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1. Introduction
In a perfect world, crystalline solids are perfectly periodic. However, in reality this ideal-
ized model of perfect periodicity even under laboratory conditions can only be approached
but never reached. There always remains a certain amount of lattice imperfections, grain
boundaries and impurity atoms one has to deal with. Due to their random occurrence, such
defects give rise to a certain level of disorder which in particular influences the dynamics
of the crystal electrons which scatter on impurities. This, apart from thermal effects, for
example gives rise to electrical resistivity or, speaking in a more microscopic language to
finite lifetimes of the electronic quasiparticle states. Sometimes, such disorder effects are
even desired because they can be used to tune the electronic properties of a system. A
very prominent example is the large field of semiconductor devices, where the introduc-
tion of impurities leads to charge carrier doping and thus spatially dependent electronic
properties. Without this technology, the present work could not have been performed.
Essentially, disorder gives rise to plenty of interesting phenomena in solid state physics.
The success of solid state theory in describing, more interestingly also explaining and
sometimes even predicting experiments is to a large extent founded on the translational
symmetry of the mathematical problems to be solved. But exactly that translational
symmetry is violated in the presence of disorder. Thus, a proper description of disorder
phenomena in realistic calculations is a nontrivial task. Especially in the otherwise well
established field of first principles calculations of the electronic structure, the incorpora-
tion of disorder phenomena still is a challenge.
A special type of disorder arises from chemical substitution, where a certain atomic species
of the crystalline host material is randomly substituted by impurity atoms at a prescribed
concentration. A widely used approach based on supercells only works for special impu-
rity concentrations but for arbitrary concentrations suffers from a dramatic increase of
the computational effort, as will become clear later. For the theoretical investigation of
systems with arbitrary impurity concentrations, the so-called effective medium approaches
are more promising. A main goal of this thesis is to develop an extension of the coher-
ent potential approximation (CPA) [1–4], being a famous representative of such effective
medium approaches, within a pseudopotential density functional theory (DFT) frame-
work [5–10] for electronic bandstructures based on earlier work [11]. The CPA in the past
has been successfully applied in particular within the Kohn-Korringa-Rostocker [12, 13]
(KKR) DFT framework [14–19], but rarely has been implemented within other approaches.
The pseudopotential method however is one of the most frequently used. The developed
method will allow the ab-initio treatment of substitutional disorder in arbitrarily complex
real materials.
Apart from the above mentioned prominent example of semiconductor technology, sub-
stitutional disorder also plays an important role in many material classes being subject
of fundamental research. One of these material classes, which is a hot topic in recent
and ongoing research, is represented by the various families of iron based superconduc-
tors first discovered in 2008 [20]. This discovery marks the starting point of a new era
of high temperature superconductivity with transition temperatures up to 56K [21]. Su-
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1. Introduction

perconductivity, which was first discovered by Heike Kammerlingh Onnes in 1911, on the
one hand is characterized by an abruptly vanishing electrical resistivity below a critical
temperature which makes it interesting for technological applications. In addition, in this
state the magnetic field gets expelled from the bulk of the sample due to the Meissner
effect [22]. This means that rising the temperature and increasing an external magnetic
field can destroy superconductivity, where the latter is a reason why superconductivity
was not expected to appear in compounds containing iron, being a magnetic element.
These compounds exhibit a rich phase diagram [23–27]. In most stoichiometric iron based
compounds superconductivity is not present at normal conditions and only appears either
under hydrostatic pressure or, being relevant for the present work, when substitutional
disorder is present. In the temperature versus substitution phase diagram, the supercon-
ducting state competes with an antiferromagnetic orthorhombic phase at low tempera-
tures and a paramagnetic tetragonal phase at high temperatures. The temperature of this
structural / magnetic transition can be tuned by chemical substitution. Also the supercon-
ducting transition temperature depends on the impurity concentration and for the most
compounds forms a dome in the phase diagram: at a certain finite impurity concentration,
superconductivity sets in and the transition temperature increases with impurity concen-
tration up to a maximum, usually called "optimally doped" and then again decreases with
further rising impurity concentration until it gets totally suppressed. This clearly shows
that substitutional disorder plays a key role for understanding the complex phase inter-
play in these materials. But despite intensive recent and ongoing research there is still
no consensus about the detailed impact of chemical substitution on the superconducting
state in these materials. Furthermore, it is even not clear if substitution really leads to
charge carrier doping in these systems [28–32]. In the study of other materials, ab-initio
electronic structure calculations could contribute to a fundamental understanding but in
the case of substitutional disorder in the iron based systems, until now there is no coherent
picture from such calculations.
The ab-initio method developed in the present work is ideally suited for the study of this
material class. A systematic in-depth study of various substitutions in the BaFe2As2 sys-
tem considering the impact of disorder on the electronic structure will be performed in
this work. Hereby, the focus will be set on the influence of disorder on individual bands
near the Fermi level, which are in particular three hole like bands next to the center of
the first Brillouin zone and two electron like bands next to the zone edge. The disorder
induced level shifts provide information about the aspect of charge doping. Furthermore,
the lifetimes of these states become finite due to disorder. Comparing the inverse lifetimes,
which can be extracted from spectral broadenings of the states next to the Fermi level,
allows to compare the scattering strengths of the different impurity species. Impurity
scattering is crucial for the suppression of superconductivity: in the popular s+− pairing
scenario [33–37], being the most important candidate for the iron based superconductors
where the superconducting order parameter changes sign between different Fermi surface
sheets, interband scattering on nonmagnetic impurities leads to breaking of Cooper pairs
[38] and thus a suppression of superconductivity. To investigate the robustness of this s+−

pairing scenario and compare how effective the various substitutions are in suppressing
superconductivity, a first principles study distinguishing intraband and interband scatter-
ing will be presented.
This thesis is structured as follows: In the first part of the thesis, an introduction into
the field of the electronic structure of substitutionally disordered systems will be given
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and the theoretical framework as well as its particular implementation will be outlined in
detail in Chapter 2. Further technical aspects of the method development also concerning
the structure and usage of the program package can be found in AppendicesA - D. The
theoretical approach itself will be validated for a simple toy model against a more exact
approach in Chapter 3. In Chapter 4, the implemented ab-initio method will be tested for
simple binary Cu1−xZnx alloys. In this chapter, also essential concepts of representing the
numerical data (in particular the spectral functions) will be introduced.
In the second part of the thesis in Chapter 5, the developed method will be applied to
BaFe2As2 focussing on disorder induced level shifts and spectral broadenings of the in-
dividual bands at the Fermi level comparing different substitutions. This chapter starts
with an introduction into the essential facts obtained by others about this material class
which are needed to understand the impact of the results obtained in the present work.
In the end, a specialized method will be developed to analyze intraband versus interband
scattering caused by a single impurity from first principles to study, together with the
spectral broadenings, the influence of the various substitutions on superconductivity.
Finally, a summary, concluding remarks and ideas about possible related future work will
be presented in Chapter 6.
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2. Computational method

2.1. Density functional theory

Density functional theory (DFT) [5, 6] can be seen as up to date’s standard first princi-
ples approach to the calculation of the electronic structure of a system of many electrons
and ions in general and crystalline solids in particular. It was very successful in the past
in the theoretical treatment of real materials and nowadays a variety of different highly
developed program packages exist which allow efficient calculations for complex systems
at relatively cheap computational cost. In condensed matter physics DFT has a manifold
of useful applications: It can help to analyze experimental data, especially in scattering
experiments. It can provide an overview about possible effects in a recently discovered new
material and even when it disagrees with experimental observations this can be helpful in
explaining the origin of certain physical effects.
Some of these disagreements with experiments can be attributed to serious shortcomings
of DFT which gave rise to the development of highly specialized methods to overcome
these problems at least for certain limiting cases. The most prominent example is its
insufficiency in a proper description of systems with strong electronic correlations where
an enormous amount of work is still going to address this issue - for example by dynamical
mean field theory [39–41] and related methods. Less known but of particular interest for
this work is the problem of a DFT-based treatment of disordered systems.
Nevertheless, when dealing with real materials, almost all of those more specialized meth-
ods to treat a certain physical effect more accurately, including the one developed in this
work, start from a DFT calculation. This together with its universal applicability is an-
other reason for the great importance of DFT in condensed matter physics and makes it
worthwhile to present a brief review in the following which is to a large extent based on
my diploma thesis [42] and Meyer’s PhD-thesis [10].

2.1.1. Statement of the problem

Usually, in the field of molecular and solid states physics, one is interested in the dynamics
of many electrons interacting with themselves and the ions. The most general Hamiltonian
describing such as system is

H = Tel + Tion + Vel−el + Vel−ion + Vion−ion (2.1)

Tel (Tion) being the kinetic energy of and Vel−el (Vion−ion) the interaction potential between
the electrons (ions). Vel−ion is the interaction between the electrons and ions. This general
many body problem is of course not exactly solvable and further approximations are
needed. One important approximation which is the basis of practically all electronic
structure calculations in solids and valid as long as lattice dynamics is not considered, is
the Born-Oppenheimer approximation [43]. Here it is assumed that the dynamics of the
electrons will instantaneously follow the movements of the ions because of the huge mass
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difference Mion � mel. This allows a decoupling of the dynamics of the electrons from
that of the ions and the remaining problem is to independently solve two Schrödinger
equations for the electrons and the ions

(Tel + Vel−el + Vel−ion) |ψ〉 = Eel({RI})|ψ〉 (2.2)
(Tion + Vion−ion + Eel({RI})) |φ〉 = Etot|φ〉 (2.3)

where the total energy of the electrons Eel (often referred to as the Born-Oppenheimer
energy surface) parametrically depends on the positions of the ions RI . The electronic
problem Eq. (2.2) thus got simplified but still remains a many body problem due to the
many body nature of Vel−el.

2.1.2. The theorems of Hohenberg and Kohn

Instead of finding a wave-function based ansatz to this problem, DFT provides an alter-
native approach where the basic quantity is the electronic density n(r). DFT is based on
the theorems of Hohenberg and Kohn [5]:

1. From elementary quantum mechanics it is known that an external potential vext(r)
uniquely defines the ground state and thus the electronic density vext(r) → H →
|ψ〉 → n(r). It can be proven that this can be reversed: knowledge of the electronic
density defines the potential up to a constant n(r)→ vext(r). The total energy then
is a functional of the electronic density

Eel[n(r)] = F [n(r)] +
∫
n(r)vext(r)d3r (2.4)

F being a universal functional of the electronic density independent of the external
potential which in a solid describes the influence of the ions.

2. This energy functional is minimal for the density of the ground state and then
assumes the value of the ground state energy.

These two theorems provide a variational principle to determine the ground state proper-
ties of the system. Instead of directly minimizing the energy functional, in most practical
applications a different route originally due to Kohn and Sham [6] is chosen. Mapping the
real system of interacting electrons to an auxiliary system of noninteracting electrons with
the same density and minimization of the energy functional via a Lagrange ansatz leads
to the following set of (Euler-Lagrange) equations:(

− ~2

2m∆ + veff (r)
)
ϕi(r) = εiϕi(r) (2.5)

n(r) =
N∑
i=1
|ϕi(r)|2 (2.6)

veff (r) = vext(r) + vH [n](r) + vXC [n](r) (2.7)

where ϕi are the Kohn-Sham orbitals and εi the associated energy eigenvalues. The ionic
potential vext describes the influence of the crystal lattice in case of a solid and vH is the
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Hartree potential

vH [n](r) = e2
∫

n(r′)
|r − r′|

d3r′ (2.8)

describing density-density interaction. All many body effects beyond the Hartree term
are absorbed into the exchange and correlation (XC) potential vXC . This ansatz allows
to reduce the solution of a complicated N -body problem to a more tractable effective
one particle problem. This simplification is paid with the price of the Eqs. (2.5) - (2.7)
being self-consistent because the single particle Schrödinger Eq. (2.5) for the orbitals ϕi is
governed by a potential veff Eq. (2.7) which depends on the density via the Hartree and
the XC contribution and this density again depends on the orbitals ϕi via Eq. (2.6). Such
a system of self-consistent equations has to be solved iteratively usually starting from an
initial guess for the potential or the density which is performed in the most DFT codes.
The XC potential, which was needed for the decoupling of the many body problem into
one particle problems, is crucial for the description of electronic correlations. There exists
no general expression for this potential and one has to resort to approximations. Until
now, no approximation has been found which leads to satisfactory results in the descrip-
tion of (strongly) correlated electron systems, which is the main reason for the initially
mentioned shortcomings of DFT when applied to such systems. However, the most com-
mon approximation for vXC , which also will be used in the present work, is the local
density approximation (LDA) [6]: The XC energy of a homogeneous, interacting electron
gas to high accuracy has been determined numerically by quantum monte carlo meth-
ods and several parametrizations of this energy exist (which parametrization is used in
calculations in this work, will be mentioned later). In the LDA, the XC energy which
in general is a functional of the density depending on several positions (inhomogeneous
electron gas) is just replaced by that energy of a homogeneous electron gas. Thus, the XC
energy then is only a functional of the density depending on one single position. Despite
the fact, that this is a strong approximation for all kind of realistic systems, it turned out
to perform astonishingly well for many realistic systems as far as electronic correlations
are not too strong. This success of the LDA for sure is a main reason for the success of
DFT in general.

2.1.3. The mixed basis pseudopotential approach

As stated above in Sec. 2.1.2, the most DFT implementations solve the same set of self-
consistent equations but they differ in the details about how the solution is obtained. The
first important difference lies in the treatment of the electron-ion interaction potential vext.
Here essentially two different approaches have to be distinguished: the all-electron methods
and the pseudopotential approach. In the all-electron methods one uses the bare nuclear
potential for vext and the Kohn-Sham equations have to be solved for all electrons on the
same footing. In contrast, in the pseudopotential approach [44], the electrons are divided
into core- and valence electrons and vext then has the meaning of an effective potential of a
nucleus screened by the core electrons. Thus, the set of self-consistent equations (2.5)-(2.7)
only has to be solved for the valence electrons which in general reduces the computational
effort.
The second difference arises from the choice of basis set for the representation of the
Kohn-Sham orbitals ϕi. Many codes use plane waves which have the advantage of simple
mathematical treatment but the problem of slow convergence for elements with strongly
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localized electrons (for example the 3d transition metals). On the other hand, a couple of
codes use atom centered functions which are better suited for localized electrons but are
not ideal for quasi-free electrons and require a more sophisticated mathematical treatment.
The DFT code referred to in this work is a so-called mixed-basis pseudopotential code using
norm-conserving pseudopotentials constructed after Vanderbilt [7] together with a basis
set comprising a linear combination of plane waves and a few localized atomic functions
to benefit from the advantages of both basis schemes. This MBPP code was originally
developed by Steven Louie and co-workers [8] in Berkeley in the 70’s and redeveloped by
Bernd Meyer and co-workers [9, 10] in Stuttgart in the 90’s. This code, which is currently
not available public, is still frequently used and maintained by several groups in Germany.
In particular it serves as a starting point for several extensions as for example a program
to perturbatively calculate phonons developed by Rolf Heid [45] and an implementation
of dynamical mean-field theory for strongly correlated systems developed by the group of
Frank Lechermann [46]. In this work I have developed a new extension to this code for
the treatment of substitutionally disordered compounds from first principles.

2.2. Substitutional disorder

An idealized solid exhibits perfect periodicity which in particular allows theoretical cal-
culations to be restricted to just one unit cell as long as bulk properties are considered.
But in the real world no solid is perfectly periodic and randomly distributed impurities
lead to disorder effects which manifest themselves in many different properties such as
thermodynamics or transport. Sometimes such disorder effects are even desired and can
be used to tune selected material properties. Often the phase diagrams of whole material
classes are governed by disorder as for example in the cuprate [47] or iron pnictide [20]
high temperature superconductors.
Among different types of disorder I will specifically focus on substitutional disorder in this
work where the following situation is assumed: Given a perfectly periodic crystalline host
or parent compound, a certain atomic species is substituted by another. Generally, in a
complicated compound where only a part of the constituent atomic species is substituted
and the rest is unaffected, the sublattices of these possibly substituted atomic types are
assumed to be known. However, it is completely random at which geometrical site in
the bulk crystal an actual substitution occurs. The only control parameter herein is the
impurity concentration. This provides a realistic modelling of the experimental situation
when chemical substitution is performed in a stoichiometric parent compound.
The most DFT implementations are suited for the treatment of a few tens up to a hundred
of atoms at reasonable computational effort. In the last decades, method developments
and technical advances in supercomputing have raised projects to treat several thousands
of atoms within DFT but even this is far from sufficient to treat each of the ≈ 1023 atoms
in a bulk solid individually. For this reason, in most cases the periodicity of the crystal
lattice is used and the actual calculation is only performed for one unit cell when DFT is
applied to bulk solids. On the one hand this allows to handle complex compounds with
large unit cells but on the other hand makes it impossible to directly address the problem
of disorder in bulk solids via DFT because the periodicity gets destroyed by disorder. This
raises the necessity of more specialized approaches.
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2.2.1. Early approaches

Before focusing on a special method dedicated to the treatment of substitutional disorder
based on DFT, which was implemented in this work, it is instructive to first give a brief
review about some exemplary earlier approaches. The most straight forward among them
relies on supercells, essentially meaning an enlarged unit cell where a certain portion of
the host lattice sites is occupied by the substituent species, corresponding to the actual
impurity concentration. To really account for the randomness of the substitutions, it is
of course necessary to average over several distinct configurations. As a consequence, it is
for example not sufficient to simply use a supercell twice as large as the unit cell of the
parent compound in case of 50% substitution, in order to obtain a good thermodynamic
average. First of all, this shows that this method can only be practicable for special
impurity concentrations like 50%, 25%, 12,5% and secondly even at such special impurity
concentrations the size of the supercell and thus the computational effort grows with
increasing quality of the thermodynamic average. The proper description of a system at
arbitrary impurity concentration (e.g. 42% ) would thus require a very large supercell
which simply rules out the use of this method in general cases. Nevertheless one can
already learn a lot from supercell calculations at those special impurity concentrations,
which led to sophisticated computational schemes, for example in [48, 49] applied to iron-
pnictides.
In fact, there exist material classes where experiments observe interesting effects at small
impurity concentrations (e.g. in the iron pnictide superconductors sometimes less then
10%, in semiconductors even much less). The desire to investigate them by ab-initio
methods requires to look for alternatives to supercells which can handle arbitrary impurity
concentrations. This class of methods is usually summarized by the term of effective
medium theories and the simplest among them is the virtual crystal approximation (VCA)
[50]. Here the individual atomic potentials at the lattice sites, where substitutions are
possible, simply get replaced by an average over the atomic potentials of the host and the
impurity species, weighted by the respective atomic concentrations

{VA(Ri), VB(Ri)} → VV CA(Ri) = cAi VA(Ri) + cBi VB(Ri) (2.9)

where VA is the atomic potential and cAi the atomic concentration of species A at site
i. So the real physical medium of the crystal gets replaced by an effective medium con-
taining artificial atoms at the substitutional sites. This method is relatively simple to
implement and also provided successful results especially in the context of lattice dynam-
ics and electron-phonon coupling [51, 52]. But on the other hand, in many cases it tends
to lead to physically incorrect results [19, 53] - for example it fails in the split band limit
of an alloy. This limit describes the separation of one band into two individual bands with
increasing impurity concentration and can for example be observed via exact diagonal-
ization of tight-binding models as well as in real Cu1−xZnx alloys as will become clearer
in Chaps. 3 and 4. The reason of this failure lies in the simplicity of the VCA [53]: in a
real disordered A1−xBx alloy the electronic density for sure is inhomogeneous due to the
different potentials of A and B and the random distributions of these two species. Thus in
general, the probability to find an electron next to an A atom is expected to be different
from the probability to find it next to a B atom. This realistic behavior is neglected by
averaging over the two atomic potentials as it is done in the VCA.
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2.2.2. Coherent potential approximation

After having clarified the insufficiency of the VCA in the last section, it turns out to
be worthwhile for the treatment of generic substitutionally disordered systems to further
pursue the thought of the effective medium theories on a more rigorous mathematical basis.
For the most more elaborate methods, the apparatus of Green’s functions is a powerful
tool. One usually starts (as for example suggested in [3, 19]) by formulating the problem
of a substitutionally disordered system of noninteracting electrons in the tight-binding
language by the following Hamiltonian

Ĥ =
∑
ij

Wijc
†
icj +

∑
i

εic
†
ici (2.10)

where Wij describes the hopping of an electron from site i to site j and εi is the electron’s
onsite energy. The operators c†i (ci) create (annihilate) an electron at site i and obey the
fermionic commutation relations maintaining the Pauli principle and the antisymmetry of
the wavefunction under particle exchange

{ci, c†j} ≡ cic
†
j + c†jci = δij {ci, cj} = {c†i , c

†
j} = 0 (2.11)

where {·, ·} denotes the anticommutator of two operators and δij is a Kronecker-delta. The
simplest way of including disorder effects into this model consists in assuming the disorder
to be only connected with the onsite terms of the Hamiltonian Eq. (2.10). These onsite
terms then can assume different values depending on the species which actually occupies
a site in a random configuration. This means that for an electron the random atomic
occupation of the site where it is currently located is decisive but the atomic occupations
of the surrounding sites are unimportant, i.e. off-diagonal disorder or environmental effects
are neglected. To approach this problem, it is useful to consider the onsite term εi as a
perturbation which leads to the following Born’s series or closed reformulation as a Dyson’s
equation [3, 19] for the Green’s function in frequency domain of the disordered system

Gij(ω) = G0
ij(ω) +

∑
k

G0
ikεkG

0
kj +

∑
kl

G0
ikεkG

0
klεlG

0
lj + ... (2.12)

= G0
ij(ω) +

∑
k

G0
ik(ω)εkGkj(ω) (2.13)

G0
ij(ω) =

[
(ω −W )−1

]
ij

(2.14)

where G0
ij , being the Green’s function of the unperturbed Hamiltonian, is solely deter-

mined by the hopping terms and is assumed to be known. The physical observables in
a disordered system are thermodynamic averages and therefore it is straight-forward to
configurationally average the series Eq. (2.12) term by term

〈Gij(ω)〉 = G0
i,j(ω) +

∑
k

G0
i,k〈εk〉G0

k,j +
∑
k,l

G0
i,k〈εkG0

k,lεl〉G0
l,j + ... (2.15)

= G0
ij(ω) +

(
G0(ω)Σ(ω)〈G(ω)〉

)
i,j

(2.16)

In the last step Eq. (2.16), the averaged series was reconverted into the closed form of
a Dyson’s equation by defining a complex, frequency dependent self-energy Σ(ω) where
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2.2. Substitutional disorder

all repeated averaging processes are absorbed into. However, it is an absolutely non-
trivial task to determine this self-energy and impossible without further approximations.
Eq. (2.16) receives a considerable simplification if the self-energy is assumed to be a single-
site quantity Σij = Σiδij . At least from the original Hamiltonian, where the disorder was
considered to be associated with an onsite quantity, such a similar approximation for the
self-energy seems reasonable. Among several earlier approaches to solve such a problem
[3, 19, 54–56], the coherent potential approximation (CPA) turned out to be the most
sophisticated. This approximation first was simultaneously published in 1967 by Soven [1]
for electronic dynamics and Taylor [2] for lattice dynamics. Before diving into the formal
subtleties of this approximation, it is instructive to provide a brief pictorial sketch about
its principle. In the CPA, the sites of the actual disordered crystal are replaced by an
initially unknown effective medium associated with an effective medium Green’s function
Γ(ω) and a self-energy Σ(ω) which both depend on the (complex) frequency ω. Then, one
site in the effective medium - which one does not matter due to the single site nature of the
CPA - is replaced by a real impurity with a well defined onsite energy. This replacement
is done with all possible species which are allowed to be substituted at the site and it is
demanded that the average of these replacements is the same as the effective medium.
This self-consistent CPA condition provides an iterative scheme to determine the initially
unknown effective medium: the medium will be slightly changed until the condition is
fulfilled. In Fig. 2.1 this scheme is depicted for the example of a binary A-B-alloy on a two
dimensional lattice, based on a similar cartoon in [57]. This CPA condition can be math-

A B A

A

AAB

BB

X

X∈{A,B}

=

Figure 2.1.: The random A-B-alloy gets replaced by the CPA effective
medium (shaded) which should be the same as the average over all insertions
of real impurities into the effective medium

ematically formulated in different ways which for example is summarized in an extensive
review by Elliott et al.[3].
As a preparation for the next section, it is useful to derive the self consistent equations in
the locator framework following the work of Brouers [58] and Rowlands [19]. In particu-
lar, the equivalence to the traditional approaches has previously been shown by Leath [59]
using diagrammatic techniques. As introduced by Matsubara [60], Eq. (2.12) can equiva-
lently be expressed in terms of the so-called locator gi(ω) = (ω − εi)−1 and the hopping
matrix elements Wij :

Gij(ω) = gi(ω)δij +
∑
k 6=i

gi(ω)WikGkj(ω) (2.17)

The locator g(ω) is nothing else than a Green’s function of a localized state with energy εi.
The locator equation of motion Eq. (2.17) is equivalent to the Dyson’s equation Eq. (2.13)
for the complementary approach of starting from localized atomic states and perturbatively
including the interatomic hopping W . The diagonal elements of this equation can be
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2. Computational method

rewritten without the summation restriction by introducing the so-called interactor ∆ [58]

Gii = (g−1
i −∆i)−1 (2.18)

∆i =
∑
j 6=i

WijgjWji +
∑
j 6=i

∑
k 6=i

WijgjWjkgkWki + ... (2.19)

The only purpose of the interactor is to reformulate the locator equation of motion into a
closed expression similar to what was done before by introducing the self-energy into the
configurationally averaged Dyson’s equation Eq. (2.16). This form of the locator equation
of motion then is convenient for the introduction of the effective CPA-medium by the
self-energy Σ(ω) and the effective medium Green’s function Γ(ω) or, using the respective
equivalents in the local approach, the effective medium interactor ∆̄(ω) and locator γ(ω)

γi(ω) = (ω − Σi(ω))−1 (2.20)
Γii(ω) = (γ−1

i (ω)− ∆̄i(ω))−1 (2.21)

where (2.18) was used. For a mathematical description of the insertion of a real impurity
of species q into the effective medium, being essential for the CPA condition, an impurity
Green’s function qG(ω) can be defined. Replacing γ in Eq. (2.21) by an impurity locator
gqi (ω) = (ω − εqi )−1 with species dependent onsite energy εqi , qG is found to be

qGii =
(
(gqi )

−1 − ∆̄i

)−1
=
(
Γ−1
ii + Σi − εqi

)−1
(2.22)

where in the last step a combination of Eqs. (2.20) and (2.21) was used to get rid of ∆̄.
This impurity Green’s function now allows a direct mathematical formulation of the CPA
condition illustrated in Fig. 2.1

Γii(ω) !=
∑
q

cqi
qGii(ω) (2.23)

where cqi is the atomic concentration of species q at site i. The effective medium was
introduced to get an approximation for the configurational averaged Green’s function 〈G〉
of the real physical system as defined in Eq. (2.15) and therefore under this approximation,
Γ has to be identical with 〈G〉. The same then holds for the self-energy and Dyson’s
equation Eq. (2.16) together with Eq. (2.14) yields

Γii
!= 〈Gii〉 =

[
(G0

ii)−1 − Σi

]−1
= [ω −Wii − Σi]−1 (2.24)

The effective medium exhibits the full translational symmetry of the parent compound and
the local effective medium Green’s function Γii(ω) can be obtained from a representation
in k-space using a Fourier transformation. Here it is necessary to divide the combined
local index i into a lattice index L and an atomic index inside the unit cell s

Ri = RL +Rs (2.25)

This allows a Fourier transformation of the hopping terms according to the following
convention

Ws,t(k) = 1
(2π)3 e

−ik(Rs−Rt)
∑
L

e−ikRLWLs,t (2.26)
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2.2. Substitutional disorder

which will be used throughout this work also for all other translational invariant matrix
elements. Then the effective medium Green’s function, of which in the CPA cycle only
the onsite elements are needed, can be calculated

Γss(ω) =
∫

1.BZ
d3kΓss(k, ω) =

∫
1.BZ

d3k [ω −W (k)− Σ]−1
∣∣∣
ss

(2.27)

where the integration is performed over the first Brillouin zone. Finally, eqs. (2.22),
(2.23) and (2.27) together form a set of self-consistent equations which can be solved by
the following iterative scheme:

1. In iteration n, calculate the effective medium Green’s function n−1Γ by Eq. (2.27)
from the hopping matrix elements and the self-energy from the previous iteration

2. For every substituent species, calculate an impurity Green’s function from Eq. (2.22)

3. Calculate a new effective medium Green’s function nΓ from the CPA condition
Eq. (2.23)

4. From the difference of those two Green’s functions calculate a self-energy update via
dΣi =

(
n−1Γ

)−1
∣∣∣
ii
− (nΓ)−1

∣∣∣
ii

5. If dΣ is small enough, the scheme is finished, otherwise repeat at step 1 with iteration
n+ 1

In the first iteration, the initial self-energy has to be guessed. The update formula for dΣ
can be derived by recognizing that Eqs. (2.27) and (2.23) hold for every iteration but Γ as
well as Σ will change between two iterations in contrast to ω and W which will stay the
same in every iteration.
In the beginning of this section, it was stated that due to the single-site nature of this
approach, environmental disorder effects are neglected. On the other hand, this provides
a computational feasible method to obtain the thermodynamic average of a disordered
system where the computation time does not scale with the impurity concentration. For
that reason it has been successfully applied within ab-initio frameworks and among them
especially within the Kohn-Korringa-Rostoker (KKR) method [12–19], which is a multiple-
scattering Green’s function based DFT approach. When applying the CPA within a
wave function based approach, extended overlapping basis sets like the popular linear
combination of atomic orbitals (LCAO) basis, not even to mention plane waves, are not
well suited due to its local nature. Because of that there exist only few implementations
of this powerful method within other frameworks apart from KKR.
It is thus desirable to have a method which can also handle off-diagonal disorder effects
beyond the CPA with maybe less requirements to a basis set. At least on the route towards
off-diagonal disorder, a couple of cluster-extensions to the CPA have been developed over
the years. The most prominent ones are for example the molecular coherent potential
approximation (MCPA) [61] from the 1970’s, where essentially a finite cluster sits at every
"site" in the effective medium. Its more famous successor is the nonlocal coherent potential
approximation (NLCPA), first discussed in 2001 [62], where such clusters are embedded
into the effective medium in a more sophisticated way. Recently in 2013, the dual-fermion
approach, being a field theoretical method originally developed for strongly correlated
systems [63], was discussed in the context of disordered systems [64]. As summarized
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2. Computational method

in [19], the MCPA and its successors suffer from several shortcomings like violation of
symmetries and non analyticity. The NLCPA seems to be a quite successful approach
[18, 19] but also is told to be computationally expensive in some cases. In particular in
[64] it is stated, that (unlike conventional CPA) the NLCPA can capture effects leading
to Anderson localization but does not describe the Anderson transition properly.

2.2.3. Incorporation of environmental disorder effects

An alternative approach towards improving the CPA for off-diagonal disorder by taking
into account disordered hopping terms but still relying on a single-site self-energy, is the
formalism of Blackman, Esterling and Berk (BEB) [4]. This approach has later proven to
be analytic [65], correctly recovers all symmetries of the parent compound as will become
clear below and has been successfully applied also within nonorthogonal, overlapping basis
sets [11]. First of all, BEB introduced the following binary occupation variables (notation
follows [11])

ηPi =
{

1 if site i is occupied with speciesP
0 otherwise

To ensure that these random occupation variables describe a physical realistic situation,
they have to obey several rules:

1. Avoid occupation by multiple species at the same site

ηPi η
Q
i = δPQη

P
i (2.28)

2. Ensure occupation with one species ∑
P

ηPi = 1 (2.29)

3. Relation of random occupation variables to atomic concentration

〈ηPi 〉 = cPi (2.30)

4. Statistical independence of the occupation of two sites

〈ηPi η
Q
j 〉 = cPi c

Q
j (2.31)

These rules are frequently used as an algebra in later calculations. Via these η, a transfor-
mation of the Hamiltonian between the Hilbert space of one special configuration (normal
symbols) and a non stochastic extended Hilbert space containing all configurations (un-
derlined symbols) can be established

Ĥ =
∑

i,j,P,Q

HP,Q
i,j η

P
i η

Q
j c
†
icj =

∑
i,j,P,Q

ηPi W
PQ
ij ηQj c

†
icj +

∑
i,P

ηPi ε
P
i c
†
ici (2.32)

This means that the Hamiltonian Ĥ of a specific configuration is selected from a more
general Hamiltonian Ĥ by specifying the set of η. It is essential for this approach that
the only stochastic quantities under consideration are the η. They encode a random
configuration, whereas the quantities in the extended Hilbert space H and S are non
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2.2. Substitutional disorder

stochastic and thus possess the full translational and point group symmetry of the parent
compound. Additionally, in this formalism the disorder effects are no longer encoded just
in the onsite terms εi. Moreover, the hopping elements Wij = ηPi W

PQ
ij ηQj of a specific

random configuration encoded in the η are random and take into account the disordered
environment of a site in the crystal.
Instead of presenting the original derivation of the self-consistent equations as in [4], I will
take an alternative and maybe more comprehensive route similar to that given in [65].
It essentially is a generalization of the approach due to [19, 58] given in the preceding
section to the extended Hilbert space. Application of the BEB-transformation Eq. (2.32)
causes the site matrix elements (e.g. Gi,j , Hi,j), being complex numbers in Sec. 2.2.2, to
resemble matrices in species space. In particular, for the Green’s function and the locator
of Sec. 2.2.2 this yields

GPQij = ηPi Gijη
Q
j gP

i
= ηPi gi (2.33)

The locator gP
i

is special in that respect: due to its original definition as a site diagonal
quantity and the BEB rule Eq. (2.28) it is also species diagonal. As a consequence, the
locator equations of motion for the actual physical system and the effective medium have
the same form in site indices in extended Hilbert space as their counterparts in conventional
CPA, Eqs. (2.18) and (2.21), but additionally become matrix equations in species space

Gii = (g−1
i
−∆i)−1 Γii = (γ−1

i
− ∆̄i)−1 (2.34)

In the same way as done in conventional CPA Eq. (2.20), the BEB-CPA self-energy Σ can
be defined via

γ
i

= (ω − Σi)−1 (2.35)

with the important remark that this self energy is not related to the one in conventional
CPA by a BEB-transformation. This property is only maintained by the Green’s function,
locator and Hamiltonian. In analogy to the route which was selected in Sec. 2.2.2, an
impurity locator which replaces the BEB-CPA medium, i.e. the self-energy, with the
onsite energy of a particular species q at site i can be written as

qgP
i

=
[
ω − δPqεqi − (1− δPq)ΣPP

i

]−1
(2.36)

which leaves the effective medium locator unchanged elsewhere. In the same way as
Eq. (2.22) was obtained, this yields for the impurity Green’s function and the CPA condi-
tion

(qG)−1
∣∣∣PQ
ii

=
(
Γ−1

)PQ
ii

+
(
ΣPQ
i − εqi

)
δPQδPq (2.37)

ΓPQii =
∑
q

cqi
qGPQii (2.38)

To complete the set of self-consistent equations, the fact that the underlined quantities in
extended Hilbert space maintain the translational symmetry of the parent compound can
be used to obtain in analogy to Eq. (2.27)

ΓPQii =
∫

1.BZ
d3k [ω1−W (k)− Σi]

−1
∣∣∣∣PQ
ii

(2.39)
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where the translational symmetry of W (k) and site diagonality of Σ restricts the matrix
inversion in orbital space to one unit cell.
The obtained self-consistent Eqs. (2.39), (2.38) and (2.37) have exactly the same form
as the respective Eqs. (2.27), (2.23) and (2.22) obtained for the conventional CPA in the
previous section - the only difference is that the quantities, being complex numbers in the
conventional CPA, now are matrices in species indices. Apart from this fact, the iterative
scheme to solve these self-consistent equations is completely analog to the one outlined in
the last section.
This method preserves the single site property of the self-energy which is advantageous
for efficient numerical implementation but goes a step beyond the conventional CPA in
its ability to treat environmental disorder effects based on disordered hopping terms. A
verification of these qualities based on numerical model studies will be presented in Chap. 3.

2.2.4. Orbital-based ab-initio implementation using pseudopotentials

In the last section, the BEB-CPA, being a method dedicated to the treatment of sub-
stitutional disordered systems at arbitrary impurity concentrations including off-diagonal
disorder effects, was presented. The physical, material specific quantities this scheme
is governed by, are the Hamiltonian matrix elements HP,Q

i,j entering the self-consistent
equations via hopping- and onsite-terms. Until now, these matrix elements are just free
parameters of a certain physical model. The aim of this section is to show a way how to
obtain them from a first-principles DFT calculation relying on the mixed-basis pseudopo-
tential program (MBPP), mainly based on earlier work by Koepernik et al. [11] who did
this in context of the full potential local orbital (FPLO) framework.
In principle, the idea is to generalize the site- and species-dependent matrix elements to
another orbital degree of freedom HP,Q

i,j → HPQ
iµ,jν where i,j are site-, P ,Q species- and

µ = (l,m), ν = (l′,m′) are compound orbital indices, l being the quantum number of
orbital angular momentum and m ∈ {−l, l} the magnetic quantum number. Such matrix
elements then can be understood as the Hamiltonian operator of our DFT method ĤDFT

evaluated between LCAO orbitals |iPµ〉

HP,Q
iµ,jν =

〈
iPµ

∣∣∣ĤDFT

∣∣∣ jQν〉 SP,Qiµ,jν = 〈iPµ|jQν〉 (2.40)

Obviously, such an LCAO basis is not restricted to be orthonormal and exhibits a nontrivial
overlap matrix S. For such a basis, the unit operator is defined as

1 =
∑

iPµ,jQν

|iPµ〉
(
S−1

)P,Q
iµ,jν
〈jQν| (2.41)

The hopping matrix elements W can then be identified as offsite matrix elements H̆ and
the onsite terms εi as onsite matrix elements Ḣ of the DFT-Hamiltonian. Unfortunately,
the MBPP itself relies on localized atomic functions and plane waves of which the lat-
ter are definitely not suited for a local, site dependent method like the BEB-CPA. The
MBPP contains on the other hand subroutines where the Kohn-Sham orbitals in mixed-
basis representation of a converged bandstructure calculation can be transformed to an
LCAO representation solely containing atom centered functions. These routines, origi-
nally developed for the purpose of local chemical analysis [10], essentially use the same
atomic functions as in the mixed basis, modified by cutoff functions. The parameters of
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these cutoff functions then are optimized to the actual bandstructure which leads to radial
functions in the usual representation of the basis functions φlm in terms of real spherical
harmonics Klm

〈r|iPµ〉 = φPi,µ(r) = φPlm(r −Ri) φPlm(r) = ilfPl (r)Klm(r̂) (2.42)

where r = |r| and r̂ is a unit vector pointing in the direction of r. This optimization
of the local orbitals is accomplished by minimizing the so-called spillage function [66, 67]
which gives a measure about the difference in electronic density calculated within the
original basis compared to the one calculated in the projected basis. Furthermore, this
approximation is carried out in such a way that the agreement between the bandstructure
obtained within the local basis and the original one is best below the Fermi level. The
coincidence far above the Fermi level for unoccupied bands, where DFT as a ground state
theory is not supposed to be reliable anyway, usually is not good but also not important.
However, a good representation of the Kohn-Sham orbitals in terms of a local basis can
only be achieved if the functions are heavily overlapping. In this work, the basis functions
are normalized, meaning that the onsite part of the overlap matrix is always one

Ṡ
P
iµ,ν = SP,Qiµ,jνδi,jδP,Q = 〈iPµ|iPν〉 = δµ,ν (2.43)

where the additional δP,Q is a consequence of the BEB-rule Eq. (2.28). This allows, as
becomes obvious later in this section, to simply generalize the derivation of the BEB-CPA
in the locator framework as presented in Sec. 2.2.3 to such a special non-orthogonal basis.
For the local decomposition of the potentials needed to evaluate the Hamiltonian matrix
elements we first need to assume a local decomposition of the electronic density in the
following way

n(r) =
∑
iP

ηPi n
P
i (r) (2.44)

For a clean system, such a decomposition in principle can be derived from the fundamental
Kohn-Sham equation for the density Eq. (2.6)

n(r) =
N∑
n=1
|ϕn(r)|2

=
∑
iPµ

φPiµ(r)
∑
jQν

CP,Qiµ,jν

[
φQj,ν(r)

]∗
(2.45)

where n is a band index and the expansion coefficients C of the Kohn-Sham orbitals ϕn
with respect to the local orbitals φ are given by

CP,Qiµ,jν =
∑
i′P ′µ′

∑
j′Q′ν′

∑
n

(
S−1

)P,P ′
iµ,i′µ′

〈i′P ′µ′|n〉〈n|j′Q′ν ′〉
(
S−1

)Q′,Q
j′ν′,jν

(2.46)

which are calculated by the LCAO routines in the MBPP (in a slightly different form in k-
space). More details of such a decomposition are described in the next section about charge
self-consistency and in App.B.3. This leads to a local decomposition of the potential

V (r) =
∑
iP

ηPi V
P
i (r) = Vpseudo(r) + VHartree[n(r)] + VXC [n(r)] (2.47)
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where the pseudopotential is already decomposed in terms of species and angular mo-
mentum by construction. The decomposition of the Hartree term can be obtained by the
decomposition of the density after Eq. (2.44) due to its linear dependence on the electronic
density. Only the decomposition of the XC-potential is not straight forward and will be
discussed later in this section. The Hamiltonian matrix elements of a random configuration
are given by

Hiµ,jν = ηPi H
PQ
iµ,jνη

Q
j = ηPi

〈
iPµ

∣∣∣∣∣∣T̂ +
∑
k,R

ηRk V
R
k (r)

∣∣∣∣∣∣ jQν
〉
ηQj (2.48)

where T̂ is the kinetic energy operator. The problem is that this matrix element exhibits
additional stochastic contributions due to the decomposition of the local potential. This is
a drawback compared to BEB’s original idea of non-stochastic matrix elements defined in
an extended Hilbert space which exhibits the full translational symmetry and choosing a
random configuration by multiplying with the stochastic η from both sides. Following [11],
this problem can be approached by only treating the potentials located at the terminal sites
out of the sum in the middle exactly and take the rest into account by a configurational
average over the whole crystal

HPQ
iµ,jν =

〈
iPµ

∣∣∣∣∣∣T̂ + V P
i + V Q

j +
∑

k 6=(i,j) ,R
cRk V

R
k

∣∣∣∣∣∣ jQν
〉

(2.49)

which ensures the translational symmetry of the H being required by the BEB scheme.
Then the decomposition into onsite- and offsite contributions is straight forward:

Ḣ
P,Q
iµ,jν = δi,jδP,Q

〈
iPµ

∣∣∣∣∣∣T + V P
i +

∑
k 6=i ,R

cRk V
R
k

∣∣∣∣∣∣ iPν
〉

(2.50)

H̆
P,Q
iµ,jν = (1− δi,j)

〈
iPµ

∣∣∣∣∣∣T + V P
i + V Q

j +
∑

k 6=(i,j) ,R
cRk V

R
k

∣∣∣∣∣∣ jQν
〉

(2.51)

where again the additional factor δPQ in the onsite term originates from the BEB-rule
Eq. (2.28). To efficiently calculate these multi-center integrals between wavefunctions ex-
pressed by spherical harmonics Eq. (2.42), it is convenient to also perform a multipole
expansion of the potentials. The resulting expressions containing only one dimensional
radial integrals which were actually implemented, are shown in full detail in App.B.
As stated before, only for the exchange correlation (XC) potential such a multipole expan-
sion cannot be carried out analytically because it is a nonlinear functional of the density.
In [11] this issue was solved by an atomic sphere approximation (ASA) where VXC should
assume the value for the total density of the disordered system for r within this sphere
and a constant, interstitial value outside the sphere. By introducing these spheres, an
artificial site index is given to VXC . But this works only under an isotropic approximation
where this site decomposition of VXC is assumed to only have an l = 0 contribution and
any higher angular momenta are neglected.
In practical calculations for real materials carried out in this work, this approximation
worked as long as the systems were close to isotropic, i.e. the angle dependence of the
density was not important and contributions with l > 0 could be neglected. For anisotropic
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2.2. Substitutional disorder

systems, this approximation turned out to fail: in the BaFe2As2 it yielded an additional
spurious electron pocket. This problem led to the implementation of a more sophisticated
approach within this work based on so-called shape functions. Such shape functions S
are spherically symmetric and characterized by a site- and species-dependent cutoff radius
CRPi

SPi (r) = SPi (|r|) = SP
(
|r|
CRPi

)
SP (1) = 0 (2.52)

N (r) =
∑
i,P

cPi SPi (r −RP
i ) (2.53)

where a proper normalization is maintained by N (r). The exact functional form for these
shape functions chosen in this work are shown in App.B.4.5. These shape functions are
allowed and also required to overlap and the following definition guarantees a well-defined
result without any double-counting

XCV P
i (r) = VXC

[
XCnPi (r)

] SPi (r −Ri)
N (r) (2.54)

where XCnPi (r) is a conditionally averaged density under the constraint that site i is
occupied by an atom of type P

XCnPi (r) = nPi (r) +
∑
j 6=i,Q

cQj n
Q
j (r − (Rj −Ri)) (2.55)

In a clean compound, where a single well defined species is associated with every site,
the species-dependence of the shape functions simply reduce to their site dependence. In
addition, Eqs. (2.53) and (2.55) then become

N (r) =
∑
i

Si(r −Ri) (2.56)

XCnPi (r) = nPi (r) +
∑
j 6=i,Q

nQj (r − (Rj −Ri)) = n(r) (2.57)

where the density simply reduces to the total density. To be physically meaningful, such
a decomposition has to add up to the full XC-potential

VXC [n(r)] !=
∑
i

XCVi(r −Ri) =
∑
i

VXC [n(r)]Si(r −Ri)
N (r)

= VXC [n(r)]N (r)
N (r) (2.58)

which proves the consistency of this approach for clean compounds. In a disordered sys-
tem, the one to one correspondence between site and species indices is no longer fulfilled,
such a formal proof is not possible anymore and the decomposition becomes approxima-
tive.
This allows to build up the following scheme: First, the XC-potential is calculated from
the conditionally averaged density which is afterwards locally and species-selectively de-
composed via the shape functions. Then follows an additional angular momentum decom-
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2. Computational method

position which is carried out completely numerical by a Gauß-Legendre integration [68–71]
over the whole angle. This approach is discussed in more detail in App.B.4.5
After having outlined the computation of the required matrix elements, the central self-
consistent equations of the BEB-CPA in the special non-orthogonal basis, which have
been implemented in this work, shall be derived in the following. Because Green’s func-
tions in a non-orthogonal basis is usually not a topic readers are supposed to be familiar
with, their most important properties should be summarized here based on other work
[72, 73] (see also App.D for more details). Without loss of generality, in this repetition the
species indices P ,Q and underlines will be omitted for a moment. Depending on the set
of fermionic operators, in a non-orthogonal basis there are in general two sets of retarded
Green’s functions which are defined as

Giµ,jν(t) = −iθ(t)
〈{
aiµ(t), a†jν

}〉
(2.59)

Giµ,jν(t) = −iθ(t)
〈{
ciµ(t), c†jν

}〉
(2.60)

where {·, ·} denotes the anticommutator of two operators like before. In the first variant
Eq. (2.59), the operator a†iµ (aiµ) creates (annihilates) an electron in orbital φµ(r − Ri)
and the commutation relations are connected with the overlap matrix{

aiµ, a
†
jν

}
= Siµ,jν (2.61)

In the second variant Eq. (2.60), the operators ciµ are defined by the field-operators ψ(r) =∑
iµ ciµϕµ(r −Ri) from which their commutation relations are derived to be{

ciµ, c
†
jν

}
= S−1

iµ,jν (2.62)

Performing the same analysis using the insertion of a complete set of eigenstates
∑
n |n〉〈n| =

1 as performed in standard textbooks like [74], considering a system of non-interacting
electrons and Fourier transformation to frequency domain, the Green’s matrices are found
to be

G(ω) = (ω+S −H)−1 (2.63)
G(ω) = SG(ω)S = S(ω+S −H)−1S (2.64)

where H is the Hamiltonian matrix in LCAO indices and ω+ = ω + iδ with a small
imaginary part δ accounts for the analyticity of the retarded functions in the upper complex
half plane. To establish the locator concept in the nonorthogonal basis, it is convenient to
start from the equation of motion for G Eq. (2.63)(

ωṠ − Ḣ
)

︸ ︷︷ ︸
g−1

G +
(
ωS̆ − H̆

)
G = 1 (2.65)

where again the decomposition of the Hamiltonian and overlap matrices into onsite and
offsite contributions has been performed. The first bracket in Eq. (2.65) can be identified
as the inverse of the locator g which becomes clearer from converting Eq. (2.65) into the
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2.2. Substitutional disorder

form of a locator equation of motion similar to Eq. (2.17)

G = g + g
(
H̆ − ωS̆

)
G g =

(
ωṠ − Ḣ

)−1 Ṡ=1=
(
ω − Ḣ

)−1
(2.66)

where the term H̆ − ωS̆ could be understood as a generalized hopping matrix and the
normalization of the wave functions Ṡ = 1 selected in this work was used. This allows to
generalize the self-consistent BEB-CPA equations Eqs. (2.37) - (2.39) to a non-orthogonal
basis set by substitutingW → H̆−ωS̆ in the expressions for the medium Green’s function
Γ of Sec. 2.2.3 which leads to

ΓPQi,µν =
∫

1.BZ
d3k

[
ω
(
1 + S̆(k)

)
− H̆(k)− Σ

]−1
∣∣∣∣PQ
iµ,iν

(2.67)

(qG)−1
∣∣∣PQ
i,µν

=
(
Γ−1

)PQ
i,µν

+
(
ΣPQ
i,µν − Ḣ

q
i,µν

)
δPQδPq (2.68)

ΓPQi,µν =
∑
q

cqi
qGPQi,µν (2.69)

where the shorthand notation Xiµ,iν = Xi,µν for site diagonal quantities was introduced.
In Eq. (2.67) the matrix inversion for each k-point is performed in orbital-, species- and
site- space if the unit cell contains more than one atom. The translational invariance
of H̆(k) and S̆(k) together with the site diagonality of the self-energy ensure that this
possible site index does not exceed one unit cell.
For the implementation of an iterative scheme to solve these three self-consistent equations,
the same update formula as introduced in the discussion of the conventional CPA Sec. 2.2.2
combined with Eq. (2.69) yields after some manipulations

dΣPQ
i,µν =

(
Γ−1
i

)PQ
µν

+
∑
q

1
cqi

[
Ḣ i − Σi − Γ−1

i

]qq
µν
δPQδPq (2.70)

which was actually implemented in the program instead of Eqs. (2.68) and (2.69) because
one additional matrix inversion can be avoided in this way and the involved matrix inver-
sions can be performed for each site seperately due to the site diagonality of the involved
quantities.
In principle, the self consistent scheme outlined above is equivalent to that obtained in
[11] in a different formal approach. Our scheme experienced two simplifications compared
to [11]: We do not have to consider contributions from core electrons in the matrix ele-
ments which need an extra treatment because the pseudopotential method only deals with
valence electrons and our basis functions are normalized (Ṡ = 1).
It is important to note that the effective medium Green’s function Γ is defined in the
same way as G in Eq. (2.63). This is crucial for the calculation of physical properties
from Γ. In particular, the density of states (DOS) ν(ω) is defined in terms of the other
Green’s function G = SΓS Eq. (2.64) which is associated with annihilation and creation
of electrons

ν(ω) = − 2
π

Im Tr
[
SΓ(ω+)

]
= − 2

π
Im Tr

{∫
1.BZ

d3k S(k)
[
ω
(
1 + S̆(k)

)
− H̆(k)− Σ

]−1
}

(2.71)

25



2. Computational method

which is analog to [75] and an additional factor S−1 arising from taking a trace of an oper-
ator in a nonorthogonal basis has been considered. Tr in Eq. (2.71) means the summation
over the diagonal elements (see also App.D for more details). The factor 2 takes into
account the spin degree of freedom in a non spin-polarized calculation and the frequency
ω+ = ω + iδ with infinitesimal δ is slightly shifted above the real axis where the retarded
Green’s function is analytic. The smaller δ is chosen, the more fine structure but unfortu-
nately also the more numerical noise the DOS will show. Thus in practical calculations one
always has to check δ to find a good compromise between noise and resolution. Another
important quantity is the Bloch spectral function which is usually defined as

A(k, ω) = − 1
π

Im Tr

 ∑
L∈lattice

eikRL

∫
P.U.

d3r Γ(r −RL, r, ω
+)

 (2.72)

being a discrete Fourier transform of the Green’s function in real space on the crystal
lattice together with an integration over one unit cell. The real space Green’s function is
defined via the field operators and thus no overlap matrix is needed. It can be shown (see
App.D) that this is indeed equivalent to

A(k, ω) = − 1
π

Im Tr
[
S(k)Γ(k, ω+)

]
(2.73)

where Γ(k, ω+) is just the kernel of the integral in Eq. (2.67). This is of course just the same
expression (per spin degree of freedom) as Eq. (2.71) without integration. This spectral
function contains all information about the band structure of the disordered system as
will be visualized later. Often, when A(k, ω) is calculated, δ has to be chosen smaller than
for the calculation of the DOS in order to resolve dense bands which led to two different
δ in the actual implementation as discussed in detail in Apps.A.1 andC.

2.3. Charge self-consistency
The method which has been outlined in the last section contains all essential ingredients
needed for the calculation of the electronic structure of an arbitrary substitutionally dis-
ordered system from first principles. Such a generic calculation would be accomplished by
several steps: First, an MBPP-DFT calculation is carried out for the parent compound
which provides the pseudopotentials for each atomic species, the local basis functions ob-
tained from the LCAO fit and general information about the crystal structure and its
symmetries. Then for each substitutional end member DFT calculations are performed,
which in addition deliver the required pseudopotentials and local orbitals of the substituent
species. Instead of just doing DFT calculations for the bare substituent, this approach has
the advantage of optimizing the basis functions to the crystal structure and the surround-
ing part of the parent compound which is not substituted. This provides the best possible
starting point for achieving rapid convergence of the CPA solver. To be consistent, the
crystal structures have to be the same in all of these different DFT calculations which
has to be taken into account when variations of lattice parameters due to disorder are
considered.
In the CPA program, the overlap matrix is calculated and the locally decomposed elec-
tronic density Eq. (2.44) is computed from the local basis functions as sketched in Eq. (2.45).
The density is needed for the local decomposition of the Hartree potential and the local
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2.3. Charge self-consistency

decomposition of the XC potential is performed by the shape function approach, also rely-
ing on the density. Finally, the Hamiltonian matrix elements Eqs. (2.50) and (2.51) can be
evaluated. This is actually the most time-consuming part of the CPA-program. Via these
matrix elements the self-consistent CPA equations are solved via Eqs. (2.67) and (2.70)
which in the end delivers an effective medium Green’s function Γ(ω). In principle the
procedure then would be finished as the most physical information is contained in the
Green’s function or the spectral function.
However, this approach alone suffers from a significant shortcoming: The starting point
were several isolated DFT calculations which mutually neglect the presence of the respec-
tive substitutional species. One may argue that they get coupled to each other in a sense
by the species off-diagonal terms of the Hamiltonian but therein in particular the Hartree-
and the XC-potential depend on the density which initially can only be calculated from
the (mutually isolated) local basis functions and thus does not contain any disorder ef-
fects. This was already recognized in [11] and solved by a charge self-consistency condition
which was also adapted in this work. The essential idea is to calculate a new charge density
from the Green’s function of a converged CPA calculation and then to feed it back into
the Hamiltonian. Repeatedly applied until the density does not change significantly any-
more, this successively improves the Hamiltonian of the disordered system. The electronic
density can be calculated from the Green’s function in real space via the expression

n(r) = − 1
π

∫ EF

−∞
ImG(r, r, ω+)dω (2.74)

where the upper limit of the integration is the system’s Fermi energy EF in order to take
into account only occupied states. Within the LCAO framework in the disordered system,
the Green’s function in real space can be connected to the matrix G (see App.D) using
the basis functions in real space ϕPi,µ(r) and thus the electronic density of one random
configuration is given by

n(r) = − 1
π

∑
iPµ,jQν

ϕPiµ(r)
∫ EF

−∞
Im ηPi Giµ,jν(ω+)ηQj dω

(
ϕQjν(r)

)∗
(2.75)

where additionally the BEB transformation has been applied. Of course, Eq. (2.75) alone
is not physically meaningful because in the end only configurational averages can be com-
pared with experiments. The configurationally averaged version of Eq. (2.75) immediately
follows to be

n̄(r) = − 1
π

∑
iPµ,jQν

ϕPiµ(r)
∫ EF

−∞
Im

〈
ηPi Giµ,jν(ω+)ηQj

〉
︸ ︷︷ ︸

CPA= ΓPQiµ,jν

dω
(
ϕQjν(r)

)∗
(2.76)

This is the required expression to evaluate the total physical density in a disordered system
but on the other hand, this is not helpful for the calculation of the Hamiltonian matrix
elements which are defined in the extended Hilbert space containing all configurations.
For these matrix elements, which are not configurationally averaged, the site and species
decompositions of the potential and thus the respective decompositions of the density are
essential. Thus the aim is to return to Eq. (2.75) and find a decomposition in the form
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mentioned above
n(r) =

∑
iP

ηPi n
P
i (r) (2.77)

and derive expressions for the local components nPi using the effective medium Green’s
function to close the self-consistency cycle. This is a difficult task and not possible without
further approximations and has been approached in [11] by the so-called terminal point
approximation which will be sketched in the following. Essentially, in this approxima-
tion the Green’s function in extended Hilbert space is replaced by its twofold conditional
average in the following way

GPQiµ,jν = ηPi Giµ,jνη
Q
j → ηPi

〈
GPQiµ,jν

〉
Pi,Qi

ηQj (2.78)

where 〈...〉Pi,Qi means averaging under the constraint that the occupations of site i with
species P and site j with species Q are fixed. Then, an additional average is performed
on the η on the right index because we want the ηPi to be the only stochastic quantity in
the decomposition Eq. (2.77) but the nPi (r) to be non stochastic. This yields

nPi (r) = − 1
π

∑
j,Q,µ,ν

ϕPiµ(r)
∫ EF

−∞
Im

〈
GPQiµ,jν(ω+)

〉
Pi,Qj

dω×

×
(
ϕQjν(r)

)∗ [
δij + (1− δij)cQj

]
(2.79)

where the expression
[
δij + (1− δij)cQj

]
maintains the fourth BEB-rule Eq. (2.31) upon

averaging. In [11] it is shown that the required conditionally averaged Green’s functions
can be obtained from the effective medium Green’s function via

〈
GPPiµ,iν

〉
Pi

=
ΓPPiµ,iν
cPi

〈
GPQiµ,jν

〉
Pi,Qj

=
ΓPQiµ,jν
cPi c

Q
j

(2.80)

Putting it all together then leads to the following local species resolved density contribu-
tions

nPi (r) = − 1
π

1
cPi

∑
j,Q,µ,ν

ϕPiµ(r)
∫ EF

−∞
Im ΓPQiµ,jν(ω+)dω

(
ϕQjν(r)

)∗
(2.81)

As a consistency check, calculating the configurationally averaged density which comes
along with replacing ηPi by cPi in Eq. (2.77) and inserting Eq. (2.81) indeed yields the
expression for the configurationally averaged density in Eq. (2.76). For numerical rea-
sons, the new density at the end of a charge iteration cannot be directly plugged into the
Hamiltonian because this would immediately lead to an unstable result. This is a common
problem in many self-consistent methods and is usually solved by mixing the old and new
density in the next iteration. The simplest method is to use linear mixing but especially
in the case of the iron pnictides this turned out to converge extremely slow and was very
prone to instabilities. For that reason in this work a modified Broyden mixing after [76]
was used.
The Fermi energy which is needed for the charge self-consistency but also for the interpre-
tation of the numerical results is calculated in a similar fashion. The number of electrons
(valence electrons in the pseudopotential framework) can be obtained from the density of
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states via
N =

∫ EF

−∞
ν(ω)dω = − 2

π

∫ EF

−∞
Im Tr

[
SΓ(ω+)

]
dω (2.82)

From particle number conservation then the the upper integration limit in Eq. (2.82) is
successively shifted until the actual number of electrons is obtained. In the program, this
is implemented via a bisection method where the width of the search interval for EF is
divided by two in each search step. In a complex disordered compound the valence electron
number is given due to the constraint of charge neutrality by

N =
∑
i,P

cPi N
P
i (2.83)

where the NP
i are the electron numbers of the individual atoms.

There is a special problem left in the practical implementation of Eqs (2.81) and (2.82)
considering the involved integrations of the Green’s function over frequency. As men-
tioned in the end of Sec 2.2.4, the fine structure of the results sensitively depends on the
infinitesimal imaginary part δ of the frequency. The integration can be written in the
following form as well ∫ EF

−∞
Γ(ω)dω =

∫ ∞
−∞

Γ(ω)θ(EF − ω)dω (2.84)

where θ is the Heaviside step function. Such an integration can be converted to a contour
integral in the complex plane using the residual theorem. In this work we select a closed
rectangular box far away from the real axis enclosing all poles of the Green’s function.
The boundaries of the box are chosen in a practical application in such a way, that a
change of the boundaries does not affect the result anymore. Such a test of course has to
be carried out for each material class under consideration. In order to achieve a reasonable
accuracy it turned out that the usual numerical Simpson integration [68, 69, 77], being a
Newton-Cotes formula [68, 69, 78, 79] of second order, is not sufficient any more and it
was necessary to resort to the so-called Weddle-rule [68, 69, 79], being a Newton-Cotes
formula of sixth order. This has the curious effect that the number of frequency sampling
points has to be dividable by six plus one. By using the symmetry of the Green’s function
Gi,j(ω∗) = (Gj,i(ω))∗ it is possible to restrict the integration to a "half-box" in the upper
half-plane. The results obtained within this scheme do not depend any more on the choice
of a parameter like δ.
Another problem arises from the θ-function appearing in Eq. (2.84). The numerical treat-
ment of such an abrupt, step-like change is always critical and can lead to instabilities.
Thus it is well established in the ab-initio community to replace θ by a smooth cutoff
function. The most physical choice in the case of particle numbers or densities is the
Fermi distribution function

f(ω, T ) = 1
eβ(ω−µ) + 1

(2.85)

where β = 1
kBT

, T is the temperature, kB the Boltzmann constant and µ the temperature
dependent chemical potential obeying the relation µ(T = 0) = EF . This way to avoid step
functions comes with the cost of another complication: f(ω), when evaluated in the com-
plex plane, has singularities on the fermionic Matsubara frequencies ωn = (2n+ 1)πkBT ,
n being an integer. Due to the residual theorem, they just have to be subtracted from the
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integral because they were counted by the complex contour integration surrounding them.
This in the end leads to the following expression for the frequency integration∮

box
Γ(ω)f(ω, T )dω −

∑
n

2nπi
β

Γ(µ+ iωn) (2.86)

This introduces an artificial temperature scale into the calculation which should not be
compared with experimental temperature scales because this is only the bare tempera-
ture of a system of noninteracting electrons. In practical calculations, temperatures below
300K turned out to be inconvenient because then the number of Matsubara frequencies
and thereby the computation time increases and additionally the Fermi function gets very
narrow which requires a huge number of sampling points and thus negates all advantages
of this finite temperature method. The chemical potential can be calculated several tem-
peratures and the Fermi energy can be extrapolated to T = 0. More technical details
involved in these frequency integrations are outlined in App.C.
An overview over the full charge self-consistent process which I implemented in this work
is visualized in Fig.2.2.

CPA:

No

Yes

calculate Hamiltonian matrix

FINISHED

calculate medium Green's function

from and

calculate self-energy change

calculate new charge density

MBPP-DFT

LCAO-Projection

Parent compound

"master"

,

crystal struc.

...

from

converged?No

Yes

Figure 2.2.: Schematic working flow of the ab-initio program: In an inner self-
consistency loop the CPA-medium is calculated and in an outer loop a charge
self-consistent Hamiltonian is achieved
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In the last chapter, the BEB-CPA as a method dedicated to the calculation of the electronic
structure of substitutionally disordered materials was introduced. From the underlying
theoretical model it was obvious that unlike the conventional CPA also offsite disorder
effects can be treated because the method assumes that disorder influences the onsite
matrix elements as well as the hopping matrix elements. Which physical phenomena are
captured or, to be more specific, which impact on the density of states such an incorpora-
tion of disordered hopping terms has, was not yet clarified and has to be elucidated before
applying the method to particular problems of interest.
The analytic properties, limiting cases and quality of approximation of the conventional
CPA have been studied elsewhere both numerically and analytically as for example in the
extensive review by Elliott et al. [3]. First results for the BEB-CPA for different limiting
cases were shown in the original paper by Blackman et al. [4]. Analytical work on simple
model test systems like linear chains has been presented by Koepernik et al. [75]. This
chapter is devoted to a numerical parameter study where the density of states (DOS)
obtained within the BEB-CPA for a three dimensional model system is compared to re-
sults obtained from exact diagonalization which to my knowledge has not been performed
before.

3.1. The model

For this study, rather than the ab-initio program, an implementation of the BEB-CPA for
a tight binding Hamiltonian of the form

H =
∑

i,j,P,Q

ηPi W
P,Q
i,j ηQj c

†
icj +

∑
i,P

ηPi ε
P
i c
†
ici (3.1)

was chosen containing a species-dependent hopping matrix element W and onsite term ε
- the same tight binding model, the original BEB-CPA was formulated for [4]. A binary
alloy with two species A and B with the atomic concentrations cA and cB = 1− cA on a
three dimensional simple cubic lattice with nearest neighbor hopping was assumed. Apart
from the concentrations, the free parameters are the hoppings WAA, WAB = WBA, WBB

and the onsite energies εA and εB. For the desired comparison with a more exact method,
a program developed by Robert Eder [80] was used which solves the model Eq. (3.1) on
a finite cluster using exact diagonalization by means of the Lanczos’ Method [81]. This
finite cluster comprising 40x40x40 sites was randomly occupied with either A or B atoms
and for configurational averaging the spectral function was evaluated at 6400 randomly
chosen sites. At this cluster size, no substantial differences between a system with open
or periodic boundary conditions were apparent. Without loss of generality we choose
symmetric onsite energies εA = −εB for the rest of this chapter.
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3.2. Conventional coherent potential approximation
If all species dependent hopping matrix elements are set equal to each other, in particular
in this section WAA = WBB = WAB = WBA = 1.0, the conventional CPA is recovered
as a limiting case of the BEB-CPA. For this special case, where only onsite disorder is
present, the density of states for equal concentrations cA = cB = 0.5 calculated from the
conventional CPA is compared against the results obtained from exact diagonalization
(ED) for several onsite energies in Fig. 3.1. The black curves for εA = 0 correspond to the
clean system without disorder. Upon increasing the difference between the onsite energies,
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Figure 3.1.: Densities of states for WAA = WBB = WAB = WBA = 1.0
and cA = cB = 0.5 for several symmetric onsite energies εA = −εB (different
colors). Dashed thick lines: conventional CPA, solid thin lines: ED. Like all
subsequent data plots in this thesis, this plot was generated via Matplotlib [82],
an open-source python project for scientific plots

the single spectral peak first gets broadened until it starts to split into two local maxima
which finally get separated from each other. Obviously, the transition to the split-band
limit is qualitatively and quantitatively well reproduced by the CPA. At the same time,
this also provides a nice example where the simpler virtual crystal approximation (VCA)
fails, as already mentioned in Sec. 2.2.1, because just by averaging atomic potentials this
band splitting cannot be captured.
Next, it is interesting to investigate the dependence of the DOS on the atomic concentra-
tions. In order to reveal as much details as possible also by taking into account effects
on single bands, this analysis was performed in the split-band limit for εA = −4.0 for
various concentrations in Fig. 3.2. The black curves here unlike before correspond to an
ordered system with a single atomic species (cA = 1, cB = 0) with a shifted onsite energy
εA = −4.0 which just results in a rigid band shift of the peak obtained before in Fig. 3.1
in frequency to a position centered around εA but does not affect the shape of the peak.
Upon lowering cA and increasing cB the height of the respective peaks also get lowered
and increased in roughly the same ratio.
In summary, the concentration has a major influence on the peak height whereas the onsite
energy is mainly responsible for the position in energy the peak is centered around. The
slight asymmetry in the ED results at cA = 0.5, which is obvious especially in the green
curve of Fig. 3.2, is due to finite size effects of the considered cluster.
These two parameter studies exhibit an overall qualitative and quantitative agreement
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Figure 3.2.: Densities of states for WAA = WBB = WAB = WBA = 1.0
and symmetric onsite energies εA = −εB = −4.0 (split band limit) for several
concentrations cA = 1− cB (different colors). Dashed thick lines: conventional
CPA, solid thin lines: ED

between the CPA and ED apart from some fine structured features at the peaks in the
ED results which are not reproduced by the CPA. At least in the green and blue curves
in Fig. 3.1 as well as the green curve in Fig. 3.2 they look similar to a Fano lineshape [83],
which is depicted in Fig. 3.3. Behind these curves lies the Fano-Anderson model [83] which
describes the coupling of a single localized state to a continuum of states via the following
Hamiltonian:

HFA = εb†b+
∑
k

εkc
†
kck +

∑
k

Vk
(
b†ck + c†kb

)
(3.2)

The operators b† (b) describe creation (annihilation) of a localized state with energy ε

whereas the operators c†k (ck) create (annihilate) a continuum (or band) state k with
energy εk. Vk is the hybridization between the localized state and a band state k. The
single-particle Green’s function of this model can be analytically calculated and the terms,

Figure 3.3.: Typical Fano lineshapes, taken from the original paper [83]
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which describe the coupling of the localized state to the continuum just exhibit the above-
mentioned lineshape depicted in Fig. 3.3. Thus, the similarity between the extra features
in the ED results compared to the CPA and the Fano lineshape points towards an inter-
pretation of these features as occurrence of localized electronic states. Such states could
arise due to clusters inside the disordered system where an atom of type A is surrounded
essentially by atoms of type B and vice versa. To test this hypothesis, configurations
in the ED calculation, called C6, where all six nearest neighbors of a site occupied with
one species are occupied with the other species, were excluded from the configurational
average. This is a primitive way to exclude clusters of equal atomic types formed around
an atom of different type thus giving rise to the formation of a localized state. This
calculation was repeated with a weaker criterion C5, where only five of the six nearest
neighbors have a different species as the central site. The comparison of the respective
DOS with the unrestricted ED calculation and the CPA result is shown in Fig. 3.4 for
εA = −4.0, cA = 0.4 and cB = 0.6. In the calculation where the C6 configurations were
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Figure 3.4.: Densities of states for εA = −εB = −4.0, cA = 0.4 and cB = 0.6
obtained within CPA (black), unrestricted ED of the full system (red), ED
without clusters C6 (green) and ED without clusters C5 (blue)

excluded, the features in the DOS which were suspected to originate from localization get
reduced. In the calculation without C5 configurations they get more reduced. This is
consistent because it holds C6 ⊂ C5 and for the probability of finding such a configuration
P (C6) < P (C5) so the C5 configurations appear more frequently. This and the fact that
these configurations really were removed from the DOS are the reasons why also the over-
all heights of the peaks decrease with a weaker criterion for cluster formation. Instead of
removing such configurations, the CPA just smears them out by averaging which results in
the smooth curves. Taking this into account, even if the smooth CPA curves could not be
reproduced by this simple test, the observed behavior is sufficient to conclude that these
features originate from clustering effects and obviously the CPA is not able to incorporate
them. This could already have been guessed from the fact that the CPA is not sensitive to
environmental disorder which is needed to identify clusters and has already been pointed
out in several papers like for example [64].
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3.3. Extension for environmental disorder

3.3. Extension for environmental disorder

So far, the behavior of the CPA was illustrated and its overall agreement to ED was
emphasized which certainly is one reason for the success of this method. However, these
or similar results are already well established in the CPA community so the question arises
which conclusions can be made for the BEB-CPA. Concerning the influence of the atomic
concentrations and the onsite energies on the DOS, such an analysis revealed the same
behavior as shown above for the conventional CPA and thus will not be repeated here. The
more decisive issue is to figure out how the species dependent hopping matrix elements in
Hamiltonian Eq. (3.1), which were not taken into account before, additionally affect the
DOS. On the background that they extend the conventional CPA in providing a description
of environmental disorder effects, it is interesting to see if the BEB-CPA may be able to
capture localization effects. For fixed concentrations of cA = 0.4, cB = 0.6 as well as onsite
energy εA = −4.0 in the split band limit and fixed inter-species hoppingWAB = WBA = 1,
being the same set of parameters as used in test calculations in the original BEB-paper
[4], a comparison of the DOS obtained from the BEB-CPA to ED results under variation
of the intra-species hoppings WAA and WBB is shown in Fig. 3.5. For orientation, the
black curve again shows the clean system parametrized by cA = 1 and εA = 0. The red
curves show the results with all hopping terms being equal, which is the limiting case of
the conventional CPA. Then, the WAA-hopping is successively increased and the WBB-
hopping decreased. This causes a spectral broadening of the left peak centered around
εA and a narrowing of the peak centered around εB. This can be understood because the
bandwidth is proportional to the hopping in a tight-binding Hamiltonian. Because the
particle number, being the area under the DOS, has to be conserved, the height of the
broadened peak then gets reduced and the height of the narrowed peak gets increased.
Again the DOS obtained by the BEB-CPA overall agrees very well with the ED results.
Due to the fact that such a tight binding model with randomness in the onsite energies
and the hopping terms is rather complicated, such an agreement of ED with a method
which only relies on a single-site self-energy is striking. However, also in this calculation
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Figure 3.5.: Densities of states for WAB = WBA = 1.0 and symmetric onsite
energies εA = −εB = −4.0 (split band limit), cA = 0.4 and cB = 0.6 for
various species diagonal hopping matrix elementsWAA,WBB (different colors).
Dashed thick lines: conventional CPA, solid thin lines: ED
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3. Model studies

the ED results exhibit the same Fano-shaped features at the peaks which do not appear
in the BEB-CPA, which is most obvious at the top of the left peak. This leads to the
conclusion, that the BEB-CPA performs well in including environmental disorder effects
beyond the conventional CPA in combination with the efficiency of a single site self-energy
but is not sensitive to clustering phenomena.
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4. Cu1−xZnx alloys as benchmark

In the last chapters I have introduced the BEB-CPA and outlined a scheme how to im-
plement this method within a pseudopotential-LCAO framework to be able to tackle the
problem of substitutionally disordered real materials from first principles. The BEB-CPA
itself was verified on a simple tight-binding model against exact diagonalization to get
an impression how well this method performs in the treatment of environmental disorder
effects and where its principal limitations are.
The next step is to apply the full ab-initio implementation to a real material what will be
the purpose of this chapter. Before applying the present methodology to rather complex
materials, which are object of current research, one should start validating it with a sim-
ple compound which has well-known properties, has already been investigated by other
implementations of a similar method and still may lead to instructive physical results. A
typical system which satisfies these requirements and provides a realization of the split-
band regime discussed in the last chapter in nature, is the binary Cu1−xZnx alloy where x
is the impurity concentration. We are confronted with this metallic alloy in our everyday
life - it is nothing else than brass and is most frequently used with a Zn-concentration of
x = 0.37 [84].

4.1. Crystal structure and details of the calculation

This alloy exhibits several phases depending on the temperature and concentration. In
this work only the so-called β-phase [84] was considered which has body-centered cubic
(bcc) structure. The bcc-lattice constant was chosen a = 2.86Å after [18]. This bcc lattice
is sketched in Fig. 4.1 (a) where the lattice vectors point along the space diagonals and the
shading indicates random occupation. The unit cell contains only one atom with index 1.
In the calculations an equivalent description in a simple-cubic (sc) lattice was chosen, as
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Figure 4.1.: (a): The randomly occupied (shaded) bcc lattice with one atomic
site (indicated by 1) per unit cell, lattice constant a; (b): The same structure
described by a sc lattice with two sites (indicated by 1 and 2) per unit cell
(darker shaded); (c): An ordered CuZn compound described in a sc lattice
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4. Cu1−xZnx alloys as benchmark

depicted in Fig. 4.1 (b) with two atomic sites per unit cell, where site 1 is located at (0,0,0)
and site 2 is located at a

2 (1,1,1). The lattice vectors point along the solid lines and the
two atomic sites belonging to the same unit cell are darker shaded. The main reason for
this choice was to compare with an ordered CuZn compound which is shown in Fig. 4.1 (c).
From a technical point of view, this was also needed to test the method for nontrivial unit
cells.
The DFT calculations for both end-members were performed on a regular 8x8x8 Monckhorst-
Pack [85] k-mesh for Brillouin zone integration using norm-conserving pseudopotentials
constructed after Vanderbilt [7] by Rolf Heid [86] together with one local d-type function
and plane waves up to a cutoff energy of 30 Ry. The XC-potential was treated within the
local density approximation (LDA) using a parametrization after Hedin and Lundqvist
[87]. For each atomic type, nine local basis functions up to angular momentum l = 2 are
used in the CPA program where the radial functions were generated by the LCAO-fit from
the bare localized functions MBP fPl (r) of the MBPP calculation via the cutoff function

fPl (r) =
[
1− e−γ

P
l

(
RPC,l−λ

P
l r
)2]

MBP fPl (r) (4.1)

The cutoff radii RPC,l and function parameters (λPl , γPl ) yielded by the fit to achieve a
good description of the bandstructure in the localized basis, are listed in Tab 4.1 and the
corresponding radial functions are shown in Fig. 4.2.

Atomic type P l λPl γPl RPC,l(Bohr)

Cu 0 0.9510 0.2375 6.0
Cu 1 0.9404 0.1669 6.0
Cu 2 0.9943 0.4817 6.0
Zn 0 0.9487 0.4135 6.0
Zn 1 0.9551 0.2960 6.0
Zn 2 0.9786 0.5012 6.0

Table 4.1.: LCAO fit parameters

Compared to the nearest neighbor distance of 4.68Bohr in this compound, these wave-
functions, especially the l = 0 and l = 1 contribution, are rather extended and thus
considerably overlapping which immediately shows the necessity of taking into account
the overlap matrix when formulating the BEB-CPA for such a basis set. Furthermore, the
wavefunctions are quite similar for Cu and Zn, the largest deviations occur for the more
localized d-states.
As already mentioned in Sec. 2.2.4, in the LCAO fit the spillage function is optimized which
measures the difference in the electronic density from the MBPP to the one obtained in
the LCAO representation. For a last quality check of the LCAO fit in Fig. 4.3 the band-
structure obtained within the MBPP calculation is compared to the one calculated in the
LCAO part and they both agree very well.
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4.2. Density of states
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4.2. Density of states

Especially for testing the method in this chapter but also in general applications to new
terrain, the results obtained from a CPA calculation for the unsubstituted end members
should be compared with those obtained from DFT to check if all cutoff parameters (see
App.A) are appropriately chosen. In in the left panel of Fig. 4.4 the density of states
(DOS) of pure Cu obtained from the CPA program is compared against the DFT result
and in the right panel the same is shown for pure Zn. Apart from some wiggles due to
numerical noise in the tails of the DOS, these results agree very well, which shows that the
CPA implementation works for the pure systems. These CPA results were obtained after
one charge iteration but further charge iterations do not change anything which means that
these calculations are already charge self-consistent. In more complicated compounds like
e.g. the iron pnictides this is not self-evident because there the local basis representation
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Figure 4.4.: Density of states of pure Cu (left) and pure Zn (right) obtained
within the CPA (red) after one charge iteration against DFT (black)

and further approximations made in the CPA program in the treatment of the exchange
correlation potential and summation cutoffs do not deliver such a good starting point
like here and the program needs some charge iterations to converge already for the pure
compounds. Physically, these results exhibit peaks with relatively strong localization
which arises from the fact that mainly d-states contribute to the DOS in this energy regime.
The peak of the Zn DOS is lower relative to the Fermi energy than the one of Cu which
originates from a higher number of valence electrons for Zn. Those two effects together
are responsible for these compounds ranging in the split-band regime. Furthermore, the
peaks essentially consist of two secondary maxima which is a manifestation of the crystal
field splitting of the eg (at higher energy) and t2g (at lower energy) states characteristic
for these elements.
After having verified that the CPA leads to reasonable results for the clean case, let me
now focus on the more interesting disordered case Cu0.5Zn0.5. In Fig. 4.5 the DOS of
this disordered compound obtained by the CPA after one charge iteration and the self-
consistent result after 17 iterations are compared against the DOS of an ordered CuZn
compound. The changes due to charge self-consistency are rather small. The DOS of the
ordered compound essentially contains peaks at the same positions in energy as already
the pure Cu and Zn calculations in Fig. 4.4 did but they get narrower. Bearing in mind
that the bandwidth is correlated to the hopping, this can be interpreted as a reduced
probability of an electron e.g. located at a Zn atom to hop to another Zn atom because
all nearest neighbors are now Cu atoms as can be seen from Fig. 4.1 (c). The DOS of
the disordered system does not shift in energy compared to the ordered system but the
peaks get broadened due to disorder. This can be understood as an enhanced probability
compared to the ordered system for an electron e.g. located at a Zn atom to hop to
another Zn atom because the atoms now are randomly distributed and not every nearest
neighbor is a Cu atom. The same behavior was also obtained from a KKR-CPA calculation
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4.3. Bloch spectral function
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Figure 4.5.: Density of states of ordered CuZn (black) compared with the dis-
ordered case Cu0.5Zn0.5 obtained from the BEB-CPA within this work after one
(blue) and 17 (red) charge iterations together with KKR-CPA results (dashed
green) from [18]

[18] and the only difference to the present result consists in the positions of the peaks.
This can be attributed to the different DFT approaches (KKR vs. MBPP) and is not a
shortcoming of the present CPA implementation because already the results for the DOS
of the ordered CuZn compound exhibit these shifts in the peak positions. As already
mentioned before, this DOS is a realization of the split-band regime discussed in Chap. 3
and thus provides an example of a material class where a first principles implementation
of the simpler virtual crystal approximation (VCA) would lead to wrong results. The
calculations of the disordered alloy still exhibits the double-peak features due to the eg-t2g
crystal field splitting but they get smeared due to disorder.
To study the behavior of the ab-initio method at arbitrary impurity concentrations, what
was initially stated as the main goal, the DOS obtained after one charge iteration for several
compositions are shown in Fig. 4.6. These results essentially show the same behavior for
real materials as already obtained from the model calculations in Chap. 3 in the split-
regime - the ratio of the peak heights correlates to the ratio of the concentrations. The
peaks centered around the onsite energy of a species also in the general case exhibit the
eg-t2g-splitting if the concentration of this species is sufficiently high.

4.3. Bloch spectral function

The Bloch spectral function A(ω,k) which was introduced in Sec. 2.2.4 and is given by
Eq. (2.73) contains all information about the band structure of the disordered system. In
addition to the DOS which is well suited to get a rough overview about the essential effects
induced by disorder, A(ω,k) serves to study momentum-resolved disorder effects in detail.
The Kohn-Sham band structure of a pure compound is essentially the Kohn-Sham energy
eigenvalues obtained from solving Eq. (2.5) evaluated along a path in k-space and thus
only depends on the variable k. The ω-dependence of the associated Bloch spectral func-
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Figure 4.6.: Densities of states of disordered Cu1−xZnx obtained after one
charge iteration for several compositions

tion is trivial - it is just a set of δ-peaks centered at the energy eigenvalues. In practice,
A(ω,k) for a pure compound evaluated by the CPA becomes a set of Lorentz-peaks with
a finite spectral width. This spectral width originates from the infinitesimal imaginary
part of the frequency ω+ iδ needed for the evaluation of the Green’s function but does not
depend on k. In contrast to this, A(ω,k) of a disordered system has a nontrivial frequency
dependence and the spectral width can be k-dependent. Comparing the spectral function
of the disordered system to that of the clean system thus provides level shifts and spectral
broadenings which are the real and imaginary part of the electronic self-energy due to
disorder, respectively. In particular the spectral broadenings or imaginary parts of the self
energy are proportional to the inverse lifetimes of the electronic states which are infinite
in the pure system and become finite in the disordered system due to scattering of the
electrons on impurities.
Whereas for the band structure of a pure system an ordinary two dimensional plot of ε(k)
against k is sufficient, A(ω,k) often is visualized in a color plot if it exhibits a nontrivial
ω-dependence. Therein, the x-axis represents the path in k-space, the y-axis the frequency
and the actual value of A(ω,k) is shown as a false color code. This has the advantage that
it still looks similar to a bandstructure and thus can be directly compared with the pure
compound. For the charge self-consistent calculation of disordered Cu0.5Zn0.5, of which
the DOS was shown in Fig. 4.5, such a color plot of A(ω,k) is shown together with the
band structure of the ordered CuZn compound in Fig. 4.7. As already mentioned above,
A(ω,k) of the pure system obtained from the CPA for numerical reasons exhibits a finite
but trivial spectral width which is not contained in Fig. 4.7 because here just the DFT
band structure of the pure compound is overlaid (overlaying two color plots would not be
helpful). This has to be kept in mind when interpreting such plots.
Doing so, from Fig. 4.7 it is still evident that the rather steep bands next to the Fermi
level and below -8 eV get hardly affected by disorder and in particular not broadened. In
contrast, the rather flat bands in the region between -8 and -6 eV as well as between -4
and -2 eV get strongly affected, i.e. shifted and especially broadened due to impurity scat-
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Figure 4.7.: Charge self-consistent Bloch spectral function A(ω,k) of disor-
dered Cu0.5Zn0.5 (false color) together with band structure of ordered CuZn
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tering. These two regions correspond to the two peaks in the DOS. These color plots are
well suited to provide a qualitative picture but for a quantitative analysis of these effects
one needs to resort to more advanced techniques which will be done in Chap. 5 about the
iron pnictides.
Further detailed information can be gained by instead of looking at the full spectral func-
tion just investigating a projection of A(ω,k) on a certain species and angular momentum.
This was accomplished in this work by restricting the trace in the expression for the spec-
tral function

A(k, ω) = − 1
π

Im Tr
[
S(k)Γ(k, ω+)

]
(4.2)

to an appropriately chosen orbital subspace instead of evaluating it in the full Hilbert
space. For the segment of the path in k-space between Γ and P, the full spectral function
of Fig. 4.7 is compared with its projections on Cu-d and Zn d-states in Fig. 4.8. From this
plot we can conclude that only the Cu-d states (upper region of flat bands) and the Zn-d
states (lower region of flat bands) get strongly affected by disorder and thus experience
a reduction of lifetime whereas the s and p-states get at best slightly shifted. Of course,
a similar analysis could also have been carried out on the level of the DOS which is also
implemented in the program.

4.4. Partial substitutions

As a last example to conclude the discussion about this simple test system, I want to focus
on a partially substituted alloy. On the one hand this provides further interesting phys-
ical insights and on the other hand it shows that the developed method can also handle
arbitrarily complex compounds with different substitutions on different sites. Again, con-
sider the disordered alloy in the simple cubic structure but assume that Zn substitutions
are only allowed to occur on one of the two sublattices with x = 0.5 and the occupa-
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of disordered Cu0.5Zn0.5 (false color) together with band structure of ordered
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tion with Cu on the other sublattice is unaffected, which is depicted in Fig. 4.9. Let us
call this alloy configuration Cu0.5Zn0.5Cu and the homogeneous substitutions, where both
atoms are substituted as considered in the previous sections (Cu1−xZnx)2. The DOS of
such a configuration is plotted in Fig. 4.10 together with those of the homogeneous alloys
(Cu0.5Zn0.5)2 and (Cu0.75Zn0.25)2 as well as the ordered CuZn compound as a reference.
These calculations are not charge self-consistent. Essentially, we obtain the same two-peak
structure and the peaks do not get shifted with respect to the ordered system. The upper
peak, which originates from the Cu-d-states, almost coincides with the respective peak of
the (Cu0.75Zn0.25)2 calculation. The lower peak, which originates from the Zn-d-states,
has a narrower spectral width than in the (Cu0.75Zn0.25)2 calculation but the same height
as in the (Cu0.5Zn0.5)2 calculation. In Sec. 3.3 it was shown, that the species-diagonal
hopping has considerable impact on the width of the DOS in the split-band limit. For
an electron located at a Cu atom the probability to hop to another Cu atom does not
change between the (Cu0.75Zn0.25)2 and the Cu0.5Zn0.5Cu alloy configuration because in
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Figure 4.9.: Partially substituted CuZn alloy: only site 1 in the sc structure
is substituted whereas the occupation of site 2 by Cu is held fixed
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both cases effectively 25% of the Cu atoms are substituted by Zn. For an electron at
the Zn atom the probability to hop to another Zn atom gets reduced compared to the
(Cu0.75Zn0.25)2 case because one of its nearest neighbors is always fixed to be Cu. Due to
particle number conservation the peak height then gets increased - that it just coincides
with the height in the (Cu0.5Zn0.5)2 calculation has no deeper physical reason.
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5. Substitutionally disordered BaFe2As2

Being armed with a powerful ab-initio method to treat substitutional disorder in complex
real materials at arbitrary impurity concentrations and having convinced ourselves of
its functionality in the last chapter, now the time has come to apply it to an interesting
physical system being subject of ongoing research. The iron based superconductors (FeSC)
represent a material class, where chemical substitution is an important tuning parameter.
A huge amount of still ongoing experimental and theoretical work has been spent on these
compounds in the last years by several groups in the condensed matter community. In the
next sections, I will give a brief introduction into this field.

5.1. Iron based superconductors: brief introduction

Back in 2008, the group of Hideo Hosono in Tokyo were the first to discover supercon-
ductivity with a critical temperature of Tc = 26K in LaFeAsO1−xFx [20]. This discovery
led to a rapid development in the study of different families of iron pnictides and iron
chalcogenides with a big variety of chemical substitutions, where critical temperatures up
to Tc = 56K [21] were observed. After the research in the cuprates, defining the first
era of high temperature superconductivity, was slowing down, this discovery was sort of
revitalizing the field leading to a second era of research on high Tc materials, by some
people also called "the iron age of superconductivity".
Superconductivity, which most prominently is characterized by an abrupt drop in electrical
resistivity from a finite value to zero below a critical temperature Tc, was first discovered
by Heike Kamerlingh Onnes in 1911 in elemental metals (mercury, tin and lead). Super-
conductivity seemed to be finally explained by the microscopic theory of Bardeen, Cooper
and Schrieffer (BCS) [38] in 1957. This theory is founded on an idea by Cooper [88]
who showed that in the presence of an arbitrarily weak attractive interaction between the
electrons, the whole Fermi sea gets unstable and undergoes a phase transition into an
energetically favorable state where the electrons form pairs, the so called Cooper pairs. In
conventional superconductors, this attractive interaction, which is often called the "pairing
glue" in the community, is mediated by electron-phonon coupling. Based upon this theo-
retical framework, all superconducting materials until the 1980’s seemed to be understood
and the interest in this field was decreasing at that time.
The discovery of the cuprate high Tc superconductors in 1986 by Bednorz and Müller [47]
severely changed this belief because these compounds could not be explained by such a
conventional picture and thus were considered as unconventional superconductors. More-
over, a generally accepted picture to understand the origin of superconductivity in the
cuprates until now is still lacking.
The phenomenon of superconductivity is not only characterized by a drop in electrical
resistivity below Tc. Furthermore, any magnetic field gets expelled from the bulk of a su-
perconductor which is called the Meissner effect [22]. Vice versa, if a magnetic field exceeds
a certain critical value, the superconducting state gets destroyed. For this reason, it was
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5. Substitutionally disordered BaFe2As2

hard to imagine to find superconductivity in a compound containing iron which is a mag-
netic element before Hosono’s discovery. At this point, there is strong evidence that iron
based superconductors are unconventional as well: From the theory side, Mazin et al. [34]
found no sufficiently high electron-phonon coupling in first-principles calculations to ex-
plain the value of Tc in LaFeAsO1−xFx and were the first to suggest an unconventional s+−

pairing scenario where the order parameter exhibits s-wave symmetry and changes sign
between different Fermi surface sheets. In neutron-scattering experiments, an anisotropic
superconducting gap [89] and a resonance mode was found in the superconducting state
[90] where the latter was interpreted as signature of unconventional superconductivity
mediated by spin fluctuations. In Josephson-effect measurements [91, 92], being a phase-
sensitive technique to gain information about the gap symmetry, evidence for the s+−

pairing state was reported. Investigations of quasiparticle interference in FeSe1−xTex [93],
being phase sensitive as well, measured by spectroscopic-imaging scanning tunneling mi-
croscopy, also agree with the s+− pairing scenario. More generic model calculations [36]
show that magnetic fluctuations in FeAs-based systems can lead to an s+−-state as well.
The enthusiasm causing a very huge scientific output in that field was certainly not least
driven by the hope that understanding these compounds could maybe also be helpful to
get a more coherent picture about the cuprates.
In most families of the iron pnictide compounds which I will give a brief overview about in
the next section, there appears no superconducting state in the parent compound under
normal conditions - one either has to apply pressure or perform chemical substitutions
to make them superconducting. What chemical disorder actually accomplishes in these
compounds, in particular, if it really leads to charge doping and how it influences su-
perconductivity, is not yet fully understood and still discussed controversially as will be
discussed in more detail later. This gave the motivation to address these questions by a
systematic first-principles study of various substitutions in one prominent representative
of the 122-family, the BaFe2As2 system, which this chapter is devoted to.

5.1.1. Various families of iron based superconductors

As already mentioned above, there exist different families of FeSC which can be distin-
guished by their composition. In Fig. 5.1 the four most prominent families are depicted
after [94]. One structural element they all have in common, are layers consisting of iron
atoms which form a planar square lattice surrounded by pnictogen (Pn) or chalcogen atoms
in distorted tetrahedral coordination. These families differ in the spacer layers between the
FePn-layers. The 11-family, being structurally the most simple, contains no spacer layer
at all. In the 111-family one Li or Na atom is located between the FePn-layers. In the
1111-family, which is actually the family where the first FeSC LaFeAsO1−xFx discovered
by Hosono [20] belongs to, the FePn-layers alternate with rare-earth / oxygen layers.
Last but not least, in the 122-family the intermediate layer is made up of one alkali or
alkaline earth atom per two Fe atoms. This is the most intensively studied system. The
BaFe2As2 compound belongs to this family and will be the system standing in the focus
of the remaining part of this work.

5.1.2. General properties of BaFe2As2

Since superconductivity in K substituted Ba0.6K0.4Fe2As2 was first discovered by Rotter
et al. [95] in 2008 with Tc = 38K, this system was intensively studied with various
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5.1. Iron based superconductors: brief introduction

Figure 5.1.: Crystal structures of four most prominent families of FeSC (fig-
ure reproduced from [94]). Common among all: layers of planar iron atoms
with tetrahedrally connected pnictogen or chalcogen atoms; Difference: type
of spacer layers in between

substitutions - in particular also at the Fe site by other transition metals (TM). Belonging
to the 122-family, the crystal structure has the space group I4/mmm. In this work,
the crystal structure at room temperature is chosen, which can be described by a body-
centered tetragonal (bct) lattice with five atoms per primitive unit cell, containing just
one formula unit of BaFe2As2. A tetragonal cell containing two formula units of BaFe2As2
is visualized in Fig. 5.2, where the atoms of the primitive unit cell selected in this work
are brighter and the remaining atoms are shaded for orientation. Therein, the Ba atom

Figure 5.2.: Crystal structure of BaFe2As2 (modified figure from [96]). The
five brighter atoms belong to the unit cell chosen in this work

sits at the origin of the unit cell such that they form the bct lattice. The lattice vectors
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then are given by

a1 = 1
2

 −aa
c

 a2 = 1
2

 a
−a
c

 a3 = 1
2

 a
a
−c

 (5.1)

and the atomic positions

RBa =

 0
0
0

 RFe1 =

 a/2
0
c/4

 RFe2 =

 0
a/2
−3c/4


RAs1 = z

 0
0
c

 RAs2 = z

 0
0
−c


(5.2)

The structural parameters used in all what follows were measured by Drotziger et al. [97]
to be a = 3.966Å, c = 13.037Å and z = 0.354.
Like the most other FeSC, also BaFe2As2 exhibits a complicated interplay of structural
and magnetic phases with superconductivity, which is governed by chemical substitution.
To get an overview for this interplay, Fig. 5.3 shows an experimental phase diagram which
was compiled by Böhmer [26] comparing K-substitution, the two common TM substitu-
tions Co and Ni, and P substitution. The individual data sets of this compilation were
taken from references [26] (Ba1−xKxFe2As2, thermal expansion), [25] (BaFe2(As1−xPx)2,
thermal expansion), [23] (Ba(Fe1−xCox)2As2, specific heat and thermal expansion) and
[24] (Ba(Fe1−xNix)2As2, specific heat and transport). The degree of substitution is nor-
malized such that 1.0 always corresponds to optimal doping. K substitution in the naive
picture of a rigid band shift is expected to introduce holes to the system and is plotted to
the right side of the phase diagram, whereas TM substitutions are expected to introduce
electrons and are plotted to the left side. P substitution is isovalent but at least with
respect to this normalized substitution behaves similarly to TM substitution and thus is

Figure 5.3.: Compilation of temperature - substitution phase diagrams for
BaFe2As2 for different substitutions, substitution is normalized to optimal dop-
ing, figure taken from [26]
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5.1. Iron based superconductors: brief introduction

also plotted to the left side.
At room temperature, all compositions exhibit a tetragonal, paramagnetic phase. For a
low degree of substitution, below the Neél temperature, which strongly depends on sub-
stitution, the compounds undergo a transition into an orthorhombic phase with stripe
antiferromagnetic order, called the spin-density-wave (SDW) state in Fig. 5.3. The de-
pendence of the Neél temperature on normalized substitution is similar for TM and P
substitution but assumes a different shape for K substitution. Upon further lowering the
temperature, the system can enter the superconducting state depending on the substitu-
tion, where a certain window exist within which this transition is possible. For obvious
reasons this is called the superconducting dome. For K substitution appears the largest
superconducting dome with highest Tc. Even on this normalized substitution scale it is
obvious that the P substituted compounds exhibit a smaller superconducting dome which
successively becomes smaller for Co and Ni substitution. As we shall see later, these effects
are more drastic on the actual impurity concentration scale (see Fig. 5.5). This behavior
will be revisited again in Sec. 5.7 about the impact of impurity scattering on superconduc-
tivity.
A 3d plot of the Fermi surface of stoichiometric BaFe2As2 obtained from an LDA-DFT
calculation performed by Singh [98] is shown in Fig. 5.4. The hole-like and electron-like
Fermi surfaces in general assume the form of warped (or twisted) cylinders around an
axis parallel to kz. It exhibits three hole-like sheets (Fig. 5.4 resolves only two, because

Figure 5.4.: The Fermi surface of stoichiometric BaFe2As2 obtained from
LDA-DFT, figure from [98]

two of them are almost degenerate) around the zone center (Γ-point). Further, it ex-
hibits two electron-like sheets around the zone edge (X-point). The projections of this
Fermi-surface into the (kx,ky)-plane, which I will deal later with, are essentially concen-
tric ellipses around the Γ and X point. Obviously, the radius of the outer hole circle then
depends on kz. Less obviously, also the angles between the axes of the ellipses of the
electron Fermi surfaces depend on kz.

5.1.3. Open questions and goals of this work

In Fig. 5.5 (a) the structural/magnetic and superconducting transition temperatures ob-
tained from magnetization and resistivity measurements carried out by Canfield et al. [28]
are plotted for various TM substitutions for Fe in the BaFe2As2 over the actual impurity
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5. Substitutionally disordered BaFe2As2

Figure 5.5.: Structural/magnetic and superconducting transition tempera-
tures for different TM-substitutions in BaFe2As2 plotted over (a) the impurity
concentration (b) the expected amount of extra electrons if charge doping is
assumed, figure taken from [28]

concentration determined by wavelength-dispersive spectroscopy analysis (WDS). For Co
and Ni substitution as well as Cu/Co co-substitution the heights and especially the widths
of the superconducting domes are different. The solely Cu substituted samples show no
superconductivity at all (in a more recent publication by partly the same authors [99], a
very small superconducting dome for Cu substitution is reported). In spite of this, the
structural/magnetic transition temperatures rather coincide among the different substitu-
tions. This finding led these authors to the idea of alternatively plotting the same data
over the amount of extra electrons which naively would be expected if the TM substitu-
tions really accomplished charge doping. These results, which are shown in Fig. 5.5 (b),
are in a sense complementary: the structural/magnetic transition temperatures now ex-
hibit a large scattering whereas the widths of the superconducting domes rather coincide,
again with the exception of the Cu substituted samples. This brought these authors to
the conclusion that whereas for the structural/magnetic transition the impurity concentra-
tion, which is directly related to the atomic composition, is the relevant quantity, it is the
charge doping, which governs the superconductivity in the case of Co and Ni substitution.
Such a scenario of a rigid bandshift is in agreement with changes of Fermi surfaces which
were observed in angular resolved photo emission spectroscopy (ARPES) measurements
[29, 30].
On the other hand, there are X-ray absorption measurements (XANES, NEXAFS) [31, 32]
which see at best a small change of valence at the Fe atom due to transition metal sub-
stitution which of course challenges the rigid bandshift picture. To close the circle, this
would again be consistent with the relatively weak dependence of the structural/magnetic
transition temperature on impurity concentration shown in Fig. 5.5 (a). From the ab-initio
side, this dichotomy has been addressed by supercell calculations [100] and their combi-
nation with Wannier function based averaging techniques [49].
A further aspect of substitutional disorder besides the eventual effect of charge doping is
impurity scattering. It is known since the early years of superconductivity that impurity
scattering plays a crucial role in the suppression of Tc [33, 101–107]. In a conventional su-
perconductor the Anderson theorem [108] states that superconductivity is only destroyed
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by magnetic impurities which break the Cooper pairs. In the BaFe2As2 by now, a sig-
nificant part of the community is convinced that the superconductivity is unconventional
and exhibits an s+− paring state [35, 36]. This means that the superconducting order
parameter has s-wave symmetry but changes sign between the hole and the electron pock-
ets on the Fermi surface. For such a system it was shown that it is of great importance
to differentiate between intraband and interband scattering and in particular intraband
scattering on nonmagnetic impurities leads to Cooper pair breaking [33, 37].
In this work, the influence of substitutional disorder on the electronic structure will be
analyzed in detail. In particular, the level shifts of electron-like and hole-like bands in the
vicinity of the Fermi-level will shed light on the dichotomy between charge doping and
static valences for TM substitution. Until now, at least to my knowledge, the issue of
impurity scattering and especially intraband versus interband scattering has not yet been
addressed by a systematic first-principles study. As already qualitatively shown in Chap. 4
about the Cu1−xZnx alloys, the methodology developed in this work provides access to
scattering strengths which gave motivation to a systematic investigation of band resolved
impurity scattering effects in the BaFe2As2 for various substitutions. The subsequently
presented work is partly based on my publication [109].

5.2. Technical details of the calculation

As mentioned in Sec. 5.1.2, the tetragonal crystal structure of BaFe2As2 at room tem-
perature with two Fe atoms per unit cell as measured by [97] was used which was also
considered for the substitutional end members (e.g. BaTM2As2). If not mentioned other-
wise, this crystal structure was not changed with impurity concentration x to well separate
disorder from structural effects. All calculations were performed without spin polarization
because this is not yet implemented in the CPA method. The respective DFT calculations
for the parent compound BaFe2As2 and substitutional end members were performed in
the local density approximation (LDA) for the exchange correlation (XC) potential with
a parametrization due to Perdew and Wang [110]. For the Brillouin zone integration a
8x8x4 Monkhorst-Pack [85] k-mesh was selected, adapted to the tetragonal symmetry.
Furthermore, norm-conserving pseudopotentials constructed after Vanderbilt [7] by Rolf
Heid [111] were used together with local d-type functions for Fe or TM respectively and
plane waves up to a cutoff energy of 22 Ry.
For each atomic species, nine local basis functions up to an orbital angular momentum of
l = 2 were used in the CPA calculations which results in a size of the Hilbert space (dimen-
sions of the quadratic matrices) of 45 for the parent compound and 63 for the disordered
systems. Like already for the Cu1−xZnx alloys in Chap. 4, the radial basis functions were
obtained by the LCAO fit via minimizing the spillage function where the local pseudo
wave functions psfPl (r), obtained from the pseudopotential construction, are multiplied
with cutoff functions

fPl (r) =
[
1− e−γ

P
l

(
RPC,l−λ

P
l r
)2]

psfPl (r) (5.3)

The chosen cutoff radii RPC,l and the functional parameters γPl and λPl as obtained by
the LCAO fits are listed in Tab. 5.1. The so obtained radial basis functions for the three
species of the parent compound Ba, Fe and As are shown in Fig. 5.6. The large cutoff
radii ensure a good description of the band structure in the local basis. As a consequence,
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Compound Atomic type P l γPl RPC,l(Bohr) λPl

BaFe2As2 Ba 0 0.1621 8.0 0.9864
Ba 1 0.2176 8.0 0.9610
Ba 2 0.2802 8.0 0.9745
Fe 0 0.1974 6.0 0.8925
Fe 1 0.1817 6.0 0.9068
Fe 2 0.4642 6.0 0.9851
As 0 0.2362 7.0 0.9790
As 1 0.1495 7.0 0.9827
As 2 0.0240 7.0 1.1117

BaCo2As2 Co 0 0.2023 6.0 0.9070
Co 1 0.1986 6.0 0.9610
Co 2 0.4657 6.0 0.9936

BaNi2As2 Ni 0 0.1886 6.0 0.9282
Ni 1 0.1760 6.0 1.0113
Ni 2 0.4505 6.0 1.0043

BaCu2As2 Cu 0 0.1505 6.0 0.9116
Cu 1 0.1677 6.0 1.0105
Cu 2 0.4704 6.0 0.9934

BaZn2As2 Zn 0 0.1602 6.0 0.9181
Zn 1 0.1742 6.0 1.0113
Zn 2 0.5014 6.0 0.9783

BaMn2As2 Mn 0 0.2012 6.0 0.8863
Mn 1 0.1565 6.0 0.8567
Mn 2 0.4665 6.0 0.9880

BaPd2As2 Pd 0 0.1947 6.0 0.9158
Pd 1 0.1554 6.0 0.8585
Pd 2 0.3828 6.0 1.0021

BaPt2As2 Pt 0 0.1880 6.0 0.9494
Pt 1 0.1649 6.0 0.8813
Pt 2 0.3084 6.0 1.0074

BaFe2P2 P 0 0.2426 7.0 0.9745
P 1 0.1824 7.0 0.9845
P 2 0.0010 7.0 0.6111

KFe2As2 K 0 0.2786 8.0 0.9850
K 1 0.2493 8.0 1.0518
K 2 0.2643 8.0 0.8049

Table 5.1.: LCAO fit parameters γPl , λPl and chosen cutoff radii RPC,l for the
individual end members
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Figure 5.6.: Radial wavefunctions for Ba, Fe and As for l = 0 (red), l = 1
(green) and l = 2 (blue), respectively

even for the longest nearest neighbor distance Ba-As of 8.7Bohr, these wavefunctions
(apart from the Fe-d orbital) are heavily overlapping. Whereas for all species all angular
momenta are used to obtain a good LCAO-fit, in particular for Fe the 3d-states play an
important role for the valence which strongly enhances the Fe-d orbital. Especially in such
spatially anisotropic systems like BaFe2As2, a heavily overlapping local basis is needed for
a reasonable description of the bandstructure. To get an impression of the quality of
the LCAO fit, in Fig. 5.7 the bandstructure of the parent compound BaFe2As2 from the
MBPP calculation is compared against the one obtained by the LCAO part of the MBPP.
This gives a measure for the error in the energy levels due to the LCAO representation
which are the basis for the CPA calculation. In the calculation of the matrix elements
in the CPA program, further approximations in the XC-potential, charge density and
summation cutoffs are made. To additionally get an estimate how this influences the error
bar of the levels, in Fig. 5.8 the MBPP bandstructure is compared to the one obtained by
diagonalizing the charge self-consistent "mixing Hamiltonian" (see Sec. B.4.6) which for an
ordered compound is nothing else than the CPA-version of the crystal Hamiltonian. In
the vicinity of the Fermi surface, the bandstructures agree well, especially for the three hole
bands near the Γ-point and the two electron bands near the X-point. This good agreement
is important for the further analysis of self-energy effects on these bands. It should be
emphasized that the energy window of this plot is chosen rather small because BaFe2As2
obviously exhibits many dense bands in this region of interest. The band starting at the
Γ-point approx. 0.2 eV above the Fermi level and then touching the Fermi level between Γ
and Z caused particular problems and was the reason to develop the treatment of the XC-
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Figure 5.7.: Bandstructure of pure BaFe2As2 from MBPP-DFT (red) com-
pared against the LCAO representation calculated within the MBPP (green)
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Figure 5.8.: Bandstructure of pure BaFe2As2 from MBPP-DFT (red) com-
pared against the result from diagonalizing the charge self-consistent mixing
Hamiltonian in the CPA program (blue)

potential based on shape functions explained in Secs. 2.2.4 and B.4.5. In the simpler atomic
sphere approximation as proposed by Koepernik [11] this band significantly dropped below
the Fermi level and thus formed a spurious electron pocket. The good agreement of all
three calculations at that point shows how well the shape function approach together with
charge self-consistency performs for such delicate bands. The shape functions were chosen
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the same for all sites in the following form

S(x) = 1− e−γ(1−x)8
x = |r|

RPC
(5.4)

where the parameter γ = 32.8 was selected. The cutoff radii RPC are listed in Tab. 5.2.
Another delicate parameter for the determination of the Fermi level in this particular

Atomic type P RPC(Bohr)

Ba 10.5
Fe 6.9
As 6.5

Table 5.2.: Cutoff radii for the shape functions

system turned out to be the artificial temperature which was introduced for numerical
reasons in Sec. 2.2.4. The Fermi level is extrapolated from two chemical potential values
calculated at 300K and at 800K. The charge self-consistency is calculated at 800K.
As a last technical remark, I want to emphasize the importance of charge self-consistency
in the BaFe2As2 system. A very nice example is shown in Fig. 5.9 where the total density
of states (DOS) of Ba(Fe0.9Zn0.1)2As2 calculated from the CPA effective medium Green’s
function according to Eq. (2.71) is plotted after the first charge iteration and for the charge
self-consistent calculation after 32 charge iterations. Charge self-consistency has the most
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Figure 5.9.: Non charge self-consistent (blue) and charge self-consistent (red)
total DOS of Ba(Fe0.9Zn0.1)2As2

obvious impact on the position of the localized state appearing for Zn substitution which
gets shifted from about -9 eV to about -7 eV with respect to the Fermi level. But also the
shifts of the DOS in the vicinity of the Fermi level, which are rather small compared to
the shift of the localized state, are important when band renormalization effects at the
Fermi level are considered. This is of particular importance when one wants to determine
at which concentration a hole or electron pocket vanishes. For that reasons, all subsequent
calculations presented in this chapter are charge self-consistent if not mentioned otherwise.
A second general important remark has to be made about the energy axis ε−EF in plots
of the DOS or the spectral function. If for example several DOS for different compositions
are compared in a plot, then this implicitly means that every composition in general has a
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different Fermi level where its respective energy axis refers to. If for example the difference
of two peak positions ω1 and ω2 for two different compositions 1 and 2 is considered, this
actually means

ω1 − ω2 = ε1 − EF,1 − ε2 + EF,2 (5.5)

If not mentioned otherwise, this convention is used for DOS and spectral functions through-
out this chapter.

5.3. 3d transition metal substitution
There are several possibilities to perform chemical substitutions in BaFe2As2. One class
of substitutions, which was frequently studied in experiments, is the substitution of both
Fe atoms by another 3d transition metal via moving horizontally in the periodic table. In
this chapter, substitution of Fe by TM ∈{Co,Ni,Cu,Zn,Mn} will be studied.

5.3.1. Densities of states

The DOS gives a space and momentum independent average information about the impact
of substitutional disorder. It is well suited to get an overview about possible interesting
effects which then can be studied in more detail for example by band or momentum resolved
techniques with higher accuracy. In particular, the DOS contains information about level
shifts due to chemical substitution and the depth of the impurity potential. Before the
discussion of the results I want to establish the concept of a rigid band shift which will be
needed throughout the remaining chapter. The idea is to calculate the necessary naively
expected shift of the Fermi level if a certain amount of extra charge carriers is introduced
to the system. Electrons are counted positively and holes negatively. For the particular
case of TM substitution at the Fe site, the rigid band shift ∆TM can be calculated from
the valence electron number as follows∫ EF+∆TM

0
dω ν(ω) != ZBa + 2 · ZAs + 2 · (1− x) · ZFe + 2 · x · ZTM (5.6)

where EF and ν(ω) are the Fermi level and DOS of the parent compound and ZP is
the valence electron number of the atomic type P . The valence electron numbers of the
substitutional end members are weighted by their concentrations which maintains charge
neutrality of the composition. The DOS is integrated (in the present case numerically)
up to the Fermi level plus ∆TM to get a particle number and ∆TM is adjusted until this
particle number is equal to the number given on the right side of Eq. (5.6). This straight
forwardly applies also to substitutions at other sites. At this point, it is important to
remember that in the CPA calculations for the disordered systems the valence electron
number, which is needed for the determination of the chemical potential (see Sec. 2.3 and
App.C), is kept fixed due to particle number conservation. This particle number, which
in the developed program has to be provided by the user, was calculated in exactly the
same way as in the right side of Eq. (5.6).
In Fig. 5.10 the total DOS of Ba(Fe0.9TM0.1)2As2 for different TM substitutions together
with the DOS of the parent compound is plotted. In the inset, showing the behavior
in a narrow region around the Fermi level, apart from Zn substitution the other TM -
substitutions show a qualitative behavior which one might naively have expected: For the
series from Co to Cu where the valence electron number of the substituent successively
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Figure 5.10.: Main plot: charge self-consistent total DOS of pure
BaFe2As2 (black) together with disordered Ba(Fe0.9TM0.1)2As2 with
TM ∈{Co,Ni,Cu,Zn,Mn} (colors) over a large energy range w.r.t. the Fermi
level of the respective composition; inset: the same quantities on a narrow
energy range around the Fermi level

increases because of moving to the right in the periodic table, the DOS gets successively
shifted to lower energies as if to account for these higher numbers of valence electrons.
This behavior is also fulfilled by Mn which is to the left in the periodic table, thus has less
valence electrons than Fe and the DOS shifts to higher energies as naively expected. This
can be interpreted as first support of the picture of charge doping, but an analysis of the
DOS can only give a rough overview. A more complete answer of this question thus will
be postponed to the end of this chapter, where these effects on the actual bands at the
Fermi level are more rigorously studied in detail.
The plot of the DOS in a larger energy interval reveals a qualitatively different behavior
for Zn substitution. This is the only TM -substitution where a localized state forms at
7 eV below the Fermi energy. This behavior was already reported by Berlijn et al. [49]
which used a combination of the supercell method and Wannier function based averaging
techniques.
As already mentioned in Sec. 4.3, the present method can also calculate angular momentum
and species projected DOS by restriction of the trace in Eq. (2.71) to an appropriately
chosen subspace. In Fig. 5.11 such a projection on l = 2 (summed over all five d-states)
and on the actual substituent species (e.g. for Ba(Fe0.9Co0.1)2As2 a projection on Co-d
states) was done for the same compositions as in Fig. 5.10. This is shown together with
the respective projections (for each composition and the parent compound) on Fe-d states
(black curves). From the last two chapters we know that the peak height in the DOS is to
a large extent influenced by the concentration. Thus, the Fe peaks were scaled by a factor
of 0.2 for the disordered systems and 0.2·0.9 for the parent compound (because the Fe
concentration in the disordered system is 0.9) for better comparison. For the same reason,
also the Zn peak was scaled by a factor of 0.3 because due to its sharpness it gets relatively
high in order to ensure particle number conservation. Obviously, the peak positions of the
respective substituents differ considerably whereas the respective Fe peaks hardly change
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Figure 5.11.: Charge self-consistent sum over all l = 2 angular momentum
contributions of TM -projected DOS of disordered Ba(Fe0.9TM0.1)2As2 with
TM ∈{Co,Ni,Cu,Zn,Mn} (colors, Zn scaled by 0.3) together with the respective
projections on Fe scaled by 0.2 (black) for each composition as as reference

with substitution. The slight shifts of the Fe peaks are of the same order of magnitude
like the respective rigid band shift.
To interpret the spectra of the substituents, some interesting related data are listed in
Tab. 5.3. ε0 is the mean value of the d-orbital DOS which was extracted from calculating
the first statistic moment of the respective DOS in an energy window between -9 eV and
2 eV. This provides a well defined way to extract the mean value independent of the detailed
structure of the spectra which can contain several side maxima like for Fe or just one single
maximum like for Zn. Of course this can only serve to get a rough quantitative estimate
of the shifts. The Vl,m are the differences of the diagonal elements of the TM block and
the Fe block of the respective onsite Hamiltonians HTM,TM − HFe,Fe with l = 2 (the l-
offdiagonal elements are zero) as a measure for the impurity potential. The shifts of the
substituent peaks with respect to the Fe peak correlate well with the impurity potentials.
The impurity potential is to zeroth order determined by the different pseudopotentials
of the substituent, which arise from the respective core sizes, configuration of the core
electrons and nuclear charges. Additionally it is influenced by the surrounding atoms in

TM ≈ ε0 − εFe
0 (eV) V2,0 (eV) V2,1 (eV) V2,−1 (eV) V2,2 (eV) V2,−2 (eV)

Mn 0.157 0.250 0.201 0.201 0.190 0.259
Fe 0.000 0.000 0.000 0.000 0.000 0.000
Co -0.276 -0.292 -0.259 -0.259 -0.266 -0.312
Ni -0.855 -0.917 -0.866 -0.866 -0.877 -0.906
Cu -2.213 -2.350 -2.243 -2.243 -2.211 -2.220
Zn -5.646 -6.102 -5.935 -5.935 -5.873 -5.888

Table 5.3.: Shift of substituent d-spectra in orbital DOS compared with dif-
ference of diagonal elements Vl,m with l = 2 of onsite Hamiltonians

60



5.3. 3d transition metal substitution

the disordered compound, in particular by hybridization with As.

5.3.2. Band renormalization

Bloch spectral function

As already outlined in Sec. 4.3, the Bloch spectral function A(ω,k) given by Eq. (2.72)
contains all information about the band structure of a disordered system and thus is the
basic quantity to study momentum resolved disorder effects in more detail. To extend the
analysis of the DOS carried out in the previous section, which provided relatively coarse
grained averages over all bands, in this section I want to present a systematic scheme
for the investigation of the impact of disorder on particular bands contributing to the
Fermi surface. In Fig. 5.12 (a) A(ω,k) of substitutionally disordered Ba(Fe0.9Ni0.1)2As2 is
shown together with the band structure of the parent compound. Obviously all bands get
shifted to lower energies as already observed in the DOS in the last section. Moreover,
this plot reveals that these level shifts are band selective and momentum dependent -
essentially meaning that they are non rigid, an information which the DOS could not
provide. But it would be desirable to quantify this non-rigidness to be able to shed
light on the initially mentioned controversy between charge doping and unchanged TM-
valence reported by different experimental techniques. Furthermore, in the color plot
the disordered bandstructure seems to exhibit band selective and k-dependent spectral
broadenings, but also here it is difficult to separate spectral broadenings from high spectral
weight due to crossings of multiple bands. To be able to quantify such effects, we have
to look at the spectral function in more detail. For that purpose in Fig. 5.12 (b), A(ω,k)
is plotted against energy at three subsequent k-points in the region next to the X-point
where the electron bands cross the Fermi level. These k-points are marked by the red
vertical lines in the color plot. Obviously, the spectral function contains multiple peaks
which causes complications when the impact of disorder on one particular band shall be
investigated: This example contains for k = 0.17XΓ and k = 0.2XΓ the pathological case
where the two electronic bands just get very close and cross themselves such that their
spectra overlap. This results in the respective double peaks next to the Fermi level. From
such a double peak it is difficult to extract the behavior of an individual band next to
the Fermi. Thus, a single peaked, disentangled spectral function for each individual band
would be much more suitable to trace its position in energy and its spectral width.

Projection technique

A promising ansatz for disentangling the spectral peaks of the individual bands consists in
projecting the k-dependent Green’s function S(k)Γ(k, ω)S(k) involved in the calculation
of A(ω,k), being a matrix in the extended BEB orbital Hilbert space, on the eigenvectors
of the parent compound. The idea behind this is that we are interested how the bands
of the parent compound, having well-defined eigenvectors, will be affected by disorder.
Mathematically this is accomplished by defining a band-projected Green’s function

Gn(k, ω) ≡
∑

i,j∈parent
c∗n,i(k) [S(k)Γ(k, ω)S(k)]i,j cn,j(k) (5.7)

where cn,j is the jth orbital component of the eigenvector of bandn. Because these eigen-
vectors are only defined in the smaller Hilbert space of the parent compound, the sum in
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Figure 5.12.: (a) Bloch spectral function of disordered Ba(Fe0.9Ni0.1)2As2 to-
gether with band structure of the parent compound (green solid lines); (b)
Bloch spectral function of Ba(Fe0.9Ni0.1)2As2 at three k-points [vertical red
lines in (a)] together with projections (colors) on bands of the parent com-
pound and sum over all bands
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5.3. 3d transition metal substitution

Eq. (5.7) only runs over orbital indices belonging to the subspace of the parent compound.
This projection from a larger Hilbert space down to a smaller one is valid if the changes of
the bands due to disorder are not too large. This is supposed to be the case in the regime
of small impurity concentrations which fortunately is just the regime we are interested in.
The resulting band projected spectral functions are shown in various colors in Fig. 5.12 (b).
Each of them only contains a single well defined peak and in particular they disentangle
the double peak corresponding to the crossing of the two electron bands. If this method
was exact, the sum over all projected bands would give the total spectral function. To
test the accuracy, the sum over just these four bands (out of 45) is also plotted and fulfills
this sum rule astonishingly well. This demonstrates that this projection is valid even at
an impurity concentration x = 0.1.
Having available a single spectral function for each band, the impact of disorder on a
selected band of the parent compound can be studied by comparing its spectral function
in the parent compound to that in the disordered system. The positions of the spectral
peaks can easily be extracted by searching the maximum of the associated projected spec-
tral function An(k, ω) = −1

π ImGn(k, ω). Comparing them between the parent compound
and the disordered system gives rise to a level shift ∆εn due to disorder. To facilitate the
extraction of the spectral broadening we make a further approximation and assume the
following functional form for a band-projected Green’s function

Gn(k, ω) = 1
ω + iδ − (εn(k)− E0

F )− Σn
(5.8)

where εn(k) is the dispersion of bandn in the parent compound with respect to its Fermi
level E0

F . The disorder effects on bandn are considered by the complex self-energy Σn ≡
ΣR
n + iΣI

n. The imaginary part of this self energy is negative. The full Green’s function in
practice is evaluated at a slightly complex frequency ω+iδ, which also has to be accounted
for. The self energy in principle could be extracted from finding the poles of Gn in complex
frequency. In practice we choose a different approach based on the knowledge that the
real part of the pole is just the position ωp = εdn(k)− EF of the peak in energy which we
already know. Here εdn(k) is the band dispersion and EF the Fermi level in the disordered
system. It follows

Re 1
Gn(k, ωp)

= 0 = εdn(k)− EF − (εn(k)− E0
F )︸ ︷︷ ︸

∆εn

−ΣR
n (5.9)

Then the band Green’s function evaluated at ωp, but still at a small δ far off the actual
pole becomes

Gn(k, ωp) = 1
i(δ − ΣI

n) (5.10)

which is purely imaginary. This finally yields for the real and imaginary part of the band
self-energy

ΣR
n = ∆εn (5.11)

ΣI
n = 1

ImGn(k, ωp)
+ δ = −1

πAn(k, ωp)
+ δ = −∆σn (5.12)
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5. Substitutionally disordered BaFe2As2

where ∆σn is the spectral broadening of band n. This allows to extract the spectral width
and broadening provided the peak position is known.
In the following, self-energy effects on the three hole-like bands next to the Γ-point and
on the two electron-like bands next to the X-point will be analyzed. For the rest of this
work, only a cut through the full Fermi surface of the parent compound (see Fig. 5.4) in
the (kx,ky) plane at kz = 0 will be considered, as shown in Fig. 5.13. In the Brillouin

π
a

kx

π
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k
y

Γ

X

α

β1

β2

γ2

γ1

Figure 5.13.: Fermi surface of the parent compound in the (kx,ky) plane at
kz = 0 mapped out via DFT on a coarse-grained k-mesh

zone corresponding to the tetragonal unit cell with two iron atoms, this planar projection
essentially consists of three hole-like circles around the zone center Γ = (0, 0, 0) and two
electron-like ellipses around the zone corner X = (1, 1, 0). In all what follows, the conven-
tions for labelling of bands which were introduced in Fig. 5.13 will be used. The inner hole
band is called α, the two outer hole bands β1 and β2 as well as the inner electron band
γ1 and the outer electron band γ2. Information about the orbital composition of band
n, which of course depend on k, can be obtained from the components of its eigenvector
cn,i(k). In Fig. 5.14, the modulus squared of each eigenvector component at the respective
Fermi wave vectors kF in the Γ-Z direction for the hole bands and the X-Γ direction for
the electron bands is plotted.
The dominant orbital composition is listed in Tab. 5.4 where Lin{...} means a linear com-
bination.

Band Type l m Orbital

α Fe 2 2 dx2−y2

β1 Fe 2 1 dxz
β2 Fe 2 -1 dyz
γ1 Fe 2 Lin{1, -1, 2} Lin{dxz, dyz, dx2−y2}
γ2 Fe 2 2 dx2−y2

Table 5.4.: Orbital composition (dominant contributions) of electron and hole
bands at the Fermi level
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5. Substitutionally disordered BaFe2As2

The coordinate system is chosen such that x and y point along the projections of the
FeAs bonds into the Fe planes. To get an impression how these orbitals are oriented with
respect to the FeAs bonds, Fig. 5.15 shows a three dimensional plot of these five spherical
harmonics.

Level shifts

In Fig. 5.16 the level shifts or real parts of the band self-energy Σn of the three hole
bands (α, β1 and β2) and the two electron bands (γ1 and γ2) are plotted against impurity
concentration x for different transition metal substitutions in Ba(Fe1−xTMx)2As2. These
level shifts were taken at the Fermi wave vector kF of the respective disordered system and
are measured parallel to the energy axis. This convention for the level shifts will also be
chosen in the next sections if not mentioned otherwise. The calculations were carried out at
impurity concentrations x ∈ {0.01, 0.03, 0.05, 0.07, 0.1}. For some bands and substitutions,
not all points in the concentration range are shown because at a certain concentration
threshold depending on the substituent species, the bands do not cross the Fermi level
anymore. In this concentration range, the shifts behave linearly to good approximation.
For this reason, lines were fitted to the data. The slopes for each substituent will be
compared later for all substitutions (e.g. also at the pnictogen site) performed in this
work. First of all, the level shifts increase in magnitude with an increasing difference of
valence electron number between host and substituent. In particular, for Mn substitution
the level shifts have a different sign as for the remaining TM substitutions because Mn
has valence electrons less than Fe as opposed to the other TM which have more. The
dashed lines show the respective rigid band shifts calculated from Eq. (5.6) expected in
the picture of charge doping. Obviously, the level shifts in general are non-rigid, band-

Figure 5.15.: The orientation of the five d-orbitals, figure from [112]
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Figure 5.16.: Band shifts of the three hole bands (α, β1 and β2) and the
two electron bands (γ1 and γ2) against impurity concentration x for different
transition metal substitutions (colors) in Ba(Fe1−xTMx)2As2. Solid lines: fits
to the closed symbols, dashed lines: rigid band shift, open symbols: calculation
at experimental structure

selective and depend (see Tab. 5.4) on the orbital composition of the band. The β bands
(apart from Mn substitution) and the γ1 band (apart from Zn substitution) behave the
most rigid-like. These bands also have a similar orbital composition. The α and γ2 band,
which have dominant dx2−y2 character, exhibit more pronounced deviations from a rigid
band shift. Apparently, if the lobes of the orbitals point into the direction of the FeAs
bonds, this leads to larger deviations from a rigid band shift. At least for Co substitution
(apart from the γ2 band) the overall behavior suggests a rigid band shift to be a reasonable
description which would support the charge doping scenario. For the other species, this is
not so clear anymore, at best the directions of the shifts follow the naive picture.
As initially mentioned, for all calculations the crystal structure of stoichiometric BaFe2As2
was used and not changed with x. In order to see to what extent structural changes
influence these results, the calculations for 10% Co substitution and 7% Ni substitution
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5. Substitutionally disordered BaFe2As2

were repeated, using the crystal structures measured by Peter Schweiss in four circle
X-ray diffraction experiments [113] at the respective impurity concentrations. This was
done because on the one hand, the present methodology does not yet provide access to
the total energy (which has to be implemented in the future) and on the other hand,
DFT-based approaches are well known to fail in predicting a realistic crystal structure
upon minimizing the total energy for these compounds. These additional calculations are
shown by the open symbols in Fig. 5.16 and are not included in the fits. Obviously, for
these substitutions at this low concentration range, there are no substantial changes due
to structural effects.

Spectral broadenings

In Fig. 5.17 the spectral broadenings of the three hole bands (α, β1 and β2) and the two
electron bands (γ1 and γ2) are plotted against impurity concentration x for different tran-
sition metal substitutions in Ba(Fe1−xTMx)2As2 for the same range of concentrations as
already the level shifts were calculated. Again, the broadenings were taken at the Fermi
wave vector kF of the disordered system which will also be done in the next sections, if
not mentioned otherwise. As before, data points do not exist if the bands do not cross
Fermi level anymore at that impurity concentration. Like the level shifts, the broadenings
(apart from the α band at Mn substitution) show a linear behavior in this impurity con-
centration range and lines were fitted of which the slopes will be compared later. Also the
spectral broadenings get enhanced with increasing difference in valence electron number
of the substituent with respect to the host apart from the α band, which exhibits also the
strongest deviations from the linear behavior. Whereas for most other bands Zn substi-
tution leads to the strongest impurity scattering, for the α band this at least is not clear.
The α band apparently exhibits an anomalous behavior. The β bands and the γ1 band,
being of similar orbital composition, are most affected by impurity scattering. These are
the bands which exhibit the most rigid-like band shifts. The α and γ2 band, being both
of dx2−y2 orbital character, behave differently and at least the two strongest scatterers Cu
and Zn affect them weaker than the other bands. This suggests that an orbital character,
where the lobes point into the direction of the FeAs bonds, makes the associated bands
more robust against strong impurity scattering.
Also for the spectral broadenings, effects due to structural changes for Co and Ni sub-
stitution are negligible in the considered impurity concentration range. Similar trends
concerning the dependence of the spectral broadenings on the substituent species can be
found in the inverse charge carrier relaxation time 1/τ ′ for low temperatures from optical
measurements in Tab. 4 on page 848 of Ref. [114].

5.4. 4d and 5d transition metal substitution

In the last section, I discussed the changes in electronic structure of randomly substituting
both Fe atoms with another 3d transition metal by moving horizontally to the left and
right side of Fe in the periodic table. This section deals with moving vertically in the
periodic table and the substitution of Fe by Ni (which was already shown before) will be
compared with substitution of Fe by Pd, which is a 4d transition metal and Pt being a
5d transition metal. Because these are isovalent substitutions, we expect to see the same
effects of Fermi level shifts for all three substituents.
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Figure 5.17.: Spectral broadenings of the three hole bands (α, β1 and β2)
and the two electron bands (γ1 and γ2) against impurity concentration x for
different transition metal substitutions (colors) in Ba(Fe1−xTMx)2As2. Solid
lines: fits to the closed points, Open symbols: calculations at experimental
structure

In this section the same route will be followed as before. First of all, we look at the total
DOS at 5% substitution which is shown in Fig. 5.18 to get an overall impression. On the
larger energy range, nothing interesting happens so this plot only shows a narrow energy
window around the Fermi level. Obviously, the DOS of the Pd and Pt substitutions get
shifted in the same way, as expected. The Ni substitution also is very close to the other
two but it behaves slightly different. This finite change of the DOS cannot be attributed
to the number of valence electrons and thus must originate from the different pseudopo-
tential arising from a different configuration of the core electrons, core size and nuclear
charge.
These effects are more obvious in the angular momentum and species projected DOS shown
in Fig. 5.19. The Fe-d spectra shift hardly due to substitution as expected. The Pd-d and
Pt-d DOS exhibit a similar form and are slightly shifted with respect to each other. The
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solved and TM -projected DOS of disordered Ba(Fe0.95TM0.05)2As2 with
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by 0.1 (black) for each composition as a reference

differences in their form can be attributed to their position in energy with respect to the
energy levels of the other atoms which influences in particular the hybridization with As.
But the form and especially the position of the Ni-d DOS are considerably different in
spite of them all having the same number of valence electrons. For further analysis, in
Tab. 5.5 the mean value of the Fe and substituent spectra obtained from calculation of
the first statistic moment are compared with the impurity potentials from the difference
of the diagonal d onsite Hamiltonian matrix elements. For Ni the shift of the spectrum
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5.4. 4d and 5d transition metal substitution

TM ≈ ε0 − εFe
0 (eV) V2,0 (eV) V2,1 (eV) V2,−1 (eV) V2,2 (eV) V2,−2 (eV)

Fe 0.000 0.000 0.000 0.000 0.000 0.000
Ni -0.870 -0.928 -0.877 -0.877 -0.888 -0.920
Pd -2.523 -2.761 -2.860 -2.860 -2.873 -2.771
Pt -2.532 -2.736 -2.939 -2.939 -2.970 -2.805

Table 5.5.: Shift of substituent peak in orbital DOS compared with difference
of diagonal elements with l = 2 of onsite Hamiltonians

correlates well with the impurity potential, for Pd and Pt the shifts show the same trends
as the impurity potentials but the deviations between impurity potentials and shifts are
larger. This essentially means that the offsite Hamiltonian matrix elements play a more
important role for the spectra in case of Pd and Pt substitution than for Ni. This can
be attributed to a stronger hybridization, being an offsite effect, of the Pd and Pt atoms
with the surrounding atoms due to their larger core size and larger extent of the d wave-
functions.
Let me now discuss the level shifts and spectral broadenings as these concepts are already
established from the last section. The level shifts for the concentrations x ∈{0.01, 0.03,
0.05} are compared for Ni, Pd and Pt substitution and a rigid band shift, which is the
same for all considered substituents, in Fig. 5.20. Again, the level shifts are band selective
and depend on their orbital character. Lines were fitted because like before they exhibit a
linear behavior. As already outlined in the discussion of the DOS, just from the number
of valence electrons we would expect the same shifts for all substituents. This is only the
case for the β2-band but even these level shifts deviate from a rigid band shift. For the
α and γ2 bands the shifts caused by Pt substitution behave the most rigid-like but this
is not true for the other bands. At least, this seems to be an effect of Pt substitution on
bands with dominant dx2−y2 orbital character. In general, the β and γ1 bands, being of
similar orbital composition behave the most rigid like, which is the same trend as already
reported for the 3d-TM substitutions. This, together with the preceding analysis of the
3d-TM substitutions, shows that the picture of charge doping connected with a rigid band
shift works best in the case of Co and Pt substitution. Also on this smaller energy scale,
there are no substantial effects due to structural changes for Ni substitution.
The respective spectral broadenings are shown in Fig. 5.21 for the same range of concen-
trations. Again, they depend linearly on the concentration apart from the α band, where
the linear fits could be argued. As before, they are band selective. Unlike the level shifts,
the spectral broadenings exhibit a clear trend for the substituent species: for all bands,
Ni causes the strongest broadenings, followed by Pd and Pt which has the weakest effects.
For the 3d-TM substitutions the trends of the broadenings were correlated to the shifts of
the respective TM d-spectra in the orbital DOS and thereby were also correlated with the
impurity potential. For moving vertically in the periodic table, this trend does not hold
anymore - at least not for the impurity potentials. This can be attributed to an enhanced
significance of environmental disorder effects for increasing ionic radius and extent of the
d wavefunctions. The last point gives rise to a stronger hybridization which clearly is
an offsite effect. The changes of the spectral broadenings due to an experimental crystal
structure are negligible.
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Figure 5.20.: Band shifts of the three hole bands (α, β1 and β2) and the
two electron bands (γ1 and γ2) against impurity concentration x for Ni, Pd
and Pt substitution (colors) in Ba(Fe1−xTMx)2As2. Solid colored lines: fits
to the closed points, solid black line lines: rigid band shift, Open Symbols:
calculations at experimental structure for 7% Ni substitution

5.5. K and P substitution

Until now, various substitutions at the Fe site of BaFe2As2 were considered in the present
work. This section is devoted to substitutions at the other sites namely Ba by K and
As by P. Especially, the Ba1−xKxFe2As2 system was intensively studied in the past (also
at our institute in particular). Apart from the usual tiny deviations of the DOS next to
the Fermi level, neither the total DOS nor the orbital projected DOS exhibit considerable
effects as in the case of TM substitution. The valence states which are s states for (Ba,K)
and p states for (As,P) are far below the Fermi level. For this reason I immediately turn
to the discussion of the band selective effects because from them we can learn the most
about these substitutions. One important remark has to be made: until now the impurity
concentration x was always a site related quantity. But whereas in the case of substi-
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Figure 5.21.: Spectral broadenings of the three hole bands (α, β1 and β2) and
the two electron bands (γ1 and γ2) against impurity concentration x for Ni,
Pd and Pt substitution (colors) in Ba(Fe1−xTMx)2As2. Solid lines: fits to the
closed points, Open Symbols: calculations at experimental structure for 7% Ni
substitution

tutions at the Fe or the As sites always both atoms are substituted at a concentration
x, at the Ba site only one atom is substituted. So for the same x in case of TM or P
substitution, effectively twice as many atoms are substituted per unit cell as in the case
of K substitution. In this section, the effects of K and P substitution are compared with
each other and, as a reference, against Co substitution. To be able to do that, the effective
percentage of substitutions per unit cell y will be considered. In the case of K substitution
y = x but for Co and P substitution y = 2x will be plotted.
The respective level shifts are shown in Fig. 5.22. Due to the linear behavior of the level
shifts with impurity concentration, lines were fitted. The level shifts for P substitution are
negligible. From the fact that As and P are isovalent this is no surprise and shows that
for P substitution the picture of a rigid band shift is well suited. K substitution causes
level shifts which are of the same order of magnitude as for Co substitution but have the
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Figure 5.22.: Band shifts of the three hole bands (α, β1 and β2) and the two
electron bands (γ1 and γ2) against effective impurity concentration y in the
whole crystal for Co, K and P substitution (colors). Solid lines: linear fits to
the closed points, dashed lines: rigid band shift, Open Symbols: calculations
at experimental structure for 10% Co substitution

opposite sign. In the charge doping picture this means that K introduces holes to the
system (as also Mn did). The level shifts depend on the orbital character of the band and
are less well described by a rigid band shift than in the case of Co substitution. Only the
γ1 band behaves rigid-like. This is at least partly the same trend as for Co, Ni, Cu, Pd
and Pt substitution but there also the β bands behaved more rigid-like which for K is not
the case. Also on this smaller energy scale the structural changes at 10%Co substitution
only have a small impact on the level shifts.
The spectral broadenings are shown in Fig. 5.23. Here, the broadenings for Co, which were
plotted as a reference, are scaled by a factor of 0.1 because the broadenings for K substi-
tution are 1-2 orders of magnitude smaller than for Co substitution. For P substitution
they are even more than 3 orders of magnitude smaller for the hole bands. This is one of
the most important results of this whole chapter: my calculations show that the lifetimes
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Figure 5.23.: Spectral broadenings of the three hole bands (α, β1 and β2) and
the two electron bands (γ1 and γ2) against effective impurity concentration y
in the whole crystal for Co, K and P substitution (colors). Solid lines: linear
fits to the closed points, Open Symbols: calculations at experimental structure
for 10% Co substitution

of the states at the Fermi level get only considerably affected by impurity scattering if the
substitution occurs in the Fe planes, whereas the out-of plane substitutions only lead to
negligible effects.
Nevertheless, even if these effects are negligible compared to the TM substitutions, let
me also discuss them in detail. The P substitutions cause the smallest broadenings. The
broadenings behave perfectly linear and lines were fitted. In general, the electron bands
are more affected than the hole bands. The broadenings due to K substitutions are larger.
For the electron bands they are linear with impurity concentration, for the hole bands this
is not the case. So it is only justified to fit lines for the electron bands but nevertheless this
was also done for the hole bands in order to have one central concentration-independent
quantity to compare later between all species. This issue will be discussed again in the
next section. Both substitutions differ in the trends when comparing different bands with
each other as for TM substitutions.
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5. Substitutionally disordered BaFe2As2

Also on this energy scale, the spectral broadenings do not get considerably affected by
structural changes. As a general trend, the considered structural effects for Co and Ni
substitution are at best small for the level shifts but for the spectral broadenings they are
negligible at all.

5.6. General trends of band renormalization

In the last sections, in particular the behavior of the level shifts and spectral broadenings
on electron and hole bands next to the Fermi level were analyzed in detail depending on
the impurity concentration for different substitutions separately. In most cases, they de-
pend linearly on the impurity concentration so let me finally compare the slopes of these
quantities to conclude the discussion of the essential effects of different substitutions on
the individual bands for small impurity concentrations.
In Fig. 5.24 the slopes of the level shifts of the three hole bands α, β1, β2 and the two
electron bands γ1, γ2 are plotted against substituent species together with the rigid band
shift. In general, for 3d-TM substitution the level shifts follow the trend of the rigid band
shift and the deviations grow upon moving horizontally in the periodic table to the right
or left away from Fe. On the electron doped side for Co, Ni, and Cu substitution, the β
and γ1 bands, being of similar orbital composition, behave the most rigid-like. Especially
the α band, which has dx2−y2 orbital character, considerably deviates from the rigid band
shift. In Sec. 5.1.3, experimental results [28] were introduced which showed a coincidence
of the superconducting domes obtained from resistivity measurements, when they are plot-
ted over the number of extra electrons expected from a rigid band shift. Provided that
the dx2−y2 orbitals do not significantly contribute to the pairing state, the rigidness of the
remaining band shifts obtained in this work for Co and Ni substitution agree with these
experimental findings. Mn substitution essentially introduces holes into the system. Here
the two electron bands behave the most rigid-like. K substitution also introduces holes
to the system but here the γ2 band deviates the strongest from the rigid band shift. At
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Figure 5.24.: Slopes of level shifts plotted over substituent (points) together
with rigid band shift (solid line). Besides the 3d-TM substitution series for
Fe, substitutions of K for Ba and P for As are shown to the left as well as
substitutions of Pd and Pt for Fe to the right (shaded)
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5.6. General trends of band renormalization

least considering the last statement about states with dx2−y2 character, this fits into the
general trend. P substitution causes no shifts due to its isovalence with As.
For the Ni, Pd, Pt substitution series, apparently an inverse trend seems to be fulfilled:
moving vertically down in the periodic table, i.e. increasing the core size causes a decrease
in the deviations from the rigid band shift. In general, these results demonstrate the ap-
plicability of the picture of charge doping in zeroth order but if we look into the details,
the deviations from the rigid band shift depend on the orbital composition of the bands.
After having a complete picture about the level shifts, let me now draw general conclu-
sions about the spectral broadenings. In Fig. 5.25 the dependence of the slopes of the
spectral broadenings on substitution is shown. As already mentioned in last section, the
most obvious feature which is also one of the most important conclusions of this study, is
the fact that the spectral broadenings are only relevant for substitutions in the Fe planes.
K and P substitution, both occurring outside these planes, have negligible broadening
effects. Thus, also the deviations from the linear behavior of the spectral broadenings for
K substitutions are negligible on this scale. For 3d-TM substitution the broadenings in
general increase upon moving horizontally away from Fe in the periodic table. As already
was the case for the level shifts, also the broadenings of the β and the γ1 bands, being of
similar orbital composition, show the same trend. Again, the bands with dx2−y2 orbital
character, α and γ2, behave differently.
As for the deviations of the level shifts from the rigid band shift, a similar trend can
be attributed to the spectral broadenings for the Ni, Pd, Pt series. Moving vertically
downwards in the periodic table, i.e. increasing the ionic radius causes a reduction of the
spectral broadenings. This can be attributed to an increasing significance of environmental
disorder effects because Pd and Pt substitutions come along with an extent of the d wave
functions which gives rise to a stronger hybridization. This issue will again be important
in Sec. 5.7.3 where intraband and interband scattering are compared.
In addition, from both the level shifts and the spectral broadening we can make the general
statement that bands with dx2−y2 orbital character, where the lobes of the orbitals mainly
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Figure 5.25.: Slopes of the spectral broadenings plotted over substituent. Be-
sides the 3d-TM substitution series for Fe, substitutions of K for Ba and P for
As are shown to the left as well as substitutions of Pd and Pt for Fe to the
right (shaded)
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point into the directions of the Fe-As bonds, show an anomalous behavior compared to
the remaining bands.
At least to my knowledge, no direct measurements of spectral broadenings are published
to further discuss these findings even if such broadenings in principle should be accessi-
ble by ARPES. At least for comparison with residual resistivity there are better formal
approaches than these broadenings to derive them from the present calculations which
should be done in future work.

5.7. Impact of impurity scattering on superconductivity

Looking back at the phase diagram Fig. 5.3, it is obvious that substitutional disorder
plays an important role in enhancing and suppressing superconductivity in BaFe2As2. As
already mentioned in the introduction into the present chapter, it is by now well established
that the iron pnictides are unconventional superconductors. Furthermore, strong evidence
is found by experimental [91–93] and theoretical [34–36] works that the superconducting
order parameter in BaFe2As2 exhibits s-wave symmetry, meaning that it obeys the same
symmetry as the crystal, but changes sign between the hole and electron Fermi surfaces (see
Fig. 5.13). This structure of the order parameter is called an s+− state. For investigating
the influence of impurity scattering on such an s+− superconductor it turns out important
to distinguish between intraband and interband scattering. For such an analysis, which the
rest of this chapter is devoted to, a further computational approach needs to be developed
in addition to the CPA. Let me therefore first briefly summarize some general statements
about impurity scattering in an s+− superconductor.

5.7.1. Dirty superconductors: theory essentials

In conventional superconductors, the famous Anderson theorem [108] states that only
magnetic impurities are pair breaking, i.e. suppress Tc, whereas nonmagnetic impurities
do not affect the superconducting state. The Abrikosov-Gorkov (AG) theory [115] puts this
statement on a quantitatively more profound level. This theory, which has been reviewed
for example in [104], considers a conventional s-wave superconductor in the presence of
impurities. In the following, a hat (e.g. Û) denotes an operator acting in Nambu space
where the field operators are spinors Ψ† = (ψ†↑, ψ

†
↓, ψ↑, ψ↓). The impurity potential was

introduced by (notation in the following adapted to [104])

Ûimp(k − k′) = Upot(k − k′)τ3 + J(k − k′)S ·α (5.13)

where
α = 1

2 [(1 + τ3)σ + (1− τ3)σ3σσ3] (5.14)

and the σi are Pauli matrices in spin space, σ is a vector of the three σi and τi are Pauli
matrices in particle-hole space. Upot is a potential scattering term describing scattering
on nonmagnetic impurities and J accounts together with the spin S of the impurity for
magnetic impurities. The Green’s function of the superconducting state is written as

Ĝ(k, ω) =
[
iωn − ξ(k)τ3 −∆σ2τ2 − Σ̂

]−1
≡
[
iω̃n − ε̃(k)− ∆̃σ2τ2

]−1
(5.15)
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where ξ(k) is the dispersion of the quasiparticles, ωn are fermionic Matsubara frequencies,
∆ is the superconducting gap in the clean case and Σ̂ the self-energy due to impurities. ω̃n,
ε̃(k) and ∆̃ are the respective impurity-renormalized frequency, quasiparticle dispersion
and gap. AG then found the equations for renormalization of the gap and frequencies

ω̃ = ω + (γp + γs)
ω̃√

ω̃2 + ∆̃2
(5.16)

∆̃ = ∆ + (γp − γs)
∆̃√

ω̃2 + ∆̃2
(5.17)

where γp is the scattering rate due to nonmagnetic impurities and γs the scattering rate on
magnetic impurities. Introducing the ratios a ≡ ∆/ω and ã ≡ ∆̃/ω̃, these two equations
can be rewritten after some manipulations into

ã = a

(
1− 2γs

ã

∆
√

1 + ã2

)
(5.18)

The superconducting gap is determined from the self-consistent equation

∆(k̂) = πTN0
∑
ãn

∫
dk̂′V (k̂, k̂′) ãn(k̂′)√

1 + ã2
n(k̂′)

(5.19)

where k̂ is a unit k-vector, the integration is performed over solid angle, N0 is the DOS in
the normal state and V is the pairing potential. The important outcome of this theory is
that the renormalization of the ratio of the gap and frequencies via Eq. (5.18) only depends
on the scattering rate γs on magnetic impurities. If there are no magnetic impurities,
Eq. (5.19) resembles just the same gap equation as in the clean case. So the gap would
not be changed by nonmagnetic impurities at all which is the essence of the Anderson
theorem.
Golubov and Mazin [33] have extended this theory to multiband superconductors, where
several bands contribute to the pairing. For such a case, they found that impurities which
lead to interband scattering, no matter if they are magnetic or not, as well as intraband
scattering caused by magnetic impurities suppress superconductivity. Superconductivity
in multiband systems is only robust against intraband scattering caused by nonmagnetic
impurities. Furthermore, these authors find that in the special case of a two-band system,
due to symmetries only magnetic interband scattering suppresses Tc. In addition, they
also considered a two-band system with a sign change in the order parameter between the
two bands, which, as mentioned above, is a promising candidate for the iron pnictides,
and found out that only nonmagnetic interband scattering is pair breaking.
This last statement about the s+− scenario was rederived in a compact form by Vorontsov
et al. [37] in connection with the iron-based superconductors: according to their work,
Eq. (5.18) then becomes (adapted to the present notation)

ã = a

(
1− 2γπ

ã

∆
√

1 + ã2

)
(5.20)

which is formally the same result as in conventional AG theory but with the interband scat-
tering rate on nonmagnetic impurities γπ appearing instead of γs. Due to their analysis,
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the nonmagnetic interband scattering alone leads to pair breaking in an s+− supercon-
ductor whereas the intraband scattering influences the residual resistivity.
As a matter of completeness, it should be mentioned that Hoyer et al. [116] provided an
alternative and more generic approach to this problem: based on symmetry considerations
they derived a generalization of the Anderson theorem to s+− superconductors. It states
that in such systems superconductivity is robust against interband scattering on time-
reversal antisymmetric impurities and intraband scattering on time-reversal symmetric
impurities. The time-reversal symmetric impurities represent the nonmagnetic impurities
where the discussion in the present work is restricted to.
Going back to the schematic phase diagram Fig. 5.3, the superconducting transition tem-
perature Tc not only drops with increasing impurity concentration: At low impurity con-
centrations (the so-called underdoped region) it first rises with impurity concentration
up to a maximum (at the so-called optimally doped impurity concentration) and then
drops with increasing impurity concentration (in the so-called overdoped region). But
the theoretical considerations reviewed so far only describe the suppression of Tc due to
(interband) impurity scattering, i.e. only properly explain the overdoped region of the
superconducting dome. The rise of Tc in the underdoped region can be explained with the
interplay between superconductivity and antiferromagnetism: At low impurity concentra-
tions, long-range antiferromagnetic order forms and suppresses superconductivity. Upon
increasing the impurity concentration, the antiferromagnetic order gets suppressed which
enhances superconductivity up to the optimal doping. Then, superconductivity gets sup-
pressed by impurity scattering. This rather qualitative discussion has been formulated in a
quantitatively more profound model study by Fernandes et al. [117]. From this discussion
it is clear that when comparing scattering rates with experimental transition temperatures
considering pair breaking, on the one hand the height of the superconducting dome is im-
portant but also its width on the concentration axis gives information about how strong
a certain amount of impurities suppresses superconductivity.

5.7.2. Intraband and interband scattering from first principles

From these statements it is obvious that only the spectral broadenings alone, analyzed
so far in this work, are not sufficient to study the aspect of pair breaking for the various
considered substitutions. These broadenings contain all accumulated scattering effects
onto a single band but do not provide explicit information about scattering between two
bands.
The goal of this section is to set up a formalism suited for calculating scattering rates
between two arbitrary bands of the parent compound from first principles, of course trying
to benefit from the quantities provided by the CPA calculations so far. For simplicity,
only a single impurity will be considered in order to gain information about interband and
intraband contributions to the spectral broadenings obtained above. In the end, a formula
will be derived which gives the interband and intraband scattering rates per impurity
introduced into the system. The linearity of the spectral broadenings in the impurity
concentration justifies to extrapolate these results to finite impurity concentrations where
the actual suppression of superconductivity due to impurity scattering occurs, as explained
in the last section.
The appropriate quantity to study the effects of a localized perturbation, is the transition
matrix T . It is related to the Green’s function in the following way in the tight-binding
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language

G = G0 +G0TG0 (5.21)
T = V + V G0V + V G0V G0V + ... (5.22)

where again G (G0) are the full (unperturbed) Green’s functions, respectively, and V
is the impurity potential. This shows that T essentially is a summation of all repeated
scatterings up to infinite order on the same impurity. How can we use this to consider
scatterings between bands?
The Lippmann-Schwinger equation of scattering theory relates a perturbed state |ψ〉 to
an unperturbed state |φ〉 in the following form

|ψ〉 = |φ〉+ Ĝ0V̂ |ψ〉 (5.23)

where V̂ is the operator of the scattering potential, in our case the impurity potential,
and Ĝ0 = (ω − Ĥ0)−1 is the Green’s function operator of the unperturbed system with
Hamiltonian Ĥ0, which in our case is the parent compound. The T -matrix operator can
then be defined (see for example [118]) as

T̂ |φ〉 = V̂ |ψ〉 (5.24)

Application of V̂ to both sides of Eq. (5.23) from the left

V̂ |ψ〉 = V̂ |φ〉+ V̂ Ĝ0V̂ |ψ〉 (5.25)

and the use of Eq. (5.24) yields

T̂ |φ〉 = V̂ |φ〉+ V̂ Ĝ0T̂ |φ〉 (5.26)

which only contains unperturbed states and thus serves as a convenient starting point for
the evaluation of the T -matrix in a special basis. We are interested in the influence of
the scattering on selected bands. Thus, the unperturbed states will be band states of the
parent compound |n,k〉 and the equation is

T̂ |n,k〉 = V̂ |n,k〉+ V̂ Ĝ0T̂ |n,k〉 (5.27)

These band states |n,k〉 can be expressed in the local basis |iµ〉 via the band eigenvector
components cn,iµ(k) which were already used in the projection technique for the spectral
function

|n,k〉 =
∑
iµ

cn,iµ(k)eikRi |iµ〉 (5.28)

where i is a site and µ an orbital index and Ri the vector of the site. Projection of
Eq. (5.27) on a local basis state 〈iµ| from the left and the use of Eq. (5.28) yields the
matrix equation∑

jν

〈
iµ
∣∣∣T̂ ∣∣∣ jν〉 cn,jν(k)eikRj =

∑
jν

〈
iµ
∣∣∣V̂ + V̂ Ĝ0T̂

∣∣∣ jν〉 cn,jν(k)eikRj (5.29)
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Before proceeding, the matrix element
〈
iµ
∣∣∣V̂ Ĝ0T̂

∣∣∣ jν〉 has to be evaluated in order to see
which Green’s function matrices G or G (see Eqs (2.63) and (2.64)) enter the expression.
For the moment, let me suppress the index µ and use a combined orbital and site index i〈

i
∣∣∣V̂ Ĝ0T̂

∣∣∣ j〉 =
∑
a,b,c,d

〈
i
∣∣∣V̂ ∣∣∣ a〉S−1

a,b

〈
b
∣∣∣Ĝ0

∣∣∣ c〉S−1
c,d

〈
d
∣∣∣T̂ ∣∣∣ j〉

=
∑
a,b,c,d

Vi,aS
−1
a,b (SG0S)b,c S

−1
c,dTd,j

=
∑
a,d

Vi,a G0 a,d Td,j = (V G0T )i,j (5.30)

where the unity operator in the nonorthogonal basis 1 =
∑
a,b |a〉S−1

a,b 〈b| was used1. Ab-
sorbing the phase factor together with the eigenvectors into a new coefficient an,iµ(k) ≡
cn,iµ(k)eikRi and arranging these coefficient into a matrix A(k), Eq. (5.29) can be con-
verted into the matrix equation

TA(k)|iµ,n = (V + V G0T )A(k)|iµ,n (5.31)

which can be rearranged into a closed expression for the T -matrix

TA(k)|iµ,n = (1− V G0)−1 V A(k)
∣∣∣
iµ,n

(5.32)

Converting this expression back to the old notation gives the equivalent equation〈
iµ
∣∣∣T̂ ∣∣∣n,k〉 =

∑
jν

[
(1− V G0)−1 V

]
iµ,jν

cn,jν(k)eikRj (5.33)

In this section, we are interested in transition between different bands at different k-points〈
n′k′

∣∣∣T̂ ∣∣∣n,k〉. Using Eq. (5.28) to convert the left terminal band to the local basis and
then inserting Eq. (5.33) finally gives〈

n′k′
∣∣∣T̂ ∣∣∣n,k〉 =

∑
iµ

〈
iµ
∣∣∣T̂ ∣∣∣n,k〉 c∗n′,iµ(k′)e−ik′Ri

=
∑
iµ,jν

c∗n′,iµ(k′)
[
(1− V G0)−1 V

]
iµ,jν

cn,jν(k)e−ik′RieikRj (5.34)

which is nothing else than the T -matrix in the local basis representation transformed to
the band basis. Until now, the impurity potential V was not specified in further detail. In
order to describe the physical situation of replacing one single host atom of species p at
site s by an impurity of species q, a realistic formulation in the BEB-language would be

V P,Q
iµ,j,ν =

(
HP,Q
iµ,jνδP,q −H

P,Q
iµ,jνδP,p

)
δi,s +

(
HP,Q
iµ,jνδQ,q −H

P,Q
iµ,jνδQ,p

)
δj,s

−
(
HP,Q
iµ,jνδP,qδQ,q −H

P,Q
iµ,jνδP,pδQ,p

)
δi,sδj,s (5.35)

1According to [118], the Green’s function operator Ĝ0 involved in the Lippmann-Schwinger equation is
just the resolvent operator (ω− Ĥ)−1. In App. D.3 it is shown that the matrix elements of the resolvent
operator in a nonorthogonal basis are just identical to our Green’s matrix G = SGS connected with
annihilation and creation operators.
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5.7. Impact of impurity scattering on superconductivity

where the second line is just a double counting correction for terms appearing both in
the first and second term of the first line and H always means the total Hamiltonian, i.e.
the sum of onsite and offsite contributions. This expression for the impurity potential is
the most accurate one based on the Hamiltonian matrix elements available in the present
framework. It contains not only the difference in onsite energies arising from the impurity,
it moreover accounts for the environment, i.e. the modifications in the hopping terms
induced by the impurity. For the most cases, the onsite contributions are expected to
be dominant. To facilitate the problem, I thus once again will resort to the single-site
approximation where the impurity potential reads

qsV P,Q
iµ,j,ν =

(
Hq,q
iµ,iνδP,qδQ,q −H

p,p
iµ,iνδP,pδQ,p

)
δi,sδi,j (5.36)

which is nothing else than the difference between the substituent species block of the onsite
Hamiltonian of the substitutional end member and the host species block of the onsite
Hamiltonian of the parent compound. This approximation has the further advantage that
for G0 appearing in Eq. (5.34) just the CPA effective medium Green’s function Γ of the
parent compound, being an onsite quantity as well, can be used. Then, the expression for
the single-site T -matrix becomes

qsTnk,n′k′(ω) =
∑
µν

c∗n,iµ(k)
[
(1− qsV Γ(ω))−1 qsV

]
i,µν

cn′,iν(k′)ei(k′−k)Ri (5.37)

Going beyond this onsite approximation would require to evaluate the impurity potential
and related summations in Eq. (5.34) for a couple of sites surrounding s which results in
the inversion of rather big matrices. All quantities are available from the CPA calculations
and the evaluation of Eq. (5.37) is restricted to just one single substitutional site in one unit
cell. In practical calculations, we take the charge self-consistent Green’s function Γ and
for the terms in Eq. (5.36) for the impurity potential associated with the host Hp,p

iµ,iν the
charge self consistent onsite Hamiltonian of the parent compound. The terms in Eq. (5.36)
associated with the substituent Hq,q

iµ,iν are taken from the charge self-consistent calculation
of a disordered system at low concentrations (x = 0.01) to incorporate at least some
of the environmental effects neglected by the single-site approximation. In order that a
difference of matrix blocks, which were evaluated in different sets of orbitals, is calculated
in Eq. (5.36), the impurity part is transformed from the impurity orbitals |s, µ, i〉 where
it was originally evaluated with respect to in the CPA calculation to the host orbitals
|s, µ, h〉 according to〈

s, µ, h
∣∣∣Ĥi

∣∣∣ s, ν, h〉 =
∑
µ′,ν′

Sh,iµ,µ′
〈
s, µ′, i

∣∣∣Ĥi

∣∣∣ s, ν ′, i〉Si,hν′,ν (5.38)

Here Sh,iµ,µ′ = 〈µ, h|µ′, i〉 is the overlap matrix between the impurity and host orbitals.
The actual scattering rate from band n at kF to band n′ at k′

F at the Fermi level then
can be readily calculated from Fermi’s golden rule (see for example [119])

wnkF ,n′k′
F

= 2π
~
x
∣∣∣qsTnkF ,n′k′

F
(EF )

∣∣∣2 νn′(EF ) (5.39)

where the initial and final band as well as the T -matrix are taken at the Fermi-level due to
energy conservation because we assume elastic scattering. νn′(EF ) is the band projected
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5. Substitutionally disordered BaFe2As2

density of states of the final band, as required by Fermi’s golden rule. This leads to
the general property wnkF ,n′k′

F
6= wn′k′

F ,nkF
which can be understood by the fact that

the elastic scattering rate of course depends on the number of available final states with
the appropriate energy. Because the T -matrix itself only considers the effect of a single
impurity, the result needs to be scaled by the impurity concentration x to obtain the rate
at a finite number of impurities which is valid as long as environmental disorder effects
are neglected.

5.7.3. Intraband versus interband scattering comparing different
substitutions

In Fig. 5.26 the scattering rate from the α-band at the Fermi wave vector in the (1,1,0)-
direction (marked with an arrow) into all bands on the Fermi surface cross-section of the
parent compound in the (kx,ky)-plane (see also Fig. 5.13) is shown as a color-plot for Co
substitution. Obviously, the scattering rate highly depends on the final band and on the
scattering vector. The scattering rate into the same band at the same k-point is the
highest, as naively might have been expected. The scattering rate into the same band in
general decreases as the angle between the initial and final k-point increases to ϕ = π
and then increases again as the angle further increases to ϕ = 2π. Also this seems intu-
itive, apart from the "singular" points at ϕ = nπ/2 where the rate assumes almost the
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Figure 5.26.: Plot of the concentration normalized scattering rate wαk1,nk/x
(colors) due to Co substitution on the Fermi surface of the parent compound
in the (kx,ky)-plane starting from band α at k1 = kF (1,1,0) (marked with an
arrow) into all other bands, Shaded area: first Brillouin zone
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5.7. Impact of impurity scattering on superconductivity

same value as at ϕ = 0. The physical origin of this behavior is not clear - at least it is
solely determined by the eigenvectors of the parent compound and might be related to
the tetragonal symmetry. The scattering rate into the other two hole bands (β1, β2) is
negligible. The scattering rate into the outer electron band γ2, being of similar dominant
orbital character dx2−y2 as the initial α-band, shows a similar behavior as the scattering
rate into the same band. The maximum rates, which exhibit the same fourfold symmetry
at φ = nπ/2 counted from the (1,1,0)-direction with respect to the X-point, are smaller
and the fluctuations are larger. In addition, there are two "absolute" maxima at φ = π/2
and φ = 3π/2 instead of one at φ = 0. Compared to this, the rate into the inner electron
band γ1 is relatively small and monotonously decreases as φ increases from 0 to π. To a
certain extent, the k-space anisotropy of the scattering into the two electron bands mutu-
ally cancels, a point to which I will come back later.
At least from this special case of the scattering from the α-band at kF (1,1,0) for Co sub-
stitution, we can learn apart from the k-space anisotropy that the intraband hole-hole
scattering is the largest, followed by an interband hole-electron scattering which still is
considerable and finally a negligible interband hole-hole scattering. We are interested in
more general trends using different initial bands and especially comparing different substi-
tutions. For this purpose, a fully k-resolved analysis contains too much detail information.
Therefore, in spite of the k-space anisotropy, let me now average over the respective Fermi
sheets in k-space

wni,nf
x

= 1
NiNf

∑
ki,kf

wniki,nfkf
x

(5.40)

where Ni (Nf ) are the numbers of initial (final) k-points, such that we are left with
k-independent scattering rates, still between all five bands. The results are shown in
Fig. 5.27. In each plot, the scattering rate starting from the same initial band is plotted
against substitution in the same manner as was already done for the slopes of the level
shifts and broadenings. The color code distinguishes between the different final bands and
the respective intraband scattering rate is emphasized by larger symbols.
First of all, the results exhibit a similar overall trend as already the spectral broadenings
(see Sec. 5.6): for TM substitution the scattering rates grow upon moving horizontally
in the periodic table whereas the effects are much smaller for substitution outside the
Fe planes. For P substitution the rates are negligible and for K substitution solely the
intraband scattering rate wα,α plays a small role. Only the series Ni, Pd, Pt behaves
differently than the spectral broadenings. Whereas the spectral broadenings systematically
decreased upon moving vertically downwards in the periodic table (apart from the α-band)
this is not the case for the scattering rates. They increase from Ni to Pd to a value almost
as large as for Cu substitution and then decrease again from Pd to Pt to a value in the
middle between Ni and Cu. As discussed above, the behavior of the shifts in the spectra
of the orbital DOS was not the same as that of the onsite matrix elements (see Fig. 5.19
and Tab. 5.5). This discrepancy and the fact that for Pd and Pt substitution, the spectral
broadenings do not show the same trends as the shifts in the orbital DOS, in contrast to
the systematic trends for 3d TM substitution, was attributed to a stronger influence of
environmental disorder effects for Pd and Pt substitution. On the other hand, the increase
in the scattering rate from Ni to Pd in general follows the trends of the shift of the spectra
of the projected DOS and the onsite Hamiltonian matrix elements. Bearing in mind that
the single-site T -matrix only depends on the onsite Hamiltonian matrix elements, this
behavior can be understood. The scattering rates for Pt substitution in addition do not
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5. Substitutionally disordered BaFe2As2

K P
0

2

4

6

8

10

12
w
α
,n

f
/x

 (
10

1
4
1
/s

 /
u

n
it

 c
e
ll

)

Mn Fe Co Ni Cu Zn

ni =α

Ni Pd Pt K P
0

2

4

6

8

10

12

w
β
1
,n

f
/x

 (
10

14
1
/s

 /
u

n
it

 c
e
ll

)

Mn Fe Co Ni Cu Zn

ni =β1

Ni Pd Pt

K P
0

2

4

6

8

10

12

w
β
2
,n

f
/x

 (
10

14
1
/s

 /
u

n
it

 c
e
ll

)

Mn Fe Co Ni Cu Zn

ni =β2

Ni Pd Pt K P
0

2

4

6

8

10

12
w
γ
1
,n

f
/x

 (
10

14
1
/s

 /
u

n
it

 c
e
ll

)

Mn Fe Co Ni Cu Zn

ni =γ1

Ni Pd Pt

K P
0

2

4

6

8

10

12

w
γ
2
,n

f
/
x
 (
10

14
1
/s

 /
u

n
it

 c
e
ll

)

Mn Fe Co Ni Cu Zn

ni =γ2

nf =α

nf =β1

nf =β2

nf =γ1

nf =γ2

Ni Pd Pt

Figure 5.27.: Concentration normalized, k-averaged scattering rate wni,nf
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5.7. Impact of impurity scattering on superconductivity

follow the trend of the shifts of the projected DOS and instead decrease again with respect
to Pd. This originates from the basis transformation of the orbitals Eq. (5.38) which
was verified by an additional calculation without this transformation. All this strongly
suggests that whereas for 3d-TM, K and P substitution the onsite approximation in the
calculation of the T -matrix was sufficient, this is not the case anymore for 4d and 5d TM
substitution, where the ionic radii of the substituents considerably increase with respect
to the host atom. As already stated above, for such larger atoms also the d wave functions
become more extended and thus hybridization effects, being offsite phenomena, play a more
important role. The spectral broadenings do not suffer from this shortcomings because
these were derived from the BEB-CPA calculations which accounts for the influence of
disorder on the hybridization and makes no further single site approximation. Thus, for
4d and 5d TM substitution we trust more in the spectral broadenings.
The hole-hole scattering rates are the largest for all substitutions. In case of the α or
β2-band being the initial band, these are also intraband scattering rates. If the β1-band
is the initial one, the rate wβ1,β2 is the largest but the intraband rate wβ1,β1 is almost as
large. This is another manifestation that the two β-bands behave similarly: they show
similar level shifts, broadenings and exhibit a similar dominant orbital character.
In all cases, the hole-electron scattering is smaller than the hole-hole scattering. For the
α-band as initial state, the hole-electron scattering is the second largest, for the β bands
as initial states it is the third largest. If the electron bands are the initial states, the
largest scattering rate is an electron-hole rate (in case of γ2 being the initial state, the
second largest electron-electron intraband scattering rate is however almost the same). In
general, for the largest rates a similar dominant orbital character of the initial and final
band seems to be an important condition (which in the case of intraband scattering as for
α and β2 as initial states is of course trivial).
We cannot extract further general trends from this data so far. To make the study more
transparent, let me now average over the two outer hole bands (β1, β2)→ β based on their
similar behavior in all quantities analyzed so far and the two electron bands (γ1, γ2)→ γ
based on the argument that their k-space anisotropy mutually cancels, as mentioned above.
As an example, for this effective three-band system the scattering rate on the Fermi surface
for Co substitution, again starting from the α-band at kF (1,1,0) is plotted in Fig. 5.28.
Considering the scattering rates between the hole bands, nothing has drastically changed.
The scattering into the electron band now is more isotropic.

5.7.4. Implications for pair breaking

For the general, substitution dependent trends, the scattering rates for the reduced elec-
tronic structure to effectively three bands again were averaged over all k-points on the
respective Fermi surface sheet. The results are shown in Fig. 5.29, where the concentration
normalized intraband scattering rates V are shown on left side and the interband rates
U on the right side. What do these results imply for the pair breaking strength of the
individual substitutions? First of all, the scattering in case of P substitution is negligible
like the spectral broadenings. Secondly and most importantly, for all substitutions the
hole-hole intraband scattering is larger than the hole-electron and electron-hole interband
scattering. For TM substitution, the hole-hole intraband scattering is enhanced by more
than a factor of two compared to the electron-hole scattering, for K substitution this factor
is even larger. The electron-electron intraband scattering is of the same order of magni-
tude as the hole-electron interband scattering. The interband scattering between different
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Figure 5.28.: Plot of the concentration normalized scattering rate wαk1,nk/x
(colors) due to Co substitution on the Fermi surface in the (kx,ky)-plane for
the electronic structure reduced to three bands starting from band α at k1 =
kF (1, 1, 0) (marked with an arrow) into all other bands, shaded area: first
Brillouin zone

hole bands is negligible. This behavior gives an argument based on first principles, that
an s+− pairing scenario in these system is in no contradiction to the evident considerable
impurity scattering, because the latter is dominated by intraband scattering which is not
pair breaking. This considerable impurity scattering is real and has been experimentally
observed in the residual resistivity [28, 120]. The linear dependence of the spectral broad-
enings on impurity concentration obtained in this work (see Secs. 5.3-5.5), suggests that
this dominating intraband scattering found in the dilute limit can also be assumed at fi-
nite impurity concentrations. Assuming s+−-pairing this explains why superconductivity
is still present in these systems at higher impurity concentrations. On the other hand,
these findings cannot prove that the gap structure necessarily has to be s+− because we
cannot rule out other possible pairing scenarios.
From transport measurements it is reported [120] that for Co substitution hole carriers
are more affected by impurity scattering and the transport is thus dominated by electrons.
This is consistent with the present results because the intraband scattering, which gives
rise to the residual resistivity, is larger for the holes than for the electrons.
Furthermore, the interband scattering is smallest for P substitution, slightly larger for K
substitution and further increases along the TM series. Bearing in mind that solely the
interband scattering suppresses Tc in an s+− superconductor, the present results suggest
that pair breaking is stronger for Co than for K substitution and further increases for TM
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Figure 5.29.: Concentration normalized, k-averaged intraband V and inter-
band U scattering rates against substituent, electronic structure reduced to two
hole bands and one electron band

substitution upon moving horizontally in the periodic table. For K, Co, Ni and Cu sub-
stitution this qualitatively agrees with experiments [28, 95, 99, 121] because the observed
Tc at optimal doping is the highest for K substitution, is lower for Co substitution and
successively decreases along the TM series (see also Figs. 5.3 and 5.5 at the beginning of
this chapter). In addition, these experiments reveal that the widths of the superconduct-
ing domes show the same trends - K substitution shows the broadest dome and upon TM
substitution the width successively gets reduced. This shows that for K substitution the
impurities are the least effective in suppressing superconductivity. For Co substitution
the dome gets narrower, i.e. a smaller amount of impurities is needed to destroy super-
conductivity. This again manifests that Co is more pair breaking than K which under the
assumption of s+− pairing agrees with present results for Co leading to a larger interband
scattering. The same discussion is valid for the remaining 3d TM substitutions.
According to transport measurements [122], the superconducting domes of Ba(Fe1−xNix)2As2
and Ba(Fe1−xPdx)2As2 coincide. This is clearly not reproduced by the present interband
scattering rates which would rather suggest a considerably stronger suppression of Tc by
Pd substitution than for Ni substitution. I already stated that for 4d and 5d TM substitu-
tion the onsite approximation in the T -matrix calculation may not be valid anymore. In
the Sr(Fe1−xNix)2As2, Tc seems to be the same as for Sr(Fe1−xPdx)2As2 [123] as well. In
that work, it is additionally reported that the superconducting dome is larger for Pt sub-
stitution than for Ni substitution and thus also larger than for Pd substitution. Assuming
that Ba-122 behaves similarly to the Sr-122 system, at least this trend comparing Pd and
Pt substitution would surprisingly be reproduced by the present interband scatterings de-
spite the fact that those trends do not fit together with the 3d TM substitutions. If this
is just by chance or systematic cannot be answered at this stage.
For Mn substitution, in experiment no superconductivity is found at all as for example
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5. Substitutionally disordered BaFe2As2

studied in detail in [124]. In contrast, the present findings under the assumption of s+−

superconductivity would suggest a suppression of Tc ranging between that of Co and Ni
substituted BaFe2As2. This discrepancy is likely due to the fact that for Mn substitution
magnetic effects have to be considered, but the present calculations could not take this
into account because spin polarization is not yet implemented in the program package
developed in this work. Hints for Mn being a magnetic impurity have for example been
pointed out in recent electron spin resonance studies [125].
There are no substantial scattering effects, neither interband, nor intraband, due to P
substitution - a trend which already the spectral broadenings showed. But from experi-
ment [126], the height and width of the superconducting dome for P substitution ranges
in between of those for Co and K substitution. This at least under the assumption of
s+− pairing is not consistent with the present scattering rates and their implications for
pair breaking as in the case of 3d TM and K substitution. For P substitution more pro-
nounced structural changes arise where in experiment two different distances from the Fe
planes for the As and P atoms have been observed [127], respectively. This distance is
known to have a larger influence on the bandstructure than the structural changes due
to TM substitution considered above. If the position of the P atom gets closer to the Fe
planes, hybridization effects with states at the Fermi surface, which are not present in the
stoichiometric crystal structure, might lead to scattering and spectral broadening effects.
This more sophisticated structural changes could eventually be treated in future work by
introducing an additional site for P in the unit cell and then substituting As by vacancies
and at the P site substitute vacancies by P.
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6. Summary and conclusions
In the first part of this thesis, a charge self-consistent extension of the coherent potential
approximation (CPA) [1, 2] after Blackman, Esterling and Berk (BEB) [4] was developed
within a pseudopotential density functional theory (DFT) framework based on earlier work
[11]. This method is dedicated to the calculation of the electronic structure of substitu-
tionally disordered, arbitrarily complex real materials from first principles at arbitrary
impurity concentrations without the need of supercells. Compared to the conventional
CPA, which can only handle disorder in the onsite Hamiltonian matrix elements, this par-
ticular extension allows in addition to incorporate the disordered environment of a site
via disorder in the hopping terms. In the BEB-formalism, this is accomplished without
giving up the approximation of a single site self-energy which makes this approach com-
putationally effective. On the background of recent computationally expensive efforts to
incorporate off-diagonal disorder by the nonlocal CPA and related approaches [18, 62, 64],
the BEB approach in my opinion deserves more attention. To my knowledge, the present
work provides the first implementation of this method based on pseudopotentials. In the
past, CPA-like methods were mainly applied within the Kohn-Korringa-Rostoker (KKR)
framework [12–19] but rarely within other frameworks, which mostly address the problem
of substitutional disorder via supercells. In contrast, the pseudopotential framework is
one of the most frequently used in ab-initio electronic structure calculations (for example
the famous Vienna ab initio simulation package (VASP) [128] or Quantum Espresso [129]
both rely on pseudopotentials). I hope that this work might contribute in making this
powerful class of CPA-like methods accessible to a larger community.
The BEB-CPA scheme itself was validated on a tight binding model against exact diago-
nalization of a randomly occupied cluster. Thereby, the BEB-CPA overall performs well
in taking into account also effects of the disordered environment surrounding a site in the
disordered medium. Only the random formation of clusters of one species which can give
rise to localized states was shown to be not captured by the BEB-CPA.
The developed ab-initio implementation was tested for binary Cu1−xZnx alloys which
represent a typical benchmark for this type of methods. The present results agree well
with those obtained by other, already established KKR-CPA implementations [18]. From
theoretical considerations, it is known (e.g. [3]) that opposed to simpler approaches like
in particular the virtual crystal approximation (VCA) [50], the CPA correctly describes
the split-band limit of a disordered system. The present calculations also show that the
Cu1−xZnx alloys provide a realization of this split-band limit in nature and thus emphasize
the necessity for the efforts of developing CPA-like methods.
In the second part of this thesis the developed methodology was used to systematically
investigate a variety of substitutions in one of the most prominent representatives of the
iron-based superconductors (FeSC) - the BaFe2As2 system. This material class is subject
of intensive ongoing research since its discovery in 2008 [20]. Hereby the focus was set
on the impact of substitutional disorder on individual bands near the Fermi level. To
address the question if substitution leads to charge doping in this material class, disorder
induced level shifts of the three hole-like bands near the center of the first Brillouin zone

91



6. Summary and conclusions

and the two electron-like bands at the zone edge were considered. Except for isovalent P
substitution for As, all investigated substitutions lead to band selective level shifts. To
first approximation, these level shifts follow the trend of a simple rigid band shift, which
describes a shift of the Fermi energy due to the introduction of extra charge carriers to
the system. Looking at the details, there are deviations of the level shifts from the rigid
band shift which depend on the orbital composition of the bands and at least for 3d
transition metal (TM) substitution systematically get enhanced the more the number of
valence electrons between host and substituent differ from each other. For Co, Mn and Pt
substitution the deviations from the rigid band shift are the smallest. The strongest devi-
ations from the rigid band shift occur for bands with dx2−y2 orbital character. Apart from
these bands, the behavior of the remaining bands is very rigid like for 3d TM substitution.
Thus, apart from the effects on the inner hole band α with dx2−y2 orbital character, which
vanishes already at low impurity concentrations, these results suggest that the primary
effect accomplished by TM and P substitution is charge doping. Provided that the dx2−y2

bands do not significantly contribute to the pairing state, this supports the viewpoint of
[28] based on thermodynamic and transport measurements that for Co and Ni substitution
charge doping governs the shapes of the superconducting domes.
Besides charge doping, another important physical effect induced by substitutional dis-
order are spectral broadenings, i.e. finite lifetimes of the electronic quasiparticle states.
Significant effects only occur for substitutions in the Fe planes. Along the 3d TM series,
the spectral broadenings increase with growing difference in the number of valence elec-
trons between host and impurity. For moving vertically downwards in the periodic table
starting at Ni, the broadenings decrease with increasing ionic radius and increasing extent
of the d wavefunctions. These are the same trends as observed for the deviations of the
level shifts from the rigid band shift. Also considering the spectral broadenings, the dx2−y2

bands behave differently from the remaining bands. Physically, these results suggest that
K and P only act as weak scatterers in this system, or more generally, substitutions out-
side the Fe planes do not cause large impurity scattering effects. Along the 3d TM series,
Co is the weakest scatterer and the impurity scattering successively increases up to Zn,
which is the strongest scatterer. Pd and Pt are weaker scatterers than Ni but stronger
than Co. In the future it would be interesting to perform experiments where such spectral
broadenings or lifetime effects can be extracted to directly compare them with the present
predictions (in principle, such information should be encoded in the various angle-resolved
photo emission spectroscopy (ARPES) measurements performed on these compounds but
at least to my knowledge, the required data is not published).
For all considered substitutions at impurity concentrations below 10%, the level shifts and
spectral broadenings in good approximation behave linearly with impurity concentration.
For Co and Ni substitution, at least for impurity concentrations up to 10% the level shifts
and spectral broadenings are not significantly affected by substitution induced structural
changes. For P substitution, where the structural changes are more complicated, this sit-
uation eventually could be different and should be verified in future work.
Several earlier theoretical and experimental works [34–37, 91–93] (only to list a few) pro-
vided strong hints to the structure and symmetry of the superconducting gap in the FeSC
to be of s+− type. This means that the order parameter exhibits s-wave symmetry, i.e.
the same symmetry as the crystal structure, but changes sign between different Fermi
surface sheets. For conventional superconductors due to the Anderson theorem [108] and
Abrikosov-Gorkov (AG) theory [104, 115] only scattering on magnetic impurities is pair
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breaking and scattering on nonmagnetic impurities does not affect the superconducting
state. It was shown for an s+− pairing scenario [33, 37, 116] that it is important to dis-
tinguish between intra- and interband scattering where for nonmagnetic impurities only
interband scattering is pair breaking whereas intraband scattering influences the residual
resistivity.
Thus, to study the impact of the various substitutions on superconductivity, it was essen-
tial to go beyond the spectral broadenings because they only provide direct access to all
accumulated scattering effects on one single band. Therefore in the last part of this work
a T -matrix approach was developed to obtain additional information about the impurity
scattering between different bands from first principles. To my knowledge, such a study
from first principle has not been performed before. To reveal general trends, an average
was taken over the two outer hole bands β1 and β2 and the two electron bands so that
we are effectively left with two hole bands and one electron band. This analysis for the
various substitutions in the dilute concentration limit reveals that intraband scattering is
always enhanced by more than a factor of two compared to interband scattering. In this
context interband scattering means scattering between hole and electron bands because
scattering between different hole bands turned out to be negligible. This confirms the
robustness of an s+− paring state even at higher total impurity scattering as revealed by
measurements of the residual resistivity because the latter is only an intraband scattering
effect which is harmless for superconductivity. Furthermore, the intraband scattering in
hole bands is by more than a factor of two larger than intraband scattering in the electron
band. At least for Co substitution this is consistent with transport measurements [120]
which find that hole carriers are more affected by impurity scattering and transport, being
governed by intraband scattering, is dominated by electrons.
By comparing the interband scattering among the different substitutions, under the as-
sumption of s+− pairing it was possible to compare their pair breaking strength: The
interband scattering successively gets increased from K to Co, over Ni and Cu up to Zn
substitution which then implies that the pair breaking strength gets enhanced. This di-
rectly can be related to the phase diagrams obtained by several experimental techniques
(see Figs. 5.3 and 5.5 and refs. [28, 95, 99, 121]) where the superconducting domes along
the same series successively get suppressed, i.e. they get narrower on the concentration
axis and lower on the temperature scale. The primary increase of Tc with substitution
at small impurity concentrations can be explained [117] with the successive suppression
of the antiferromagnetic order by substitution which competes with superconductivity.
Moreover, it is the overdoped (impurity concentrations larger than optimal doping) re-
gion of the superconducting dome which is solely governed by pair breaking effects and
should be considered for comparison with the present results. The linear dependence of
the spectral broadenings on finite impurity concentration can be used to extrapolate the
results obtained by the T -matrix approach working in the dilute limit to the concentra-
tion regime of physical interest at finite concentrations. There, the increasing suppression
of the superconducting domes from K substitution along the 3d TM series qualitatively
shows the same trend as the increase in interband scattering i.e. pair breaking under the
assumption of s+− pairing. This shows for K and 3d TM substitution that the suppres-
sion of superconductivity in the overdoped region originates from interband scattering on
nonmagnetic impurities.
The scattering effects for Mn substitution cannot be related to experiment [124] most
probably because the present calculations do not incorporate magnetism.
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6. Summary and conclusions

The present results for P substitution do not agree with the experimental trend which
could originate from more substantial structural changes due to P substitution which
were not considered in this work. Along the substitution series from Ni over Pd to Pt, ex-
periments [123] (partly using Sr instead of Ba, unfortunately) the pair breaking decreases.
This trend is reproduced by the spectral broadenings obtained in the present work but not
by the interband scattering from the T -matrix approach, which is the relevant quantity
to compare with. This disagreement of the T -matrix with experiment and the spectral
broadenings most probably is a consequence of the single-site approximation imposed for
the T -matrix where the scattering potential is site diagonal and environmental effects are
neglected. Instead, the spectral broadenings which were directly calculated by the BEB-
CPA contain environmental disorder effects, which shows the necessity of such approaches
beyond the conventional CPA for a realistic description of disorder in FeSC.
In future work it would be important to include spin polarization into the developed pro-
gram package to consider also the effect of magnetic impurities. Structural effects should
be incorporated into the study about BaFe2As2 for all substitutions. Furthermore, trans-
port coefficients should be extracted from the CPA calculations to have further quantities
which can be compared with experiments. Finally, the T -matrix approach should be
improved beyond the single site approximation to see if the trends for Pd and Pt substi-
tution can be better related to experiment. Lastly, it might be interesting to combine the
present T -matrix analysis with realistic model based approaches explicitly working in the
superconducting state.
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In Secs. 2.2.4 and 2.3 the general principle of the charge self-consistent pseudopotential
LCAO-CPA method was outlined. In this appendix chapter an overview about the ac-
tual implementation shall be given. The whole charge self-consistent scheme depicted in
Fig. 2.2 was implemented as a completely separate program which takes the relevant infor-
mation generated by the LCAO part of the individual MBPP calculations as input. This
program is written in Fortran90 (except for the Broyden mixing scheme which is written
in Fortran77) and has an overall length of roughly 12500 code lines up to now. Among
them ca. 8200 lines were written in this work and the rest are library routines which
were mainly taken from the MBPP. The several code files and their purposes are listed
in Tab.A.1. In App.B the detailed mathematical expressions for the matrix elements

File Developed Short description

broyd.f H.Winter Broyden mixing for charge self-consistency
excorr.f90 MBPP Routines for exchange-correlation (XC) potential
funkt.f90 MBPP Mathematical functions, in particular cubic har-

monics, Legendre polynomials, Gaunt coefficients
and Wigner matrices

geo.f90 MBPP Investigate bonds to neighboring atoms
specialpar.f90 MBPP Special parameters, e.g. fundamental constants
cpa.f90 This work The main program
cpaSolver.f90 This work BEB-CPA impurity solver, calculation of DOS,

spectral function, Fermi level and charge self-
consistency

density.f90 This work Electronic density (initially and in charge self-
consistency)

hamilton.f90 This work Hamiltonian matrix elements
input.f90 This work Processing of necessary input data, set up indices
overlap.f90 This work Overlap matrix elements
potential.f90 This work Local potential including VXC decomposition
symmetry.f90 This work Symmetrization of matrix elements
tools.f90 This work Help routines (scalar products, radial Fourier trans-

formation, ...)

Table A.1.: All source code files the CPA-program consist of

and the density are derived in a form convenient for numerical implementation. There
also the relevant subroutines where this expressions are implemented will be mentioned.
Currently, a simple shared-memory parallelization using OpenMP is built into the program,
which allows to use all cores within one node on a cluster machine. A distributed-memory
parallelization (e.g. mpi) to use multiple nodes in parallel is not implemented until now.
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In addition, the program needs to be linked with the common open-source mathematical
libraries BLAS (Basic Linear Algebra subprograms) [130] and LAPACK (Linear Algebra
Package) [131] which are in particular used for matrix diagaonalization and inversion.

A.1. How to perform calculations
The MBPP was slightly modified in this work in order to provide all data required for a
CPA calculation. The most data is collected in a new file cpaprep.f90 and additionally
the file lcao.f90 was slightly modified for an output of the optimized local orbitals in
high numerical precision. The user has to set up an MBPP calculation as usual with an
LCAO fit in the end. Additionally the directive #define CPA_PREP has to be set which
then forces this special MBPP version to provide all relevant information which will be
stored in formatted ASCII files with the prefix CPA_*. The CPA program then expects to
look up all information concerning the parent compound, crystal structure, symmetries,
which just have to be read once in the "master" directory (which can be a symbolic link
to the actual directory the MBPP calculation was running in) which has to be named
CM. Then, for each substitution in a complex compound, a "slave" calculation has to be
provided, where the CPA program looks up pseudopotentials and wavefunctions of the
substituent. Therefore, depending on the number of substituents, the program expects
further directories (which again can be symbolic links) named CSi where i ∈ [1, 9] is the
index of the substitutent.
However, even if this all runs automatically, the user has to specify additional information
like the number of substituents, which species to substitute, cutoff parameters for sum-
mations, energy intervals, etc. in a formatted input file CPA_INP. This file up to now does
not have the convenient identifiers like the INP files of an MBPP calculation. So the order
of the lines and position of newline characters really matters! The most generic form of
such an input file CPA_INP is shown in ListingA.1.

Listing A.1: Generic example for the file CPA_INP
1 Ntypes
2 NslaveCalc
3 NvalenceElectrons
4 cutoff_k lmcutExtern lmcutIntern
5 shapeFuncType shapeFuncPar
6 hostTypeIndex nameHostAtom impurityTypeIndex nameImpurityAtom
7 concenTypeAtom1 ... concenTypeAtomN shapeFuncCutoffRadius
8 leften numleft fermileften numfermi fermirighten numright righten

numimag topen
9 maxCpaIter cpaTol fermiIter fermiTol cpaNtemp csItemp

10 cpaTemp1 ... cpaTempN
11 dosleft dosright numdos dosSmear
12 csStartIter csMaxIter linMix denTol csTol
13 bdstrucNline
14 bdstrucSmear
15 startpoint endpoint nk nameDirection
16 ibandprojLow ibandprojUp bandIntLow bandIntUp

The parameters in the individual lines have the following meaning:

1. Ntypes (integer): Total number of different atomic types, including all substituents

2. NslaveCalc (integer): Number of slave calculations (=number of substituent species)
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A.1. How to perform calculations

3. NvalenceElectrons (float): Number of valence electrons in charge neutral com-
pound, zval =

∑
i,P c

P
i z

P
val,i

4. Cutoffs for summations and Fourier transformations
• cutoff_k (float): Cutoff radius in atomic units up to which the radial Fourier
transformation of the wavefunctions shall be calculated; also used for evaluation
of matrix elements (for the local pseudopotentials two times this cutoff is used)
• lmcutExtern (integer): Cutoff for internal summations over orbital quantum
numbers l,m. The individual quantum numbers are connected to the combined
lm index like l(lm) = 0, 1, 1, 1, 2, 2, 2, 2, 2, ... = (l + 1)2 and
m(lm) = 0, 0, 1,−1, 0, 1,−1, 2,−2, ... which is defined in specialpar.f90. So
a maximum angular momentum of l = 2 requires an lm = 9, for example.
• lmcutIntern (integer): A separated cutoff for internal summations for the B-
coefficients Eq. (B.25) - was originally introduced to reduce computation time
but is only used for the density and not really necessary anymore to be treated
separately (lmcutExtern = lmcutIntern usually is a secure choice)

5. Specification of shape functions
• shapeFuncType (integer): The functional type (equal for each type and site)
of the shape functions to be used according to Eq. (B.50)
• shapeFuncPar (float): The parameter of the shape functions γ in Eq. (B.50)

6. This line will be read NslaveCalc times
• hostTypeIndex (integer): Index of the atomic type of the host atom in the
parent compound (equivalent to the order the types are specified in the MBPP
calculation)
• nameHostAtom (char[2]): Name of the atomic type of the host to be replaced
by the considered slave
• impurityTypeIndex (integer): Index of the atomic type of the substituent in
the slave calculation (in most cases the same as hostTypeIndex, is never allowed
to exceed the number of types in the parent compound or the substitutional
end member!)
• nameImpurityAtom (char[2]): Name of the atomic type of the substituent con-

sidered in the slave calculation

7. This line will be read Ntypes times
• concenTypeAtom1 (float): Atomic concentration of the first atom of the con-
sidered type
• concenTypeAtomN (float): Atomic concentration of the last atom of the con-
sidered type
• shapeFuncCutoffRadius (float): Cutoff radius of the shape function associ-

ated with the considered type
If an atom of a certain type is located on several sites in the unit cell but not at
all sites substitutions should occur, then the concentrations at these sites shall be
set to zero but they have to be provided here. If an atom of one species appears
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more times in the crystal than the other types, then the number of concentrations
to be provided for every type has to be always that maximum number of atoms of
the same type (called natomax in the MBPP and the CPA-code). If an atomic type
appears less often, the respective superfluous concentrations have to be assigned a
zero value. The index of a concentration of a certain type is the same as the site
index in the unit cell which was specified when setting up the MBPP calculation.

8. Specification of the closed curve (half-box in the upper complex half plane, see
Sec. 2.3 and App.C) needed for integrations involved in the calculation of the Fermi
level and the charge self-consistency. The region around the estimated Fermi level
needs to be sampled finer and thus has to be extra defined.
• leften (float): Lower boundary (Ry) of the box on the real axis far below the
Fermi level
• numleft (integer): Number of sampling points in that region
• fermileften (float): Lower boundary (Ry) of the region the Fermi level is
supposed to lie in
• numfermi (integer): Number of sampling points in that region
• fermirighten (float): Upper boundary (Ry) of the region the Fermi level is
supposed to lie in
• numright (integer): Number of sampling points in the region above the Fermi
level
• righten (float): Upper boundary (Ry) of the box on the real axis
• numimag (integer): Number of sampling points on the positive imaginary axis
• topen (float): Upper boundary (Ry) of the box on the imaginary axis

The numbers given here have to be dividable by six plus one (6n + 1, n integer)
required by the special integration method.

9. Information for the CPA cycle
• maxCpaIter (integer): Maximum number of iterations for the CPA solver (the
inner loop in Fig. 2.2, to avoid endless loops at poor convergence)
• cpaTol (float): The convergence criterion (Ry) for the CPA solver the self-
energy change has to fall below
• fermiIter (integer): Maximum number of iterations in the bisection method
for determination of the Fermi level from the number of valence electrons
• fermiTol (float): The minimal difference (Ry) between the left and right ap-
proximation to the Fermi level in the bisection method
• cpaNtemp (integer): The number of temperatures the chemical potential should
be calculated for to extrapolate to T = 0 for the Fermi level. Currently for
cpaNtemp=1 the Fermi level is chosen identically to the chemical potential and
for cpaNtemp≥2 a linear extrapolation to T = 0 using the chemical potential
at the lowest and highest temperature is implemented.
• csItemp (integer): The index of the temperature the charge self-consistency

should be calculated at. Currently no extrapolation for T = 0 is implemented
for the charge self-consistency.
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10. cpaTemp (float): The cpaNtemp temperatures the chemical potential shall be calcu-
lated for. To be specific, kBT has to be given here in Ry.

11. Boundaries for the calculation of the DOS. Apart from the smearing parameter,
these boundaries will also be used for the evaluation of the Bloch spectral function.
• dosleft (float): The lower boundary (Ry) of the energy interval, the DOS
shall be evaluated within. Here, the Fermi level is not yet assumed to define
the energy zero! In spite of that, in the output file CPA_TOTDOS, the energy
scale will be converted to eV and the energy zero will be shifted to the Fermi
level.
• dosright (float): The upper boundary (Ry) of this energy interval
• numdos (integer): The number of sampling points for this energy interval
• dosSmear (float): The imaginary part δ in the complex frequency of the re-

tarded Green’s function the DOS is calculated from

12. Control parameters for the charge self-consistency
• csStartIter (integer): The number of the charge iteration the program will
be started with. Initially, when a calculation is set up from the scratch, this
should be 1. Note that for this special value some parts of the program (es-
pecially in the calculation of the charge density) behave differently. When
a calculation for example reaches the time limit on a shared computer, this
number can be increased to restart the calculation provided the densities and
eventually the Hamiltonian from the last calculations can be read.
• csMaxIter (integer): The maximum number of charge iterations (at the mo-
ment not more than 2 digits shall be used because otherwise the names of the
output files are not human readable anymore)
• linMix (float): In the first step the Broyden mixing scheme performs a linear
mixing to build up the Jacobi matrix which needs to be specified here. Never
use numbers > 0.05 because this can drive the algorithm far away from the
solution.
• denTol (float): A limit beyond which an orbital density component is assumed
by the program to vanish for symmetry reasons. This analysis is only carried
out in the first charge iteration and the orbital indices which vanish or are
relevant are then stored in the files CPA_ZERO_DEN and CPA_UPDATE_DEN, re-
spectively. This should make the scheme more robust against numerical errors
which possibly could violate the symmetry of the considered compound and
eventually lead to a faster convergence.
• csTol (float): The maximal density difference between two iterations below
which all orbital contributions have to fall to indicate convergence

13. bdstrucNline (integer): Number of sequential directions in k-space the Bloch spec-
tral function should be evaluated along. If this is zero, the Bloch spectral function
will not be evaluated and lines 14 and 15 do not have to be provided.

14. bdstrucSmear (float): The parameter δ in the complex frequency for the evaluation
of the Bloch spectral function (usually it has to be chosen smaller than dosSmear to
resolve all bands).
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15. Specification of a direction in k-space for calculation of the Bloch spectral function,
this line will be read bdstrucNline times
• startpoint (float[3]): Reciprocal lattice coordinates of the startpoint of a
direction
• endpoint (float[3]): Reciprocal lattice coordinates of the endpoint of a direc-
tion
• nk (integer): Number of sampling points along that line
• nameDirection (char[2]): Name of the direction (e.g. letters of start and

endpoint)

16. Control parameters for the projection of the spectral function on eigenstates of the
parent compound
• ibandprojLow (integer): Lower band index for the projection
• ibandprojUp (integer): Upper band index for the projection (the spectral
function will be projected on all bands lying in between those indices)
• bandIntLow (float): The projected spectral functions need to be normalized -
lower energy limit (Ry) for the integration.
• bandIntUp (float): Upper energy limit (Ry) for the integration

A typical c-shell script for the example of disordered Ba(Fe0.9Co0.1)2As2 is shown in List-
ingA.2.

Listing A.2: Example csh-script for disordered Ba(Fe0.9Co0.1)2As2

1 #!/ bin/csh
2 # set up cpa - Calculation for Co substituted BaFe2As2
3 # command : job_submit -t 4000 -m 64000 -c p -p 1/16 -J "bfa_0 .1Co -subst" -e

err_bfa_0 .9_0.1 -o run_bfa_0 .9_0.1 calcCpa_bfa_Fe0 .9 _Co0 .1
4 setenv OMP_NUM_THREADS 16
5
6 set baconc = 1.0
7 set fe1conc = 0.9
8 set fe2conc = 0.9
9 set as1conc = 1.0

10 set as2conc = 1.0
11 set co1conc = 0.1
12 set co2conc = 0.1
13
14 set zval = 28.2
15
16 set cpaMaster = $HOME/ BaFe2As2 / cpa_prep_bfa /

e22g30k84s01exp_867_cpaPrep_noppw
17 set cpaSlave1 = $HOME/ BaFe2As2 / cpa_prep_bca /

e22g30k168s01expfe_867_cpaPrep_noppw
18 set cpaProg = $HOME/ Version_5_CPA / cpa_v30 /cpa
19 set linMix = 0.005
20 set denUpdtBound = 0.00000001
21 set chargeScfLim = 0.00000001
22
23 set wd = $WORK/ bafe2as2 / cpa_bfa_Fe$ { fe1conc }_Co${ co1conc }
24 set savedir = $HOME/ BaFe2As2 / cpa_300K / cpa_bfa_Fe$ { fe1conc }_Co${ co1conc }
25
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26
27 if ( ! -d $savedir ) then
28 mkdir $savedir
29 endif
30
31 if ( ! -d $wd) then
32 mkdir $wd
33 endif
34
35 cd $wd
36
37 if (-f CPA_OUT ) then
38 rm CPA_OUT
39 endif
40
41 ln -sf $cpaMaster CM
42 ln -sf $cpaSlave1 CS1
43
44 cp -v $HOME/ BaFe2As2 / cpa_300K / cpa_pure_BaFe2As2 / CPA_CLEANEIGEN_ * .
45
46 cat > CPA_INP << END
47 4
48 1
49 $zval
50 14.8 49 49
51 8 32.8
52 2 Fe 2 Co
53 $baconc 0.0 10.5
54 $fe1conc $fe2conc 6.9
55 $as1conc $as2conc 6.5
56 $co1conc $co2conc 6.9
57 -20.0 121 -0.45 601 -0.15 181 30.0 61 10.0
58 200 0.000001 40 0.000000001 2 2
59 0.0019 0.005
60 -1.2 -0.22 5000 0.01
61 1 50 $linMix $denUpdtBound $chargeScfLim
62 4
63 0.0005
64 0.0 0.0 0.0 -0.5 0.5 0.5 60 GZ
65 -0.5 0.5 0.5 0.0 0.0 0.5 30 ZX
66 0.0 0.0 0.5 0.0 0.0 0.0 30 XG
67 0.0 0.0 0.0 0.5 0.5 -0.5 10 GM
68 10 17 -0.42 -0.27
69 END
70
71 time $cpaProg > dump_bfa

A.2. Output Files

The program produces a huge amount of data, all written in formatted files which was
needed for testing. First the program writes a lot of status remarks, some intermediate
results as well as error and warning messages directly to standard output which particularly
was needed for debugging. For that reason one should pipe the output of the program into
a file as shown in the last line of the shell script ListingA.2. The more important data
like geometry information, Fermi level, integrals of the orbital charge densities calculated

101



A. The full ab-initio program

during the self-consistency cycle and so on are written to the file CPA_OUT. Up to now,
both files are redundant in some aspects and not always nicely structured which should
be improved in the future. In addition, important results like densities, DOS, spectral
functions and so on are written in many well-structured output files of which the most
important shall be briefly mentioned in what follows.

• CPA_DEN_<type>_<atomNumber>_l_m_<chargeIter>: Species and atom resolved
radial contributions (angular quantum numbers l and m) to the electronic density
in real space

• CPA_ZERO_DEN: A list of the density components which the program assumes to
vanish by symmetry - the threshold for this assumption is given via the control
parameter denTol in CPA_INP - and will not be updated in the charge self-consistency
loop for improving the robustness of the numerics. This file is generated in the first
charge iteration and is read (has to be provided, otherwise the program crashes) in
all further charge iterations. I do not recommend to manipulate it!

• CPA_UPDATE_DEN: The complementary information: A list of density components the
program shall update in charge self-consistency, also generated in the first iteration
and needed for all further iterations.

• CPA_HMIXK_REAL_<chargeIter>: The real part of the k-dependent mixing Hamilto-
nian mixH(k) +mix,nlH(k) +T (k) from Eqs (B.64) and (B.67) plus the kinetic term
which reduces to the crystal Hamiltonian in the clean case

• CPA_HMIXK_IMAG_<chargeIter>: The imaginary part of the same quantity

• CPA_VMIXK_<chargeIter>: Just the mixing potential mixH(k) +mix,nl H(k) like be-
fore without the kinetic term

• CPA_VMIXK_REAL_<chargeIter>: The real part of the mixing potential

• CPA_VMIXK_IMAG_<chargeIter>: The imaginary part of the mixing potential

• CPA_VMIX_ONSITE_<chargeIter>: The onsite mixing potential - is needed when a
calculation is restarted, especially if just a bandstructure calculation is performed
without recalculating all matrix elements

• CPA_HOFFSITE_<chargeIter>: The full k-dependent offsite Hamiltonian - can be
useful when a calculation is restarted

• CPA_HOFFSITE_REAL_<chargeIter>: The real part of this quantity

• CPA_HOFFSITE_IMAG_<chargeIter>: The imaginary part of this quantity

• CPA_TOFFSITE_<chargeIter>: The k-dependent kinetic energy (calculated from Eq. (B.74)
without onsite corrections). Is needed when a calculation is restarted, especially if
just a bandstructure calculation is performed without recalculating all matrix ele-
ments

• CPA_TOFFSITE_REAL_<chargeIter>: Its real part

• CPA_TOFFSITE_IMAG_<chargeIter>: Its imaginary part
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• CPA_VOFFSITE_<chargeIter>: The full k-dependent potential (calculated from Eq. (B.75)
without onsite corrections). Is needed when a calculation is restarted, especially if
just a bandstructure calculation is performed without recalculating all matrix ele-
ments

• CPA_VOFFSITE_REAL_<chargeIter>: Its real part

• CPA_VOFFSITE_IMAG_<chargeIter>: Its imaginary part

• CPA_HONSITE_<chargeIter>: The full onsite Hamiltonian - can be useful when a
calculation is restarted

• CPA_HONSITE_REAL_<chargeIter>: Its real part

• CPA_HONSITE_IMAG_<chargeIter>: Its imaginary part

• CPA_VXC_<type>_<atomNumber>_l_m_<chargeIter>: Species and atom resolved
radial contributions (angular quantum numbers l and m) to the exchange and cor-
relation potential in real space

• CPA_VXCK_<type>_<atomNumber>_l_m_<chargeIter>: The same in reciprocal
space

• CPA_TOTDOS_<chargeIter>: The total density of states, energy in eV with respect
to the Fermi level, DOS in 1/(eV unit cell)

• CPA_ORBDOS_<type><atomNumber>_l_m_<chargeIter>: Orbital decomposed den-
sity of states, same units as CPA_TOTDOS

• CPA_CLEANBDSTRUC_<bandIndex>_<direction>: Bandstructure of the parent com-
pound - eigenvalues of mixing Hamiltonian, only calculated if NslaveCalc is zero

• CPA_CLEANEIGEN_<direction>: All eigenvectors of the crystal Hamiltonian of the
parent compound, only calculated if NslaveCalc is zero and needed as input for the
projection on clean bands

• CPA_CLEANEIGEN_REG: The respective eigenvectors on a regular k-mesh

• CPA_KDOS_<direction>: The total Bloch spectral function, first column: k, second
column: energy with respect to Fermi level in eV, third column: spectral function
in 1/(eV unit cell). For the length of the path in k-space the same conventions are
chosen as in the MBPP: the lenght of the first direction is normalized to unity and
all further direction lengths are rescaled to that unit.

• CPA_KDOS_<direction>_<type>_l: A species and l-decomposed version of the spec-
tral function

• CPA_PROJSPECFUNC_<bandIndex>_<direction>: The spectral function projected on
a band of the parent compound

• CPA_PSFFWHM2_<bandIndex>_<direction>: Essential properties of a band-projected
spectral function: first column: k, second collumn: energy of peak, third column:
spectral half width (HWHM), fourth column: spectral broadening (half width minus
band smearing), fifth column: norm (integral over energy)
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• CPA_BDOS_<bandIndex>_<chargeIter>: Density of states of a certain band (similar
to a band projected spectral function but summed over a regular k-mesh) needed
for calculating scattering rates using the T -matrix

A.3. How to modify the behavior of the code

The main program is set up in the file cpa.f90. In principle only subroutines which do
the essential work, are called here. If the calculation is started from the scratch it first
reads all required data and calculates the electronic density for each slave calculation (the
master then is counted as islave=0) independently. This is due to the fact, that the
densities in the first step can only be calculated like in an ordered compound because the
Green’s function is not yet established and the expansion coefficients of the Kohn-Sham
orbitals with respect to the local basis have to be used instead as shown later in Eq. (B.27)
in Sec. B.3. These are provided by the MBPP and thus are only defined for an ordered
system. The calculations have to be carried out for the full parent compound and sub-
stitutional end member because the bond routines (defined in geo.f90) which generate
a list of bonds to neighbouring atoms within a certain cutoff radius need the full crystal
structure to operate reasonably. These densities then are written on file and all other
data, essentially the bond list, is destroyed.
Then all relevant data is again read for the full calculation of the disordered system, the
overlap matrix is calculated and the charge self-consistency loop is started. Therein, first
the densities are calculated (in the first step they are just read from file, otherwise they
are mixed with the previous densities using the Broyden scheme) and the convergence of
the charge self-consistency is checked. Relying on these densities, the potentials are calcu-
lated. Afterwards, the onsite and the offsite Hamiltonian matrix elements are calculated
which together with the mixing potential needs the most time. Then the CPA medium
Green’s function is calculated along the integration path (box in upper half plane). From
that the chemical potential and Fermi level are calculated. After that, the density of states
is evaluated. Finally, if the charge self-consistency is not yet converged, the A-coefficients
Eq. (B.26) for the new charge densities are calculated from the Green’s function and the
loop is iterated. If the charge density is converged or the loop is finished because the max-
imum number of charge iterations was exceeded, the Bloch spectral function is evaluated.
Currently, the behavior of the code when restarting a calculation can be manually in-
fluenced by changing some boolean control variables in the beginning of cpa.f90. The
relevant lines are shown in ListingA.3

Listing A.3: Beginning of cpa.f90

39 calcOvlp = .true.
40 calcHamiltonian = .true.
41 allocPot = .true.
42 readOldRadDen = .false.
43 irkmax = 2
44 chargeScIter = 1
45 symm = .true.
46 chargeConverged = .false.

The overlap matrix does not change with charge iteration so it only has to be calculated
once - calcOvlp can be set to .false. when a calculation is restarted. The calcula-
tion of the Hamiltonian matrix is controlled by calcHamiltonian. When a calculation is
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restarted and the Hamiltonian matrix elements were already written on file in the start
iteration (csStartIter) of the restarted calculation, setting this variable to .false. can
save time. In the next charge iteration (if needed) the program automatically resets it to
.true.. allocPot shall not be changed. The parameter readOldRadDen decides whether
the old densities should be read from file or if they should be calculated. Setting this to
.true. is the minimal requirement if a calculation which is not yet charge self-consistent
and reached the time limit shall be restarted. If additionally calcHamiltonian should be
set to .false. depends on how far the program proceeded in the last charge iteration.
irkmax, chargeScIter and symm shall not be changed. Finally, chargeConverged gives
information if the charge self-consistency was already achieved. This is very useful when
setting up a different bandstructure calculation on an already charge self-consistent effec-
tive medium and Hamiltonian - then one should set this parameter to .true.. In future
work all of this should be incorporated into the file CPA_INP which will make recompilation
for the user unnecessary and thus may contribute to avoid mistakes.

A.4. Data structure

At this stage some important remarks about the data organization in the code have to be
made. This discussion will not be complete because all details are again commented in
the source code files but it is helpful to get a general understanding. First of all, a generic
compound contains different atomic types itype = 1 ... ntype and each of them has
a name stored in the char[2] array nameat(itype). In some subroutines this atomic type
or species index itype is also called spec. Each atomic type can occur several times in the
unit cell which is stored in the integer array natom(itype) of which the maximum number
is natomax. The sum over this array is natcel which in a disordered compound is different
to the physical number of atoms because it also counts multiple occupancies of a site by
several species. The physical number of atoms in the unit cell is totNum_atoms which
essentially is the value of natcel for the parent compound. This gives rise to an atomic
index iat = 1 ... natom(itype) which has a different range for each type. Each atom
is located at an individual site whose lattice coordinates are stored in the double precision
array coorat(3,iat,itype). Therefore, the order of the index iat is meaningful. The
compound index (iat,itype) thus allows to uniquely specify an atom. For the disordered
compound also a site dependent atomic concentration is important which is stored in the
double precision array conc_iat_spec(iat,itype). This is of course allocated from 1
... natomax and 1 ... ntype which is the reason for alway requiring natomax con-
centrations for each type in the input file as discussed in SecA.1.
All orbital matrix elements are stored in a compound index iao which was taken from the
MBPP for historic reasons but is far from being intuitive. Therefore it is first important
to memorize the combined (l,m) index lm which was defined before. It is constructed in
the following way

lm 1 2 3 4 5 6 7 8 9 ...
l 0 1 1 1 2 2 2 2 2 ...
m 0 0 1 -1 0 1 -1 2 -2 ...

then the iao index is defined in the following way, shown here for the simplified ex-
ample of type 1 having 2 atoms with orbital angular momentum up to l = 1 (lm=4):

105



A. The full ab-initio program

iao 1 2 3 4 5 6 7 8 9 ...
itype 1 1 1 1 1 1 1 1 2 ...
iat 1 2 1 1 1 2 2 2 1 ...
lm 1 1 2 3 4 2 3 4 1 ...

In the program, several index arrays are constructed to translate these indices into each
other. This iao index is convenient for matrix element evaluation. A problem arises,
when for example coincidences of sites have to be verified - simply testing if iat1 =
iat2 is not sufficient because the iat index can be associated with a different site for
one species than for the other species. Additionally, in the CPA-solver, matrix inver-
sions of site diagonal blocks have to be performed where the iao-index as well as the
iat-index are not well suited for. For that purpose, in the subroutine rebuild_iat
and subroutine buildSiteData an alternative site index is built up. Here the central
quantity is the site of which the maximum number is num_sites. Each site has a cer-
tain number ntype_site(isite) of possible types itype_site(1:ntype_site, isite)
to be occupied with. Then, at each site another combined type and lm index, called tlm
is established in the following, more intuitive way (for the same example as before with
angular momentum up to l = 1):

tlm 1 2 3 4 5 ...
itype 1 1 1 1 2 ...
lm 1 2 3 4 1 ...

Of course, again a couple of index arrays have to be built up which relate the site data
structure to the iao index but they are commented in the code and are mostly self-
explaining. As a last detail, the subroutine rebuild_iat changes the initial index iat
when an atomic concentration for iat < natom(itype) is below a certain threshold that
it would be considered as zero for the rest of the program.
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B.1. Basis set
In this section, the properties of the nonorthogonal, atom-centered basis functions will
be discussed in full detail. All matrix elements which are needed throughout the whole
program implemented in this work and will be discussed in the following sections, are
evaluated with respect to these basis functions. The analytical calculations involved in
deriving the final expressions of the matrix elements which will be presented below, some-
times are quite lengthy. But with the help of all useful properties of the involved quantities
presented below, they are rather straight forward to derive so I will in general not present
all intermediate steps and restric myself to the final results.

B.1.1. Localized orbitals in real space

In three dimensional real space, each basis function referring to a given set of quantum
numbers, is defined in the following form

φQLslm(r) = φQlm(r −RL −Rs) (B.1)

where the quantum numbers have the following meaning:

• l: orbital angular momentum

• m: magnetic quantum number m = −l, ..., l

• L : index of unit cell in Bravais lattice

• s : index of atomic site in unit cell

• Q : index of atomic species

An additional principal quantum number n is omitted in this work because, following
the MBPP, only one orbital per angular momentum is assumed which is sufficient for
the treatment of valence electrons in the pseudopotential framework. In the main text,
Chap. 2, the quantum numbers l and m have been abbreviated by a combined index µ.
Here, this is not done anymore because these distinct indices are important for the details
of matrix element evaluation. The angular momentum dependence of these basis functions
is described by cubic harmonics or real spherical harmonics Klm(r̂):

φQlm(r) = il fQl (r)Klm(r̂) (B.2)

where r̂ = r/r is a unit vector pointing into the direction of r and r = |r| is the modulus
of vector r. The Klm and all related routines and coefficients are taken from the MBPP
(in particular subroutine klm in file funkt.f90) and the above unit vector is the angular
part r̂ = (ϑ, ϕ) of the spherical coordinates (r, ϑ, ϕ) used in some of these routines. The
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only material specific quantities important for disorder and generated by the LCAO fit
are the radial functions fQl (r) which are given numerically on an equidistant radial grid
with a finite, species- and l-dependent cutoff radius RQC,l which is defined by the user in
the LCAO-fit of the MBPP (see for example Tabs. 4.1 and 5.1).

B.1.2. Localized orbitals in reciprocal space

The orbitals in real space introduced above have a representation in reciprocal space
connected by Fourier transformation

φQlm(k) = 1√
ΩC

∫
d3rφQlm(r) e−ikr (B.3)

φQlm(r) =
√

ΩC

(2π)3

∫
d3kφQlm(k) eikr (B.4)

where
∫
d3re−ikr = (2π)3δ(k) was used and ΩC is the unit cell volume. As a matter of

convention, in this work the Fourier transformations of the orbitals unlike the potentials
are always associated with a factor of

√
ΩC . At this point it is useful to define a radial

Fourier transformation

fQl (k) ≡ 4π
∫
drr2fQl (r)jl(kr) (B.5)

fQl (r) ≡ 1
2π2

∫
dkk2fQl (k)jl(kr) (B.6)

where the jl are spherical Bessel functions which are implemented by the MBPP-routine
subroutine bsj in file funkt.f90. The conventions historically chosen in this work un-
fortunately are not the same as in the MBPP. The radial Fourier transformation Eq. (B.5)
is implemented in the subroutine rft_rToK and the inverse transformation Eq. (B.6) in
the subroutine rft_kToR in the file tools.f90. The involved one dimensional integra-
tions are performed numerically by means of the Simpson method [68, 69, 77]. This will
also be the case for all other one dimensional radial integrals (in r-space and k-space)
appearing throughout this chapter, if not mentioned otherwise. Via these radial Fourier
transformations the angular decomposition in k-space follows

φQlm(k) = 1√
ΩC

fQl (k)Klm(k̂) (B.7)

which in contrast to Eq. (B.2) is a real quantity.

B.1.3. Useful properties of real spherical harmonics

The cubic harmonics used in this work have some well known advantageous properties
which often will be referred to when evaluating the matrix elements and shall be summa-
rized in the following. First of all they are orthonormal∫

dΩKlm(r̂)Kl′m′(r̂) = δll′δmm′ (B.8)

where in spherical coordinates it is useful to introduce an element of solid angle via
∫
d3r =∫

drr2dΩ. As an extension of Eq. (B.8) one often encounters angular overlap integrals of
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three cubic harmonics which are called Gaunt coefficients

C(lm, l′m′, l′′m′′) =
∫
dΩKlm(r̂)Kl′m′(r̂)Kl′′m′′(r̂) (B.9)

They exhibit several well-known symmetries and thus can be efficiently calculated as
implemented in the MBPP-routine subroutine clgd in file funkt.f90. Another useful
relation of the cubic harmonics is

eikr =
∑
lm

4πiljl(kr)Klm(r̂)Klm(k̂) (B.10)

Provided a translationally invariant effective medium, it is more convenient to calculate
some of the multi-center integrals in reciprocal space and Fourier transform them back on
the lattice to real space using the convention

As,t(k) = 1
(2π)3 e

−ik(Rs−Rt)∑
L

e−ikRLALs,t

where ALs,t abbreviates ALs,0t. When dealing with such discrete Fourier transformations,
the following relations can be helpful

∑
L

e−ikRL = Nk
∑
G

δkG = (2π)3

ΩC

∑
G

δ(G− k)

where RL ∈Bravais-lattice, G ∈reciprocal lattice and Nk is the number of k-points in the
first Brillouin zone.

B.1.4. Translation of the orbitals

Due to the fact that some of the matrix elements to be calculated are multi-center inte-
grals, knowledge about the behavior of the basis functions in an orbital representation like
Eqs. (B.2) or (B.7) under a translation in real space is essential. Using the definitions and
conventions from above this can be written

φQLslm(r) =
√

ΩC

(2π)3

∫
d3ke−ik(RL+Rs)eikrφQlm(k) (B.11)

= 1
(2π)3

∫
d3ke−ik(RL+Rs)eikrfQl (k)Klm(k̂) (B.12)

= 1
(2π)3

∫
d3kd3r′e−ik(RL+Rs)eikrφQlm(r′)e−ikr′ (B.13)

where the advantage of evaluating Klm or fQl only with respect to an unshifted origin is
always paid by the price of additional integrations.

B.2. Overlap matrix elements

With the definitions and relations of the last sections every ingredient needed for the
calculation of the overlap matrix elements is now available.
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B.2.1. Onsite overlap

Just for a matter of completeness and as an instructive example, the easiest matrix ele-
ments are the onsite terms of the overlap matrix. They can be simplified to the following
expression

ṠPQs,lm,l′m′ = 〈sP lm|sP l′m′〉δPQ =
∫
d3r

[
φPlm(r −Rs)

]∗
φPl′m′(r −Rs)δPQ (B.14)

= δll′δmm′
∫
drr2

(
fPl (r)

)2
δPQ (B.15)

where once again δPQ is a consequence of the BEB-rules Eq. (2.28) but apart from that
only the properties of the Klm have been used. As already discussed in Sec. 2.2.4, in the
special basis set chosen in this work, the orbitals of the same atomic type are normalized
meaning that the onsite overlap becomes unity

Ṡ = 1 (B.16)

However, for the sake of consistency checks, Eq. (B.15) has been implemented in the code
in the subroutine calcOverlapOnsite in the file overlap.f90.

B.2.2. Offsite terms

More important but also more complicated are the offsite terms of the overlap matrix.
As already stated, due to the translational invariance of the underlined quantities in the
extended Hilbert space of the BEB-formalism it is more convenient to first evaluate the
total overlap matrix for generic indices in reciprocal space

SPQslm,tl′m′(k) = 1
(2π)3

∑
L

e−ikRLe−ik(Rs−Rt)×

×
∫
d3r

[
φPlm(r −RL −Rs)

]∗
φQl′m′(r −Rt) (B.17)

= 1
ΩC

∑
G

e−iG(Rs−Rt)fPl (k −G)Klm(k̂ −G)×

× fQl′ (k −G)Kl′m′(k̂ −G) (B.18)

Using Eq. (B.18) and the trivial result for the onsite overlap, the offsite overlap matrix
elements can be calculated via

S̆PQslm,tl′m′(k) = SPQslm,tl′m′(k)− δs,tṠPQs,lm,l′m′ = SPQslm,tl′m′(k)− δPQδstδll′δmm′ (B.19)

These expressions are implemented in the code via the subroutine calcOverlapOffsite
in the file overlap.f90. The results of evaluating Eq. (B.18) are stored in the complex
array ovlp_k(irk,iao1,iao2) where irk is a k-point index and (iao1,iao2) are described
in Sec.A.4. The true offsite overlap matrix elements due to Eq. (B.19) are stored in the
complex array sOffsite(irk,iao1,iao2).
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B.3. Electronic density

As already discussed in Sec. 2.3, in the BEB-formalism the density is calculated in the
following local decomposition for internal calculations like improving the Hamiltonian

n(r) =
∑
LsP

ηPLsn
P
Ls(r) (B.20)

Due to the fact that in the BEB formalism the η are just used for transformation but in the
end only configurational averages are quantities of interest, Eq. (B.20) is never evaluated
in practical calculations (except for the case if the total density in real space is desired
where then the η have to be replaced by atomic concentrations as already discussed in
Sec. 2.3). Moreover what really has to be evaluated in the charge self-consistency cycle are
the local species resolved density components which in Sec. 2.3 were shown to be (after
Eq. (2.81))

nPLs(r) = − 1
π

1
cPs

∑
MtQ
lml′m′

φPLslm(r)
∫ EF

−∞
dω Im ΓPQLslm,Mtl′m′(ω

+)
(
φQMtl′m′(r)

)∗
(B.21)

≡ − 1
π

∑
MtQ
lml′m′

APQLslm,Mtl′m′

[
φQMtl′m′(r)

]∗
φPLslm(r) (B.22)

As stated several times before, the effective medium Green’s function ΓPQLslm,Mtl′m′ is trans-
lationally invariant (in L, M) which means that the coefficients APQLslm,Mtl′m′ only depend
on the difference L−M which is a simplification. Furthermore, in practice it is necessary
to introduce a cutoff radius Rcut for the summation - usually it is chosen such that atoms
(Q,Mt) with distance beyond this cutoff have no overlap to the reference atom (P,Ls) in
the sense that the other atoms have to be located in a region where the radial wavefunction
of the reference atom is nonvanishing.
According to the conventions selected in this work, a multipole expansion of these density
components nPLs then reads

nPLs(r) =
∑
lm

nPLs,lm(r)Klm(r̂) (B.23)

where the translation of the second orbital located at (M, t) to the origin of the reference
atom (L, s) can be readily performed by the formal apparatus outlined in Secs. B.1.1 - B.1.4
which yields

nPLs,lm(r) = − 1
π

∑
MtQ

∑
l′m′l′′m′′

∑
l′′′m′′′

il
′
APQLsn′l′m′,Mtn′′l′′m′′ C(lm, l′m′, l′′′m′′′)×

×
[
BQ
n′′l′′m′′,l′′′m′′′(r,RM −RL +Rt −Rs)

]∗
×

× fPsn′l′(r) (B.24)
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where the coefficients B depending on the actual translation vector are a shorthand nota-
tion for

BQ
lm,l′m′(r,R) = 2

π

∑
l′′m′′

C(lm, l′m′, l′′m′′)Kl′′m′′(R̂)il′−l′′×

×
∫
dkk2jl′(kr)jl′′(kR)fQl (k) (B.25)

The computation of the radial orbital densities after Eq. (B.24) are implemented in the
source code via the subroutine denSpecOrb which is called by the subroutine
init_density in the file density.f90. In this subroutine the symmetrized radial orbital
densities in real space are stored in the double precision array
orb_rad_den_r(ir,ilm,iat,itype) where ir is the radial index on an equidistant r-grid,
ilm the combined (l,m)-index, iat an atomic index and itype an atomic type or species
index. In this routine also the Broyden mixing of the new (calculated from the Green’s
function) and the old charge densities is performed by calling the subroutine broyd
defined in broyd.f when the charge iteration is greater than one. Also the maximal
density difference as convergence criterion for the charge self-consistency is calculated
here. The radial Fourier transformations of the radial orbital densities to k-space are
performed in the subroutine init_density and stored in the array orb_rad_den_k.
The B-coefficients as defined by Eq. (B.25) are calculated by the subroutine denCalcB.
The A-coefficients, being essentially the integrals of the Green’s function, are given by the
expressions derived in Sec. 2.3

APQLslm,Mtl′m′ = 1
cPs

1
Nk

Im
∑
k

eik(RL+Rs−RM−Rt)
[∮

box
ΓPQslm,tl′m′(ω)f(ω, T )dω

−
∑
n

2nπi
β

ΓPQslm,tl′m′(µ+ iωn)
]

(B.26)

where again the integration is performed around a rectangular path in the upper half plane
at finite temperature T , f(ω, T ) is the Fermi distribution and the integral is corrected for
the poles at the fermionic Matsubara frequencies ωn = (2n + 1)πkBT (for more details
see App.C below). In the program code, Eq. (B.26) is implemented in the subroutine
cpa_calcDenA in the file cpaSolver.f90 because this is closely related to the CPA cy-
cle. In the first step where only the orbitals, potentials and crystal structure from the
DFT calculation but no Green’s function are known, the A have to be calculated from
the respective DFT bandstructures of the parent compound and the substitutional end
members

APQLslm,Mtl′m′ = −2π
Nk

∑
k,j

occup(k, j)eik(RL+Rs−RM−Rt)cPkjlm,s

(
cQkjl′m′,t

)∗
(B.27)

where j runs over all bands of the parent compound, occup(k, j) are the fractional occu-
pation numbers of band j at point k and cPkjlm,s expansion coefficients of the LCAO Bloch -
basis with respect to the original Kohn-sham bands both taken from the DFT calculation.
This expression was derived by a combination of the expression of the total density in
the original mixed basis and the representation of the Bloch basis in LCAO wavefunc-
tions as given in [9]. It is implemented in the subroutine denCalcA_first in the file
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density.f90.

B.4. Hamiltonian matrix elements

After having outlined how to calculate the overlap matrix elements and the electronic
density in an analytical form which can directly be translated into source code it is time
to do the same for the Hamiltonian matrix elements. Therefore it is first of all important
to do the same analysis as was already done for the local orbitals in Sec. B.1 for the
contributions to the local potential. Here, one general remark has to be made about the
actual storage of the potentials in the CPA program: like in the MBPP, for the radial
potentials in real space r · V (r) and for the radial potentials in reciprocal space k2 · V (k)
is stored and calculated because this has numerical advantages in avoiding divergences.
The only exception to that is the exchange and correlation potential in reciprocal space
VXC(k) but this is commented in the source code.

B.4.1. Potential contributions

As already outlined in Sec. 2.2.4 the DFT potential consists of the following contributions

V (r) = VPseudo(r) + VHartree(r) + VXC(r) (B.28)

namely the Hartree term describing the interaction of one electron with the total electronic
density, the pseudopotential modelling the electron-ion interaction screened by the core
electrons and the exchange and correlation part containing in principle all remaining many
body effects not considered by the other terms and corrections to the kinetic term. In
particular, in the MBPP the pseudopotential is divided into a local and a nonlocal part

VPseudo(r) = V PS
loc (r) +

∑
lm

[
V PS
l (r)− V PS

loc (r)
]
|lm〉〈lm|

= V PS
loc (r) +

∑
lm

V PS,nl
l (r)|lm〉〈lm| (B.29)

The reason for this is that in order to construct the total ionic pseudopotential, one has
to construct a pseudopotential for each angular momentum component separately as dis-
cussed in more detail in [9]. Outside the core region all angular momentum components
exhibit the same long range behavior as −Ze2

r making it convenient to separate this gen-
eral long ranged contribution from the others and absorb it into the term V PS

loc (r). The
remaining angular momentum dependent nonlocal parts then are short ranged and only
play a role inside the core region. There is a free choice of the local part which is also an
option in the MBPP and technically maintained by the array vidx which was also taken
over into the CPA code. But in practice this option is hardly used, so in this work it was
assumed that the local part is always the l = 0 component. For using the full functional-
ity of selections stored in vidx the CPA code has to be extended in the places where the
pseudopotential is treated.
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B.4.2. The local potential

For all local contributions to the potential, the following decomposition is required by the
pseudopotential-LCAO-CPA scheme

V (r) =
∑
LsQ

ηQLsV
Q
Ls(r) =

∑
LsQ

ηQLsV
Q
s (r −RL) (B.30)

where in contrast to the wave functions the atomic index in the unit cell s does not
indicate a translation of the potential by Rs. The index s is needed beacuse specifying
only the species is not sufficient in a disordered system - moreover the information, which
site in the unit cell is occupied by which species becomes important. If a translation by
Rs is performed, this will be explicitly indicated in the argument of the potential. The
individual contributions of the local potential are

V Q
s (r) = VHartree

Q
s (r) + V PS

loc
Q

s (r) + VXC
Q
s (r) (B.31)

Thereby V PS
loc is already decomposed by construction in the MBPP and is the only con-

tribution where the index s is obsolete because the pseudopotentials are only generated
species- and angular momentum-wise. For the other contributions, the decompositions
have to be worked out in the following sections and due to inhomogeneities in the density
arising from disorder the index s is meaningful.
For the Fourier transformation the following conventions are used

V Q
s (k) = 1

ΩC

∫
d3rV Q

s (r)e−ikr (B.32)

V Q
s (r) = ΩC

(2π)3

∫
d3kV Q

s (k)eikr (B.33)

which are obviously different from the ones for the orbitals because here ΩC and not its
square root appears. Secondly, a multipole expansion to account for angular momentum
decomposition is used in the following form

V Q
s (r) =

∑
lm

V Q
s,lm(r)Klm(r̂) (B.34)

which, unlike the orbitals is not defined with an additional factor il. This definition yields

V Q
s (k) = 4π

ΩC

∫
drr2∑

lm

(−i)ljl(kr)Klm(k̂)V Q
s,lm(r) (B.35)

and can be rewritten as

V Q
s (k) = 1

ΩC

∑
lm

(−i)lV Q
s,lm(k)Klm(k̂) (B.36)

where again radial Fourier transformation was introduced in exactly the same way as for
the basis orbitals Eq. (B.5)

V Q
s,lm(k) = 4π

∫
drr2jl(kr)V Q

s,lm(r) (B.37)

114



B.4. Hamiltonian matrix elements

Again, this is different from the convention of the MBPP which made it necessary to rescale
some of the k-dependent potentials imported from MBPP by 1

4π but this is commented in
the source code.
Then the translation of the origins where the local potentials are referring to, is carried
out in a similar way as for the basis orbitals

V Q
Ls(r −Rs) = ΩC

(2π)3

∫
d3ke−ik(RL+Rs)eikrV Q

s (k) (B.38)

= 1
(2π)3

∫
d3kd3r′e−ik(RL+Rs)eikrV Q

s (r′)e−ikr′ (B.39)

B.4.3. The nonlocal pseudopotential

The same considerations have to be carried out for the nonlocal contributions of the pseu-
dopotential, which have to be treated differently because they depend on two coordinates
r and r′

nlV Q
Ls(r, r

′) = nlV Q
s (r −RL, r′ −RL) (B.40)

Moreover, such a contribution is a nonlocal operator and thus, being evaluated between
two orbitals, its action on a wavefunction is important. According to [9] this is given by

nlV Q
0s |00Qµ〉 =

∫
d3r′ nlV Q

s (r, r′)φQl′m′(r
′)

=
∑
l,m

∫
d3r′

1
r2 δ(r − r

′)nlV Q
s,l(r)Klm(r̂)Klm(r̂′)φQl′m′(r

′) (B.41)

and in reciprocal space it reads

nlV Q
s (k,k′) = 4π

ΩC

∑
l

(2l + 1)Pl(k̂ · k̂′)
∫
drr2jl(kr)nlV Q

s,l(r)jl(k
′r) (B.42)

where the Pl are Legendre polynomials.

B.4.4. The Hartree potential

The Hartree potential depends on the electronic density and is given in real space via

VHartree(r) = e2
∫

n(r′)
|r − r′|

d3r′ (B.43)

It turns out that its evaluation is more convenient in reciprocal space. The electronic
density can be Fourier transformed

n(k) = 1
ΩC

∫
n(r)e−ikrd3r

= 1
ΩC

∑
sP

ηPs
∑
lm

(−i)lKlm(k̂)nPs,lm(k)

≡
∑
sP

ηPs n
P
s (k) (B.44)
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where the radial Fourier transformation nPLs,lm(k) is defined as usual in this work. Fourier
transformation of the Hartree potential yields

VH(k) = e2n(k)4π
k2 = e2 4π

k2

∑
sP

ηPs n
P
s (k) ≡

∑
sP

ηPs
(H)V P

s (k) (B.45)

This directly leads to a species and site resolved decomposition of the Hartree potential
in the sense of the BEB formalism which can be calculated from the densities via

(H)V P
s (k) = 1

ΩC

4πe2

k2

∑
lm

(−i)lnPs,lm(k)Klm(k̂)

≡ 1
ΩC

∑
lm

(−i)l (H)V P
s,lm(k)Klm(k̂) (B.46)

with the radial angular and species resolved local contributions to the Hartree potential

(H)V P
s,lm(k) = 4π e2

k2 nPs,lm(k) (B.47)

where in the units used within the MBPP and the CPA program e2 = 2. Due to the
fact, that in the implementation only k2V (k) is calculated, Eq. (B.47) can be evaluated
without the 1

k2 term in order to avoid the occurrence of any divergences for k → 0 which
was directly implemented when summing up all contributions to the local potential in
k-space in the subroutine calcLocPot in the file potential.f90.
The respective components in real space can be obtained by the usual radial Fourier
transformation

(H)V P
s,lm(r) = 1

2π2

∫
dkk2jl(kr)(H)V P

s,lm(k) = 4πe2

2π2

∫
dkjl(kr)nPs,lm(k) (B.48)

where by inserting Eq. (B.47) the critical factor 1
k2 dropped out and also this expression

can be directly implemented which was done in the subroutine calcHartree in the file
potential.f90.

B.4.5. Exchange and correlation

As already discussed in Sec. 2.2.4 the exchange and correlation potential (XC) can only
approximately be decomposed into the local species resolved contributions required by
the BEB formalism due to its nonlinear dependence on the electronic density and it was
motivated that this is accomplished via shape functions in this work. With every atom, a
certain radially symmetric shape function SPi is associated

SPi (r) = SPi (|r|) = SP
(
|r|
CRPi

)
SP (1) = 0 (B.49)

and each of them is characterized by the functional form itself as well as by a distinct cutoff
radius CRPi . Here the index i is understood to label a single site in the whole crytal, i.e.
it is a combination of (L, s). In the actual implementation the functional form of all shape
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functions is chosen to be the same and is characterized by two parameters n ∈ N and γ

SP (x) =


1 for n = 0

e−γx
2 for n = 1

1− e−γ(1−x)n for n ≥ 2
(B.50)

such that the distinction between different atoms is only made by the cutoff radii. More-
over, in the current implementation the cutoff radii are only species-dependent and thus
get their site dependence only from the atomic sublattice of a certain species which was
sufficient for BaFe2As2. In future applications to other materials this might be changed.
The sum over all site centered shape functions evaluated at an arbitrary point r can be
understood as a kind of norm:

NP
i (r) = SPi (r) +

∑
j 6=i,Q

cQj S
Q
j (r − (Rj −Ri)) (B.51)

Then, an arbitrary local and species decomposition of the XC-potential can be obtained
via

XCV P
i (r) = VXC

[
XCnPi (r)

] SPi (r)
NP
i (r)

(B.52)

Here, XCnPi (r) is the the density averaged under the condition that site i is occupied with
species P

XCnPi (r) =PCnPi (r) +
∑
lm

nPi,lm(r)Klm(r̂)

+
∑
j 6=i,Q

∑
lm

cQj n
Q
j,lm (|r − (Rj −Ri)|)Klm

(
̂r −Rj +Ri

)
(B.53)

and PCnPi (r) is the partial-core charge density as obtained from the MBPP (like the pseu-
dopotential only defined type-wise but has to be added for every atom). This conditionally
averaged density is calculated via the double precision function calcXCDen_spec in
the file potential.f90. Thereby, the bond sum over neighbors is restricted to bonds with
length less than two times the cutoff radius of the local orbitals.
The norm Eq. (B.51) by entering the decomposition Eq. (B.52) ensures that even if the
shape functions are heavily overlapping, no double counting like in an atomic sphere ap-
proximation (ASA) occurs. Unlike in the ASA, the shape functions are even required to
overlap each other to accomplish that every point in space lies within some of the shape
functions. Such a decomposition is considered to be good if N (r) evaluated at several
points in the unit cell exhibits the lowest possible spatial fluctuations. The quality of the
approximation can also be tested by comparing the bandstructures of a clean CPA calcula-
tion (a CPA calculation without any substitutions) with the respective DFT bandstructure
because the bandstructure tends to be sensitive to the choice of the shape functions.
Having achieved a local decomposition of the XC-potential, a further angular momentum
decomposition of these local contributions is necessary. Due to the nonlinear functional
dependence of the XC-potential on the density resulting in a purely numerical local de-
composition of the XC-potential, also the angular momentum decomposition has to be
carried out numerically - in contrast to the other potential contributions for which the
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multipole terms could be defined analytically. For the desired decomposition

XCV P
s (r) =

∑
lm

XCV P
s,lm(r)Klm(r̂) (B.54)

the radial angular decomposed components can be obtained using the orthogonality Eq. (B.8)
of the cubic harmonics

XCV P
s,lm(r) =

∫
XCV P

s (r)Klm(r̂)dΩ (B.55)

where the integration over solid angle has to be carried out numerically. For this task the
use of spherical coordinates where the element of solid angle is given via dΩ = dϕd cosϑ is
convenient. For the integration over ϕ the whole interval from 0 to 2π is divided into Nϕ

equidistant points. The integration can then simply be accomplished by the trapezoidal
rule [68, 69, 132]

∫ 2π

0
f(ϕ)dϕ =

∫ 2π
Nϕ

0
f(ϕ)dϕ+

∫ 2 2π
Nϕ

2π
Nϕ

f(ϕ)dϕ+ ...+
∫ Nϕ

2π
Nϕ

(Nϕ−1) 2π
Nϕ

f(ϕ)dϕ

= 2π
Nϕ

f0 + f1
2 + 2π

Nϕ

f1 + f2
2 + ...+ 2π

Nϕ

fNϕ−1 + fNϕ
2

= 2π
Nϕ

f0 + fNϕ
2 +

Nϕ−1∑
j=1

fj


= 2π
Nϕ

Nϕ−1∑
j=0

fj (B.56)

where fj = f(j 2π
Nϕ

) and in the last step f0 = fNϕ as a consequence of the 2π periodicity
of the spherical coordinates was used. The integration over ϑ is slightly more complicated
and is performed via a Gauß- Legendre quadrature [68–71]

∫
d cosϑf(ϑ) =

Nϑ∑
i=1

wif(xi) (B.57)

where the special weight factors are defined by

wi = 2

(1− x2
i )
[
P ′Nϑ(xi)

]2 (B.58)

and the P ′Nϑ are the first derivatives of Legendre polynomials. The optimal xi and associ-
ated wi for a number of Nϑ sampling points are tabulated and can be found for example
on the web [71]. In the code they were already needed for the gaunt coefficients and thus
are taken from the file funkt.f90 (arrays x_clgd and w_clgd). Finally the whole scheme
of orbital decomposition of the site and species resolved contributions of the XC-potential
works as follows

XCV P
s,lm(r) =

Nϑ∑
i=1

wi
2π
Nϕ

Nϕ∑
j=1

XCV P
s (ri,j)Klm(xi, ϕj) (B.59)
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where xi = (cos θ)i. In this work it was found that for Nϕ = 17 and Nϑ = 10 the
orthogonality of the Klm serving as a benchmark for this integration method is fulfilled up
to l = 8 within an accuracy of 10−14. All this is essentially implemented in the subroutine
calcVxc in the file potential.f90.

B.4.6. The mixing-potential or averaged crystal potential

In the Hamiltonian Eqs. (2.50) and (2.51) the pseudopotential LCAO-CPA is based on,
weighted restricted sums appear as for example for the offsite Hamiltonian〈

iPµ

∣∣∣∣∣∣
∑

k 6=(i,j) ,R
cRk V

R
k

∣∣∣∣∣∣ jQν
〉

(B.60)

It is convenient to first evaluate this sum without the restriction and afterwards subtract
the respective terms which have to be excluded. Secondly, in a clean compound without
disorder, where all atomic concentrations are equal to one, an unrestricted version of
Eq. (B.60) is nothing else but the crystal potential. Being able to evaluate the crystal
Hamiltonian of the parent compound within the CPA program on the one hand can serve
for the purpose of validation when setting up a new calculation and comparing with the
LCAO matrix elements in the MBPP (and was of course helpful for the implementation).
On the other hand the diagonalisation of this crystal Hamiltonian is helpful to analyze
self-energy effects in the disordered compound. For historical reasons, this unrestricted
sum is called "mixing-potential" in this work and is given by

Vmix(r) =
∑
NuR

cRu V
R
Nu(r −Ru) = ΩC

(2π)3

∑
NuR

cRu

∫
d3ke−ik(RN +Ru)eikrV R

u (k)

=
∑
GuR

cRu e
−iGRueiGrV R

u (G) ≡
∑
G

eiGrVmix(G) (B.61)

N being a lattice index, u an atomic index within the unit cell, R being a species index
and G is a vector of the reciprocal lattice. Additionally the abbreviation Vmix(G) was
introduced meaning

Vmix(G) =
∑
uR

cRu e
−iGRuV R

u (G)

= 1
ΩC

∑
uRlm

cRu e
−iGRu(−i)lV R

u,lm(G)Klm(Ĝ) (B.62)

Then the onsite matrix elements of the mixing potential are readily found after some
manipulations to be〈

sP lm |Vmix| sP l′m′
〉

= 4π
∑
G

eiGRsVmix(G)
∑
l′′m′′

il
′+l′′−lKl′′m′′(Ĝ)×

× C(lm, l′m′, l′′m′′)
∫
drr2jl′′(Gr)fPl (r)fPl′ (r) (B.63)

Furthermore Vmix is lattice-periodic. For the clean limit this is clear because Vmix then
reduces to the crystal potential as discussed before and for a disordered system this prop-
erty follows directly from Eq. (B.61). This allows to evaluate the matrix elements between
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arbitrary sites in k space for convenience

(mix)HPQ
slm,tl′m′(k) =

∑
L

〈
LsP lm |Vmix| 0tQl′m′

〉
e−ikRLe−i(Rs−Rt)

= 1
ΩC

∑
GG′

e−iGRseiG
′RtfPl (k −G)Klm(k̂ −G)×

× Vmix(G′ −G) fQl′ (k −G′)Kl′m′(k̂ −G′) (B.64)

This expression for Vmix is only valid for the local potential. In Sec. B.4.3 the existence
of the nonlocal pseudopotential was discussed which, being a nonlocal operator, has to be
treated differently:

V nl
mix =

∑
NuR

cRu
nlV R

Nu (B.65)

Then, after some manipulations the onsite terms can be found to be〈
sP lm

∣∣∣V nl
mix

∣∣∣ sP l′m′〉 = ΩC

(2π)3

∑
GuR

cRu

∫
d3keiG(Rs−Ru)

[
φPnlm(k)

]∗
×

× nlV R
u (k,k −G)φPl′m′(k −G) (B.66)

Unfortunately, this expression cannot be further simplified and obviously it contains a
three dimensional integration in reciprocal space. This makes it necessary to calculate all
matrix elements in reciprocal space which after a lengthy calculation are given by

mix,nlHPQ
slm,tl′m′(k) =

∑
L

〈
LsP lm

∣∣∣V nl
mix

∣∣∣ 0tQl′m′〉 e−ikRLe−i(Rs−Rt)

=
∑

GG′uR

cRu e
−iGRseiG

′Rtei(G−G
′)Ru×

×
[
φPlm(k −G)

]∗
nlV R

u (k −G,k −G′)φQl′m′(k −G
′) (B.67)

The calculation of the total k-dependent mixing potential containing the local Eq. (B.64)
and nonlocal contribution Eq. (B.67) is implemented in the program via the subroutine
calcVmix_k in the file hamilton.f90 and is stored in the complex array
vmix_k(irk,iao1,iao2). The onsite terms are then obtained via discrete Fourier trans-
formation of Eqs. (B.64) and (B.67) which is implemented in the subroutine
calcMixOnsite in the file hamilton.f90.

B.4.7. Onsite Hamiltonian matrix elements

At this stage, all necessary ingredients and simplifications are prepared on the route to
the final evaluation of the Hamiltonian matrix elements in an analytical form which is
well suited for implementation in a source code. The onsite Hamiltonian matrix elements
contain the following contributions

ḢPP
s,lm,l′m′ = ṪPPs,lm,l′m′ + ẆPPP

s,lm,l′m′
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+
∑

(N,u) 6= (0, s)
R

〈
sP lm

∣∣∣cRu (V R
Nu +nl V R

Nu

)∣∣∣ sP l′m′〉
︸ ︷︷ ︸

≡R.S.

(B.68)

Among these contributions, the kinetic term is found to be

ṪPQs,lm,l′m′ ≡
〈
sP lm

∣∣∣t̂∣∣∣ sQl′m′〉 = δll′δmm′
~2

2m
1

(2π)3

∫
dkk4fPl (k)fQl (k) (B.69)

where in the atomic units used in this work and the MBPP ~2

2m = 1. The onsite matrix
elements of the local potential and the nonlocal pseudopotential are given by〈

sP lm
∣∣∣V R
s

∣∣∣ sQl′m′〉 =
∑
l′′m′′

il
′−lC(lm, l′m′, l′′m′′)

∫
drr2fPl (r)V R

s,l′′m′′(r)f
Q
l′ (r)

〈
sP lm

∣∣∣nlV R
s

∣∣∣ sQl′m′〉 = δll′δmm′θ(l − 1)θ(lmax − l)
∫
drr2fPl (r)nlV R

s,l(r)f
Q
l (r)

which then finally give

ẆPRQ
s,lm,l′m′ ≡

〈
sP lm

∣∣∣V R
s

∣∣∣ sQl′m′〉+
〈
sP lm

∣∣∣nlV R
s

∣∣∣ sQl′m′〉 (B.70)

with an extra species index R for the potential. Such potential matrix elements containing
three different species will be needed for calculating the offsite matrix elements. Finally
the restricted sum can then be evaluated via

R.S. =
〈
sP lm

∣∣∣Vmix + V nl
mix

∣∣∣ sP l′m′〉−∑
R

cRs Ẇ
PRP
s,lm,l′m′ (B.71)

All the equations presented in this subsection are implemented in the subroutine
calcHOnsite in the file hamilton.f90 and are stored in the complex arrays
vOnsite(iao1,itype,iao2) (Ẇ ), tOnsite(iao1,iao2) (Ṫ ) and hOnsite(iao1,iao2)
(Ḣ).

B.4.8. Offsite Hamiltonian matrix elements

The offsite Hamiltonian matrix elements exhibit similar contributions as the onsite matrix
elements (first two lines) plus additional correction terms which maintain the 1−δij offsite
property (last three lines)

H̆PQ
slm,tl′m′(k) = TPQslm,tl′m′(k) +WPPQ

slm,tl′m′(k) +
[
WQQP
tl′m′,slm(k)

]∗
+

∑
(N, u) 6= (0, s), (0, t)

R

〈
sP lm

∣∣∣cRu (V R
Nu +nl V R

Nu

)∣∣∣ tQl′m′〉 (k)

︸ ︷︷ ︸
≡R.S.

− δs,t
[
ṪPQs,lm,l′m′ + ẆPPQ

s,lm,l′m′ +
(
ẆQQP
s,l′m′,lm

)∗]
− δs,t

〈
sP lm

∣∣∣Vmix + V nl
mix

∣∣∣ sQl′m′〉
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+ δs,t
∑
R

cRs

[
ẆPRQ
s,lm,l′m′ +

(
ẆQRP
s,l′m′,lm

)∗]
(B.72)

because only the first two lines alone would still allow for onsite contributions. The cor-
rection terms are the reason for the need to evaluate the onsite potential matrix elements
with three different species ẆPRQ discussed in the last section. In the third term of the
first line, originally being a term where the potential is centered at the right terminal site
(see Eq. (2.51)), the hermiticity of the Hamiltonian operator was used〈

sP lm
∣∣∣V Q
t

∣∣∣ tQl′m′〉 =
〈
tQl′m′

∣∣∣V Q
t

∣∣∣ sP lm〉∗ (B.73)

because in the following only matrix elements where the potential is centered at the left
terminal site are considered. The kinetic contribution is given by

TPQslm,tl′m′(k) = ~2

2mΩC

∑
G

(k −G)2e−iG(Rs−Rt)fPl (k −G)Klm(k̂ −G)×

× fQl′ (k −G)Kl′m′(k̂ −G) (B.74)

Next, the left centered matrix elements for arbitrary sites are best evaluated in reciprocal
space and a tedious calculation yields〈

sP lm
∣∣∣V R
s

∣∣∣ tQl′m′〉 (k) = 4π
ΩC

∑
l′′m′′,l′′′m′′′

il
′′′−lC(lm, l′′m′′, l′′′m′′′)×

×
∑
G

e−iG(Rs−Rt)Kl′m′(k̂ −G)Kl′′′m′′′(k̂ −G)×

× fQl′ (k −G)
∫
drr2jl′′′((k −G)r)fPl (r)V R

s,l′′m′′(r)〈
sP lm

∣∣∣nlV R
s

∣∣∣ tQl′m′〉 (k) = 4π
ΩC

∑
G

e−iG(Rs−Rt)fQl′ (k −G)Klm(k̂ −G)×

×Kl′m′(k̂ −G)
∫
drr2jl ((k −G)r) fPl (r)nlV R

s,l(r)

which in total leads to

WPRQ
slm,tl′m′(k) ≡

〈
sP lm

∣∣∣V R
s

∣∣∣ tQl′m′〉 (k) +
〈
sP lm

∣∣∣nlV R
s

∣∣∣ tQl′m′〉 (k) (B.75)

Finally, the restricted sum can be written as

R.S. = mixHPQ
slm,tl′m′(k) + mix,nlHPQ

slm,tl′m′(k)

−
∑
R

(
cRsW

PRQ
slm,tl′m′(k) + cRt

[
WQRP
tl′m′,slm(k)

]∗)
(B.76)

The equations presented in this subsection are implemented in the subroutine
calcHOffsite_lr in the file hamilton.f90 and are stored in the complex arrays
vOffsite(irk,iao1,itype,iao2) (W ), tOffsite(irk,iao1,iao2) (T ) and
hOffsite(irk,iao1,iao2) (H̆).
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B.5. Symmetrization

The lattice of a generic crystalline material can, depending on the space group, contain
several symmetries. As already mentioned, an advantageous property of the BEB formal-
ism is the fact that all quantities in the extended Hilbert space preserve those symmetries
of the parent compound. The MBPP makes extensive use of symmetries which comes
especially into play when k-dependent quantities are calculated. Instead of calculating
a quantity for all the k-points on a regular mesh the first Brillouin zone is discretized
by, the use of symmetries allows to restrict the calculation to only the irreducible part of
the first Brillouin zone and then obtain the quantities at other k-points just by applying
symmetry operations. In particular, in all processes involving Brillouin zone integration,
instead of summing over all points of the regular mesh it is sufficient to just sum over
the irreducible part and afterwards symmetrize the integral. Depending on the number
of symmetries, this can lead to a drastic speedup of the program. In the MBPP the full
machinery of finding symmetries is already implemented so it was obvious to import this
list of symmetries generated by the MBPP for the parent compound and benefit from this
speedup in the CPA program. Thus it has to be derived how the individual quantities,
of which the calculation involves Brillouin zone integration, namely the electronic density,
onsite mixing matrix elements and the effective medium Greens function, have to be sym-
metrized. How this is accomplished, will be sketched in this section.
A generic symmetry operation g can always be written as a combination of a rotation D
and a translation τ

g = (D, τ ) g(r) = Dr + τ (B.77)

where D is a rotation matrix. If such an operation g is an actual symmetry of the crystal
it transforms an atom located at site s into another atom located at site s′

s′ = g(s) g(Rs) = DRs + τ = Rs′ +RL (B.78)

where always a nontrivial lattice vector RL may be involved. Next, the behavior of
the local basis functions under symmetry operations has to be concerned. Without loss
of generality the species index will be omitted in the following because the symmetry
operations only occur between atoms of the same type. The wave functions are

φlm(r) = ilfl(r)Klm(r̂) φLs,lm(r) = φlm(r −Rs −RL) (B.79)

The transformations then read

φLs,lm [g(r)] = φLs,lm(Dr + τ ) = φlm(Dr + τ −Rs −RL)

= φlm

D(r +D−1τ −D−1Rs︸ ︷︷ ︸
−g−1(Rs)+RL′

−D−1RL)


= φlm

[
D(r −Rg−1(s) −RL′′)

]
(B.80)

When applying a rotation to a local orbital φ one needs knowledge about the transforma-
tion of the cubic harmonics under such a rotation. This can be written in terms of Wigner
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matrices W l
m,m′(g)

Klm(Dr̂) =
∑
m′

W l
m,m′(g)Klm′(r̂) W l

m,m′(g) =
∫
dΩKlm(Dr̂)Klm′(r̂) (B.81)

which then leads to

φLs,lm [g(r)] =
∑
m′

W l
m,m′(g)φlm′(r −Rg−1(s) −RL′′)

=
∑
m′

W l
m,m′(g)φL′′g−1(s),lm′(r) (B.82)

Taking into account the above considerations a generic matrix element of a symmetry
invariant operator Â can be written after some manipulations

As1l1m1,s2l2m2(Dgk) =
∑

m′1,m
′
2

Ag−1(s1)l1m′1,g−1(s2)l2m′2(k)W l1
m1,m′1

(g)W l2
m2,m′2

(g)×

× eiDgk(Rs1−Rs2)e−ik
(
Rg−1(s1)−Rg−1(s2)

)
(B.83)

or more compactly written in matrix form

A(Dgk) = TgA(k)T †g (B.84)

Tg,slm,s′l′m′ = δl,l′δs′,g−1(s)W
l
m,m′(g)eiDgkRse−ikRg−1(s) (B.85)

Then the sum of such a matrix element over all k-points becomes

S =
∑
k

A(k) =
∑
κ

∑
g(κ)

A(Dgκ) =
∑
κ

∑
g

1
ninv(κ)TgA(κ)T †g (B.86)

where κ belongs to the irreducible part of the first Brillouin zone and ninv(κ) is the number
of all symmetry operations which map κ on itself. In the second equality, the

∑
g(κ) runs

only over a subset of symmetry operations which generate the symmetry related set of k-
points belonging to κ, the so called "star" of κ. In the last step, the

∑
g is performed over

all symmetry operations, which was compensated by the factor 1
ninv(κ) . When calculating

onsite matrix elements where the Tg do not depend on κ anymore because then the
phase factors get trivial in Eq. (B.85) this allows to perform the sum over the symmetry
operations g independently from that over κ

S =
∑
g

Tg

(∑
κ

1
ninv(κ)A(κ)

)
T †g ≡

1
Ng

∑
g

Tg

(∑
κ

w(κ)A(κ)
)
T †g (B.87)

where in the last equality Ng is just the number of symmetry operations (nsymop in
the code) and w(κ) are symmetry dependent weight factors (weight_irk in the code)
which are delivered by the MBPP program. This in principle allows to first calculate all
k-dependent matrix elements only for vectors κ inside the irreducible part of the first
Brillouin zone and then sum over them using the weight factors which is the inner sum in
Eq. (B.87). Afterwards, to include also the terms lying outside the irreducible part, this
sum is symmetrized which is the outer sum in Eq. (B.87). This allows to implement a
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generic symmetrization routine for onsite matrix elements which does nothing but

symSs,l1m1,l2m2 = 1
Ng

∑
g

∑
m′1,m

′
2

W l1
m1,m′1

(g)Sg−1(s),l1m′1,l2m′2W
l2
m2,m′2

(g) (B.88)

where S is just the unsymmetrized sum over the irreducible part of their first Brillouin
zone. This is applied when calculating the onsite mixing terms and the onsite effective
medium Green’s function and implemented in the subroutine
symmetrizeOnsiteGmat taking care of the special site-indices of the effective medium
Green’s function and subroutine symmetrizeOnsiteCmat for a general complex onsite
matrix in iao orbital indices in the file symmetry.f90
For the electronic density this becomes slightly different. Here the Brillouin zone summa-
tion is only involved in the A-coefficients Eqs. (B.26) and (B.27). These summations are
only performed over the κ-vectors inside the irreducible part and instead of the factor 1

Nk

the appropriate weight factor w(κ) is taken into account in the summation (these weight
factors reduce to 1

Nk
when no symmetries are present). Then, after having calculated the

radial orbital densities nLs,lm(r) (including all the summations over the B-coefficients)
they get symmetrized according to

symnLs,lm(r) = 1
Ng

∑
g

∑
m′

W l
m,m′(g)nLg−1(s),lm′(r) (B.89)

where still the species indices were omitted without loss of generality. This is implemented
in the subroutine denSpecOrb in the file density.f90.
All symmetry operations s′ = g(s) which are found in a crystal by the MBPP are stored
in an "atomic transformation table" being realized as an integer array
iatrans(isym,iat,itype) in the code which gives the transformed atomic index corre-
sponding to an initial atomic index iat of species itype under a symmetry operation
isym.
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This chapter is devoted to a brief discussion of some details about the CPA-solver, being
the "heart piece" of the implemented program. All subroutines, if nothing else is men-
tioned, can be found in the file cpaSolver.f90. Usually, a calculation is carried out in
the following way: First, the CPA effective medium Green’s function is calculated along a
rectangular path in the upper complex frequency half-plane as already mentioned several
times in this work. This is done in the subroutine cpaCalcMedium for several tem-
peratures. Essentially this routine, as also other routines do, only calls the subroutine
cpaCycleEnergy where the actual work is done. This subroutine implements the inner
self-consistency loop shown in Fig 2.2 for a single complex frequency (called energy in
the code) where the impurity problem is solved numerically by iterating the following
equations

ΓPQi,µν =
∫

1.BZ
d3k

[
ω
(
1 + S̆(k)

)
− H̆(k)− Σ

]−1
∣∣∣∣PQ
iµ,iν

(C.1)

dΣPQ
i,µν =

(
Γ−1
i

)PQ
µν

+
∑
q

1
cqi

[
Ḣ i − Σi − Γ−1

i

]qq
µν
δPQδPq (C.2)

which were already explained in detail in Sec. 2.2.4. This scheme provides a self-consistent,
fully symmetrized onsite medium Green’s function Γ in the site data structure in the
complex array greenSite(tlm1,tlm2,isite). Having obtained a converged self-energy it
also provides the k-dependent Green’s function in the irreducible part of the first Brillouin
zone without performing the summation over all k-points

Γ(k) =
[
ω
(
1 + S̆(k)

)
− H̆(k)− Σ

]−1
(C.3)

which is used for most physical obervables in the program like for example the density of
states Eq. (2.71). Γ(k) is given in the iao indices in the complex array
greenOrbK(iao1,iao2,irk). The involved matrix inversions are performed by LAPACK
(Linear Algebra Package) routines [131]. Back in the subroutine cpaCalcMedium this
Green’s function then is summed over all irreducible k-points and symmetrized. Also the
product S(k)Γ(k) is calculated. This is used to calculate the chemical potential µ and
Fermi level in the subroutine cpaCalcFermi via calculating the particle number

N =− 2
π

Im
∮
dωTr

[∫
1.BZ

d3kS(k)Γ(k, ω)
]
f(ω, µ, T )

− 2πikBT
∑
n

Tr
[∫

1.BZ
d3kS(k)Γ(k, ωn)

]
(C.4)

where f(ω, µ, T ) = 1/(1 + exp(ω−µkBT
)) is the Fermi-Dirac distribution function, kB the

Boltzmann constant and the frequency integration is performed along a rectangular path
surrounding the real frequency axis (which by symmetry arguments can be restricted to
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the upper complex half-plane). This procedure was chosen because unlike integrating the
DOS this particle number does not depend on the infinitesimal imaginary part of the
frequency which strongly influences the fine structure of the DOS. The boundaries of the
closed path have to be chosen large enough (far way from the "interesting region") such
that the result does not depend anymore on these boundaries. This procedure has the
disadvantage that for numerical reasons it has to be performed at finite temperature T
because the zero temperature limit of f(ω, µ, T ), being just a step function θ(ω − EF ),
changes too abruptly for numerical integration and needs an extremely fine sampling.
This temperature is an artificial electronic temperature and should not be confused with
the thermodynamic temperature of the physical system which is beyond the scope of this
work. The Fermi-Dirac distribution function exhibits equidistant poles on a vertical line
parallel to the imaginary frequency axis cutting the real axis at the chemical potential µ
with imaginary parts at the fermionic Matsubara frequencies ωn = (2n+ 1)πkBT , n being
an integer. The expression for the particle number has to be corrected for these additional
poles which is achieved by the second term. The chemical potential is then adjusted by
an iterative bisection method until the true particle number, fixed by the constraint of a
charge neutral alloy, is found within a certain accuracy. The chemical potential obtained
in this way can, depending on the user’s choice, be calculated at multiple temperatures.
For one temperature the Fermi energy EF is set identical to the chemical potential, for
more than one temperatures at the moment EF is obtained by a linear extrapolation to
T = 0 from the chemical potentials at the highest and lowest temperature. Of course,
higher order extrapolations could be implemented in the future.
The effective medium Green’s function on a closed cycle as obtained by the subroutine
cpaCalcMedium is also necessary for theA-coefficients appearing the charge self-consistency
computed in the subroutine cpa_calcDenA which was described earlier in Secs. 2.3 andB.3.
The actual integral expression Eq. (B.26) is similar to the particle number and carried out
in the same way. The charge self-consistency is only carried out at one temperature which
can be specified by the user.
Usually, apart from the angular integration involved in the orbital decomposition of the
XC-potential, all numerical integrations in this work are performed by the Simpson method
[68, 69, 77], being a summed second order Newton-Cotes formula [68, 69, 78, 79]. This
works as follows ∫ b

a
dxf(x) ≈ h

3 [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ...

+2f(xN−2) + 4f(xN−1) + f(xN )] (C.5)

where h = (b−a)/N and the interval [a, b] was divided into N equidistant partial intervals
centered around xi and having a width of 2h. In practical benchmark tests (an integration
of SΓ over the closed complex frequency path should always give the number of orbitals)
this method turned out to be not sufficiently accurate for the frequency integration involved
in the Fermi level calculation or charge self-consistency. Therefore, a higher order Newton-
Cotes formula had to be used and the summed one of sixth order is given by the so-called
Weddle rule [68, 69, 79]∫ b

a
dxf(x) ≈ h

840

[
41f(x0) + 216f

(
x0 + h

6

)
+ 27f

(
x0 + 2h

6

)
+ 272

(
x0 + 3h

6

)
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+27
(
x0 + 4h

6

)
+ 216f

(
x0 + 5h

6

)
+ 41f(x1)

+41f(x1) + 216f
(
x1 + h

6

)
+ ...+ 41f(xN )

]
(C.6)

where h = (b−a)/N and the number of sampling points N has to be dividable by six plus
one. This integration method (taking into account the appropriate signs when following
the closed path) is implemented in the subroutine cpaComplexIntegrateBox.
The density of states and orbital projections are calculated in the subroutine cpaDosPlot
via

ν(ω) = − 2
π

Im Tr
[∫

1.BZ
d3k S(k)Γ(k, ω+)

]
(C.7)

again using the central subroutine cpaCycleEnergy - this time not on a closed path but
parallel to the real axis with a slightly complex frequency ω+ = ω + iδ. As mentioned
before, the fine structure of the DOS strongly depends on δ which should not be chosen too
small. This subroutine also provides the self-energy which is later needed in the calculation
of the Bloch spectral function. For this self-energy, in most cases a smaller imaginary part
δ than for the DOS has to be chosen in order to resolve the bands in k-space.
Finally, the subroutine cpaBandsAlongLine calculates the Bloch spectral function via

A(k, ω) = − 1
π

Im Tr
[
S(k)Γ(k, ω+)

]
(C.8)

along one direction in k-space. The k-mesh which has been used before throughout the
program was a regular one suited for Brillouin zone integration. But here now a direction
has to be discretized and in order to still use all the subroutines which do not perform a
k-summation, a new k-mesh has to be generated. Therefore, all the k-dependent quan-
tities like offsite overlap, offsite Hamiltonian, mixing potential are deleted or deallocated.
Then, they are recalculated on the new k-mesh. This only works if the onsite terms of
which at least parts cannot be calculated in absence of a regular k-mesh were kept. As
mentioned above, this was done for the self energy being an onsite quantity - due to the
fact that in the CPA-solver a Brillouin zone integration is involved, here the usual pro-
cedure of determining the effective medium via the subroutine cpaCycleEnergy cannot
be applied anymore. For that reason, Γ(k, ω+) is calculated without any iterations from
the charge self-consistent effective medium self-energy Σ. Finally, the projections of the
spectral function on the subspace of the parent compound are performed as described in
Sec. 5.3.2.
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D. Green’s functions in a nonorthogonal
basis

The BEB-CPA method developed in this work uses a nonorthogonal LCAO basis with
respect to which in particular the Green’s functions are defined. This causes some pecu-
liarities which are not contained in the standard textbooks on many body theory. Due to
the fact that I was lacking of a coherent review about this topic, when I developed the
program, I decided to summarize the essential facts in this chapter. Some of the sym-
bolism can be found for example in the papers of Stollhoff, Heilingbrunner, Horsch and
Fulde, e.g. [72, 73].

D.1. Local basis and field operators

We start from the same set of orbitals φi(r) as already defined in Sec. B.1.1 which are
nonorthogonal

〈i|j〉 =
∫
d3rφ∗i (r)φj(r) = Si,j (D.1)

where i, j are combined orbital and site indices and S is the overlap matrix. The unit
operator in such a basis is given via

1 =
∑
i,j

|i〉S−1
i,j 〈j| (D.2)

where in the whole chapter the shorthand notation S−1
i,j =

(
S−1)

i,j denotes the (i, j)th
element of the inverse overlap matrix unless mentioned otherwise. The fermionic field
operators ψ†(r) (ψ(r)) which create (annihilate) an electron at position r then are given
by

ψ†(r) =
∑
i

φ∗i (r)c†i ψ(r) =
∑
i

φi(r)ci (D.3)

where the fermionic, second quantized operators c†i , ci are hermitian conjugates of each
other but unlike the usual orthogonal case are no creation and annihilation operators
anymore! The commutation relations of the field operators are defined as in the orthogonal
case {

ψ(r), ψ†(r′
}

= δ(r − r′) (D.4)

where {A,B} = AB + BA denotes an anticommutator and δ(r − r′) is the Dirac delta
distribution. From this requirement the commutation relations of the ci can be derived to
be {

ci, c
†
j

}
= S−1

i,j (D.5)
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D. Green’s functions in a nonorthogonal basis

Another set of second quantized fermionic operators a†i (ai) can be defined which really
create (annihilate) an electron in state i

a†i |0〉 = |i〉 (D.6)

where |0〉 is the vacuum state. Also these operators are hermitian conjugates. Evaluat-
ing the vacuum expectation value of the anticommutator and using Eq. (D.6) yields the
commutation relations {

ai, a
†
j

}
= Si,j (D.7)

which reduces to δi,j for an orthonormal basis. With these ai operators no field operators
can be defined anymore because Eq. (D.4) then would not be fulfilled anymore. But via
the commutation relations these two sets of second quantized operators can be converted
into each other

ci =
∑
j

S−1
i,j aj (D.8)

D.2. Bloch basis and field operators

For the calculation of quantities which exhibit the translational symmetry of the lattice it
is useful to perform a superposition to Bloch orbitals

φi,k(r) = 1
(2π)3/2

∑
L

eik(RL+Ri)φi(r −RL) = 1
(2π)3/2

∑
L

eik(RL+Ri)φiL(r) (D.9)

or
|ik〉 = 1

(2π)3/2

∑
L

eik(RL+Ri)|iL〉 (D.10)

where L indicates lattice vectors. With these Bloch orbitals, the matrix elements of a
translational invariant operator A (e.g. the offsite Hamiltonian and overlap matrix in
Chap.B) in k-space

Ai,j(k) = 1
(2π)3 e

−ik(Ri−Rj)
∑
L

e−ikRLALi,j (D.11)

can be written in the form 〈
ik
∣∣∣Â∣∣∣ j〉 = (2π)3/2e−ikRjAi,j(k) (D.12)

Also for the Bloch orbitals it is useful to define field operators

ψk(r) = 1
(2π)3/2

∑
L

e−ikRLψ(r −RL) ≡
∑
i

φik(r)cik (D.13)

where {
ψk(r), ψ†k′(r′)

}
= δk,k′δ(r − r′) (D.14)

from which again it can be derived that{
cik, c

†
jk′

}
= δk,k′S−1

i,j (k) (D.15)
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Also here, a set of creation and annihilation operators can be defined

a†ik|0〉 = |ik〉
{
aik, a

†
jk′

}
= δk,k′Si,j(k) (D.16)

and the two sets of second quantized operators are related to each other via

cik =
∑
j

S−1
i,j (k)ajk (D.17)

D.3. Retarded Green’s function

We define the retarded, time dependent Green’s function in the usual way by creation and
annihilation operators

Gi,j(t) = −iθ(t)
〈

0
∣∣∣{ai(t), a†j}∣∣∣ 0〉 (D.18)

where θ(t) is the Heaviside step function. Due to the fact that in this work only nonin-
teracting electronic Green’s functions are considered, it is sufficient to take the vacuum
expectation value here which will make life easier later in the derivation. The time depen-
dent operators ai(t) are given in the Heisenberg picture

ai(t) = eiĤtaie
−iĤt ai = ai(t = 0) a†j = a†j(t = 0) (D.19)

where Ĥ is the full Hamiltonian operator of the problem. As is well known from standard
textbooks like [74] we assume that the eigenvalue problem of Hamiltonian operator Ĥ is
solved

Ĥ|n〉 = εn|n〉
∑
n

|n〉〈n| = 1 (D.20)

and we can always find an orthogonal eigenbasis |n〉 with eigenvalues εn. Furthermore, we
choose the vacuum energy to be zero Ĥ|0〉 = 0. We now insert two 1 into Eq. (D.18)

Gi,j(t) = −iθ(t)
∑
n

〈
0
∣∣∣eiĤtaie−iĤt|n〉〈n|a†j + a†je

iĤt|n〉〈n|a−iĤti

∣∣∣ 0〉 (D.21)

= −iθ(t)
(∑

n

e−iεnt 〈0 |ai|n〉
〈
n
∣∣∣a†j∣∣∣ 0〉+

∑
n

eiεnt
〈

0
∣∣∣a†j∣∣∣n〉 〈n |ai| 0〉

)
(D.22)

= −iθ(t)
∑
n

e−iεnt 〈0 |ai|n〉
〈
n
∣∣∣a†j∣∣∣ 0〉 (D.23)

Later we are interested in the Fourier transformation

Gi,j(ω) =
∫
dteiωtGi,j(t) (D.24)

=
∑
n

〈
0
∣∣∣∣ai |n〉〈n|
ω + iδ − εn

a†j

∣∣∣∣ 0〉 (D.25)

This is nothing but the spectral representation of the resolvent operator Ĝ(ω)

Gi,j(ω) =
〈

0
∣∣∣aiĜR(ω)a†j

∣∣∣ 0〉 =
〈
i
∣∣∣Ĝ(ω)

∣∣∣ j〉 Ĝ(ω) =
(
ω + iδ − Ĥ

)−1
(D.26)
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To further proceed, consider the matrix elements of the inverse of the resolvent operator〈
i
∣∣∣Ĝ−1(ω)

∣∣∣ j〉 =
〈
i
∣∣∣ω + iδ − Ĥ

∣∣∣ j〉 = Si,j(ω + iδ)−Hi,j (D.27)

where the Hamiltonian matrix Hi,j =
〈
i
∣∣∣Ĥ∣∣∣ j〉 was introduced. Clearly, the following

relation has to be fulfilled 〈
i
∣∣∣Ĝ−1(ω)Ĝ(ω)

∣∣∣ j〉 = Si,j (D.28)

Introduction of a 1 by Eq. (D.2) and use of Eq. (D.27) yields∑
i′j′

[(ω + iδ)S −H]i,i′ S
−1
i′,j′Gj′,j(ω) = Si,j (D.29)

Solving this matrix equation for G finally yields the Green’s function matrix elements

Gi,j(ω) = S [(ω + iδ)S −H]−1 S
∣∣∣
i,j
≡ SG(ω)S|i,j (D.30)

with the conventions for G and G used several times in this thesis. When calculating an
observable from the Green’s function in a nonorthogonal basis, one has always to take
care about how it is expressed in the second quantized operators to find out, which of the
Green’s function G or G to be used.
For the important case of the density of states (DOS), this is

ν(ω) = − 1
π

Im
∑
i

(
G(ω)S−1

)
i,i

= − 1
π

Im
∑
i

[SG(ω)]i,i (D.31)

which can be verified by inserting the spectral representation Eq. (D.25) which finally
yields

∑
n δ(ω − εn) which is just the definition of the DOS.

For the Green’s function in real space we can write

G(r, r′, ω) =
∫
dteiωtG(r, r′, t) =

∫
dteiωt

〈
0 |{ψ(r, t), ψ†(r′, 0) }| 0

〉
(D.32)

Using our initially defined field operators and choosing the same route as before (inserting
a set of eigenstates of Ĥ) yields

G(r, r′, ω) =
〈

0
∣∣∣ψ(r)Ĝ(ω)ψ†(r′)

∣∣∣ 0〉 =
∑
i,j

φi(r)Gi,j(ω)φ∗j (r′) (D.33)

which is just the expression used for the charge self-consistency.

D.4. Bloch spectral function

The Bloch spectral function is usually defined as

A(k, ω) = − 1
π

ImG(k, ω) (D.34)

where
G(k, ω) = 1

(2π)3/2

∑
L

e−ikRL
∫
d3rG(r −RL, ω) (D.35)

134



D.4. Bloch spectral function

where again L indicates lattice vectors. This can be rewritten using the field operators

G(k, ω) = 1
(2π)3/2

∑
L

∫
d3re−ikRL

〈
0
∣∣∣ψ(r −RL)Ĝ(ω)ψ†(r)

∣∣∣ 0〉 (D.36)

=
∫
d3r

〈
0
∣∣∣ψk(r)Ĝ(ω)ψ†(r)

∣∣∣ 0〉 (D.37)

where we have a field operator for the Bloch basis on the left side and a normal field
operator on the right side. This can be further simplified

G(k, ω) =
∫
d3r

∑
i,j

φik(r)φ∗j (r)
〈

0
∣∣∣cikĜ(ω)c†j

∣∣∣ 0〉 (D.38)

= (2π)3/2∑
ij

eikRjSj,i(k)
〈

0
∣∣∣cikĜ(ω)c†j

∣∣∣ 0〉 (D.39)

Transformation of the c operators to the a operators by Eqs. (D.8) and (D.17) this finally
yields

G(k, ω) = (2π)3/2∑
ij

eikRi
〈
ik
∣∣∣Ĝ(ω)

∣∣∣ j〉︸ ︷︷ ︸
=(2π)3/2e−ikRjGi,j(k,ω)

S−1
i,j (D.40)

With the same logic as before starting from
〈
ik
∣∣∣Ĝ−1Ĝ

∣∣∣ j〉 we obtain

Gi,j(k, ω) = S(k) [(ω + iδ)S(k)−H(k)]−1 S(k)
∣∣∣
i,j

= S(k)G(k, ω)S(k)|i,j (D.41)

Inserting this into Eq. (D.40) finally yields after some manipulations

G(k, ω) =
∑
i

[S(k)G(k, ω)]i,i (D.42)

which is the expression referred to in the rest of this work for the calculation of a Bloch
spectral function.
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Acronyms

This thesis contains a couple of acronyms. For better readability of this thesis, I tried to
explain acronyms in every chapter anew. However, the most frequently used acronyms in
this thesis are listed below.

AG Abrikosov-Gorkov

BEB Blackman, Esterling and Berk

BLAS Basic Linear Algebra Subprograms

CPA coherent potential approximation

DFT density functional theory

DOS density of states

FeSC iron based superconductors

KKR Kohn-Korringa-Rostoker

LAPACK Linear Algebra Package

LCAO linear combination of atomic orbitals

MBP mixed-basis pseudopotential

MBPP mixed-basis pseudopotential program

TM transition metal

VCA virtual crystal approximation
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