
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 141.52.96.80

This content was downloaded on 19/09/2016 at 10:35

Please note that terms and conditions apply.

You may also be interested in:

Incommensurate phases of a bosonic two-leg ladder under a flux

E Orignac, R Citro, M Di Dio et al.

Quantum impurities: from mobile Josephson junctions to depletons

Michael Schecter, Dimitri M Gangardt and Alex Kamenev

Extended Plefka expansion for stochastic dynamics

B Bravi, P Sollich and M Opper

Reconstruction of complex networks with delays and noise perturbation based on generalized outer

synchronization

Xiang Wei, Shihua Chen, Jun-an Lu et al.

Integrable structures in quantum field theory

Stefano Negro

Thermal form factor approach to the ground-state correlation functions of the XXZ chain in the

antiferromagnetic massive regime

Maxime Dugave, Frank Göhmann, Karol K Kozlowski et al.

De-pinning of disordered bosonic chains

View the table of contents for this issue, or go to the journal homepage for more

2016 New J. Phys. 18 053026

(http://iopscience.iop.org/1367-2630/18/5/053026)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/1367-2630/18/5/055017
http://iopscience.iop.org/article/10.1088/1367-2630/18/6/065002
http://iopscience.iop.org/article/10.1088/1751-8113/49/19/194003
http://iopscience.iop.org/article/10.1088/1751-8113/49/22/225101
http://iopscience.iop.org/article/10.1088/1751-8113/49/22/225101
http://iopscience.iop.org/article/10.1088/1751-8113/49/32/323006
http://iopscience.iop.org/article/10.1088/1751-8113/49/39/394001
http://iopscience.iop.org/article/10.1088/1751-8113/49/39/394001
http://iopscience.iop.org/1367-2630/18/5
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


New J. Phys. 18 (2016) 053026 doi:10.1088/1367-2630/18/5/053026

PAPER

De-pinning of disordered bosonic chains

NVogt1,2, J HCole2 andAShnirman1,3

1 Institut für Theorie der KondensiertenMaterie, Karlsruhe Institute of Technology, D-76128Karlsruhe, Germany
2 Chemical andQuantumPhysics, School of Applied Sciences, RMITUniversity,Melbourne, 3001, Australia
3 L. D. Landau Institute for Theoretical Physics RAS, Kosygina street 2, 119334Moscow, Russia

E-mail: Nicolas.Vogt@rmit.edu.au

Keywords: depinning, Josephson junction array, quantum-phase-slip ladder, disorder

Abstract
Weconsider onset of transport (de-pinning) in one-dimensional bosonic chains with a repulsive
boson–boson interaction that decays exponentially on large length-scales. Our study is relevant for (i)
de-pinning of Cooper-pairs in Josephson junction arrays; (ii) de-pinning ofmagnetic flux quanta in
quantum-phase-slip ladders, i.e. arrays of superconductingwires in a ladder-configuration that allow
for the coherent tunneling offlux quanta. In the low-frequency, longwave-length regime these chains
can bemapped onto an effectivemodel of a one-dimensional elasticfield in a disordered potential.
The standard de-pinning theories address infinitely long systems in two limiting cases: (a) of
uncorrelated disorder (zero correlation length); (b) of long range power-law correlated disorder
(infinite correlation length). In this paper we study numerically chains offinite length in the
intermediate case of long but finite disorder correlation length. This regime is of relevance for, e.g., the
experimental systemsmentioned above.We study the interplay of three length scales: the system
length, the interaction range, the correlation length of disorder. In particular, we observe the crossover
between the solitonic onset of transport in arrays shorter than the disorder correlation length to onset
of transport by de-pinning for longer arrays.

1. Introduction

Depinning theory describes the onset of propagation inmany different physical systems. Examples include
electrical transport in charge density waves (CDW) [1, 2], the critical current ofmagneticflux lattices [3, 4] in
type II superconductors, the propagation ofmagnetic domain boundaries [5] and crack formation in strained
materials [6]. It was recently shown that the onset of electrical transport in one-dimensional arrays of Josephson
junctions is also determined by the de-pinning of the charge-configuration along the array [7].

In this paperwe consider amore generalmodel, a discrete chainmacroscopically occupied by bosonswith a
repulsive interaction that decays exponentially on long length-scales. In such amodel the interaction between
neighboring islands can be expressed by introducing a continuous variable, quasi-charge/flux, whose value is
determined by the distribution of bosons along the chain. Assuming that the continuous variable changes
adiabatically, an effectivemodel can be derivedwith the help of the Born–Oppenheimer approximation [7, 8]. In
the case that disorder is present in the system, de-pinning theory can be applied tofind the critical driving force
that leads to a steady boson transport through the system. The Josephson junction arrays studied in [7] represent
a particular realization of thismodel. Alternatively, our results describe the dual systemof quantumphase slip
(QPS) ladders. In the latter case (QPS ladders) the bosons aremagnetic flux quanta that tunnel throughQPS
elements [9–11] that separate the loops in a ladder.

In voltage biased Josephson junction arrays, the de-pinning theory describes the transition from an
insulating regime at low voltages to a transport regime at higher voltages. The critical voltage of the transition is
referred to as the switching voltage. The insulating regime of the arrays is governed by an effective sine-Gordon-
like quasi-chargemodel.
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In the study of the onset of transport in Josephson junction arrays, [7], the connection to standard de-
pinning theory was established under the assumption of a very particular capacitancematrix consisting to the
junction capacitancesC and the capacitances to the groundC0. Herewe generalize that connection to the case of
a generalmatrix of capacitances provided it is characterized by afinite screening length.Moreover, [7] addressed
the regime of strongly disordered background charges (also referred to as themaximal disordermodel). Under
this assumption the disorder-term in the effectivemodel is spatially uncorrelated, allowing one to apply the
standard de-pinning theory. Additionally themapping to the standard de-pinning theory assumes the array
lengthN to bemuch larger than all other length-scales of the problem.

In this paperwe study the de-pinning behaviour ofmore general chainmodels. In the case of short chains we
find a saturation regime, inwhich the Larkin length controlled by the range of repulsive interaction exceeds the
length of the system. In this regime the array behaves essentially as a lumped zero-dimensional element. Another
case is that of weak charge (flux) disorder, which corresponds to a long disorder correlation length in the
effective sine-Gordon-like description. In this case we observe a crossover between a regime, in which the onset
of transport is due to injection of ballistic solitons and a regime of pinningweakened by the correlations. The de-
pinning process in systemswith infinite range (power law) disorder correlations has been studied in [12].

2.Methods

2.1. Themodel
We start by introducing the generalizedmodel that contains the recently studiedmodel for Josephson junction
arrays [7] as a special case.We consider a chain of islands

˜ ˜ ( ) ( )†å å= - ++H n M n t b b
1

2
h.c. 1

i j
i i j j

i
i i

,
, 1

˜ ( )= - -n N N f , 2i i i0

where Ni are the discrete bosonic occupation numbers of the islands, N0 is the average occupation number at
equilibrium (chemical potential, positive charge background), fi are the randomgate charges, †b b,i i are the
bosonic annihilation and creation operators ( †=N b bi i i) and the bosonic tunnelling amplitude is given by t. In
the limit N 10 we can introduce the phase variablesji and replace

†» »j j-b N b Ne , ei i0
i

0
ii i, which

leads to

˜ ˜ ( ) ( )å å j j= - --H n M n E
1

2
cos , 3

i j
i i j j

i
t i i

,
, 1

where ºE N t 2t 0 . For convenience we also introduce º -n N Ni i 0, so that ˜ = -n n fi i i and ni andji are
conjugate variables.

We assume that the long-range behaviour of the interactionmatrix = -M Mi j i j, is determined by an
exponential decay on a length-scaleΛ

∣ ∣ ( )
∣ ∣

µ - L- -
LM i je for 4i j,

i j

This general class ofmodels contains Josephson junction arrays, chains of superconducting island coupled
via Josephson junctions andwith self-capacitancesC0 (capacitances to the ground) and capacitancesC between
the neighboring islands (junction capacitances). In this caseEt=EJ is the Josephson energywhereas the
couplingmatrix is given by

( ) [ ˆ ] ( )= -
M e C2 , 5i j i j,

2 1
,

where

ˆ ( )

 

=

-
- + -

- + -

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟C

C
C C C C

C C C C
2

2
. 60

0

In the largeΛ-regime the interactionmatrix is well approximated by the following expression:

( )∣ ∣
∣ ∣

» L-
- -

LM E e , 7i j C
i j

where the junction charging energy is defined by ( )ºE e C2 2C
2 . In particular the energy cost of a single charge

in such an array is of the order » LM Ej j, C. Activated behaviourwith activation energy of order LEC was
observed in [13].

It has been realized long ago [14, 15] that for L 1a description based on the number of Bosons that have
tunnelled between neighbouring chain sites ismore appropriate than a description based on the occupation
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number of the islands of the chain.We introduce, thus

( )å å= =
=

-

=

-

m n F f, . 8i
j

i

j i
j

i

j
1

1

1

1

The resultingHamiltonian has the form,

( ) ( ) ( ) ( )å å q= - - -H m F U m F E
1

2
cos , 9

i j
i i i j j j

i
t i

,
,

with themodified couplingmatrix

( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣= = - -- - - - - +U U M M M2 . 10i j i j i j i j i j, 1 1

Here q j jº --i i i1 . One can easily check thatmi and qi are conjugate variables.
A qualitative picture in the low energy, longwave length regime can be obtained from the Fourier transform

of the couplingmatrices

( ) ( ) ( ( )) ( ) ( )= = --U k U k M k2 1 cos 11i j

( ) ( ) ( )º -M k M , 12i j

where [ ]p pÎ -k , . The k 0 behaviour of -M i j is dominated by the exponential decay and for small
 L-k 1 the Fourier transformof the interactionmatrix -M i j is approximately constant, ( ) ( )»M k M 0 ,

which leads to

( ) ( ) ( )»U k M k0 . 132

In the case of a Josephson junction array the exact expressions are

( )
( ( ))

( )= L
+ -

L

L

M k E
k2 1 cos

, 14C

2

1
2

( ) ( )= LM E0 2 . 152
C

2.2. Standard villain transformation
Themodel (9) can be treated by a standard technique involving theVillain approximation [15].We omit all the
details and onlymention the fact that the spinwave part of the resultingmodel in the limit  L-k 1, where

( ) ( )»U k M k0 2 is quadratic, corresponds to a Luttinger liquid [16]

[ ( )] [ ( )] ( )ò q= + ¶
⎡
⎣⎢

⎤
⎦⎥H

v
x K x

K
m x

2
d

1
, 16x

2 2

[ ( ) ( )] ( ) ( )q d= -x m x x x, i , 171 2 1 2

where the Luttinger liquid velocity v and the Luttinger liquid parameterK scale with the originalmodel
parameters as

( ) ( )=v M E0 , 18t

( )
( )=K

E

M 0
. 19t

The corrections to (17) due to vortices (phase slips) in this type of theories (see, e.g., [17]) are of the form
( [ ( ) ( )])pµ +p m x F xcos 2 with Îp . The amplitude in front of this term (fugacity of vortices) is predicted to

be small in the limit L 1 [14, 15] so that without disorder the critical value ofK is close to p2 (itmay be
renormalized by disorder [16]).

We assume that ( ) M E0 t and therefore  pK 2 . In this case the system isfirmly in theCDW-regime
[16] and dominated by classical charge dynamics. The disorder F(x) enters the relevant phase slip terms

( [ ( ) ( )])pµ +m x F xcos 2 and can pin the charge density profile.

2.3. Alternative derivation
Herewe generalize the derivation given in [8] for the case of a Josephson array described by the capacitance
matrix (6) to the case of amore generalmatrix Mi j, characterized by a screening lengthΛ.We start by rewriting
theHamiltonian (9) as

( ) ( ) ( ) ( ) ( )å å åq d= - - + - -H U m F E m F U m F
1

2
cos

1

2
, 20

j
j j

j
t j

i j
i i i j j j0

2

,
,
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where =U Uj j0 , and d d= -U U Ui j i j i j, , 0 , . Next we transform the third termwith the help of theHubbard–
Stratonovich transformation, which introduces a newdegree of freedomQi, often referred to as the quasi-
charge. This gives

{ } ( ) ( )

( ) [ ] ( )

å å

å å

q

d

= - -

- - - -

H Q U m F E

U Q m F
U

Q U Q

1

2
cos

2
, 21

j
j j

j
t j

j
j j j

i j
i ij j

0
2

0
0
2

,

1

such that [ { }]=H H QminQ . Next

{ } ( ) ( ) ( )å å åq= - - - +H Q U m F Q E Q B Q
1

2
cos

1

2
, 22

j
j j j

j
t j

i j
i i j j0

2

,
,

where [ ]d d= - --B U U Ui j ij i j, 0
2 1

0 , . The Fourier transform reads

( )
( )

( )= - -
-

B k U
U

U k U
. 230

0
2

0

For small wave vectors  L-k 1we obtain ( ) U k U0 and ( ) ( ) ( )» »B k U k M k0 2. Thus, assumingQi

changes slowly enough as a function of the coordinate i, i.e., changes on length scales longer thanΛ, we can
approximate

{ } ( ) ( ) ( ) ( ) ( )å å åq» - - - + - +H Q U m F Q E
M

Q Q
1

2
cos

0

2
. 24

j
j j j

j
t j

i
i i0

2
1

2

For the Josephson arrayswith the capacitancematrix (6)we obtain =U E20 C and ( ) = L =M E E0 2 2 C
2

C 0,
where ( )º = LE e C E2 2C0

2 2
C. In this case the formof the third termof (24) is exact [8].

The adiabatic dynamics of themodel (24)without disorder was analyzed in [8]. The inclusion of disorder is
straightforward. The aim is to integrate out the degrees of freedom ( )qm ,i i . For a given (adiabatic) trajectory
Qi(t) the dynamics factorizes to independent dynamics of single junctions governed by theHamiltonians

( ) ( ) ( ) ( )q= - - -H Q U m F Q E
1

2
cos . 25i i i i i t i0

2

The Born–Oppenheimer periodic potential is given by the ground state of thewell knownHamiltonian (25),
( )+E Q FQ i i , where +Q Fi i serves here as the total quasi-charge. The function EQ(Q) is periodic with period 1 as

can be seen from (25). In the limit E Ut 0 ( E EJ C) it is given by ( ) ( )=E Q E QcosQ S , where ES is the
quantumphase slip amplitude [18].

Thuswe obtain the effective potential energy of thewhole array of the form

( )

( )( ) ( )

( ) ( ) ( )

å å

å å

å å

= + +

» - + +

= - + +

+

+

U Q B Q E Q F

M Q Q E Q F

E Q Q E Q F

1

2

1

2
0

. 26

i j
i i j j

j
Q i i

i
i i

i
Q i i

i
C i i

i
Q i i

C
,

,

1
2

0 1
2

This potential is supplemented by the kinetic energy. In the limit E Ut 0 ( E EJ C) it reads
( ) ˙= åT LQ1 2 i i

2
, where the L is the Josephson inductance » = =L L E E1 1tJ J. The quadratic part of the

LagrangianT−UC gives again the Luttinger liquidwith the parameters (18). Sincewe assume  pK 2 , the
periodic potential ( )+E Q FQ i i is relevant and pins the density profile. Inwhat followswe investigate the charge
pinning in this setup.

2.4. Edge bias
After generalizing the Josephson junction arraymodel to generic bosonic chains with an exponentially decaying
interactionwe now turn to the effects offinite size andfinite correlation length of disorder.While the effects we
study fromhere on should appear in a similar way in the generic bosonic chains we limit ourselves to the specific
formof interaction Mij that is found in Josephson junction arrays andQPS ladders, i.e. the last line of
equation (26). Consequently we employ the terminology of Josephson junction arrays and put =e2 1. Aswe are
primarily interested in the transport properties of the chains, we introduce a biasV at the edge:

( ) ( ) ( )å=
-

+ + -+U
Q Q

C
E Q F

V

C
Q

2
. 27

i

i i
Q i iC

1
2

0
1
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Biasing at the edge is somewhat unusual in the traditional de-pinningmodels [3], it is however the physical
reality inmany artificially fabricatedmesoscopic systems. It is for example not experimentally feasible to apply a
homogeneous external electric field to Josephson junction arrays. Instead these arrays always have to be voltage
biased at the edges in real experiments.

To simplify the treatment in terms of the de-pinning theory we transform the system froma boundary biased
situation to a spatially homogeneous driving by introducing a parabolic shift in Q and F

˜ ( )( ) ( )= -
+ - -

Q Q
C

C
V

N i N i

N

1

2
, 28i i

0

˜ ( )( ) ( )= +
+ - -

F F
C

C
V

N i N i

N

1

2
29i i

0

and the corresponding potential part of theHamiltonianwith a driving forceV/N

( ˜ ˜ ) ( ˜ ˜ )
˜

( )å=
-

+ + -+U
Q Q

C
E Q F

V

N

Q

C2
. 30

i

i i
Q i i

i
C

1
2

0

Herewe dropped a constant shift in the potential energy that does not depend on any of the variables Qi. This
energy shift has no effect on the equations ofmotion of the system and can therefore be safely ignored at this
point.

In this formulation the problem corresponds to the discrete version of thewell knownde-pinning problem
in one-dimension [2]. The elastic energy of the fieldQi is determined by the elastic constantC0. The elastic field is
pinned by the randompinning potential ( ˜ ˜ )+E Q FQ i i and driven by the homogeneous driving forceV/N. In
the pinned regime the applied forceV/N is not strong enough to overcome the potential barrier imposed on the
elastic object Qi by the randompinning potential.

In the case that no driving force is applied,V=0, the formof the elastic object is determined by a
competition between the elastic term ( )- +Q Qi i 1

2 and the pinning term ( )+E Q FQ i i inUC.On small length-
scales, where the elastic energy termdominates,Qi is approximately constant. ThefieldQi changes on large
length-scales where the pinning potential dominates. The crossover between the two regimes happens at the
length scale Lp, whichwas first determined by Larkin for aflux line lattice in type II superconductors [4]. The
length Lp goes bymany names depending on the physical systems that are pinned. In type II superconductors it is
called Larkin length, in ferromagnets with domain boundaries Imry–Ma length [5] and for CDW it is called
Fukuyama–Lee length [1]. In this workwe use the termLarkin length.

Once the driving force V/N exceeds a critical forceV Ncr , the pinning potential is overcome and the elastic
object starts tomove through the disorderedmedium. An intuitive argument tofind the value of the critical
driving force can be found by comparing the driving force to the pinning force at the Larkin length [4]. The
distribution of Q is rigid on length-scales up to the Larkin length. The elastic object can only start tomovewhen
the driving force exceeds the collective pinning force on a segment with length =L Lp.

2.5. Numerics
Besides the analytical considerations pertaining to the onset of transport we also numerically simulate the time
evolution of the systemswe are interested in.We use the numerical simulations to confirm the analytical results
of the paper.We focus on numerically determining the point of the de-pinning transition and continue to use a
model with a Josephson array type interactionmatrix Mij.

We obtain the critical driving forceVcr by numerically solving the equations ofmotion of the fieldQi that can
be obtained from theHamiltonian (30)

˙ ( ) ( ) a+
- -

+ + + =- +Q
Q Q Q

C
Q V Q F¨ 2

0, 31i
i i i

R i Q i i
1 1

0

˙ ( ) ( ) a+
-

+ + =Q
Q Q

C
Q V Q

V

C
¨ , 32R Q1

1 2

0
2 1

˙ ( ) ( ) a+
-

+ + + =-Q
Q Q

C
Q V Q F¨ 0. 33N

N N
R N Q N N

1

0

The functionVQ is the force exerted by the pinning potential given by

( ) ( ) ( )º ¶V Q E Q . 34Q Q Q

To guarantee numerical convergence we have introduced amass  and a linear dissipative termwith a
dissipation constant aR. Similar numerically simulations of the switching voltage in arrays of normal tunnel
contacts have been conducted in [19].
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The critical driving forceVcr is determined by adiabatically applying the boundary forceV and determining
whether a stable solution for the field Qi can be found. Although V is increased slowly, the switch-on time of the
driving forceV in the numerical simulation isfinite. The phenomenological dissipative termhas to be included
to compensate the small transport velocity Q̇i introduced by the switch-on ofV. The introduction of a
phenomenological term is also a standard tool in the derivation of the de-pinning force Vcr in renormalization-
group-treatments of pinned systems [2].

Themass  and the dissipation parameter aR both affect the dynamical properties of the system, however
they have no influence on the breakdown of the static state. In the example of a Josephson junction array, the
mass  corresponds to an inductance and aQ corresponds to anOhmic resistance. In a quantumphase slip
ladder  corresponds to a capacitance. In all simulationswe choose the tunnelling amplitude and the coupling
energy to be equal, EJ=EC, so that the potentialEQ is close to a cosine potential. The length of the chain N and
the parameterΛ are varied.

3. Results

3.1. Strong disorder
Wefirst consider the strongly disorderedmodel for which the results of the standard de-pinning theory [1, 2] are
directly applicable. Tomake the connection to these results the difference between the original disorder ( fi) and
the effective quasi-disorder before ( Fi) and after (F̃i) the parabolic shift in the quasicharge is important. In terms
of the original disorder the strongly disorderedmodel is defined by

[ ] ( )Î -f 1 2, 1 2 , 35i

( ) ∣ ∣ ( )= Q -⎜ ⎟⎛
⎝

⎞
⎠p f f

1

2
, 36i iH

where ( )p fi is the probability distribution of the disorder fi andQH is theHeavisideΘ-function. Thismodel
corresponds to the strongest possible disorder in the considered chainmodel. A frustration fiwith an absolute
value larger than 1/2 is compensated by placing an additional (anti)-boson on the ith island of the chain. The
disorder is bounded by1 2 and a box-distribution of disorder-charges inside these boundaries is themaximal
disorder.While fi itself is not spatially correlated, in the effective quasi-chargemodel, the quasi-disorder F̃i is
correlated between different islands i and j

˜ ˜ ( )á ñ ¹ ¹F F i j0 for . 37i j dis

Atfirst this seems to deviate from the normal situation in de-pinning theorywhere the disorder in the system is
not spatially correlated [2]. However, in the de-pinning theory, only correlations in the pinning potential are
relevant to the behaviour of the system. The potential EQ is a function of the quasi-charge with a periodicity
of 1. Since the background charges fi are homogeneously distributed in an interval that corresponds to the
periodicity of the potential, the offset F̃i can be absorbed into another uncorrelated and flatly distributed
disorder variable f bi

˜ ( )( ) ( )= +
+ - -

+ -F F
C

C
V

N i N i

N
f f

1

2
, 38i i i i

b
1

0

( ˜ ˜ ) ( ˜ ) ( )+  +E Q F E Q f , 39Q i i Q i i
b

( )Î -
⎡
⎣⎢

⎤
⎦⎥f

1

2
,

1

2
, 40

i
b

( ) ∣ ˜ ∣ ( )= Q -⎜ ⎟⎛
⎝

⎞
⎠p f f

1

2
. 41

i
b

iH

From the point of view of the potentialEQ, the quasi-disorder F̃i is equivalent to a spatially uncorrelated disorder
field f bi in themaximally disorderedmodel.

Another way to determinewhether spatial correlations in F̃i affect the quasi-chargemodel, is to calculate the
disorder-averaged correlation function of the pinning potential:

( ˜ ˜ ) ( ˜ ˜ ) ( ) ( )dá + + ñ = -E Q F E Q F R Q Q , 42Q i Q j i j1 2 dis 2 1 ,

where the correlation functionR(Q) is given by

( ) ( ) ( ) ( )ò= +
-

R Q E Q F E FdF . 43Q Q
1
2

1
2

Since the correlator of the pinning potential is proportional to aKronecker delta, the pinning potential is not
spatially correlated.
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Wehave now seen that for themaximal disordermodel we arrive at an effectivemodel that conformswith
the standard assumptions of de-pinning theory. In this case the Larkin length and the critical driving force are
well known (see for example [1]).

The approximate value of the Larkin length in one-dimensional systems is given by [1]

˜ ( )= L-
-⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥L R

E

E
3 . 44p

J

C

2
3

4
3

2
3

The relevant parameters of the chain are the energy EC, the tunnelling amplitude EJ, the chain length N andΛ.
To express the Larkin length in terms of these parameters we have defined the function R̃

˜ ( )
( )=

⎛
⎝⎜

⎞
⎠⎟R

E

E

E

E16
, 45QJ

C

max 2

C
2

where EQ
max is the amplitude of the randompinning potential ( ˜ ˜ )+E Q FQ i i . The function R̃ is a function of the

dimensionless ratio of the tunnellingmatrix element and EC. The function needs to be determined numerically
only once for all possible values of chain length andC0.

Similarly the de-pinning force can be expressed in terms of R̃ and is given by [2]

( )»V N
C

l
L

1 1
46cr

0 p
2

˜ ( )= L-
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭N R
E

E
3 . 47J

C

4
3

2
3

2
3

Further corrections to this intuitive approach can be obtained from renormalization-group-approaches
[2, 20, 21].We use the approximation equation (46) in this work.

Inmost systems, where de-pinning theory is applicable, the system size ismuch larger than the Larkin length
and it is a good approximation to assume infinite system size.We now turn our attention specifically to short
finite chains. From equation (47)we see that the critical driving force decreases with increasingΛ. At the same
time the Larkin length increases

( )µ LL . 48p
4
3

Infinite chains the Larkin length becomes equal to the system size NwhenΛ reaches the value,

˜ ( )L =
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭N R
E

E
3 . 49N

J

C

3
4

1
4

IncreasingΛ further while keeping EC constant only increases the elastic energyEC0 coupling neighbouring
islands. The Larkin length, the length-scale onwhichQ is approximately constant, should increase. However in
this limit the Larkin length is equal to the system size and therefore the fieldQ is approximately constant along
thewhole array.

For L LN the critical driving force is independent of the interaction length as long as EC is kept constant.
A lower boundary forVcr is approximately given by

˜ ( )» -
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭V N R
E

E
3 , 50cr

J

C

1
2

1
2

which is the critical drivingVcr onefinds for L = LN . In realityVcr saturates for smallerΛ, when N is of the
same order ofmagnitude as Lp (for comparison see the numerical simulations in section 3.2). This leaves the
principal behaviour of equation (50) unchanged and contributes a prefactor of order one in the expression for
the critical driving force.

3.2.Weak disorder
In theweak disorder case the distribution of the bare disorder fi is notflat in the interval [ ]-1 2, 1 2 , instead the
probability distribution either decreases for larger absolute values of fi or is cut-off at an absolute value smaller
than 1/2.

We consider twomodels of weak disorder: (i) theweak box disorder

( )g g
Î -

⎡
⎣⎢

⎤
⎦⎥f

2
,

2
, 51i

( ) ∣ ∣ ( )
g

g
= Q -⎜ ⎟⎛

⎝
⎞
⎠p f f

1

2
, 52i iH
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with the disorder strength g < 1; (ii)Gaussian disorder

( ) ( )
s p

= -
sp f

1

2
e , 53i

fi1
2

2

2

with a standard deviation s < 1 2.
Weak disorder is particularly relevant for a ladder ofQPS junctions [10, 11]. In such a system,

superconductingwires are arranged in a ladder configuration, such that a one-dimensional chain of
superconducting loops is formed. The superconductingwires that are shared by neighbouring loops contain a
very thin section that forms theQPS-junction.Magnetic flux quanta in the loops assume the role of the bosonic
particles. TheQPS-junctions between the superconducting loops provide the hoppingmatrix element and the
couplingmatrix Mi j, is the inverse inductancematrix of the system. In a ladder configuration of
superconductingwires the inductancematrix has the exactly the previouslymentioned tridiagonal form
equation (6), as long as the kinetic inductance dominates over the geometric inductance. Due to the lack of large
magnetic dipoles in the vicinity of such a system, aweak disorder limit ismore likely to be realized than in
Josephson junction arrays.

In theweak disordermodels the spatial correlation in the quasi-disorder ˜+Fi 1 can not be neglected and does
lead to a finite spatial correlation in the pinning potential. Themaximal value of the disorder fi is smaller than
the periodicity of the potential EQ and the long range correlation in the quasi-disorder F̃i can not be absorbed in
the potential. The correlation function of the pinning potential therefore acquires a long range correlation
component.We decompose the correlation function into short and long-range components

( ˜ ) ( ˜ ) ( ) ( ) ( )dá + ñ = +E Q F E F R Q R Q i j, , , 54Q i Q j i jdis , 2

with the δ-correlated componentR(Q) and the long range correlation function ( )R Q i j, ,2 . Due to the long
range correlations the intuitive picture of the de-pinning-transition is not valid anymore. For a long range
correlation function

( ) ∣ ∣ ( )µ - -R Q i j i j, , , 55a
2

that decays with a power law, the problemhas been approachedwith the functional renormalization group
method in [12, 22].

It has been shown [6, 23] that these long-range correlations lead to the emergence of a new length-scale in the
pinned system, the typical correlation length Lcorr. The roughness functionw(x) of a pinned system shows a
different behaviour, namely a variation in the roughness exponent zrough, depending onwhether the system is
probed at length-scales smaller or larger than the correlation length [6].We derive typical correlation lengths for
the twoweak disordermodels under the assumption that EQ can be approximated as a cosine-potential

( )~E E , 56J C

( ) [ ( )] ( )p» -E Q E Q1 cos 2 . 57Q Q
max

To calculate the correlation function of the pinning-potential of two different chain sites j and kwe set,
without loss of generality, <j k. The correlation function is given by an integral over the disorder
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2
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j
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l j
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l
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2

1

where ˜( )p Fj is the probability distribution of the quasi-disorder Fj. Expressing the cosine in terms of exponentials
onefinds that the absolute value of the correlation functionR2 is bounded by an envelope function,RE for the
case of aweak box-disorder andRG for weakGaussian disorder. In theweak box-disorder case wefind

∣ ( )∣ ( ) ( ) ( ) ( ) pg
pg

- =
-⎛

⎝⎜
⎞
⎠⎟R Q j k R Q k j E, , , 2

sin
. 60Q

k j

2 E
max 2

The long-range correlation function decays exponentially with the distance k−j and the correlation of the
pinning-potential decays on the length-scale
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( ) ( )
( )

= -
pg

pg

L
1

ln
. 61corr

sin

As expected the correlation length goes to zero in the limit of themaximal disorder and diverges in the clean limit
without disorder

( )g   L1 0, 62corr

( )g    ¥L0 . 63corr

For aGaussian distribution of the bare disorder fi, the envelope functionRG is:

∣ ( )∣ ( ) ( ) ( ) ( ) - = p s- -R Q j k R Q k j E, , , 2 e . 64Q
k j

2 G
max 2 2 2 2

The correlation length is determined by the standard deviationσ of the bare disorder

( )
p s

=L
1

2
. 65corr 2 2

Wecan again test the limits of infinitely broad and non-disordered distributions

( )s  ¥  L 0, 66corr

( )s    ¥L0 . 67corr

In the broad limit theGaussian disorder shows the same asymptotic behaviour as the box-disorder distribution
when approaching themaximal disorder limit. Themaximal disorder limit is consistent with a very broad bare
Gaussian distribution. In the opposite limit theGaussian distribution corresponds to a homogeneous shift in the
definition of the quasi-charge and the correlation length diverges.

The correlation length Lcorrmarks the crossover between an almost disorder free and a strongly disordered
array. On length-scales smaller than the correlation length the value of the disorder Fi is approximately constant
and constitutes amere shift in the field Q. If theweakly disordered system is probed on these length-scales it
behaves like a clean chain. On larger length-scales the value of the disorder changes significantly and the system
behaves like a disordered chain. This transition is shown in the next sectionwith the example of the dependence
of the threshold voltage on the length of the chains.

3.3. The clean chain
Wenow turn to numerical simulations of the systemunder consideration to compare to the analytic results of
the previous section.

Wefirst simulate clean chains with zero disorder. Thismodel has been used as the defaultmodel in a number
of experimental papers on Josephson junction arrays [24, 27, 28] and its analytical knownproperties provide us
with a benchmark for the numerical simulationmethod.

Also, while thismodel does not account for the relevant charge disorder in Josephson arrays [29], itmight be
more relevant forQPS-arrays than Josephson junction arrays as the former lack the strong charge disorder that
can be found in the latter.

In the clean case, a simple argument to determine the critical driving forceVcr can be found in [24]. In the
continuum limit ( L 1) for long chains ( L N ) the effectivemodel of the clean chain is equal to the sine-
Gordonmodel with amodified potential. The solutions of the standard sine-Gordon equation ofmotion are the
well known solitons [8, 26]

( ) ( ) ( )
p

= g -
LQ x

2
arctan e , 68

x vt
sol

( )g =
-

1

1
, 69

v

LC

sol
2

0

with the soliton velocity v. The spatial derivative of a static soliton v=0 has amaximal value of

( )∣ ( )
p

¶
L

=Q x
1 1

. 70x v 0

The boundary driving forceV takes the formof a boundary condition on the spatial derivative at x=0

( )∣ ( )¶ ==Q x
C

C
V . 71x x 0

0

This can be used to estimate themaximal boundary forceV for which a static soliton can exist at the array ends

( )
p

= µ LV
C

C
V

4

2
, 72Qcr

0

max
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( ( )) ( )= ¶V E Qmax . 73Q
Q

Q Q
max

In the Josephson junction arrays this force corresponds to the switching voltage at which the array switches from
insulating to transport behaviour.

The critical driving force does not depend on the array length and is proportional to the interaction lengthΛ.
Both features are confirmed by the numerical simulations infigures 1 and 2.

In the limit L > N the spatial dependentfieldQi takes the same value on all islands of the chain, Q Qi

and the coupled equations ofmotion simplify to a single equation ofmotion

˙ ( ) ( ) a+ + =Q Q V Q
V

C
¨ . 74R Q

The one-dimensional clean chainmodel reduces to a zero-dimensionalmodel. In this limit, the critical driving
force increases linearly with array size and is independent ofΛ (figure 1).

When the interaction lengthΛ is comparable to the inter-site distance L < 2 we are no longer in the
continuum limit and the analytic approximation equation (72) is not valid. The switching-voltage is
proportional to the length N and theΛ-dependence can befitted to an exponential behaviour

( )b= g- LV N e , 75cr

as seen infigure 2.Only one set offitting parameters b g, is used for all four simulated chain-lengths.
TheΛ-dependence in equation (75) corresponds to the de-pinning of a single charge excitation in a

disordered discrete lattice with large lattice spacing. This transition is determined by the Peierls–Nabarro-

Figure 1.The critical driving forceVcr of the clean chain is plotted as a function of the chain-length for several values ofΛ. As long as
the chain ismore than twice as long as L V, cr is independent of the length N and proportional toΛ. The critical driving force has the
value predicted by an analytic estimate byHaviland andDelsing [24]. In the regionwhere the chain is shorter thanΛ the system is in
the zero-dimensional limit. The critical driving force is proportional to N and does not depend onΛ.

Figure 2.The critical driving forceVcr as a function ofΛ for different chain-lengths N in the clean chain. As long asΛ is larger than 2,
the analytic estimate equation (72) is reproduced and µ LVcr , as it is shown by the linearfit (dashed line) in the plot. For smallerΛ the
de-pinning force has beenfitted (red lines) to an exponential function b= g- LV esol as it arises from the Peierls–Nabarro-potential
[25, 26].
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potential [25, 26]. In the context of Josephson-junction-arrays this was discussed by Fedorov et al for the de-
pinning of a single e2 -charge-excitation [26].

3.4. Themaximally disordered array
Herewe present the critical driving force obtained fromnumerical simulations of themaximally disordered
model. Infigure 3we compare the dependence ofVcr on the parameter Nwith analytic estimate in
equation (47). At large N, where the array is longer than the Larkin length >N Lp, wefind that the numerical
simulations fit to the expected linear dependence on the system length. For small system lengths the switching
voltage does not increase linearly with N, as expected in the saturation regimewhere the Larkin length is
comparable to the system size (equation (50)).

The numerically determined dependence ofVcr onΛ is shown in figures 4 and 5. For smallΛ the inter-site
distance is comparable toΛ and the continuum limit of the standard de-pinning-picture does not apply. For
largeΛ the Larkin-length is comparable to the chain-length N andwe observe a saturation ofVcr withΛ. The
saturation sets in for

( )a»N L , 76sat p

where asat is of order of one. Comparing the analytic estimate equation (50)with the saturation points we expect
asat in the range  a2.5 3.5sat .

Figure 3.The critical driving forceVcr is plotted as a function of the length N of the disordered chain. For L = 2 (black crosses) the
critical force grows linearly with the chain-length N as expected from the analytic estimate (black line). For L = 5 (blue triangles)Vcr

is proportional to N at larger chain-lengthswhen » »N L100 2.5 p andfits the analytic estimate (blue solid line) from equation (47).
Due to the strong dependence on the randomdisorder-configuration the linear dependence is only realized on average over 20
disorder configurations. The error-bars give the standard-deviation of the critical driving force in the sample of disorder-
configurations.

Figure 4.The critical driving force is plotted as a function ofΛ in disordered arrays for a wide range ofΛ. For L < 2 the de-pinning-
theory for the continuum limit is not applicable. For largeΛ the Larkin length Lp is comparable to the chain length andVcr is
independent ofΛ, see also equation (50). For intermediateΛ the behaviour (black rectangle) is shown infigure 5.
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In this intermediate regimewe expect a power-law behaviourwith an exponent of- 2

3
(equation (47)).

Fitting the numerical data to a power-lawwe obtain the exponents−0.49±0.05 (N= 150) and−0.56±0.03
(N= 195). However this is limited by the numerically accessible chain-lengths andwe can not obtain a robust
confirmation of the value of the exponent ofΛ from the numerical simulations.

3.5.Weak disorder and emergent correlation length
To validate our analyticmodel of the introduction of a new length-scale byweak disorder, we also simulate the
de-pinning-transition of chainwithweak box-disorder.We choose the disorder strengths

( )g g= = »L0.25, 0.25 10corr and ( )g g= = »L0.125, 0.125 40corr .
Infigure 6 it is shown that the systemundergoes a transitionwhen the array-length is equal to the correlation

length, =N Lcorr. Below <N Lcorr the chain is described by the clean chainmodel (g = 0). Above the
transition the critical driving force increases linearly with N. The N-dependence ofVcrmatches themaximally
disorderedmodel g = 1.

When the correlation length is significantly larger than the array size we can approximate all correlated
disorder terms Fi by a single value »F Fi . The perfectly correlated disorder term F can be absorbed into the
definition of the quasi-charge and the system is equivalent to the clean arraywithout disorder Fi=0.

Figure 5.A comparison ofVcr in the intermediateΛ regime offigure 4 (black rectangle)with a fitted power-law decay (solid lines) and
the analytic estimate equation (47) (dashed lines). From thefit we obtain an exponent of−0.49 (N = 150) and−0.56 (N = 195)while
de-pinning theory predicts an exponent of- 2

3
.

Figure 6.The critical driving forceVcr is plotted as a function of the chain-length in aweak box-disordermodel. To enhance visibility
we show two subplots for different disorder strengths: g = 0.25, bluemarkers, subplot (a) and g = 0.125 greenmarkers subplot (b).
For comparison theVcr of the clean case (g = 0, red asterisk) and themaximally disorderedmodel (g = 1, black crosses) are included
in the plots. The behaviour ofVcr changeswhen the chain length is equal to the correlation length =N Lcorr. Below =N Lcorr, the
critical driving force has approximately the same value as in the clean case. Above =N Lcorr it increases linearly with N as in the
maximal disordermodel, ( )g = »L 0.25 10corr and ( )g = »L 0.125 40corr .
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When the length of the chain exceeds the correlation length one has to distinguish between two cases. The
case when the correlation length is shorter thanΛ and the case where it is longer. Thefirst case requires a careful
treatment tomap theweakly disordered case to an effective strongly disorderedmodel. Herewe limit ourselves
to the simpler second case. In this case one can understand the behaviour of the critical driving force with the
following simple argument. The typical length of a solitonΛ is smaller than the correlation length and static
solitonic solutions of the fieldQ can exist in the chain. Since the chain is longer than Lcorr it can be subdivided
into N Lcorr domains of length Lcorr. To switch into the conduction regime, the applied driving force needs to
overcome the transport threshold in each domain, where the transport threshold is proportional to the critical
driving force in the clean chain equation (72). This gives

( )µV
C

C
V

N

L2
. 77Qcr

0

max

corr

Thismechanism explains the linear increase inVcr seen infigure 6 for >N Lcorr.

4.Discussion and conclusions

In this paper we have studied the de-pinning behaviour of discrete bosonic chains that can be described by an
effective disordered sine-Gordonmodel. Themost experimentally relevant realization of thismodel are linear
arrays of Josephson junctions, however another possible realization is a ladder configuration of superconducting
wires withQPS elements separating neighboring superconducting loops.

We used analytical considerations and numerical simulations to determine the critical driving force required
to overcome the pinning of bosons in the chain. In the parameter regime that corresponds to experimentally
studied arrayswe reproduce the recently observed behaviour [7].

The classic depinningworks [1–5] aremostly concernedwith the infinitely long systems inwhich depinning
can be analyzed as a critical phenomenon. In particular the investigated systems aremuch longer than the
interaction range and the correlation length of disorder. Another extreme is the power-law correlated disorder
with an infinite correlation length [12]. In this workwe analyze numerically the depinning transition in the
experimentally relevant regime of all three length (system length, disorder correlation length, interaction range)
being of the same order.

We see a saturation regime in short chains where the Larkin length exceeds the system length and the critical
driving force is independent of the rangeΛ of the repulsive interaction. In theweak disorder regimewe observe
the emergence of a new correlation length-scale Lcorr. Both effects show good agreement between the analytic
results and the numerical simulations. The obtained results could be important for future experiments on
arificial chains with a low level of intrinsic disorder such asQPS ladders.
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