

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Adsorption and desorption of water on protein-repelling self-assembled monolayers

Mustafa Sayin¹, Alexei Nefedov² and Michael Zharnikov¹

¹ Applied Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany

²Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Protein repelling

- Proteins adhere strongly to almost all materials, which may result in their denaturing.
- There are only few materials which interact weakly with proteins so called proteinrepelling materials.
- The most efficient ones are oligo/poly(ethylene glycols).
- They exhibit protein-repelling properties at sufficient density and amount of material.

SAM	contact Angle	SAM thickness/A° (XPS)	SAM thickness/A° (Ellipsometry)	Thickness of adsorbed fibrinogen /A° (ellipsometry)
EG10H	(28±4)°	13±3	17±2	19±2
EG2OH	(33±4)°	15±3	18±2	5±2
EG3OH	(31±4)°	16±3	18±2	0±2
EG4OH	(33±4)°	18±3	22±2	0±2
EG5OH	(34±4)°	21±3	23±2	0±2
EG6OH	(33±4)°	24±3	25±2	0±2

Motivation

To get a better understanding of the mechanism behind the inertness of oligo(ethylene glycol), with respect to biofouling and protein adsorption.

Well-defined model **OEG-terminated** surfaces by using molecular self assembly were used.

Most theories assume a key role of water adsorption properties related to protein repelling.

Focus on:

- Kinetics and thermodynamics of water adsorption and desorption.
- Monitoring the transfer from hydration to wetting regime.
- The bonding character of hydration phase.

The structure and morphology of the interfacial phase.

Model System

Termination group & change in wetting character

Macroscopic wetting is a factor determines the bio-inertness up to a point

-OH and/or -CH3 terminated Alkane thiols with 12 or 16 Carbon tail

-OH and -CH3 terminated Alkane thiols with 6EG units having 12 carbon tail

Model System

The key factor for the bio-inertness is presumably the extent of hydration

-OH terminatedAlkane thiols with different number of EG units having 12 carbon tail

Analysis Techniques

Basic Characterisation

Contact Angle Goniometry

Wetting properties

Ellipsometry

Film thickness

X-ray photoelectron spectroscopy

Identity, purity and packing density

X-ray absorption spectroscopy

Structure, composition, morphology and bonding character Kinetic Experiments

Temperature programmed desorption

Water desorption kinetics

X-ray photoelectron spectroscopy

Water desorption kinetics

HRXPS & NEXAFS Characterization: C₁₁(EG)_n series

HRXPS

NEXAFS spectra

NEXAFS difference spectra

Monitoring of Water Adsorption by HRXPS and NEXAFS

Can be speculated that transition between amorphous ice to crystalline ice is observable

Water Desorption Analysis by TPD

Monitoring Water Desorption by HRXPS

- By increasing amount of EG units desorption temperature moves to higher values.
- Desorption interval gets broader.

Summary

Series of model OEG-terminated surfaces were prepared.

Basic characterisations were done.

The impact of the EG- unit length on hydration was monitored.

The transition from hydration from wetting regime was observed.

The kinetics of the water desorption was studied by TPD.

Thanks to:

Thank you for your attention ...

Introduction & Keywords

Model System

