1 and Figure 4.4A+B). The TRR step of the
two-stage PSO+TRR approach was terminated due to pTol in all cases using
the narrow ranges. For the wide ranges, 16% of the runs were terminated due
to fTol.
For the IKur formulation, the improvement of two-stage PSO+TRR over the
best one-stage approach was 6% for the narrow ranges (see Figure 4.4C) and
88% for the wide ranges (see Figure 4.4D) for N = 12,288. For the wide
IKur parameter ranges, the median error was lower and the variance bigger
for two-stage PSO+TRR as was the case for pure PSO. The decisive stopping
criterion for the TRR step was maxIter in 80% of the cases and pTol in 20%
using the narrow ranges. For the wide ranges, TRR was terminated due to
pTol, maxIter, fTol in 51/30/29% of the cases, respectively.

Hybrid Approach The hybrid approach performed best for both IKr and
IKur synthetic current data irrespective of the parameter ranges used. The
improvement compared to the sequential combination of PSO and TRR was
more than five orders of magnitude (see Figure 4.8).
Using the hybrid (PSO+TRR) approach, median squared error smaller than
1×10−9 (pA/pF)2 for IKr (see Figure 4.8B) and smaller than 1×10−7 (pA/pF)2

for IKur (see Figure 4.8D) were obtained. Thus, the results were improved
by seven and five orders of magnitude compared to the two-stage PSO+TRR
approach, respectively. The low setup of the hybrid approach comprising
the lowest number of particles, the lowest number of PSO iterations, and the
lowest number of inner TRR iterations within each PSO iteration yielded a
single outlier for IKur: 1.4×10−2 (pA/pF)2. In this experiment, the value of
the cost function remained almost stable after the first 10 iterations indicating
a deadlock of the entire swarm in a local minimum. The maximum squared
errors obtained using the medium and high setups of the hybrid (PSO+TRR)
approach were 5.2×10−11 (pA/pF)2 for IKr and 2.3×10−6 (pA/pF)2 for IKur.
Restricting the parameters to the narrow ranges did not influence the result in
terms of median error and variance significantly for IKr (see Figure 4.8A).
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Figure 4.8: Sumof squared errors achieved by hybrid (PSO+TRR) and hybrid (PSO+TRR)+TRR
optimization for synthetic IKr (A) and IKur (B) data. Parameter values were restricted to the
wide range. The number of particles N, the number of PSO iterations L and the number
of inner TRR iterationsK was increased from low viamedium to high. Box plots represent
25 experiments each; the green lines indicate linear regressions of themedian values in
the graph coordinate system. The green triangle on the left of each panel represents the
median of two-stage PSO+TRR forN = 12,288 (compare Figure 4.7).

For IKur, a similar behavior as for the two-stage PSO+TRR approach was
observed for hybrid (PSO+TRR): a larger variance of the resulting squared
error with several estimates yielding up to 3.5×10−1 (pA/pF)2 for both the
low and the medium setup (see Figure 4.8C).
The convergence of the median error was not highly dependent on the setup
being used. It decreased to an interval within one order of magnitude of the
final value in 125/217/232 iterations for the low/medium/high IKr setups, re-
spectively (see Figure 4.5B-D). For IKur, convergence was faster than for IKr as
was the case for pure PSO. A value within one order of magnitude of the final
value was reached after 112/167/128 iterations using the low/medium/high
setups of the hybrid (PSO+TRR) approach. Using the low setup, however, the
maximum error still decreased during the final iterations 200–250.
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Figure 4.9: Resulting currents using the estimated parameters. Solid lines indicate syn-
thetic ((A) and (C)) and measured ((B), (D), and (E)) input currents used for parameter
estimation. Crosses represent the best fit obtained using the high setup of the hybrid
(PSO+TRR)+TRR approach (every 15th sample is shown). (A) and (B) show IKr, (C) and (D)
show IKur, (E) shows IKs together with the corresponding voltage protocols.

In the hybrid (PSO+TRR)+TRR approach, TRR was run until one of the termi-
nation criteria introduced in Section 4.1.1.3 was met. Using this modification,
the squared error could only be reduced by <1% (see Figure 4.8). The final
TRR step was terminated due to pTol in ≈80% of the cases and due to fTol in
≈20% irrespective of the current formulation, the parameter ranges, and the
algorithm setup being used.
The currents produced by the parameter sets estimated using the high variant
of the hybrid (PSO+TRR)+TRR approach yielding the highest squared error
are shown in Figure 4.9A+C.
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Figure 4.10: Resulting difference between the input currents and the model output us-
ing the estimated parameters. The best fit obtained using the high setup of the hybrid
(PSO+TRR)+TRR approach is shown. Samples directly adjacent to voltage steps were ig-
nored in the cost function for the optimization and not plotted. (A) and (B) show IKr, (C) and
(D) show IKur, (E) shows IKs together with the corresponding voltage protocols.

For the synthetic data, input and output were visually indistinguishable. There-
fore, the magnified difference between the synthetic input data and the model
output using the estimated parameters is shown in Figure 4.10A+C. The rela-
tive deviation of the estimated parameters from the ground truth parameters
used to generate the synthetic input data is shown in Figure 4.11. All twelve
IKr parameters were estimated very accurately with a relative error of <0.1%.
For IKur, some of the 25 parameters deviated significantly. Likely reasons for
this observation as well as the offset for gKr and ui,b2 are discussed below (see
Section 4.1.3.1).
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Figure 4.11: Relative error of the estimated parameters using synthetic IKr (A) and IKur
(B)+(C) data and the hybrid (PSO+TRR)+TRR approach in the high configuration. Parameter
deviations were normalized to their ground truth values. Note the different scales. IKur pa-
rameters were split in high deviation (B) and low deviation (C) groups. Box plots represent
25 experiments.

4.1.2.2 Influence of Noise

The synthetic input data were corrupted with additive white Gaussian noise
yielding SNRs of 10, 20, 35, and 60 dB to assess the robustness with respect to
noise. The one-stage approaches and the sequential combination of algorithms
yielded worse results when raising the SNR to values above 35 dB. The hybrid
approach on the other hand proved to be able to cope with data of higher
quality as well (see Figure 4.12).
The cost function for the optimization problem was defined as the sum of
squared differences between the model output using the estimated parame-
ters and the noisy input data according to Equation (4.9). This metric got
worse for signals of poorer quality (increased noise level, thus lower SNR

) as

the noise was not reproduced by the model output (see Figure 4.12B+D).
The hybrid (PSO+TRR) approach yielded better results than simpler ap-
proaches for a moderate noise level of 60 dB (2.7×10−4 (pA/pF)2 for medium
vs. 8.8

×
10−4 (pA/pF)2 for PSO with N = 12,288).
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Figure 4.12: Sensitivity of the sum of squared error to noise in synthetic IKr ((A) and (B))
and IKur ((C) and (D)) data using pure PSO, pure TRR, two-stage (PSO+TRR) and hybrid
(PSO+TRR)+TRR optimization. The squared errorwasmeasuredwith respect to the original,
non-noisy data in (A) and (C). In (B) and (D), the error was measured with respect to the
noisy data and the horizontal lines indicate the sum of squared differences between the
noisy input data and the ground-truth input data. Parameters were restricted to the wide
ranges. Box plots represent 25 experiments.

When increasing the noise level, this difference vanished. For a SNR of 10 dB,
all evaluated approaches yielded a sum of squared errors of 2.6×101 (pA/pF)2.
For the non-noisy signals of better quality on the other hand, the squared
error increased compared to SNR = 60 dB for all but the hybrid approaches.
By assuming that the model cannot reproduce the white Gaussian noise, the
difference between the noisy and the non-noisy input signal can be considered
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a lower boundary for the sum of squared errors achieved by the optimization.
In this sense, the hybrid (PSO+TRR) approach yielded optimal results for all
investigated noise levels. While optimal results could be obtained using the
PSO and the two-stage PSO+TRR approach for lower quality signals with
SNRs below 35 dB as well, they could not cope well with high quality signals.
Figure 4.12A+C shows the squared error with respect to the original, non-noisy
signal. This is not the cost function which the optimization was subject to.
The lower boundary for this metric is zero. The main difference is a lower
squared error when relating the model output to the non-noisy signal compared
to the corrupted one. For the hybrid (PSO+TRR)+TRR approach and a SNR
of 60 dB, the squared error was lower by three orders of magnitude. For the
one-stage approaches (pure PSO and pure TRR) and two-stage PSO+TRR,
the squared error was lower for a SNR of 35 dB than for 60 dB. This behavior
could not be observed for the hybrid approaches which showed a monotonic
increase of error for increasing noise levels also for the quality metric with
respect to the ground truth signal.

4.1.2.3 Results UsingMeasured Data

In contrast to the synthetic input data used in Section 4.1.2.1, measured current
data pose additional challenges. In general, a parameter set yielding exactly
the input signal as model output does not exist due to noise and other measure-
ment artifacts as well as simplifications in the mathematical models. The best
results were obtained using the hybrid approaches for all three investigated
currents: IKr, IKur, and IKs (see Figure 4.13). While the choice of the optimiza-
tion algorithm did not make a significant difference for IKr (all results within
one order of magnitude), the squared error was consistently decreased by one
order of magnitude for IKur by using the hybrid approach. For IKs, the main
advantage of the hybrid approach over the others was reduced variance in the
resulting squared error by one order of magnitude.
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Figure 4.13: Sum of squared errors achieved by pure PSO or TRR, two-stage PSO+TRR,
hybrid (PSO+TRR) and hybrid (PSO+TRR)+TRR optimization for measured IKr (A), IKur (B) and
IKs (C) data. Parameter values were restricted to the wide range. Note the different scaling
compared to Figure 4.4, Figure 4.7, and Figure 4.8. For the one-stage and two-stage PSO
approaches the number of particlesN was varied. For the hybrid approaches, the number
of particles N, the number of PSO iterations L and the number of inner TRR iterations
K was increased from low viamedium to high. Box plots represent 25 experiments each;
the dashed lines indicate linear regressions of themedian values in the graph coordinate
system.

The slow upstroke following the first voltage step in the measured IKr current
was well reproduced by the model (see Figure 4.9B and Figure 4.10B). The
second voltage step down to –120 mV caused a fast inward current, which
quickly went back to zero again. The Courtemanche et al. current formulation
being used in this study could not reproduce this phase well (see Figure 4.9B
and Figure 4.10B) because only one gate with a finite time constant is incor-
porated. The second gate is instantaneous (τ = 0 ms), thus forcing the same
time constant vs. voltage relation for both step responses. The variance in
the resulting squared error was smaller when TRR was incorporated in the
optimization (see Figure 4.13A) as was the case for synthetic IKr input data
(see Section 4.1.2.1).
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Regarding IKur, the results using the measured input currents were also com-
parable to the characteristics observed using the synthetic input data (see
Figure 4.13B). First, PSO performed better than TRR (9.4 (pA/pF)2 for pure
PSO with N = 12,288 vs. 3.2×102 (pA/pF)2 for pure TRR). Second, hybrid
(PSO+TRR) was superior to the sequential combination (two-stage PSO+TRR)
in terms of both the median and the maximum squared error. The model output
currents using the estimated parameters were visually indistinguishable from
the input data (see Figure 4.9D). The remaining difference in Figure 4.10D
showed no clear pattern which could be traced back to the voltage protocol
and was dominated by measurement noise.
The algorithm performance for the Courtemanche et al. IKs formulation was
only assessed using measured data and showed comparable characteristics as
were observed for IKur. PSO performed better than TRR for sufficiently large
N (see Figure 4.13C). However, two differences could be observed. First, the
variance in the resulting squared error using the two-stage PSO+TRR approach
was significantly larger for IKs compared to IKur, as well as compared to pure
PSO. Second, the main advantage of the hybrid over the two-stage approach
was a reduced variance in the resulting squared error rather than a reduction of
the median error. The resulting current reproduced the steady-state currents
well (see Figure 4.9E). The difference signal with respect to the input data (Fig-
ure 4.10E) reveals that the biphasic nature of the response to the first voltage
step could not be well reproduced. While the slow, exponential increase was
covered by the Courtemanche et al. IKs formulation comprising four identical
xs gates, the almost instantaneous upstroke was not.

4.1.2.4 Computing Times

Table 4.1 gives an overview of the median computing times (n = 25) of the
different algorithms. All experiments were performed on Mac Pro machines
equipped with two 2.4 GHz Intel Xeon E5645 processors with six cores each
and 64 GB RAM under Mac OS X (Apple Inc., Cupertino, CA, USA). PSO
was the least computationally expensive algorithm, in general.
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Table 4.1:Median computing times in seconds (n = 25) for the parameter estimation using
synthetic (s) and measured (m) input data. For pure PSO and two-stage PSO+TRR, the
number of particles was set toN = 1,536. For hybrid, themedium setupwas used.

sIKr (s) sIKur (s) mIKr (s) mIKur (s) mIKs (s)

PSO 475 714 839 569 341
TRR 40 2,747 2,763 1,570 599
two-stage PSO+TRR 532 2,096 854 832 361
hybrid (PSO+TRR) 7,392 20,220 8,923 21,840 3,687
hybrid (PSO+TRR)+TRR 7,393 20,225 8,925 21,894 3,692

One exception were the synthetic IKr data for which TRR was faster than
PSO by one order of magnitude. TRR converged faster when particle swarm
optimized start vectors were used (two-stage PSO+TRR) compared to random
initial guesses (pure TRR) even when counting in the time spent for PSO.
For the synthetic data and the hybrid approaches applied to the measured data,
IKur was computationally more expensive than the other two currents. The hy-
brid approaches took the longest time compared to the one-stage approaches or
sequential combination of algorithms (2.5 h for IKr, 6.1 h for IKur, and 1.0 h for
IKs using the measured data). In general, synthetic and measured input data did
not lead to significantly different computing times. However, TRR was faster
using the synthetic data by two orders of magnitude for IKr and pure TRR
as well as two-stage PSO+TRR were faster by a factor of ≈2 for measured
IKur. The convergence of the final TRR step in the hybrid (PSO+TRR)+TRR
approach was faster using the synthetic data than using the measured data.
For IKr, it was terminated within 2 s for the synthetic and within 3 s for the
measured data in all cases. For IKur, the maximum times were 20 s and 1167 s.
For the measured IKs data, the final TRR step converged within less than 700 s
in all cases.
For all investigated approaches, less than 5% of the time was spent in algorithm-
specific code and more than 95% on the evaluation of the cost function Equa-
tion (4.9).
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4.1.3 Discussion

In the study described in this section, the population-based PSO, the gradient-
based TRR algorithm, as well as sequential and tightly coupled combinations
of both algorithms were evaluated regarding their performance for parameter
estimation of cardiac ion channel formulations. The suitability was assessed
in terms of accuracy and robustness with respect to noise and the choice of the
initial guess.

4.1.3.1 Algorithm Performance

The type of problem, i.e. the current for which the parameters are estimated,
had a huge impact on the performance of the two algorithms being used
stand-alone (one-stage approaches). While the results obtained using TRR
were significantly better for IKr, PSO outperformed TRR by orders of magni-
tude for IKur data. By combining the two algorithms sequentially (two-stage
PSO+TRR), the median error could be reduced. This benefit came, however,
at the expense of a larger variance, particularly when the search space was
extended to the wide parameter ranges. As the performance of the one-after-
the-other combination was not satisfactory, the algorithms were coupled in
each PSO iteration in the newly proposed hybrid (PSO+TRR) approach. This
novel scheme yielded consistently low median and maximum squared error
values. Thus, the variance for experiments using different initial guesses was
minimal. The observed characteristics can be explained by the properties
of the different optimization problems. The cost function for IKr parameter
estimation was relatively well fit by the quadratic approximation in TRR.
Moreover, the gradient-based TRR approach could overcome local minima
due to their relatively low number and shallow nature. The cost function for
IKur on the other hand was characterized by extensive plateaus with narrow and
steep minima. Therefore, the random movement of the PSO particles helped
to overcome the plateaus. Furthermore, the incorporation of the gradient
information in each PSO iteration was needed to identify the actual minima
and descend into them. Regarding pure PSO, we showed that the first few
iterations are crucial. A high number of iterations did not help to prevent bad
results if the swarm moved in a bad direction at the start.
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Regarding signal quality and noise conditions, the results got worse when
the quality of the input data, thus the noise conditions of the experimental
design, were improved for the non-hybrid approaches. This observation can
be explained by the accuracy requirements. The fewer noise there is in the
signal, the narrower is the margin of parameters yielding the optimal results
in the sense of the cost function. Thus, the minima in the cost function are
more articulated for less noisy signals and more blurred for signals of lower
quality. Hence, the probability to get stuck in a local minimum can be reduced
by adding noise to the signal. Conversely, this implies that the parameter
estimation approach being used must be capable of handling data of the quality
at hand. We showed that the novel hybrid approach proposed in this study
is not limited in this respect and is suitable for data of arbitrary high quality.
Moreover, the approach yields the optimal result up to the theoretical limit for
noisy data.
The accuracy provided by the hybrid approach is probably higher than re-
quired for most applications. However, Figure 4.14 shows an example of the
physiological relevance of the superiority regarding the quality of fit. While
the two-stage PSO+TRR approach (Figure 4.14A) failed to reproduce the IKur

dynamics for medium step voltages and yielded almost piece-wise constant
current traces, the hybrid (PSO+TRR) approach (Figure 4.14B) succeeded
to fully capture the gating kinetics resulting in a good reproduction of the
current dynamics. Moreover, the hybrid approach estimated the IKr and most
of the IKur parameters very accurately. For gKr, a small (0.01%) but consistent
offset was observed as well as for ui,b2 (Figure 4.11). These offsets can be
explained by different implementations used to calculate the currents during
the generation of synthetic measurement data (C++, intermediate parameter
discretized in look up tables) and for the evaluation of the cost function during
the optimization (Matlab, accurate up to machine precision) and the interface
between the two (text files with limited precision). In order to be useful in
practical application, the ability to generate reliable estimates in a single run
regardless of the initial guess is of great importance. The newly proposed
hybrid approach proved to fully meet this requirement as shown particularly
for wet-lab IKur and IKs data (see Figure 4.13).
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Figure 4.14: Resulting IKur curves using the parameters estimated by the two-stage
PSO+TRR (A) and the hybrid (PSO+TRR) approach in themedium setup (B) together with
the corresponding voltage protocols. Solid lines indicate synthetic input currents used
for parameter estimation. Crosses represent the worst fit obtained using the respective
approach and the wide parameter ranges (every 15th sample is shown). Differences are
most pronounced for step voltages between +20mV and +40mV.

Regarding the measured data, several reasons are likely to have contributed
to the remaining deviation between the input data and the model output using
the optimized parameters. First, there are differences between the model and
the expression system used to acquire the data. hERG for example only codes
for the α-subunit of IKr while the data used in the original Courtemanche et al.
formulation [47] also comprised the β -subunit. Moreover, the measurements
were conducted at room temperature rather than at 37◦ C. Second, measure-
ment noise corrupted the signals. Third, the model formulations being used
are simplifications of the actual biophysical systems being analyzed. For IKr,
it has been shown that at least four gates are necessary to fully capture human
atrial IKr [210] while the Courtemanche et al. formulation comprises only one
gate with a time constant and a second instantaneous gate. In the IKs data,
there was an almost immediate response to the first voltage step in addition
to the commonly observed transient response (see Figure 4.9E). This might
be due to the contribution of background currents, which could be addressed
and eliminated in a pre-processing step. Fourth, the current traces measured
in several cells were averaged to improve the SNR. While this is common
practice, it is important to keep the non-linearity of the system in mind. Thus,
the model might be able to reproduce the current recorded in each single cell
but not the average current.
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4.1.3.2 Recommended Approach

The requirements regarding accuracy, robustness and reliability are fully satis-
fied by the hybrid (PSO+TRR)+TRR approach in the medium setup as shown
by the results in Section 4.1.2. The computing time was below 7 h for one
run, thus a good balance between computational cost and quality of fit was
achieved. The results regarding the convergence behavior (see Figure 4.5C
and Figure 4.6C) suggest that the number of iterations could be lowered to
≈300 without a marked loss of quality of the result. The final step of TRR
optimization until convergence did not improve the result significantly on
the one hand. On the other hand, it did not account for a large share of the
computational effort because the algorithm had already almost converged,
particularly for synthetic data. While this was also the case for wet-lab IKr data
(being another indicator for the benign nature of this optimization problem),
the final TRR step took 35× longer using measured than using synthetic data
for IKur. This observation fits well with the remarks in Section 4.1.3.1 and can
be explained by the absence of a well-defined, convex minimum.
As can be seen in Figure 4.13, the variance in the results is minimal using the
hybrid (PSO+TRR)+TRR approach in the medium setup. Thus, a single run is
sufficient to estimate the optimal parameters reliably. This advantage of the
hybrid approach outweighs the additional computation time, which was longer
by one order of magnitude compared to the two-stage approach. However,
the larger variance in the results of the two-stage approach requires several
independent runs with different start vectors to reliably obtain a result close to
the optimal result possible with this approach, which is still not as good as the
result reliably obtained with the newly proposed hybrid approach in a single
run. The cost function for each of the particles can be evaluated independently
and thus in parallel. Hence, highly parallel hardware architectures, such as
graphics processing units (GPUs), could be used to exploit the pronounced
parallel nature of the problem and reduce the computation time further.
For the two-stage PSO+TRR approach, the parameter search space should be
set neither too narrow (compare Figure 4.7C and Figure 4.7D) nor too wide
(compare Figure 4.7A and Figure 4.7B). The counter-intuitive observation of
lower errors for wider parameter ranges observed for IKur might be caused by
the way the ranges are enforced in the presented variant of the PSO algorithm.
When a parameter left the search space, it was randomly placed within a 25%
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margin of the size of the allowed parameter interval starting at the border
being crossed. Narrowing the 25% range with each iteration during the course
of the optimization did not affect the results significantly, however (data not
shown). Also in this respect, the hybrid approach proved to be robust and not
sensitive to the choice of the parameter ranges advocating its use. In summary,
the newly proposed hybrid approach tightly coupling PSO and TRR proved
to yield accurate and reliable results for a variety of measured and synthetic
currents and regardless of noise conditions and the choice of parameter ranges.
Metaheuristic approaches have been proposed earlier for parameter estimation
in the field of cardiac electrophysiology: e.g. PSO [193, 194] or genetic algo-
rithms [195–197]. However, this is the first combination of the two approaches
in a hybrid scheme [198, 199] for this purpose to the best of my knowledge.
The presented results underline that such hybridization is imperative when
requiring accurate and reliable parameter estimates. The results of a pilot study
suggested genetic algorithm performance to be comparable to PSO (data not
shown).

4.1.3.3 Limitations

The parameter estimation pipeline presented in this study can not guarantee
that the system being fit is in steady state because only one stimulus is applied
during each evaluation of the cost function. However, transient oscillations
should not be a problem as the parameters change rather slowly, particularly
during later iterations which determine the final result. Furthermore, artifacts
stemming from non-steady-state conditions are more of a problem when fitting
current densities in a whole-cell model with a complex interplay (see e.g. Sec-
tion 6.3) than in problems involving only a single current formulation as only
the initial values of the gating variables are concerned and ion concentrations
etc. do not change. Therefore, the presented approach was chosen based on
the balance between runtime and steady-state approximation. Moreover, the
stimulus protocol applied during the parameter estimation is equal to the one
applied in the wet-lab, thus deviations from steady-state are similar.
All approaches presented in this study cannot provide information on the
sensitivity of the system to changes of certain parameters and parameter iden-
tifiability. Regression-based algorithms (see e.g. Section 4.2 or [211–213])
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or methods based on local sensitivity analysis [214, 215] can in part pro-
vide such information in addition to an estimate of the parameters. However,
an evaluation of a representative approach of this family of algorithms in
Section 4.2 shows that such statistical approaches also struggle with more
challenging formulations like IKur. Future work could combine approaches
aiming at a parameter identifiability analysis like proposed in [213, 216] with
the hybrid parameter estimation approach presented here. Considering that
several IKur parameters turned out to be hardly identifiable using the voltage
protocol employed in this study, a pre-step identifying the set of parameters
to be appropriately estimated appears advisable. Then, the hybrid approach
could subsequently be applied to actually estimate the values of that subset of
parameters.
The assessment of the parameter estimation algorithms in this study was
conducted using measured and synthetic data from three different potassium
currents. The choice was made based on the range of characteristics being cov-
ered (e.g. fast IKur kinetics vs. rather slow IKr) and the availability of wet-lab
data. The type of ions carrying the current do not make a difference, thus the
results should also hold for other currents. Provided that the data are acquired
with sufficient temporal resolution, also currents with even faster kinetics
(e.g. INa) can be handled as the algorithm itself is time-agnostic. The current
formulations were all taken from the Courtemanche et al. model of human
atrial myocytes [47]. This model convinced in a benchmark of different atrial
models [156] and is widely used. Despite the choice being made for this study,
the presented methods can be applied to other atrial models (like [217–220]),
ventricular models (e.g. [221, 222]), or even other types of cells like neurons.
The results found in this study should hold for these kinds of models, as well.
The method should also be applicable to Markov models of ion channels rather
than pure Hodgkin-Huxley type models [216].

4.1.3.4 Outlook and Conclusion

The fact that a number of IKur parameters were hardly identifiable in this study
stems from an insensitivity of the formulation to these parameters with respect
to the voltage protocol being used leading to an abundance of local minima.
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not elicit a current of significant amplitude. A more comprehensive voltage
protocol might render the optimization problem a litte more benign. The
fact that TRR did often not converge to a solution but was terminated due
to the maximum number of iterations shows the challenging nature of the
problem in the setting being used in this study. Further contributors to the
relatively large differences between the estimated and ground truth IKur param-
eters (see Figure 4.11B) are dependencies between the parameters and model
sloppiness [213].
The population-based approaches employed in this study were feasible because
the ODEs underlying the ion current formulations were solved analytically
and thus drastically faster than would have been the case using numerical
solvers. The fact that over 95% of the computation time was spent for the
repeated evaluation of the cost function highlights the importance of a stream-
lined cost function implementation. While the analytic solution is faster by
a factor of ≈1000 compared to numerical approximation [201], the voltage
protocols are restricted to piecewise constant functions in this case. On the
other hand, parameter identifiability can be improved by employing more
complex voltage protocols [216, 223], which can comprise non-piecewise
constant functions [224, 225]. Whether the additional computational effort
for a single cost function evaluation is outbalanced by improved parameter
identifiability and potentially faster convergence has to be assessed for each
problem individually.
The definition of the cost function is a potential field for advancement of
the presented method. Phases considered to be more important, e.g. highly
dynamic phases elicited by a voltage step or elicited by steps to voltages
considered to be physiologically more relevant, could be assigned higher
weights. Furthermore, traces with bad SNR could be neglected. An alternative
to the sum of squared errors employed in this study (see Equation (4.9)) is
to incorporate a priori knowledge about the signal morphology. For typical
cardiac ion currents, the coefficients of mono- or bi-exponential functions
could be determined through curve fitting (see Section 4.2.1). The (potentially
weighted) difference of the coefficients obtained for the input data and model
output could then be used as the cost function.
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The methods presented in this section, particularly the newly proposed hybrid
scheme, allow to incorporate altered ion channel behavior caused by genetic
mutations or the influence of pharmacological agents into mathematical mod-
els routinely. As these models are often embedded in multi-scale simulation
environments, the effect of changes on the ion channel level on higher levels of
integration can be assessed comprehensively. Section 5.1 gives an example of
how changes in hERG translate to altered behavior in the whole-cell, the tissue,
and the (pseudo) ECG level. The novel hybrid strategy comprising population-
based PSO and gradient-based TRR facilitates parameter estimation of ion
current formulation by providing very accurate, reliable and robust results.
Using this method, experimental data can be transferred into computational
models in a single run, thus it is an important tool to exploit and leverage
today’s and tomorrow’s high-throughput patch clamp methods. A compre-
hensive multi-scale assessment of the effect of changes on the ion channel
is imperative as the biophysical systems of interest are mostly complex and
non-linear. Hence, changes on a lower level often translate to counter-intuitive
effects on higher levels of integration. In Section 5.1, two hERG mutations
are assessed using such methodology.

4.2 MultivariateMetamodeling

The results presented and discussed in the section above give a nice example
of how some parameters of ion current formulations are hardly identifiable.
This effect could be shown for the combination of the IKur formulation and the
voltage protocol presented in Section 4.1.1 for the special case of synthetically
generated input data with known ground truth parameter values. However, in
practical parameter estimation applications, the ground truth is not available as
a matter of course. Therefore, some algorithms aim to provide information on
identifiability of and sensitivity to the parameters besides an estimate of their
value. Tøndel et al. presented a comprehensive parameter fitting framework
recently [213] and used it to quantify interspecies differences in contractile
function [226]. In this section, the method is adapted for the voltage clamp
ion current application introduced in Section 4.1 and evaluated.
Parts of this study have been conducted in a supervised student’s project [227].
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Figure 4.15: Basic concept of classical and inverse metamodeling. Classical (forward)
metamodeling predicts the output of the detailed differential equation model using the
input parameters aiming at a sensitivity analysis based on the regression coefficients of
themetamodel. Inversemetamodeling on the other hand estimates the input parameters
based on the output. In this case, the input is composed of the parameters of the detailed
model and the output is represented by themeasurements. Figure from [213].

4.2.1 Methods

Voltage protocols applied to ion current formulations link a set of model
parameters X to a set of output metrics Y:

X
ion current f ormulation−−−−−−−−−−−−−→

voltage protocol
Y . (4.15)

X is of size n×m, with n being the number of instantiations, so-called experi-
mental designs, and m being the number of model parameters. Thus, X is a
set of parameter vectors like the ones used for PSO. Y is of size n× k with k
being the number of output metrics.

4.2.1.1 State of the Art

The approach presented in this section is composed of two metamodeling
steps. Figure 4.15 illustrates the basic concept of classical and inverse meta-
modeling. The classical metamodel is built by a partial least squares regres-
sion (PLSR) [228–230] of the model output Y (features describing the current
traces) based on the model parameters X:

Ŷ = Xb . (4.16)
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Figure 4.16:Multivariatemetamodeling pipeline. After the initial parameter ranges are set
in step 1, steps 2-8 are iteratively repeated until the termination criterion in step 6 is met.
Step 8 zooms successively into interesting parameter ranges. Figure concept from [213].

The regression coefficients in b provide information on the sensitivity of the
model output Y to the model parameters X, as well as coupling between model
parameters. The inverse metamodel on the other hand is used to analyze para-
meter identifiability and to estimate the values of the model parameters X given
a set of output metrics Y, which is normally a more ill-posed problem than
model output prediction [213]. Towards this end, a non-linear extension of
the PLSR method is employed: hierarchical cluster-based partial least squares
regression (HC-PLSR) [231, 232]. The sets of measurement data which are
compared to the model output are called observations and are separated into
groups by HC-PLSR using fuzzy C-means clustering [233–236]. The fuzzy C-
means clustering is performed on the latent variables of a global PLSR model.
Within each cluster, the method builds linear local PLSR models. The output
is then predicted using a weighted sum of the local models. This approach has
proven to be well suited for highly non-linear input-output relationships [213].
In order to handle values of different magnitudes and compensate for offsets,
both the input parameters and the output metrics were centered and normalized
by the standard deviation before the regression.
Figure 4.16 gives an overview of the automatic parameter fitting pipeline. In
each iteration, n sets of parameter values (experimental designs) are drawn ran-
domly from the parameter search space using latin hypercube sampling (LHS)
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and assembled in X (step 2 in Figure 4.16). LHS is a method to generate a
collection of parameter value sets from a multidimensional distribution [237].
For the ion current formulation application, the dimensionality was given by
the number of parameters to estimate. LHS divides the search space into hyper-
cubes equidistantly along each parameter axis and samples randomly within
each hypercube. In this way, it is guaranteed that each segment of a parameter
axis is sampled while retaining random sampling. Then, the ion current model
output is computed for each of the n experimental designs. Output metrics
are calculated for each model output, assembled in Y, and compared to the
metrics of the input data (measurements) (step 3 in Figure 4.16). In general,
any output metric can be used. The particular metrics being used in this study
for the ion current application are outlined below.
The comparison is not conducted directly on the output metrics but after trans-
formation using principal component analysis (PCA) (step 5 in Figure 4.16).
Thus, the root mean square differences (RMSDs) of the output metrics yielded
by the experimental designs and the target output is computed using the PCA
scores. The minimal number of principal components explaining 99% of the
variance in the output metrics are considered for the distance calculation. Thus,
the PCA approach reduces the dimensionality of the problem and inherently
weighs the metrics according to their contribution to the variation in the output
metrics. If the RMSDs obtained using the experimental designs are within
the predefined tolerable error margins, the algorithm terminates (step 6 in
Figure 4.16). If this is not the case, the next iteration is initiated by combining
the 20 experimental designs with the best output metrics and the parameter set
yielded by HC-PLSR in the inverse metamodel (step 4 in Figure 4.16). The
output of the metamodel was only considered for the parameters yielding a
prediction accuracy of >70%. The prediction accuracy was determined with
the Pearson product-moment correlation coefficient R2 [238] using a test set
validation. Only two thirds of the experimental designs were used for the
calibration of the inverse metamodel while the remaining third was used as
the test set. The correlation related the input and the predicted values. The set
of 21 experimental setups in step 7 in Figure 4.16 is called the guideline set
Xguideline.

79



Chapter 4. Parameter Estimation of Ion Current Models

The parameter ranges are adjusted in each iteration depending on the perfor-
mance of the current set of experimental designs and the range spanned by the
guideline set (step 8 in Figure 4.16):

upperBound j ← max
(
Xguideline,j

)
+

∣∣∣∣
Xguideline,j

stepsize

∣∣∣∣ , (4.17)

lowerBound j ← min
(
Xguideline,j

)−
∣∣∣∣
Xguideline,j

stepsize

∣∣∣∣ , (4.18)

with j being the index of the parameter ∈ [1,m], Xguideline,j being the mean
value of the parameter with the index j with respect to the guideline set, and
stepsize being a parameter controlling the zooming into the parameter space.
Depending on the proximity of the model output using the current estimates to
the target outputs, stepsize is adjusted. Starting from an initial value of 4, it is
increased by 2 if the minimum RMSD in the PCA score space has decreased in
the current iteration. Thus, the search space gets more constrained, the closer
the distance to the target output metrics gets. The maximum allowed value
is 20. If it is reached without meeting the termination criteria, it is decreased
by 2 for the next iteration. Using the new parameter ranges, the experimental
designs for the next iteration are again determined using LHS.

4.2.1.2 Extension of the Parameter Estimation Pipeline

Below, the modifications and extensions of the parameter fitting pipeline by
Tøndel et al. [213] performed during the scope of this work in order to allow
for estimation of ion current formulation parameters are described. As outlined
in Section 4.1.1.1, the response of most ion current models to a piecewise
constant voltage protocol can be modeled as a series of exponential functions.
Starting with Equation (4.2) and Equation (4.8), the following transformations
can be established exemplary for the IKr gate xr:

IKr = gKr
Vm −EK

1+ exp
(

Vm+xr,m1
xr,m2

)
︸ ︷︷ ︸

a

·

⎛
⎜⎜⎝ xr∞︸︷︷︸

b

−
⎛
⎝xr∞ − xr0︸︷︷︸

c

⎞
⎠ · exp

⎛
⎜⎜⎝

d︷︸︸︷
t0 −t

τ

⎞
⎟⎟⎠

⎞
⎟⎟⎠

(4.19)
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IKr = (a ·b)︸ ︷︷ ︸
A

+a(c−b) · exp
(

d
τ

)

︸ ︷︷ ︸
B

·exp
(
− t

τ

)
(4.20)

= A+B · exp
(
− t

τ

)
(4.21)

The parameters A, B, and τ can be estimated for each phase of measured or
synthetic current traces using standard curve fitting tools provided by Matlab.
Thus, besides the squared error used in Section 4.1, an alternative way to
quantify the quality of the cell model’s adaption to measured current data is
to compare A, B, and τ for each phase of the current traces. One phase was
defined for each voltage step of each voltage trace. IKr traces were fitted using
mono-exponential functions, whereas bi-exponential functions were required
to fit IKur traces. While the Courtemanche et al. IKs formulation comprising
four identical xs gates requires higher order functions in theory, the voltage
protocols being used in this study did only elicit currents that could be well
fitted by mono-exponential functions. The coefficients of the exponential
functions were used as output metrics for this study. As three coefficients were
required for mono-exponential functions, k (the number of output metrics) was
3× l × p for IKr and IKs with l being the number of voltage traces and p being
the number of phases (voltage steps) in each trace resulting in k ∈ [66,99].
For the IKr voltage protocols with 13 different step voltages and 2 phases, this
equates to 78 output metrics. All output metrics were equally weighted.

4.2.1.3 Test Cases

The initial parameter search space was set according to the wide ranges in
Table A.1, Table A.2, and Table A.3. n, the number of experimental designs,
was set to 500 and the number of clusters in the HC-PLSR method was set to
eight for all experiments described below. The acceptable error margins of
the output metrics used as the termination criterion in step 6 in Figure 4.16
were set to ±10% of the target exponential coefficients. All code was imple-
mented in Matlab with parallel computation of the model output for the n
experimental designs.
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The approach introduced above was evaluated using synthetic and measured
current data. The first voltage protocol (referred to as “protocol A”), was
similar to the one used for the synthetic data in Section 4.1.1 and used for IKr

and IKur. Protocol A was composed of 13 traces consisting of 20 ms at –80 mV
resting voltage, 380 ms at the respective step voltage ranging from –70 mV
to +50 mV in steps of 10 mV, and 400 ms at –110 mV (see Figure 4.17A and
Figure 4.21B). Protocol B started at –80 mV for 20 ms followed by a 500 ms
conditioning pulse to +40 mV and 5 s test pulses to eleven different voltages
between –100 mV and 0 mV in steps of 10 mV. Each trace was ended with
500 ms at –80 mV. Protocol B was designed to obtain the properties of the
fully activated IKr [239] and is shown in Figure 4.17B. Protocol C challenging
the IKr tail currents [239] started with 20 ms at –80 mV followed by 2 s test
pulses to eleven different voltages between –40 mV and +60 mV in steps of
10 mV and finished with 6 s at –40 mV (see Figure 4.17C). For IKs, protocol D
was used [240], which was composed of 50 ms at –80 mV followed by 2 s test
pulses to voltages between –100 mV and +100 mV in steps of 20 mV. Each
trace was closed by a 0.95 s step back to –50 mV (see Figure 4.21B). The
resulting currents were sampled every 2 ms.

4.2.2 Results

4.2.2.1 Rapid Delayed Rectifier PotassiumCurrent IKr

The multivariate metamodeling approach was evaluated for the Courtemanche
et al. IKr formulation by impressing the three voltage protocols A, B, and C.
The resulting currents are shown in Figure 4.17. While the model output using
the estimated parameters was visually close to the synthetic input data for
voltage protocol A (Figure 4.17A), quantitative analysis revealed a sum of
squared differences of 46 (pA/pF)2. Using protocols B and C on the other
hand, marked differences were observed. For voltage protocol B, the steady
state values at the end of the second phase deviated for higher step voltages
(Figure 4.17B). The same behavior was observed for the first phase of voltage
protocol C (Figure 4.17C).
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A sensitivity analysis of the output variables (exponential coefficients) to the
model parameters was conducted by using the regression coefficients of the
PLSR-based classical metamodel as sensitivity measures. Figure 4.18A shows
the most sensitive output variables for voltage protocol A. The cumulative
sensitivity with respect to all model parameters was used to select the most
interesting output variables. 41 of the 78 variables were less sensitive than
70% of the maximum cumulative sensitivity and thus not plotted. Some
input parameters were reflected in output variables belonging to certain step
voltages.
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Figure 4.17: Resulting currents using the parameters estimated by themultivariate meta-
modeling approach. Solid lines indicate synthetic IKr input currents used for parameter
estimation. Crosses represent the best fit obtained (not every sample shown for clarity
reasons). The voltage protocols used to generate the input data and to challenge the ion
current model are shown on the right part of each panel.
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Figure 4.18: Sensitivity of output variables to the parameters of the Courtemanche et al.
IKr formulation and voltage protocol A in terms of regression coefficients. A threshold of
70% of the maximum value selected 37 of the 78 output variables. The subscript of the
output variable refers to the voltage trace. A, B, and τ are the exponential coefficients
determined for the first phase of each voltage trace, whereas A′, B′, and τ ′ represent the
second phase. Output variables were selected based on the cumulated sensitivity with
respect to all model parameters.
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Figure 4.19:Maximum sensitivity (regression coefficients) across the 78 output variables
to the parameters of the Courtemanche et al. IKr formulation (A) as well as parameter
prediction accuracy (R2) in (B) using different voltage protocols (see Figure 4.17).

The intracellular potassium concentration Ki, e.g., translated to changes in
all three exponential coefficients defining the first phase (the voltage step) of
the trace with a step voltage of –70 mV. Changes in xr,m2 translated mostly to
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The overall sensitivity of the output variables to the model parameters for the
different voltage protocols A, B, and C is shown in Figure 4.19A in terms of
the maximum sensitivity across all output variables. While the gross pattern
is consistent across the three protocols, changes of certain model parame-
ters did translate to markedly more pronounced changes for some protocols
than for others. The sensitivity of the output variables to xr,a1 for example
was higher for protocol C than for the others. The Courtemanche et al. IKr

formulation was hardly sensitive to xr,b1 and xr,b2 for all investigated voltage
protocols, though.
The accuracy of the parameter estimation was assessed by correlating the sim-
ulated and the predicted values using the test set in the inverse metamodel. The
overall pattern of parameter prediction accuracy (Figure 4.19B) matches that of
the sensitivity of the output variables to these parameters (Figure 4.19A). This
shows on the one hand that the inverse metamodel does its job of estimating
the parameters well, in general. On the other hand, this observation confirms
that model parameters that hardly translate into changes of the output variables
cannot be estimated well.
While the patterns of sensitivity and accuracy show gross correspondence,
differences were observed as well. The achieved accuracy to xr,a2 for example
was lower than the sensitivity for voltage protocols A and B. Moreover, the
performance of the three protocols differed. While protocol B yielded the low-
est sensitivity to xr,b1, it performed best in terms of accuracy. The differences
were not very pronounced and revealed no consistent pattern, though.
Comparing the differences between the estimated parameters and the para-
meter set used to generate the synthetic input data (ground truth) yielded
results corresponding to the sensitivity and accuracy analysis. The algorithm
was blinded to the ground truth values as a matter of course. Figure 4.20 shows
the distribution of relative errors considering the three voltage protocols. The
minimum error was high for parameters yielding low sensitivity and accuracy
values (xr,b1, xr,b2) and low for parameters performing well in terms of sensi-
tivity and accuracy (xr,KQ10 to Ki). Interestingly, the intermediate sensitivity
and accuracy values observed for xr,a2 and xr,a3 translated to high errors with a
comparable amplitude like xr,b1 and xr,b2.
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Figure 4.20: Distribution of the relative error of the estimated parameters for the three
voltage protocols A, B, and C and the IKr input data. (A) shows the results obtained by the
look up function, whereas (B) shows the results yielded by the inverse metamodel. The
dashed line interpolates theminimum values linearly.

Comparing the relative errors of the parameter sets yielded by only considering
the forward model (look up function, Figure 4.20A, step 3 in Figure 4.16) and
including the inverse metamodel (Figure 4.20B, step 4 in Figure 4.16) reveals
that the minimum error values for parameters associated with high errors in
general (xr,a2 to xr,b1) were lower for the look up function than for the inverse
metamodel. Moreover, the spread between the voltage protocols was lower for
the results obtained through the look up function.
The inverse metamodel and the look up function were compared in terms of
output current deviation by considering the average squared error in order to
compensate for the different duration of the voltage protocols A, B, and C. The
parameters estimated by the look up function yielded average squared errors of
1.02×10−4 (pA/pF)2 for protocol A, 3.93×10−4 (pA/pF)2 for protocol B, and
1.94×10−4 (pA/pF)2 for protocol C. The parameter set obtained through the in-
verse metamodel (weighted sum of the clusters) yielded 4.11×10−5 (pA/pF)2,
7.95×10−4 (pA/pF)2, and 5.85×10−4 (pA/pF)2, respectively.
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Figure 4.21: Resulting currents using the parameters estimated by themultivariate meta-
modeling approach. Solid lines indicate synthetic IKs (A) and IKur (B) input currents used for
parameter estimation. Crosses represent the best fit obtained (not every sample shown for
clarity reasons). The voltage protocols used to generate the input data and to challenge
the ion current model are shown on the right part of each panel.

Thus, the two methods incorporated in the approach showed comparable
performance with no clear advantage of one method over the other as expected
for a coupled approach.

4.2.2.2 SlowDelayed Rectifier PotassiumCurrent IKs

Figure 4.21A shows the best fit obtained through the look up function for
the IKs formulation and voltage protocol D. The average squared error was
5.0×10−3 (pA/pF)2 while the inverse metamodel yielded higher average squared
errors of 1.42×10−1 (pA/pF)2 for the weighted sum of HC-PLSR clusters and
21.59 (pA/pF)2 for a single cluster.
The model parameters influencing the voltage dependence of the rate constants
(xs,a1, xs,a2, xs,a3, xs,b1, xs,b2) were not accurately estimated in terms of the
correlation coefficient between the calibration set and the test set used for the
inverse metamodel (R2 <0.44, Figure 4.22B). This behavior was also reflected
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not be explained by the sensitivity of the output variables to the model param-
eters, as the regression coefficients were larger than 0.65 for all parameters
except xs,b1 Figure 4.22A). The reason is rather model sloppiness meaning that
while the model output is sensitive to changes in a particular parameter (e.g.
xs,b2), the effect can be compensated by another model parameter or a set of
parameters. Thus, the exact value cannot be identified even though the model
is sensitive to the parameter [213]. In such scenarios, the look up function can
be superior to the inverse metamodel (see e.g. xs,b1 in Figure 4.22).

4.2.2.3 Ultra-Rapid Delayed Rectifier PotassiumCurrent IKur

The Courtemanche et al. IKur formulation could not be well parametrized using
input data generated with voltage protocol A by the multivariate metamodeling
approach. Figure 4.21B shows that neither the step currents nor the exponential
decay for high step voltages could be reproduced by the estimated parameters.
The sum of squared errors was 6.30×103(pA/pF)2 for the best fit obtained
using the look up function.
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Figure 4.22:Maximum sensitivity (regression coefficients) across the 66 output variables
to the parameters of the Courtemanche et al. IKs formulation (A) as well as parameter
prediction accuracy (R2) in (B) using voltage protocolD (see Figure 4.21A). (C) shows the ab-
solute value of the relative error between the estimated and the ground truth parameters
for the results yielded by the look up function.
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4.2.3 Discussion

In this chapter, a recently presented multivariate inverse metamodeling ap-
proach for parameter estimation was extended and adapted for the application
of ion current formulations. The approach has the advantage that it can
provide information on the sensitivity of the output variables to the model
parameters via PLSR analysis, as well as information regarding parameter
identifiability via correlation of a calibration set and a test set in the inverse
metamodeling phase.
Using this information, it could be shown that the set of parameters that can be
estimated in a meaningful way in terms of accuracy is dependent on the voltage
protocol being used (see e.g. Figure 4.19). While this finding is neither new
nor surprising, the good correlation between the accuracy determined through
the inverse metamodel and the relative parameter deviation with respect to the
ground truth values is indeed exciting and good news. In real life parameter
estimation scenarios, a ground truth reference, which could be used to identify
the subset of parameters that are sensible to estimate, is not available as a mat-
ter of course. However, the multivariate metamodeling approach provides the
accuracy measure that turned out to be a good surrogate for the relative error.
Moreover, discrepancies between sensitivity and accuracy can reveal model
sloppiness as observed for the parameters determining the voltage dependency
of the rate constants for the Courtemanche et al. xs gate.
The performance of the approach presented in this section was inferior to the
optimization-based approaches presented in Section 4.1. Using the same volt-
age protocols and current formulations, the squared error was higher by eleven
orders of magnitude for IKr and by nine orders of magnitude for IKur. Consid-
ering the absolute value of the differences observed for IKr (Figure 4.17A vs.
Figure 4.9A), the relative weakness of the multivariate approach might not be
relevant for input data of medium to low quality. For IKur, which turned out to
be hard to fit in Section 4.1, the multivariate approach failed to reproduce the
physiological behavior of the current (Figure 4.21B vs. Figure 4.9C). Consid-
ering the relative error between the estimated parameters and the ground truth
parameters used to generate the synthetic input data also showed a superiority
by two to three orders of magnitude of the hybrid approach (Figure 4.20 vs.
Figure 4.11A).
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When comparing the hybrid optimization-based and the multivariate approach,
one should keep in mind the differing cost function definitions, though. While
the hybrid approach used the scalar-valued sum of squared differences between
the input data and the model output obtained using the current parameter set,
the multivariate approach operated on a set of differences between exponential
coefficients of size 66 to 78 representing the input and output current traces.
The definition of the cost function leaves room for future improvement of
the method. On the one hand, the parameters of the exponential functions
describing the different phases of the current traces could be constrained in
an improved way that incorporates a priori knowledge. The first phase of the
IKr, as well as the IKs traces used in this work did all start at an initial value
of zero. Thus, only the time constants and the terminal (close to steady-state)
values for the different traces would need to be estimated leaving less room for
ambiguity in this step of the approach. Moreover, the coefficients representing
the different phases and different step voltages could be weighted according to
their amplitude, physiological relevance, or other measures.
The advancements discussed above are currently implemented in a joint follow-
up project with Kristin Tøndel, who presented the multivariate inverese meta-
modeling approach in [213]. As part of this project, the multivariate metamod-
eling approach will be compared with the hybrid optimization-based approach
developed within the scope of this thesis and presented in Section 4.1, which
will be adapted to use the same cost function. The comparison will comprise
both synthetic and wet-lab data, a noise sensitivity analysis, and different ionic
currents as presented in Section 4.1.
Considering the results of the first evaluation of the multivariate inverse meta-
modeling approach for ion current parameter estimation presented in this
section and the experience regarding the different currents gained in the previ-
ous section, it is unlikely that the metamodeling approach will estimate the
parameters in an optimal way, particularly for IKur. Therefore, a combination
of both approaches appears suitable: the accuracy measure provided by the
inverse metamodel would identify the subset of parameters that can be identi-
fied given a particular set of input data while the hybrid optimization approach
would be used to actually estimate the value of these parameters.
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CHAPTER5

Modeling Atrial Substrates

Atrial rhythm disorders, such as atrial fibrillation (AF) and atrial flutter (AFlut),
are caused by an interaction of stimuli triggering the arrhythmia and a vulnera-
ble atrial substrate maintaining the reentry. Most of the triggers originate from
the pulmonary veins (PVs) and have been in the focus of AF research since the
seminal work by Haïssaguerre et al. suggesting electrical isolation of the PV
ostia by ablation [79]. Despite high success rates of more than 70% in patients
with new onset AF, only one third of patients with persistent AF remains in
sinus rhythm in the long run after catheter ablation [241–243]. Considering
that AF is a progressive disease, which causes remodeling of the substrate
itself, the reduced responder rates in patients with longer lasting AF suggest
a more momentous role of the arrhythmia-sustaining substrate in these pa-
tients. Therefore, a remodeled substrate due to chronic atrial fibrillation (cAF)
(Section 5.2) and substrates of familial AF caused by two gene mutations
(Section 5.1) are represented by newly developed models and evaluated in
this chapter.

5.1 Genetic Defects in hERG

AF is a progressive disease with increasing incidence levels for populations of
higher age and often accompanied by other cardiovascular diseases. However,
AF is also observed in young patients in absence of comorbidities. In this case,
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the term lone AF is used. It has been shown that genetic predisposition to
AF plays a role [244–247] and led to the formulation of the second hit model
postulating that a genetic defect is unmasked by a second factor, such as atrial
stretch [248].
While mutations in some genes or transcription factors affect the cardio-
vascular system in a complex way, other mutations translate to effects re-
stricted to certain ion channel proteins. These genetic defects are called
channelopathies [245] and are in the focus of the study presented in this
section. The effect of the mutations on the ionic currents conducted via the
mutated proteins can be assessed via patch clamp measurements in an expres-
sion system. However, the consequences of a mutation on the cardiovascular
system, particularly the vulnerability to AF, is non-trivial to infer from changes
measured on the ion channel level due to the often counter-intuitive changes
on higher levels of integration caused by the complexity and non-linearity of
the system. Assessment of the tissue level effects of certain mutations through
computational modeling provides the means to characterize the genetic defects
more comprehensively and forms the basis for personalized approaches for AF
risk stratification, geno-type guided preventive strategies, and group-specific
pharmaceutical therapy.
In this study, experimental data of two human ether-à-go-go-related gene
(hERG) missense mutations were integrated into the Courtemanche et al.
model of human atrial electrophysiology [249] using the techniques described
in Section 4.1. hERG (alternative nomenclature: KCNH2) codes for Kv11.1
forming the α-subunit of the channel conducting the cardiac IKr current, which
plays an important role regarding the delicate balance of inward and outward
currents during atrial repolarization [250]. Mutation N588K replaces the
uncharged amino acid aspargine (N) by the positively charged lysine (K)
at residue N588. N588 is located in the S5 domain in the outer mouth of
the channel and has been associated with AF [251]. The second mutation
affects residue L532 residing in the S4 domain forming the voltage sensor.
Leucine (L) is replaced by proline (P) by mutation L532P. A homologous
mutant expressed in zebrafish (zERG L499P) displayed a distinct phenotype
of intermittent AF and became known as reggae mutation [252]. Previously
published experimental data describing the effects of these gain-of-function
mutations on IKr were integrated into a multi-scale computational model. The
model was then used to identify mechanisms favoring AF by analysis of the
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duration of the effective refractory period (ERP), conduction velocity (CV),
reentry wavelength (WL), duration of the vulnerable window (VW), and the
restitution of these markers, as well as the inducability and persistence of
spiral reentry waves in a two-dimensional tissue patch.
Parts of this work have been published as a journal article [188].

5.1.1 State of the Art

Several in silico studies investigated the effect of other genetic mutations on
ventricular myocytes [253–255]. Also, a sensitivity analysis of parameters
that could be affected by hypothetic mutations was presented [256]. Two
studies investigated the effect of N588K on ventricular myocytes [257, 258]
using the Luo-Rudy cell model [157]. The effects of the N588K mutation on
atrial myocytes was investigated in an AP clamp study [259] and in earlier
work by our group using a parameter estimation approach in a premature
stage [260, 261]. A comprehensive and detailed analysis of the dynamic
behavior of spiral waves for genetically modified atrial substrates was not
presented before. An exception is work by Hancox et al. investigating the
KCNQ1 mutation S140G [262] affecting atrial IKs and by Imaniastuti et al.
regarding mutation V241F in the same gene [263]. However, their works were
published after the results of the study presented in this section were submitted
as a journal publication [188]. The hERG mutation L532P was not assessed
besides simulations on the cellular level in the original publication describing
the mutation [252].

5.1.2 Methods

5.1.2.1 Adaptation of the Cell Model

hERG wild-type (WT) and L532P measurements were conducted in Xeno-
pus laevis oocytes in the group of Eberhard Scholz at University Hospital
Heidelberg as described in [252]. In brief, double-electrode voltage clamp
experiments were performed at room temperature using a voltage protocol
similar to protocol A in Figure 4.17A but a final voltage of –60 mV instead of
–110 mV. Data for N588K were extracted from a study published by McPate
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et al. [239] in which they performed whole cell patch clamp recordings of
WT and N588K hERG at 37◦ C. Chinese hamster ovary cells were used as
expression system. The voltage protocol was composed of steps from –80 mV
to voltages between –40 mV and +100 mV for 2 s followed by a 4 s return
pulse to –40 mV.
Standard Matlab curve fitting tools were used to fit exponential curves to the
measured hERG traces as introduced in Section 4.2.1.2. In this way, the steady-
state amplitude of the step current, the peak amplitude of the tail current, as
well as the respective time constants were estimated for each step voltage of
both WT and L532P measurements. Moreover, these exponential coefficients
were determined for IKr traces obtained using the original Courtemanche et al.
parameters [47] serving as reference coefficients.
The measurement conditions between new WT and mutant experiments and
the ones used to formulate and parameterize the original model may vary
in terms of temperature, electrolyte concentrations, expression systems, cell
types, et cetera.

measurement 
mutant

measurement 
wild-type

x

⁄

original 
model

synthetic 
traces

A, B, 𝝉 A, B, 𝝉

A, B, 𝝉A, B, 𝝉

Figure 5.1: Transfer of measured currents into synthetic traces used to estimate param-
eters. Exponential coefficients were estimated for mutant andWTmeasured traces, as
well as the output of the Courtemanche et al. current formulation using the default pa-
rameters [47] and the same voltage protocol as applied during wet-lab experiments. The
ratio betweenmutant andWT coefficients was thenmultiplied with the coefficients of the
original model output in order to generate synthetic traces representing the effect of the
mutation in themodel environment.
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In order to compensate for these influences, only relative differences between
WT and mutant data were considered as shown in Figure 5.1: The ratio of the
bi-exponential coefficients estimated using the mutant current traces and the
WT current traces was computed. This ratio was then applied to the reference
coefficients yielded by the standard Courtemanche et al. parameters to obtain
synthetic current traces representing the effect of the mutation in the model
environment without effects stemming from the different experimental setups.
For the step currents, the fast time constant was considered, whereas the slow
time constant was considered for the tail currents because of the instantaneous
kinetics of the inactivation gate of the Courtemanche et al. IKr formulation.
The synthetic current traces produced in this way were then provided as input
to the hybrid optimization approach introduced in Section 4.1 to estimate the
values of the IKr parameters aiming at a minimization of the root mean square
error between the model output and the synthetic traces representing the effect
of the mutation in the model environment.
For N588K, current data were extracted from literature [239]. The normalized
tail current amplitudes were fitted to a Boltzmann function:

yact =
1

1+ exp
(

V1/2−Vm
k

) , (5.1)

with yact being the level of activation ∈ [0,1], V1/2 being the half-maximal ac-
tivation potential, and k being the slope factor. Regarding inactivation (yinact ),
steady-state step current values were normalized to the maximum observed
step current and divided by the degree of activation yact for the respective step
voltage. (1− yinact) represented the level of inactivation and was fitted to a
Boltzmann function, as well. Time constants were estimated using exponen-
tial curve fitting as introduced above for L532P. In this way, half-maximal
inactivation and activation potentials, slope factors, and time constants were
obtained for each step voltage of the WT and N588K current traces.
As all wet-lab data were acquired using homozygous expression of the muta-
tion (referred to as N588K-homo and L532P-homo), heterozygous expression
was approximated by averaging homozygous mutant and non-mutant IKr.
Towards this end, an unaltered IKr with the original Courtemanche et al. pa-
rameters was included in the cell model in addition to the mutant IKr and the
maximal conductivity of both formulations was reduced by 50%. Besides this
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1:1 mutant to WT ratio (referred to as N588K and L532P), a 3:1 ratio was
assessed on the single cell level (referred to as N588K-3:1 and L532P-3:1),
as well.

5.1.2.2 Single Cell Investigations

The IKr parameterizations representing the two hERG mutations were inte-
grated in the Courtemanche et al. cellular model of human atrial myocytes [47].
Action potentials (APs) were elicited in the cell model by a stimulus current of
1.3 nA being applied for 3 ms at a fixed basic cycle length (BCL) of 1000 ms.
Transient oscillations were observed during the first approximately 30 cycles,
allowing to assess the steady state properties of the mutant cell models by
analyzing the 50th AP in the train. Besides AP amplitude, action potential
duration (APD) at 90% repolarization (APD90), APD50, and the maximum
diastolic potential (MDP) as a surrogate for the resting membrane voltage
Vm,rest were determined. A triangulation index (TI) was defined as a measure
of linearity of the repolarization, i.e. absence of a plateau, being associated
with early afterdepolarizations [264]:

T I = 200%

⎛
⎝1−

Vm

(
APD90

2

)
−MDP

Vm (tnotch)−MDP

⎞
⎠ , (5.2)

with Vm

(
APD90

2

)
being the transmembrane voltage after half the APD90 had

passed, and tnotch being defined as the first time step after the upstroke for
which the absolute value of the slope dVm/dt was smaller than 0.4 V/s. If this
condition was not fulfilled within the first 50 ms after the upstroke, the time of
the peak of Vm was considered.

5.1.2.3 Restitution Analysis

Moving up one scale of integration from the single cell level to a one-
dimensional tissue patch composed of coupled cells, not only the electro-
physiological properties at a fixed BCL but also their frequency dependence
(known as restitution) was assessed. The tissue strand was composed of
100 cubic voxels with a side length of 0.1 mm resulting in a total size of
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20 mm × 0.1 mm × 0.1 mm. The cell models were initialized for 50 cycles in
a single cell environment to let the system adapt to the changed IKr parameters
and varying BCLs to reach steady-state. 20 different BCLs ranging from
300 ms to 1300 ms were distributed equidistantly in the frequency domain.
Stimulus currents were applied to the first three voxels for 3 ms with an ampli-
tude of 7 nA in all tissue simulations.
Restitution curves were computed for APD90, the slope of the APD90 with
respect to the diastolic interval (DI) defined as the difference between BCL
and APD90, CV, ERP, and the WL defined as the product of CV and ERP. The
ERP was determined through an S1-S2 protocol: after a train of S1 stimuli
applied according to the BCL, a premature S2 stimulus was applied for 3 ms
with an amplitude of 7 nA at varying S2 times. If the S2 stimulus elicited a
wave that propagated along the strand, the ERP was lower than the S2 time.
If no excitation wave propagated, S2 was below the ERP. By applying an
interval bisection method, the ERP was determined accurately with a residual
uncertainty of less than 1 ms.
Besides the markers mentioned above, the duration of the temporal VW was
determined in the tissue strand by an S1-S2 protocol as well. Different from
S1, the S2 stimulus was applied in the center of the strand and the wave
propagation to both sides of the tissue strand was monitored. The S2 time was
within the VW if unidirectional block occurred, thus an excitation reached the
front of the strand where the S1 stimuli were applied but no wave propagated
to the end of the strand. By varying the S2 time, the temporal width of the VW
was obtained.
Beat-to-beat alternans was assessed by evaluating the fifth and the sixth beat
in the tissue strand.

5.1.2.4 SpiralWave Analysis

A two-dimensional tissue patch was used to analyze the properties of the
mutant cell models regarding the initiation and perpetuation of AF. The homo-
geneous and isotropic tissue patch was composed of 1000 × 1000 × 1 cubic
voxels with a side length of 0.1 mm.
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20 ms 120 ms 185 ms 260 ms 360 ms

-80 mV 5 mV

S1

A B C D E

S2

Figure 5.2: S1-S2 cross field protocol used for rotor initiation. After the tissue patchwas
preconditioned by four stimuli S1 (A) causing planar waves (B), the S2 stimulus in the
lower left quadrant (C) initiated spiral wave reentry (D)+(E). The positions of the virtual
electrodes for pseudo ECG calculation are depicted by cyan dots in (B). The detected phase
singularities at the rotor core are indicate by red stars in (D)+(E).

After initialization in a single cell environment for 50 cycles with a BCL of
350 ms, the tissue was preconditioned by four planar waves with the same BCL
(Figure 5.2A+B). Reentry was initiated by a cross-field S1-S2 protocol with
the S2 pulse applied to the lower left quadrant of the patch (Figure 5.2C). By
default, an area of 50 mm × 50 mm was stimulated at t = ERP+4 ms meaning
that the stimulus was applied 4 ms after the ERP ended at the plane where the
S1 stimulus was applied.
Up to 5 s simulation time were covered depending on the lifetime of the
spiral wave. The dynamic behavior of the spiral waves was evaluated by
tracking their trajectories in time and space using the phase singularities as
surrogates for the core of the rotor [265] (Figure 5.2D+E). For this purpose,
a transformation from the transmembrane voltage space to phase space was
established by point-wise time-delay embedding of Vm with a time delay
τ of 1 ms:

φ(r, t) = atan2(Vm(r, t)−V ∗,Vm(r, t − τ)−V ∗) , (5.3)

with r being the coordinate vector of the point in question, V ∗ being the
activation threshold set to –40 mV, and atan2() being a variant of the arctangent
function returning the computed angle in the desired quadrant ∈ (−π ,π] [266].
The transformation to phase space uniquely defines the temporal position
within the reentry cycle and yields independence of amplitude.
The gradient operator ∇ applied on a differentiable scalar field φ yields a
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along the boundary ∂C of arbitrary areas C, for which the field is defined,
yields zero: ∮

∂C
v ·ds = 0 . (5.4)

By applying Stoke’s theorem, the following transformation can be established:
∮

∂C
v ·ds =

∮

∂C
∇φ ·ds =

∫∫

C
∇× (∇φ) ·dC =: nt . (5.5)

Thus the curl of the gradient of the phase field can be evaluated to obtain the
topological charge nt . Because the phase field is not well-defined and not
differentiable at the point of a phase singularity rs, nt does not equate to zero
at such points [265–268]. Instead, the topological charge yields an integer
value with the sign depending on the chirality of the singularity enclosed
by ∂C [269]. By applying the rot(grad(φ (r, t))) operation on every discrete
point ri of the computational domain for each time step ti, the spiral core
trajectories can thus be determined.
Besides the evaluation of rotor lifetime and trajectories, a pseudo ECG was
computed to determine the dominant frequency (DF). The DF has shown
to correlate with the persistency of AF indicating that higher DFs are more
arrhythmogenic [270–274]. The two-dimensional tissue patch was assumed
to be embedded in an infinite homogenous medium for the calculation of the
extracellular potential Φe at point r and time t [275]:

Φe(r, t) =
1

4πσ

∫
Ii (r

′, t)
|r− r′| dr′ , (5.6)

with Ii being the intracellular current density yielded by the monodomain
model (see Section 3.2.1) and σ being the scalar-valued homogeneous con-
ductivity of the infinite medium. The pseudo ECG was defined as the voltage
measured by the potential difference of two virtual unipolar electrodes sensing
the extracellular potentials Φe. They were placed 5 mm above the patch in
z-direction and 5 mm before the center of the patch and 5 mm behind the cen-
ter in a line aligned with the direction of excitation propagation (x-direction)
and centered with respect to the y-axis orthogonal to the excitation wave
(Figure 5.2B). The power density spectrum of the signal was obtained as the
squared absolute value of the Fourier transform after multiplication with a
Hanning window [276] of the same size as the signal and zero padding to
achieve a frequency resolution of 0.1 Hz.
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Table 5.1: Parameters of the adapted Courtemanche et al. IKr formulations as well as the
control model. Parameter names according to Section A.1.1. The control case was defined
by the original values in [47]. For N588K, activation and inactivation characteristics as well
as xr,KQ10 were extracted from patch clampmeasurements byMcPate et al. [239]. L532P
parameters were obtained through the hybrid optimization approach on synthesized cur-
rents based on voltage clamp experiments by Hassel et al. [252].

Parameter Unit Control N588K-homo L532P-homo

xr,a1 1 3×10−4 3×10−4 2.5×10−4

xr,a2 mV 14.1 14.1 –196.86
xr,a3 mV –5 –5 –131.36
xr,b1 mV 3.3328 3.3328 40.00
xr,b2 mV 5.1237 5.1237 3.79×10−6

xr,KQ10 1 1.0 2.0 1.0
xr,m1 mV 14.1 16.49 –9.88
xr,m2 mV –6.5 –6.76 –22.31
xr,m3 mV 15.0 –38.65 –15.54
xr,m4 mV 22.4 19.46 24.37
gKr nS/pF 0.029412 0.029412 0.091720

5.1.3 NumericalMethods

The ordinary differential equations (ODEs) of the Courtemanche et al. model
representing the control and mutant human atrial myocytes were solved with a
fixed time step of 10 μs. The Rush-Larsen scheme [206] was applied for the
gating variables while a forward Euler scheme was employed to solve for the
remaining variables of the cell model. Tissue level simulations were carried
out using the monodomain solver acCELLerate [169, 170]. The monodomain
conductivity was set to an isotropic value of 0.076 S/m yielding a CV of
750 mm/s at a BCL of 1000 ms in the control model.

5.1.4 Results

5.1.4.1 Adaptation of the Cell Model

The resulting parameters of the Courtemanche et al. IKr formulation represent-
ing the homozygous N588K and L532P mutants are given in Table 5.1.
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Figure 5.3: Voltage dependency of gate open probabilities of the homozygous mutant
model (A)+(B), dashed lines represent the control model. The xr1 gate is the classical ODE
gate defined by Equation (A.3) to Equation (A.6), while xr2 is the instantaneous gate defined
in Equation (A.2). Steady-state IKr of the homozygous and heterozygousmutantmodels
(C)+(D), and time constant τ of the xr1 gate of the homozygousmodel (E)+(F).

For N588K, the half-maximal activation potential was shifted by 2.39 mV
towards more negative Vm (Figure 5.3A). Inactivation V1/2 was shifted by
53.7 mV in the opposite direction. The respective k values were 6.7 mV and
19.5 mV. The time constant showed an almost constant reduction by a factor
of 0.5 for the N588K mutant compared to WT. Therefore, the time constant
of the IKr formulation was reduced to 50% by setting the Q10 temperature
coefficient to 2 (Figure 5.3E).
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Table 5.2: Resulting IKr parameters in AP clamp and AP stimulation experiments for the
control model and themutantmodels. The peak current, the time integral of IKr , and the
time of the peak are given. For the AP clamp experiments, the control AP served as the
reference.

AP clamp AP stimulation

IKr,max
∫
IKrdt t(IKr,max) IKr,max

∫
IKrdt t(IKr,max)

(pA/pF) (pC/nF) (ms) (pA/pF) (pC/nF) (ms)

Control 0.234 51.0 165.0 0.234 51.0 165.0
N588K 0.478 92.5 137.8 0.370 61.7 103.7
N588K-3:1 0.607 113.2 133.5 0.426 63.7 88.0
N588K-homo 0.737 134.1 131.1 0.476 64.6 76.3
L532P 0.726 143.5 128.6 0.537 72.2 71.7
L532P-3:1 0.981 189.7 124.0 0.672 76.0 57.8
L532P-homo 1.238 236.0 123.3 0.792 79.1 48.9

Steady-state open probability was highest for Vm=–4/0/2/4 mV for control,
N588K, N588K-3:1, and N588K-homo, respectively (Figure 5.3C).
For L532P, a shift of the half-maximal activation potential V1/2 by 23.84 mV
towards positive Vm values was yielded by the optimization approach (Fig-
ure 5.3B). For inactivation, V1/2 was shifted by 30.72 mV in the same direction.
The corresponding slope factors k were identified as 22.3 mV and 24.4 mV,
respectively. The voltage dependency of the time constant τ showed an almost
linear and markedly flattened course for transmembrane voltages within the
physiological range: 53.3 ms at –85 mV, 57.7 ms at +20 mV (Figure 5.3F). The
behavior of the heterozygous models was intermediate between the control
model and the homozygous mutant. The voltage for which the steady-state
open probability was highest was –4 mV for control, 0 mV for L532P, 5 mV
for L532P-3:1, and 15 mV for L532P-homo (Figure 5.3D).

5.1.4.2 Single Cell Simulations

The adapted Courtemanche models with the reparametrized IKr formulations
were clamped to the AP course of the control model in a first step (Figure 5.4C).
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Table 5.3: Resulting AP parameters for the control model and the mutant models. AP
amplitude, MDP, APD at 90% and 50% repolarization, and TI were determined from single
cell simulations.

Amplitude (mV) MDP (mV) APD90(ms) APD50 (ms) TI (%)

Control 105.64 –81.05 298.44 172.43 26.10
N588K 105.82 –81.31 255.03 129.64 46.94
N588K-3:1 105.86 –81.41 237.39 113.74 55.65
N588K-homo 105.92 –81.48 222.10 100.74 62.90
L532P 105.92 –81.64 200.78 90.76 64.56
L532P-3:1 105.99 –81.31 169.28 71.13 73.91
L532P-homo 106.01 –81.91 146.82 58.89 78.29

Both mutations increased the IKr amplitude. N588K, N588K-3:1, and N588K-
homo caused increases by 104%/159%/210%, whereas L532P, L532P-3:1, and
L532P-homo yielded higher amplitudes by 201%/319%/429%, respectively.
As the duration of the IKr transient was mainly determined by the APD, and
thus not significantly altered, the amplitude changes translated to changes of
the current integral over time, as well. The current peaked earlier by between
27 and 41 ms (see Table 5.2).
In a second step, Vm of the cell models was set free and APs were elicited by
recurrent stimuli with a BCL of 1000 ms (Figure 5.4A). In these AP experi-
ments, the time of the IKr peak was earlier compared with the clamp protocol
by up to 74 ms (see Table 5.2). The peak currents were reduced compared
to the clamp experiments on the other hand due to the faster repolarization.
Compared to the control model, they were still enhanced, though. N588K,
N588K-3:1, and N588K-homo showed higher amplitudes by 58%/82%/103%,
whereas L532P, L532P-3:1, and L532P-homo yielded higher amplitudes by
129%/187%/238%, respectively. The current integrals were thus also higher
by +27% for N588K-homo and +55% for L532P-homo (see Table 5.2).
The APs showed a shorter duration and a less pronounced plateau, hence a
more linear repolarization. Regarding the quantitative AP markers, only slight
effects were observed for MDP and the AP amplitude (Table 5.3). APD and
the TI differed significantly, however. MDP was hyperpolarized by less than
1 mV, the AP amplitude was increased by less than 1 mV.
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Figure 5.4: APs simulated in the single cell environment (A) and the one-dimensional tissue
strand of coupled cells (B) and the corresponding IKr courses (C) and (D). Dashed lines in (A)
represent heterozygousmodels with 75%mutant channel share. Dash-dotted lines in (C)
represent IKr during AP clamp experiments using the AP of the control model as voltage
protocol. The BCLwas 1000ms for all simulation.

APD90 was reduced by between 43 ms and 76 ms for N588K and by between
97 ms and 152 ms for L532P. APD90 was reduced by between 43 ms and 72 ms
for N588K and by between 82 ms and 114 ms for L532P, respectively. Effects
were more pronounced for the setups comprising a higher share of mutant
IKr. Compared to control (26%), the TI was elevated for all mutant models
(N588K: 47% to 63%, L532P: 65% to 78%).

5.1.4.3 Tissue Restitution Properties

Only the 1:1 heterozygous mutant models were investigated on the tissue level
because of the low probability of myocytes being homozygous to L532P and
N588K in humans.
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Figure 5.5: In silico restitution of human atrial myocardium representing healthy and hERG-
mutated cells. ERP restitution (A), CV restitution (B),WL restitution as the product of ERP
and CV (C), APD90 restitution (D) and its slope (E), as well as VW restitution (F) are shown
for the fifth and the sixth beat in tissue (thus two lines per substrate) to cover beat-to-beat
alternans.

When coupled to other myocytes in a tissue strand, myocytes showed a less
pronounced overshoot and shorter APD (compare Figure 5.4A+B). AP ampli-
tude was reduced by between 21.4 mV and 21.8 mV. In order to compensate for
the different amplitudes, APD was compared at the time when Vm fell below
–73 mV during repolarization. For the control model in tissue, APD−73mV

coincided with APD90. Compared to the single cell simulations, APD−73mV

was higher by 8 to 9 ms in tissue.
Effects observed for the restitution of ERP, APD90, the slope of the APD90

with respect to the DI (ΔAPD90/ΔDI), CV, WL, and the VW were more pro-
nounced for L532P than for N588K (Figure 5.5). As was the case for the single
cell simulations, effects were also more pronounced for the model variants
comprising higher shares of mutant IKr than for the homozygous variant. Both
mutations caused shorter ERP (Figure 5.5A) and APD90 (Figure 5.5B). For an
intermediate BCL of 504 ms, the reduction of APD90 was 50 ms for N588K
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duction slowing by up to 129 mm/s and faster conduction by up to 6 mm/s for
N588K and changes between –196 and +11 mm/s for L532P. Due to the higher
relative amplitude of the ERP changes, the effect of the mutations on the WL
(Figure 5.5E) correlated with the effect on the ERP. The restitution of the APD
slope (Figure 5.5D) was flattened by introducing mutant IKr. ΔAPD90/ΔDI
curves for N588K and L532P intersected the control curve at DIs of 350 and
270 ms, respectively. Regarding the VW (Figure 5.5F), the restitution was
unaffected by the mutations for DIs shorter than 300 ms. For longer DIs, the
VW was longer by up to 9%. The VW for L532P was shorter by 0.1 ms
than that for N588K consistent across most of the DI range with a slightly
higher slope of the linear part causing a reduced difference for longer DIs.
Beat-to-beat alternans was observed less frequently and with lower amplitude
for the mutation models compared to the control model.

5.1.4.4 Dynamic Behavior of Rotors

Spiral waves could not be initiated by the S1-S2 cross-field protocol using
the control model (Figure 5.6). Using the heterozygous L532P model on the
other hand, rotors were sustained for the whole simulation time of 5 s with a
stimulus width of 20 ms being the only exception. The N588K model failed
to initiate rotors for stimuli smaller than 40 mm or later than 20 ms after the
end of the ERP. For the setups that did not initiate reentry, the wavelength
condition was not fulfilled for the combination of cell model and substrate
geometry. If rotors were initiated, they ceased after a maximum lifetime of
2.47 s using the N588K model because the excitable substrate was consumed
and the spiral wave cut itself off at an edge of the patch. Wave break was not
observed using the control model and the heterozygous mutant models.
The rotor trajectories were star-shaped indicating a meandering core (Fig-
ure 5.6). The dynamic behavior of the spiral waves on the L532P substrate was
more stable than on the N588K substrate as can be seen by the more regularly
shaped trajectories and the smaller amount of space occupied.
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Figure 5.6: Trajectories of the phase singularities representing the rotor core in the two-
dimensional tissue patch for varying stimulation widths (A) and times (B). In (A), a S2
cross-field stimulus of height 50mm and varying width was applied at t = ERP+4ms. In (B),
the premature stimulus of size 50mm× 50mmwas applied at varying times with respect
to the end of the ERP at the left side of the tissue patch (see Figure 5.2).

Fourier transformation of the pseudo ECG signals obtained from the simula-
tions with the premature S2 stimulus being applied 10 ms after the end of the
ERP yielded DFs of 4.02 Hz for N588K and 5.37 Hz for L532P, respectively
(Figure 5.7). As the control substrate could not maintain reentry, no DF could
be computed.
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500 ms

L532P-1:1N588K-1:1N588KC L532PD

Figure 5.7: Pseudo ECGs originating from spiral waves induced by a cross-field S2 stimulus
of size 50mm × 50mm at 10ms after the end of the ERP (cf. Figure 5.6B). Signals for
heterozygous N588K (A) and L532P (B) substrates start 0.7 s after the S2 stimulus induced
reentry. Pseudo ECG amplitude is arbitrarily scaled by σ in Equation (5.6).

5.1.5 Discussion

The study presented in this chapter investigates the effect of the two hERG
missense mutations N588K and L532P on human atrial electrophysiology
through a multi-scale computational modeling approach. Residue N588 plays
an important role in the rapid voltage-dependent inactivation of IKr [277]. This
observation fits well with the results obtained in the present study indicating
that the mutation N588K leads to gain of IKr function by impeded rectifica-
tion. In contrast to the control model, N588K did not inactivate within the
physiological Vm range. The gain of function caused by mutation L532P in
residue L532 residing within the voltage sensor region was mediated via a
different mechanism on the other hand. L532P IKr was enhanced through
premature activation. Compared to the control model, the inactivation gate
opens at more negative Vm, thus earlier during the AP. This effect potentiates
through the massive depolarization caused by the fast INa kinetics. During
later phases of the AP, a similar, yet less pronounced, mechanism as described
for N588K contributes as well. A reason for the similar effects on IKr could
be the interface between the voltage sensor (S4) hosting residue L532 and the
pore domain (S5) hosting residue N588 [278].
By integrating the effects of the mutations on the single ion channel level into
a comprehensive multi-scale simulation framework ranging from the ion chan-
nel via the cellular to the tissue level, the specific effects of the two missense
gain-of-function mutations on higher levels of integration could be analyzed.
AP clamp simulations representing a plasma membrane with a multitude of
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using the Courtemanche et al. model of human atrial myocytes showed that
during a dynamic AP governed by the delicate balance of depolarizing and
repolarizing currents, IKr was increased by 21% to 42% for the heterozygous
models while the peak amplitude showed a 1.6 to 2.3-fold increase. The less
pronounced effect of the mutations on the rapid delayed rectifier current IKr

using the AP clamp protocol compared to the dynamic AP simulations can
be explained by the mutation-induced faster repolarization causing an earlier
return to lower Vm values, which in turn reduce IKr again. The shorter APD
was accompanied by a more triangular AP shape in contrast to the spike-and-
dome morphology of the control AP. Effects were more pronounced for L532P
than for N588K on both the cellular and the tissue level. Not surprisingly, the
amplitude of mutation-induced changes correlated with the share of mutant
IKr, i.e. was higher for the homozygous than the heterozygous model variants.
ERP and APD90 were reduced by ≈ 14% and ≈ 32% for N588K and L532P,
respectively. For the zebrafish mutation cERG L499P corresponding to the
hERG reggae mutation L532P, Hassel et al. reported an APD reduction of 19%
in ventricular myocytes of zebrafish larvae [252].
An S1-S2 cross field protocol could induce stable reentry in a L532P-substrate
model in contrast to the control model and N588K for which spiral waves
emerged only in rare cases. This finding together with the spatially con-
centrated star-shaped trajectories of the rotor cores highlight the elevated
arrhythmic potential of L532P. The observation that spiral waves in the N588K
substrate often ceased because of interaction with the boundary of the simula-
tion domain suggest similar investigations using a two-dimensional spherical
surface in three-dimensional space. By including holes representing the ori-
fices of the great vessels and valves, the spherical model could be extended
to a simplified representation of a human atrium [279]. Regarding the trans-
formation of the Vm space to phase space, other approaches based on e.g. the
Hilbert transform were proposed in the literature. However, the applied time-
delay embedding has been shown to be well-suited for noise-free simulated
Vm data [266]. The DF computed for the L532P pseudo ECG was within the
clinically observed range for patients in AF [280]. The rather low values for
N588K, however, are most probably dominated by rotor deflections at the
boundaries of the tissue patch, which could be addressed by using a spherical
simulation domain as described above. For the determination of the DF in the
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The simple method based on the maximum should be appropriate for noise-
free simulated signals, though. Peaks reflecting harmonics of the DF were
present in the signals indicating a successful DF identification.
N588K hERG currents were simulated using the Noble et al. IKr formula-
tion [282] clamped to ventricular, Purkinje fiber, and atrial APs by McPate
et al. [259]. Regarding the atrial myocytes, APs simulated using the Courte-
manche et al. [47] and the Nygren [283] cell models were used as voltage
protocols. They found a less pronounced shift of the voltage which causes
maximum IhERG and an increase of the peak current by 130% for the Nygren
et al. model compared to the Courtemanche et al. model used in this study.
However, the impact of the choice of the cell model should be significantly
smaller in our study for all experiments except the AP clamps. For the in silico
experiments on the cellular and tissue level, Vm was not fixed by a voltage
protocol but evolved physiologically. The second in silico work [260, 261]
studying the effect of N588K on atrial electrophysiology adapted the cell mod-
els in another way. As discussed in Chapter 4, parameter estimation problems
for cardiac ion current formulation are highly underdetermined in many cases.
Thus, the global model characteristics are not necessarily preserved by the ap-
proach used in their set of studies neglecting differences between experimental
setups and lacking a hybridization strategy concerning parameter estimation.
Compared to [260, 261], APD and AP morphology were affected to a lower
degree using the approach presented in this thesis relating the amplitudes and
the time constants of the WT and mutant measurements.
Using a Markov chain IKr formulation integrated in the Luo-Rudy ventricular
cell model [157], Itoh et al. reported a 6% reduction of APD90 at a BCL of
1000 ms [258]. Zhang and Hancox found a 16% decrease for M-cells at a BCL
of 400 ms for an adapted Hodgkin-Huxley-type IKr formulation integrated in
the Luo-Rudy ventricular model, as well [257]. In the presented study, APD90

was reduced by ≈25% for the homozygous N588K mutant at BCLs between
400 ms and 1000 ms indicating that the effect of the N588K hERG mutation
on APD is larger in the atria than in the ventricles.
The different V1/2 activation and inactivation values for L532P-hERG found
in this study compared to [252] could be traced back to the different methods
applied to estimate the parameters based on the measured current traces. In
the approach presented here, the slope factor k was estimated for both WT and
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considered as a priori knowledge for the estimation of the parameters of the
inactivation gate. These differences as well as the missing step regarding the
transformation of the parameters to the model environment also explains the
differences on the AP level (Figure 5 in [252]).

5.1.5.1 Limitations

The measurement data used in this study were acquired in hERG channels,
which represent the pore-forming α-subunit of the cardiac IKr channel. The
β -subunit is encoded by KCNE2, which was not coexpressed for L532P.
Aiming at a comparison of both mutations, N588K data were taken from
pure hERG measurements, as well. Comparing hERG-N588K data with
hERG-N588K + KCNE2 data shows that the effects on currents are similar,
though [284]. The reported slight shift of activation towards more positive
Vm associated with KCNE2 coexpression leads to the assumption that the
mutation-induced effects will be gradually more pronounced than for lone
hERG expression.
Both mutations were expressed homozygously. The chosen approach to ap-
proximate heterozygous expression by combining mutant and WT channels
in a 1:1 ratio (and additionally a 3:1 ratio on the cellular level) appears rea-
sonable as long as measured data for heterozygously expressed mutants are
not available.
L532P measurements were conducted at room temperature and hERG channel
kinetics are known to exhibit a complex temperature dependence [285]. Thus,
the recordings acquired at room temperature may not exactly represent the
behavior at 37◦ C body temperature. However, temperature dependence of the
effect of hERG mutations has been shown to be rather small [259, 286]. In
particular, the data by Hassel et al. [252] used in this work are in agreement
with L532P experiments performed at 37◦ C in human embryonic kidney cells
by Zhang et al. [287]. The markedly flattened time constant vs. voltage relation
found in the model presented in this chapter correlates with the finding by
Zhang et al., as well as the shift of activation V1/2 by 24 mV compared with
30 mV [287].
Maximum channel conductivity is hard to estimate from current recordings
in expression systems. While single-channel patch clamp recordings allow to
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be multiplied with the number of channels to obtain the macroscopic conduc-
tivity of the current in the whole cell as represented in electrophysiological
cell models. Protein immunoblotting could be used to estimate the amount
of channel protein, however no conclusion regarding functionality could be
drawn, thus neglecting possible trafficking changes.
As discussed in Section 4.1.3, a five-state Markov model is required to rep-
resent all aspects of hERG gating [210] while the Courtemanche et al. for-
mulation [47] used in this work comprises only one activation gate governed
by an ODE and one instantaneous inactivation gate. However, the Courte-
manche et al. model was chosen as a phenomenological representation of atrial
electrophysiology because it convinced in a benchmark of several atrial cell
models [156], is well established [9, 10], and validated regarding high levels
of integration. Hence, it was considered well-suited to study the effects of the
hERG mutations on the cellular and tissue level. Biophysically more detailed
models, e.g. the Grandi et al. model [220], come at the expense of higher
computational cost and exhibit behavior partly inconsistent with experimental
findings in tissue level simulations [156].
More complex and anatomically more detailed geometrical models including
myocyte orientation, thus anisotropic conduction, and heterogeneous tissue
properties are available [9, 183]. While reentry can be initiated by small ec-
topic stimuli in contrast to the large S2 cross-field stimulus used in this work,
basic underlying mechanisms of rotor genesis, perpetuation, and termination
can be easier illuminated in simplified models.

5.1.5.2 Conclusion

In this chapter, the effects of the two hERG missense mutations N588K and
L532P on human atrial electrophysiology were studied using multi-scale sim-
ulation ranging from the ion channel level via integrated cellular models to
the one-dimensional and two-dimensional tissue level. The consequences of
the mutations on these higher levels of integration in terms of AP morphology
changes, refractory behavior, as well as rotor initiation and sustainment ca-
pacity allow to identify individuals harboring a genetic substrate predisposing
to AF. By aiding risk stratification and paving the way for genotype-guided
therapeutic strategies, the findings presented here help to bridge the gap from
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bench to bedside. While both mutations affect the same gene, they cause qual-
itatively different effects suggesting more offensive approaches for subjects
carrying the L532P mutation compared to N588K. In Section 6.1, geno-type
specific effects of the two existing pharmacological agents amiodarone and
dronedarone are evaluated regarding the two mutations. A preventive approach
rendering the genetically modified substrate less vulnerable to AF by adminis-
tering existing agents with a specific dose or applying a hypothetic, optimized
multi-channel blocker is proposed in Section 6.3.

5.2 Chronic AF Induced Remodeling

Atria that are exposed to fibrillation for a longer time undergo remodeling pro-
cesses as introduced in Section 2.3.1. In order to leverage in silico methods to
gain mechanistic insight into AF patho-physiology and to evaluate therapeutic
strategies, the results of these remodeling processes need to be represented in
the models.
Established cell models have been adapted to represent AF-induced remod-
eling by other groups. Table 5.4 gives an overview of the existing models.
Most models did not consider all existing experimental data (cf. Table 2.1) or
lack reasoning for the choice of parameters. This motivated the definition of a
new remodeling setup based on a rigorous literature research within the scope
of this thesis. Model AF4 by Colman et al. and the model by Koivumäki et
al. consider the available literature comprehensively. However, these models
were published after the model presented here was submitted as a conference
contribution [294].
Parts of this work have been published as a conference paper [294] and are
based on earlier work [127].

5.2.1 Methods

In the model, Ito was reduced by 65%, IK1 was increased by 100%, IKs was in-
creased by 100%, IKur was reduced by 50%, ICa,L was reduced by 55%, INa,Ca

was increased by 60%, and the leak current from the sarcoplasmic reticulum
to the cytosol Ileak was increased by 50%. The cell capacitance was increased
by 20%.
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5.2. Chronic AF Induced Remodeling

As the data on connexin expression is equivocal as reviewed in [126, 295],
the initial monodomain conductance σ = 76mS/m of the monodomain equa-
tion was reduced by 30% for the setup RemodCV and left unchanged for the
setup Remod.
The effect of the cAF induced changes on electrophysiology through remod-
eling were evaluated on multiple scales. On the single cell level, APs were
elicited by applying a stimulus current of 1.3 nA for 3 ms at a BCL of 1000 ms.
MDP, AP amplitude, as well as APD at 90% and 50% repolarization were
analyzed after pacing for 50 cycles. Restitution curves were obtained through
simulations in a one-dimensional tissue strand as introduced in Section 5.1.2.3.
Restitution of APD90 and its slope, CV, ERP, and WL was determined for
BCLs ranging from 180 ms to 1300 ms for the fifth and the sixth beat in tissue
to cover beat-to-beat alternans.
Besides the original Courtemanche et al. model [47] representing healthy
tissue (Control), the setup presented by Seemann et al. in 2010 [291] was
used for comparison. In the Seemann et al. setup, a 30% reduction of the
monodomain conductivity σ was assumed as for the RemodCV setup.

5.2.2 Results

The APs yielded by the remodeling variants of the Courtemanche et al. model
are shown in Figure 5.8. Compared to control, the MDP was hyperpolarized by
3.2 mV for the new setup as compared to 3.7 mV for the setup by Seemann et
al. [291]. AP amplitude was higher by 1.5 mV and 2.4 mV, respectively. APD
was shortened due to remodeling: compared to control, APD50 was reduced by
55% for Remod, thus less drastically than for the Seemann et al. setup (69%).
APD90 was reduced by 56% and 64%, respectively.
Compared to the Seemann et al. setup, the repolarization of the AP yielded by
the new setup was less linear. However, the AP plateau was not as pronounced
as for the control model and the initial notch after the overshoot was missing.
Thus, the spike-and-dome morphology of the control model was not present in
the new remodeling setup. The setup considering changes of the intercellular
coupling (RemodCV) did not exhibit any differences compare to Remod on
the single cell level as a matter of course.
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ction potentials

Figure 5.8: AP of an atrial myocyte under cAF remodeling conditions (red) in comparison
to control (green). The blue curve represents the setup by Seemann et al. [291].

Restitution was analyzed in a one-dimensional tissue strand for the three re-
modeling setups. Compared to the control model, the ERP was shortened in
the Remod setup by between 142 ms for a BCL of 341 ms and 160 ms for a
BCL of 764 ms (Figure 5.9A). The difference in ERP between Remod and
RemodCV was smaller than 2 ms for all BCLs. In comparison, the Seemann et
al. setup shortened the ERP by between 160 ms (BCL: 326 ms) and 188 ms
(BCL: 852 ms).
APD90 restitution exhibited a qualitatively similar course as the ERP curves
(Figure 5.9B). The slope of the APD90 with respect to the DI did not differ
significantly between the three remodeling setups and was lower by up to
0.3 compared to control for short BCLs. The Seemann et al. setup exhibited
marked oscillations by up to 0.2 for BCLs shorter than 400 ms. For BCLs
longer than 700 ms, no differences to control were observed (Figure 5.9D).

116

a



5.2. Chronic AF Induced Remodeling

BCL (ms) BCL (ms)

E
R

P
 (

m
s)

A

A
P

D
90

 (
m

s)

B

V
W

 (
m

s)

F

W
L 

(m
m

)

E

C
V

 (
m

m
/s

)

C

�
A

P
D

90
/�

D
I

D

exp: Franz97exp1: Yu99
exp2: Yu99

exp1: Feld97
exp2: Feld97

Figure 5.9: Restitutions curves of atrial myocardiumwith cAF induced remodeling. ERP
restitution (A), CV restitution (B),WL restitution as the product of ERP and CV (C), APD90
restitution (D) and its slope (E), as well as VW restitution (F) are shown for the fifth and the
sixth beat in tissue (thus two lines per substrate) to cover beat-to-beat alternans. The gray
lines with error bars represent experimental data of chronic AF remodeledmyocytes from
Franz et al. [296], Yu et al. [297], and Feld et al. [298].

Remodeling caused conduction slowing by up to 39 mm/s (BCL: 504 ms) for
the Remod setup and by up to 165 mm/s (BCL: 504 ms) for the Seemann et
al. setup. RemodCV exhibited similar properties as the Seemann et al. setup
regarding the CV with a maximum difference of 8 mm/s. The restitution
was markedly flattened for all remodeling setups compared to control (Fig-
ure 5.9C).
The different remodeling setups yielded the most distinct results for the WL
measure defined as the product of the ERP and the CV (Figure 5.9E). The
WL was shortened by between 81 mm and 128 mm for Remod, by between
100 mm and 150 mm for RemodCV, and by between 110 mm and 166 mm for
the Seemann et al. setup. The reduction was lowest for a BCL of 313 ms being
the lowest BCL for which the control model yielded stable APs.
While the general progression of the VW with respect to the BCL was similar
for all setups, Remod showed the shortest VW with values between 0.31 ms
and 0.53 ms. The Seemann et al. setup showed a relatively constant VW of

117



Chapter 5. Modeling Atrial Substrates

about 1.25 ms. RemodCV and control exhibited similar VW restitution for
BCLs above 800 ms. For lower BCLs, RemodCV showed a shortening of the
VW by up to 0.2 ms for a BCL of 300 ms (Figure 5.9F).
Beat-to-beat alternans, particularly with respect to APD90, was reduced by all
models of cAF induced remodeling.

5.2.3 Discussion

In this section, the Courtemanche et al. model representing healthy human
atrial myocytes was adapted to reflect changes induced by cAF remodeling.
Maximum conductivities of the ion currents were altered based on a rigor-
ous literature research. Since the publication of this setup as a conference
contribution in 2014 [294], the data base regarding experimental data of ion
channel remodeling has not changed significantly [299]. Compared to an
earlier remodeling setup developed at IBT by Seemann et al. [291], the AP
plateau is not completely degenerated. This observation can be attributed to
the 50% reduction of IKur and secondary to the slightly less reduced ICa,L (55%
vs. 65%). In comparison to the control model, the repolarization of the new
setup is still more linear, though.
A number of biomarkers were evaluated to assess the arrhythmogenic potential
of the remodeled substrate. ERP, APD, and WL indicated a tendency towards
arrhythmogeneity considering the critical WL concept. While CV was mostly
dependent on the assumed monodomain conductivity σ , conduction slowing
was observed in the Remod setup despite unaltered σ and INa compared to
the control model. This observation can be explained by the hyperpolarized
resting membrane voltage as a stimulus current of a given amplitude needs
more time to exceed the threshold due to the capacitive properties of the
membrane. Moreover, increased IK1 counteracts depolarizing stimuli. The
slope of the APD90 with respect to the DI was higher, thus presumably more
arrhythmogenic, for control than for any remodeling setup. Also beat-to-beat
alternans as a potential pro-arrhythmic mechanism was only observed in the
control substrate.
The comparison to the sparse available experimental data regarding restitution
in cAF remodeled substrates shows fair agreement regarding APD90 [296]
and ERP [297]. However, the absolute values of both markers in the cAF
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remodeling setups were larger in the model than in the experimental data. The
absolute values of the model CV were in the range reported by Feld et al. [298].
The slope of the CV with respect to the BCL does not match the mean values
of the experiments. However, the error bars of the experimental data span a
wider interval than the dynamic restitution interval (Figure 5.9C).
The model presented here is limited in the sense that only changes of the
maximum ion current conductivities were considered. However, the remod-
eling of gating kinetics is reported very equivocally as described in detail
in [127]. Structural remodeling effects such as the influence of e.g. fibrosis are
beyond the scope of this work focussing on the electrophysiological effects on
the single cell and one-dimensional tissue level. Future work could address
inter-subject variability as suggested by Sanchez et al. [300].
In conclusion, the modification of the Courtemanche et al. model of human
atrial myocytes presented in this section represents cAF induced electrophysi-
ological remodeling and is able to reproduce the main characteristics observed
experimentally. It provides mechanistic descriptions how remodeling increases
susceptibility to reentry through shortened WL facilitating the initiation and
maintenance of atrial arrhythmias according to the AF begets AF paradigm.
The adapted model provides the means to evaluate tailored therapeutic strate-
gies for cAF patients in silico and was used as a substrate model in Chapter 6
regarding pharmacotherapy and in Chapter 8 regarding ablation.
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CHAPTER6

Pharmacological Agents

Pharmacological treatment of atrial fibrillation (AF) with various antiarrhyth-
mic drugs is an alternative, less invasive approach to radio-frequency or cryo-
ablation of atrial tissue for cardioversion and prevention of AF recurrence.
While antiarrhythmic agents are classically developed and tested using in
vitro and in vivo approaches in both animals and humans, in silico methods
can complement a thorough analysis. In this way, critical compounds can be
identified and rejected at earlier stages of drug development and the number
of animal studies can be reduced in the long run [9, 301, 302]. Moreover,
novel ion channel targets can be characterized [303, 304] and therapies can
be tailored for subgroups of the general population as a further step towards
personalized medicine [305].
Computational models were employed to evaluate the effect of hypothetic
and existing antiarrhythmic agents on ventricular electrophysiology in previ-
ous studies [205, 306–308]. The focus of most ventricular studies was drug
safety in terms of prevention of torsades de pointes tachycardia that can cause
sudden cardiac death. Mirams et al. performed a virtual thorough QT study
aiming at a prediction of the drug induced proarrhythmic risk of up to 34 com-
pounds by in silico modeling [309] superior to using IC50 values only [310].
The use of in silico methods for drug safety evaluation has recently been
reviewed in [301].
Regarding atrial electrophysiology, Morotti et al. presented a computational
study aiming at a prevention of phase-3 early afterdepolarizations as a poten-
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tial mechanism of AF initiation by blocking peak INa [311]. Tsujimae et al.
investigated voltage and time dependent IKr inhibition caused by the pharma-
cological agents dofetilide, vesnarinone, and quinidine [312]. IKur inhibitor
kinetic properties were studied regarding their effect on rotor termination by
Scholz et al. [303] and regarding AP prolongation by Tsujimae et al. [313].
Wilhelms et al. [205, 314] presented first work on the effects of amiodarone
and dronedarone on atrial electrophysiology. While the study presented here is
based on this study, the dynamic effects caused by the interplay of the circadian
changes of both drug concentration and heart rate were not considered in the
work of Wilhelms, thus neglecting pharmacokinetic considerations. More-
over, the drug model was advanced. Aslanidi et al. [315] studied the effect of
dronedarone of APD90 restitution and spiral wave dynamics. Heijman et al.
used a computational model to study the determinants of beat-to-beat alternans
of action potential duration (APD) [316], which can translate to beat-to-beat
variability of T-wave morphology [317]. Zemzemi et al. studied how inhibition
of IKr, INa, and ICa,L in ventricular myocytes translate to changes up to the
body surface potential level [306].
The study presented in Section 6.1 is the first comprehensive study of the dy-
namic effects of amiodarone and dronedarone on human atrial patho-
electrophysiology considering the properties of distinct atrial substrates. Ver-
nakalant investigated in Section 6.2 has never been studied in silico before to
the best of my knowledge highlighted by the lack of a comprehensive under-
standing of its effects on different levels of integration. The study presented in
Section 6.3 is the first to optimize hypothetic and existing compounds for the
treatment and prevention of familial AF comprehensively.

6.1 Amiodarone &Dronedarone

Amiodarone and dronedarone are two antiarrhythmic agents that have been
proposed as an effective treatment of AF [1]. As both drugs inhibit cardiac
potassium currents, they are classified as class III agents according to the
Singh Vaughan Williams system [318]. However, both agents exert effects on
multiple channels and have to be considered multi-channel blockers, indeed.
Besides differences in their pharmacodynamic properties in terms of inhibition
of ion channels, amiodarone and dronedarone also differ markedly in their
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pharmacokinetic properties. Amiodarone accumulates in a third compartment
because of its lipophilic properties leading to a biological half-life of several
weeks. Dronedarone on the other hand is less lipophilic translating to a
significantly shorter half-life of less than 24 h [136].
Even though dronedarone was designed as a less thyrotoxic alternative to
amiodarone with similar effects on cardiac electrophysiology, the efficacy in
terms of AF recurrence prevention is much better for amiodarone than for
dronedarone [72, 130, 136]. Therefore, three hypotheses are tested in this study
using a multi-scale in silico approach: It is hypothesized that the effects of the
two drugs differ because of i) the different pharmacokinetic properties causing
distinct temporal variations in drug concentration, ii) different restitution
properties leading to distinct effects in different heart rate regimes, and iii)
distinct effects for different atrial substrates.
Parts of this work have been published as a journal article [129] and are based
on a supervised student’s project [319].

6.1.1 Methods

The original Courtemanche et al. model of human atrial myocytes [47] was
used as the control substrate representing healthy atrial myocardium. Besides,
the effect of amiodarone and dronedarone was assessed in the chronic atrial
fibrillation (cAF) substrate introduced in Section 5.2 and for the two hERG
mutations L532P and N588K introduced in Section 5.1 as models of familial
AF. Regarding the hERG mutations, heterozygous expression was assumed
and approximated by mixing mutant and wild-type (WT) IKr at a 1:1 ratio.

6.1.1.1 Modeling the Effect of Amiodarone andDronedarone

Binding of the agents to the channel proteins and the consequent conductivity
reduction were modeled using Hill’s equation [320]:

Θ =
1

1+
(

IC50
D

)nH , (6.1)

with Θ being the degree of channel block ∈ [0,1] ranging from no block to com-
plete block, IC50 being the half-maximal inhibitory concentration, D being the
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free plasma drug concentration, and nH being the Hill coefficient quantifying
cooperative binding. The IC50 and nH values describing the effect of amio-
darone and dronedarone on cardiac ion currents were extracted from literature
(Table 6.1). Amidarone affected the currents IKr [321], IKs [322], INa [323],
ICa,L [324], the sodium calcium exchanger INaCa [325], and the sodium potas-
sium pump INaK [326]. Dronedarone affected IKr [327], IKur [328], IKs [329],
INa [323], and ICa,L [137]. Figure 6.1 shows the resulting Hill curves.
The amiodarone plasma concentration in steady-state is reported to range
between 1 μg/ml and 2 μg/ml [330]. Given the molar mass of 643.31 g/mol,
this corresponds to 1.55 to 3.11 μM. For dronedarone, the reported plasma
concentration of 84 ng/ml to 147 ng/ml corresponds to 0.15 μM to 0.25 μM
considering the molar mass of 556.76 g/mol. For a thorough exploration of the
concentration space, the effect of both agents was modeled for free drug con-
centrations ranging from approximately 10% of the respective mean standard
concentration to 10× the mean standard concentration. Within those ranges,
15 logarithmically spaced concentrations were assessed.

Table 6.1: Inhibition of cardiac ion channels by the pharmacological agents amiodarone
and dronedarone. Half-maximal inhibitory concentrations IC50 and Hill coefficients nH
were extracted from literature.

Amiodarone Dronedarone

IC50 (μM) nH Reference IC50 (μM) nH Reference

IKr 2.80 0.91 [321] 0.0591 0.80 [327]
IKur – – 1.00 1.00 [328]
IKs 3.84 0.63 [322] 5.60 0.51 [329]
INa 4.84 0.76 [323] 0.54 2.03 [323]
ICa,L 5.80 1.00 [324] 0.83 2.75 [137]
INaCa 3.30 1.00 [325] – –
INaK 15.60 1.00 [326] – –
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Figure 6.1: Degree of inhibition resulting fromHill-type channel block due to amiodarone
(A) and dronedarone (B) based on the half-maximal inhibitory concentrations and Hill
coefficients given in Table 6.1. The vertical dashed line corresponds to the standard con-
centration. Note the different scales on the x-axes.

6.1.1.2 Scoring

Similar to the method introduced in Section 5.1.2.3, the effect of amio-
darone and dronedarone on cardiac electrophysiology was studied in a one-
dimensional tissue strand with the same numerical methods as in the previous
chapter (see Section 5.1.3). In order to obtain information on the frequency
dependence, the system was paced at 20 different basic cycle lengths (BCLs)
being distributed equidistantly in the frequency domain between 200 ms and
1300 ms. Restitution curves were computed for APD50, APD90, the slope
of the APD with respect to the diastolic interval (DI) (ΔAPD90/ΔDI), action
potential (AP) amplitude, maximum diastolic potential (MDP), conduction ve-
locity (CV), effective refractory period (ERP), wavelength (WL), triangulation
index (TI), and vulnerable window (VW) as introduced in Section 5.1.2. More-
over, the resulting APs for each combination of drug concentration and BCL
were classified into categories. APs were considered valid if Vm exceeded
–45 mV and the upstroke velocity exceeded 10 V/s. Besides normal APs and
total block, consistent 2:1 block, block of a single AP, and APs with decres-
cent amplitude formed categories. The decrease was considered significant
if the amplitude was reduced by at least 3% from beat to beat. Moreover, se-
quences of valid APs with more than 3% variation in APD90 were classified as
alternans.
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Table 6.2: Bounds for the continuous scoring of the biomarkers. ERP, APD50 , and VWwere
related to the respective values without drug influence (subscript 0).

Value for score 1 Value for score 6

CV (mm/s) 800 300
ΔAPD90/ΔDI –0.3 1.5
TI (%) 15 95
ERP/ERP0 (%) 130 60
APD50/APD50,0 (%) 130 60
VW/VW0 (%) 60 130

All acquired biomarkers were scored on a continuous scale and combined in
a single score to represent the results in a compact way allowing for assess-
ment of the interdependency between BCL and concentration. The scores
ranged from 1 representing the best value to 6 being the worst score regarding
arrhythmogeneity. The upper and lower bounds for the continuous, linear
score of the six biomarkers considered are given in Table 6.2. AP categories
were scored from 1 to 6 as follow: normal, alternans, decreasing, single block,
2:1 block, complete block. The score values for combinations of BCL and
concentration not being on the grid points formed by the 20 BCL values and
the 15 concentration values, for which tissue level simulations were performed
were interpolated bilinearly. The overall score was computed as the mean of
the six scores of the single biomarkers in Table 6.2. If one score yielded 5.5
or worse or two markers were 5.0 or worse, the overall score 6 was assigned,
however.

6.1.1.3 Pharmacokinetic Scenarios

To identify the most relevant areas in the BCL-concentration space spanned
by the 20 BCLs and the 15 concentrations, for which the biomarkers were
evaluated, typical trajectories were defined by combining pharmacokinetic
scenarios with dynamic heart rate variations (Figure 6.2). A 200 mg daily
dose of amiodarone was assumed to be administered at 8 a.m. causing a 20%
increase in concentration [331] with respect to the mean value. The standard
concentration of 2.3 μM was used as a reference for the mean value. Thus, a
reduction of 20% with respect to the standard concentration was modeled at
the time of administration.
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cokinetic scenarios for amiodarone (A) and dronedarone (B) with andwithout concomitant
food intake, as well as the circadian BCL course including sleep, rest, and phases of physical
activity (C).

The time course between these extrema was modeled using Gaussians (Fig-
ure 6.2A). For dronedarone, in contrast, two doses of 400 mg each were
administered at 8 a.m. and 8 p.m. causing an increase of 50% [332] with re-
spect to the mean value of 0.21 μM (Figure 6.2B). In a second set of scenarios,
concomitant food intake was assumed resulting in a three-fold increase of the
bioavailability of both agents [136] (Figure 6.2A+B).
Regarding the circadian variation of the heart rate (Figure 6.2C), a baseline of
70 beats per minute (bpm) corresponding to a BCL of 857 ms was assumed
during daytime (6 a.m. to 11 p.m.).
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and dronedarone (C)+(D). The time of the day is color-coded. The lower panel represents
drug administration with concomitant food intake resulting in a higher bioavailabilty. The
axes correspond to the axes in Figure 6.6.

Episodes of physical stress were modeled by a 20 min linear increase of the
heart rate to 120 bpm (BCL: 500 ms), followed by 5 min at 120 bpm and a
20 min linear decrease to the resting value of 70 bpm. Eight such episodes
were distributed equidistantly during daytime. The heart rate during sleep
(11 p.m. to 6 a.m.) was assumed to be 50 bpm (BCL: 1200 ms). The heart rate
course was the same for all substrates (including the cAF substrate) for the
sake of comparability.
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6.1.2 Results

6.1.2.1 Dose and Frequency Response

The effect of variations in the drug dose and the pacing frequency (inversely
correlated with BCL) were studied in the one-dimensional tissue strand. Drug-
induced conduction block occurred for dronedarone concentrations above
1.09 μM in all substrates. For amiodarone, block was only observed in the
cAF substrate for concentrations above 23 μM (see Figure 6.4). The concen-
tration at which block occurred coincided with the drug concentration causing
INa block of ≈80%. As the baseline sodium current in the drug-free scenario
was reduced in the cAF substrate due to the remodeling, block occurred al-
ready at lower drug concentrations. Fast pacing, thus low BCLs, induced
block in all substrates but cAF. The cutoff BCL increased with increasing drug
concentration resulting in a step-like pattern and was higher for dronedarone
than for amiodarone.
For valid APs which were not blocked but conducted along the strand, the
frequency and dose response of the biomarkers was evaluated. The interested
reader is referred to Figures S6 and S7 in the online supplementary material
of [129] for the 160 graphs detailing the dose and frequency response with
a fixed value of the respective other parameter for both drugs in all four sub-
strates. Here, the results are presented in a condensed form and quantified for
representative BCLs and drug concentrations.
AP amplitude decreased for higher concentrations. In the control model, it
decreased from 83.9 mV without any compound applied to 54.3 mV for 23 μM
amiodarone and to 62.1 mV for 1.09 μM dronedarone at a BCL of 1008 ms.
For dronedarone concentrations below 0.1 μM and amiodarone concentrations
below 0.32 μM, AP amplitude was almost unaffected. AP amplitude increased
again when raising the dronedarone concentration from 0.56 μM to 0.78 μM
for BCLs longer than 600 ms. Shorter BCLs were associated with smaller
amplitudes, in general. The cAF substrate exhibited a markedly attenuated
frequency dependence. The difference in amplitude between the shortest
and the longest BCL was 3.1 mV in the cAF substrate compared to between
15.4 mV and 19.9 mV for the other substrates at an amiodarone concentration
of 0.23 μM.

129



Chapter 6. Pharmacological Agents

 200

 400

 600

 800

 1000

 1200

 1400

 200

 400

 600

 800

 1000

 1200

 1400

 200

 400

 600

 800

 1000

 1200

 1400

1 10

 200

 400

 600

 800

 1000

 1200

 1400

0.1 1

concentration (μM) concentration (μM)

B
C

L 
(m

s)
B

C
L 

(m
s)

B
C

L 
(m

s)
B

C
L 

(m
s)

A

C

E

G

B

D

F

H

norm
al

complete block

2:1 block

single block

decreasing

alternans

AP category

amiodarone dronedarone

co
n

tr
o

l
cA

F
L

53
2P

N
58

8K

Figure 6.4: Resulting AP categories for amiodarone (A), (C), (D), and (G) and dronedarone
(B), (D), (F), and (H) and the four different substrates control (A)+(B), cAF induced remodel-
ing (C)+(D), hERGmutation L532P (E)+(F), and hERGmutation N588K (G)+(H). Alternans
was defined as APD90 alterations of 3% ormore. Sequences with a least 3% beat-to-beat
decrease of AP amplitude were considered as decreasing.

130



6.1. Amiodarone & Dronedarone

concentration (μM)

E
R

P
 (

m
s)

E
R

P
 (

m
s)

A

B

C

E

F

G

amiodarone dronedarone
co

n
ce

n
tr

at
io

n
 r

es
p

o
n

se
fr

eq
u

en
cy

 r
es

p
o

n
se

200

150

250

300

350

400

1 10 0.1 1
concentration (μM)

DI (ms)

A

B

E

F
200 1200

DI (ms)

450

200

150

250

300

350

400

450

A B

C D

400 1000800600 200 1200400 10008006000 0

Figure 6.5: Response of ERP to different concentrations of amiodarone (A) and
dronedarone (B) for a fixed BCL of 857ms corresponding to 70bpm. Vertical dashed
lines indicate the standard concentration of the respective drug, horizontal dashed lines
represent the baseline ERP for zero drug concentration. (C)+(D) show the frequency
response (restitution) against the DI at the standard concentrations of amiodarone (C)
(2.3 μM) and dronedarone (D) (0.21 μM). The shaded gray area in (A)+(B) represents the
concentration range covered in the pharmacokinetic scenarios (Figure 6.2 and Figure 6.3).
The DI range coveredwas different for each substrate and each concentration. Data points
are indicated andwere interpolated using cubic splines. Data points were neglected if no
AP could be elicited due to drug-induced block.

Similar characteristics were observed for dronedarone (exemplary concentra-
tion of 0.021 μM) with a range of 3.8 mV in the cAF substrate compared to
14.1 mV to 22.9 mV in the other substrates.
Amiodarone dose-response curves for the biomarkers APD50, APD90, and
ERP were bell-shaped in contrast to dronedarone, which caused a monotonic
increase towards higher concentrations followed by a marked drop beyond
a cutoff concentration. The amiodarone concentration corresponding to the
peak in ERP was 3.2 μM for cAF and between 6.1 μM and 8.6 μM for control,
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L532P, and N588K. The absolute value of the amiodarone induced APD50

increase was largest in the control substrate (+160 ms =̂ +86%), followed by
N588K (+144 ms =̂ +86%), L532P (+117 ms =̂ +96%), and cAF (+28 ms
=̂ +23%). In the control and N588K substrates, a less pronounced peak
was observed at an amiodarone concentration of ≈ 1/5 of the main peak.
The cutoff dronedarone concentrations were identified as between 0.56 μM
and 0.78 μM in all substrates. In the cAF substrate, the cutoff was not as
sharp as for the other substrates causing a decrease for dronedarone concen-
trations between 0.29 μM and 0.56 μM rather than an instantaneous cutoff
observed for the other substrates. ERP dose response curves are shown in Fig-
ure 6.5A for amiodarone and Figure 6.5C for dronedarone at a BCL of 857 ms
corresponding to 70 bpm. The dose response for APD90 and ERP showed
similar courses.
Regarding the restitution properties, the overall course did not differ between
substrates and the gross morphology of the restitutions curves was unaffected
by both drugs. However, the degree of reverse use dependence describing
the effect of less pronounced ERP prolongation for lower BCLs, thus faster
heart rates, differed between substrates. It was observed for N588K and the
control substrate for amiodarone. In the control case, ERP with the standard
amiodarone concentration of 2.3 μM was even shorter than the baseline value
for BCLs shorter than 392 ms (Figure 6.5C). Reverse use dependence was
observed for dronedarone in the cAF and L532P substrates; compared to amio-
darone to a lower degree, though. Restitution curves are shown in Figure 6.5C
for amiodarone and Figure 6.5D for dronedarone at the respective standard
concentrations.
The APD90 slope ΔAPD90/ΔDI oscillated for short BCLs close to cutoff and
high concentrations of both drugs close to cutoff. In general, the slope was
steeper towards lower BCLs (most pronounced for the L532P substrate fol-
lowed by control and N588K).
Increasing drug concentrations caused conduction slowing correlating with
the degree of INa block. This effect on CV was observed for dronedarone
concentrations above 0.1 μM as was the case for AP amplitude. Marginal inter-
substrate differences were reflected in minimal CV values under amiodarone
administration of 268 mm/s, 324 mm/s, 267 mm/s, and 268 mm/s for control,
cAF, L532P, and N588. Values for dronedarone were 417 mm/s, 505 mm/s,
414 mm/s, and 416 mm/s, respectively. CV frequency dependence was only
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observed for BCLs shorter than 500 ms with a tendency towards slower con-
duction. In the cAF substrate, CV was unaffected by a BCL decrease down to
200 ms. The WL was calculated as the product of ERP and CV resulting in a
general tendency towards shorter WLs for higher amiodarone concentrations.
The peaks observed in the ERP dose response translated to the WL course,
though. These peaks counterbalanced the amiodarone induced ERP decrease
and almost restored the baseline WL without any drug. For dronedarone, a WL
increase was observed for concentrations up to 0.15 μM in the cAF substrate
and up to 0.29 μM in all other substrates. For higher concentrations, WL
dropped. WL prolongation compared to baseline was up to 52 mm (+22%)
for control, 19 mm (+16%) for cAF, 101 mm (+64%) for L532P, and 70 mm
(+34%) for N588K.
Regarding the MDP, amiodarone caused a hyperpolarization whereas
dronedarone depolarized the MDP. The amplitude of this effect was smaller
than 2.5 mV for all drug concentrations at a BCL of 1008 ms. Faster pacing
did prevent full repolarization of Vm yielding higher MDPs by up to 4.8 mV,
2.1 mV, 6.1 mV, and 6.2 mV for control, cAF, L532P, and N588K, respectively.
The TI as a marker quantifying the linearity of the repolarization, i.e. the
absence of an AP plateau, showed a qualitatively similar course as the ones for
the APD markers. For amiodarone, higher concentrations were associated with
a slightly higher TI with the exception of a marked drop around 3 μM in the
cAF substrate and around 6 μM in the other substrates. For dronedarone, the
general tendency was towards lower TI values for higher concentrations in all
substrates but cAF, which showed no significant sensitivity for concentrations
up to 0.6 μM.
The baseline duration of the VW with no drug administered was between
1.5 ms and 2.0 ms for all substrates but cAF for which it was 0.3 ms. Amio-
darone shortened the VW down to 0.3 ms in the former substrates and 0.1 ms
in the cAF substrate. The VW was unaffected by dronedarone concentrations
far from the cutoff concentration. Frequency dependence was marginal for
BCLs significantly above the cutoff value.

6.1.2.2 Scores

The biomarkers were scored according to Table 6.2. The interested reader is
referred to Figure S8 in the online supplementary material of [129] for details
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Figure 6.6: Total score resulting from amiodarone (A), (C), (E), and (G) and dronedarone
(B), (D), (F), and (H) administration in the four different substrates control (A)+(B), cAF
induced remodeling (C)+(D), hERGmutation L532P (E)+(F), and hERGmutation N588K
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of the resulting scores for all markers under both drugs in all four substrates.
Here, selected results are presented in a condensed form. Figure 6.6 shows the
resulting total score. The baseline value without any drug administered was
2.33, 2.57, 2.75, and 2.53 for the control, cAF, L532P, and N588K substrates
at a BCL of 1008 ms.
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Regarding the individual biomarkers, CV yielded higher, thus worse, score
values for elevated drug concentrations with no significant frequency or sub-
strate dependency. Only for BCLs close to cutoff, a tendency towards higher
scores was observed which was more pronounced for dronedarone than for
amiodarone. The worst CV scores for high drug concentrations were 6 for
amiodarone in all substrates and 5 for dronedarone for all but the cAF substrate
for which the maximal score was 4.
The bell-shaped ERP amiodarone dose response translated to a bathtub-shaped
ERP score dose response curve. The minima occurred at amiodarone con-
centrations of 6.17 μM, 3.19 μM, 4.44 μM, and 6.17 μM in the control, cAF,
L532P, and N588K substrates. Lower BCLs were associated with slightly
higher scores at low amiodarone concentrations. At higher concentrations, the
opposite behavior was observed, i.e. lower scores for lower BCLs. Regarding
dronedarone, elevated concentrations caused lower ERP scores in all substrates
but cAF for which a minimum was observed at 0.15 μM. In the other three
substrates, peaks to high, thus bad, scores were observed for low BCLs close
to cutoff for some concentrations. The APD50/APD50,0 score showed a quali-
tatively similar course as the ERP/ERP0 score.
The APD90 slope scores were dominated by peaks to critical values close to the
concentrations yielding APD90 (and ERP) minima for amiodarone and close
to cutoff BCLs for dronedarone. In general, shorter BCLs yielded slightly
higher ΔAPD90/ΔDI scores.
Regarding TI, minima were observed at amiodarone concentrations yielding
APD90 (and ERP) minima. In vicinity to these concentrations, shorter BCLs
and higher concentrations were associated with higher scores resulting in a
step-like pattern. For lower concentrations in the control substrate, also longer
BCLs yielded lower scores. The course of the TI score for dronedarone was
consistent with the ERP score. The frequency dependence causing higher
scores for shorter BCLs was more pronounced for TI than for ERP, though.
In the L532P substrate, low concentrations (<3 μM amiodarone, <0.1 μM
dronedarone) yielded TI scores as high as 4.9.
Regarding the VW, higher amiodarone concentrations caused lower scores
in general. This tendency was less pronounced for dronedarone. Hot spots
with peaks to critical values were observed for short BCLs close to cutoff for
several concentrations of both compounds. Dronedarone applied to the cAF
substrate caused such hot spots also for longer BCLs.
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6.1.2.3 Circadian Variation

The total score was evaluated along the trajectories in the BCL-concentration
space representing the circadian variation of the drug concentration and the
heart rate (Figure 6.3). The amiodarone score in the food scenario considering
concomitant drug and food intake varied between 1.6 and 2.5 in the control
substrate (Figure 6.7A), between 1.8 and 2.5 for cAF (Figure 6.7C), between
2.1 and 2.4 for L532P (Figure 6.7E), and between 1.7 and 2.4 for N588K
(Figure 6.7G). The same scenario applied to dronedarone caused total score
values between 1.6 and 5.1 in the control substrate (Figure 6.7B), between 1.9
and 6.0 for cAF (Figure 6.7D), between 1.7 and 5.1 for L532P (Figure 6.7F),
and between 1.6 and 5.1 for N588K (Figure 6.7H).
Compared to the baseline score trace with zero drug concentration, the score
under amiodarone was improved. The only exception was observed for the
control substrate during phases of high concentration and low heart rate in
the food scenario (Figure 6.7A). Dronedarone improved the score compared
to baseline in most cases. Worse scores under dronedarone were observed
during peaks to critical values (Figure 6.7B,D,F,H). These peaks occurred in all
substrates during phases of high concentration and low heart rate considering
the food scenario and during phases of low concentration and intermediate
heart rate in the cAF substrate (Figure 6.7D) considering the non-food phar-
macokinetic scenario.
Phases of elevated heart rate, thus shorter BCL, reflecting physical stress lead
to elevated scores during phases of low amiodarone concentration. During
phases of high concentration, the score was reduced during stress with the
exception of the cAF substrate in which a stress induced increase was observed
for all concentration phases.
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Figure 6.7: Circadian variation of the total score (Figure 6.6) along the trajectories through
the BCL-concentration space representing a typical day (Figure 6.2 and Figure 6.3). The
antiarrhythmic drugs amiodarone (A), (C), (E), and (G) and dronedarone (B), (D), (F), and (H)
were assumed to be administered together with food (solid lines) or without (dashed lines)
resulting in different bioavailability of the agents. The gray, dash-dotted lines indicate the
baseline score at zero drug concentration. Resulting scores are shown in four different
substrates: control (A)+(B), cAF induced remodeling (C)+(D), hERGmutation L532P (E)+(F),
and hERGmutation N588K (G)+(H). The lower panels indicate times of sleep, drug (and
possible food) intake, as well as phases of elevated heart rate representing physical activity.

The circadian variation of the drug concentration lead to higher scores during
phases of high amiodarone concentration with the exception of the cAF and
the L532P substrates, which showed no consistent trend.
The dronedarone scores peaked to critical values of 5.0 or above during
phases of high concentration and short BCL in all substrates in the food
scenario. In the scenario without concomitant food intake, peaks above 2.5
were only observed in the cAF substrate. Moreover, the peaks occurred under
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different circumstances: low concentration and short BCL in contrast to high
concentration and short BCL. In the food scenario, elevated dronedarone
levels caused higher scores, in general. In the cAF substrate however, the
score was lowest during the transition from high to low concentration and the
other way around. In the non-food scenario, the circadian variation of the
dronedarone concentration was reflected in significant score changes only in
the cAF substrate. Shorter BCLs representing physical stress yielded higher
scores in all substrates.

6.1.3 Discussion

The dynamic effect of amiodarone and dronedarone on human cardiac electro-
physiology was investigated in this study under consideration of physiological
circadian variation of drug concentration and heart rate using a computational
model. Moreover, the influence of the substrate was assessed comprising cAF
induced remodeling and two hERG mutations associated with familial AF.
Under high drug concentrations, AP could no longer be elicited due to the
degree of sodium channel block. For short BCLs, the tissue could not fully
repolarize between two consecutive wavefronts leading to depolarized MDP.
This may favor ectopic beats as any stimulus of given amplitude is more likely
to reach the Vm threshold and trigger an AP. Alternans on the AP level under
amiodarone occurred only for high concentrations corresponding to the con-
centration peaks in the pharmacokinetic scenario assuming concomitant food
and drug intake. For dronedarone however, APs exhibited alternans for the
whole concentration range at short BCLs close to cutoff, particularly in the
control substrate. This proarrhythmic mechanism [333, 334] is potentially one
of the factors contributing to the inferior efficacy of dronedarone compared
with amiodarone in terms of the prevention of AF recurrence [72, 130, 136].
A further factor contributing to the inferior efficacy can be found in the fact
that the total score peaked to critical values in all substrates in the dronedarone
food scenario. In the cAF substrate, these peaks could even be observed in
the non-food scenario during phases of low dronedarone concentration right
before the next drug intake. Under amiodarone, the circadian variation of BCL
and drug concentration caused only minor score oscillations, though.
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Acceleration of the heart rate reflecting phases of physical activity caused
peaks to critical scores in all dronedarone concentration phases. For amio-
darone on the other hand, shorter BCLs improved the score during phases of
high concentration in all but the cAF substrate. Reverse use dependence was
also substrate dependent and occurred in the control and N588K substrates
under amiodarone and the other two substrates under dronedarone.
The finding that the amiodarone concentration yielding the best, thus lowest,
score was lower by 50% in the cAF substrate compared to the control substrate
and the two hERG mutations implies and highlights that the responder rate
of pharmacological AF therapy and preventive approaches could be raised
by tailoring the drug regimen in a group-specific way considering the atrial
substrate. For dronedarone, a less pronounced tendency in the other direction
was observed proposing elevated doses for cAF patients. Generally speaking,
the effects in the cAF substrate differed markedly from the others. The drop
of the biomarkers APD, ERP, and VW at the cutoff concentrations was not
as abrupt but showed a rather smooth transition starting at lower concentra-
tions compared to the other substrates. The VW was significantly shorter by
a factor of ≈5 and the ERP score did not decrease for higher dronedarone
concentrations. All these differences lead to peaks to critical score values
under dronedarone in the cAF substrate even in the pharmacokinetic scenario
assuming smaller variations of the drug concentration.
Wilhelms proposed INa block as the predominant mechanism by which amio-
darone terminates spiral wave reentry [205]. Such two-dimensional tissue
level effects were beyond the scope of the study presented here and should be
addressed by future research. Preferably, investigations regarding the effects
of drugs on rotor inducability and perpetuation should be performed on closed
two-dimensional surfaces in three-dimensional space (cf. Section 5.1.5). The
results presented here regarding the effect of amiodarone on ERP and CV
are in line with experimental findings by Shinagawa et al. [335]. They report
prolonged ERP in atrially tachypaced dogs under chronic amiodarone admin-
istration. The restoration of ERP absolute values and ERP rate adaptation
to control values observed in the tachypaced dogs could not be reproduced,
though. A reason for this might be the slightly different pharmacodynamic
effects of amiodarone regarding acute and chronic administration further dis-
cussed in the next section. The CV reduction of ≈200 mm/s with flat restitution
reported by Shinagawa et al. were reproduced here for an amiodarone concen-

139



Chapter 6. Pharmacological Agents

tration of 4.4 μM. In their study, regional variations of the effect of amiodarone
were described. This spatial heterogeneity could be integrated in a hetero-
geneous anatomical model (cf. Section 9.1) in future work once appropriate
pharmacodynamics data on the ion channel level become available.
Sun et al. superfused rabbit muscle preparations acutely with either 10 μM
dronedarone or 10 μM amiodarone [336]. They reported a similar degree of
APD90 reduction for both compounds. Their observation cannot be explained
by any IC50 and nH values found in the literature, however. In guinea pig
experiments [329], MDP was not significantly affected by dronedarone as was
the case for the in silico experiments presented here.
Scoring systems are widely used to quantify the complex effects of drugs in a
condensed way. However, they are often based solely on IC50 values [337],
neglect frequency dependence, thus restitution, of the dynamic system [309],
neglect substrate dependence [338, 339], or require experiments using large
animal models [340]. Besides markers derived from simulations using biophys-
ically detailed models facilitating mechanistic insight, data-driven approaches
using machine learning methods resulting in black box descriptions have
been proposed. Kramer et al. used logistic regression on IC50 values of IKr

(hERG), ICa,L (Cav1.2), and INa (Nav1.5) obtained through automatic patch
clamping [337]. Mistry et al. proposed to combine the degree of block of these
channels in a single scalar measure [341]. Babcock et al. proposed to use
gene expression levels instead of measured currents [342]. Pharmacokinetic
properties were mostly neglected in prior work with few exceptions using
basic representations as used in this study [301].

6.1.4 Limitations

The Hill-based drug models employed in this study are based on drug receptor
interaction data from the literature, which are sometimes reported equivo-
cally [321, 323, 324, 326, 327, 329, 343–361]. As pointed out before [362],
dose response curves obtained under comparable experimental conditions from
the same species for all cardiac ion current would be desirable. Recent devel-
opments aim to build methods allowing to incorporate measures considering
and quantifying the uncertainty caused by the variability in the data [363] as
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While the Hill-based conduction block model used in this study does not allow
to consider voltage- or state-dependent block which has been described for
some currents [312, 366, 367], these effects should not play a significant role
considering the timescale at which binding and unbinding of the compound
to the channel occurs, which is much longer than the timescale of channel
state transitions and voltage changes. Therefore, simple conductance block
models should be suitable except for agents affecting the probability of state
transitions (allosteric block) [339]. The mode of action of amiodarone and
dronedarone is mainly mediated via non-voltage-dependent effects and the
available data describing voltage-dependent block were too sparse to model
this effect reliably. Moreover, the non-competitive anti-β -adrenergic effect
of both drugs [366, 367] was neglected and could be included in a future
extension of the model in a similar way as in the work by Keller et al. [368].
It has to be stressed that the models of the drugs are based on data representing
their acute effects rather than chronic administration. Differences between
chronic and acute effects have been reported particularly for amiodarone with
a possible mechanism being a modulation of gene expression [133, 369]. The
available data on the ion current level were not sufficient to identify a complete
set of Hill curve parameters representing the effects of chronic amiodarone
administration.
The in silico modeling approach chosen in this study does not necessarily allow
to translate the results to in vivo settings in terms of absolute concentrations as
in the latter, the free drug concentration can hardly be assessed reliably [370].
Binding to plasma proteins has been reported for both drugs in vitro reducing
the bioavailability as only the free drug concentration is pharmacologically
active [371]. Even though the levels of plasma protein binding are not known
precisely (e.g. 96.3±0.6% [372] vs. 99.97–99.99% [371] for amiodarone),
this uncertainty does not affect the validity of the results in terms of relative
concentration levels. The calibration of the biomarkers taken into account
in the scoring process was based on the dynamic range observed in the sim-
ulation results and not on a robust and extensive empirical data set. Thus,
validation and probably also refinement of the calibration is needed to draw
clinically relevant conclusions from the score in a quantitative way rather than
qualitatively as done in this study.
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well as the intrinsic variability across the population [300, 338, 364] based on
e.g. Bayesian inference [365].
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The circadian variation of the drug concentrations was based on a very sim-
plistic model and does not claim to represent the exact course observed in vivo.
Moreover, the course of the heart rate can only be a stereotypical showcase and
does not claim to cover the whole range of possible scenarios in the real world
population as a matter of course. The pharmacokinetic properties of both drugs
are reported equivocally in the literature. As dronedarone kinetics are hard
to assess in vivo, no data from humans were available and the amplitude of
the circadian variation was assumed to be 50% due to the shorter elimination
half time compared with amiodarone [136]. Considering the above mentioned
aspects, a detailed pharmacokinetic model appears questionable to date and a
variation within a certain range served the purpose of this study.

6.1.5 Conclusion

The results presented in this study show how atrial electrophysiology is
differentially affected by the antiarrhythmic compounds amiodarone and
dronedarone in a concentration-dependent and heart rate-dependent manner.
The insights gained from in silico modeling regarding AP alternans as a proar-
rhythmic mechanism provide possible explanations for the superior efficacy
of amiodarone over dronedarone in the treatment of AF. The newly proposed
arrhythmia score aggregating several biomarkers from the cellular and tissue
level peaked to critical values for dronedarone but not for amiodarone. The
elucidated effects may aid in the design and optimization of patient group-
specific pharmacotherapy. The drug effects differed significantly in a cAF
remodeled substrate. By considering the atrial substrate in tailored therapies,
the responder rate can be improved.

6.2 Vernakalant

Vernakalant is a recent compound, which has proven to be effective for the
acute cardioversion of AF in a large share of patients in clinical studies. In
this respect, vernakalant is superior to both placebo and the agent amiodarone,
which was investigated in Section 6.1 [72, 140–144, 373, 374]. However,
it was ineffective in patient with AF lasting for more than seven days and
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patients with atrial flutter (AFlut) [145]. The underlying mode of action and
the reasons for the strong time dependence are not understood in their entirety.
The experimental data ranges from one study on isolated ion channels [375],
to a study in isolated tissue preparations [376] up to an in vivo study assessing
the effect of vernakalant on atrial and ventricular ERP in humans [377]. The
results on these different levels of integration have never been consolidated
in a coherent framework and could not be linked until now. In this study, a
multi-scale computational modeling approach is employed to elucidate the
complex non-linear effects of vernakalant on cellular electrophysiology by
linking the experimental data from the single channel level up to tissue level
data.
Parts of this work have been published as a conference contribution [378] and
are based on a supervised student’s project [379].

6.2.1 Methods

The effect of vernakalant was studied using the Courtemanche et al. model
of human atrial myocytes [47] representing a healthy substrate as well as in
a variant representing cAF induced remodeling as introduced in Section 5.2.
The cellular models were integrated in a one-dimensional tissue strand as
detailed in Section 6.1. The effect of vernakalant was modeled based on Hill’s
equation (Equation (6.1)) using the following pairs of half-maximal inhibitory
concentrations IC50 and Hill coefficients nH for the cardiac ion currents:
21.0 μM / 0.92 for IKr [375], 13.0 μM / 0.92 for IKur [375], 30.0 μM / 0.82
for Ito [375], and 84.0 μM / 1.0 for ICa,L [376]. This model based on literature
values is referred to as M1 (Figure 6.8C). A second model M2 was formu-
lated with only ICa,L being affected (42.0 μM / 1.0) (Figure 6.8D) besides
sodium channel block as a hypothesis based on the experimentally observed
behavior [376].
INa block was considered in both models. Due to the pronounced frequency
dependence of vernakalant induced INa block, it could not be well represented
by a single pair of IC50 and nH values. Therefore, the degree of INa block
was determined by fitting gNa aiming at the reproduction of experimentally
observed changes of the AP upstroke velocity dVm/dtmax [376] for each fre-
quency and drug concentration individually.
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Table 6.3: Frequency-dependent estimates of half-maximal inhibitory concentrations IC50
and Hill coefficients nH for INa based on dVm/dtmax reduction data [376] for the two
models of vernakalant (M1 andM2).

M1 M2

IC50 (μM) nH IC50 (μM) nH

0.5Hz 36.15 2.67 35.79 2.67
control 1.0Hz 36.25 1.16 35.27 1.07

3.0Hz 15.07 0.95 17.34 1.25

0.5Hz 76.89 1.26 39.45 1.87
cAF 1.0Hz 61.32 1.10 61.88 1.18

3.0Hz 36.99 1.27 37.32 1.10

6.2.2 Results

The optimization of INa block using a bisection method converged for all
substrates, frequencies, and concentrations and reproduced the experimentally
observed relative reduction of AP upstroke velocity dVm/dtmax with a residual
of 0.4±1.8%. Table 6.3 lists the resulting IC50 and nH values for all three
frequencies in both substrates. For faster pacing, lower IC50 values and smaller
Hill coefficients were identified. This translated to a higher degree of block
for vernakalant concentrations between 1 μM and 35 μM (Figure 6.8A+B).
The frequency dependence was attenuated in the cAF substrate compared to
control.
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dVm/dtmax at zero drug concentration and the desired frequency was taken as
a reference value to determine the relative reduction for a specific vernakalant
concentration. The degree of INa block was optimized in the tissue strand
environment. The resulting degree of block at concentrations of 10 μM and
30 μM were used to determine frequency-specific IC50 and nH values.
Besides the AP upstroke velocity dVm/dtmax, further markers were evaluated.
ERP, APD90, AP amplitude, and MDP were introduced above. APD20 was
determined at 20% repolarization and PLT20 was defined as the mean potential
in the time window between 20% and 30% repolarization [376].
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Figure 6.8: Dose response of veranakalant induced INa block depending on the pacing
frequency and the substrate inM1 (A) andM2 (B) (cf. Table 6.3). The vertical lines indicate
the concentration span covered in the study by Wetter et al. [376]. The frequency and
substrate independent degree of block of other cardiac ion currents is shown in (C) forM1
and (D) forM2.

By pacing the coupled cell models in the one-dimensional tissue strand under
the influence of vernakalant, APs were elicited (Figure 6.9). 2:1 block occurred
in the control substrate for 3 Hz pacing frequency and the drug model M1.
All others combinations conducted APs robustly. AP alternans was observed,
though. The resulting AP markers and their correspondence to the experimen-
tal findings in [376] are presented in Table 6.4. While M1 reproduced the
ERP prolongation reported in [376], the drug induced increase of divergence
between ERP and APD90 was not reproduced. This divergence caused by con-
comitant ERP prolongation and APD90 shortening was described particularly
for the control substrate [376]. M2 on the other hand reproduced the APD90

shortening and the elevation of PLT20 but did not exhibit ERP prolongation.
The other investigated AP markers were sufficiently reproduced by both drug
models.
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Figure 6.9: Vernakalant-induced change of the AP and its frequency dependence for the
two drug modelsM1 (A)–(D) andM2 (E)–(H) in the control (A), (B), (E), and (F) and cAF
substrates (C), (D), (G), and (H). AP curves are shown for the 5th beat in the tissue strand for
1Hzand3Hzpacing frequency corresponding toBCLsof 1000msand333ms, respectively.
For3Hz in the control substrate, the6th beat is shownaswell becauseof 2:1blockobserved
usingM1. The time between APD20 and APD30 used to calculate PLT20 is highlighted by
the shaded areas in (A) and (E) for zero drug concentration (gray) and 30 μMveranakalant
(blue).

6.2.3 Discussion

In this study, it was shown that inhibition of the potassium currents IKr,
IKur, and Ito together with the L-type calcium current ICa,L by vernakalant
prolongs the atrial ERP dose-dependently. The frequency-dependent and
dose-dependent block of INa causes AP upstroke slowing and attenuated AP
amplitudes. The model M1, which is based on pharmacodynamics data from
literature, explains ERP prolongation, which can be considered vernakalant’s
major antiarrhythmic mode of action. The results presented here are in line
with in vivo data from human by Dorian et al. reporting ERP prolongation to
be dose-dependent but not significantly frequency-dependent between 1.6 Hz
and 3.3 Hz [377]. In their study, atrial ERP was prolonged by between 12%
and 14% for the higher investigated dose of 4.6 mg/kg applied intravenously.

146



6.2. Vernakalant

Table 6.4: Resulting gNa reduction based on dVm/dtmax tuning and APmarkers obtained us-
ing the two in silicomodelsM1 andM2 in comparison to experimentally observeddata [376].
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Frommeyer et al. recently reported an increase of APD by 9 ms and ERP by
16 ms in whole-heart Langendorff-perfused rabbit models [380]. Burashnikov
et al. reported a rate-dependent prolongation of post repolarization refractori-
ness in LA canine preparations which was accounted to block of the sodium
channel [381].
The second model M2 comprised only ICa,L block besides INa inhibition with
the model parameters for ICa,L block not being based on literature data from
the subcellular level but chosen to match experimentally observed AP proper-
ties. This model affected the delicate balance of depolarizing and repolarizing
currents during the AP plateau and repolarization in a way possibly explain-
ing the effects of vernakalant on APD90 and PLT20. PLT20 suggested as a
marker in [376] has to be considered with caution, however, as APD20 strongly
depends on the AP morphology. If the AP exhibits a pronounced spike-and-
dome morphology (30 μM in Figure 6.9A), APD20 is shifted to later phases
in the AP compared to early values for a more linear repolarization (30 μM
in Figure 6.9E). The cell model by Maleckar et al. [218] yielded qualitatively
similar results (data not shown). Thus, the results of this study are unlikely to
be sensitive to the choice of a particular cell model.
Both investigated drug models provide hypotheses for part of the experimen-
tally observed effects of vernakalant. However, none of the drug models is
capable of reproducing the effects in their entirety and providing comprehen-
sive mechanistic insight. This finding highlights a missing piece in the puzzle
regarding our understanding of vernakalant’s mode of action and brings up
new questions. Besides potential effects on the MDP mediated by IK1 or IK,ACh

and affecting ERP via the availability of the h gate of the sodium channel,
the frequency-dependence, and possibly state-dependence, of INa block is not
understood. This puts the ball in the experimentalists court as appropriate
wet-lab data is required to formulate a more complex model representing the
effects of vernakalant. In particular, a Markov model directly describing the
frequency dependence appears better suited than a set of models comprised
of one Hill formulation per frequency. State-dependency of block might as
well need to be covered in order to reproduce the different effects on ERP
and APD90. Models of the discrete kinetics of drug interaction can e.g. be
parametrized using the methods recently proposed by Moreno et al. [382].
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In conclusion, this study fosters our understanding of the cellular mode of
action of vernakalant on the one hand. On the other hand, it points out relevant
gaps in our current knowledge and will thus hopefully fuel and direct future
wet-lab and computational research on this aspiring antiarrhythmic agent. As
such, it serves as an example how the interplay between experimentalists and
modelers can lead to mutual benefit and cross-fertilize and speed up research.

6.3 Optimization of Drug Therapy for Familial
Atrial Fibrillation

Early onset AF has a significant familial component [383]. Individuals carrying
certain gene mutations, as e.g. the two hERG mutations N588K and L532P
introduced in Section 5.1, are more susceptible to AF. In this study, multi-
channel blockers are evaluated regarding their potential to revert the AP
of atrial myocytes affected by these mutations to the control AP of non-
mutated, WT myocytes. Towards this end, a hypothetic multi-channel blocker
is designed and optimized for each mutation. Moreover, the potential of
the two existing compounds amiodarone and dronedarone (cf. Section 6.1)
is assessed by tuning the concentration levels. The optimization aims at a
minimization of the root mean square difference (RMSD) between the control
and the mutant AP. The properties of the myocytes under the influence of the
tailored pharmacological agent is then assessed in a dynamic way considering
APD90 restitution and calcium transients.
Parts of this work have been published as conference contributions [384, 385]
and are based on a supervised student’s project [319].

6.3.1 Methods

The Courtemanche et al. model of human atrial myocytes [47] served as
a reference for the healthy, WT myocytes. The hERG mutations N588K
and L532P were modeled by altering the IKr formulation as introduced in
Section 5.1. For the design of the hypothetic multi-channel blocker, the
maximum conductances gx of the nine atrial ion currents IKr, IKur, IKs, Ito, IK1,
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Ix = gx ·Θx · (Vm −Ex) , (6.2)

with Ex being the equilibrium potential of the ion type carrying the respective
current. The existing compounds amiodarone and dronedarone were modeled
by the Hill equation-based approach introduced in Section 6.1.
The cost function for the minimization was the RMSD ΔAP between the
mutant and the control AP over a fixed time span of 500 ms:

ΔAP :=

√√√√ 1
500

500

∑
i=1

(
Vm,mut (ti,Θ)−Vm,ctl (ti)

)2
, (6.3)

with Θ ∈ R
9 altering the mutant AP. In order to minimize ΔAP, Θ was opti-

mized in the nine-dimensional space for the hypothetic multi-channel blocker.
For the existing compounds amiodarone and dronedarone, the scalar concentra-
tion D translating to a specific degree of block Θx for each channel according
to Equation (6.1) and Table 6.1 was subject to optimization. APs were elicited
with a BCL of 1000 ms and analyzed in steady-state conditions.
The cell model was implemented in Matlab and solved by ode15s with a
variable time increment for simulations on the single cell level. Tissue level
simulations were conducted in the one-dimensional tissue strand introduced
in Section 5.1 with a fixed time step of 10 μs. Optimization on the single cell
level was performed using the TRR algorithm introduced in Section 4.1.1.3,
which is well-suited for multi-dimensional, non-linear minimization problems.
The start vectors were drawn randomly using a uniform distribution. On the
tissue level, the constrained Broyden-Fletcher-Goldfarb-Shanno algorithm
belonging to the class of quasi-Newton hill-climbing methods provided by
the Python library SciPy [386] was utilized. The parameters yielded by the
optimization on the single cell levels were used as the initial guess on the
tissue level.
To evaluate the optimization result, APD90 was analyzed in the tissue strand for
30 BCLs ranging from 200 ms to 1300 ms distributed linearly in the frequency
domain to obtain its restitution with respect to the DI.
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Figure 6.10: AP curves from single cell (A)+(B) and tissue level (C)+(D) simulations obtained
usingWT and hERGmutation cell models. The optimizedmulti-channel blockers given in
Table 6.5were applied tomutantmyocytes to restore theWTAP. In (A) and (B), theWTAPs
are partly covered by those of themutant models under drug influence. In (C) and (D), the
APs obtained by tissue level optimization partly cover the single cell optimization result,
additionally.

6.3.2 Results

By optimizing the degree of inhibition for each channel individually, the de-
viation between the WT and the mutant APs could be reduced. The RMSD
was lowered from 8.3 mV to 0.5 mV for N588K (Figure 6.10A) and from
18.2 mV to 0.5 mV for L532P (Figure 6.10B) in the single cell environment.
The maximum deviation observed for a single time step was reduced from
36.2 mV to 3.1 mV and from 17.1 mV to 2.5 mV, respectively. The correspond-
ing optimal scale factors Θx are listed in Table 6.5. Transitioning to the tissue
level, the factors Θx defining the optimized hypothetic compound remained
unchanged for N588K. In the tissue strand simulation, the RMSD was 0.63 mV
(Figure 6.10C). Concerning, the L532P substrate the single cell result yielded
an RMSD of 1.8 mV that could be reduced to 0.6 mV by optimization on the
tissue level. Compared to the optimal compound on the single cell level, IKr

was reduced by additional 3% and Ib,Na by additional 1% (Figure 6.10D).
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Table 6.5: Scaling factorsΘ of the hypothetic multi-channel blocker for atrial ion currents
ranging from 1 (no effect) to 0 (complete blockage). The given combinations yielded the
lowest RMSD betweenmutant andWTAPs in single cell and tissue simulations.

L532P N588K

Cell Tissue Cell Tissue

ΘKr 0.42 0.39 0.56 0.56
ΘKur 0.59 0.59 0.61 0.61
ΘKs 0.95 0.95 0.88 0.88
Θto 1.00 1.00 0.99 0.99
ΘK1 1.00 1.00 1.00 1.00
ΘNa 1.00 1.00 0.99 0.99
ΘCa,L 0.86 0.86 0.83 0.83
Θb,Na 0.97 0.98 0.96 0.96
Θb,Ca 0.92 0.92 0.96 0.96

N588K L532P
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Figure 6.11: Restitution of the APD90 for WT and mutant atrial myocytes. The multi-
channel blockers (see Table 6.5) were optimized at a BCL of 1000ms corresponding to the
vertical dashed line and applied to the hERGmutant cells at BCLs between 200ms and
1300ms.

The compounds that performed optimal for the fixed BCL of 1000 ms were
analyzed regarding their dynamic APD90 restitution properties (Figure 6.11).
For higher pacing rates, thus lower DIs, the APD of the mutant cells under the
influence of the tuned compounds was shorter compared to WT. This effect
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Figure 6.12: Calcium transients observed during APs in the N588K (A)+(C) and L532P
(B)+(D) hERGmutant cells. In (A) and (B), the optimized hypothetic multi-channel blockers
were administered, whereas amiodarone and dronedaronewere administered at optimized
concentrations in (C)+(D).

A second property that was not considered during the optimization but de-
termines the cell’s electrophysiological characteristics are calcium transients
that were ameliorated by the optimized compounds but not fully restored
(Figure 6.12A+B).
Besides the design of hypothetic multi-channel blockers with arbitrary ratios
of channel inhibition, the concentration of the existing compounds amiodarone
and dronedarone was optimized on the cellular level. The objective function
was Equation (6.3) as above. The N588K mutant AP could be reverted up to
1.3 mV by 0.04 μM of dronedarone, thus almost as good as using the hypo-
thetic compound (0.5 mV). Amiodarone, however failed to restore the WT AP
yielding a residual RMSD of 6.3 mV at the optimal concentration of 0.76 μM
not much lower than the initial value of 8.3 mV (Figure 6.13A).
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was more pronounced for L532P (maximum deviation of 34.2 ms at a DI of
62 ms, Figure 6.11B) than for N588K (maximum deviation of 6.2 ms at a DI
of 178 ms, Figure 6.11A).
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Figure 6.13: APs obtained by applying the optimized concentrations of amiodarone and
dronedarone to restore the WT AP in cells affected by hERG mutations L532P (A) and
N588K (B).

The results for L532P were comparable with a residual RMSD of 1.76 mV
for the optimal dronedarone concentration of 0.088 μM and 17.21 mV for the
optimal amiodarone concentration of 10.72 μM. The optimal dronedarone
concentration and the optimized hypothetic compound regarding ΔAP differed
in the resulting Ca2+ transients (Figure 6.12C+D). For N588K, dronedarone
restored the WT transient slightly better whereas the result was opposite for
L532P.

6.3.3 Discussion

In this study, the electrophysiology of hERG mutant atrial myocytes was
restored to the healthy state in terms of AP morphology and APD. The WT
AP could be restored by significant block of IKr and IKur (≥39%) and less
pronounced block of IKs, ICa,L, Ib,Na, and Ib,Ca (≤17%). On the tissue level,
IKr inhibition had to be slightly reduced for L532P to obtain optimal AP
restoration. The presented results show that on the AP level, changes in IKr

conductance and kinetics can be counterbalanced by combined reduction of
ionic current conductances without altering their kinetics. APD90 restitution
and calcium transients were used as independent quality metrics to assess the
restoration of the electrophysiological properties using measures that were not
considered in the optimization cost function. For N588K, APD90 restitution
was almost restored by the hypothetic multi-channel blocker, whereas devia-
tion of up to 15% were observed for fast pacing in the L532P substrate.
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The existing antiarrhythmic agents amiodarone and dronedarone exhibited
markedly different potential with respect to the restoration of the WT AP.
Dronedarone performed very well and achieved levels of restoration close to
the hypothetic multi-channel blocker with just one degree of freedom (the con-
centration) instead of nine (the levels of block). Amiodarone on the other hand
could not reduce the RMSD between the mutant and the WT AP significantly.
This observation underlines the importance of the complex, non-linear interac-
tion between the different atrial ion currents and prevent solely considering the
main effect (in this case inhibition of potassium channels) when characterizing
the mode of action.
This is the first work using computational methods or experimental approaches
to restore mutant APs to the state of healthy control myocytes by hypothetic
or existing pharmaceutical compounds to the best of my knowledge. The
limitations regarding the models of amiodarone and dronedarone with respect
to acute vs. chronic administration and the Hill equation-based formulation
discussed in Section 6.1.4 apply to this study as well. Future work could
include the metrics that were used for validation in this study (restitution
properties and calcium transients) into the cost function. However, validation
has to be performed in other ways, then.
In conclusion, the study presented in this section provides insight into the
pharmacodynamic response of hERG mutant myocytes rendering patients
vulnerable to AF and may aid in the design and advancement of tailored thera-
peutic and preventive approaches considering the atrial substrate as recently
outlined in a roadmap for personalized drug development [305].
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CHAPTER7

Augmenting AnatomicalModels
with a Priori Knowledge

Today’s medical imaging technologies provide the means to obtain the anatomy
of individual patients in unprecedented detail. However, some properties can-
not be image in vivo. One important aspect is the orientation of myocytes
which influences excitation propagation significantly. Moreover, the contrast
in most imaging modalities does not allow to identify the presence of interatrial
connections (IACs) or at least their conductive properties. Their presence and
intactness determines the LA activation pattern, though. The same holds for
scar tissue introduced by ablation or fibrosis induced by remodeling processes,
which can only be imaged by late Gadolinium-enhanced magnetic resonance
imaging (MRI) with a limited resolution [178–181]. Another challenge is the
estimation of the long-term extent of the scar as late gadolinium enhanced
MRI of acute ablation lesions significantly overestimate the chronic scar vol-
ume [387]. Moreover, it is necessary to introduce standard ablation patterns
in the in silico models in an automated manner in order to assess their effect
before applying them in the patient.
Therefore, data acquired in animal models, human ex vivo studies, or invasive
electroanatomic mapping studies is used to learn about these features. These
general patterns can then be applied to augment anatomical models of an
individual with a priori knowledge in a rule-based manner. Section 7.1 de-
scribes a method to annotate myocyte orientation which is mesh-type-agnostic,
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i.e. can be applied to meshes with arbitrary elements (triangles, tetrahedra,
hexahedra etc.). Section 7.2 introduces an extension allowing to connect the
right atrium (RA) and the left atrium (LA) via well-defined IACs in order to
control interatrial conduction.
Part of this work is based on earlier work [23] and a supervised student’s
project [388] and has been published as a conference contribution [389].

7.1 MyocyteOrientation

As introduced in Section 2.1.1.2, myocytes tend to align along pronounced
muscular bundles and finer, non-transmural structures. This fact gives rise to
anisotropic conductive properties, which in turn influence excitation propaga-
tion significantly [55, 390, 391] with consequences for the development and
perpetuation of atrial arrhythmias [33, 392].
Diffusion tensor imaging (DTI) is an MRI-based imaging technique that can
provide information on myocyte orientation. However, acquisition in the
atria is difficult due to the very thin wall compared to the ventricles and the
motion due to the beating of the heart. This requires the atria to be fixated
and an acquisition time of several hours in contrast to first in vivo data for
the ventricles [393]. Other techniques such as histographs [394] or extended
volume surface imaging [395, 396] were used to map the myocyte orientation
of a specific specimen to an anatomical model of the same specimen. After
early studies with manually placed myocyte orientation [57, 58, 397–399] and
simple interpolation methods [400, 401], the first comprehensive approach to
augment models with transmurally varying myocyte orientation in a rule-based
manner semiautomatically was presented within the scope of the dissertation
of Dr.-Ing. Martin Krüger [23].
The method presented by Krüger et al. is based on several anatomical stud-
ies [19, 20, 22] and was evaluated and validated in [23, 183, 402]. However,
it was designed and implemented for models represented in structured grids
with a fixed resolution of 0.33 mm.
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Figure 7.1: Schematic representation of the 22 landmark points (blue) given in Table 7.1.
R1 to R9 are located in the RA, L1 to L13 are located in the LA. (A) shows the anterior
aspect, (B) the posterior aspect. Figure based on supervised student’s work [388].

Structured grids built of uniformly-sized hexahedra carry the disadvantage
of requiring a high resolution in order to represent the curved atrial surface
without pronounced jagged boundaries causing spurious currents [403]. More-
over, the whole domain has to be modeled using elements of the same size.
Particularly for bidomain simulations including passive regions (e.g. blood)
this represents a major restriction and a computational bottleneck. There-
fore, tetrahedral meshes are often better suited for finite element simulation
of cardiac electrophysiology. Another type of grids are triangular surface
meshes that are commonly used in fast, simplified excitation propagation
simulation using e.g. the fast marching algorithm (Chapter 8). Therefore, the
existing method to annotate myocyte orientation was extended and improved
aiming at a mesh-type-agnostic approach, thus being suited for structured and
unstructured grid with arbitrary building blocks.

7.1.1 Methods

In order to get an abstract representation of the elements of the mesh (cells),
each cell was represented by a single point located at its centroid. This trans-
formation provided the means to design the algorithm in a mesh-type-agnostic
way while maintaining the distance between elements.
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Table 7.1: Definition of the 22 landmark points used in the annotation that are required as
an input to the algorithm. Points R1 to R9 are located in the RA, L1 to L13 are located in
the LA.

Point Location

R1 boundary of the superior vena cava (SVC), septal, close to R4
R2 boundary of the SVC, anterior towards the tricuspid valve (TV)
R3 boundary of the SVC, junction with the right atrial appendage (RAA)
R4 boundary of the inferior vena cava (IVC), superior
R5 boundary of the IVC, inferior
R6 tip of the RAA
R7 boundary of the TV, anterior/superior
R8 boundary of the TV, posterior/inferior
R9 boundary of the TV, septal
L1 boundary of themitral valve (MV), close to the left atrial appendage (LAA)
L2 boundary of theMV, posterior/inferior
L3 boundary of theMV, septal
L4 right superior pulmonary vein (RSPV), superior/medial, in line with L6 and L8
L5 left superior pulmonary vein (LSPV), superior/medial, in line with L7 and L9
L6 between RSPV and right inferior pulmonary vein (RIPV)
L7 between LSPV and left inferior pulmonary vein (LIPV)
L8 RIPV, inferior/medial
L9 LIPV, inferior/medial
L10 end of Bachmann’s bundle (BB) in the LA
L11 tip of the LAA
L12 left lateral of the LPVs, between the LPVs and the LAA
L13 right lateral (septal) of the RPVs

The proposed method can be applied without user interaction once the position
of 22 anatomical landmarks (Figure 7.1) are defined [23]. These nine points in
the RA and 13 points in the LA can either be marked manually or provided by
the tool performing the preprocessing including the segmentation of the atria.
Table 7.1 and Figure 7.1 give a detailed description of the location of these
initial points. The two atria need to be separated, i.e. right and LA elements
may not share common nodes. If such nodes are present in the model, they are
resolved by node duplication: a common node is split into two nodes (one for
the LA, one for the RA) with the same coordinates.
For the annotation of the myocyte orientation and the definition of additional,
derived points, connections between points had to be found. Paths p from a
starting point a0 to an end point aN−1 via potential intermediate points were
computed using a modification of the Dijsktra algorithm [171, 172] which
penalizes deviance from the direct connection between the points:
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‖p(a0,aN−1)‖2 = min

(
N−1

∑
i=1

(
‖ai −ai−1‖2 +

‖(an −a0)× (ai −a0)‖2
‖an −a0‖2

))
,

(7.1)

with N being the number of points along the path and ai being the location of
point i. If the starting point a0 and the end point aN−1 are the same, the path is
circular and referred to by pc in the following. Some paths were restricted to a
plane, e.g. the crista terminalis (CT) and the pectinate muscles. Therefore, the
penalty term was changed to the distance between the point on the path and
the plane defined by the normal vector n for paths pp restricted to a plane:

‖pp (a0,aN−1)‖2 = min

(
N−1

∑
i=1

(
‖ai −ai−1‖2 +

‖(ai −a0) ·n‖2
‖n‖2

))
. (7.2)

The paths along which myocyte orientation was annotated as well as the rules
to derive auxiliary points used to define these paths are given in Table 7.2 and
Table 7.3. In the LA, separate sets of rules were applied to the endocardial (Ta-
ble 7.5) and epicardial layer (Table 7.6) using the the auxiliary points defined
in Table 7.4. A schematic representation of the paths is shown in Figure 7.2.
Once the sequence of points defining a path was found, the myocyte orientation
was annotated as the normalized difference vector between the current element
and the preceding one. Depending on the course of the path and the structure
of the underlying mesh, this approach can lead to local discontinuities in
myocyte orientation which are not modeled deliberately based on anatomical
observation but have to be considered artifacts. Therefore, the orientation
along the paths was smoothed by a moving average filter implemented as a
symmetric sliding window of size eleven.
As the annotation of myocyte orientation was motivated by the observation
of bundles with a finite thickness, the orientation of the elements along the
path was copied to adjacent elements using a spherical shape element with a
defined radius (see Tables 7.3, 7.5, and 7.6). This interpolation and dilation
step resulted in a tubular structure with coherent myocyte orientation.
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Figure 7.2: Schematic course of the paths along whichmyocyte orientation was annotated.
In the LA, the paths in the endocardial layer ((A) and (B)) and the epicardial layer ((C) and (D))
were annotated using two distinct set of rules, whereas the paths did not differ between
layers in the RA. Different colors represent distinct tissue classes. Blue points represent
the 22 initial landmarks. Dashed lines were only used to compute the location of auxiliary
points and not used to alignmyocyte orientation. (A) and (C) show the anterior aspect, (B)
and (D) the posterior aspect. Figure based on supervised student’s work [388].

For atrial wall segments that are thicker than twice the radius of the dilation
shape element, the annotation of fibers and tissue classes was thus not nec-
essarily transmural. However, particularly complete separation of adjacent
regions by a dilated path is crucial for some steps. Therefore, the spherical
shape element can optionally be replaced by two semi-spheres connected by
a cylinder with the same radius and a variable height yielding a precisely
transmural annotation in each element. This extended approach guarantees
transmurality even for pathological wall thicknesses (see e.g. Chapter 11) on
the expense of computation time.
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Table 7.2: Definition of additional points in the RA used during the annotation procedure.
Missing points in the sequential numbering were identified as non-necessary during the
development of the algorithm.

Point Location Point Location

R10 10% along pR7R8 R22 59% along PM1

R11 3% along pR12R4 R23 43% along PM1

R12 3% along pR3R1 R24 50% along R1R2
R13 85% along pR2R3 R26 22% along PM1

R14 60% along pR4R5 R28 90% along pR12R4
R15 20% along pR12R7 R29 80% along pR12R4
R16 25% along pR14R15 R31 65% along pR12R4
R17 6.6mm along pR13R6 R38 40% along pR2R7
R18 50% along pR14R15 R39 50% along R2R24R28
R20 29% along pR12R4 R40 25% along pR7R8
R21 22% along pR12R7

The interpolation and dilation steps can cause myocyte orientations to deviate
slightly from the tangential direction with respect to the surface which is not
physiological. Therefore, the orientation was projected onto the plane defined
by the closest surface element and normalized. For hexahedral meshes, the
surface mesh considered in this step was smoothed in order to avoid artifacts
due to mesh structure-induced jagged edges.
Besides the annotation of a vector defining the myocyte orientation, a scalar
value representing the tissue class was added for points along the paths and
dilated similarly. Initially, the entire RA was set to the class RA while the LA
was divided into two layers (LAendo and LAepi) for volumetric models.
The CT tapers from 3.96 mm at the SVC to 2.64 mm at the IVC [20]. There-
fore, the radius was linearly decreased from 3.96 mm at R3 via R12 to 2.64 mm
at R4. The number of pectinate muscles (PMs) differs between individuals
and was thus implemented as a variable M with a default value of 15. The
PMs depart from the CT (pR10R8) towards the TVR (pR11R4R14) with the
junctions being distributed equidistantly. Each PM was defined as a path along
a plane (pp) being defined by the start and the end point and R18.
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Table 7.3: Paths defining atrial myocyte orientation in the RA. A path is defined by the start
point, the end point, and potential intermediate points.

Name Material Material Radius Additional
restriction label (mm) remarks

pcR1R2R3 RA SVC 4.29
pcR6R7R8 RA TVR 6.27
pR12R7 RA, SVC, TVR TL 3.96
pR3R12 RA, SVC CT 3.96 – 2.64
ppR12R4 RA, SVC CT 3.96 – 2.64 plane defined by

R12, R4, R14
pR4R14R16 RA CT 2.64
pR16R15 RA, TL CT 4.62
PM1 RA PM 1.32 extendedwidth of

2.64mm for the
first 4.95mm

PM2–PMM RA PM 0.66
pR13R17 RA PM 1.98
pcR17R22R23R26R21 RA RAA 2.64
pR2R24R28 RA, CT, SVC ICB 4.80
pR1R20 RA, CT, SVC ICB 2.64
pR2R7 RA BB 2.00

For the annotation of the LA elements, two distinct sets of rules (see Tables 7.5
and 7.6) were applied for the endocardial and the epicardial elements. Volu-
metric models have to be separated into endocardial and epicardial layers by
preprocessing steps as e.g. described in [404]. Before annotating the respective
layers, the seed points were moved normal to the atrial wall such that they were
located within the right layer. For surface models, endocardial and epicardial
data arrays are created allowing to choose the appropriate set for the desired
application in a flexible way.

7.1.1.1 Pulmonary Veins &Atrial Appendages

The anatomy of the atrial appendages and the pulmonary vein ostia exhibits
pronounced interindividual variability. As this variability also affects wall
thickness and incidence angle, a standard path dilation with a spherical shape
element does not guarantee transmural separation of these structures.
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Table 7.4: Definition of additional points in the LA used during the annotation procedure.
cBoBo represents the center of the bounding box around a path.

Point Location Point Location

L14 80% along pL2L3 L54 cBoBo pL7L9L26L12
L16 50% along pL1L4 L55 45% along pL13L22
L18 50% along pL5L4 L56 50% along pL1L2
L19 50% along pL7L6 L57 60% along pL13L22
L20 50% along pL9L8 L58 30% along pL6L7
L21 50% along pL19L20 L59 70% along pL7L7
L22 10% along pL4L14 L60 20% along pL12L26
L23 50% along pL4L14 L61 20% along pL4L6
L24 10% along pL8L2 L62 50% along pL7L5
L25 80% along pL8L2 L63 20% along pL9L7
L26 20% along pL9L1 L64 80% along pL6L8
L27 75% along pL9L1 L65 70% along pL9L7
L31 30% along pL9L1 L66 60% along pL4L6
L32 70% along pL9L1 L67 20% along pL7L5
L33 5% along pL26L1 L68 closest LA point to R16
L34 6.93mm along pL1L11 L69 70% along pL13L2
L35 10% along pL13L22 L70 30% along pL6L7
L36 25% along pL3L2 L72 80% along pL13L58
L39 cBoBo pL6L8L13 L73 20% along pL13L58
L44 cBoBo pL4L6L13L22 L74 50% along pL60L7
L49 cBoBo pL5L7L12

A B

Figure 7.3: Annotation of the PVs. If non-labeled tissue (blue) was foundwithin the green
cylinder in (A), an outwards-oriented PV was assumed to be present. The PV was cut
open for visualization reasons within the semi-transparent LA wall in (A) but not in (B).
All elements within the green sphere in (B) were labeled as PV tissue. Figure based on
supervised student’s work [388].
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Table 7.5: Paths defining atrial myocyte orientation in the endocardial layer of the LA. A
path is defined by the start point, the end point, and potential intermediate points. The
paths were restricted to thematerial LAendo. Abbreviations: mitral valve ring (MVR).

Name Radius (mm) Additional remarks

pcL1L2L3 5.50 marked asmaterial MVR
pL4L6L8L13L6 2.64
pcL5L7L9L31L12 2.64
pL21L9 2.64 temporary path to separate PV andMVR regions
pL21L8 2.64 temporary path to separate PV andMVR regions
pL5L4 3.00 temporary path to separate PV andMVR regions
pL18L19L21L9 2.64
pL1L32L12L7 2.64
pL1L16L5 3.30
pL14L4 2.64
pcL34L5L10L12R21 2.60 marked asmaterial LAA
pcL6L8L13 - marked asmaterial RIPV
pcL4L6L13L22 6.30 marked asmaterial RSPV
pcL7L9L26L12 - marked asmaterial LIPV
pcL5L7L12 - marked asmaterial LSPV

Not all anatomical models present during the development of this approach
contained outwards-oriented PV ostia. In order to check if an annotatable
PV is present, the normal vector of the plane defined by the three seed points
around the PV and the center of the bounding box of the path defined by
these three points (cBoBo) was computed. cBoBo was then translated along the
normal vector of the plane by half the maximum distance between cBoBo and
the points along the path. An outwards-oriented PV was defined as present
if non-annotated tissue was found within a cylinder of height 2 mm centered
around the translated cBoBo and aligned with the normal vector of the plane
(see Figure 7.3A). If PV was found, a sphere was defined to identify the el-
ements belonging to it. The sphere was centered at the average location of
all points along the PV path and the radius was set equal to the maximum
distance between that point and the points along the path (see Figure 7.3B).
For the annotation, cBoBo was translated from its initial position by 15 mm
along the outwards-pointing normal vector of the plane. This served as a
distant reference point in order to sort the PV points by descending distance to
it. Then, the same averaging approach as used for the appendages was applied.
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7.1. Myocyte Orientation

Table 7.6: Paths defining atrial myocyte orientation in the epicardial layer of the LA. A path
is defined by the start point, the end point, and potential intermediate points. The paths
were restricted to thematerial LAepi.

Name Radius (mm) Additional remarks

pcL1L2L3 5.50 marked asmaterial MVR
pcL6L8L13 3.30 marked asmaterial RIPV
pL26L24L13L22L4L6 3.30
pcL5L12L26L9L7 3.30
pL5L16L23L25L27 3.30
pL26L33L12L7 3.30
pL8L24 3.30
pL5L4 3.63 temporary path to separate

inter-pulmonary vein region
pL22L4L6L8L24 3.30
pL26L9L5L16 3.30
pL7L5L16L23L25L27L12 3.30
pL26L24L13L22L4L6 3.30
pcL34L5L10L12R21 2.60 marked asmaterial LAA
pcL4L6L13L22 5.30 marked asmaterial RSPV
pcL7L9L26L12 - marked asmaterial LIPV
pcL5L7L12 - marked asmaterial LSPV
pL5L10L1 2.00 marked as BB

Regarding the atrial appendages, the points defining the circular paths around
the base of the appendages (pcR17R22R23R26R21 and pcL34L5L10L12R21)
were translated towards their tips (R6 and L11). R17, R22, and R23 were
moved until they were at least 0.66 mm away from previously annotated points.
The threshold for R21 and R26 was 1.32 mm, and 1.65 mm for all LA points.
Circular paths were then computed and smoothed using the translated points.
Moreover, the center of the bounding box of each path (cBoBo) was calculated.
The path was dilated using a cylindrical shape element determined specifically
for each point along the path. The cylinder was confined by four planes defined
by: i) cBoBo, the tip of the appendage and the preceding point on the path, ii)
the two aforementioned points and the subsequent point on the path, iii) cBoBo,
the current point on the path, and the preceding point on the path translated
normally in that node of the current element being closest to the tip of the
appendage, and iv) cBoBo, the current point on the path, and the subsequent
point on the path translated normally in that node of the current element being
most remote to the tip of the appendage. Planes i and ii confined the cylinder
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radially while planes iii and iv defined the height. The isolating paths obtained
through this method were then additionally dilated radially to a minimum
width (see Tables 7.3, 7.5, and 7.6). All elements connected to the tip of the
appendage via elements not being on the isolating paths were annotated as
belonging to the appendage in a final step. For this purpose, all these elements
were sorted by their distance to the tip in descending order and successively
assigned the average orientation of the adjacent elements.
In conclusion, the myocyte orientation in the RA was annotated first. After-
wards, the endocardial layer of the LA and the epicardial layer of the LA
followed. Finally, the PVs and the atrial appendages were annotated.

7.1.1.2 Interpolation and Region Growing

Besides distinct bundles, there are areas in the atria that show coherent prefer-
ential myocyte orientation, e.g. the posterior LA wall in the endocardial layer.
The paths described above define the orientation along the boundaries of these
regions. Tissue areas which were isolated from other non-annotated tissued
by two boundary paths p1 and p2 were annotated by subsequent interpolation.
Each element within the region was assigned the weighted average of the
closest elements in the boundary paths. The weight was the inverse distance to
the respective elements, thus assigning a higher weight to the orientation of
the closer path. The interpolated orientation of node i (fi) was defined as:

f′i =
(

1− d(i,p)
d(i,p)+d(i,q)

)
· fp +

(
1− d(i,q)

d(i,p)+d(i,q)

)
· fq , (7.3)

fi =
f′i∥∥f′
i

∥∥
2

, (7.4)

with p being the closest node on the first path p1, q being the closest node
on the second path p2, fp and fq the respective orientations, and d(x,y) the
euclidean distance between nodes x and y. As the conductive properties are
orientation-dependent but direction-independent, thus the same for 0◦ and
180◦, the myocyte orientation is only defined for -90◦ ≤ x < 90◦ which
was considered during the interpolation. If the scalar product of fp and fq

yielded values <0, fq was flipped by 180◦. This method was applied for the
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between pR12R7R8R9 and pR14R16R15 in the RA. For the latter region, the
plane defined by the points R14, R17, and R4 divided the domain into two half
spaces. Only points in the half space including R8 were considered during the
interpolation. Moreover, points in the half space defined by the plane R14, R7,
and R18 and oriented towards R4 were neglected. The tissue class inferior
isthmus was annotated for the points that lie in the half space not including R8
spanned by R14, R17, and R4 and also lie in the half space not including R20
spanned by R28, R2, and R39.
In the endocardial layer of the LA, interpolation was performed using the
paths around the PVs and the temporary paths defined in Table 7.5, which
were required to isolate the region and removed after the interpolation. More-
over, the area between pL14L4 and pL1L16L5 was interpolated. In the epi-
cardial layer, the area between the pulmonary veins in the posterior wall
confined by pL5L4 and the four paths pL22L4L6L8L24, pL26L9L5L16,
pL7L5L16L23L25L27L12, and pL26L24L13L22L4L6, respectively.
Besides paths, also planes can serve as boundaries for the interpolation. This
method was used for the interpolation of the PMs since the paths were de-
liberately not dilated transmurally. While the myocyte orientation in the
interpectinate regions was interpolated based on the adjacent PMs, the tissue
class was labeled as RA.
Remaining tissue elements that were not annotated during path dilation and
interpolation were handled during a final outside-in region growing step. The
elements in a non-annotated region were assigned the orientation of the clos-
est connected annotated element if the region is surrounded by elements of
only one tissue class. If more than one tissue class was present, the principal
orientation of the adjacent regions was determined as a weighted average with
the weight being the inverse distance to the boundary. Each node i inside the
non-annotated region was then assigned a weighted average of the principal
orientations of the N adjacent regions with the weight λ j of region j defined
as:

λi =
d(rj, i)

−1

∑N−1
l=0 d(rl, i)

, (7.5)

with rj being the node in region j, which is closest to node i.
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The last tissue class being labeled was the sinus node. It was modeled as an
ellipsoid with semi-principal axes of length 2 mm, 2 mm, and 4 mm plus the
average distance between points across the mesh. The ellipsoid was centered at
R3 and the longest axis was aligned along pR3R20. The myocyte orientation
was not altered during this step.

7.1.2 Results

The algorithm annotating myocyte orientation in biatrial meshes was eval-
uated in a cohort of eight anatomically personalized models derived from
MRI data. The characteristics of the patients and volunteers in which the data
were acquired, as well as the anatomical properties of the subject’s hearts
are introduced in more detail in Chapter 9 (Section 9.1.1, see also Table 9.1).
For each subject, a volumetric hexahedral mesh composed of cubic voxels, a
triangular surface mesh, and a volumetric tetrahedral mesh was generated in
order to thoroughly evaluate the methods regarding mesh type independency.
The presented method applied to an isotropic voxel grid width a fixed element
side length of 0.33 mm was already validated in [23]. Therefore, the focus
here is laid on differences between mesh types.
The overall pattern of resulting myocyte orientation and the annotated tissue
labels are shown in Figure 7.4. A comparison of the results obtained for dif-
ferent underlying mesh types shows gross correspondence. In contrast to the
volumetric voxel meshes (left column in Figure 7.4) and tetrahedral meshes
(middle column in Figure 7.4), no fiber crossing in different layer occurred
in the surface meshes (right column in Figure 7.4) as a matter of course. In
Figure 7.4, the epicardial rule set was applied to the surface mesh. In principle,
endocardial and epicardial rule sets could be applied to the respective surface
meshes which could subsequently be merged. Figure 7.5 shows a close up
of the LA in the region where the BB joins the LAA. In this region, the
endocardial layer is aligned almost perpendicular to the myocytes within the
BB, thus causing transmurally crossing myocyte orientation.
The resulting circular myocyte orientation within the LAA is shown in Fig-
ure 7.6. The circumferential alignment and the smooth transition between the
LA wall and the LAA indicate that the method introduced in Section 7.1.1.1
performed well in both types of volumetric meshes.
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Figure 7.4: Annotatedmyocyte orientation in a volumetric voxel mesh ((A), (D), and (G)), a
tetrahedral mesh ((B), (E), and (H)), as well as a triangularmesh of the epicardial surface ((C),
(F), and (I)) of model #5. The color of the lines alignedwithmyocyte orientation encodes
the annotated tissue class. The smoothed endocardial surface is shown in grey. The distinct
endocardial and epicardial two layer architecture can e.g. be seen in the posterior wall
region and at the junction with the inferior PVs in (D) and (E) (dashed circles). In (F), no
crossing fibers are present as only the epicardial layer is present. The orientation along
the IACs introduced in Section 7.2 are already annotated in green (BB) and red (remaining
IACs).

Model #4 deviated from the norm of anatomical properties in terms of the
number of PVs and the shape of the LAA. The subject had two RIPVs (Fig-
ure 7.7A) and an L-shaped LAA (Figure 7.7B) instead of the standard cone
shape. The algorithm coped with this challenge even though no explicit rules
to handle additional PVs were implemented.
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tetrahedral meshA voxel meshB

Figure 7.5: Close up of the annotated myocyte orientation in the BB region in model #4
represented by cylinders superimposed on the smoothed blood pool shown in grey. The
two-layer architecture is clearly visible. Endocardial orientation cylinders are shown in
grey while the epicardial ones are colored in green. The tissue class labels in both the
tetrahedral mesh (A) and the structured voxel grid (B) are encoded by color. Figure based
on supervised student’s work [388].

7.2 Interatrial Connections

The RA and the LA are electrically isolated by the septum and interatrial
conduction is only possible via distinct IACs. The presence, location, and
conductive properties, which all express tremendous variability, affect exci-
tation propagation and the activation pattern significantly, particularly in the
LA [27, 55, 405–408]. However, these IACs are delicate structures, which
makes them hard to identify in imaging data. Moreover, their sole presence
gives no information about their conductive properties. The gold-standard
to assess the intactness of IACs is to perform pacing during invasive elec-
troanatomic mapping studies.
Because of their crucial relevance for atrial activation and arrhythmogene-
sis [405] on the one hand and the difficulties to image the IACs on the other
hand, it is desirable to augment models with initially separated atria with
IACs in a rule-based, flexible manner. An algorithm providing these means is
presented in this chapter.
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Figure 7.6: Close up of the annotatedmyocyte orientation of the LAA region inmodel #3
((A) and (B)), model #4 ((C) and (D)), and model #8 ((E) and (F)) represented by cylinders
superimposed on the smoothed blood pool shown in grey. The tissue class labels in both
tetrahedralmeshes ((A), (C), and (E)) and structuredvoxel grids ((B), (D), and (F)) are encoded
by color. The orientation along the IACs introduced in Section 7.2 are already annotated.
Figure based on supervised student’s work [388].

7.2.1 Methods

IACs are defined by a start point r0 in the RA and an end point l0 in the LA.
A cylinder with a predefined radius r was aligned along the connecting line
between r0 and l0 to restrict the search space for the points derived to actually
set the connection. In a first step, the points r1 and l1 were defined as the
nodes within the search space being located closest to l0 and r0, respectively.
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right pulmonary veinsA left atrial appendageB

Figure 7.7: Close up of the annotated myocyte orientation in the RPV (A) and LAA (B)
region of model #3. The color of the lines alignedwithmyocyte orientation encodes the
annotated tissue class. The smoothed endocardial surface is shown in grey. The two RIPVs
were annotated together (A). The L-shaped LAA was completely labeled with the right
tissue class andmyocyte orientation wasmodeled approximately circumferential.

The midpoint of the line segment defined by r1 and l1 was named m and used
to identify the actual start and end points of the IAC: r2 defined as the RA
point being closest to m within the search cylinder, and l2 being the closest
LA point to m.
Paths between r0 and r2, as well as between l0 and l2 were computed using
Equation (7.1). These paths were dilated with a radius of 0.83 mm and used to
annotate myocyte orientation and tissue labels. The actual bridge was inserted
into the model as a pill-shaped object built of a cylinder running from r2 to
l2 with the predefined bridge radius and a hemisphere with the same radius
attached to each end of the cylinder. The hemispheres formed connections to
the atrial walls providing a smooth transition without jagged edges.
For voxel-based meshes, the elements within the IAC could just be labeled.
For unstructured grids, the surface of the IAC was generated of triangles using
the fundamental forms provided by the VTK library [409]. For volumetric
tetrahedral grids, the surface was then filled with tetrahedra using Delaunay
triangulation provided by the TetGen library [410].
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r0l0 r

RA
LA

r1
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Figure 7.8: Sketch of how the final IAC start point in the RA r2 and the end point in the LA
l2 are determined starting from the initial points r0 and l0 . A search cylinder with radius r is
defined around the direction connection between r0 and l0. The point l1 is the closest LA
point to r0 within this cylinder. r1 is defined analogously. r2 and l2 are determined as the
points within the respective atrium being closest tomwhich splits the direct connection
between r1 and l1 in half.

The interface between the surface of the IAC and the atrial walls was treated
in an automated post-processing step guaranteeing proper connectivity of the
elements. Myocyte orientation was aligned with the path running from r2 to l2

within the cylinder. The dilation step with a spherical element and the radius
of the cylinder did also cover the hemispheres.
The implemented algorithm can augment biatrial models with freely defined
IACs as well as several standard IACs (Figure 7.9) based on the seed points
introduced in Section 7.1.1 (see Table 7.2 and Table 7.4): BB, two connections
on the posterior side (middle posterior connection (MPC), lower posterior
connection (LPC)), a connection via the coronary sinus (CS), as well as two
connections on the anterior side (upper anterior connection, lower anterior
connection). The standard search radius for IACs was set to the maximum
of 2× the average mesh resolution and 1 mm. The radius of the connections
was 1.65 mm. The MPC ran from point R31 in the RA to point L55 in the LA,
the LPC from R29 to L35. The lower anterior connection linked the points
R40 and L36. The upper anterior IAC connected the points R1 and L22. The
connection at the CS was established via R14 and L1 with a search radius of
the maximum of 3× the average mesh resolution and 1 mm.
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Figure 7.9: Schematic course of the IACs (dashed orange lines) connecting the start points
in the RA and the end points in the LA directly. The RA and LA extension of BB is indicated
by themagenta line. The dashed black lines represent auxiliary paths used to locate start
and end points (orange) of the IACs. Blue points represent the 22 landmarks points. (A)
shows the anterior aspect, (B) the posterior aspect.

The BB differs from the other IACs in terms of spatial extent. The search
radius for the start and end points r2 to l2 was 8 mm (cf. Figure 7.8). Besides
the actual IAC bridging the septum from R38 to L10, the BB reaches out to the
bases of the RAA and the LAA (see Table 7.3 and Table 7.6). This extension
can either be restricted to existing elements, thus only affecting tissue labels
and myocyte orientation or modeled as a tube-like structure protruding from
the atrial walls. For the latter option, a radius of 2.31 mm was used.

7.2.2 Results

The algorithm to introduce IACs in a rule-based manner was tested using the
models of all eight subjects in all three mesh variants resulting in 24 mod-
els as was the case for the myocyte orientation. Elements were successfully
introduced in the meshes as exemplary shown for the voxel-based model
(Figure 7.10A) and the tetrahedral model (Figure 7.10B) of subject #4. In (Fig-
ure 7.10B), the coalescence of the BB tube and the LA tetrahedra in the fused
mesh can be appreciated. Moreover, the default connections BB, posterior
IACs, and CS are included in Figures 7.4, 7.5, and 7.6.
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A B

CS
LAC

BB

UAC

Figure 7.10: Voxel-basedmodel (A) and tetrahedral model (B) of subject #4with inserted
IACs. The presented anterior aspect shows BB, the two additional upper (UAC) and lower
(LAC) anterior connections, as well as the RA landing point of the IAC via the CS. Tissue
class labels are color-coded. Figure based on supervised student’s work [388].

7.3 Atrial Ablation Patterns

Besides the anatomy, the myocyte orientation, and the IACs, also non-excitable
scar tissue plays a vital role determining the atrial activation patterns and
arrhythmogenesis. Radio-frequency ablations aims at rendering tissue non-
excitable. For an in silico evaluation of different ablation patterns in order to
identify the optimal option, it is thus imperative to introduce standard ablation
patterns in anatomically individualized models.
In this section, an approach to augment models with standard ablation patterns
based on the methods presented in the previous sections of this chapter is
presented.

7.3.1 Methods

Ablation lines are defined by a start point, and end point and optionally a
number of additional intermediate points. The points were connected with
a path defined by Equation (7.1) which was later on dilated with a spherical
shape element of a predefined radius. The spherical shape element can be
centered at the endocardial or the epicardial surface depending on the desired
application.
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Table 7.7: Paths defining ablation patterns A to J based on [411] and K toMbased on [412].
The location of the points defining the patterns is given in Table 7.4.

Pattern Path Pattern Path

A pL8L6L4L5L7L9L56 H pcL8L13L69L4L5L12L26L9
pL26L56

B pcL5L12L7 I all paths from pattern H plus
pcL60L26L9L59L74 pL8L1
pcL4L58L72L57L69
pcL70L8L13L73

C pcL8L13L69L4L6 J all paths from pattern H plus
pcL9L7L5L12L26 pL13L68
pL6L57 pL5L11
pL12L65

D pcL8L13L69L4L6 K pcL8L13L69L4L5L12L26L9
pcL9L7L5L12L26 pL20L2

pL5L10L34L12

E all paths from pattern D plus L all paths from pattern K plus
pL61L62 pL9L7L5
pL26L56 pL4L5L8

F all paths from pattern D plus M all paths from pattern D plus
pL66L67 pL5L10L34L12
pL26L56
pL6L57
pL12L65

G all paths from pattern F plus
pL63L64

Moreover, transmural ablation scars can be introduced using a pill-shaped dila-
tion element with varying height at each point depending on the wall thickness
as introduced in Section 7.1.1. A border zone with a fixed width around the
scar was included by applying the algorithm twice: first with a width defined
as the sum of the border zone and the scar width, thus labeling the border zone.
The second run considered only the width of the actual scar and overwrote the
tissue label within the scar.
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Figure 7.11: Schematic representation of the standardized ablation patterns provided
by the automatic algorithm and defined in Table 7.7. Patterns A to J are based on [411],
patterns K toM are based on [412]. Figure based on supervised student’s work [388].

Besides a flexible interface allowing to define individual ablation patterns
through tubes and spheres with fixed radii, 13 standardized ablation patterns
based on the points derived from the anatomical landmarks (Table 7.4) can
be automatically generated. Table 7.7 lists the paths that make up the stan-
dardized ablation patterns based on publications by Reumann et al. [411] and
Deisenhofer et al. [412]. The pattern A to M are schematically visualized in
Figure 7.11.
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voxel mesh tetrahedral mesh surface meshvoxel mesh tetrahedral mesh surface meshA B C

Figure 7.12: Resulting ablation by applying pattern G in model #4. The core lesion with
a radius of 2mm (black) is surrounded by a border zone with a width of 1mm (white) in
the semi-transparent biatrial model. Transmural ablation was applied in the voxel grid (A)
and the volumetric tetrahedral mesh (B) revealing the different mesh structures at the
interface between the border zone and LAmyocardium. In the triangular surfacemesh (C),
ablation was applied to the epicardial side.

7.3.2 Results

The automatic placement of the nine ablation patterns introduced in Table 7.7
was assessed using models from all eight subjects in all three types of meshes:
structured voxel grids, volumetric tetrahedral meshes, and triangular surface
meshes. Moreover, all four variants to place the ablation (starting from the
endocardium, from the epicardium, from within the wall, and transmurally)
were performed successfully yielding a total of 1248 results. Figure 7.12
shows transmural ablation of pattern G including a border zone in model #4 in
the three different mesh types.

7.4 Discussion

The rule-based algorithm to annotate myocyte orientation and tissue labels
was originally introduced and thoroughly evaluated in [23]. The myocyte
orientation pattern was compared to manual placement based on histology
data [57, 401] and image data in models of the Visible Human dataset [413,
414]. Moreover, anatomical images from literature were used a qualitative
reference [19, 392, 401] and a high resolution microscopic image stack of
sheep atria [415] served as a quantitative reference with myocyte orientation
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determined by a gradient-based structure tensor approach [416]. The rule-
based approach was able to reproduce the overall pattern of fiber orientation
observed in the microscopy data even though the anatomy of the sheep atria
differed from human atria. Comparison to previously published manually
annotated datasets revealed similar major axes for most of the elements.
The main progress achieved by the work presented here is a coherent and
consistent description of the set of rules used to annotate myocyte orientation,
tissue classes, as well as standard ablation patterns. Moreover, the imple-
mentation provides a mesh-type-agnostic algorithm that can be applied to all
common data structures used in computational modeling of cardiac electro-
physiology and biomechanics. Furthermore, the implementation is flexible
regarding the resolution of the underlying mesh. By replacing the few remain-
ing absolute distance measures by normalized values, the algorithm could be
used for pediatric scenarios or hearts of small animals, as well. The object-
oriented design of the software using modern software engineering methods
yielded an extendable software with maintainable code.
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CHAPTER8

Analysis of Atrial Flutter
Vulnerability

The long-term success rate of atrial fibrillation (AF) ablation is unsatisfactory
low, particularly in patients suffering from persistent AF. Besides AF recur-
rence, the development of post-ablational atrial flutter (AFlut) represents a
major problem [8, 65–68]. In more than half of the patients, sustained AF is
reinitiated within 5 years after ablation or AFlut develops [417]. More than
40% of patients in the STAR AF II study by Verma et al. suffered from recurrent
AF within 18 months independent from the ablation approach chosen [149].
20% of recurrences after AF ablation in elderly are due to AFlut [418]. In the
general AF population, 18.5% of patients were diagnosed with AFlut during a
median follow-up time of 421 day post ablation [419]. Liang et al. observed
AF or organized atrial tachycardia in 53% of 300 patients within the first
six weeks after pulmonary vein (PV) antral isolation [420]. AF and AFlut
are often even combined endpoints in studies evaluating the success of AF
ablation [417]. Waldo and Feld highlighted the inter-relationships between
AF and AFlut [421]. AF precedes AFlut in most cases forming the required
line of block between the vena cavae by fibrillatory conduction. Moreover,
ablation of atrial tissue can lead to a substrate for AFlut. Particularly gaps
in linear lesions forming isthmuses or revitalized tissue areas forming zones
of slow conduction render the atria vulnerable. Also PV isolation has been
associated with a substantial risk to develop AFlut [422–424]. Castréjon et al.
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reviewed the occurrence of organized atrial tachycardia such as AFlut after
AF ablation and discuss that more extensive left atrium (LA) ablation renders
the atria more vulnerable to AFlut [425]. However, the exact origin of the
pathologic substrate is not understood. Therefore, a method to assess the
vulnerability to AFlut in personalized computational models is presented in
this chapter. Besides an identification of possibly AFlut sustaining pathways
in the observed state of the patient (baseline), the approach allows to assess the
effect of different therapeutic strategies such as ablation patterns, pharmaco-
logical compounds, or other anatomical and electrophysiological interventions
in silico before actually performing them.
The monodomain reaction-diffusion model presented in Section 3.2.1 and
used to simulate excitation propagation in Chapters 5 and 6 is based on the
diffusion of ions and reactions of the plasma membrane. As such, it considers
electrotonic effects and source-sink relations resulting in e.g. convex or con-
cave wavefronts. On the one hand, the monodomain approach provides the
means to simulate complex excitation patterns as chaotic fibrillation including
wave breaks. Moreover, the underlying cell models can be arbitrary complex
to incorporate e.g. advanced calcium handling providing the means to study
early or delayed afterdepolarizations. On the other hand, the monodomain
model is computationally expensive [426]. The simulation of 1 s excitation
propagation in a volumetric three-dimensional model of the atria takes several
hours wall-clock time on modern machines. Hence, they are not suitable for a
thorough exploration of parameters regarding effects on the three-dimensional
whole organ level, as e.g. the vulnerability to arrhythmia caused by ectopic
stimuli from a multitude of locations and at varying time steps.
Eikonal approximations of the continuous dynamics of the reaction-diffusion
system allow to simulate excitation propagation in terms of activation times
with significantly reduced computational load [161] as only one static, non-
linear partial differential equation (PDE) derived from e.g. the monodomain
model has to be solved, which makes it interesting for simulations of car-
diac activation [427, 428]. In contrast to level set methods in general, short-
est path [429] and fast marching methods assume monotonously expanding
wavefronts, however. Thus, a specific approach considering multiple fronts,
reentry, and anisotropic conduction was developed for cardiac electrophysiol-
ogy [162, 176] based on a fast marching method on structured grids [430–433].
Several extensions provide the means to consider wavefront curvature and
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the mesh structure if that is needed for the specific application [434, 435].
Ablation of ventricular tissue in order to prevent scar-related ventricular tachy-
cardia was presented as a potential application for this method [162].
Dang et al. compared different standard ablation patterns for AF using an
idealized computational model [436]. Reumann et al. evaluated different pat-
terns regarding AF prevention in a more complex model [411]. Hwang et al.
proposed a method to test AF ablation patterns in silico using a monodomain
approach on anatomically, but not electrophysiologically personalized mod-
els [437]. Thus, no substrate information regarding fibrosis, zones of slow
conduction or the degree of electrophysiological remodeling is considered.
McDowell et al. presented a proof-of-concept how computational modeling
can predict ablation sites terminating rotors driving AF in personalized models
including fibrosis distribution [438]. Bayer et al. evaluated the potency of PV
isolation, mitral and roof lines, ablation guided by rotor mapping, and lesions
streamlining sinus activation regarding the termination of AF in silico [439].
In a very recent work, Zahid et al. employed the minimum cut algorithm to
predict optimal ablation sites for AFlut in the LA [440]. The potential of
clinically-derived computational models to optimize catheter ablation of AF
was recently reviewed by Zhao et al. [441]. They conclude that high-resolution
three-dimensional models of functionally and structurally mapped atria of
the exact patient are imperative to provide clinically relevant insights on a
personalized level.
Lines et al. presented a method to parametrize a monodomain simulation in a
standard bi-atrial model aiming to incorporate electrograms acquired during
electroanatomic mapping studies in order to replicate clinically mapped AFlut
in silico [442]. The extracellular potentials at 32 computational nodes served
as a boundary condition for the solution of the monodomain system. While the
algorithm synchronized the simulation to the synthetic reference simulation,
the algorithm is computationally expensive and only allows to study clinically
observed cases in silico but cannot provide information on the vulnerability
to AFlut.
The method presented here is the first allowing to comprehensively assess the
vulnerability to AFlut in personalized models considering both anatomical and
electrophysiological properties allowing to evaluate therapeutic approaches
such as ablation in silico.
Part of this work is based on a supervised student’s project [443].
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8.1 Methods

A pipeline consisting of several methods was developed in order to assess the
vulnerability to AFlut. In this section, the different steps in the workflow are
presented.

8.1.1 FastMarching Simulation of
Excitation Propagation

The basic concept of the eikonal-based simulation of excitation propagation
and the fast marching scheme were introduced in Section 3.2.2. The existing
concepts were extended to consider restitution of conduction velocity (CV) and
effective refractory period (ERP). Restitution of both parameters with respect
to basic cycle length (BCL) was determined by pacing in a one-dimensional
tissue strand using the Courtemanche et al. cell model [47] coupled in a
monodomain approach as introduced in Chapter 5. The resulting curves for
CV and ERP were approximated by exponential decays:

CV (BCL) = A−B · exp
(
−BCL

C

)
, (8.1)

with A, B, and C being determined through standard Matlab curve fitting
methods. The BCL was defined as the time passed since the last activation of
the respective node and initialized with a user-defined value either globally or
for each node individually. The restitution of the ERP was described similarly.
In this study, an implementation of the fast marching approach was used
to trigger excitations from a multitude of locations sequentially in order to
identify potential loops along which AFlut can be sustained as described in
the next section. The algorithm was implemented in a modular and extensible
C++ framework.

8.1.2 Identification of Flutter Loops

For each stimulus location, activation times were computed and stored together
with information regarding the spread of excitation in terms of a vector pointing
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from the activating to the activated node. Wavefront collision sites are points
of latest activation on circular paths composed of two paths originating from
the stimulus site to opposite sides. On the one hand, these paths are the shortest
in the sense of wave propagation, i.e. they are not artificially prolonged by
zig-zag patterns but determined as the shortest connection by the fast marching
algorithm. On the other hand, they are locally the longest as two independent
waves collided on the loop. A wavefront collision for node i was identified if
the following condition was fulfilled for any neighboring node j:

ai

‖ai‖2
+

aj∥∥aj

∥∥
2

< 0.99 , (8.2)

with ai being the vector pointing from the node that activated node i to node i
itself. The condition identifies all points at which the vectors meet at an angle
∈ (π/2,3π/2) including π , thus pointing in opposite directions. From the sites
of collisions, loops were defined by the two traces along the steepest negative
activation time gradient leading back to the stimulus location. A loop was thus
composed of a circular, ordered series of nodes. Along the loop, the round
trip time (RTT) was calculated considering the heterogeneous and anisotropic
tissue properties in terms of CV and ERP (cf. Equation (8.1)). If a loop did
not fulfill the wavelength (WL) condition

max
i

(ERPi(RT T ))< RT T , (8.3)

it was disregarded. Here, ERPi was the ERP of node i considering a BCL
equal to the RTT according to Equation (8.1). i comprised all nodes spanning
the loop candidate.
The fact that the loops were traced back all the way to the initial stimulus
site introduced artifacts as a dynamic wave would cut short between the two
traces from the site of collision to the stimulus site in many cases. In the easier
case, both half loops shared a part of the loop. Under such circumstances, all
common nodes could be neglected, thus shrinking the loop (Figure 8.1A).
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shared path no shared pathA B

Figure 8.1: Artifacts introduced by loop tracing from sites of wavefront collision (orange
star) to the stimulus location (yellow star). As in (A) both half loops share part of the
loop (red segment), the loop can be constricted to the blue circle. In (B), the wavefronts
collidedon theanteriorwall and the sharedpathwas alreadydisregarded (note thedistance
between the yellow star and the yellow loop on the LA roof). However, the loop would still
be cut short by a propagating wave between the LPC and the IAC at the CS.

In most cases, however, this approach did not remove all artifacts. In Fig-
ure 8.1B, a shortcut of the two half loops running adjacent on the posterior
LA wall can be anticipated between the posterior IACs and the IAC via the
CS. Therefore, a geometric snake approach considering anisotropy was imple-
mented in order to constrict the loops like a rubber band by minimizing the
spline energy. Evolving snakes on triangular meshes were proposed before
for mesh scissoring operations and constriction detection [444–448] and were
adapted to the requirements of the specific application in this work.
The geometric snake is an active contour model that is restricted to a polygo-
nal surface mesh. In this work, the parametrization-free implementation for
triangular meshes proposed by Bischoff and Kobbelt [444, 445] was used. A
snake was represented as a polygon in space (Figure 8.2). The vertices of the
snake are referred to as snaxels and represented by lower case vectors in the
following. Snaxels were constrained to lie on edges of the mesh. Furthermore,
the segments of the snake (connections between snaxels) had to lie in the
interior of triangles. An oriented snaxel s could thus be defined as:

s = fs + ps · (ts − fs) , (8.4)

with the points ts and fs defining the supporting edge on which the snaxel s

lies and ps ∈ (0,1) defining the position on the edge.
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Figure 8.2: Geometric snake on a triangular mesh. The snake segments run on the sur-
face of the triangles from snaxel to snaxel. Each snaxel is constrained to its supporting
edge. Snaxel s is supported by the edge running from fs to ts and directly connected to its
predecessor p0 and its successor n0.

The snake evolves by assigning a scalar speed vs to each snaxel s:

ps ← ps +Δt · vs , (8.5)

with Δt being a virtual time increment. The time increment was chosen as 0.5
in this study striking a good balance between stability and convergence speed.
By performing the update step, the snaxel was shifted along the supporting
edge of the mesh es (Figure 8.3):

es = ts − fs . (8.6)

In order to avoid local oscillations, not only the direct neighbors were consid-
ered when calculating the velocity:

vs =
1( √

es·Ds·es

CVS(RT T )

)
·∑N−1

i=0 ai
·

N−1

∑
i=0

[
ai (d (pi,s)+d (ni,s))

]
, (8.7)

with N being the order of the approach, a being the order divisor ∈ (0,1], and
Di being the anisotropy tensor according to Equation (3.20).
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Figure 8.3: Concept of the snaxel velocity calculation for orderN=1 and isotropic tissue
properties. Snaxel s is connected to its first order neighbors p0 and n0 (A). The sum of the
connecting vectors sp0 and sn0 (B)+(C) is projected onto the supporting edge es (D). The
projection is scaled by the conduction velocity in order to obtain the velocity of the snaxel
(E).

As snaxels were located on edges between two nodes and the material proper-
ties CV and ERP was defined for each node, the closer node was considered
(referred to by upper case vectors using the same letter). Thus, CVs(RT T ) was
the CV of the closest node to snaxel s considering the RTT of the last iteration
as the BCL according to Equation (8.1). pi is the ith predecessor of snaxel s
and ni is the ith successor. In this study, the order N was chosen as 30 and a
was set to 0.91 based on experience gained in pilot studies. The anisotropic
distance projected on the supporting edge and weighted by the heterogeneous
CV d (p1,p2) was defined as:

d (p1,p2) =
1

CVP1(RT T )
(p1 −p2)DP1

· es

‖es‖2
. (8.8)
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If an update step shifted a snaxel on one of the supporting nodes or beyond
them (ps ≤ 0 or ps ≥ 1), the snaxel was duplicated and distributed on all
adjacent edges with an initial p value of 0.05. Thus, the new snaxels were
located 5% away from the crossed node with respect to the length of their
new supporting edge. During the evolution, one more constraint was checked
and enforced. No two consecutive snake segments could lie within the same
triangle. If this was the case because a snaxel was distributed after passing
a supporting node, the interior snaxel was disregarded and the first and third
snaxel were connected directly. Snaxel collisions caused by snaxels crossing
each other on the same supporting edge were resolved by merging the respec-
tive snake segments. After each iteration, the WL condition Equation (8.3)
was checked. Snakes not fulfilling it were disregarded immediately. The
iterative algorithm was stopped once the absolute RTT reduction over the last
20 iterations was less than 7 ms or the relative reduction was less than 10%.
This choice of parameters yielded stable convergence and is further discussed
in Section 8.3.
The presented approach controls the topology, detects and resolves self-
collisions at sub-element size precision, and inherently avoids error prone
back projections of snaxels onto the mesh.

8.1.3 Eikonal-Diffusion Phase Interpolation

The methods introduced above allow to identify paths in an atrial model that
can potentially sustain AFlut. However, the paths are not necessarily the dom-
inant one and might thus not be expressed in dynamic scenarios. An example
is shown in Figure 8.4 where several paths run from the septal side of the
tricuspid valve (TV) to the right atrial appendage (RAA) and to the CS region.
Each path is locally the shortest and long enough to sustain AFlut according
to the WL condition. However, according to Huygen’s principle only one path
will dominate the excitation pattern distal to the constriction at the TV where
all paths narrow. Thus, the remaining paths will be suppressed. In order to
identify the dominant path, i.e. to distinguish between theoretically vulnerable
paths and practically inducible paths, the initial state for a dynamic simulation
had to be extrapolated from a single loop to the entire simulation domain.
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Figure 8.4: Example of an AFlut vulnerability map. The vulnerable paths are marked in
yellow on the brown substrate of the RA; the blood pool is indicated in gray. Several paths
run from the septal side of the TV to the RAA.

Jacquemet proposed an eikonal-diffusion approach for the initiation of reen-
trant cardiac propagation [449, 450]. The eikonal-diffusion equation can
be derived from the monodomain equation Equation (3.12) using singular
perturbation theory [449, 451, 452]:

‖c∇ta‖2 = 1+∇ · (D∇ta) x ∈ Ω , (8.9)

n ·D∇ta = 0 x ∈ ∂Ω , (8.10)

with the symmetric positive definite tensors c and D being the link to the
monodomain equation, Ω being the computation domain, and n being the
unit vector normal to the boundary ∂Ω. The scaled propagation velocity c in
mm/rad (mm/s × T/2π) was defined as:

c =

(
T 2 kmσ

4π2 β Cm

)1/2

, (8.11)

and the scaled diffusion tensor D in mm2 defined as:

D =
T σ

2π β Cm
, (8.12)
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with the period of the reentry T (RTT), the surface to volume ratio β , and the
membrane capacitance per unit area Cm defined as introduced in Section 3.2.1.
The parameter km depends on the cell model and results in a plane wave
CV of

√
kmσ/βCm. In this study, km was set to 2.0833 ms−1 as suggested

in [449, 450].
As we aim to simulate reentrant activity, the activation time was scaled:

τ (x) = 2π
ta (x)

T
mod 2π , (8.13)

with T being the period of the reentry, thus RTT in our case. To compensate
for the 2π jumps occurring in the phase τ , a transformation to phase space
was established by φ := exp( jτ), with j denoting the imaginary unit. This
transformation yields an adapted eikonal-diffusion equation [449]:

‖c∇φ‖2 = 1+ Im(∇ · (φ ∗D∇φ)) x ∈ Ω , (8.14)

|φ |= 1 x ∈ Ω , (8.15)

n ·D∇φ = 0 x ∈ ∂Ω , (8.16)

with Im() denoting the imaginary part and ∗ being the conjugate vector.
For D → 0, Equation (8.9) reduces to the classical eikonal equation Equa-
tion (3.13). If D is non-zero, wavefront curvature-dependent effects are in-
cluded. A purely diffusive case can be considered for D = λ D̃ with λ →+∞:

∇ · (D∇τ) = 0 x ∈ Ω\Γ , (8.17)

n ·D∇τ = 0 x ∈ ∂Ω\Γ , (8.18)

τ(x) = τ0(x) x ∈ Γ , (8.19)

with Γ being the subdomain posing a Dirichlet boundary condition when for-
mulating a Laplacian interpolation problem [453] to compute an initial phase
distribution φ0 for the whole domain Ω.
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Algorithm 8.1 Iterative eikonal solver algorithm proposed by Jacquemet [450].

Generate initial estimate for φ using e.g. Laplacian interpolation
while ‖θ‖2 < tol do

ComputeA(φ) and f(φ)
SolveA(φ)θ = f(φ) for θ
Substract mean: θ ← θ−mean(θ )
Under-relaxation: θ ← θ ·min(1,θmax/max(|θ |))
φ ← φ exp( jθ)

endwhile

The initial estimate for the solution of Equation (8.14) satisfying the constraint
Equation (8.15) and the boundary condition Equation (8.16) was iteratively
refined using a linearized eikonal approach [450, 454]. In each iteration, the
phase of each node was shifted:

φi ← φi · exp( jθi) , (8.20)

with θ defined as follows:

‖c∇φ‖2− Im(∇ · (φ ∗D∇φ))−1 = ‖c∇φ‖−1
2 Im(φ∇φ ∗c∗c∇θ)+∇ · (D∇θ) .

(8.21)

This scheme approximates Equation (8.14) up to first order in ∇θ and is equiv-
alent to the Newton root finding method applied to the PDE [449, 450]. The
interested reader is referred to [450] regarding the details of the discretiza-
tion to triangular surface meshes resulting in a linear system representing the
linearized eikonal-diffusion equation:

A(φ)θ = f(φ) , (8.22)

with explicit expressions of A and f as derived in [449]. The iterative algo-
rithm is summarized in Algorithm 8.1. The tolerance was set to 10−9 and the
under-relaxation threshold was set to 0.1 [449]. The method was implemented
in Matlab leveraging sparse matrix functions as proposed in [450] and spatially
varying tensors c and D in order to consider heterogeneous tissue properties in
terms of CV and its anisotropy.
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Figure 8.5:Overview of the algorithm to compute vulnerability maps (left) and optionally
transfer the AFlut scenarios to dynamic simulations (right).

The resulting phase on the whole computational domain was transferred to an
initial state of the dynamic fast marching simulator introduced in Section 3.2.2.
The nodes in the first 50% of the cycle were included in the REFRACTORY
list, the next 20% in KNOWN, the next 20% were included in the T RIAL
list, and the last 10% in UNKNOWN. Nodes in the KNOWN list have a
fixed activation time influencing the activation time of the nodes in the T RIAL
list. The element with the smallest timestamp in the T RIAL list is added to
the KNOWN list and all UNKNOWN neighbors are added to the trial list.
The BCL of all nodes was initialized with the RTT and the time of the last
activation ta of each node i was set by mapping the phase back to an activation
time and starting the dynamic simulation at time t = RT T :

ta(x) = RT T
φ(x)
2π

. (8.23)

Figure 8.5 summarized the pipeline used to generate AFlut vulnerability maps
and transfer the results to dynamic simulations.
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Figure 8.6: Fitted exponential restitution curves of ERP (A), (B) and CV (C), (D), as well as
theWL as the product of the formermeasures (E), (F) for different anatomical regions in
the atria (A), (C), (E) and different substrates (B), (D), (F). In (B), (D), and (F), the dashed lines
represent the respective substrates under the influence of 2.3 μMamiodaronewhereas
the dotted lines represent the influence of 0.21 μM dronedarone. Exponential curves
according to Equation (8.1) were used to fit the output of monodomain tissue strand
simulations. The coefficients are listed in Table 8.1.

8.2 Results

The restitution of CV and ERP was determined through monodomain simu-
lations in a one-dimensional tissue strand as detailed in Section 5.1.2 using
variants of the Courtemanche et al. cell model [47]. CV and ERP were de-
termined for 50 BCLs between 200 ms and 1300 ms distributed linearly in
frequency domain. The monodomain conductivity σ was set to 0.076 S/m
yielding a CV of 750 mm/s at a BCL of 1000 ms in the RA model.
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Table 8.1: Coefficients of exponential curves representing the restitution of CV and ERP
according to Equation (8.1) and the anisotropy k according to Equation (3.19) for different
anatomical structures in the atria and different homogeneous substrates. Parameterswere
estimated based on the output of monodomain tissue strand simulations.

CV ERP

A (mm/s) B (mm/s) C (ms) k A (ms) B (ms) C (ms)

RA 537.4 3.02×106 30.3 3.75 318.4 312.9 165.0
LA 536.4 8.73×105 30.2 3.75 282.2 149.7 216.1
SN 1129.7 6.35×106 30.3 1.00 318.4 312.9 165.0
scar 0 0 1.0 1.00 318.4 312.9 165.0
CT 538.4 2.85×105 45.1 6.56 331.5 1000.0 94.0
PM 417.7 2.35×106 30.3 10.25 318.4 312.9 165.0
BB 587.5 3.30×106 30.3 9.00 318.4 312.9 165.0
inf. isthm. 537.4 3.02×106 30.3 1.00 318.4 312.9 165.0
PV 547.1 1.26×105 40.7 3.75 276.1 55.8 915.4
RAA 537.4 3.67×106 29.9 3.75 302.7 92.3 224.0
LAA 536.7 2.49×106 27.1 3.75 262.3 62.2 255.7
TVR 534.7 1.56×106 23.9 3.75 256.8 128.9 305.4
MVR 534.6 2.83×105 25.8 3.75 227.9 88.7 382.9

control 453.6 2.55×105 30.3 318.4 312.9 165.0
cAF 436.0 0 1 173.6 79.7 276.2
N588K 452.3 3.79×105 30.4 245.7 30.9 575.3
L532P 449.8 1.53×105 18.1 161.8 37.6 337.2

Different anatomical structures were investigated to account for regional het-
erogeneity using the data presented by Krueger et al. [158]. Furthermore, the
four substrates introduced in Chapter 5 were analyzed with and without the
influence of the pharmacological compounds amiodarone and dronedarone
(cf. Section 6.1). Figure 8.6 shows the exponential fit of the restitution curves
based on the coefficients in Table 8.1. The A and B coefficients for the CV of
the different substrates were scaled with a factor of 0.6 yielding a total RA
activation time of 192 ms in the control model without any drug applied.
The ERP for long BCLs ranged between 225.0 ms for the mitral valve ring
(MVR) to 331.5 ms for the crista terminalis (CT). CT and the RA myocardium
showed a steeper decrease towards shorter BCLs compared to the remaining
regions. The CV for long BCLs differed by less than 1% for the different
anatomical structures (Figure 8.6C).
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deviation from analytic solution (%)A computation time (ms)B

Figure 8.7: Deviation of the fast marching solution from the analytic solution of a radial
wave (A). Excitation spread was computed on quadratical planar meshes composed of
right-angled triangles. Themean error ‖e‖1 and themaximum error ‖e‖∞ was evaluated
for different numbers of nodes. The dependence of the computation time for one complete
activation cycle on the number of nodes (B) was dominated by the linear part ofO(N logN).

The restitution curves of the different substrates (Figure 8.6B+D) in general
and under the influence of drugs are discussed in detail in Section 6.1.2.
Regarding the AFlut vulnerability, the WL is the decisive factor. Both different
regions and different substrates exhibited distinct behavior at different BCLs.
At short BCLs, CT was the region with the shortest WL opposed to long BCLs
where it was the region with the longest BCL, e.g. (Figure 8.6E).

8.2.1 Activation Times

The fast marching algorithm and its implementation were verified and bench-
marked by comparison to the analytical solution of a radial wave, quantitative
comparison to the monodomain model on planar meshes with the same nodes,
and qualitative comparison of the excitation pattern on a biatrial geometry.
For a radial wave originating from a single node and spreading in an isotropic
substrate, an analytical solution of the activation time map can be obtained.
These analytical values were compared to the results yielded by the fast march-
ing implementation on planar meshes composed of ordered triangles. The
test mesh was of size 1 m × 1 m and a CV of 750 mm/s was assumed. The
deviation was dependent on the number of nodes used to discretize the domain
(Figure 8.7A). For node counts above 2000, both the maximum error and the
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mean error remained stable indicating a converged solution. The implemen-
tation scaled as expected considering the algorithm complexity O(N logN)

with the linear part prevailing over the logarithmic part for relevant numbers
of nodes (Figure 8.7B). The benchmark was performed on a single core of
an Intel Core i5 machine at a clock rate of 2.9 GHz. On this system, regular
excitation patterns could be computed in real-time for models comprising up
to 50,000 nodes.
Besides comparison to analytical solutions, monodomain simulations on pla-
nar patches served as a benchmark (Figure 8.8A+B). The time at which Vm

exceeded –40 mV was used as the activation time. Each voxel of the structured
grid used in the finite difference monodomain simulation was split into two
triangles to obtain a triangular surface mesh for fast marching simulations. As
the nodes of both meshes coincided, quantitative comparison was possible
without the need for interpolation. The maximum deviation of activation
times was 1.88% for ordered triangles (each voxel split by a diagonal from
the bottom left to the top right, Figure 8.8C) and 1.78% for random split ori-
entation (Figure 8.8E). The fast marching activation times were slightly later
than the monodomain activation times on average. For moderately anisotropic
substrates, the deviation depended on the assumed myocyte orientation. While
the deviation was low for myocyte orientation coinciding with edges of all tri-
angles (1.58%, Figure 8.8F), it was significantly higher for myocytes oriented
45◦ to the right-angled triangle edges (up to 23.3%, Figure 8.8D). The devia-
tion was small in the direction of fast propagation and highest in the direction
of slowest propagation, in which the fast marching activation times were later.
The faster propagation in the monodomain simulation can be explained by the
higher amount of activated tissue perpendicular to the myocyte orientation
causing a higher source-to-sink ratio. This effect was not considered in the
fast marching simulation as no anisotropic correction was implemented.

201



Chapter 8. Analysis of Atrial Flutter Vulnerability

73
8m

m
/s

388m
m

/s

738mm/s

73
8m

m
/s

m
/s

isotropic

d
if

fe
re

n
ce

 f
as

t 
m

ar
ch

in
g

 t
o

 
m

o
n

o
d

o
m

ai
n

 (
m

s)
 

anisotropic

738mm/s

73
8m

m
/s

73
8m

m
/s

388m
m

/s

A B

C D

d
if

fe
re

n
ce

 f
as

t 
m

ar
ch

in
g

 t
o

 
m

o
n

o
d

o
m

ai
n

 (
m

s)
 

m
o

n
o

d
o

m
ai

n
 a

ct
iv

at
io

n
 t

im
e 

(m
s)

d
if

fe
re

n
ce

 f
as

t 
m

ar
ch

in
g

 t
o

 
m

o
n

o
d

o
m

ai
n

 (
m

s)
 

738mm/s

73
8m

m
/s

m/s

73
8m

m
/s

388mm/s

73
8m

m
/s

E F

Figure 8.8:Monodomain activation times of almost radial waves in the isotropic (A) and
an anisotropic case (B) on quadratic tissue patches with 30 cm side length. Fast marching
activationwas later for nodes along the diagonal in both ordered (C) and randomly oriented
right-angled triangles (E). The deviation was larger for anisotropy 45◦ to themain triangle
orientation axes (D) compared tomyocyteorientation alignedwith the right angled edgesof
the triangles (F). Excitationwas triggered from the red area in the schematic representation
in the top right corner of each panel. Note the different scales of the color bars.
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monodomain fast marchingA B

Figure 8.9: Comparison of monodomain activation times in a volumetric biatrial model
(A) with fast marching activation times on a triangular surfacemesh of the same subject
embedded in three-dimensional space (B). Earliest activation (blue) was triggered from the
junction of the SVCwith the RAA.

A segmented magnetic resonance imaging (MRI) dataset was used to generate
a volumetric structured grid for the monodomain simulation as well as a
triangular mesh of the smoothed epicardial surface suitable for fast marching
simulations. The activation patterns matched qualitatively as can be seen in
Figure 8.9. Nearest neighbor comparison yielded an average activation time
deviation of 4% and a maximum deviation of 8% between the fast marching
and the monodomain simulations.

8.2.2 Flutter Loops and Geometric Snakes

Excitation propagation was calculated from several stimulus sites and sites
of collision were detected using the activation vectors as shown in Fig-
ure 8.10A+B. From the sites of wavefront collision, the activation front was
traced back to the stimulus site along the gradient of the activation time field.
Combining the traces obtained by following the activation waves of both collid-
ing waves yielded a set of initial loops for each stimulus node (Figure 8.10C).
The WL condition Equation (8.3) was not fulfilled by several loops that could
thus be neglected during the following steps (lighter colored loops in Fig-
ure 8.10C).
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activation time and vectors collison sitesA B unconstricted loopsC

Figure 8.10: Activation time resulting from a stimulus at the junction of the SVCwith the
RAA (yellow star) ranging from early (blue) to late (red). The direction of the activation is
indicated by arrows (A). Points of wavefront collisions were detected and are indicated by
reddots in (B). (C) shows the loops composedof the two traces leading fromthe site collision
to the stimulus site (yellow star). The yellow loops fulfill theWL condition Equation (8.3)
whereas the light gray loops do not andwere thus not considered for further steps.

A geometrical snake was initialized for each valid loop candidate as illustrated
in Figure 8.11. Each node along the loop was surrounded by a micro-snake
with segments covering all adjacent triangles (Figure 8.11A). By enforcing the
constraints introduced in Section 8.1.2, the initial micro-snakes were merged
into two distinct snakes: one snake on the outside of the loop nodes with
consistently outwards-oriented snaxels and one inside-oriented snake on the
inside of the loop nodes. The outwards-oriented snake could be identified
as the longer one and disregarded. In this way, a consistently oriented snake
adjacent to the loop nodes was constructed.
Figure 8.12 shows a geometrical snake initialized along a flutter loop candidate
in the LA. The stimulus leading to that loop was applied between the two left
PVs (yellow star in Figure 8.12A). The segment connecting the loop candidate
with the stimulus location was shared by both half loops and disregarded
before the snake was initialized. The initial RTT of 390 ms was reduced to
304 ms by iterating the snake according to Equation (8.7). The converged
snake reflects myocyte orientation and CV heterogeneity (Figure 8.12F).
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A B

C

Figure 8.11: Initialization of a geometric snake along a loop (blue band). Initially, a micro-
snake is established around each loop node (A). Snake segments are represented by thin
grey tubes. Enforcing the constraints regarding themaximum number of snaxels per edge
lead to two consistently oriented snakes (B), (C). Only the shorter snakewas considered
for constriction while the longer onewas disregarded.

8.2.3 VulnerabilityMaps

By triggering stimulation from different points, identifying loop candidates,
and constricting them using geometrical snakes, AFlut vulnerability maps
were generated as outlined in Figure 8.5. The vulnerability maps were sen-
sitive to tissue anisotropy as indicated by the lower number of flutter paths
in the isotropic model (Figure 8.13A) compared to the anisotropic case (Fig-
ure 8.13B). While the heterogeneous A and B values defining the CV according
to Equation (8.1) were scaled in the isotropic case to match the activation time
of the last element in the anisotropic case (158 ms), only 28.7% of all elements
were covered by vulnerable paths in the isotropic case compared to 50.9% in
the anisotropic case.
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RTT 390msA

RTT 316msD

RTT 360msB

RTT 306msE

RTT 322msC

RTT 304msF

Figure 8.12: Evolution of a geometric snake covering the LA. Initially, the snake covered the
loop found by the collision tracing algorithm (blue band) corresponding to a RTT of 390ms
(A). By iteratively constricting the snake (B-F), the shortest RTT of 304ms considering
heterogeneous CV and anisotropywas found. In this way, the influence of the particular
choice of the stimulus site (yellow star in (A)) could be reduced.

In heterogeneous models regarding both CV and ERP, no vulnerable paths
could be found in both isotropic and anisotropic setups with the CV scaled to
obtain the same total activation time as in the anisotropic, heterogenous case.
The number of vulnerable paths and the share of RA myocardium covered by

them was highly dependent on the CV. In the homogeneous anisotropic setup,
the coverage increased from 0% at a CV of 475 mm/s to over 90% for CVs of
360 mm/s and more (Figure 8.14A). The degree of coverage did also depend
on the number of different stimulus locations evaluated (Figure 8.14B). Con-
sidering all 19,296 RA nodes (minimum distance: 0 mm) yielded a coverage
of 54.5% for a fixed CV of 425 mm/s. Requiring a minimum distance of 1 mm
between stimulus points reduced their number to 8,254 without affecting the
result significantly (50.9%). Considering less points yielded lower coverage
rates (39.4% for 2 mm =̂ 2,136 nodes, 3.8% for 20 mm =̂ 19 nodes).
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isotropic anisotropicA B

Figure 8.13: Influence of anisotropic conduction on a vulnerability map in the RA. Vulnera-
ble paths are marked in yellow on the brown RAmyocardium; the blood pool is indicated in
gray. While the latest activation coincided in the isotropic (A) and anisotropic model (B),
anisotropy lead to a higher number of vulnerable paths. The heterogeneous CV definitions
are detailed in the text.
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sensitivity to CVA sensitivity to stimulus densityB

Figure 8.14: Sensitivity of the vulnerable paths to changes of the CV (A) and the stimulus
point density (B). The CVwas altered in a homogeneous, isotropic setup causing different
degrees of RA coverage by vulnerable paths for a fixed stimulus density of 1mm. In (B), the
distance between stimulus points was varied for a fixed CV of 425mm/s.

The degree of coverage was also highly dependent on the substrate as detailed
in Table 8.2. 8,254 stimulus points with a minimum distance of 1 mm were
considered using the CV and ERP values fitted from the monodomain model
output using the biophysically detailed Courtemanche et al. cell model [47]
given in Table 8.1. While the fitted exponential restitution of the ERP and the
CV was modeled homogeneously across the RA, its heterogeneous anisotropy
(k in Table 8.1) was kept.
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Table 8.2: Degree of coverage of RA elements with paths vulnerable to AFlut for different
substrates and antiarrhythmic drugs amiodarone (amio) and dronedarone (drone). In the
right three columns, theA andB values determining the CV according to Equation (8.1)
were scaled tomatch the activation time of the last element in the control substrate with
no drug applied.

Degree of coverage

Original CV Total activation timematched

no drug amio drone no drug amio drone

Control 18.1% 70.5% 0.0% 18.1% 0.0% 0.0%
cAF 96.0% 96.3% 95.6% 96.2% 96.1% 94.9%
N588K 93.2% 94.1% 0.0% 93.0% 77.8% 0.0%
L532P 96.2% 96.5% 34.5% 96.3% 96.0% 11.1%

Both the cAF substrate and the two human ether-à-go-go-related gene (hERG)
mutations were more vulnerable to AFlut than the control model represent-
ing healthy myocytes. The higher degree of coverage under the influence of
amiodarone observed for all substrates can be explained by the WL restitution
(Figure 8.6F). The WL was shortened by the administration of amiodarone
due to conduction slowing caused by the sodium channel inhibition. This
effect was most pronounced in the control substrate and was reflected in the
vulnerability maps as well (Figure 8.15).
In order to separate the effects of the different substrates and compounds
on CV and ERP, the total activation time of the RA was matched with the
activation of the last element in the control model and no drug (191 ms) in
a second set of simulations (Figure 8.16), i.e. the A and B parameters deter-
mining the CV according to Equation (8.1) were scaled while keeping the
anisotropy ratio k constant. In this way, only the effect on the repolarization
(ERP) was considered leading to a reduction of vulnerable paths under the
influence of amiodarone in all substrates and a more pronounced reduction
under the influence of dronedarone compared to Figure 8.15.
Besides evaluating different substrates, distinct spatial heterogeneities were
introduced in the RA model. The normal RA myocardium was parametrized
with an isotropic CV of 700 mm/s and an ERP of 250 ms for all BCLs. A circu-
lar zone of slow conduction on the posterior wall was modeled (Figure 8.17A).

208



8.2. Results

co
n

tr
o

l

no drug amiodarone dronedarone

cA
F

N
58

8K
L

53
2P

Figure 8.15: Vulnerability maps of the RA for combinations of different substrates and
pharmacological agents. Besides a control substrate representing healthy myocytes, a cAF
remodeled substrate (neglecting changes of cell-to-cell coupling), and two hERG muta-
tions were evaluated. Standard concentrations of the antiarrhythmic agents amiodarone
(2.3 μM) and dronedarone (0.21 μM)were administered in the center and right columns.
Vulnerable paths are marked in yellow on the brown RA myocardium; the blood pool is
indicated in gray.

Depending on the CVs inside and outside a circular zone of slow conduc-
tion, the wave might be faster bypassing the zone than propagating through
it. Comparing the time the wave takes to bypass the circle with the time
it takes to propagate through the zone of slow conduction yields a critical
CVslow/CVnormal ratio of 2/π ≈ 0.63. If the ratio is higher, the dominant path
is through the zone of slow conduction. If it is lower, the bypassing wave is
faster.
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Figure 8.16: Vulnerability maps of the RA for combinations of different substrates and
pharmacological agents. In contrast to Figure 8.15, only the ERPwasmodeled substrate-
specific, thus only considering differences in repolarization.

Therefore, the zone of slow conduction within the surrounding tissue conduct-
ing at 704 mm/s was parametrized with a CV of 500 mm/s resulting in a ratio of
0.71 (Figure 8.18B), and 250 mm/s (=̂ 0.36, Figure 8.18C). In contrast to the
control model (Figure 8.18A), the zones of slow conduction yielded additional
flutter paths. For the CV of 500 mm/s in the zone of slow conduction, 24.1%
of the RA were covered by vulnerable paths (Figure 8.18B) in contrast to
14.1% in the control case (Figure 8.18A). Additional flutter paths crossed the
periphery of the zone of slow conduction and thereby prolonged the RTT.
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zone of slow conductionA circular ablationB ablation with gapC

Figure 8.17: Substratemodifications introduced in the RAmodel: a zone of slow conduc-
tion (cyan in (A)), a circular ablation lesion (black in (B)+(C)), as well as a gap in the ablation
lesion (C).

For the slower CV of 250 mm/s, the entire zone of slow conduction was cov-
ered by vulnerable paths yielding a total RA coverage of 47.8% (Figure 8.18C).
The paths were not constricted to the faster route outside the zone as the route
through the zone of slow conduction was optimal considering the field of view
of the geometrical snake. When computing an inducability map (see Figure 8.5
and Discussion), the driving path would be running around the zone of slow
conduction, though.
The second spatial substrate modification was an ablation lesion which encir-
cled the RA completely from both sides of the TV (Figure 8.17B). Rather than
being a clinically used ablation pattern, this scenario serves as an example
separating the RA into two electrically isolated regions. The lesion was mod-
eled as non-conductive, thus no flutter paths could cross it. In an additional
scenario, a gap in the ablation lesion was assumed at the central posterior wall
(Figure 8.17C and Figure 8.18E). In case of the complete lesion, no flutter
paths were identified (Figure 8.18D) as the WL condition could not be fulfilled
on any of the two separated, smaller substrates. The gap in the ablation lesion
yielded numerous vulnerable paths running through the gap at various angles
(Figure 8.18E). The flutter paths covered 42.9% of the RA in contrast to 14.1%
in the control case.
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controlA zone, CV = 500mm/sB zone, CV = 250mm/s

ablationD

C

ablation with gapE

Figure 8.18: Vulnerability maps of the RA for different substrate modifications. Compared,
to (A), a zone of slow conduction was assumed (cf. Figure 8.17A) in (B)+(C). A circular
ablation lesionwas introduced in (D) (cf. Figure 8.17B). In (E), a gap in the ablation lesion
wasmodeled on the central posterior wall (cf. Figure 8.17C).

The time to compute a complete vulnerability map depends on the number of
stimulus points considered and the number of loops candidates fulfilling the
WL condition over time. The computation is faster, the fewer loop candidates
there are and the earlier the constricted loops are disregarded because they
no longer fulfill the WL condition. For the RA mesh consisting of 38,033
triangles, computation was timed on an Intel Xeon E5-2697V2 machine with
twelve cores at a base clock rate of 2.7 GHz. The control vulnerability map in
Figure 8.18A with a coverage of 14.1% was computed within 4.0 min whereas
it took 5.5 min to compute the vulnerability map for the RA including the zone
of slow conduction causing a coverage of 47.8% (Figure 8.18C).
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single vulnerable path extrapolated phaseA B
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Figure 8.19: Individual vulnerable paths in the RA (A) were extrapolated to the whole RA
in phase domain (B) by applying the eikonal-diffusion approachwith the path from (A) as a
Dirichlet boundary condition.

8.2.4 Phase Extrapolation

The vulnerable paths represented in the vulnerability maps and identified using
the methods described above were extrapolated on the whole RA in terms of
phase using the methods described in Section 8.1.3. Towards this end, the
eikonal-diffusion based approach was employed. Each vulnerable path (Fig-
ure 8.19A) was extrapolated in phase space individually (Figure 8.19B). The
eikonal-diffusion approach converged within 16 to 18 iterations for assumed
CVs between 0.1× and 2× the ground truth value and assumed RTTs between
0.3× and 3× the ground truth value.
The phase map was then used to determine the initial state of a dynamic fast
marching simulation. Figure 8.20 gives an example of how the dominant
path determines the reentry driving AFlut. The reentry was initiated with
the wavefront starting from the septal side of the TV running towards the CS
region (Figure 8.19B). However, reentry around the TV could be sustained
(Figure 8.20). Thus, the wavefront passing over to the posterior wall at the
junction with the inferior vena cava (IVC) (cf. Figure 8.19B) and running
upwards collided with the downwards wave passing over at the junction of the
SVC with the RAA and ceased. As the ERP of the tricuspid valve ring (TVR)
was shorter than that of the surrounding RA myocardium (cf. Figure 8.6A),
the driving reentry circle around the TVR excited the remaining RA every
other cycle (Figure 8.20A vs. Figure 8.20D).
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t = 407msB t = 521msC t = 568msD

t = 618msE t = 688msF t = 706msG t = 766msH

t = 325msA

unknown trial known refractory

Figure 8.20: Dynamic fast marching simulation with AFlut around the TV. Every second
cycle, tissue towards the RAAwas non-refractory (D) and excited by the dominant flutter
path (E).Wavefronts collided in the CS region (F) such that only the dominant flutter path
around the TVwas still active and driving reentry (H). The blood pool is indicated in gray.

8.3 Discussion

In this chapter, a workflow to identify vulnerable paths potentially sustaining
AFlut was presented. The approach builds on fast marching simulations of
excitation propagation and geometric snakes to constrict paths identified on
the basis of wavefront collision sites. Throughout the whole pipeline, heteroge-
neous, anisotropic, and frequency-dependent tissue properties are considered
in terms of CV and ERP.
The fast marching simulation was verified against analytical solutions for
simple excitation patterns and against activation times determined in mon-
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domains. The maximum error was below 5% with respect to the analytical
solution for node distances below 2.8 mm considering physiologic CVs. The
implementation allows real-time simulations of activation times for models up
to 50,000 nodes on a standard desktop machine. Regarding the monodomain
simulation, the deviation was higher for high anisotropy ratios resulting in
wavefronts with differing curvature. This issue is discussed further in the
Limitations section below (8.3.1).
The geometrical snake approach presented by Bischoff and Kobbelt [444, 445]
was implemented and adapted to the excitation propagation application sce-
nario considering heterogeneous, anisotropic, and frequency-dependent tissue
properties. Applying the geometric snake approach to loop candidates iden-
tified as circular paths from an initial stimulus point via a site of wavefront
collision back to the initial stimulus yielded AFlut vulnerability maps. The
number and the location of the identified vulnerable flutter paths was sensitive
to anisotropy (Figure 8.13), the substrate properties regarding CV and repolar-
ization, as well as modification of these parameters due to pharmacological
compounds (Figure 8.15 and Figure 8.16), zones of slow conduction or abla-
tion lesions (Figure 8.18), and most importantly the assumed CV (Figure 8.14).
Anisotropic substrates were more vulnerable than isotropic tissue when match-
ing the total activation time of the RA due to the concentration of flutter paths
along the fast-conducting bundles. The WL is a crucial parameter as can be
seen by the higher number of vulnerable paths identified for the cAF and
hERG mutated substrates compared to control. While dronedarone reduced
the AFlut vulnerability, amiodarone rendered the substrate more vulnerable
due to the reduced WL caused by the slowed CV (cf. Figure 8.6). When
only considering the effect on repolarization, thus altering ERP to represent
the influence of the drug, amiodarone exhibited antiarrhythmic properties as
well. The effect was less pronounced than for dronedarone, though. Zones
of slow conduction increased the number and the density of vulnerable paths
as the cycle length increases both by conducting through the slow zone and
by bypassing it. While ablation lesions isolating different regions completely
rendered the RA invulnerable to AF, a small gap in the lesion increased the
number of vulnerable paths threefold compared to control. This effect can be
explained by the narrow isthmus formed by the gap in the lesion. Moreover,
shortcuts leading to wavefront collision and ceasing the reentrant activation
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the biggest effect on the number of vulnerable paths and the degree of RA
coverage by them. A CV slowing by 25% rendered an invulnerable RA model
highly vulnerable with a flutter path coverage of over 90%. This finding high-
lights the importance of a reliable CV estimation to draw relevant conclusions
from personalized models using the method presented here. The CV of the
individual patient has to be measured in a spatially resolved, and preferably
frequency-dependent, manner. Weber et al. proposed a method to estimate
local CV and its restitution based on a cosine fit method [455, 456]. The ad-
vent of new electro-anatomical mapping systems and catheters with improved
signal quality, in particular the RhythmiaT M mapping system and the OrionT M

catheter from Boston Scientific, Natick, MA, USA, as well as sophisticated
signal processing approaches gives rise to hope for such CV mapping in the
near future [457, 458].
The computation of a single activation sequence was faster than real-time,
a complete vulnerability map took several minutes, however. Most of the
computational cost was due to the constriction of the loop candidates using
the geometrical snake approach. While the time spent to calculate excitation
propagation accounted for only a minor share, less complex alternatives to
the fast marching algorithm exist. Graph-based approaches, such as the A∗

algorithm [161, 173, 459] or the fastest route algorithm [460] are however only
faster if the activation time at only a subset of nodes is needed. Cellular au-
tomata (e.g. [461]) on the other hand do not consider quadratic approximation
of activation times. The computational complexity of the geometrical snake
implementation could be reduced by optimizing the number of neighbors
considered for the calculation of the snaxel velocity (Equation (8.7)) and the
convergence criteria. Indeed, the approach considering N = 30 neighbors with
decreasing weight could be approximated by a spatial multi-grid approach
starting with distant neighbors in early iterations and focussing on closer nodes
at later iterations. When aiming at an interactive modification of the substrate,
e.g. by introducing virtual ablation lesions, results from previous evaluation
can be reused for regions not affected by the last modification. Moreover, in-
termediate results could be precomputed, thus trading memory footprint in for
reduced computation time. This potential for optimizations makes interactive
assessment of ablation therapy in almost real-time seem achievable.
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the first work to assess the vulnerability to AFlut based on an individualized
anatomical model besides a very recent work by Zahid et al. with substantially
increased computational effort [440] to the best of my knowledge (see also
review in [11]). Child et al. introduced the reentry vulnerability index (RVI)
as a quantitative metric based on the difference between activation and re-
polarization intervals at pairs of spatial locations [462]. The RVI correlates
with exit sites of scar-related reentrant arrhythmia as commonly observed in
the ventricles [463]. However, it aims at predicting functional lines of block
rather than providing a comprehensive map of vulnerable paths based on the
individual geometrical properties. The same holds for a study by Wallman et
al. quantifying the arrhythmogeneity of scar and left-to-right heterogeneity in
the ventricles [464].
Lines et al. proposed a method to replicate clinically mapped atrial tachycar-
dias in silico [442]. Trächtler et al. used the fast marching implementation
presented here for a similar in silico reproduction of clinical cases [465, 466].
While both methods allow to test ablation strategies regarding the termina-
tion of the specific reentry, they do not allow to draw conclusions regarding
the vulnerability to AFlut along other paths. Thus, these approaches do
not provide the means to optimize AF ablation aiming at the prevention of
post-ablational AFlut.
The method presented here could be further developed regarding two aspects.
First, the extrapolated phase map obtained by the eikonal-diffusion approach
could not only be used to initialize a fast marching simulation but also to
replicate the flutter path in a monodomain simulation. Matene et al. proposed a
suitable approach [290], which they used to initiate AF by extrapolating phase
singularities [467, 468]. By initiating the same flutter loop in both the fast
marching and the monodomain environment, the fast marching approach could
be validated with respect to macro-reentry. Second, the dominant flutter paths
sustaining reentry in the dynamic simulations could be tracked and compared
to the paths used to extrapolate the initial state. In this way, not only a map
of vulnerable flutter paths but also a map of inducible flutter paths could be
computed.
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The complete pipeline could be validated using clinical cases once tools for
a spatially resolved CV estimation become available. The anatomical model
of the individual patient built from MRI data would be augmented with a
priori knowledge and LA breakthrough measurements using the methods
presented in Chapter 7. CV and ERP would be parametrized using intracardiac
measurements complemented with model-based assumptions. Preferably, the
subjects should be recruited from patients undergoing ablation of AFlut that
developed after AF ablation. If a gap in the ablation lesion is identified during
the second procedure, the lesions placed during the AF ablation procedure
as well as the gap in it would be included as further a priori knowledge. The
clinically observed flutter path should then be found in the vulnerability (and
potentially inducability) map. Moreover, the ablation terminating the flutter in
the clinical setting should also remove the specific vulnerable path from the
map.

8.3.1 Limitations

The implementation of the fast marching algorithm used in this work does
consider anisotropic CV but does not consider recursive anisotropic correction
as proposed by Sermesant et al. [176]. In [162], the authors of [176] showed
that the computation time is higher by a factor of ≈1.6 when considering
anisoptropic correction. While the influence of the anisotropic correction has
never been evaluated systematically, it should not be too relevant for moderate
anisotropy values. For the application presented in this chapter, subtle differ-
ences of the activation sequence do not play a role for the final result as fast
marching activation times serve only as the input for subsequent processing.
Another limitation of the presented method is that it is restricted to monoatrial
flutter paths. The reason for this can be seen in Figure 8.21 in which a biatrial
loop candidate was constricted using the geometrical snakes approach. While
a shortcut within the LA exists, it cannot be considered by the snake as it is
constrained by the IACs and can thus not cross the septum. However, the
method could be extended to identify shortcuts within the two atria by also
considering monoatrial loops in addition.
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Figure 8.21: Limitation of geometrical snakes concerning biatrial loops. While a shortcut
between the two purple stars exists (dashed green line), the snake cannot constrict further
and remains on the dotted orange line due to the discrete IACs.

The final constricted biatrial loop could be used to initialize additional monoa-
trial loops comprising the segment of the biatrial loop and shortest connection
between the two open ends at the IACs. When computing inducability maps
instead of vulnerability maps, this limitations is not relevant since reentry
along a loop as in Figure 8.21 could not be induced if it could not be induced
as a monoatrial loop as well.
Regarding the dynamic simulation of AFlut, the missing representation of elec-
trotonic coupling is a limitation. A situation as depicted in Figure 8.20 with a
consistent 2:1 conduction pattern would hardly be possible in a monodomain
simulation. The longer action potentials (APs) of the RA tissue surrounding
the TVR would delay repolarization and recovery from refractoriness of the
TVR myocytes. The driving flutter path around the TV would thus be slowed
resulting in a 1:1 conduction pattern, eventually.
The biggest hurdle is the sparsity of the available clinical data to characterize
an individual’s substrate and the associated uncertainty. The importance of a
reliable CV estimation is highlighted by the fact that a CV uncertainty of Δc
corresponds to scaling of the atrium by a factor of

√
Δc. Considering that the

minimal WL needed to sustain reentry is defined by the product of CV and
ERP, uncertainty of ERP plays an important role as well [469, 470]. Improved
electro-anatomic mapping systems providing better signal quality and simul-
taneous mapping using a multitude of electrodes, as well as advanced signal
processing methods make it seem probable to have suitable data available in

219



Chapter 8. Analysis of Atrial Flutter Vulnerability

by probabilistic modeling using Bayesian inference and compressed sensing
methods [471].

8.3.2 Conclusion

In this chapter, a comprehensive method to analyze the vulnerability to AFlut
was presented. The individual anatomy as well as electrophysiology in terms
of CV, ERP, and their frequency-dependence was taken into account. This tool
provides the means to evaluate potential ablation strategies in silico regarding
their arrhythmic potential for AFlut before actually applying them in the
electrophysiology lab. In this way, this work can be one piece in the puzzle to
overcome the learning by burning paradigm [472, 473] and eventually reduce
the number of patients suffering from post-ablational AFlut.
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UNDERSTANDING THE
BODY SURFACE P-WAVE





CHAPTER9

Contribution of the Left and the
Right Atrium to the P-Wave

As outlined in Chapter 2, atrial rhythm disorders are progressive diseases.
Thus, they are more likely to be treated effectively, the earlier they are detected.
In the best case, patients at risk to develop atrial rhythm disorders can be
identified before the onset of the arrhythmia. Adequate preventive measures
can then prevent or at least postpone the outbreak in a large share of patients.
The P-wave in the body surface electrocardiogram (ECG) has long been used
to gain insight into anatomy, function and dysfunction of the atria [474, 475].
As a 12-lead ECG is routinely acquired non-invasively as part of a large
number of examinations, ECG-derived measures represent ideal risk markers
due to their availability and low associated costs [476]. These properties
render ECG-based markers more attractive than alternatives like ultrasound,
magnetic resonance imaging (MRI), electroanatomical mapping, or ECG
imaging. Therefore, clinicians aim to stratify arrhythmia risk based on P-wave
markers [477, 478]. The assessment of morphological features of the P-wave
is recommended in current guidelines for ECG interpretation [479] regarding
the diagnosis of atrial abnormalities such as left or right atrial enlargement.
The anatomy and physiology of the left atrium (LA) are of particular interest
regarding the risk to develop atrial fibrillation (AF).
Nevertheless, we are lacking mechanistic understanding of left and right
atrial contribution to the P-wave to date despite a multitude of empirical
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studies correlating P-wave features with properties of the LA and right atrium
(RA) [480–482].
Some literature sources state that the P-waves originating from left and right
atrial sources are almost simultaneous, thus fused into a single peak [479].
Others argue that the left and right atrial P-wave can be almost perfectly
separated in the time domain due to the delayed activation of the LA [483].
The question which parts of the atria contribute to the P-wave during different
temporal phases and the projection onto different leads is of great importance
to evaluate the theoretical limits regarding the diagnostic potential of specific
P-wave markers. Even though many aspects of AF induced remodeling affect
atrial repolarization, which is reflected in the atrial T-wave not normally visible
in the ECG, anatomical alterations, fibrosis and gap junction remodeling can
potentially be reflected in the P-wave. Thus, the answer to the aforementioned
question will foster our understanding and eventually help to identify patients
at risk early before severe remodeling sets in. Optimized preventive and
therapeutic measured can then relieve part of the burden related to atrial
arrhythmias from both patients and healthcare system.
The study presented in this chapter uses an in silico approach to separate the
contributions of the LA and the RA to the P-wave in a perfectly controlled
environment. The analysis is conducted on a population of eight individualized
anatomical models.
The P-wave was investigated in silico in several aspects before. A double
layer can serve as a source model for the P-wave as shown in [484], however
anisotropic conductivity tensors are required [485]. While Lu et al. presented a
reasonable P-wave obtained using a generic, homogeneous thorax model [486],
other studies showed that at least the blood and the lungs with their respective
properties need to be considered [177, 487]. Colman et al. analyzed the
effect of acetylcholine on the P-wave using a detailed cellular model and a
simplified torso [488] and assessed the accuracy of a clinically used algorithm
to locate atrial focal points [489]. In contrast to all aforementioned studies,
Krueger et al. conducted finite element computations instead of using the
boundary element method to investigate P-wave genesis and alterations related
to hemodialysis [23, 490]. Several computational studies assessed P-waves
during AF [491–494], however I am not aware of any work distinguishing
between RA and LA contribution besides two very recent studies [495, 496]
published after this study was submitted as a conference paper [497].
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Parts of this work have been published as a conference contribution [497]
and are currently under review [498] as a journal paper and a conference
contribution [499].

9.1 Methods

9.1.1 Cohort of AnatomicalModels

In earlier work [23, 183], anatomical models of eight individuals were con-
structed at IBT based on magnetic resonance images. The MRI studies were
approved by the institutional review boards of the centers where the data
were acquired and participating patients and volunteers gave informed con-
sent. The study population characteristics are summarized in Table 9.1. The
imaging data were segmented using a combination of automatic and manual ap-
proaches [183]. For the atrial wall, a homogeneous thickness of 2.5–3 mm had
to be assumed due to the poor MRI contrast. The segmented atria were then
converted to a structured grid with an isotropic voxel resolution of 0.33 mm
resulting in between 5.4×105 and 2.6×106 elements for excitation propagation
simulations. The segmented torsos were converted to a tetrahedral mesh using
the CGAL library [500] resulting in between 1.1×106 and 2.9×106 elements.
These existing volumetric bi-atrial models were augmented with tissue labels
as a basis for a heterogeneous electrophysiological model and myocyte ori-
entation allowing for anisotropic conduction using the approach described
in Chapter 7. In order to control right-to-left atrial conduction, the initially
isolated atria were connected via four discrete interatrial connections (IACs):
Bachmann’s bundle (BB), middle posterior connection (MPC), lower posterior
connection (LPC), and at the coronary sinus (CS) [32, 33].
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Table 9.1: Characteristics of the eight patients and volunteers (subjects) used to build the in
silicomodels. Abbreviations: Heart rate (HR), control (Ctl), long-QT syndrome (LQT).

Subject #1 #2 #3 #4 #5 #6 #7 #8

Age (years) 47 19 26 50 27 25 38 66
Weight (kg) 52 66 79 79 100 70 90 100
Diagnosis Ctl LQT2 Ctl LQT1 Ctl Ctl Ctl AF
HR (1/min) 81 76 69 62 70 53 86 62
PWD (ms) 95 95 107 91 103 97 99 176
RA blod volume (ml) 98 52 117 88 132 99 72 155
LA blod volume (ml) 55 27 63 79 81 87 53 136
RAmyocardium (1×103 mm3) 26 12 27 38 52 21 36 38
LAmyocardium (1×103 mm3) 19 10 25 32 26 19 29 34

Table 9.2: Relative values ĝx of ion channel conductivities representing regional hetero-
geneities [158] with respect to the original Courtemanche et al. model of human atrial
myocytes [47]. Monodomain conductivity perpendicular tomyocyte orientation σ⊥ with
relation to theworkingmyocardium (87mS/m) and anisotropy factor. Italic values differ
from normal myocardium.

Anatomical structure ĝKr ĝto ĝCa,L σ⊥/σ⊥,RA/LA (%) anisotropy

RA / LA 1.0 1.0 1.0 100 3.75
Crista Terminalis 1.0 1.0 1.67 100 6.56
Atrial appendages 1.0 0.68 1.06 100 3.75
Atrio-ventricular rings 1.0 1.53 0.67 100 3.75
Pectinatemuscles 1.0 1.0 1.0 66 10.52
Bachmann’s Bundle 1.0 1.0 1.0 116 9.0
Inferior isthmus 1.0 1.0 1.0 86 1.0

9.1.2 ElectrophysiologicalModeling

Ionic currents in the voxels representing atrial myocytes were computed using a
heterogeneous version of the Courtemanche et al. membrane model [47, 158].
As introduced in Section 3.1, the ion currents are calculated according to
Ohm’s law by multiplying the difference between the transmembrane voltage
Vm and the respective Nernst potential EX with the maximum conductivity
gX and the open probability of the channel. Based on prior work [158], the
maximum conductivities gX of several channels were altered by multiplica-
tion with a factor ĝX as given in Table 9.2 to account for regional heterogeneity.
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Besides maximum ion channel conductivities, also monodomain tissue con-
ductivity and its anisotropy regarding myocyte orientation was modeled het-
erogeneously according to Table 9.2. After initialization of the cell models
in a single cell environment to establish steady-state, stimulation was trig-
gered from the junction of the superior vena cava (SVC) and the right atrial
appendage (RAA) (cf. EAS3 in Section 10.1). Excitation propagation was cal-
culated by the monodomain reaction-diffusion solver acCELLerate [169, 170]
using a finite element method on regular hexahedral grids and explicit Euler
integration with constant time stepping of 20 μs.
The sources of the extracellular potential within the torso and on the body
surface that are measured during ECG acquisition are the impressed currents
stemming from the gradient of Vm as introduced in Section 3.4. These currents
were masked in order to separate the LA from the RA P-wave.
In order to obtain the parts of the P-wave stemming from the RA, the sources
in the LA were muted by setting σi∇Vm to 0 in all LA elements and vice
versa. The conductivity tensors σ were set according to the data by Gabriel &
Gabriel [501] and the reduced bidomain formulation (Section 3.4, [177]) was
solved with a temporal resolution of 1 ms once for the LA sources and once
for the RA sources. Thanks to the linearity of the problem, the regular P-wave
could be obtained by the superposition of the LA and the RA P-waves. The
vectorcardiogram (VCG) was derived from the 12-lead ECG using the inverse
Dower matrix [61]. The electrical axis of the atria α was calculated using the
P-wave amplitudes in leads aVF and I:

α = arctan
(

2√
3

aV F
I

)
(9.1)

9.2 Results

Figure 9.1 shows the activation time maps yielded by the monodomain simula-
tions. After the stimulus at the junction between the SVC and the RAA, the
excitation spread predominantly along the fast conducting bundles, such as the
crista terminalis (CT). The last elements were activated 76–112 ms after the
stimulus. The characteristics of the resulting P-waves are given in Table 9.3.
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A B

0 ms

107 ms

Figure 9.1: Local activation times resulting from the excitation propagation simulation
usingmodel #5. Excitation originated from the junction of the SVC and the RAA indicated
by the yellow star. Anterior view in (A), posterior view in (B).

Table 9.3: Characteristics of the simulated P-waves using the eight in silicomodels and exci-
tation origin at the junction between the superior vena cava and the right atrial appendage
(cf. EAS3 in Section 10.1).

Model #1 #2 #3 #4 #5 #6 #7 #8

PWD (ms) 91 76 83 87 100 105 78 112
Max. amplitude lead II III II II V1 II II II
Amplitude II (mV) 0.26 0.14 0.18 0.22 0.35 0.22 0.27 0.18
Axis α (◦) 73.1 65.0 66.9 65.2 60.3 77.7 64.5 71.0
Positive I

√ √ √ √ √ √ √ √
Positive II

√ √ √ √ √ √ √ √
Negative aVR

√ √ √ √ √ √ √ √
Monophasic I

√ √ √ √ √
x

√ √
Biphasic V1

√ √ √
x

√
x

√
x

The P-wave duration (PWD) differed by between ±25 ms between the mea-
sured and the simulated P-waves for subjects #1 to #7 with a mean PWD
of 91.5 ms in the simulations. The fact that no patient-specific substrate
model was employed in this study explains the shorter simulated P-wave
for the AF subject #8 (–64 ms). Potential AF-induced conduction slowing
was not included in the model because the focus of this study was on inter-
individual anatomical rather than electrophysiological differences. The P-
waves in Einthoven leads I, II were upright in all models and negative in
Goldberger lead aVR. In Wilson lead V1, the P-wave was biphasic for all
models except #4, #6, and #8 for which no significant initial positive phase
was present.
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Figure 9.2: ECGs obtained through simulation using model #5 (A) and measurement in
subject #5 (B). The iso-potential line is indicated by a thin grey line. In (A), the blue traces
correspond to the right atrial P-wavewhereas the the red ones stem from sources in the
LA. LA and RA P-waves add up to the regular P-wave represented by the black traces.

As an example, the simulated 12-lead ECG and VCG signals are shown for
model #5 in Figure 9.2A. No filters were applied to the simulated signals. Com-
mon filters used in clinical ECG systems did not affect the simulated P-wave
morphology significantly, though (data not shown). Comparing the simulated
with the measured signal (see Figure 9.2B) shows fair correspondence. It has
to be kept in mind that the computational model was only personalized in
terms of anatomy and not in terms of electrophysiological properties. Despite
gross correspondence, the polarity in lead aVL is different as well as the mor-
phology in VCG lead X, which was biphasic in the simulation but not in the
measurement. The high amplitude of the positive phase in lead V1 is caused
by the depolarization of the RAA, which is oriented almost perpendicular to
the sternum, thus in line with V1, and close to the chest (Figure 9.3). Hence,
the activation of the RAA caused a high positive signal amplitude in V1 with a
sharp drop once the RAA was fully activated.
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superior view frontal view

-80mV +5mV

A B

Figure 9.3: Superior (A) and frontal (B) view of the Vm distribution of the atria embedded
in the semi-transparent torso of model #5 at 43ms after the initial stimulus corresponding
to the time of the maximum signal downslope at the transition from the positive to the
negative phase in lead V1 in Figure 9.2A. The RAA is aligned with the axis from V1 to
Wilson’s central terminal and close to the chest as can be seen in the superior view (A).
Thus, the activation of the RAA causes the high positive signal amplitude in V1 with a sharp
drop once the RAA is fully activated.

The separate contributions of the LA and the RA can be seen in Figure 9.2A,
e.g., and are summarized for the whole cohort of models using the P-wave
area in lead II in Figure 9.4. The median contribution of the RA to the P-wave
integral was 79% and thus much larger than that of the LA (24%). The RA
and LA values do not add up to 100% due to the non-linearity of the median
operator. Looking at the different temporal phases of the P-wave separately
reveals that the first third was dominated by RA sources in all models. The
LA contributed with only 6% to the P-wave integral of that phase. For the
second and last temporal third, the LA share was 30% and 34%, respectively.
Considering the different ECG and VCG leads separately (Figure 9.5) reveals
that the RA P-wave was strongest projected onto Einthoven lead II, while
the LA P-wave was most pronounced in Wilson lead V2. The RA P-wave
dominated strongest in lead III with the median RA/LA P-wave area ratio
being 3.3. The relative share of the LA was biggest in lead I in which the
signal was however still dominated by the RA with a median factor of 1.1.
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Figure 9.4: Contribution to the entire P-wave area in lead II separated by the two atria and
three temporal phases. The regular P-wave (black) is composed of sources in the RA (blue)
and LA (red). The entire P-wave duration (left column in each group) is composed of three
temporal thirds (columns 2, 3, 4 in each group). Cubic splines were used to interpolate the
time course of the median values during the three temporal thirds. Box plots represent
n=8models; values were normalized for eachmodel.

aVL

-aVR

II

aV
F

III

V3V2
V1

I

V2 V3 V4

V5

V6

Z

Y

XaVL

-aVR

II

aV
F

III

V3V2
V1

I

V2 V3 V4

V5

V6

Z

Y

XaVL

-aVR

II

aV
F

III

V3V2
V1

I

0 0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

both atria only RA only LA

100%80%0% 20% 40% 60%

V2 V3 V4

V5

V6

Z

Y

X

Figure 9.5: Projection intensity of the combined and separated simulated P-waves onto
the different ECG and VCG leads. The color encodes themedian (n=8) integral of absolute
values (P-wave area), which were normalized to themaximum lead in the regular P-wave
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9.3 Discussion

In this study, a cohort of eight anatomically personalized models comprising
both atria and the subject’s torsos was used to gain insight into the genesis of
the P-wave with a particular focus on the distinct contributions of the two atria.
The in silico approach employed gave the unique opportunity to separate the
P-waves stemming from the RA and the LA, which is not possible in vivo.
The LA share of the P-wave integral of absolute values (P-wave area) was
between 19% and 51% with a median value of 24% in this study. These results
are in line with a recent study using a dipole-current source approach [495]
published after the results of the study presented here were submitted as a
conference contribution [497]. The signal originating from the LA was small
and the P-wave was mostly dominated by the RA even during late phases
of the P-wave (cf. Figure 9.4), which is in line with the very sparse exper-
imental data [502]. The fact that LA sources do interfere with RA sources
during the whole P-wave and that the P-wave is mostly dominated by RA
sources explains some of the difficulties experienced in P-wave-based LA
assessment [479, 503–508]. This is reflected in current guidelines [479] by
the recommendation to only diagnose a left atrial abnormality (LAAb) and
restrain from diagnosing a specific abnormality.
The P-waves obtained using the computational models and their derived in-
dices were within the clinically observed ranges [509, 510]. Comparison
of the simulated with the measured P-waves showed gross correspondence,
particularly when considering that the impact of differences beyond anatom-
ical variability of the atria and the torso variability was not included in the
models. In particular, electrophysiological variability in terms of intrinsic
inter-individual variability, disease related remodeling, as well as variability of
conduction velocity and its anisotropy were not accounted for. The modeling
approach focussing on the influence of gross anatomical variability did not re-
produce the considerably longer measured PWD for the AF subject #8 because
the potentially AF-remodeled substrate was not considered in the simulation.
On the other hand, the chosen approach allowed to focus on the variability in
the P-wave and related markers solely induced by anatomical differences in a
controlled environment without additional influencing factor. Therefore, the
fact that subject #8 had the largest LA did translate to the longest simulated
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PWD in the model cohort. The remaining seven subjects had structurally
healthy atria.
Lemery et al. performed a simultaneous mapping and ECG study in 35 patients
with a history of symptomatic AF [502]. Earliest LA activation was conducted
via BB at 31±13 ms after earliest activation of the RA in 31 of the 35 patients
and via non-specified IACs in the four remaining patients. These results are
in line with the simulation results for common sites of earliest activation (cf.
EAS3 to EAS5 in Section 10.1). The tendency towards later activation in the
measurement can be explained by potential AF-induced conduction slowing in
the study population. While Lemery et al. did annotate a standard P-wave with
activation times of anatomical structures in the RA and the LA, they could not
distinguish the contributions of simultaneously activated regions and thus not
establish a clear separation of RA and LA sources.
After the results of this study were published in a conference paper, Ferrer et
al. conducted a finite element modeling study using a detailed atrial and thorax
model [496]. Their results show gross correspondence to the results presented
here, particularly regarding lead V1, which plays an important role in the next
chapter. In Einthoven lead II, their left and right atrial P-waves are somewhat
more distinct in the time domain, which might be explained by their choice
of IACs. Only the CS connection and BB were included and BB touched on
the LA more distant to the septum than in our model. The contribution to
the P-wave was further differentiated by separating 21 distinct regions. The
main contributors in the RA were the RAA, the lateral wall and the right
atrial septum. In the LA, the LAA and the posterior wall contributed to the
largest extent.
In the study presented in this Chapter, the Courtemanche et al. cell model [47]
was chosen for the computation of ion kinetics because of its suitability proven
in a benchmark [156]. The heterogeneous variants of the Courtemanche et al.
model caused regional differences (heterogeneity) in the action potential (AP)
plateau and early repolarization. These were reflected in ECG signals devia-
tions from zero after the end of the P-wave in the PQ-segment particularly in
the precordial leads. This phenomenon was described before both for clinical
measurements [511] and in computer simulations [512, 513].
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9.3.1 Limitations

The size of the virtual cohort of n=8 models is small compared to most in vivo
studies. However, a model population carries a significant advantage over using
a single model result: the effect of characteristics specific to a single subject
can be minimized by assessing a distribution of results. The results for models
#2 and #8 that deviate from the other six models highlight that the evaluation
of a single model may be misleading. As a lot of modeling studies base their
conclusions on a single anatomical model [484, 486–488, 490–494, 514] or
two models [515], the virtual cohort of eight models is an important step
forward and larger than most in silico cohort with only few exceptions for
ventricular studies (e.g. [516, 517]) and even fewer for applications in the
atria [23, 438, 440, 518]. Considering that only anatomical variability of the
subjects used to build the models was considered in this study gives confidence
that the study cohort covers a good share of the general population’s variability.
The P-wave amplitude in the simulations was larger than in the measured
signals, particularly in leads V1 and V2 in model #5. This effect might be due
to an overestimation of the extent of fast-conducting bundles in the RA, which
were introduced by the rule-based algorithm outlined in Chapter 7. Another
possible source of error is the assumed homogeneous wall thickness that might
lead to an over- or underestimation of RA myocardial mass, particularly in
the RAA causing the high positive amplitude in leads V1 and V2. In addition,
the intracellular and extracellular conductivities carry uncertainty [177, 519].
Moreover, subject #5 had the largest RA in the cohort in terms of myocardial
wall volume. Thus, the results regarding the relative contribution of the LA
and the RA should not be compromised by the variability in P-wave amplitude
that can be attributed to variability in myocardial volume and the proximity of
the atria to the precordial wall.

9.3.2 Conclusion

While markers based on the P-wave in the ECG carry the great advantage of
being routinely acquired due to the non-invasiveness and the low associated
costs, the findings of this study highlight important limitations. The results
obtained in the cohort of eight in silico models suggest that the contribution of
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the LA to the P-wave is less than one third. Also a temporal discrimination was
not possible to the extent described in some textbooks which attribute the last
temporal third of the P-wave almost exclusively to the LA [510]. LA activation
was reflected in the middle third of the P-wave to the greatest extent rather
than the terminal third. The domination of the P-wave by sources from the RA
helps to understand the difficulties experienced in P-wave-based assessment
of the LA [479, 520]. In conclusion, this study fosters our understanding of
P-wave genesis and the spatio-temporal projection of atrial activation on the
body surface potentials.
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CHAPTER10

Effect of Earliest Activated Site
and Interatrial Connections

P-wave morphology in the body surface electrocardiogram (ECG) has been
shown to correlate with the risk to develop atrial fibrillation (AF) empiri-
cally [39, 72, 521]. In particular, P-wave terminal force in lead V1 (PTF-V1)
has been suggested as a surrogate marker [475, 522]. A possible mecha-
nism linking elevated PTF-V1 and the higher AF risk is left atrial enlarge-
ment (LAE). However, this link could not be established mechanistically
and, most importantly, the sensitivity and specificity of the marker is un-
satisfying [505]. Therefore, an additional contributor is analyzed in this
study by testing the hypothesis that the location of the excitation origin (the
earliest activated site (EAS) in the right atrium (RA)) and its relative prox-
imity to conducting interatrial connections (IACs) influences PTF-V1 to a
significant extent.
The EAS corresponds to the location where the atrial myocardium captures
the stimulus generated by the sinus node (SN). The EAS is known to express
significant variability both between individuals and over time within an in-
dividual [39] influenced by e.g. the degree of vagal stimulation. The IACs
vary as well tremendously in terms of their presence, location, and conductive
properties [32].
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Figure 10.1: Position of the earliest activated sites EAS1 to EAS7 in the RA exemplary
visualized on bi-atrial model #5. Anterior view in (A), posterior view in (B). Besides the EAS,
RAA, LAA, TV, MV, SVC, IVC, left (L) and right (R), superior (S) and inferior (I) pulmonary
veins (PV), CT and BB are indicated for orientation.

In this study, the influence of the EAS and the presence / intactness of the
posterior IACs on PTF-V1 is analyzed using the virtual cohort of anatomi-
cally individualized computational models introduced in the previous chapter.
Nguyên et al. recently investigated the effect of the position and orientation
of the ventricles on ECG morphology using computational models of two
subjects [515]. While the genesis of the P-wave and the effect of different
influencing factors have been studied in silico before as described in Chapter 9,
the effect of a shift of the EAS and its relation to the conductive properties of
the IACs has not been studied before.
Parts of this work are currently under review as a journal paper [498] and a
conference contribution [499].

10.1 Methods

This study was conducted using the set of eight anatomical models introduced
in Chapter 9. Excitation propagation was triggered from different positions
on the epicardial surface around the SN region along the CT to study the
effect of a shift of the EAS caused by e.g. effects mediated by the autonomic
nervous system [39]. EASs ordered from anterior/superior positions to more
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posterior/inferior positions were defined as follows (see Figure 10.1): EAS1
was located midway between the tip of the RAA and its junction with the SVC,
EAS2 at the superior part of the anterior wall, and EAS3 at the junction of the
RAA and the SVC. EAS4 to EAS7 were uniformly distributed along the CT
between EAS3 and the junction of the IVC and the RA (EAS7).
The standard setup comprised four IACs (BB, coronary sinus (CS), middle
posterior connection (MPC), and lower posterior connection (LPC)). Be-
cause the two posterior connections (MPC and LPC) are known to be frag-
ile [32], they were modeled non-conductive in a second set of simulations (see
Figure 10.1B).
The P-waves obtained through monodomain simulations and subsequent for-
ward calculation of the ECG as described in Chapter 9 were analyzed on
the body surface potential map (BSPM) and the ECG level. Two variants
of P-wave terminal force in lead V1 were employed: the classical definition
by the product of the duration and the amplitude of the negative P-wave as
proposed by Morris et al. [475] (referred to as PTF) and the integral of the
negative P-wave (referred to as PTFintegral). PTFintegral was calculated as the
sum of signed values of the respective part of the P-wave multiplied with the
time between samples. Beginning and end of the P-wave as well as its negative
part were annotated manually.

10.2 Results

10.2.1 ECGMorphology Analysis

The general properties of the simulated P-waves considering all four IACs
and EAS3 corresponding to the site where the SN is modeled most often were
already presented and discussed in Chapter 9 (see particularly Table 9.3 and
Figure 9.2).
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Figure 10.2: P-waves in ECG leadV1 (A-B) and body surface potential integral maps (D) in
model #5 for varying earliest activates sites EAS1 to EAS7 in the RA. The left (red) and blue
(right) atrial P-waves add up to the regular P-wave represented by the black traces. The
iso-potential line is indicated by a thin grey line. Four IACs were present in (A), whereas
the two posterior connections (MPC and LPC) were non-conductive in (B). The difference
of ECGs caused by the non-conductive posterior IACs shown in (C) reveals that only the
LA P-wave is affected and amore pronounced effect for more inferior EASs. The dashed
line in (D) indicates the perceived iso-potential line, which rotates counter-clockwise from
EAS1 to EAS7.

The influence of a shift of the EAS on the ECG signal in Wilson lead V1

is shown in Figure 10.2A for model #5. Looking at the regular P-wave
stemming from both atria, the amplitude of the first (positive) phase increased
monotonically from EAS1 to EAS3 and declined monotonically from EAS3
to EAS7. The driver of this effect was the RA which contributed almost
exclusively to that phase. The P-wave integral BSPM (see Figure 10.2D for
model #5) revealed a counter-clockwise rotation of the iso-potential line for
EAS2 to EAS7.
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Table 10.1: Interatrial connections conducting LA breakthrough for simulations with vary-
ing earliest activated sites EAS1 to EAS7 in the RA. For the IACs via which breakthrough
occurred, the time is given.

Model #1 (ms) #2 (ms) #3 (ms) #4 (ms) #5 (ms) #6 (ms) #7 (ms) #8 (ms)

EAS1 BB: 29 BB: 31 BB: 34 BB: 31 BB: 33 BB: 28 BB: 27 BB: 25
MPC: 46 MPC: 42 MPC: 46 MPC: 43 MPC: 56 MPC: 46 MPC: 62

EAS2 BB: 9 BB: 11 BB: 13 BB: 8 BB: 7 BB: 8 BB: 13 BB: 8
MPC: 25 MPC: 23 MPC: 26 MPC: 22 MPC: 31 MPC: 48 MPC: 30

EAS3 BB: 18 BB: 19 BB: 20 BB: 22 BB: 19 BB: 18 BB: 26 BB: 16
MPC: 32 MPC: 31 MPC: 32 MPC: 28 MPC: 35 MPC: 26 MPC: 42

EAS4 BB: 26 BB: 25 MPC: 28 MPC: 27 BB: 27 MPC: 28 BB: 31 BB: 21
MPC: 35 MPC: 33 BB: 29 BB: 30 MPC: 35 BB: 29 MPC: 44 MPC: 42

CS: 65
EAS5 BB: 35 BB: 31 MPC: 28 MPC: 30 BB: 34 MPC: 32 BB: 39 BB: 27

MPC: 40 MPC: 33 BB: 36 BB: 36 MPC: 36 BB: 38 MPC: 44 MPC: 41
CS: 75 CS: 63 CS: 69 CS: 81 CS: 56

EAS6 MPC: 41 MPC: 35 MPC: 30 MPC: 33 MPC: 36 MPC: 35 MPC: 40 BB: 34
BB: 45 BB: 37 BB: 43 BB: 44 BB: 41 BB: 45 BB: 48 MPC: 39
CS: 71 CS: 71 CS: 55 CS: 62 CS: 74 CS: 96 CS: 50

EAS7 LPC: 45 MPC: 38 MPC: 35 LPC: 37 MPC: 33 LPC: 36 MPC: 37 MPC: 33
BB: 57 BB: 42 BB: 53 BB: 52 BB: 48 BB: 57 BB: 60 BB: 39
CS: 59 CS: 60 CS: 47 CS: 55 CS: 61 CS: 84 CS: 45

10.2.2 Left Atrial Breakthrough

Earliest LA breakthrough was conducted via BB in most cases as can be seen
in Figure 10.3A and detailed in Table 10.1. Later, secondary breakthrough via
posterior IACs or the CS occurred in most cases. The more the stimulus site
was shifted from EAS3 towards EAS7 (inferior), the more often the posterior
IACs were the path via which earliest LA breakthrough was conducted. Break-
through via the CS was also observed more frequent and more early for more
inferior EASs: no CS breakthrough for EAS1 to EAS3 vs. CS breakthrough in
seven out of eight models for EAS7. Regarding EAS more inferior than EAS3
(EAS4 to EAS7), earliest breakthrough was conducted via a posterior IAC in
three to seven out of eight models. For EAS7, earliest breakthrough occurred
via the LPC in three models and the MPC in the remaining five models. In
model #8 with the largest atrial volume, earliest breakthrough occurred via a
connection other than BB only for EAS7. The anatomical properties of model
#2 impeded CS breakthrough for all EASs.
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Figure 10.3: Distribution of the IAC conducting the earliest LA breakthrough for varying
earliest activated sites EAS1 to EAS7 in the RA in themodel population (n=8). In (A), four
IACs were present, whereas the two posterior IACs (MPC and LPC) were non-conductive
in (B).

10.2.3 P-Terminal Force in Lead V1

Two variants of P-wave terminal force in lead V1 were evaluated: the clas-
sical definition using the product of the duration and the amplitude of the
negative P-wave phase (PTF-V1, Figure 10.4A) and the integral of that phase
(PTFintegral-V1, Figure 10.4B). The highest absolute values for both measures
were observed for EAS1 on the superior part of the anterior RA caused by a
short initial positive P-wave deflection followed by a longer negative phase
(see e.g. Figure 10.2A). Median PTF-V1 was –20.0 mVms for EAS1; median
PTFintegral-V1 was –9.4 mVms. The EASs on the posterior wall of the RA
(EAS2 to EAS7) yielded a U-shaped PTF-V1 curve with median absolute
values increasing from the center of the RAA (EAS2: –8.3 mVms) via the
junction of the SVC and the RAA (EAS3: –14.0 mVms) down the CT (EAS4:
–15.6 mVms, EAS5: –16.1 mVms). For more inferior EAS, PTF decreased
again in terms of absolute values (EAS6: –13.0 mVms) up to –8.7 mVms for
EAS7 located at the junction between the IVC and the RA.
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Figure 10.4: P-wave terminal force (PTF-V1, (A+C)) and P-wave integral terminal force
(PTFintegral-V1, (B+D)) for varying earliest activated sites EAS1 to EAS7 in the RA. In (A+B),
four IACswere present, (C+D) show the difference when the two posterior connections
were non-conductive. Note the different scales of the panels.

Looking at the integral instead of the product of the duration and the max-
imum amplitude yielded a qualitatively similar curve. The absolute values
were smaller by an average factor of 2.1 as expected for approximately sinu-
soidal negative P-wave terminals. However, the intermodel variability was
significantly smaller for PTFintegral than for PTF. All outliers and most of the
whiskers in the box plots in Figure 10.4A+B were caused by models #2 and
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#8. Model #2 was the smallest in terms of RA and LA blood volume and
showed an almost linear decrease of PTF-V1 from –0.9 mVms for EAS1 to
–7.4 mVms for EAS7. Model #8 (being the largest model in the cohort) on the
other hand showed the reverse behavior with a decrease in terms of absolute
values from –22.0 mVms for EAS1 to –8.5 mVms for EAS7.

10.2.4 Influence of Posterior Interatrial Connections

The posterior IACs were modeled as non-conductive in a second set of simula-
tions. This was reflected in the fact that earliest LA breakthrough was always
conducted via BB (see Figure 10.3B). BB and CS breakthrough times given in
Table 10.1 were unaffected by non-conductive posterior IACs, breakthrough
via the posterior IACs did not occur as a matter of course.
The part of the P-wave originating from sources in the LA was affected by
the absence of the posterior IACs for EAS3 to EAS7 (see Figure 10.2B+C).
While the morphology regarding the polarity and the number of phases was
not affected, the amplitude was altered. Taking into consideration the compar-
atively small contribution of the LA to the overall P-wave shown in Chapter 9,
the effect on PTF-V1 (Figure 10.4C) and PTFintegral-V1 (Figure 10.4D) is
remarkable. Non-conductive posterior IACs caused higher absolute PTF-V1

on average with an increasing effect amplitude from EAS1 to EAS7. When
evaluating PTFintegral-V1, the interindividual spread was significantly lower
yielding a very consistent relation (Figure 10.4D).

10.3 Discussion

The study presented in this chapter investigates the effect of a variation of the
EAS in the RA on body surface potentials, particularly on the ECG-derived
marker PTF in Wilson lead V1. While this marker is commonly used to
quantify left atrial abnormalities (LAAbs) [521], the present study tested the
hypothesis that the marker is also affected by contributors in the RA. In partic-
ular, significant variability in the origin of sinus excitation exists both on the
interindividual and the intraindividual level.
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Figure 10.5: In conclusion, the results presented in this chapter show that a shift of the EAS
towards bothmore superior/anterior andmore inferior locations causes lower absolute
values of PTF-V1. If the posterior IACs are non-conductive, a shift towardsmore inferior
locations does not affect PTF-V1 significantly.

In dogs, it has been shown that the EAS is shifted towards inferior regions
of the SN complex under vagal stimulation. On the other hand, an accel-
eration of the heart rate causes a shift towards more superior/anterior re-
gions [39, 523, 524]. In humans, common EAS are found between the mid-
septal region and the junction of the SVC with the RAA [42]. The set of
EAS in this study was extended to also cover a more inferior position (EAS7)
which may correspond to EAS under pronounced vagal stimulation (very low
heart rates), an anterior position (EAS2), and a position in the center of the
RAA roof (EAS1) corresponding to the common electrode location used for
permanent atrial pacing.
The presented results show that the precise location of the EAS in the RA
affects PTF-V1 significantly. This P-wave marker exhibited a U-shaped course
for EASs from anterior/superior positions to posterior/inferior positions (EAS2
to EAS7). This progression indicates a reduced leftwards-pointing component
(opposite to the vector pointing from Wilson’s central terminal to V1) for
both very anterior/superior and posterior/inferior excitation origins and the
strongest leftwards-oriented component for intermediate positions (EAS4 to
EAS5). EAS1 in the center of the RAA roof did not fit in this scheme. EAS1
yielded the highest PTF-V1 values, which can be explained by the preferred
excitation direction pointing towards the LA, thus away from V1 with respect
to Wilson’s central terminal, evolving after the short time when the RAA
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tip is excited. Less RAA tissue behind the EAS towards the RAA tip could
contribute to a rightwards-oriented vector for EAS1 compared to the other
EAS. PTF-V1 turned out to be very sensitive to rather small changes in the
location of excitation origin (or rather excitation capture) reflected by the fact
that EASs in close vicinity to each other yielded markedly different PTF-V1

(e.g. an average factor of 2.0 between EAS2 and EAS4).
The mostly negative P-waves in leads V1 and V2 observed for EAS1 are in line
with the clinically observed P-waves in patients with atrial pacing electrodes in
this region. The finding that shifting the excitation origin from EAS4/EAS5 to-
wards more anterior/superior positions decreases absolute PTF-V1 values is in
line with the findings by Yokota et al.: PTF-V1 (referred to as the maximal LA
component in their work) decreased during exercise in healthy subjects [525].
However, an earlier study in men with seemingly healthy hearts found that the
probability of abnormally high PTF-V1 values increases after exercise [507].
These equivocal findings can possibly be explained by the experimental proto-
col. In [507], the ECGs were acquired 5 min after rather than during exercise,
which may have caused an overcompensation resulting in vagal stimulation.
Vagal stimulation in turn corresponds to higher absolute PTF values in [525]
and the study presented here. The results on the BSPM level are in fair agree-
ment with an in vivo study [185]. For pacing in positions close to EAS2 to
EAS6, they also report a counter-clockwise rotation of the iso-potential line as
shown in Figure 10.2D.
The in silico approach employed in this study allowed to asses how the intact-
ness of the posterior IACs influence the ECG, which is not feasible in vivo.
While gross ECG morphology was unaltered by rendering the posterior IACs
non-conductive, PTF-V1 absolute values were increased. Non-conductive
posterior IACs translated to a very consistent effect when evaluating the in-
tegral of the negative phase in lead V1 (Figure 10.4D) instead of the product
of amplitude and duration (Figure 10.4C). The effect was most pronounced
for posterior/inferior EASs, which can be explained by the LA breakthrough
sites. A larger share of earliest LA breakthrough conducted via one of the
posterior IACs in the model cohort (Figure 10.3A) correlated with a higher
difference in PTF between simulations with conductive and non-conductive
IACs (Figure 10.4C+D). When the LA could not be activated via the posterior
IACs due to their non-conductance, PTF remained stable for EAS4 to EAS7.
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PTF-V1 values for the most inferior excitation origins (EAS6 and EAS7). The
significant interindividual variability in both PTF markers for EAS4 and EAS5
can be explained by the variability in the crucial IAC conducting earliest LA
breakthrough (BB vs. posterior IACs), which was also largest for these EAS.
Earliest LA breakthrough was never conducted via the CS connections. Indeed,
no LA breakthrough was conducted via this IAC for EAS more superior than
EAS5. While this indicates a subordinate role of the CS IAC during sinus
rhythm, it may play a more important role during less organized excitation
patterns characterizing atrial arrhythmias and maintain biatrial reentry.
Regarding the two variants of PTF, PTFintegral-V1 was the more conclusive
marker showing more consistent trends (Figure 10.5). The reason for this
can be found in the fact that PTF-V1 on the other hand is only determined
by the maximum value in terms of amplitude. This maximum value can be
determined by the activation of only a small share of the atrial myocardium
neglecting all the rest. The integral value contrariwise covers the activation
of all tissue during the negative phase of the P-wave instead of being based
on the amplitude of just one time instant. This makes the integral marker also
less prone to noise artifacts for normally distributed noise. Therefore, it is
less prone to artifacts and future studies should consider to evaluate this more
robust and conclusive integral marker.
In Chapter 9, it was shown that the P-wave is mostly dominated by sources
originating in the RA and the LA contributes to the integral with a median
value of only 24%. Also during late phases of the P-wave, the LA signals inter-
fere with those stemming from the RA and do not dominate the P-wave signal.
These findings explain the limited, however consistent, effects of conduction
failure of the posterior IACs on the ECG.

10.3.1 Limitations

The limitations discussed in the previous chapter (Section 9.3.1) regarding the
size of the model cohort and P-wave amplitudes also apply to the study pre-
sented in the current chapter. Moreover, we modeled four IACs and focussed
on the effect of the intactness of the posterior IACs. While additional IACs
might be present (particularly on the anterior side) their vicinity to BB makes
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it unlikely to alter the activation pattern dramatically [33]. IACs other than the
MPC and LPC might become dysfunctional as well, e.g. BB [35, 526, 527].
However, the posterior IACs are most vulnerable to conduction block due to
their thin and fragile nature [35]. Thus, the focus was on these IACs in this
study leaving the influence of the others for future work.
Futhermore, the rule-based annotation of myocyte orientation may
introduce a bias.

10.3.2 Conclusion

The advantage of the P-wave as a tool to assess electrical function is the ease
of acquisition. Recently, it re-raised excitement as an accessible surrogate of
atrial activation [476] and proved to be valuable for AF prediction [478, 528–
530]. Regarding the LA, the P-wave is most commonly used to assess LAAb
(particularly LAE) based on PTF. While some studies showed good correla-
tion between P-wave markers and LA size [480, 482], others showed poor
correlation [504, 506, 508].
The study presented in this chapter confirms the hypothesis that P-wave mor-
phology, and in particular PTF, is affected by a shift of the EAS and its relative
proximity to intact IACs. As both the excitation origin and the IACs express
significant intraindividual and interindividual variability in terms of presence,
location and conductive properties, their effect can explain the limits of PTF-
based assessment of LA anatomy: differences in PTF-V1 are not of purely
anatomical origin but also an electrical phenomenon.
The presented results highlight the need to be aware of the limits regarding
our current understanding of further factors influencing the P-wave, its mor-
phology, and related markers. Only by pushing and overcoming these limits
by integrating the P-wave into extended research aiming at a mechanistic
understanding of arrhythmogenesis, healthcare practitioners will eventually
be put in a position to fully leverage the potential of the P-wave in terms of
AF prevention.
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CHAPTER11

Influence of Left Atrial
Anatomical Properties

The previous chapter introduced the general idea of ECG-based assessment of
left atrial anatomy. Biomarkers based on the P-wave carry the advantage of be-
ing easy to acquire. This fact and the empirical observation that e.g. abnormal
P-wave terminal force (PTF) in Wilson lead V1 is associated with a higher risk
to develop atrial fibrillation (AF) renders the P-wave particularly interesting. A
common explanation for both the higher AF risk and increased PTF-V1 is left
atrial enlargement (LAE). On the one hand, a larger atrium provides a larger
substrate that can sustain and accommodate reentry with longer wavelengths,
thus rendering it more vulnerable to AF. On the other hand, the increase in
left-myocardial volume causes a more pronounced leftwards-pointing exci-
tation vector once left atrium (LA) breakthrough occurred. However, when
actually comparing PTF-V1 with LA size, the correlation is rather poor with
one possible explanation being the influence of the earliest activated site (EAS)
in the right atrium (RA) and conductive properties of the posterior interatrial
connections (IACs) as presented in Chapter 10. Besides, P-wave abnormalities
can be caused by e.g. atrial hypertension, atrial hypertrophy, atrial overload,
atrial strain, partial or complete interatrial conduction block, intraatrial conduc-
tion slowing, as well as impaired ventricular distensibility [479]. Therefore,
current guidelines advise to use the term left atrial abnormality (LAAb) rather
than committing to a specific cause when basing the diagnosis solely on the
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P-wave [479, 531]. In earlier times, also the terms P-mitrale, P-congenitale,
and P-pulmonale were used to refer to abnormal P-waves [479].
Several empirical studies investigated correlates of LAE and P-wave ab-
normalities. Besides being a predictor for AF [532–535] and consequently
stroke [536], LAE indicates left ventricular dysfunction in general [537] and
is a predictor for congestive heart failure [532], cardiac mortality [536, 538],
and combined cardiovascular events [539–541]. Therefore, it is desirable to
assess LA size non-invasively based on P-wave markers as part of routine
examinations.
Historically, the ratio of the P-wave duration (PWD) and the length of the
P-R-segment was the first ECG marker to estimate LA size [542]. How-
ever, it showed to correlate poorly with LA size in more recent studies for
common threshold values of 1.6 [481, 543, 544]. PTF-V1 was soon used
more frequently after it was defined as the product of the amplitude and
the duration of the negative phase of the P-wave in Wilson lead V1 in 1964
by Morris et al. [475]. They established an association between abnormal
PTF-V1 and (mitral or aortic) valve disease, which in turn is associated with
LAE. PTF-V1 absolute values of 4 mVms or more are considered abnor-
mal [481, 482, 506, 543–546]. Other markers are the P-wave area in lead II
approximated as the product of the duration and the amplitude multiplied by
0.5 [505, 543, 547], P-wave axis < 30◦, or the positive PTF in lead aVL [531].
Another common marker is the PWD [546], usually measured in Einthoven
lead II, which is considered prolonged for values > 105 ms [481], > 110 ms [506,
531, 543–545], or (more recently) > 120 ms [479, 528]. PWD, however, is
also used to quantify conduction delay [480, 548]. While a notched P-wave
is intuitively caused by interatrial conduction delay [479], it has also been
suggested and used as a marker for LAE quantification with a threshold of
40 ms for the duration of the notch in lead II [479, 506, 544, 545].
This multitude of ECG markers used to assess LA size has proven to be subop-
timal in a number of studies prohibiting their use to diagnose LAE as a specific
LAAb [479, 508, 531]. Truong et al. evaluated the correlation of P-wave mark-
ers with LA volume determined through cardiac computed tomography [505].
Sensitivity, specificity, positive and negative predictive values, and accuracy
are given in Table 11.1.
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Table 11.1: Statistic evaluation of P-wavemarkers for LAEwith respect to LA size deter-
mined by computed tomography. Abbreviations: positive predictive value (PPV), negative
predictive value (NPV), P-wave duration (PWD), P-R-segment duration (PRd), P-wave area
(PWA). Data from [505].

sensitivity specificity PPV NPV accuracy

PWD>110ms 71% 55% 61% 66% 63%
PWD/PRd >1.6 81% 27% 53% 59% 54%
PWA in II > 4mVms 73% 19% 47% 41% 46%
PTF-V1 >4mVms 49% 54% 51% 51% 51%
notched P-wave in II 19% 85% 57% 51% 53%
biphasic P-wave in V1 26% 76% 52% 51% 51%

The best overall accuracy of 63% was obtained by PWD > 110 ms. Other
studies, partly based on echocardiography as a reference measure, reported
equivocal results regarding sensitivity and specificity [506, 543].
The reasons for the rather poor performance of the presented ensemble of
P-wave markers and a mechanistic link between anatomical properties and
features of the P-wave are not understood, to date. A controlled in vivo
study is hard to design because LA size cannot be adjusted in a single patient.
Therefore, this study investigates the effect of LA hypertrophy on the P-wave
in the body surface ECG in silico. The computational approach being applied
allows to dissect the effect of LA wall thickening in a controlled environment:
different degrees of hypertrophy can be simulated in the same subject’s model.
Moreover, a method to analyze the effect of LA dilation in silico is presented
as a tool to analyze a second potential anatomical cause for LAAb.
Parts of this work are based on a supervised student’s project [549] and is
currently under review for conference publication [550, 551].
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Figure 11.1: Cross section through the LA wall of model #3 with different levels of wall
thickening coded by the color (A). The cross section is aligned along the dashed blue line in
(B).

11.1 Methods

11.1.1 Left Atrial Hypertrophy

The LA wall was thickened in four anatomical models to investigate the
effect of LA hypertrophy. The models #2 to #5 introduced in Section 9.1.1
were used for this purpose. The voxel-based bi-atrial models covering the
two atria, the trunks of the great vessels, and the blood within the atria had
an isotropic resolution of 0.33 mm. The additional wall thickness due to
hypertrophy was modeled equally and homogeneously on the endocardial
and the epicardial side in steps of one voxel. Therefore, wall thickness was
increased up to the initial value plus 3.96 mm in steps of 0.66 mm yielding
seven different models variants (Figure 11.1). The dilation of one voxel layer
was implemented such that voxels adjacent to LA voxels that were not RA
voxels were marked as LA voxels. Reapplying this operation added one more
voxel layer and so forth. By posing an additional adjacency constraint that
requires or prohibits neighborhood to LA blood, the method can also be used
to model purely endocardial or purely epicardial hypertrophy, respectively.
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Myocyte orientation in the atria and distinct tissue classes were annotated in
the dilated models using the approach presented in Chapter 7.
Numerical field calculation in the torso was conducted on tetrahedral meshes
as introduced in Section 3.4. These meshes were built from the segmented
imaging data that were provided in a voxel-based format. As the torso model
was of lower resolution than the 0.33 mm-resolved atria, the bi-atrial models
including the hypertrophic LA wall and augmented inter-atrial connections
were transferred to the torso model by nearest neighbor interpolation. During
this mapping step, it was ensured that the two atria are separated and share no
nodes except from the IACs. Then, a tetrahedral torso mesh was generated
for each model and each degree of hypertrophy using the CGAL library [500].
The myocyte orientation was included in the torso mesh, as well. Excitation
propagation was simulated using acCELLerate as described in Section 9.1.2
followed by a forward calculation of the body surface potentials.

11.1.2 Left Atrial Dilation

LA dilation was induced by LA pressure overload in the anatomical model #3
using the cardiac continuum mechanics simulation environment CardioMe-
chanics [15, 552]. CardioMechanics requires a tetrahedral atrial mesh with
a significantly lower resolution than used for the electrophysiology simula-
tions. Therefore, the atrial surfaces were extracted from the voxel model and
smoothed using the VTK library [409]. After the resolution of the surface
meshes was adjusted using Blender [553], they were filled with tetrahedra
using the Gmsh meshing software [554].
For the dilation of the atria, pressure was applied on the closed surface formed
by the conjunction of the LA endocardium and the vessel and valve orifices.
As boundary conditions, the septal region and the valve plane were fixated in
order to prevent dilation into the RA and the ventricles. The pressure on the
endocardial surface was then gradually increased causing the enclosed volume
to balloon from an initial value of 54 ml to 154 ml while keeping the volume
of the myocardial wall constant. The mechanics simulation was not performed
on the whole torso model but only on the atrial model due to the number of
computational elements.
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Figure 11.2: Cross section through the LAwall of model #3 with different levels of dilation
coded by the color and induced by pressure overload (A). The cross section is aligned along
the dashed blue line in (B).

The triangular surface mesh of the dilated, low resolution atrial model were
subsequently up-sampled using a subdivision filter and filled with tetrahedra of
smaller size for the simulation of electrophysiological excitation propagation.
For the calculation of electrical fields within the torso, the dilated LA has
to be integrated into the torso. Therefore, the surfaces of the lung had to be
deformed to make room for the dilated LA as can be seen in Figure 11.3. A
reduction of the lung volume due to increased LA size appeared reasonable
due to the high compliance of the lung tissue.
The models of dilated left atria within a subject-specific torso can be used to
simulate excitation propagation, as well as the electrical fields stemming from
the currents impressed by the gradient of the transmembrane voltages using a
finite element approach. A suitable approach was recently implemented [168]
at IBT providing the means for a combined active/passive tissue bidomain
simulation. While the extracellular domain is defined within the whole torso,
the intracellular domain can be restricted to the active tissue within the atria,
thus reducing computational cost.
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Figure 11.3: The dilated LA intersects with the lobes of the left lung as segmented using
the imaging data (A). Therefore, the volume of the left lung wasmanually reduced tomake
room for the dilated LA (B). Figuremodified from [549].

However, the implementation has not been fully validated regarding the sim-
ulation of atrial body surface potentials, i.e. P-waves, prohibiting to draw
clinically relevant conclusions based on the simulation output. For this reason,
only the effect of LA hypertrophy on the ECG but not the effect of LA dilation
is assessed in the remainder of this chapter.

11.2 Results

The LA wall was thickened to seven different degrees in four anatomically
personalized models. The generation of tetrahedral torso meshes using CGAL
however failed in eight of the 28 cases. Therefore, some values are missing in
Figure 11.4, which shows the effect of LA hypertrophy on different P-wave
markers.
PWD (Figure 11.4A) was almost unaffected by LA wall thickening even
though the latest activated regions were located in the LA for all non-hyper-
trophic models. For models #2, #3, and #5, the maximum difference in PWD
for different wall thicknesses was 2 ms; for model #4, it was 9 ms. The P-wave
area under the curve in lead II (Figure 11.4B) correlated with increased wall
thickness due to an increase in amplitude.
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This relation was not consistent across models, however, with Pearson correla-
tion coefficients ranging from 0.63 for model #4 to 0.98 for model #2. P-wave
axis α was determined based on the amplitudes in leads aVF and I:

α = arctan
(

2√
3

aV F
I

)
. (11.1)

The axis did not show a consistent dependency on the degree of wall thickening
with a positive correlation for models #2 and #3 and a negative correlation for
models #4 and #5 (Figure 11.4E). The ECG in lead V1 (Figure 11.5) reveals
that during the early P-wave, no change was present because the LA was not
yet activated. Once the LA got activated, the voltage in V1 tended to lower
values for higher degrees of hypertrophy. Thus, the amplitude of the (late)
positive phase decreased while the amplitude of the subsequent negative phase
increased. This translates to a strong and consistent correlation between LA
wall thickness and PTF-V1 with a mean correlation coefficient of –0.93 and a
mean slope of –3.49 mVms/mm wall thickening (Figure 11.4C). Evaluating
the integral of the negative phase of the P-wave in lead V1 (PTFintegral-V1)
instead of the product of the duration and the amplitude (PTF-V1) yielded
comparable results with mean values of –0.95 for the correlation coefficient
and a slope of –1.26 mVms/mm wall thickening (Figure 11.4D).
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The distribution of the increase in PTF-V1 (Figure 11.6A) and PTFintegral-V1

(Figure 11.6B) with respect to the value obtained using the non-hypertrophic
baseline models yielded a monotonic, rather robust relation, as well.

11.3 Discussion

The results obtained through computational modeling using a cohort of 4
anatomical models suggest that PWD is unaffected by LA hypertrophy and
the effect on P-wave axis is highly dependent on the individual anatomy of the
patient. PTF-V1 seems to be a sensitive marker for LA wall thickening and was
superior to evaluating the integral of the whole P-wave as only the amplitude
of the negative P-wave was increased by a thickened LA wall whereas the
amplitude of the positive phase was decreased towards its end. The evaluation
of the integral of the negative phase of the P-wave in lead V1 (PTFintegral-V1)
was more conclusive than considering the product of amplitude and duration
(classical definition of PTF-V1). This observation is in line with the results
regarding the effect of the earliest activated site in the RA and the posterior
IACs presented in Chapter 10. The LA wall thickness has not been correlated
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with measured P-wave indices in clinical studies, so far. Thus, the findings of
this study cannot be compared to sensitivity values observed in the general
population in vivo. In patients with a history of AF, the posterior LA wall was
slightly thinner than in patients in sinus rhythm [24]. However, this obser-
vation does not allow to draw conclusions regarding the risk to develop AF.
The difference might as well develop under AF conditions rather than being
decisive for AF initation.
A limitation of the presented study is the assumption of homogeneous hy-
pertrophy across the LA which might not be the case in vivo as well as the
assumption that the RA is not affected at all. Besides, the lowest degree of
hypertrophy considered in this study was 0.66 mm, thus already more than 20%
of the initial thickness of the LA myocardial wall. More subtle changes could
be investigated using this methodology, in general. However, only a restriction
to endocardial or epicardial hypertrophy could achieve an increase of 10%
wall thickness without the need to resample the voxel dataset. This resampling
process would potentially introduce interpolation artifacts requiring additional
validation. An additional limitation regarding the P-wave amplitude is the fact
that hypertrophy might be accompanied by fibrosis leading to a reduction of
the source currents per volume. The limitations mentioned and discussed in
Chapter 9 and Chapter 10 apply to the study presented in this chapter as well.
LAE is commonly defined as an increased total volume of the LA rather than
an increased myocardial volume. The method presented in Section 11.1.2 will
allow to investigate the effect of dilation in the near future. Intuitively, one
would assume that the P-wave is prolonged by LA dilation while the signal
amplitude (positive as well as negative) rather decreases. How pronounced
these effects actually are remains to be seen. Particularly regarding PTF-V1,
the question is if the two counteracting effects balance each other or if e.g.
the prolongation outweighs the decrease in amplitude leading to increased
absolute PTF-V1 values. Conceptually, LAE could also be a combination of
dilation and hypertrophy. For the ventricles, it is known that they respond to
pressure overload in two phases. First, the increased pressure is compensated
by hypertrophic remodeling. If the condition persists or worsens, the system
decompensates and the ventricles dilate [48]. The same might be true for
atrial pressure overload underpinned by the observation that the atrial wall
is thinner in AF patients compared to the healthy population (2.1-2.5 mm vs.
2.3-2.9 mm) [24]. The two-stage mechanism could explain the contradicting
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findings regarding the sensitivity and specificity of PTF-V1 with respect to
the diagnosis of LAE [481, 482, 506, 543–546]. In that case, PTF-V1 would
be increased during the hypertrophic phase and potentially abate towards
more moderate values once decompensation, and thus dilation, sets in. In
conclusion, it was shown that the P-wave markers PTF-V1, and even more
so PTFintegral-V1, are sensitive to changes in LA wall thickness. The obser-
vations that the P-wave is drawn towards negative voltages in lead V1 and
that the PWD is unaffected provide mechanistic explanations why the afore-
mentioned markers are superior to others. The interplay of LA hypertrophy
and dilation might cause the poor empirical correlation of LA size and PTF-V1.
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CHAPTER12

Conclusion

In this thesis, important aspects of human atrial patho-electrophysiology have
been investigated using computational models. The studies span from the
level of single ion channels up to investigations of the P-wave on the body
surface ECG level. The presented results pave the way for tailoring therapies in
different ways. Once basic patho-mechanisms are elucidated and understood,
physicians can apply mechanism-specific therapy. Moreover, computational
models representing subpopulations of patients provide the means to tailor and
optimize therapies in a group-specific way. Last but not least, models of the in-
dividual patient can be used to evaluate therapeutic options in a patient-specific
way if all the essential data needed to parametrize the model to the individual
patient for the specific question at hand are available. Figure 12.1 gives an
overview of the studies presented in this thesis, the corresponding modeling
scales, the kinds of tailored therapies improved by the developed methods
and derived insights, as well as the way via which they can be translated into
benefits for the patient in clinical practice (comprehension of mechanisms,
improved diagnosis, and improved therapy).
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First, a method to incorporate altered ion channel behavior caused by ge-
netic mutations or the influence of pharmacological agents into mathematical
models in an accurate, robust, and reliable way was presented. The newly
proposed hybrid scheme comprising both gradient-based and derivative-free,
population-based algorithms proved to yield optimal results within a wide
range of ion current formulations and noise conditions. Using the proposed
hybrid optimization method, experimental data can be routinely transferred
into computational models, thus it is an important tool to exploit and leverage
today’s and tomorrow’s high-throughput patch clamp methods. A compre-
hensive multi-scale assessment of the effect of changes on the ion channel
is imperative as the biophysical systems of interest are mostly complex and
non-linear. Besides establishing a method of high practical relevance, the
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study serves as an example how synthetic data derived from models provide
the means to evaluate novel methods under controlled conditions.
Next, the parameter estimation approaches were utilized to include the effects
of two mutations of the human ether-à-go-go-related gene (hERG) into com-
putational models. These substrates of familial atrial fibrillation (AF) were
assessed on multiple levels of integration regarding their arrhythmic potential.
While both mutations affect the same gene, they cause qualitatively different
effects suggesting more offensive approaches for subjects carrying the L532P
mutation compared to N588K. The consequences of the mutations on higher
levels of integration in terms of AP morphology changes, refractory behavior,
as well as rotor initiation and sustainment capacity allow to identify individuals
harboring a genetic substrate predisposing to AF. By aiding risk stratification
and paving the way for genotype-guided therapeutic strategies, the findings
presented here help to bridge the gap from bench to bedside.
Moreover, the Courtemanche et al. model was adapted to reflect remodeling
induced by chronic atrial fibrillation (cAF). The adapted model reproduces
experimentally observed findings and provides mechanistic descriptions how
remodeling increases susceptibility to reentry through shortened wavelength
facilitating the initiation and maintenance of atrial arrhythmias according to
the AF begets AF paradigm. The adapted model provides the means to evaluate
tailored therapeutic strategies for cAF patients in silico.
Thirdly, the substrate models of cAF remodeling and the two hERG mutations
were used to characterize the specific effects of amiodarone and dronedarone
under consideration of circadian changes of the heart rate and the drug concen-
tration. The study shows how atrial electrophysiology is differentially affected
by the two compounds in a concentration-dependent and heart rate-dependent
manner. A newly proposed arrhythmia score aggregating several biomarkers
from the cellular and tissue level peaks to critical values for dronedarone but
not for amiodarone. The insights gained from in silico modeling regarding
AP alternans as a proarrhythmic mechanism provide possible explanations
for the superior efficacy of amiodarone over dronedarone in the treatment of
AF. As the drug effects differ significantly in a cAF remodeled substrate, the
responder rate could be improved by considering the atrial substrate in tailored
therapies.
By integrating experimental data regarding the effects of vernakalant from
different scales into a computational model, the understanding of the cellular
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mode of action of vernakalant was advanced. Furthermore, relevant gaps in
the current knowledge and experimental data were identified. By highlighting
them, this study has the potential to fuel and direct future wet-lab and compu-
tational research on this aspiring antiarrhythmic agent. As such, it serves as an
example how the interplay between experimentalists and modelers can lead to
mutual benefit and cross-fertilize and speed up research.
The last study regarding pharmacotherapy aimed at the restoration of the
wild-type action potential (AP) in mutant myocytes by designing hypothetical
multi-channel blockers, as well as by optimizing the concentration of existing
compounds. The results serve as a proof of concept and provide insight into
the pharmacodynamic response of hERG mutant myocytes rendering patients
vulnerable to AF. As such, they may aid in the design and advancement of
tailored therapeutic and preventive approaches considering the atrial substrate.
Future work could extend the presented approaches to account for variance
and uncertainty using probabilistic modeling as recently proposed [555].
Furthermore, a mesh-type agnostic method to augment anatomical models
with a priori knowledge regarding myocyte orientation, anatomical structures,
interatrial connections (IACs), and standard ablation patterns was presented
based on a coherent and consistent set of rules. The algorithm can be applied
to all common data structures used in computational modeling of cardiac elec-
trophysiology and biomechanics. Furthermore, the implementation is flexible
regarding the resolution of the underlying mesh. The object-oriented design of
the software using modern software engineering methods yields an extendable
piece of software with maintainable code.
Building on the augmented anatomical models, a pipeline to assess the vul-
nerability of atrial flutter was established. The individual anatomy as well as
electrophysiology in terms of CV, ERP, and their frequency-dependence is
taken into account. This tool provides the means to evaluate potential abla-
tion strategies in silico regarding their arrhythmic potential for AFlut before
actually applying them in the electrophysiology lab. In this way, this work
can be one piece in the puzzle to overcome the learning by burning paradigm
and eventually reduce the number of patients suffering from post-ablational
AFlut. The advent of electro-anatomical mapping systems providing high
signal quality gives rise to the hope that the method can be validated and
applied to clinical cases in the near future.
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was studied regarding the influence of several contributors. First, the distinct
contributions of the left atrium (LA) and the right atrium (RA) to the P-wave
in the different ECG leads were separated in a time-resolved manner. While
biomarkers based on the P-wave in the ECG carry the great advantage of being
routinely acquired due to the non-invasiveness and the low associated costs,
the findings of this study highlight important limitations. The results obtained
in the cohort of eight in silico models suggest that the contribution of the LA
to the P-wave is less than one third. The domination of the P-wave by sources
from the RA helps to understand the difficulties experienced in P-wave-based
assessment of the LA.
Moreover, the hypothesis that P-wave morphology, and in particular P-wave
terminal force (PTF) in lead V1, is affected by a shift of the earliest activated
site (EAS) and its relative proximity to intact IACs was confirmed. As both the
excitation origin and the IACs express significant intraindividual and interindi-
vidual variability in terms of presence, location and conductive properties,
their effect can explain the limits of PTF-based assessment of LA anatomy:
differences in PTF-V1 are not of purely anatomical origin but also an electrical
phenomenon.
Besides the factors mentioned above, the anatomical properties of the LA con-
tribute to PTF-V1. It was shown that LA hypertrophy increases PTF through
higher ECG amplitudes but does not change P-wave duration. The presented
findings show that PTF-V1 is a sensitive marker for LA wall thickening and
elucidate why it is superior to P-wave area. The interplay of LA hypertrophy
and dilation might be the reason for the poor empirical correlation of LA
size and PTF-V1. Therefore, the presented method to investigate LA dilation
leveraging computational models carries great potential. The presented results
highlight the need to be aware of the limits regarding our current understanding
of further factors influencing the P-wave, its morphology, and related markers.
Only by pushing and overcoming these limits by integrating the P-wave into
extended research aiming at a mechanistic understanding of arrhythmogenesis,
healthcare practitioners will eventually be put in a position to fully leverage
the potential of the P-wave in terms of AF prevention.
In conclusion, the studies presented in this thesis advanced the state of the art
in computational modeling of atrial patho-electrophysiology in several aspects.
Novel methods to transfer experimental data into models, to quantify the ef-
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models with a priori knowledge, and to assess vulnerability to atrial flutter
were presented. Moreover, the boundary regarding our understanding of basic
mechanisms was pushed. This includes the differential mode of action of amio-
darone and dronedarone regarding the atrial substrate and circadian changes
of heart rate and drug concentration, as well as the contributors to P-wave
morphology and terminal force. Summing up, this thesis presents methods
paving the way to tailor AF therapy under consideration of the specific patho-
mechanisms, the distinct properties of subpopulations, and patient-individual
characteristics. By translating the methods and insights into clinical practice,
appropriate and more efficient therapy can be delivered in shorter time. In this
way, not only the socio-economical costs of AF but foremost the individual
patient’s burden can be reduced eventually.
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APPENDIXA

Parameter Estimation

A.1 Ion Current Formulations

Here, the IKr, IKur, and IKs ion current formulations from Courtemanche et al.
[47] used in this study are given. The estimated parameters are highlighted in
red in the equations. Their classification as additive or multiplicative together
with their values in the original formulation and the corresponding wide and
narrow range are given in Table A.1–Table A.3.
The intracellular potassium concentration [K]i was estimated for all currents:

EK =
R ·T
F · zK

ln
[K]o
[K]i

. (A.1)

A.1.1 IKr

IKr = gKrxr
1

1+ exp
(

Vm+xr,m3
xr,m4

) (Vm −EK) , (A.2)
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with xr being the gating variable. Its steady state value xr∞, the two rate
constants αxr and βxr and the time constant τxr are defined as follows:

xr∞ =
1

1+ exp
(

Vm+xr,m1
xr,m2

) , (A.3)

τxr =
1

(αxr +βxr) · xr,KQ10
, (A.4)

αxr =
xr,a1 (Vm + xr,a2)

1− exp
(

Vm+xr,a2
xr,a3

) , (A.5)

βxr = 7.3898×10−5 Vm + xr,b1

exp
(

Vm+xr,b1
xr,b2

)
−1

. (A.6)

A.1.2 IKur

IKur = gKuru3
aui (Vm −EK) , (A.7)

gKur = gKur1 +
gKur2

1+ exp
(

Vm+gKur3
gKur4

) , (A.8)

αua = ua,a1

[
exp

(
Vm +ua,a2

ua,a3

)
+ exp

(
Vm +ua,a4

ua,a5

)]−1

, (A.9)

βua = 0.65
[

ua,b1 + exp
(

Vm +ua,b2

ua,b3

)]
−1 , (A.10)

τua =
1

(αua +βua) ·ua,KQ10
, (A.11)

ua,∞ =

[
1+ exp

(
Vm +ua,m1

ua,m2

)]−1

, (A.12)
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αui = ui,a1

[
ui,a2 + exp

(
Vm +ui,a3

ua,a4

)]
−1 , (A.13)

βui = exp
(

Vm +ui,b1

ui,b2

)
, (A.14)

τui =
1

(αui +βui) ·ui,KQ10
, (A.15)

ui,∞ =

[
1+ exp

(
Vm +ui,m1

ui,m2

)]−1

. (A.16)

A.1.3 IKs

IKs = gKsx2
s (Vm −EK) , (A.17)

xs∞ =
1√

1+ exp
(

Vm+xs,m1
xs,m2

) , (A.18)

τxs =
0.5

(αxr +βxr) ·xs,KQ10
, (A.19)

αxs =
xs,a1 (Vm + xs,a2)

1− exp
(

Vm+xs,a2
xs,a3

) , (A.20)

βxs = 3.5×10−5

(
Vm + xs,b1

)

exp
(

Vm+xs,b1
xs,b2

)
−1

. (A.21)
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Table A.1: IKr parameters: besides the parameter names and units, their classification
as additive (±) or multiplicative (*), the standard Courtemanche et al. value [47] and the
parameter ranges for the parameter estimation are given.

Parameter Unit Type Standard value Narrow range Wide range

xr,a1 1 * 3×10−4 3×10−5..3×10−3 3×10−6..3×10−2

xr,a2 mV ± 14.1 –45.9..74.1 –105.9..134.1
xr,a3 mV * –5 –50..–0.5 –500..–0.05
xr,b1 mV ± 3.3328 –63.33..56.67 –123.33..116.67
xr,b2 mV * 5.1237 0.51237..51.237 0.05123..512.37
xr,KQ10 1 * 1.0 0.1..10.0 0.01..100.0
xr,m1 mV ± 14.1 –45.9..74.1 –105.9..134.1
xr,m2 mV * –6.5 –65.0..–0.65 –650.0..–0.065
xr,m3 mV ± 15.0 –45.0..75.0 –105.0..135.0
xr,m4 mV * 22.4 2.24..224.0 0.224..2240.0
gKr nS/pF * 0.0294118 0.0029..0.2942 0.0003..2.94
[K]i mM * 138.99 13.899..1389.94 1.38994..13899.4

A.2 Experimental Protocols

In this section, the details of the experimental protocols used to acquire wet-lab
IKr, IKur, and IKs current traces in the group of Eberhard Scholz at University
Hospital Heidelberg are given.
All currents were recorded using a Warner OC-725A (Warner Instruments,
Hamden, CT, USA) amplifier, low-pass filtered at 1 to 2 kHz (-3dB, four-pole
Bessel filter) and digitized at 5 to 10 kHz (Digidata 1322A, Axon Instruments,
Union City, CA, USA). The currents recorded in different cells were normalized
to their maximum value, averaged, and scaled to the average maximum value.

A.2.1 hERGmeasurements

Human ether-à-go-go-related gene (hERG; alternative nomenclature KCNH2)
encodes the α-subunit of the Kv11.1 protein carrying the rapid delayed recti-
fier potassium current (IKr).
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Table A.2: IKur parameters: besides the parameter names and units, their classification
as additive (±) or multiplicative (*), the standard Courtemanche et al. value [47] and the
parameter ranges for the parameter estimation are given.

Parameter Unit Type Standard value Narrow range Wide range

ua,a1 1 * 0.65 0.065..6.5 0.0065..65.0
ua,a2 mV ± 10.0 –50..70 –110..130
ua,a3 mV * –8.5 –85..–0.85 –850.0..–0.085
ua,a4 mV ± –30.0 –90.0..30.0 –150.0..90.0
ua,a5 mV * –59.0 –590..–5.9 –5900.0..–0.59
ua,b1 1 ± 2.5 –57.5..62.5 –117.5..122.5
ua,b2 mV ± 82.0 22.0..142.0 –38.0..202.0
ua,b3 mV * 17.0 1.7..170.0 0.17..1700.0
ua,m1 mV ± 30.3 –29.7..90.3 –89.7..150.3
ua,m2 mV * –9.6 –96.0..–0.96 –960.0..–0.096
ua,KQ10 1 * 3.0 0.3..30.0 0.03..300.0
ui,a1 1 * 1.0 0.1..10.0 0.01..100.0
ui,a2 1 ± 21.0 –39.0..81.0 –99.0..141.0
ui,a3 mV ± –185.0 –245.0..–125.0 –305.0..–65.0
ui,a4 mV * –28.0 –280.0..–2.8 –2800.0..–0.28
ui,b1 mV ± –158.0 –218.0..–98.0 –278.0..–38.0
ui,b2 mV ± –16.0 –160.0..–1.6 –1600.0..–0.16
ui,m1 mV ± –99.45 –159.45..–39.45 –219.45..20.55
ui,m2 mV * 27.48 2.748..274.8 0.2748..2748.0
ui,KQ10 1 * 3.0 0.3..30.0 0.03..300.0
gKur1 nS/pF ± 0.005 –59.95..60.0 –119.9..120.0
gKur2 nS/pF * 0.05 0.005..0.5 0.0005..5.0
gKur3 mV ± –15.0 –75.0..45.0 –135.0..105.0
gKur4 mV * –13.0 –130.0..–1.3 –1300.0..–0.13
[K]i mM * 138.9 13.89..1389.9 1.389..13899

Wildtype hERG channels were expressed in Xenopus oocytes after injection of
46 nl cRNA solution per oocyte. After 3 to 4 days incubated at a temperature
of 16◦ C, double micro-electrode voltage clamp experiments were performed
in n = 8 cells. The tip resistances of the micro-electrodes were in the range of
1 to 5 MΩ. The voltage clamp recordings were performed at room temperature
(23 to 25◦ C). The bathing solution consisted of 5 mM KCl, 100 mM NaCl,
1.5 mM CaCl2, 2 mM MgCl2, and 10 mM HEPES (pH adjusted to 7.4 with
NaOH) and the pipette solution contained 3 M KCl. The applied voltage clamp
protocol and the corresponding current traces are depicted in Figure 4.1C.
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Table A.3: IKs parameters: besides the parameter names and units, their classification
as additive (±) or multiplicative (*), the standard Courtemanche et al. value [47] and the
parameter ranges for the parameter estimation are given.

Parameter Unit Type Standard value Narrow range Wide range

xs,a1 1 * 4×10−5 4×10−6..4×10−4 4×10−7..4×10−3

xs,a2 mV ± –19.9 –79.9..40.1 –139.9..100.1
xs,a3 mV * –17.0 –170.0..–1.7 –1700.0..–0.17
xs,b1 mV ± –19.9 –79.9..40.1 –139.9..100.1
xs,b2 mV * 9.0 0.9..90.0 0.09..900.0
xs,KQ10 1 * 2.0 0.2..20.0 0.02..200.0
xs,m1 mV ± –19.9 –79.9..40.1 –139.9..100.1
xs,m2 mV * –12.7 –127.0..–1.27 –1270.0..–0.127
gKs nS/pF * 0.12941176 0.0129..1.294 0.00129 12.94
[K]i mM * 138.994 13.899..1389.94 1.3899..13899.4

A.2.2 KCNA5measurements

KCNA5 encodes the Kv1.5 protein carrying the ultra-rapid delayed rectifier
potassium current (IKur). Wildtype KCNA5 was transfected into chinese ham-
ster ovary (CHO) cell using Fugene reagent (Promega, Madison, WI, USA)
(3 μg DNA per bowl). The CHO cells were incubated at 37◦ C in minimum
essential medium α and an atmosphere of 95% humidified air and 5% CO2.
The medium was supplemented with 100 μg/ml streptomycin sulphate, 10%
fetal bovine serum, and 100 U/ml penicillin G sodium. Resistances ranged
between 38 and 98 MΩ. The bathing solution consisted of 140 mM NaCl,
5 mM KCl, 1 mM MgCl2*6H2O, 10 mM HEPES, 1.8 mM CaCl2*2H2O, and
10 mM glucose monohydrate. pH was adjusted to 7.4 using NaOH. The pipette
solution contained 100 mM K aspartate, 20 mM KCl, 2 mM MgCl2*6H2O,
1 mM CaCl2*2H2O, 10 mM HEPES, 10 mM EGTA, and 2 mM Na2ATP. pH
was adjusted to 7.2 using KOH; patch clamp recordings were performed at
a temperature of 37◦ C in n = 3 cells. The applied voltage protocol and the
corresponding current traces are depicted in Figure 4.1D.
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A.2. Experimental Protocols

A.2.3 KCNQ1+KCNE1measurements

KCNQ1 encodes the α-subunit of the Kv7.1 protein carrying the slow delayed
rectifier potassium channel (IKs), KCNE1 encodes the β -subunit of Kv7.1.
KCNQ1 was co-expressed with KCNE1 in Xenopus oocytes after injection
of 46 nl cRNA solution per oocyte. Double micro-electrode voltage clamp
experiments were performed at room temperature (20 to 25◦ C) 2 days after
injection in n = 5 cells. The tip resistances of the micro-electrodes were in the
range of 1 to 5 MΩ. The bathing solution consisted of 5 mM KCl, 100 mM
NaCl, 1.5 mM CaCl2, 2 mM MgCl2, and 10 mM HEPES (pH adjusted to 7.4
with NaOH). The current and voltage electrodes were filled with 3 M KCl
solution. The applied voltage protocol and the corresponding current traces
are depicted in Figure 4.1E.
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