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Abstract

We consider onset of transport (de-pinning) in one-dimensional bosonic chains with a repulsive
boson—-boson interaction that decays exponentially on large length-scales. Our study is relevant for (i)
de-pinning of Cooper-pairs in Josephson junction arrays; (ii) de-pinning of magnetic flux quanta in
quantum-phase-slip ladders, i.e. arrays of superconducting wires in a ladder-configuration that allow
for the coherent tunneling of flux quanta. In the low-frequency, long wave-length regime these chains
can be mapped onto an effective model of a one-dimensional elastic field in a disordered potential.
The standard de-pinning theories address infinitely long systems in two limiting cases: (a) of
uncorrelated disorder (zero correlation length); (b) of long range power-law correlated disorder
(infinite correlation length). In this paper we study numerically chains of finite length in the
intermediate case of long but finite disorder correlation length. This regime is of relevance for, e.g., the
experimental systems mentioned above. We study the interplay of three length scales: the system
length, the interaction range, the correlation length of disorder. In particular, we observe the crossover
between the solitonic onset of transport in arrays shorter than the disorder correlation length to onset
of transport by de-pinning for longer arrays.

1. Introduction

Depinning theory describes the onset of propagation in many different physical systems. Examples include
electrical transport in charge density waves (CDW) [1, 2], the critical current of magnetic flux lattices [3, 4] in
type Il superconductors, the propagation of magnetic domain boundaries [5] and crack formation in strained
materials [6]. [t was recently shown that the onset of electrical transport in one-dimensional arrays of Josephson
junctions is also determined by the de-pinning of the charge-configuration along the array [7].

In this paper we consider a more general model, a discrete chain macroscopically occupied by bosons with a
repulsive interaction that decays exponentially on long length-scales. In such a model the interaction between
neighboring islands can be expressed by introducing a continuous variable, quasi-charge/flux, whose value is
determined by the distribution of bosons along the chain. Assuming that the continuous variable changes
adiabatically, an effective model can be derived with the help of the Born—Oppenheimer approximation [7, 8]. In
the case that disorder is present in the system, de-pinning theory can be applied to find the critical driving force
thatleads to a steady boson transport through the system. The Josephson junction arrays studied in [7] represent
aparticular realization of this model. Alternatively, our results describe the dual system of quantum phase slip
(QPS) ladders. In the latter case (QPS ladders) the bosons are magnetic flux quanta that tunnel through QPS
elements [9-11] that separate the loops in a ladder.

In voltage biased Josephson junction arrays, the de-pinning theory describes the transition from an
insulating regime at low voltages to a transport regime at higher voltages. The critical voltage of the transition is
referred to as the switching voltage. The insulating regime of the arrays is governed by an effective sine-Gordon-
like quasi-charge model.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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In the study of the onset of transport in Josephson junction arrays, [ 7], the connection to standard de-
pinning theory was established under the assumption of a very particular capacitance matrix consisting to the
junction capacitances C and the capacitances to the ground Cy. Here we generalize that connection to the case of
a general matrix of capacitances provided it is characterized by a finite screening length. Moreover, [7] addressed
the regime of strongly disordered background charges (also referred to as the maximal disorder model). Under
this assumption the disorder-term in the effective model is spatially uncorrelated, allowing one to apply the
standard de-pinning theory. Additionally the mapping to the standard de-pinning theory assumes the array
length N to be much larger than all other length-scales of the problem.

In this paper we study the de-pinning behaviour of more general chain models. In the case of short chains we
find a saturation regime, in which the Larkin length controlled by the range of repulsive interaction exceeds the
length of the system. In this regime the array behaves essentially as alumped zero-dimensional element. Another
case is that of weak charge (flux) disorder, which corresponds to along disorder correlation length in the
effective sine-Gordon-like description. In this case we observe a crossover between a regime, in which the onset
of transport is due to injection of ballistic solitons and a regime of pinning weakened by the correlations. The de-
pinning process in systems with infinite range (power law) disorder correlations has been studied in [12].

2. Methods

2.1. The model
We start by introducing the generalized model that contains the recently studied model for Josephson junction
arrays [7] as a special case. We consider a chain of islands

1
H= ZEﬁiMi,jﬁj - Z t (b, b; + h.c) 1)
i,j i

fii=N;i — No — [ (@)

where N;are the discrete bosonic occupation numbers of the islands, Ny is the average occupation number at
equilibrium (chemical potential, positive charge background), f; are the random gate charges, b;, b/ are the
bosonic annihilation and creation operators (N; = b, ;) and the bosonic tunnelling amplitude is given by . In
thelimit Ny > 1we can introduce the phase variables ¢, and replace b; =~ /Ny e 19 bf ~ /Ny el%, which
leads to

1. .
H= ZE”I’M"J"J' — > Eicos(gi_y — s 3)
ij i
where E;, = Nyt /2. For convenience we also introduce n; = N; — Ny, so that /i; = n; — f, and n;and ¢, are
conjugate variables.
We assume that the long-range behaviour of the interaction matrix M;; = M,;_; is determined by an
exponential decay on a length-scale A

li—jl

Mi,j xX e A for |1 - ]l = A (4)

This general class of models contains Josephson junction arrays, chains of superconducting island coupled
via Josephson junctions and with self-capacitances C, (capacitances to the ground) and capacitances C between
the neighboring islands (junction capacitances). In this case E, = Ejis the Josephson energy whereas the
coupling matrix is given by

M = (20*[C )
where
—C
A —-C C+2¢ —C
¢= —-C  Co+2C —CYf ©
In the large A-regime the interaction matrix is well approximated by the following expression:
Mi*,ﬂ ~ AECeJTI, (7)

where the junction charging energy is defined by Ec = (2¢)?/2C. In particular the energy cost of a single charge
insuch anarray is of the order M;; ~ AEc. Activated behaviour with activation energy of order AE; was
observedin [13].

Ithas been realized long ago [14, 15] that for A > 1adescription based on the number of Bosons that have
tunnelled between neighbouring chain sites is more appropriate than a description based on the occupation

2
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number of the islands of the chain. We introduce, thus
m; = Snj, F = Zf] (8
j=1
The resulting Hamiltonian has the form,
H = > Y, = F)Uyjmj — B) — S Escos(6), ©)
ij i

with the modified coupling matrix
Uij = Uii-ji = 2Mji-j| = Mji=jj-1 — Mji—jj+1- (10)
Here 6; = ¢,_; — ¢,. One can easily check that m,and ¢; are conjugate variables.

A qualitative picture in the low energy, long wave length regime can be obtained from the Fourier transform
of the coupling matrices

U (k) = FI(U;-j) = 2(1 — cos(k))M (k) (11)
M (k) = FI(M;-j), (12)
where k € [—, 7]. The k — 0behaviour of Mj;_j is dominated by the exponential decay and for small

k < A !the Fourier transform of the interaction matrix M;;_j is approximately constant, M (k) ~ M (0),
which leads to

U (k) =~ M (0)k>. (13)

In the case of a Josephson junction array the exact expressions are
2

M (k) = AEc— A , (14)
yeia 2(1 — cos(k))
M (0) = 2NEc.. (15)

2.2. Standard villain transformation

The model (9) can be treated by a standard technique involving the Villain approximation [15]. We omit all the
details and only mention the fact that the spin wave part of the resulting model in the limit k < A™!, where

U (k) ~ M (0)k? is quadratic, corresponds to a Luttinger liquid [16]

_v 2 l 2
H= zfdx[K[G(x)] + 2 lom@)] ] (16)

[0 (x1), m(e)] = i6 (a — %), (17)

where the Luttinger liquid velocity v and the Luttinger liquid parameter K scale with the original model
parameters as

v— JMOE,, (18)

E,
K = /M(O). (19)

The corrections to (17) due to vortices (phase slips) in this type of theories (see, e.g., [17]) are of the form
xcos(2mp[m(x) + F(x)])with p € Z. The amplitude in front of this term (fugacity of vortices) is predicted to
be small in the limit A >> 1[14, 15] so that without disorder the critical value of K is close to 2 /7 (it may be
renormalized by disorder [16]).

We assume that M (0) > E; and therefore K < 2 /7. In this case the system is firmly in the CDW-regime
[16] and dominated by classical charge dynamics. The disorder F(x) enters the relevant phase slip terms
oxcos(2m [m(x) + F(x)]) and can pin the charge density profile.

2.3. Alternative derivation

Here we generalize the derivation given in [8] for the case of a Josephson array described by the capacitance
matrix (6) to the case of a more general matrix M; ; characterized by a screeninglength A. We start by rewriting
the Hamiltonian (9) as

1 1
H = =3 Us(mj — B) = 3JEicos(8y) + Y (mi — F)oUs; (m; — F), (20)
j j L]
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where Uy = U;jand 6U;; = Uj;; — U6, ;. Next we transform the third term with the help of the Hubbard-
Stratonovich transformation, which introduces a new degree of freedom Q;, often referred to as the quasi-
charge. This gives

H{Q}= %ZUO(mj — F)* — > E; cos(0))
j j

Uz
— Uy > Qj(mj — F) — TOZQi [6U 1 Q) (21)
j 5]
such that H = ming[H {Q} ]. Next
1 1
H{Q} = EZUo(mj — F — Q)* — Y E,cos(f)) + EZQiBi,ija (22)
j j ij
where B;; = ~U} [6U '] — Uy j. The Fourier transform reads
Us
Bk)=-Uy— ———. 23
(k) = ~Us — G (23)

For small wave vectors k < A~ we obtain U (k) < Upand B(k) ~ U (k) ~ M (0)k?2. Thus, assuming Q;
changes slowly enough as a function of the coordinate 7, i.e., changes on length scales longer than A, we can

approximate
1 2 M (0) 2
H{Q} ~ > > Uo(mj — F — Q))* — > E;cos(8)) + - > (Qi — Qi)™ (24)
j J i

For the Josephson arrays with the capacitance matrix (6) we obtain Uy = 2E and M (0) = 2A2E¢ = 2Ec,
where Ecy = (2¢%)/2C = A’E.. In this case the form of the third term of (24) is exact [8].

The adiabatic dynamics of the model (24) without disorder was analyzed in [8]. The inclusion of disorder is
straightforward. The aim is to integrate out the degrees of freedom (m1;, 6;). For a given (adiabatic) trajectory

Q,(?) the dynamics factorizes to independent dynamics of single junctions governed by the Hamiltonians
1
Hi(Q) = 3 Up(m; — F; — Q;)* — E; cos(6)). (25)

The Born—Oppenheimer periodic potential is given by the ground state of the well known Hamiltonian (25),
Eq(Q; + E),where Q; + F serves here as the total quasi-charge. The function E(Q) is periodic with period 1 as
can be seen from (25). In thelimit E, > U, (E; > Ec)itis given by Eq(Q) = Es cos(Q), where Eg is the
quantum phase slip amplitude [18].

Thus we obtain the effective potential energy of the whole array of the form

1
Uc = 3 > QiBi;jQi + Y Eq(Qi + F)
i,j j

~ 2T MOQ - Qe + YEo(Q + F)
=2 Eoo(Qi = Qi)* + 3 Eo(Qi + . 06

This potential is supplemented by the kinetic energy. In the limit E; > U, (E; > E¢)itreads

T=1/2)Y; LQ,-Z, where the Lis the Josephson inductance L ~ L; = 1/E, = 1/E;. The quadratic part of the
Lagrangian T — U gives again the Luttinger liquid with the parameters (18). Since we assume K < 2/, the
periodic potential E (Q; + F)is relevant and pins the density profile. In what follows we investigate the charge
pinning in this setup.

2.4. Edge bias

After generalizing the Josephson junction array model to generic bosonic chains with an exponentially decaying
interaction we now turn to the effects of finite size and finite correlation length of disorder. While the effects we
study from here on should appear in a similar way in the generic bosonic chains we limit ourselves to the specific
form of interaction M;;that is found in Josephson junction arrays and QPS ladders, i.e. the last line of

equation (26). Consequently we employ the terminology of Josephson junction arrays and put 2e = 1. As we are
primarily interested in the transport properties of the chains, we introduce a bias V at the edge:

L . 2
Ue = 2% + Eo(Qi+ F) — %Ql. 27)
0

i
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Biasing at the edge is somewhat unusual in the traditional de-pinning models [3], it is however the physical
reality in many artificially fabricated mesoscopic systems. It is for example not experimentally feasible to apply a
homogeneous external electric field to Josephson junction arrays. Instead these arrays always have to be voltage
biased at the edges in real experiments.

To simplify the treatment in terms of the de-pinning theory we transform the system from a boundary biased
situation to a spatially homogeneous driving by introducing a parabolic shiftin Q and F

~ Co,(N+1—10)N—1)
i=Qi——=V ) 28
Qi=Q C N (28)
Fi:Fi_l_@V(N—&—l—z)(N—l) (29)

C 2N
and the corresponding potential part of the Hamiltonian with a driving force V/N
(Qi — Qiyn)? = = VG

Uo=Y =0 L B (@ + F) — —= 30
c Zl: 2, Q(Qi ) NC (30)

Here we dropped a constant shift in the potential energy that does not depend on any of the variables Q;. This
energy shift has no effect on the equations of motion of the system and can therefore be safely ignored at this
point.

In this formulation the problem corresponds to the discrete version of the well known de-pinning problem
in one-dimension [2]. The elastic energy of the field Q; is determined by the elastic constant Cy. The elastic field is
pinned by the random pinning potential Eo(Q; + F) and driven by the homogeneous driving force V/N.In
the pinned regime the applied force V/N is not strong enough to overcome the potential barrier imposed on the
elastic object Q; by the random pinning potential.

In the case that no driving force is applied, V = 0, the form of the elastic object is determined by a
competition between the elastic term (Q; — Q;. ;)? and the pinning term E (Q; + E) in Uc. On small length-
scales, where the elastic energy term dominates, Q; is approximately constant. The field Q; changes on large
length-scales where the pinning potential dominates. The crossover between the two regimes happens at the
length scale L,, which was first determined by Larkin for a flux line lattice in type I superconductors [4]. The
length L, goes by many names depending on the physical systems that are pinned. In type IT superconductors it is
called Larkin length, in ferromagnets with domain boundaries Imry—Ma length [5] and for CDW it s called
Fukuyama-Lee length [1]. In this work we use the term Larkin length.

Once the driving force V/N exceeds a critical force V. /N, the pinning potential is overcome and the elastic
object starts to move through the disordered medium. An intuitive argument to find the value of the critical
driving force can be found by comparing the driving force to the pinning force at the Larkin length [4]. The
distribution of Qisrigid on length-scales up to the Larkin length. The elastic object can only start to move when
the driving force exceeds the collective pinning force on a segment withlength L = L,

2.5. Numerics
Besides the analytical considerations pertaining to the onset of transport we also numerically simulate the time
evolution of the systems we are interested in. We use the numerical simulations to confirm the analytical results
of the paper. We focus on numerically determining the point of the de-pinning transition and continue to use a
model with a Josephson array type interaction matrix M;;.

We obtain the critical driving force V., by numerically solving the equations of motion of the field Q; that can
be obtained from the Hamiltonian (30)

2Q; — Qi1 — Qi1

MQ; + + arQ; + Vo(Q; + F) =0, (31)
0
M+ L= 40+ V@) = 2, (32)
Cy C
.« Qn — Qn-1 : _
MQn + EEe— + arQn + Vo(Qn + Fy) = 0. (33)
0

The function Vg, is the force exerted by the pinning potential given by
Vo(Q) = 0gEq(Q). (34)

To guarantee numerical convergence we have introduced amass M and alinear dissipative term with a
dissipation constant og. Similar numerically simulations of the switching voltage in arrays of normal tunnel
contacts have been conducted in [19].
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The critical driving force V., is determined by adiabatically applying the boundary force V and determining
whether a stable solution for the field Q; can be found. Although Vs increased slowly, the switch-on time of the
driving force Vin the numerical simulation is finite. The phenomenological dissipative term has to be included
to compensate the small transport velocity Q; introduced by the switch-on of V. The introduction of a
phenomenological term is also a standard tool in the derivation of the de-pinning force V,,in renormalization-
group-treatments of pinned systems [2].

The mass M and the dissipation parameter oy both affect the dynamical properties of the system, however
they have no influence on the breakdown of the static state. In the example of a Josephson junction array, the
mass M corresponds to an inductance and g corresponds to an Ohmic resistance. In a quantum phase slip
ladder M corresponds to a capacitance. In all simulations we choose the tunnelling amplitude and the coupling
energy to be equal, E; = E, so that the potential E, is close to a cosine potential. The length of the chain Nand
the parameter A are varied.

3. Results

3.1. Strong disorder

We first consider the strongly disordered model for which the results of the standard de-pinning theory[1, 2] are
directly applicable. To make the connection to these results the difference between the original disorder ( f;) and
the effective quasi-disorder before ( F;) and after (F)) the parabolic shift in the quasicharge is important. In terms
of the original disorder the strongly disordered model is defined by

f;' € [—1/2, 1/2]> (35)
p(f) = @H(é - |ﬁ|), 36)

where p (f) is the probability distribution of the disorder f;and Oy is the Heaviside ©-function. This model
corresponds to the strongest possible disorder in the considered chain model. A frustration f; with an absolute
value larger than 1/2 is compensated by placing an additional (anti)-boson on the ith island of the chain. The
disorder is bounded by +1/2 and a box-distribution of disorder-charges inside these boundaries is the maximal
disorder. While f; itself is not spatially correlated, in the effective quasi-charge model, the quasi-disorder F; is
correlated between different islands i and j

(EiE)gis = 0 for i=j. (37)

At first this seems to deviate from the normal situation in de-pinning theory where the disorder in the system is
not spatially correlated [2]. However, in the de-pinning theory, only correlations in the pinning potential are
relevant to the behaviour of the system. The potential Eq, is a function of the quasi-charge with a periodicity

of 1. Since the background charges f; are homogeneously distributed in an interval that corresponds to the
periodicity of the potential, the offset F; can be absorbed into another uncorrelated and flatly distributed
disorder variable f?

s L G, (N+T-DN=D .
B=Foat oV ~ +f =1 (38)
Eq(Q; + F) — Eo(Qi + f1), (39)
e
fel-25) (40)
p(fh) = @H(% - |]f,-|). (a1)

From the point of view of the potential E,, the quasi-disorder FE is equivalent to a spatially uncorrelated disorder
field f in the maximally disordered model.

Another way to determine whether spatial correlations in F affect the quasi-charge model, is to calculate the
disorder-averaged correlation function of the pinning potential:

(Eq(Q1 + E)Eq(Qz + F))ais = R(Q2 — Q1)éij, (42)

where the correlation function R(Q) is given by

RQ = [ dF Eo(Q + F)Eq(F). (43)

o=

Since the correlator of the pinning potential is proportional to a Kronecker delta, the pinning potential is not
spatially correlated.
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We have now seen that for the maximal disorder model we arrive at an effective model that conforms with
the standard assumptions of de-pinning theory. In this case the Larkin length and the critical driving force are
well known (see for example [1]).

The approximate value of the Larkin length in one-dimensional systems is given by [1]

I EATR
Ly=3 [R(Ec)] . (44)

The relevant parameters of the chain are the energy E, the tunnelling amplitude Ej, the chain length Nand A.
To express the Larkin length in terms of these parameters we have defined the function R

( E EZ™)?
RIZL| = (Q—z’ (45)
Ec 16E2

where E5™™* is the amplitude of the random pinning potential E (Q; + E).The function R is a function of the
dimensionless ratio of the tunnelling matrix element and E¢. The function needs to be determined numerically
only once for all possible values of chain length and C,.

Similarly the de-pinning force can be expressed in terms of R and is given by [2]

1.1
Vi~ N—I— 46)
cr C() LS (

= N33 A—%{ﬁ(ﬂ)}s. (47)
Ec

Further corrections to this intuitive approach can be obtained from renormalization-group-approaches
[2,20, 21]. We use the approximation equation (46) in this work.

In most systems, where de-pinning theory is applicable, the system size is much larger than the Larkin length
and it is a good approximation to assume infinite system size. We now turn our attention specifically to short
finite chains. From equation (47) we see that the critical driving force decreases with increasing A. At the same
time the Larkin length increases

L, ox A, (48)

In finite chains the Larkin length becomes equal to the system size Nwhen A reaches the value,

Ay = Nia{ﬁ(ﬂ)F. (49)
Ec

Increasing A further while keeping E constant only increases the elastic energy Ec, coupling neighbouring
islands. The Larkin length, the length-scale on which Q is approximately constant, should increase. However in
this limit the Larkin length is equal to the system size and therefore the field Q is approximately constant along
the whole array.

For A > Ay the critical driving force is independent of the interaction length as long as Ec is kept constant.
Alower boundary for V. is approximately given by

V. % msi{ﬁ(ﬂ)}z, (50)
Ec

which is the critical driving V., one finds for A = Ay. Inreality V,, saturates for smaller A, when Nisofthe
same order of magnitude as L,, (for comparison see the numerical simulations in section 3.2). This leaves the
principal behaviour of equation (50) unchanged and contributes a prefactor of order one in the expression for
the critical driving force.

3.2. Weak disorder
In the weak disorder case the distribution of the bare disorder f;is not flat in the interval [—1/2, 1/2], instead the
probability distribution either decreases for larger absolute values of f; or is cut-off at an absolute value smaller
than1/2.

We consider two models of weak disorder: (i) the weak box disorder

2]
p(f) = %@H(g - |f,—|), (52)
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with the disorder strength v < 1; (ii) Gaussian disorder

1 L fF
) = “1,, 53
P(f) oN2m ¢ (53)

with a standard deviation o < 1/2.

Weak disorder is particularly relevant for a ladder of QPS junctions [10, 11]. In such a system,
superconducting wires are arranged in a ladder configuration, such that a one-dimensional chain of
superconducting loops is formed. The superconducting wires that are shared by neighbouring loops contain a
very thin section that forms the QPS-junction. Magnetic flux quanta in the loops assume the role of the bosonic
particles. The QPS-junctions between the superconducting loops provide the hopping matrix element and the
coupling matrix M;; is the inverse inductance matrix of the system. In aladder configuration of
superconducting wires the inductance matrix has the exactly the previously mentioned tridiagonal form
equation (6), as long as the kinetic inductance dominates over the geometric inductance. Due to the lack of large
magnetic dipoles in the vicinity of such a system, a weak disorder limit is more likely to be realized than in
Josephson junction arrays.

In the weak disorder models the spatial correlation in the quasi-disorder F;, | can not be neglected and does
lead to a finite spatial correlation in the pinning potential. The maximal value of the disorder f;is smaller than
the periodicity of the potential E,, and the long range correlation in the quasi-disorder E can not be absorbed in
the potential. The correlation function of the pinning potential therefore acquires along range correlation
component. We decompose the correlation function into short and long-range components

(EQ(Q + F)Eq(F))ais = R(Q)&;j + Ra(Q, i, ), (54)

with the 6-correlated component R(Q) and the long range correlation function R, (Q, i, j). Due to the long
range correlations the intuitive picture of the de-pinning-transition is not valid anymore. For along range
correlation function

R2(Q> i) ]) X |l - jlia’ (55)

that decays with a power law, the problem has been approached with the functional renormalization group
methodin[12,22].

Ithas been shown [6, 23] that these long-range correlations lead to the emergence of a new length-scale in the
pinned system, the typical correlation length L,,,. The roughness function w(x) of a pinned system shows a
different behaviour, namely a variation in the roughness exponent (., depending on whether the system is
probed atlength-scales smaller or larger than the correlation length [6]. We derive typical correlation lengths for
the two weak disorder models under the assumption that Eq, can be approximated as a cosine-potential

E] ~ EC> (56)
EQ(Q) = Eg™ [1 — cos (2mQ)]. (57)

To calculate the correlation function of the pinning-potential of two different chain sites j and k we set,
withoutloss of generality, j < k. The correlation function is given by an integral over the disorder

k=j
. max *° ~ 1 2
Ry(Q, j, k) = (ES )zjﬁuydﬁpaw(;) fi%dﬁ
fi df,_, cos (Y}) cos (1), (58)

with

(N+1-7)IN—j)
2N ’

k—1
N+1—-k({IN -k
B+ f+ v HEED,

I=j

Y=Q+E+V

(59)

where p(F) is the probability distribution of the quasi-disorder F;. Expressing the cosine in terms of exponentials
one finds that the absolute value of the correlation function R, is bounded by an envelope function, Ry for the

case of aweak box-disorder and R for weak Gaussian disorder. In the weak box-disorder case we find
sin (77y) k=i
IRy(Q, j, k)| < Re(Q, k — j) = 2 (EF™)? (77) : (60)

The long-range correlation function decays exponentially with the distance k — jand the correlation of the
pinning-potential decays on the length-scale
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1

Lo = ——————.
corr h’l sin (77y)
™y

As expected the correlation length goes to zero in the limit of the maximal disorder and diverges in the clean limit
without disorder

(61)

v—1 = Leorr — O, (62)
vy—0 = Loy — 0. (63)
For a Gaussian distribution of the bare disorder f; the envelope function Rg is:
IR(Q: js Bl < R(Q k = j) = 2 (EZ™)* (e 27 7). (64)
The correlation length is determined by the standard deviation o of the bare disorder
Leowe = ——. (65)
27202

We can again test the limits of infinitely broad and non-disordered distributions
g — &0 = Lo — 0, (66)
oc—0 = Loy — 00. (67)

In the broad limit the Gaussian disorder shows the same asymptotic behaviour as the box-disorder distribution
when approaching the maximal disorder limit. The maximal disorder limit is consistent with a very broad bare
Gaussian distribution. In the opposite limit the Gaussian distribution corresponds to a homogeneous shift in the
definition of the quasi-charge and the correlation length diverges.

The correlation length L, marks the crossover between an almost disorder free and a strongly disordered
array. On length-scales smaller than the correlation length the value of the disorder F; is approximately constant
and constitutes a mere shift in the field Q. If the weakly disordered system is probed on these length-scales it
behaves like a clean chain. On larger length-scales the value of the disorder changes significantly and the system
behaves like a disordered chain. This transition is shown in the next section with the example of the dependence
of the threshold voltage on the length of the chains.

3.3.The clean chain
We now turn to numerical simulations of the system under consideration to compare to the analytic results of
the previous section.

We first simulate clean chains with zero disorder. This model has been used as the default model in a number
of experimental papers on Josephson junction arrays [24, 27, 28] and its analytical known properties provide us
with a benchmark for the numerical simulation method.

Also, while this model does not account for the relevant charge disorder in Josephson arrays [29], it might be
more relevant for QPS-arrays than Josephson junction arrays as the former lack the strong charge disorder that
can be found in the latter.

In the clean case, a simple argument to determine the critical driving force V¢, can be found in [24]. In the
continuum limit (A > 1) forlong chains (A < N) the effective model of the clean chain is equal to the sine-
Gordon model with a modified potential. The solutions of the standard sine-Gordon equation of motion are the
well known solitons [8, 26]

Q) = z arctan (e75(>l%w), (68)
s

1
Vsol = — (69)
-

LCo

with the soliton velocity v. The spatial derivative of a static soliton v = 0 has a maximal value of

11
Q) ly=0 < ——- (70)
A
The boundary driving force V takes the form of a boundary condition on the spatial derivative atx = 0
C
e (71)

This can be used to estimate the maximal boundary force V for which a static soliton can exist at the array ends

=2 C yme o, (72)
77\ 2C,

cr
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Figure 1. The critical driving force V,, of the clean chain is plotted as a function of the chain-length for several values of A. Aslongas
the chain is more than twice aslongas A, V. isindependent of the length N'and proportional to A. The critical driving force has the
value predicted by an analytic estimate by Haviland and Delsing [24]. In the region where the chain is shorter than A the system is in

the zero-dimensional limit. The critical driving force is proportional to Nand does not depend on A.
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Figure 2. The critical driving force V,, as a function of A for different chain-lengths Nin the clean chain. Aslongas A islarger than 2,
the analytic estimate equation (72) is reproduced and V¢, o< A, as it is shown by the linear fit (dashed line) in the plot. For smaller A the
de-pinning force has been fitted (red lines) to an exponential function V,,; = Fe~ 7" asit arises from the Peierls—Nabarro-potential
[25,26].

Vg™ = max (9gEq(Q)- (73)

In the Josephson junction arrays this force corresponds to the switching voltage at which the array switches from
insulating to transport behaviour.

The critical driving force does not depend on the array length and is proportional to the interaction length A.
Both features are confirmed by the numerical simulations in figures 1 and 2.

Inthelimit A > N the spatial dependent field Q; takes the same value on all islands of the chain, Q; — Q
and the coupled equations of motion simplify to a single equation of motion

MO + azQ + Vo (Q) = % (74)

The one-dimensional clean chain model reduces to a zero-dimensional model. In this limit, the critical driving
force increases linearly with array size and is independent of A (figure 1).

When the interaction length A is comparable to the inter-site distance A < 2 we are no longer in the
continuum limit and the analytic approximation equation (72) is not valid. The switching-voltage is
proportional to the length Nand the A-dependence can be fitted to an exponential behaviour

Vo = NBe A, (75)

as seen in figure 2. Only one set of fitting parameters (3, -y is used for all four simulated chain-lengths.
The A-dependence in equation (75) corresponds to the de-pinning of a single charge excitation ina
disordered discrete lattice with large lattice spacing. This transition is determined by the Peierls—Nabarro-

10
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x A = 2 —— analytic A = 24A = 5 —— analytic A =5

Figure 3. The critical driving force V,, is plotted as a function of the length N of the disordered chain. For A = 2 (black crosses) the
critical force grows linearly with the chain-length Nas expected from the analytic estimate (black line). For A = 5 (blue triangles) V.,
is proportional to Natlarger chain-lengths when N ~ 100 ~ 2.5L, and fits the analytic estimate (blue solid line) from equation (47).
Due to the strong dependence on the random disorder-configuration the linear dependence is only realized on average over 20
disorder configurations. The error-bars give the standard-deviation of the critical driving force in the sample of disorder-
configurations.
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Figure 4. The critical driving force is plotted as a function of A in disordered arrays for a wide range of A. For A < 2 the de-pinning-
theory for the continuum limit is not applicable. For large A the Larkin length L, is comparable to the chain length and V. is
independent of A, see also equation (50). For intermediate A the behaviour (black rectangle) is shown in figure 5.

potential [25, 26]. In the context of Josephson-junction-arrays this was discussed by Fedorov et al for the de-
pinning of a single 2e-charge-excitation [26].

3.4. The maximally disordered array

Here we present the critical driving force obtained from numerical simulations of the maximally disordered
model. In figure 3 we compare the dependence of V. on the parameter N with analytic estimate in

equation (47). Atlarge N, where the array islonger than the Larkin length N > L, we find that the numerical
simulations fit to the expected linear dependence on the system length. For small system lengths the switching
voltage does not increase linearly with N, as expected in the saturation regime where the Larkin length is
comparable to the system size (equation (50)).

The numerically determined dependence of V., on A is shown in figures 4 and 5. For small A the inter-site
distance is comparable to A and the continuum limit of the standard de-pinning-picture does not apply. For
large A the Larkin-length is comparable to the chain-length N and we observe a saturation of V., with A. The
saturation sets in for

N = gLy, (76)

where a, is of order of one. Comparing the analytic estimate equation (50) with the saturation points we expect
Quar intherange 2.5 < oy < 3.5.

11



IOP Publishing NewJ. Phys. 18 (2016) 053026 N Vogtetal

vN =150aN =195
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Figure 5. A comparison of V, in the intermediate A regime of figure 4 (black rectangle) with a fitted power-law decay (solid lines) and
the analytic estimate equation (47) (dashed lines). From the fit we obtain an exponent of —0.49 (N = 150) and —0.56 (N = 195) while
de-pinning theory predicts an exponent of — %
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15 T T 15 T T
(a) (b)

Figure 6. The critical driving force V, is plotted as a function of the chain-length in a weak box-disorder model. To enhance visibility
we show two subplots for different disorder strengths: v = 0.25, blue markers, subplot (a) and v = 0.125 green markers subplot (b).
For comparison the V, of the clean case (7 = 0, red asterisk) and the maximally disordered model (7 = 1, black crosses) are included
in the plots. The behaviour of V., changes when the chain length is equal to the correlation length N = Lo, Below N = L, the
critical driving force has approximately the same value as in the clean case. Above N = L, itincreases linearly with Nasin the
maximal disorder model, Lo (7 = 0.25) &~ 10 and Lo (7 = 0.125) =~ 40.

In this intermediate regime we expect a power-law behaviour with an exponent of —% (equation (47)).
Fitting the numerical data to a power-law we obtain the exponents —0.49 £ 0.05 (N = 150) and —0.56 + 0.03
(NN = 195). However this is limited by the numerically accessible chain-lengths and we can not obtain a robust
confirmation of the value of the exponent of A from the numerical simulations.

3.5. Weak disorder and emergent correlation length

To validate our analytic model of the introduction of a new length-scale by weak disorder, we also simulate the
de-pinning-transition of chain with weak box-disorder. We choose the disorder strengths

v = 0.25, Leore (7 = 0.25) & 10and v = 0.125, L, (7 = 0.125) = 40.

In figure 6 it is shown that the system undergoes a transition when the array-length is equal to the correlation
length, N = L.y Below N < L, the chain is described by the clean chain model (y = 0). Above the
transition the critical driving force increases linearly with N. The N-dependence of V., matches the maximally
disordered model v = 1.

When the correlation length is significantly larger than the array size we can approximate all correlated
disorder terms F; by a single value F; = F. The perfectly correlated disorder term F can be absorbed into the
definition of the quasi-charge and the system is equivalent to the clean array without disorder F; = 0.

12
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When the length of the chain exceeds the correlation length one has to distinguish between two cases. The
case when the correlation length is shorter than A and the case where it is longer. The first case requires a careful
treatment to map the weakly disordered case to an effective strongly disordered model. Here we limit ourselves
to the simpler second case. In this case one can understand the behaviour of the critical driving force with the
following simple argument. The typical length of a soliton A is smaller than the correlation length and static
solitonic solutions of the field Q can exist in the chain. Since the chain is longer than L, it can be subdivided
into N /L, domains of length L. To switch into the conduction regime, the applied driving force needs to
overcome the transport threshold in each domain, where the transport threshold is proportional to the critical
driving force in the clean chain equation (72). This gives

Voo [Cvgm N o
2C0 Lcorr

This mechanism explains the linear increase in V, seen in figure 6 for N > Lo;.

4. Discussion and conclusions

In this paper we have studied the de-pinning behaviour of discrete bosonic chains that can be described by an
effective disordered sine-Gordon model. The most experimentally relevant realization of this model are linear
arrays of Josephson junctions, however another possible realization is a ladder configuration of superconducting
wires with QPS elements separating neighboring superconducting loops.

We used analytical considerations and numerical simulations to determine the critical driving force required
to overcome the pinning of bosons in the chain. In the parameter regime that corresponds to experimentally
studied arrays we reproduce the recently observed behaviour [7].

The classic depinning works [1-5] are mostly concerned with the infinitely long systems in which depinning
can be analyzed as a critical phenomenon. In particular the investigated systems are much longer than the
interaction range and the correlation length of disorder. Another extreme is the power-law correlated disorder
with an infinite correlation length [12]. In this work we analyze numerically the depinning transition in the
experimentally relevant regime of all three length (system length, disorder correlation length, interaction range)
being of the same order.

We see a saturation regime in short chains where the Larkin length exceeds the system length and the critical
driving force is independent of the range A of the repulsive interaction. In the weak disorder regime we observe
the emergence of a new correlation length-scale L,,,. Both effects show good agreement between the analytic
results and the numerical simulations. The obtained results could be important for future experiments on
arificial chains with a low level of intrinsic disorder such as QPS ladders.
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