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Nomenclature
α=thermal diff usivity, m2/s
A=surface area of food item, m2

B, D=simplices of temperature (Eq. 21)

Bi=Biot number, Bi
h d
k




C=volumetric heat capacity, J/(m3·K)
cp=specifi c heat of food, J/(kg·K)
d=characteristic dimension, m

Fo=Fourier number, l
2

pl l

 
Fo

k
c d




 

G=constant for calculation of EHTD and MCP
h=heat transfer coeffi  cient, W/(m2·K)
H and ΔH=enthalpy and enthalpy ch ange, J/m3

k=thermal conductivity, W/(m·K)
Lf=latent heat of freezing, J/kg
m=mass of the carcass, kg
M=variables used for shape coeffi  cient estimation
n=coeffi  cient depending on the size of fi sh (Eq. 22)
n, p, c=coeffi  cients from Table 3
P, R, EHTD, E, MCP=shape factors
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Summary

Determining thawing times of frozen foods is a challenging problem as the thermo-
physical properties of the product change during thawing. A number of calculation mod-
els and solutions have been developed. The proposed solutions range from relatively sim-
ple analytical equations based on a number of assumptions to a group of empirical 
approaches that sometimes require complex calculations. In this paper analytical, empiri-
cal and graphical models are presented and critically reviewed. The conditions of solution, 
limitations and possible applications of the models are discussed. The graphical and semi-
-graphical models are derived from numerical methods. Using the numerical methods is 
not always possible as running calculations takes time, whereas the specialized soft ware 
and equipment are not always cheap. For these reasons, the application of analytical-em-
pirical models is more useful for engineering. It is demonstrated that there is no simple, 
accurate and feasible analytical method for thawing time prediction. Consequently, simpli-
fi ed methods are needed for thawing time estimation of agricultural and food products. 
The review reveals the need for further improvement of the existing solutions or develop-
ment of new ones that will enable accurate determination of thawing time within a wide 
range of practical conditions of heat transfer during processing.
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Pk=Plank number, cr inp(fr)fr
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Q=heat, J/kg
q=internal heat source, J/kg

Ste=Stefan number, p a crl l
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t=temperature, C
T=temperature, K
t’=value from the chart (Fig. 2)
v=characteristic velocity, m/s
V=volume, m3

w=freezable water content, %
W=water content of meat (Eq. 13), %
W1, W2=functions depending on the Biot number 
              (Eqs. 31 and 32)
X=one-dimensional variable (Eq. 57)
x, y, z=coordinates of system, m
z=function of the Biot number

β, β1, β2=ratio of dimension to characteristic dimension

ρ=density, kg/m3

γ=value characteristic for a product

ε=function of the Biot number (Eq. 21)

τ=time, s

Subscripts

a=ambient

ave=average

c=thermal centre, end of process

cr=cryoscopic

fr=frozen

in=initial state

l=unfrozen

s=surface

slab=value for slab

Introduction
A growing and wide range of foodstuff s is frozen in 

order to be further processed or used aft er thawing. In the 
modern industrial practice food produce are frozen to 
stabilize the original quality, and also in case of excessive 
supply or when they have to be shipped over long dis-
tances. In general, the deep frozen produces are thawed 
and later processed into a large array of products ready 
for consumption. The knowledge of thawing time is es-
sential for the optimization of existing processes but also 
for the development of new products and new types of 
equipment. Precisely determined thawing time enables 
the improvement of raw material quality through the re-
duction of drip loss or tissue dehydration, prevention of 
undesired enzymatic and non-enzymatic processes and, 
notably, contribution to reduced energy input. Therefore, 
it is crucial to develop appropriate mathematical solu-
tions for the estimation of thawing time of food materials, 
especially equations that take into account the complex 
technological conditions of the processes. Despite the in-
creasing knowledge and understanding of the thawing 
process and many existing theoretical and analytical 
models, there is no single and fully universal analytical 
equation available; in addition, all these models must be 
used in conjunction with data provided for specifi c limi-
tations and simplifi cations. The application of artifi cial 
neural networks (ANN), or the tools for modelling com-
plex systems off er basically a solution to the problem. The 
problem with these systems however is that they require 
considerable sets of test and experimental data that have 
to be used for training of the networks and the verifi -
cation of the results (1). Computer-based and -assisted 
problem solving still involves the use of analytical models 
based on the laws of physics, empirical models based on 
the results of test measurements and graphical models 
developed through numerical simulation of the wide 
range of thawing operations performed on given food 

types. This study aims to characterize the applicability 
and a possible utilization of selected models of food 
thawing time calculations under industrial conditions.

Analytical and Analytical-Empirical Models
In most freezing and thawing processes of food prod-

ucts, changes in material water content induced by heat 
(mass) exchange are considered minor and may be omit-
ted. Thus, heat exchange during freezing, thawing and 
chilling generally consists in heat conduction within a 
product associated with convection and radiation occur-
ring between the object and ambient environment. The 
temperature gradient T in a function of time τ and dis-
placements in the coordinate system x, y and z character-
ize heat conduction that within the food volume can be 
described by the Fourier equation as below (2): 

  /1/

where q is internal heat source, e.g. respiration heat (in W/
kg), and x, y and z are coordinates of the system (m).

If heat conductivity k of food is constant, the above 
equation can be writt en as follows: 

  /2/

where:

  /3/

is thermal diff usivity.
In order to obtain a solution to a diff erential equation 

of transient heat conduction in solids, the conditions for 
uniqueness of the solutions need to be specifi ed. The con-
ditions comprise initial and boundary ones. The initial 
conditions describe temperature distribution at the start 
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moment of the process, whereas boundary conditions 
characterize heat exchange at the outer surfaces of the 
product.

As for freezing/thawing process, the initial condition 
is the uniform temperature within the whole volume of 
the object (2): 
  /4/

while the boundary conditions are as follows: Dirichlet 
boundary condition of the fi rst type is assumed if the en-
tire boundary (x=0) or its part has a prescribed tempera-
ture:
  /5/

Neumann boundary condition of the second type is 
assumed when a function defi ning heat fl ow density at 
the boundary is specifi ed:

  /6/

Fourier boundary condition of the third type based 
on the balance of heat fl ow intensity through the bound-
ary is assumed when conduction heat fl ux through the 
boundary is equal to the convection one:

  /7/

With reference to the boundary and initial conditions, 
the solution of the above equation of transient heat ex-
change is available, as well as complete description of 
heat exchange during freezing or thawing.

To describe the course of freezing and thawing, the 
following two physical models are commonly used: the 
model of continuous change of properties k(T) and cp(T), 
and the model of mobile phase transition front, so-called 
ice front model. The second model is based on a concept 
of the movement of phase transition boundary with con-
current change of thermophysical properties and release 
of whole latent heat of freezing. The boundary is always 
at cryoscopic temperature. Specifi cation of the boundary 
movement in the case of one dimensional heat exchange 
takes the following form (3):

  /8/

where xf is the distance from the surface to the phase 
change front (in m).

Freezing and thawing description necessitates pre-
cise values of thermophysical properties of food. The 
most essential are heat conductivity k, density ρ, specifi c 
heat cp, enthalpy H, latent heat of freezing Lf and initial 
cryoscopic temperature Tcr. As thermophysical property 
values are not constant and are primarily the function of 
material temperature, it is imperative that these proper-
ties are studied separately at each stage of material freez-
ing and thawing process. Besides, the eff ect of phase tran-
sition of water to ice or vice versa should be taken into 
account (3).

The most widely known and used solution is the 
Plank’s model developed for food freezing time predic-
tion and adapted for thawing (4). The Plank’s equation 

was derived from the basic laws of heat transfer and it 
serves as the basis for a number of solutions to the prob-
lem of freezing and thawing time calculations (5,6). The 
basic equation for the model adapted to estimate food 
thawing time is as follows:

  /9/

In the fi rst version, the shape factors P and R were 
calculated from equations provided by the author. In a 
later publication (6), Plank’s equation was used to defi ne 
the shape factors, where P and R are equal to 1 and 1/2 for 
one-side-heated infi nite slab, 1/2 and 1/8 for two-side- 
-heated infi nite slab, 1/4 and 1/16 for infi nite cylinder, and 
1/6 and 1/24 for sphere. For practical reasons Eq. 9 can 
also be presented in dimensionless form.

The shape factor values were derived by Plank (4) 
from the ratio A·d/2V, i.e. 6, 3 and 2 for slab, cylinder and 
sphere, respectively, according to the shape of the frozen 
product. The shape factors can be applied if and only if 
the frozen product surface is isothermal during the pro-
cess, irrespective of its position.

During the thawing of biological material, this condi-
tion is met when the thawed portion of the product has 
the same geometrical shape as the part which is still fro-
zen. Since Eq. 9 takes into account only latent heat of 
thawing, the estimated thawing time values tend to be 
lower than the real thawing times. Because of this defi -
ciency, the general agreement is that Eq. 9 should not be 
applied, as depending on the situation, the thawing times 
calculated by this equation may be up to 30 % shorter 
than the actual values (3,7). To correct the defi ciencies, 
modifi cations have been suggested through the adjust-
ment of the equation to specifi c cases or thawing condi-
tions. Since the heat transfer from air to the product sur-
face during thawing is characterized by high Biot 
numbers (Bi>>1), Pham (8) proposed to simplify the Plank’s 
equation:

  /10/

where E is the shape factor (1 for slab, 2 for cylinder and 3 
for sphere).

When the heat transfer situation is characterized by 
the heat conductivity of the thawed material (Bi<<1), the 
equation takes the form:

  /11/

The standard Plank’s solution was repeatedly writt en 
in a dimensionless form. To allow for thawing time esti-
mation of irregularly shaped products, empirical equa-
tions have been recommended (6).

Like very few other analytical models, Konchakov’s 
model (9), as a purely analytical solution, considers the 
thawing of a slab-shaped product. The development of 
this model involved the third type boundary condition 
and assumed that thawing comprises two stages: the 
heating of a frozen product until it reaches the cryoscopic 
temperature at the surface, and thawing that lasts until 
the whole product is thawed. Meat isotropy was also 
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assumed , as well as a constant ambient temperature and a 
heat transfer controlled by the surface heat transfer coef-
fi cient. The fi nal equation acquires the form:

  /12/

with:
  /13/

An advantage of this solution, in contrast to other 
purely theoretical analytical models that require the 
knowledge of hard-to-measure thermophysical product 
properties, is its practical applicability for the evaluation 
of the thawing process of meat in air during natural con-
vection. The thawing time for half carcass, including heat-
ing of the product up to 1 °C, can be calculated by multi-
plying the equation by the shape factor of 0.57 and by the 
coeffi  cient of 1.3. According to Konchakov (9) the predic-
tion accuracy of beef half carcass thawing time was ±5 % 
compared with the experimental data.

Another approach based on the third kind boundary 
conditions is a model by Nagaoka et al. (10). The authors 
aimed to improve the accuracy of thawing time estima-
tion by inserting into the Plank’s equation (Eq. 9) the de-
pendencies on the initial and fi nal heating of the product. 
According to the authors, the P and R shape factors can be 
calculated from the equation presented by Plank (4):

  /14/

  /15/

The model was proposed for estimating the thawing 
time of fi sh. Nagaoka et al. (10) pointed to the fact that 
there are no considerable diff erences between the general 
thermophysical properties of fi sh and other food prod-
ucts of similar fat contents; therefore, the equation can 
also be applied to predict thawing time of other food ma-
terial.

Piotrowicz (11) used a diff erent approach to the Tchi-
geov’s model (12). The basic equation of the Tchigeov’s 
model comprises an addition that accounts for the heat 
accumulated by the thawed material layer:

  /16/

Eq. 16 also accounts for a number of simplifying as-
sumptions, e.g. omitt ing the initial thawing time and as-
suming that the thawing ends when the central part of the 
product reaches the cryoscopic temperature and, fi nally, 
that the thermophysical properties of the product are not 
temperature-dependent.

Kluza and Góral (13) presented a model that allows 
to calculate the time to reach a given product temperature 
of an originally frozen product on the basis of the thaw-
ing time and the time to reach the pre-set temperature, 
Eqs. 17–20:

  /17/

where tF corresponds to a characteristic freezing tempera-
ture at which 70 % of water content of the product is fro-
zen. Temperature tF was given by Kluza et al. (14,15) who 
provided it by means of the modifi ed Riedel’s equation 
(16) as follows:
  /18/

By the use of tF instead of the cryoscopic temperature 
major errors related to the inconsistencies in estimating 
the thawing temperature of individual products are 
avoided. The equation used for the calculation of the 
thawing time was based on the modifi ed standard Plank’s 
equation:

  /19/

It is recommended by the authors that the time of the 
third stage, the heating of the product to a pre-set tem-
perature required for technological purposes, be based on 
the equation:

  /20/

The entire process time can be calculated by the fol-
lowing equation:

  /21/

where C is volumetric heat capacity, B and D are simpli-
ces of temperature, and ε is the function of the Biot num-
ber.

To respond to the needs of food industry, in the years 
1965–79, a number of analytical models were proposed 
for calculation of thawing times for individual types of 
food. An analytical solution to estimate thawing time of 
fi sh immersed in water was discussed by Usvĳ at et al. 
(17). Similar to the model proposed by Nagaoka et al. (10), 
the model considers a heating phase from the initial prod-
uct temperature ta to the cryoscopic temperature tcr:

  /22/

The mass fraction of frozen out water can be estimat-
ed by the following equation:

  /23/ 

It is assumed in the model that the shape of fi sh is an 
infi nite cylinder. Deviations from the real time were ad-
justed empirically by means of the coeffi  cient n intro-
duced into the formula. The coeffi  cient n was derived 
from 200 experimental industrial thawing operations in 
fi sh processing plant in Sukhumi, Georgia with various 
types of fi sh (17). The values of the coeffi  cient depend on 
the size of fi sh (d/n=0.05/2.3, 0.06/1.9, 0.07/1.6, 0.08/1.4, 
0.09/1.5, 0.10/1.7 and 0.11/1.9).

Another example of a specialized model is the equa-
tion to predict thawing times of lamb shoulders, pro-
posed by Vanichseni et al. (18). It is assumed that the 
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shoulder is an equivalent of a parallelepiped with the di-
mensions d×2d×2.5d. The characteristic dimension is de-
rived from a regression analysis of the relation d vs. the 
mass m of the carcass:
 d=0.00212·m+0.056 /24/

Vanichseni et al. (18) provide two adapted modifi ca-
tions of the Plank’s equation (Eq. 9) to estimate the thaw-
ing time of shoulders immersed in water, Eq. 25, and a 
simplifi ed Eq. 26:

  /25/

  /26/

The extensions in both above equations consider a 
heating phase from the initial product temperature ta to 
the cryoscopic temperature tcr, introducing the correction 
factor (1.1–1.2) depending on the product and the change of 
the product enthalpy ΔH between the initial and fi nal tem-
perature of its centre, instead of latent heat of thawing Lf.

Due to the diffi  culties in presenting an accurate ana-
lytical solution to predict thawing time of frozen mate-
rials, more advanced and more universal analytical-em-
pirical models were developed in the late 1970s. Among 
them, the model of Cleland et al. (6,19) is one the best 
known. The authors modifi ed the Plank’s equation using 
the Stefan and Plank numbers:

  /27/

where:
  /28/

  /29/

With the empirical shape factors P1 and R1 (Eqs. 28 
and 29) and the equivalent heat transfer dimensionality 
(EHTD), the following equations were obtained:
  /30/

  /31/

  /32/

Eq. 27 was developed to calculate the thawing time of 
any food product of regular shape. Att empts to improve 
the accuracy of this equation through the introduction of 
Eqs. 28 and 29 by Cleland et al. (19), using regression 
equations were not really successful; the discrepancies 
between the calculated and the actual thawing times were 
still signifi cant.

The fi rst mainly empirical solution that allows quite 
an accurate calculation of thawing time for a number of 
food materials is the model by Calvelo (20). The formula 
was expressed in dimensionless terms by Cleland et al. 
(19):

  /33/

The only defi ciency of Eq. 33 is that it yields slight er-
ror in case of slow thawing processes up to product tem-
peratures of 0 °C. This equation was also used by other 
authors to develop the empirical solutions for thawing 
time predictions (5,21–27).

Pham (28) proposed an analytical-empirical approach 
that is characterized by the absence of any numeric con-
stants: 

  /34/

where:
  /35/

  /36/

 k1=kfr /37/

 ΔH2=L /38/

 Δt2=ta– tf(ave) /39/

 k2=0.25·kfr+0.75·kl /40/

  /41/

  /42/

 k3=kl /43/

and

  /44/

  /45/

Eq. 34 accounts separately for the three thawing 
phases similarly to the model proposed by Kluza and 
Góral (13), an approach which is very helpful with re-
spect to hygienic requirements where the knowledge of 
individual heating times is being asked for. Furthermore, 
the method allows to calculate and model the individual 
heat loads transferred to the product at each processing 
phase. A major drawback of the model is certainly the 
large number of dependencies, which, consequently, re-
duces the possibility of fast calculations of thawing time.

According to Cleland (6), Eq. 34 is only applicable 
provided the following conditions are maintained: 
0.6<Bi<57.3, 0.085<Ste<0.768, and 0.065<Pk<0.272.

Cleland et al. (21,22,24) modifi ed the Calvelo (20) 
equation into a dimensionless form for infi nite slabs, 
among others, by correcting some values and coeffi  cients 
based on experimental evidence, and by using the statisti-
cal analysis method:

  /46/

The explicit thawing time has to be derived from the 
Fourier number Fo. In the case of shapes other than a slab, 
shape factors have to be introduced:

  /47/

2

a cr

H 0.075
 = 1.2  0.265  + 

d d
h kt t

  
    

2

a cr

0.09  
 = 

( )
dH

kt t
 


 

2
pl 1 1l

l

  P R=  + 
(  EHTD) Bi Ste Ste

c d
k
  

  
  

1 = 0.5 (0.7754+ 2.2828 Ste Pk)P   

2
1=0.125 (0.4271+ 2.1220 Ste –1.4847 Ste )R   

1 2EHTD=1+ +W W

1 3
1 11

Bi 5 2 2
= +W Bi + 2 Bi + 2 ( +1)8

     
              β ββ

2 3
2 22

Bi 5 2 2
= +W Bi + 2 Bi + 2 ( +1)8

     
              β ββ

1.02482
pl l 0.2712 0.0610

l

1.4921 1 1
= + Ste Pk( EHTD) 2Bi Ste 8Ste

dc
k

   
     

   

i
i

i

 1+
41

 = 
EHTD (2  )

3

i=1

h d
dH

k
ht

  
    

      
  
 



 in f ave
1 a

( + )
 = 

2
t t

t t 

   1 p fr f ave cfr = ( )c t tH   

 3 pl ave f avel =  ( )c t tH  

 ave f ave
3 a

( + )
 = 

2
t t

t t 

c a
ave c = 42+

Bi

t t
t t




 f ave cr= 1.5t t 

1.0248
0.06100.2712

slab
0.5 0.125

=1.4291 +  Fo Ste Pk
Bi  Ste Ste
 
    

1 21 2 3EHTD= + +G G GE E 



8 D. GÓRAL et al.: Review of Thawing Time Prediction Models, Food Technol. Biotechnol. 54 (1) 3–12 (2016)

  /48/

where G1,2,3 are geometric constants, and E1,2 and M1,2,3 are 
variables used for shape coeffi  cient estimation.

The coeffi  cients EHTD and mean conducting path 
(MCP) were derived from nonlinear regression analyses 
for the numerical results of thawing time calculations re-
alized according to the model systems (6).

Mathematically, the shape factor presented in the work 
of Hossain et al. (25–27) is inconvenient to use. In a diff er-
ent approach the authors introduced shape factor E, based 
on the laws of heat transfer, that can be inserted in Eq. 46. 
In the case of a parallelepiped with the dimensions d×β1d× 
β2d, the factor can be derived from the equation:

  /49/

The coeffi  cient E, which is more accurate than the fac-
tors used previously, allows for more correct calculations 
of thawing times. However, because of the need to use the 
Bessel functions and tables to determine the variables zn, 
zm and znm as a function of the Bi number, the inclusion of 

Eq. 49 into the models for fast calculations of the thawing 
time is somehow inconvenient. In order to simplify the 
situation, Hossain et al. (25–27) proposed the introduction 
of a coeffi  cient EAS instead of the coeffi  cient E. The coeffi  -
cient EAS can be calculated as follows for a parallelepiped-
-shaped product with the dimensions d×2β1d×2β2d:

  /50/

Eq. 50 can only be applied for Biot numbers smaller 
than 0.16 (25).

As in the work of Góral and Kluza (7), results of in-
vestigations on thawing time (211 experiments) of a wide 
range of regularly shaped foods were analyzed. Taking 
into account availability of reliable experimental data and 
complete characteristics of thawing parameters, the data 
were taken from Cleland et al. (29) and Ilicali (30). The calcu-
lations were performed based on the following analytical-
-empirical models: Cleland et al. (19) (Eq. 27), Piotrowicz 
(11) (Eq. 16), Calvelo (20) (Eq. 46), Nagaoka et al. (10) (Eq. 
14) and Pham (28) (Eq. 34). The results including the statis-
tical evaluation of relative error of thawing time predic-
tion were analyzed using StatGraphics packet (31) (Table 1).

The examination of relative error of calculations leads 
to the conclusion that the statistically best results were 
obtained according to the model of Cleland et al. (19). The 
mean values and the range of minimum and maximum 
errors confi rm this. However, the model of Nagaoka et al. 
(10) produced the results that highly diff ered from others.

All calculation results were subjected to the analysis 
of variance in order to point out the prediction models 
that give the best approximation to the real thawing times 
(Table 2). Test of equality of experimental and analytical 
mean values for 95 % confi dence interval led to rejection 
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Table 1. Relative error of thawing time calculations

Cleland et al. (19) Piotrowicz (11) Calvelo (20) Nagaoka et al. (10) Pham (28)

N(sample)
Mean/%
Variance/%
Minimum/%
Maximum/%
Error range/%

211
    3.82
  97.59
–44.02
  24.85
  68.87

211
  26.58
833.81
–11.31
252.10
263.42

211
  40.78
309.69
–43.68
  69.76
113.44

211
    73.62
1688.72
      7.52
  179.67
  172.15

211
  17.47
441.54
–22.62
  65.67
  88.29

Table 2. Variance analysis of experimental thawing time vs. times calculated according to diff erent models

Experimental
thawing time/min Cleland et al. (19) Piotrowicz (11) Calvelo (20) Nagaoka et al. (10) Pham (28)

N(sample)
Mean/min
Variance/min
Diff erence mean/min
Variance ratio
Mean equality for 95 % 
confi dential interval

211
    6.43
33.2

211
  6.75
37.43
–0.32
  0.89
yes

211
  8.73
76.75
–2.30
  0.43

no

211
  9.35
77.35
–2.93
  0.43

no

211
  12.59
181.92
  –6.17
    0.18

no

211
  7.62
57.02
–1.20
  0.58
yes
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of the models of Piotrowicz (11), Calvelo (20) and Nagao-
ka et al. (10) because of statistically signifi cant diff erences 
of the mean values.

Graphical and Semi-graphical Models
Analytical and empirical solutions are practicable 

and relatively accurate in the situations when a heat 
transfer coeffi  cient h and ambient temperature Ta are con-
stant and there is no heat generation (internal heat sources) 
in the object (e.g. respiration heat of some biological mate-
rial). Modelling of a process based on the thermophysical 
properties of the product needs implementation of nu-
merical methods. Numerical solutions to the problem are 
based on Fourier’s equation (Eq. 1). Several numerical 
methods are grounded on breaking this equation into two 
parts, each linked with a diff erent coordinate system. In 
the heat fl ow problems (considering only diff usion part), 
the space and time coordinates are discretized (8,32). In 
that case fi nite diff erence schemes are used and the Crank - 
-Nicolson and Euler methods are employed most fre-
quently (33). The Crank-Nicolson scheme does not en-
force additional constraints with respect to time and 
space because of the midpoint method applied (central 
diff erence approximation):

  /51/

The second space derivative is defi ned at the interme-
diate point that enables approximations averaging at the 
beginning (τi) and the end (τi+1) of the time interval and, 
consequently, provides far higher accuracy than other 
methods: 

  /52/

and

  /53/

It is required that mathematical approximations are 
centrally symmetric in both time and space. Combining 
these approximations means that diff erence equations 
can be writt en for any space node in the grid and that, in 
turn, facilitates prediction of complete temperature histo-
ry in time in all the nodes (8,32). In the fi nite element 
method (FEM), the domain of interest is gridded into a 
certain fi nite number of geometrically simple subdomains 
called fi nite elements. It is assumed that elements are in-
terconnected at the fi nite number of points at their perim-
eters, most oft en these are placed at each element’s apices 
(nodes). The temperature values at each node make a pa-
rameter that should be essentially established. A tempera-
ture is approximated within each element by a function 
(polynomial) that is determined via nodal temperature 
values. The function is defi ned so that temperature conti-
nuity on element boundaries is preserved, while nodal 
temperature values ensure the optimal approximation for 
the actual temperature fi eld. This is achieved by means of 
minimization of the functional (functional is a function 

from a vector space into its underlying scalar fi eld, or a 
set of functions of the real numbers) corresponding to the 
diff erential equation of heat conduction (Fourier’s equa-
tion). The minimization process can be performed through 
direct minimization technique as well as be based on the 
necessary condition for extremum of a function. In the lat-
ter case, determination of nodal temperature values should 
be made using a set of algebraic equations. A number of 
equations in the set is equal to the number of nodes multi-
plied by the number of degrees-of-freedom at nodes, i.e. 
the number of unknown nodal temperature values. The 
next step is to insert the boundary conditions to the set of 
equations through the appropriate modifi cations of coef-
fi cient matrix of the equation set and the right-hand-side 
vector. Finally, the set of equations is solved and the nodal 
temperature values searched for are obtained (34,35).

Besides the analytical-empirical models, a number of 
graphical solutions have been developed to estimate 
thawing times of biological materials. Bailey et al. (36,37) 
proposed a model based on a numerical solution. To ob-
tain the graphical solution for estimating the thawing 
time for pork legs, the authors (36,37) conducted the nu-
merical analysis (according to Dusinberre’s method) of 
the one-dimensional heat transfer for a sphere. The ob-
tained chart allows predicting thawing times of pork legs 
to a temperature range between –30 and 0 °C when the 
convection heat transfer coeffi  cient h follows the condi-
tion 10<h<5000 W/(m2·K), and the ambient temperature 
rises  to 5, 10, 20, 30 or 40 °C (Fig. 1). The authors report 
that the error of this procedure was between 0.02 to 0.35 
%. The largest error occurred with low convection heat 
transfer coeffi  cient and low thawing temperatures.

A similar model was proposed by Tao (38). The au-
thor developed a chart to analyze thawing time of prod-
ucts shaped as plate, cylinder or sphere. The chart was 
derived from the numerical solution of the dissolved Fou-
rier’s equation:

  /54/

The t’ value has to be read from the chart (Fig. 2; 39) 
using the variables β and γ (Eqs. 55 and 56), characteristic 
for each product:

  /55/

  /56/

The model suggested by Tao (38) is based on the sim-
plifi ed assumptions that thawing time can only be deter-
mined for three simple geometric shapes (infi nite slab, 
infi nite cylinder or sphere); that the temperature of the 
ambient heat source does not change over time; and that 
the thawing process starts from the cryoscopic tempera-
ture of the product to be thawed.

Salvadori and Mascheroni (40,41) proposed a method 
of calculating thawing times of food products exposed to 
a wide range of processing conditions commonly used in 
the food industry. The graphical solution is based on the 
relationship between the changing central product tem-
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perature and one-dimensional variable X. The basic equa-
tion in this model is as follows:

  /57/

and the values of n, p and c coeffi  cients are given in Table 
3, besides the product shape, for the basic conditions of 
the process.

The model by Salvadori and Mascheroni (40,41) was 
developed to predict thawing times of food materials 
with a high water content. Its great advantage is that in 
order to perform the calculations, it requires only the 
thermophysical properties of a product in the unfrozen 
state, which markedly reduces the number of needed 
data.

In the former Soviet Union, many simple solutions to 
estimate thawing times for fi sh were developed (42–45). 
One of the most common solutions presented by Ste-
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Fig. 2. Exempla ry chart of Tao method for thawing time predic-
tion of infi nite slab. β and γ=dimensionless variables (39)

Table 3. Values of n, p and c coeffi  cients in the model of Salvadori and Mascheroni (40)

Shape

Thawing conditions Coeffi  cients

Temperature/°C
Biot number n p c

initial ambient

Slab
Cylinder
Sphere

–10 to –31
–10 to –35
–10 to –35

5–35
5–45
5–45

  1–151
1–44
1–44

0.74
0.74

  0.715

0.03
0.05
0.03

0.45
0.47
0.45

Fig. 1. Thawing time prediction chart according to the model of Bailey and James (36) for 3-kg pork leg from –30 to 0 °C, 6-kg leg 
from –30 to 0 °C and thawing from –10 to 0 °C. Shaded area shows reduction in thawing time at initial temperature of –10 °C under 
the fastest and slowest thawing conditions
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fanovski and Chomczenko (43–45) is based on a nomo-
gram developed for a fast estimation of thawing times of 
fi sh under the conditions of vacuum pressure-assisted 
thawing and/or thawing in convectional water. The meth-
od requires only the knowledge of fi sh body mass, ambi-
ent temperature of water and the initial temperature of a 
product. A major advantage of the nomogram used in this 
model is the possibility to compare the high pressure 
thawing process with the traditional thawing process in 
water.

The graphical and semi-graphical methods are de-
rived from numerical methods. It should be mentioned at 
this point that besides the models reviewed in this work, 
there are several other similar methods for thawing time 
estimation (46–48). These solutions have been developed 
for special situations and they are usually appropriate 
and accurate for only one selected product or its shape, 
which limits the scope of their use.

Conclusions
Most of the presented analytical-empirical models 

are derived from the original Plank’s equation, which is 
based on the principle laws of heat transfer under the 
conditions of the freezing/thawing process. All numerical 
solutions for the estimation of thawing times have a re-
duced range of applicability because of the complexity of 
the process.

To allow for standardized calculations, diff erent 
types of shape coeffi  cients are used. The most common 
coeffi  cients, P and R, which were introduced by Plank, 
were derived from the ratio of volume to area of objects 
subjected to the freezing process. The A·d/2V ratio is ac-
curate for all the shapes if the Biot number approaches 
zero. In the case of large Bi numbers, a good and simple 
shape factor does not exist. Substitution of complex geo-
metric shapes of products with a sphere or slab of the 
same characteristic dimension is limited due to impossi-
bility to determine an appropriate correlation without ex-
perimental studies. A known coeffi  cient EHTD is valid for 
Bi0, similar to the MCP coeffi  cient developed by Pham. 
However, these coeffi  cients imply systematic errors be-
cause they depend on environmental conditions. Further-
more, it is diffi  cult to use the mathematically complex co-
effi  cient E, especially under production conditions.

Another source of inaccuracy is that analytical mod-
els consider thermophysical properties of products as 
constant, without considering their changes with the 
changing temperatures. In the models, the initial cryo-
scopic temperature of thawing corresponds to the cryo-
scopic temperature of the freezing of product in question, 
which is not correct.

Graphical methods are time-consuming and prone to 
errors caused by inaccurate reading of charts, and they 
prevent the automatic calculations by computer soft ware.

Numerical methods predict thawing time more accu-
rately; however, they require the control of numerical er-
ror, which depends on parameters like size of grid, 
change in boundary conditions and material properties, 
time step, etc. Another problem with numerical methods, 
in the case of thawing analysis, is the necessity to provide 

precise data on physicochemical properties of a product, 
which may be challenging because of its anisotropy and 
lack of homogeneity. A number of commercial programs 
based on numerical methods do not do reasonably well 
because of temperature-dependent product properties. 
On the other hand, analytical methods are encumbered 
with numerical error. In this case, however, a far more se-
rious error may be committ ed at the stage of problem for-
mulation.

Furthermore, using the numerical methods is not al-
ways possible as running calculations takes time, whereas 
the specialized soft ware and equipment are not always 
cheap. For these reasons, the application of analytical-em-
pirical models is more useful for engineering. The review 
has demonstrated that there is no simple, accurate and 
feasible analytical method for thawing time prediction, 
and its derivation takes into account the third kind 
boundary condition. Consequently, simplifi ed methods 
are needed for thawing time estimation of agricultural 
and food products.
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