
From natural semantics to
a machine-checked

compiler transformation

Joachim Breitner

LAZY
EVALUATION

Joachim Breitner

Lazy Evaluation

From natural semantics to a machine-checked
compiler transformation

The cover background pattern was created using the substrate
algorithm by J. Tarbell, as implemented for the XScreensaver
project by Mike Kershaw.

Lazy Evaluation

From natural semantics to a machine-checked
compiler transformation

by
Joachim Breitner

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Informatik, 2016

Tag der mündlichen Prüfung: 25. April 2016
Erster Gutachter: Prof. Dr.-Ing. Gregor Snelting
Zweiter Gutachter: Prof. Tobias Nipkow, Ph.D.

Print on Demand 2016

ISBN	 978-3-7315-0546-4
DOI	 10.5445/KSP/1000056002

This document – excluding the cover, pictures and graphs – is licensed
under the Creative Commons Attribution-Share Alike 3.0 DE License
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):
http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Contents
1 Introduction 1

1.1 Notation and conventions 5
1.2 Reproducibility and artefacts 6
1.3 Lazy evaluation . 7
1.4 The GHC Haskell compiler 9

1.4.1 GHC Core . 9
1.4.2 Rewrite rules and list fusion 12
1.4.3 Evaluation and function arities 15

1.5 Arities and eta-expansion 17
1.6 Nominal logic . 19

1.6.1 Permutation sets 20
1.6.2 Support and freshness 21
1.6.3 Abstractions . 22
1.6.4 Strong induction rules 22
1.6.5 Equivariance . 23

1.7 Isabelle . 24
1.7.1 The prettiness of Isabelle code 25
1.7.2 Nominal logic in Isabelle 28
1.7.3 Domain theory and the HOLCF package 29

i

Contents

2 Formalizing Launchbury’s natural semantics 33
2.1 Launchbury’s semantics 34

2.1.1 Natural semantics 35
2.1.2 Denotational semantics 39
2.1.3 Discussions of modifications 42

2.2 Correctness . 45
2.2.1 Discussions of modifications 51

2.3 Adequacy . 52
2.3.1 The resourced denotational semantics 52
2.3.2 Denotational black holes 54
2.3.3 Resourced adequacy 56
2.3.4 Relating the denotational semantics 58
2.3.5 Concluding the adequacy 59
2.3.6 Discussions of modifications 59

2.4 Data type encodings and base values 62
2.4.1 Data types via Church encoding 62
2.4.2 Adding Booleans 64

2.5 A small-step semantics . 68
2.5.1 Sestoft’s mark-1 abstract machine 69
2.5.2 Relating Sestoft’s and Launchbury’s semantics . . 70
2.5.3 Discussions of modifications 74

2.6 The Isabelle formalisation 76
2.6.1 Employing nominal logic 76
2.6.2 The type of environments 77
2.6.3 Abstracting over the denotational semantics . . . 79
2.6.4 Relating the domains Value and CValue 82

2.7 Related work . 84

3 Call Arity 87
3.1 The need for co-call analysis 89

3.1.1 A syntactical analysis 89
3.1.2 Incoming arity . 90
3.1.3 Called-once information 91
3.1.4 Mutually exclusive calls 92
3.1.5 Co-call analysis . 93

ii

Contents

3.2 The type of co-call graphs 94
3.3 The Call Arity analysis . 95

3.3.1 The specification 95
3.3.2 The equations . 97

3.4 The implementation . 105
3.4.1 Interesting variables 106
3.4.2 Finding the fixed points 107
3.4.3 Top-level values . 108
3.4.4 The graph data structure 109

3.5 Discussion . 110
3.5.1 Call Arity and list fusion 110
3.5.2 Limitations . 111
3.5.3 Measurements . 113
3.5.4 Compiler performance 118

3.6 Related work . 119
3.6.1 GHC’s arity analyses 119
3.6.2 Higher order sharing analyses 121
3.6.3 Explicit one-shot annotation 122
3.6.4 unfoldr/destroy and stream fusion 124
3.6.5 Worker-wrapper list fusion 124
3.6.6 Control flow based analyses 126

3.7 Future work . 126
3.7.1 Improvements to the analysis 127
3.7.2 Tighter integration into GHC 127

4 The safety of Call Arity 129
4.1 Proof outline . 130
4.2 Arity analyses . 133

4.2.1 A concrete arity analysis 140
4.2.2 Functional correctness 141

4.3 Cardinality analyses . 146
4.3.1 Abstract cardinality analysis 146
4.3.2 Trace tree cardinality analysis 151
4.3.3 Co-call cardinality analysis 158
4.3.4 Call Arity, concretely 164

iii

Contents

4.4 The Isabelle formalisation 166
4.4.1 Size and effort . 166
4.4.2 Structure . 167
4.4.3 The trace tree type implementation 167

4.5 The formalisation gap . 171
4.5.1 Core vs. my syntax 172
4.5.2 Core vs. my semantics 172
4.5.3 Core’s annotations 174
4.5.4 Implementation vs. formalisation 175
4.5.5 Performance and safety in the larger context . . . 176

4.6 Related work . 176

5 Conclusion 179

A Formal definitions and main theorems 183
A.1 Terms . 184
A.2 Semantics . 187

A.2.1 Natural semantics 187
A.2.2 Small-step semantics 188
A.2.3 Denotational semantics 188

A.3 Correctness and adequacy theorems 190
A.4 Call Arity . 190

A.4.1 Arities . 190
A.4.2 Co-call graphs . 192
A.4.3 The Call Arity analysis 193
A.4.4 Call Arity theorems 195

B Call Arity code 197
B.1 Co-call graphs . 197
B.2 The Call Arity analysis . 200

Bibliography 211

Index 223

iv

Abstract
High level programming languages, in particular the lazy, pure, func-
tional kind, liberate the programmer from having to think about the
low-level details of how his code is going to be executed, and they give
the compiler extra leeway in optimising the program. This distance to
the actual machine makes it harder to reason about the effect of the com-
piler’s transformations on the program’s performance. Therefore, these
transformations are often only evaluated empirically by measuring the
performance of a few benchmark programs. This yields useful evidence,
but not universal assurance.

Formal semantics of programming languages can serve as guide rails
to the implementation of a compiler, and formal proofs can universally
show that the compiler does not inadvertently change the meaning of a
program. Can they also be used effectively to establish that a program
transformation performed by the compiler is indeed an optimisation?

In this thesis, I answer this question in three steps: I develop a new
compiler transformation; I build the tools to analyse it in an interactive
theorem prover; finally I prove safety of the transformation, i.e. that the
transformed program – in a suitable abstract sense – performs at least
as well as the original one.

My compiler transformation and accompanying program analysis Call
Arity, which is now shipped with the Haskell compiler GHC, solves

v

Abstract

a long-standing problem with the list fusion program transformation:
Accumulator passing list consumers like foldl and sum would, if they
were allowed to take part in list fusion, produce badly performing code.
Call Arity empowers the compiler to further rewrite such code, by eta-
expanding function definitions, into a form that runs efficiently again.
The key ingredient is a novel cardinality analysis based on the notion of
co-call graphs, which can detect whether a variable is used at most once,
even in the presence of recursion.

I provide empirical evidence that my analysis is indeed able to solve
the problem: Now list fusion can provide significant improvements in
these cases. The measurements also show that there are instances besides
list fusion where the transformation fires and improves the program.
No program in the benchmark suite regressed as a result of introducing
Call Arity.

In order to be able to verify these statements formally, I formalise Launch-
bury’s natural semantics for lazy evaluation in the interactive theorem
prover Isabelle. As Launchbury’s semantics is a very successful and
commonly accepted semantics for lambda calculus with mutually re-
cursive let-bindings that models lazy evaluation, it is a natural choice
for this endeavour.

My formalisation uses nominal logic, in the form of the Isabelle pack-
age Nominal2, to handle the issue of names and binders, which is gener-
ally one of the main hurdles in any formalisation work in programming
languages. It is one of the largest Isabelle developments using this
method, and the first to effectively combine it with the HOLCF package
for domain theory. My first attempt to combine these turned out to be
a dead end. I explain how and why that did not go well and how I
eventually overcame the challenges.

Furthermore, I give the first rigorous adequacy proof of Launchbury’s
semantics. The proof sketch given by Launchbury has resisted past
attempts to complete it. I found a more elegant and direct proof by
slightly deviating from his outline.

Equipped with this formalisation, I model the Call Arity analysis and
transformation in Isabelle and prove that it does not degrade program

vi

Abstract

performance. My abstract measure of performance is the number of
allocations performed by the program; I explain why this is a suitable
choice for my use case. The proof is modular and introduces trace trees
as a suitable domain for abstract cardinality analyses.

Every formal development, whether machine-checked or not, has
a formalisation gap between the model and the modelled artefact. I
discuss the breadth of the gap, in particular its limits given that Call
Arity is but one part in a large, real-world compiler.

All in all I present novel program analyses to solve an open problem
with list fusion and to generally improve the compiler, and I demonstrate
how formal methods can be used to prove an operational property –
safety – at this high level.

vii

Zusammenfassung

Höhere Programmiersprachen, insbesondere rein funktionale mit Be-
darfsauswertung, befreien den Programmierer von der Pflicht, sich dar-
über Gedanken zu machen, wie ihr Programm tatsächlich auf der Ma-
schine ausgeführt werden wird. Ebenso hat der Compiler beim Optimie-
ren von Programmen in solchen Sprachen größeren Spielraum. Dieser
Abstand zur Maschine macht es allerdings auch schwieriger, vorher-
zusagen, wie sich die Programmtransformationen des Compilers auf
die Leistung des Programms auswirkt. Daher werden solche Transfor-
mationen oft nur empirisch untersucht, indem die Leistung von ein
paar wenigen Beispielprogrammen gemessen wird. So werden zwar
durchaus wertvolle Anhaltspunkte gewonnen, jedoch keine allgemein
gültigen Aussagen.

Formale Semantiken von Programmiersprachen können als Leitplan-
ken bei der Implementierung eines Compilers dienen, und formale Be-
weise können allgemeingültig zeigen, dass ein Compiler die Bedeutung
eines Programmes nicht unbeabsichtigt verändert. Können wir mit ihrer
Hilfe auch beweisen, dass eine Programmtransformation, wie sie der
Compiler vornimmt, in der Tat eine Optimierung ist?

Dieser Frage gehe ich in dieser Arbeit in drei Schritten nach: Ich ent-
wickle eine neue Compiler-Transformation; ich baue die Werkzeuge um
sie in einem interaktiven Theorembeweiser zu untersuchen; letztendlich

ix

Zusammenfassung

beweise ich, dass das umgeschriebene Programm – in einem geeigneten
abstrakten Sinne – mindestens so performant ist als zuvor.

Meine Compiler-Transformation, genannt Call Arity, wird inzwischen
mit dem Haskell-Compiler GHC ausgeliefert und löst ein schon lan-
ge bestehendes Problem mit der Programmtransformation list-fusion:
Funktionen wie foldl und sum, die Listen verarbeiten und dabei einen
Akkumulator verwenden, haben, wenn auch sie von list-fusion umge-
schrieben würden, zu unerwünscht langsamen Code geführt. Call Arity
ermöglicht es dem Compiler, solchen Code weiter umzuschreiben und
wieder in eine effiziente Form zu bringen, in dem er Funktionsdefinition
geeignet eta-expandiert. Die dabei entscheidende Zutat ist eine neue
Kardinalitäts-Analyse, die erkennen kann, wenn eine Variable höchstens
einmal verwendet wird – und das sogar bei rekursivem Code.

Ich zeige empirisch, dass meine Analyse tatsächlich das Problem löst
und nun auch in diesen Fällen list-fusion die Leistung der Programme
signifikant verbessern kann. Ich zeige auch, dass es Situationen jenseits
von list-fusion gibt, in denen meine Transformation anspringt und zu
Verbesserungen führt.

Um diese Aussagen auch formal überprüfen zu können, formalisiere
ich Launchburys Semantik für Sprachen mit Bedarfsauswertung im
interaktiven Theorembeweiser Isabelle. Diese verbreitete und allgemein
akzeptierte Semantik modelliert Bedarfsauswertung im Lambda-Kalkül
mit wechselseitiger Rekursion und ist daher in meinem Fall die Semantik
der Wahl.

Um die Problematik von Namen und Bindungen, die generell eine der
Hauptschwierigkeiten bei der Formalisierung von Programmierspra-
chen ist, in den Griff zu bekommen, verwende ich Nominallogik, die
für Isabelle im Paket Nominal2 implementiert ist. Meine Formalisierung
ist eine der größten Isabelle-Formalisierungen, die Nominal2 verwendet,
und die erste, die es effektiv mit dem HOLCF-Paket, welches Domän-
entheorie umsetzt, kombiniert. Mein erster Anlauf, diese Techniken zu
kombinieren, scheiterte; ich erkläre, wie und warum, und beschreibe,
wie ich die Probleme letztendlich überwand.

x

Zusammenfassung

Darüber hinaus habe ich den ersten rigorosen Beweis, dass Launchburys
Semantik adäquat ist, geführt. Launchburys Beweisansatz widersteht
bisher jeglichen Versuchen, ihn zu vervollständigen. Ich wich ein wenig
von dem Weg ab, den er umrissen hat, und fand so einen eleganteren
und direkteren Beweis.

Auf dieser Formalisierung baue ich auf, modelliere die Call Arity-Trans-
formation und -Analyse in Isabelle und beweise, dass sie die Leistung
der Programme nicht verringert. Als abstraktes Leistungsmaß verwende
ich dabei die Anzahl der Speicherzellen, die das Programm anfordert.
Ich erkläre, warum dies in meinem Fall eine geeignete Wahl ist. Der
Beweis ist modular und führt das Konzept der trace trees ein, mit der
sich abstrakte Kardinalitäts-Analysen beschreiben lassen.

Bei jeder Formalisierung, ob Computer-geprüft oder nicht, entsteht
ein Formalisierungs-Spalt zwischen dem Modell und dem Modellier-
ten. Ich bemesse die Breite des Spaltes, der sich im vorliegenden Fall
insbesondere daraus ergibt, dass Call Arity nur ein Teil eines großen,
produktiv eingesetzten Compilers ist.

Insgesamt führe ich also eine neue Programmanalyse ein, die ein offe-
nes Problem mit list fusion löst und auch darüber hinaus den Compiler
verbessert. Darüber hinaus zeige ich, wie formale Methoden genutzt
werden können um auf dieser hohen Abstraktionsebene Beweise über
nicht-funktionale Eigenschaften wie das Performanceverhalten zu füh-
ren.

xi

Acknowledgements

I have to thank Prof. Gregor Snelting for giving me the possibility to
join his group and to work on this thesis. He expected and allowed me
to work with great freedom and latitude, and I could pursue my own
ideas without pressure or worries.

I also thank Prof. Tobias Nipkow for serving as the co-referee, but also
for creating Isabelle in the first place. Without his work, two thirds of
this thesis would not exist.

I am indebted to Simon Peyton Jones, with whom I spent three months
as an intern. This was a very fruitful time that heavily influenced my
work. He pointed me to the open problem of making foldl a good con-
sumer, which initiated the whole work on Call Arity, and nudged me
to go further when I thought my solution was “good enough”. Further-
more, I enjoyed the privilege to be his co-author. Finally, without his
work on GHC and Haskell, two thirds of this thesis would not exist.

I was able to pursue my research with few constraints, and was able to
attend summer schools and conferences, due to a generous scholarship
by the Deutsche Telekom Stiftung. I thank Prof. Sigmar Wittig for his
commitment as a mentor and for keeping me on track in critical times,
and Christiane Frense-Heck for managing the scholarship program so
very efficiently, smoothly and friendly. I also thank Gabriela Weitze-

xiii

Acknowledgements

Schmithüsen for helping me to secure the scholarship in the first place,
and for not holding a grudge after I left her research group.

The programming paradigms group at the Karlsruhe Institute of Tech-
nology has been a great place to work at, and I am happy that I was part
of this group. In particular I would like to thank my colleagues for 3-pm-
rituals, board game nights and a roughly monthly supply of cake. Special
thanks go to my office mate Denis Lohner, who was always available to
discuss questions with, and my former office mate Andreas Lochbihler,
who initiated me to semantics and interactive theorem proving.

I thank Martin Mohr, Sebastian Buchwald, Denis Lohner, Manuel
Mohr, Mareike Schmidtobreick, Ulrike Leyn and Thomas Breitner for
proofreading a draft of this thesis.

Finally, I’d like to thank Isabelle for a great many hours of working
together in solitude. She is sometimes difficult to work with, but her
endless patience and unerring pedantry taught me a lot. She would not
take a sorry, but when I admitted that she is – as always – right and I
made up for my mistakes, she never was resentful.

I also thank the other Isabelle for being so quite different: always
available for a little quiz, other games or just a mindless chat.

xiv

Functional programming combines
the flexibility and power of abstract
mathematics with the intuitive
clarity of abstract mathematics.

Randall Munroe, xkcd #1270

CHAPTER 1

Introduction
It is a pleasure to create programs in functional programming languages,
as they allow for a very high-level style of programming, using abstrac-
tion and composition. It suits the human brain that is trying to solve a
problem, instead of accommodating the machine that has to implement
the instructions.

But such an abstraction comes at a cost: Generally, programs written
in such high-level style perform worse than manually tweaked low-level
code. Therefore, we reach out to optimising compilers, with the hope
that they can amend this overhead, at least to some extent.

An optimising compiler necessarily needs to be conservative in how it
changes the programs: We would not be happy if the program becomes
faster, but suddenly computes wrong results. Naturally, this limits the
compiler’s latitude in applying fancy and far-reaching transformations.
Conversely, the more declarative the language is – i.e. the less low-
level details it specifies – and the fewer side-effects can occur, the more
possibilities for optimising transformations arise.

This explains why compilers of pure, lazy functional programming
languages, such as Haskell, can pull quite astonishing tricks on the code.
A prime example for such a far-reaching transformation is list fusion:
This technique transforms a program built from smaller components,
each producing and/or consuming a list of values, into one combined

1

http://xkcd.com/1270

1 Introduction

loop. This not only avoids having to allocate, traverse and deallocate the
list structure of each intermediate value, it also puts the actual processing
codes next to each other, allowing for local optimisations to work on
code that was originally far apart.

Unfortunately, there are many instances of code where the sufficiently
smart compiler could do something clever – and often the uninitiated
user actually expects that clever thing to happen – but the real compilers
out there just do not do it yet. This thesis is about one such instance: A
large number of list processing functions, including common combina-
tors such as sum and length, were not set up to take part in list fusion.
This is not because including them in the technique is difficult to do,
but because the code that results from such a transformation would
perform very badly.

I found a new program analysis, called Call Arity, which gives the
compiler enough information to further transform that problematic
code into nice, straightforward and efficient code – code that is roughly
what a programmer would write manually, if he chose to program such
low-level code. I motivate and describe the analysis and its impact on
program performance, determined empirically.

The same language treats – purity and laziness – which make it easier
for the compiler to transform programs also ease a rigorous, formal
discussion of the artefacts at hand. I therefore evaluate Call Arity not
only empirically, but also prove that it is correct (i.e. does not change
the meaning of the program) and safe (i.e. does not make the program’s
performance worse). While the former is common practice in this field
of research, the latter is rarely done with such rigour.

What makes me so confident that my proof deserves to be called
rigorous? If I just did a pen-and-paper proof, I would not trust it to
that extent. For that reason, I implemented the syntax, the semantics
and the compiler transformations in the theorem prover Isabelle and
performed all proofs therein. Occasionally, this required derivations
from the pen-and-paper presentation given in this thesis. I discuss
these differences, and other noteworthy facts about the formalisation,
in dedicated sections in the following chapters.

2

1 Introduction

Such a formal proof requires a formal semantics for the programming
language at hand, and in order to make statements about an operational
property, the semantics has to be sufficiently detailed. Launchbury’s
natural semantics for lazy evaluation [Lau93] is such a semantics, and
can be considered a standard semantics in lazy functional programming
language research. I implemented this semantics in Isabelle, including
proofs of the two fundamental properties: correctness and adequacy
(with regard to a standard denotational semantics). As no rigorous proof
of adequacy existed before, I present my proof in detail.

I have structured this thesis as follows: This chapter contains a brief
introduction to the Haskell compiler GHC, in particular its intermedi-
ate language Core, its evaluation strategy and list fusion, introduces
the central notion of arity, describes nominal logic and the interactive
theorem prover Isabelle. Chapter 2 lays the foundation by formally
introducing the syntax and the various semantics, and contains rigorous
correctness and adequacy proofs for Launchbury’s semantics. Chapter 3
motivates, describes and empirically evaluates Call Arity. Chapter 4
builds on the previous two chapters and contains the formal proof that
Call Arity is safe.

Appendix A contains the Isabelle formulation of the main results and
relevant definitions. Appendix B lists the Haskell implementation of
Call Arity. The bibliography and an index of used symbols and terms,
including short explanations, follow. Figure 1 contains a map to the main
artefacts and how they relate to each other. In the interest of readability
I omit elaborate definitions and descriptions in the figure; if necessary,
consult the index.

The present book is essentially my thesis, which is officially published
separately [Bre16]. I have fixed spelling mistakes, adjusted the typog-
raphy, slightly expanded Section 4.6 and mentioned newer, independet
measurements in Section 3.5.4.

3

1 Introduction

Γ : e ⇓L ∆ : v

JeKρ

NJeKρ

correct

(Theorem 1)

equivalent

(Lem
m

a
12)

correct(Lemma 8)

adequate
(Lemma 11)

(Γ, e, S)⇒∗ (∆, v, S′)
sim

ulates
(Lem

m
a

14) si
m

ul
at

es
(L

em
m

a
16

)

Gα(e) + Aα(e) + Tα(e)

Call Arity

Tα(e)

re
fin

es
(L

em
m

a
27

)

Cα(Γ, e)

re
fin

es
(L

em
m

a
26

)

+ Aα(e) + Tα(e)

sa
fe

(L
em

m
a

23
)

sem
antics

preserving

(Theorem
4)

(Chapter 4)

(Chapter 2)

(Chapter 3)

(Chapter 4)

Figure 1: Main artefacts of this thesis and their relationship

4

1.1 Notation and conventions

1.1 Notation and conventions

I use mostly standard mathematical notation in this text, and any custom
notation is introduced upon its first use. The index at the end of the thesis
also includes symbols and notations, together with a short description
of each entry.

Proofs are concluded by a black square (�), theorems, lemmas, defi-
nitions and examples span to the next diamond (�).

When a function argument is just a single symbol, possibly with sub-
or superscripts, I usually omit the parentheses for better readability: fv e1
instead of fv(e1).

Variables printed with a dot (e.g. α̇) refer to lists whose elements are
usually referred to by the plain variable (e.g. α). Variables printed with a
bar (e.g. ᾱ) refer to objects that are partial or total maps from variable
names to whatever the plain variable usually stands for. The same
notation is used to distinguish related functions: If T is a plain function
with one argument of a certain type, then Ṫ is a function that expects a
list of elements of that type and T expects a map from variables names
to values of that type.

Source code listings and code fragments within the text are typeset us-
ing a proportional sans-serif font, with language keywords highlighted
by heavy type: if p a then f 1 else f 2.

When writing Haskell code, I use some Unicode syntax instead of
the more common ASCII representation, in particular a lambda instead
of a backslash for lambda abstractions, and a proper arrow instead of
->, e.g. (ńx → x) :: a → a.

The Isabelle code snippets are produced by Isabelle from the sources,
and printed in the usual LATEX style of Isabelle’s document generation
facilities. The name of the Isabelle file containing the snipped is given in
the top-right corner, unless it is the same as for the preceding snippet.

There are various schools of writing concerning the use of “we”, “I”
and “the author”. Since a dissertation thesis is necessarily more tied to
the person than a paper, even if it was a single author paper, I decided
to use the first person singular whenever I describe what I have done
or not done, and why I have done so. Nevertheless, large parts of the

5

1 Introduction

text, especially the proofs, are an invitation to you, the reader, to follow
my train of thoughts. Optimistically assuming that you follow this
invitation, I will commonly use “we” in these parts, referring to you
and me, just as if we were standing in front of a blackboard where I
walk you through my proof.

I do not avoid the passive voice as fundamentally as other authors
would: It is used whenever I believe readability is best served this way.

1.2 Reproducibility and artefacts

This thesis describes a few artefacts that cannot be included in their en-
tirety in the document, or that will evolve further in the future and thus
diverge from what is discussed here. This includes the Call Arity imple-
mentation, which is part of the GHC source tree, and the Isabelle formal-
isations of Launchbury’s semantics [Bre13] and of the safety of Call Arity
[Bre15d]. Furthermore, I have conducted performance measurements of
which only a summary is included in this text (Section 3.5.3), but neither
the raw data nor the tools that produced them.

In the interest of reproducibility and verifiability, I have collected
all these artefacts on http://www.joachim-breitner.de/thesis. In particular,
there you will find:

• The Isabelle sources of both developments, in precisely the version
that is described in this document, in three formats: The plain .thy
file, a browsable HTML version and the Isabelle-generated LATEX
output.

• Scripts to fetch and build GHC in the version discussed in this
thesis (7.10.3).

• Patches to that version of GHC to produce the various variants
compared in the benchmark sections.

• Scripts to run the benchmark suite, collect the results and produce
Tables 1 and 3 in the benchmark sections.

6

http://www.joachim-breitner.de/thesis

1.3 Lazy evaluation

• Code that I have created to check claims in this thesis, e.g. about
the performance cost of unsaturated function calls (Section 1.4.3)
and the effect of Call Arity on difference lists (Table 2).

• The LATEX sources of the thesis document itself.

• Errata, if necessary.

1.3 Lazy evaluation

With the title of this thesis sporting the term lazy evaluation so promi-
nently, it seems prudent to briefly introduce it in general terms.

Consider the function

writeErrorToLog e =
writeToLog ("Error " ++ errNum e ++ ": " ++ errDesc e)

which turns an error, given as an element of a structured data type, into
a readable text and uses a hypothetical writeToLog function to write the
text to a log file. In most programming languages, writeErrorToLog e
would first calculate the text and only then call writeToLog. But assume
that in the application at hand, logging is optional, and actually turned
off: writeToLog would have to discard the text passed to it, and the
calculation would have been useless. This behaviour is called strict
evaluation or call-by-value.

In a programming language with lazy evaluation, the function writeEr-
rorToLog would not actually assemble the text, but defer this calculation,
by creating a thunk that serves as a placeholder. If writeToLog decides
that no log file is to be written, it will discard the thunk and the use-
less calculation never happens. On the other hand, if writeToLog does
write to the log file, this will eventually require the actual value of the
argument and only then trigger the evaluation of the thunk. We also
say that its evaluation is forced.

The point of lazy evaluation is not just to avoid useless computation:
One of its main benefits is that code can be refactored much more easily.
Consider the following plausible implementation of writeToLog:

7

1 Introduction

writeToLog txt =
if logLevel >= 1 then appendFile "error.log" txt

else return ()

This function does two things: It decides whether logging is actually
required, and if so, it performs the logging. Likely there are more places
where we need to decide whether logging is required, so it is desirable to
abstract over this procedure and implement it in a definition of its own:

ifLogging action =
if logLevel >= 1 then action

else return ()

writeToLog txt = ifLogging (appendFile "error.log" txt)

In a programming language with strict evaluation, this will not work
as intended: The argument appendFile "error.log" txt would be evaluated
before ifLogging gets a chance to check the log level. Our refactoring just
broke the program! Note that even in strict languages, the if-then-else-
construct evaluates the two branches lazily, but this is a built-in special
case for this syntactic construct, and not available for the programmer
to abstract over.

In a programming language with lazy evaluation, however, this refac-
toring is valid. This way, lazy evaluation allows the programmer to
define custom control structures.

Another aspect of lazy evaluation that is crucial to my work is sharing:
Although the argument to a function is not evaluated until it is used
for the first time, it will not be evaluated a second time. For example
the code map (2∧b *) xs, which multiplies every element of the list xs
by a certain power of two, will not actually calculate 2∧b if the list xs is
empty. But even if xs has more than one element, 2∧b is calculated only
once, and the result is shared between the various uses. This feature
distinguishes lazy evaluation, also called call-by-need, from call-by-name
evaluation. According to the latter scheme, which is of less practical
relevance, the calculation of an argument is also deferred until it is
needed, but it would be re-evaluated repeatedly if used more than once.

8

1.4 The GHC Haskell compiler

A common way to implement sharing is to add code to every thunk that,
after the evaluation of the thunk has been triggered and its value has
been calculated, replaces the thunk by this value, so that every existing
reference to the thunk now references the value. This mechanism is
called updating.

1.4 The GHC Haskell compiler

The programming language Haskell has been created in the 1990s by
a committee with the aim to overcome the then wild growths of lazy
functional programming languages. The committee produced a series of
language specifications, including the final Haskell 98 language report
[Pey03].1 This standardisation allowed a number of Haskell compilers
to emerge.

These days, still a number of compilers are actively developed, but
while most of them are dedicated to special purposes or research, only
one compiler is of practical relevance: The Glasgow Haskell Compiler
(GHC).

In order for my work to have an impact on actual users using Haskell
to solve real problems, I implemented Call Arity within GHC. It was first
shipped with GHC-7.10, released on March 27th 20152. GHC’s internal
structure necessarily influenced the design and implementation of Call
Arity, so I will outline its relevant features here.

1.4.1 GHC Core

Speaking in terms of syntax, Haskell is a large language: As of version
7.10.3 of GHC, the data types used to represent the abstract syntax
tree of an Haskell expression have over 79 constructors, and 24 more
are required to express the Haskell types. Therefore GHC – like most
compilers – transforms the source language into a smaller intermediate

1 After a long phase of stability, a revision was published in 2010 and is now the most
recent Haskell specification [Mar10]. With regard to this thesis, the differences are
irrelevant.

2 The coincidence with my birthday is, well, coincidental.

9

1 Introduction

data Expr b = Var Id
| Lit Literal
| App (Expr b) (Expr b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [(AltCon, [b], Expr b)]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
| Type Type
| Coercion Coercion

data AltCon = DataAlt DataCon
| LitAlt Literal
| DEFAULT

data Bind b = NonRec b (Expr b)
| Rec [(b, (Expr b))]

Figure 2: The data type representing GHC Core expressions

3 From an operational point of view, these might better be called tuples, as they are
single-constructor data types and the members are at fixed, statically known positions.
There is no runtime string-based lookup as in “dictionaries” in dynamic languages.

10

language. In this case, the intermediate language is GHC Core and uses
only the 15 constructors given in Fig. 2 to represent expressions.

The translation from Haskell to Core is not just a matter of simple
syntactic desugaring, as the type systems differ noticeably: Haskell has
features in the type system that have a computational meaning; most
prominently type classes. Therefore, GHC has to type-check the full
Haskell program, and as a side-effect of type-checking the compiler
produces the code that implements these features. In the case of type
classes the compiler generates dictionaries3 for each instance and passes
them around as regular function arguments.

1.4 The GHC Haskell compiler

Nevertheless, Core does have a type system, and Core terms are explic-
itly typed. This is used as an effective quality assurance tool [MP12]:
The internal type checker (called linter) would complain if the Core gen-
erated from the Haskell source is not well-typed, or if any of the further
processing steps breaks the typing. The type system is relatively small
(12 constructors) but powerful enough to support all features of the
Haskell type system, including fancy extensions like GADTs [PVWW06]
and type families [SPCS08].

The theory behind Core is System FC, an explicitly typed lambda
calculus with explicit type abstraction and application as well as type
equality witnesses called coercions [SCPD07]. The latter add another 15
constructors to the count. Core and its theoretical counterpart, System
FC, are continuously refined, recently by a stratification of the coercions
into roles [WVPZ11; BEPW14].

Most of the published research around Core and System FC revolves
around the type system: How to make it more expressive and more
powerful. There is, however, a lack of operational treatments of Core
in the literature. The extended version of [BEPW14] contains a small-
step semantics of System FC. It serves not as a description of Core’s
operational behaviour but rather as a tool to prove type safety of System
FC and punts on let-bindings completely. Eisenberg also maintains a
small-step semantics for full Core [Eis15], which is call-by-name. There
is no description of how Core implements lazy evaluation besides the
actual implementation in GHC, i.e. the Core-to-STG transformation. This
lack contributed to the breadth of the formalisation gap of this work
(Section 4.5.2).

Almost all of the optimisations performed by GHC are Core-to-Core
transformations; Call Arity is no exception. But as not all features of
Core are relevant in the description and discussion of Call Arity, the
trimmed down lambda calculus introduced in Section 2.1 serves to take
the role of Core; I discuss this simplification in Section 4.5.1.

11

1 Introduction

1.4.2 Rewrite rules and list fusion

When we teach functional programming, we often use equational rea-
soning to explain when two programs are the same, or to derive more
specialised or faster programs from specifications or existing programs,
e.g. as Bird does [Bir89]. Such equational reasoning is especially power-
ful in pure, lazy languages, as more equalities hold here: For example,
bindings may be floated out of or into expressions, or inlined completely,
common code patterns can be abstracted into higher-order functions etc.

But instead of expecting the programmer to apply such equalities, we
can actually teach the compiler to do that. This mechanism, called rewrite
rules, lets the author of a software library specify rules that contain a
code pattern (the left-hand side of the rule) and replacements (the right-
hand side of a rule), with free variables that will be matched by any
code [PTH01].

For example, the code

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f . g) xs
#-}

allows the compiler to make use of the functoriality of map and replace
code like

sum (map (+1) (map (∗2) [0..10]))
by

sum (map ((+1) . (∗2)) [0..10]),
which calls map only once, and hence avoids the allocation, traversal
and deallocation of one intermediate list.

What about the other intermediate lists in that code? Can we get rid
of them as well? After all, the code could well be written completely
list-lessly:4

4 Due to the excessive use of the stack, this is not an efficient way to sum the elements of
a list, and a real implementation would use a strict accumulator and tail recursion. For
the sake of this explanation, please bear with me here.

12

1.4 The GHC Haskell compiler

go 0
where go n | n > 10 = 0

| otherwise = (n∗2 + 1) + go (n + 1)

This feat is done by list fusion [GLP93], which is essentially a set of
rewrite rules that tell the compiler how to transform the high-level code
with lists into the nice code above. The central idea is that instead of
allocating the list constructors (: and []), the producer of a list passes
the head of the list and the (already processed) tail of the list to a func-
tion provided by the consumer. Thus a list producer is expected to
use the following build function to produce a list, instead of using the
constructors directly:

build :: forall a. (forall b. (a → b → b) → b → b) → [a]
build g = g (:) []

The higher rank type signature ensures that g is consistent in using
the argument provided by build to produce the result: By requiring the
argument g to build a result of an arbitrary type b, it has no choice but
to use the given arguments (here (:) and []) to construct it.

A list producer implemented using build is called a good producer.
For example, instead of defining the enumeration function naively as

[n..m] = go n m
where go n m | n > m = []

| otherwise = n : go (n+1) m

it can be defined in terms of build, and thus the actual code in go is
abstract in the list constructors:

[n..m] = build (go n m)
where go n m cons nil | n > m = nil

| otherwise = n ‘cons‘ go (n+1) m cons nil

The build function has a counterpart that is to be used by list con-
sumers; it is the well-known right-fold:

foldr :: (a → b → b) → b → [a] → b
foldr k z = go
where go [] = z

go (y:ys) = y ‘k‘ go ys

13

1 Introduction

Any list consumer implemented via foldr is called a good consumer.
It is a typical exercise for beginners to write a list consuming function

like sum in terms of foldr:5

sum :: [Int] → Int
sum xs = foldr (+) 0 xs

After rewriting as many list producers as possible in terms of build,
and as many list consumers as possible in terms of foldr, what have we
gained? The benefit comes from one single and generally applicable
rewrite rule

{-# RULES
"fold/build" forall k z g. foldr k z (build g) = g k z
#-}

which fuses a good producer with a good consumer. It makes the pro-
ducer use the consumer’s combinators instead of the actual list construc-
tors, and thus eliminates the intermediate list.

Simplifying our example a bit, we can see that sum [0..10] would, after
some inlining, become

foldr (+) 0 (build (go 0 10))
where go n m cons nil | n > m = nil

| otherwise = n ‘cons‘ go (n+1) m cons nil

where the rewrite rule is applicable, and GHC rewrites this to

go 0 10 (+) 0
where go n m cons nil | n > m = nil

| otherwise = n ‘cons‘ go (n+1) m cons nil

which can further be simplified (by a constant propagation and dropping
unused arguments) to

go 0 10
where go n m | n > m = 0

| otherwise = n + go (n+1) m

which is roughly the code we would write by hand.

5 As mentioned in the previous footnote, this is not a good and practical definition for
summation. In your code, please do use sum = foldl’ (+) 0 instead!

14

1.4 The GHC Haskell compiler

A function like map is both a list consumer and a list producer, but it
poses no problem to make it both a good consumer and a good producer:

map :: (a → b) → [a] → [b]
map f xs = build (ńcons nil → foldr (ń x ys → f x ‘cons‘ ys) nil xs)

With this definition for map, the compiler will indeed transform the
expression sum (map (+1) (map (∗2) [0..10])) into the nice list-less code
on page 12.

It is remarkable that list fusion does not have to be a built-in feature
of the compiler, but can be completely defined by library code using
rewrite rules.

List fusion based on foldr/build is but one of several techniques to
eliminate intermediate data structures; there is unfoldr/destroy [Sve02]
and stream fusion [CLS07]; they differ in what functions can be effi-
ciently turned into good producers and consumers [Cou10]. I focus
on foldr/build as that is the technique used for the list data type in the
Haskell standard libraries.

1.4.3 Evaluation and function arities

When GHC is done optimising the program at the Core stage, it trans-
forms it to machine code via yet another intermediate language. GHC
Core is translated to the Spineless Tagless G-Machine (STG) [Pey92]. Al-
though still a functional language based on the untyped lambda calculus,
it already determines many low-level details of the eventual execution:
In particular, allocation of data and of function closures is explicit, the
memory layout of data structures is known and all functions have a
particular arity, i.e. number of parameters. So although it is not machine
code yet, together with the runtime system (which is implemented in C),
most details of the runtime behaviour are known by now.

The function arity at this stage has an important effect on performance,
as a mismatch between the number of arguments a function expects and
the number of arguments it is called with causes significant overhead
during execution.

15

1 Introduction

multA :: Int → Int → Int
multA 0 y = 0
multA x y = x ∗ y

multB :: Int → Int → Int
multB 0 = ń_ → 0
multB x = ńy → x ∗ y

Figure 3: Semantically equal functions with different arities

Consider the two functions in Fig. 3, which both implement a short-
circuiting multiplication operator. The first has an arity of 2, while
the second has an arity of 1. This matters: Evaluating the expression
multB 1 2 is more than 25% slower than evaluating multA 1 2! Why
is that so?

For the former, the compiler sees that enough arguments are given
to multA to satisfy its arity, so it puts them in registers and simply calls
the code of multA.

For the latter, the code first pushes onto the stack a continuation that
will, eventually, apply its argument to 2. Then it calls multB with only
the first argument in an register. multB then evaluates this argument
and checks that is not zero. It then allocates, on the heap, a function
closure capturing x, and passes it to the continuation on the stack. This
continuation, implemented generically in the runtime, analyses the func-
tion closure to see that it indeed expects one more argument, so it finally
passes the second argument, and the actual computation can happen.

This example demonstrates why it is important for good performance
to have functions expect as many arguments as they are being called
with.

Could the compiler simply always make a function expect as many
arguments as possible? No!

Compare the expression sum (map (multA n) [1..1000]) with the ex-
pression sum (map (multB n) [1..1000]). The former will call multA one
thousand times and thus perform the check n == 0 over and over again,

16

1.5 Arities and eta-expansion

while the latter calls multB once, hence performs the check once, and
then re-uses the returned function a thousand times. In this example the
check is rather cheap, but even then, for n=0, the latter code is 20% faster.
With different, more expensive checks, the performance difference can
become arbitrarily large.

More details about how GHC implements function calls, and why it
does it that way, can be found in [MP06].

1.5 Arities and eta-expansion

The notion of arity is central to this thesis, and deserves a more abstract
definition in terms of eta-expansion. This definition formally builds
on the syntax and semantics introduced later, but can be understood
on its own.

Eta-expansion replaces an expression e by (ńz. e z), where z is fresh
with regard to e. More generally, the n-fold eta-expansion is described by

En(e) := (ńz1 . . . zn. e z1 . . . zn),

where the zi are distinct and fresh with regard to e.
We intuitively consider an expression e to have arity α ∈ N if we

can replace it by Eα(e) without negative effect on the performance –
whatever that means precisely. Analogously, for a variable bound by
let x = e, its arity xα is the arity of e.

Example
The Haskell function

let f x = if x then ń y → y + 1
else ń y → y − 1

can be considered to have arity 2: If we eta-expand its right-hand side,
and apply some mild simplifications, we get

let f x y = if x then y + 1
else y − 1

which should in general perform better than the original code. Note that
in a lazy language, x will be evaluated at most once. �

17

1 Introduction

In this example, I determined the arity of an expression based on its
definition and obtained its internal arity. Such an analysis has been part
of GHC since a while and is described in [XP05].

For the rest of this work, however, I treat e as a black box and instead
look at how it is being used, i.e. its context, to determine its external arity.
For that, I can give an alternative definition: An expression e has arity α
if upon every evaluation of e, there are at least α arguments on the stack.

Example
In the Haskell code

let f x = if g x then ń y → y + 1
else ń y → y − 1

in f 1 2 + f 3 4

the function f has arity 2: Because it is always called with two argu-
ments, the eta-expansion itself has no effect, but it allows for subsequent
optimisations that improve the code to

let f x y = if g x then y + 1
else y − 1

in f 1 2 + f 3 4.

The internal arity is insufficient to justify this, as in a different context,
this transformation could create havoc: Assume the function is passed
to a higher-order function such as map (f 1) [1.1000]. If f were now
eta-expanded, the possibly costly call to g 1 would no longer be shared
and repeated a thousand times. �

If an expression has arity α, then it also has arity α′ for α′ ≤ α; every
expression has arity 0. The arities can thus be arranged to form a lattice:

· · · @ 3 @ 2 @ 1 @ 0.

For convenience, I set 0− 1 = 0. As mentioned in Section 1.1, ᾱ is a
partial map from variable names to arities, and α̇ is a list of arities.

18

1.6 Nominal logic

1.6 Nominal logic

In pen-and-paper proofs about programming languages, it is customary
to consider alpha-equivalent terms as equal, i.e. ńx. x = ńy. y. The
human brain is relatively good in following that reasoning, keeping track
of the scope of variables and implicitly making the right assumptions
about what names in a proof may be equal to another. For example, in
a proof by induction on the formation of terms, it often goes without
saying that in the case for ńx. e, the x is fresh and not related to any name
occurring outside the scope of this lambda.

Such loose reasoning stands in the way of a rigorous and formal
treatment. If the formalisation introduces terms as raw terms where the
name of the bound variable contributes to the identity of the object, i.e.
ńx. x 6= ńy. y, then in every inductive proof one would have to worry
about the bound variable possibly being equal to some name in the
context, and if that poses a problem, one has to explicitly alpha-rename
the lambda abstraction, which in turn requires a proof that the statement
of the lemma indeed respects alpha-equivalence.

One alternative is to use nameless representations such as de-Bruijn
indices. With these, every term has a unique representation and the
issue of alpha-equivalency disappears. The downsides of such an ap-
proach are the need for two different syntactic constructors for variables
– one for the index of a bound name, and one for the name of a free
variable – and the relatively unnatural syntax, which stands in the way
of readability

A way out is provided by nominal logic, as devised by Pitts [Pit03].
This formalism allows us to use names as usual in binders and terms,
while still equating alpha-equivalent terms, and it provides induction
principles that allow us to assume bound names to be as fresh as we
intuitively want them to be.

This section gives a shallow introduction to nominal logic. I took
inspiration from [UT05], simplified some details and omitted the proofs.

In the main body of the thesis I present my definitions and proofs in
the intuitive and somewhat loose way, without making use of concepts
specific to nominal logic. In particular I do not bother to state the equiv-

19

1 Introduction

ariance of my definitions and predicates. Having a machine-checked
formalisation, where all these slightly annoying and not very enlight-
ening details have been taken care of, gives me the certainty that no
problems lurk here.

1.6.1 Permutation sets

A core idea in nominal logic is that the effect of permuting names in an
object describes its binding structure.

Full nominal logic supports an infinite number of distinct sorts of
names, or atoms, but as I do not need this expressiveness, I restrict this
exposition to one sort of atoms, here suggestively named Var.

We are concerned with sets that admit swapping names:

Definition 1 (PSets)
A pset is a set X with an action • of the group Sym(Var) on X. �

Deciphering the group theory language, this means that there is an
operation • that satisfies, for every x ∈ X,
- () • x = x and
- (π1 · π2) • x = π1 • (π2 • x) for all permutations π1, π2

where () is the identity permutation, and · the usual composition of
permutations.

The set of atoms, Var, is naturally a pset, with the standard action of
the permutation group.

Any set can be turned into a pset using the trivial operation, i.e. π • x =
x for all elements x of the set. This way, objects that do not “contain
names”, e.g. the set of natural numbers, or the Booleans, can be elegantly
part of the formalism. Such a pset is called pure.

Products and sums of psets are psets, with the permutations acting on
the components. Similarly, the set of lists with elements in a pset is a pset.

Functions from psets to psets are psets, with the action defined as

π • f = λx.π • (f (π−1 • x)).

Note that the permutation acting on the argument has to be inverted.

20

1.6 Nominal logic

1.6.2 Support and freshness

Usually, when discussing names and binders, one of the first definitions
is that of fv e, the set of free variables of some term e. Intuitively, it is the
set of variables occurring in e that are not hidden behind some binder.

But this intuition gets us only so far: Consider the identity function
id: Var → Var. On the one hand, it does not operate on any variables,
it just passes them through. On the other hand, its graph mentions all
variables. So what should its set of free variables be – nothing ({}) or
everything (Var)?

Nominal logic avoids this problem by giving a general and abstract
definition of the set of free variables6 of an element of any pset:

Definition 2 (Free and fresh variables)
The set of free variables of an element x of some pset X is defined as

fv x = {a | card{b | (a b) • x 6= x} = ∞}. �

A variable v is fresh with regard to x if v /∈ fv x.

Spelled out, this says that a variable a is free in x if there are infinitely
many other variables b such that swapping these two affects x. Or, more
vaguely, a matters to x.

From this definition, many useful and expected equalities about fv
can be derived:
• fv v = {v} for v ∈ Var.
• fv((x, y)) = fv x ∪ fv y.
• fv x = {} if x is from a pure pset.
• fv(id) = {}, as π • id = id for all permutations π.
• If a, b /∈ fv x, then (a b) • x = x.

When talking about programming languages, we are used to having
“enough” variables, i.e. there is always one that is fresh with regard to
everything else around.

This is not true in general. For example, let f : Var→N be a bijection,
then fv f = Var, as every transposition (a b) changes f . If such an object
6 This is commonly called the support. I use the term free variables in this introduction, as

the notions coincide in all cases relevant to this thesis.

21

1 Introduction

would appear during a proof, we would not be able to say “let x be a
variable that is fresh with regard to f ”

But in practice, such objects do not occur, and there is always a fresh
variable. This is captured by the following

Definition 3 (Finite support)
A pset X is said to have finite support if fv x is finite for all x ∈ X. �

Since Var is infinite, it immediately follows that for every x from a pset
with finite support, there is a variable a that is fresh with regard to x.

The pset Var, as well as every pure pset, is a set with finite support.
Products, sums and lists of psets with finite support have themselves
finite support.

Sets of functions from psets with finite support, or from an infinite set
to a pset with finite support, do in general not have finite support. This
can be slightly annoying, as discussed in Section 2.6.2.

1.6.3 Abstractions

The point of nominal logic is to provide a convenient way to work
with abstractions. Formally, a nominal abstraction over a pset X is any
operation [_]._ : Var → X → X that fulfils

(i) π • ([a].x) = [π • a].(π • x) and
(ii) [a].x1 = [b].x2 ⇐⇒ x1 = (a b) • x2 ∧ (a = b ∨ a /∈ fv x2).

For a pset X with finite support, this implies

fv([a].x) = fv x \ {a},

which further shows that this notion of free variables coincides with
our intuition and expectation.

This notion of abstraction can be extended to multiple binders, e.g. to
represent mutually recursive let-expressions [UK12].

1.6.4 Strong induction rules

My use case for nominal logic is to model the syntax of the lambda
calculus, and to get better induction principles.

22

1.6 Nominal logic

Consider this inductive definition of lambda expressions:

e ∈ Exp ::= x | e e | λx.e

where x is a meta-variable referring to elements of Var. This would yield
the following induction rule

(∀x ∈ Var. P(x)) =⇒
(∀e1, e2 ∈ Exp. P(e1) =⇒ P(e2) =⇒ P(e1 e2)) =⇒
(∀x ∈ Var, e ∈ Exp. P(e) =⇒ P(λx.e)) =⇒ P(e)

where in the case for lambda expressions, the proof obligation is to be
discharged for any variable x, even if that variable is part of the context
(i.e. mentioned in P). This can be a major hurdle during a proof.

If one had Exp as a permutation set such that λx.e is a proper nominal
induction, then it would be possible to prove a stronger induction rule:

(∀s ∈ X, x ∈ Var. P(s, x)) =⇒
(∀s ∈ X, e1, e2 ∈ Exp. P(s, e1) =⇒ P(s, e2) =⇒ P(s, e1 e2)) =⇒
(∀s ∈ X, x ∈ Var, e ∈ Exp. x /∈ fv s =⇒ P(s, e) =⇒ P(s, λx.e)) =⇒

P(s, e)

Here the proposition P explicitly specifies its “context” in its first pa-
rameter, which may be of any pset X with finite support. In the case for
the lambda abstraction, we may additionally, and without any manual
naming or renaming, assume the variable x to be fresh with regard to
that context.

The construction of Exp as a permutation set with a nominal abstrac-
tion is not trivial and described in [UT05]. Luckily, we do not have to
worry about that: The implementation of nominal logic in Isabelle takes
care of that (cf. Section 1.7.2).

1.6.5 Equivariance

The last concept from nominal logic that I need to introduce at this point
is that of equivariance. In order to systematically construct inductively

23

1 Introduction

defined types as psets, and then to define functions over terms of such
types by giving equations for each of these “constructors”, the involved
operations and functions need to be well-behaving, i.e. oblivious to the
concrete names involved. This intuition is captured by the following

Definition 4 (Equivariance)
A function f : X1 → X2 → · · · → Xn → X, n ≥ 0, between psets is
called equivariant if

π • f (x1, x2, . . . , xn) = f (π • x1, π • x2, . . . , π • xn). �

Most common operations, such as tupling, list concatenation, the con-
structors of Exp etc. are equivariant, and this ability to freely move
permutations around is crucial to, for example, being able to prove

(λx. e x) = (λy. e y).

1.7 Isabelle

This work has been formalised in the interactive theorem prover Isabelle
[NPW02]. Roughly speaking, an interactive theorem prover has the
appearance of a text editor that allows the user to write mathematics
(definitions, theorems, proofs), with the very peculiar feature that it
understands what is written, and either points out problems to the user,
or confirms the correctness of the math.

There are a number of such systems in use, with Coq [Coq04] and
Isabelle being the most prominent examples. One distinguishing feature
of Isabelle is its genericity: It provides a meta-logical framework that
can be instantiated with different concrete logics.

I build on the logic Isabelle/HOL, which implements a typed higher-
order logic of total functions, in contrast to, for example, Isabelle/ZF,
which builds on untyped set theory à la Zermelo-Fraenkel. Although I,
like – presumably – most mathematicians, have been taught mathemat-
ics assuming set theory as the foundation of all math, all the actual math
that we commonly do happens in an implicitly typed setting, and the
choice of Isabelle/HOL over Isabelle/ZF is indeed natural. Furthermore,

24

1.7 Isabelle

the tooling provided by Isabelle – libraries of existing formalisations, con-
servative extensions, proof automation – is much more comprehensive
for Isabelle/HOL.7

This theses builds on and refers to the Isabelle 2016 release.

1.7.1 The prettiness of Isabelle code

One distinguishing feature of Isabelle is its proof language Isar [Nip02],
which has a somewhat legible syntax with keywords in English and
allows for proofs that are nicely structured and readable. Furthermore,
Isabelle supports generating LATEX code from its theory files. So the
question arises whether I could have avoided re-writing everything in
the hand-written style, by generating the all the definitions, proofs and
theorems of this thesis out of my Isabelle theories.

For some parts, this would certainly be a viable option. Consider
the hand-written proof and the corresponding fragment of the Isabelle
theory in Fig. 4, taken from the case for application in the proof of
Theorem 2. To a reader who knows some Isabelle syntax, it is pleasing
to see how similar the hand-written proof and the Isabelle formalisation
are. However, even this carefully selected fragment still has its warts:

• The syntax does not quite match up. For example, the abstract
syntax tree node for an application is written explicitly using the
App constructor, whereas it is nicer to simply write e x. This is not
possible in Isabelle – juxtaposition cannot be overloaded.8

In some cases, I can define custom syntax in Isabelle that comes
very close to what I want. The _ ↓Fn _ operator is a good example
for that. Unfortunately, this often comes at the cost of extra incon-
venience when entering these symbols. In antiquotations, where
Isabelle is asked to produce a certain existing term, such as the
conclusion of a previously proven lemma, Isabelle can make use
of such fancy syntax automatically, and hence for free, but regular

7 In Isabelle 2016, the HOL directory is more than 13 times the size of the ZF directory,
measured in lines of code.

8 At least not within reasonable use of the system.

25

1 Introduction

Isabelle theories will be converted to LATEX as they are entered, so
in order to get fancy syntax, fancy syntax needs to be typed in.

• An Isabelle formalisation will almost always contain some techni-
calities that I would like not to pervade the presentation.

A good example for that is the seemingly stray centre dot after Fn:
My formalisation uses the HOLCF package [Huf12], which has a
type dedicated to continuous functions. This design choice avoids
having to explicitly state continuity as a side conditions, but it
also means that normal juxtaposition cannot be used to apply such
functions, and a dedicated binary operator has to be used explicitly
– this is the “·” seen in some of the Isabelle listings in this thesis.

• While Isabelle commands are chosen so that a theory is reminiscent
of a proper English text, it is not a great pleasure to read. Many Is-
abelle commands (such as by simp) are only relevant to the system,
but should be omitted when addressing a human reader, and other
bits of technical syntax (e.g. invoking the induction hypothesis as
Application.hyps(9)[OF prem1]) would be out of place.

There are ways to hide any part of the Isabelle code from the gen-
erated LATEX, but these markers would in turn clutter the Isabelle
source code, and defeat the purpose of having a faithful represen-
tation of the proof in print.

Other parts of the development are even further away from a clean
and easy-to-digest presentation, so I chose to keep most of the Isabelle
development separate from the dissertation thesis. Appendix A contains
a few snippets of the development, namely the main theorems and all
definitions that are involved in them. The full formalisation is published
in the Archive of Formal Proof [Bre13; Bre15d].

26

1.7 Isabelle

Je xK{{Γ}}ρ = JeK{{Γ}}ρ ↓Fn {{Γ}}ρ x

{ by the denotation of application }

= Jńy. e′K{{∆}}ρ ↓Fn {{Γ}}ρ x

{ by the induction hypothesis }

= Jńy. e′K{{∆}}ρ ↓Fn {{∆}}ρ x

{ see above }

= Je′K({{∆}}ρ)(y 7→{{∆}}ρ x)

{ by the denotation of lambda abstraction }

= Je′[y := x]K{{∆}}ρ
{ by Lemma 5 }

= JvK{{Θ}}ρ
{ by the induction hypothesis }

CorrectnessOriginal.thyhave [[App e x]]{|Γ|}$ = ([[e]]{|Γ|}$) ↓Fn ({|Γ|}$) x
by simp

also have . . . = ([[Lam [y]. e ′]]{|∆|}$) ↓Fn ({|Γ|}$) x
using Application.hyps(9)[OF prem1] by simp

also have . . . = ([[Lam [y]. e ′]]{|∆|}$) ↓Fn ({|∆|}$) x
unfolding ∗..

also have . . . = (Fn·(Λ z. [[e ′]]({|∆|}$)(y := z))) ↓Fn ({|∆|}$) x
by simp

also have . . . = [[e ′]]({|∆|}$)(y := ({|∆|}$) x)
by simp

also have . . . = [[e ′[y ::= x]]]{|∆|}$
unfolding ESem_subst..

also have . . . = [[v]]{|Θ|}$
by (rule Application.hyps(12)[OF prem2])

finally
show [[App e x]]{|Γ|}$ = [[v]]{|Θ|}$.

Figure 4: A hand-written proof and the corresponding Isabelle code

27

1 Introduction

1.7.2 Nominal logic in Isabelle

I have outlined the concepts of nominal logic in Section 1.6 in general
terms. In my formalisation, I did not implement this machinery myself,
but rather build on the Nominal2 package for Isabelle by Christian
Urban and others [UT05; UK12], which provides all the basic concepts
of nominal logic, together with tools to work with them.

Permutation sets are modelled as types within the type class pt, which
fixes the permutation action •. In the context of this type class, the pack-
age provides general definitions for support (supp), freshness (fresh, or
written infix as]). Type classes that extend pt with additional require-
ments are fs for permutation sets with finite support and pure for pure
permutation sets.

I define the function fv as the support, restricted to one sort of atoms:

Nominal-Utils.thydefinition fv :: ′a::pt ⇒ ′b::at_base set
where fv e = {v. atom v ∈ supp e}

Nominal2 provides the proof method perm_simp which simplifies
proof goals involving permutations by pushing them inside expressions
as far as possible. It maintains a list of equivariance theorems that
the user can extend with equivariance lemmas about newly defined
constants.

The command nominal_datatype allows the user to conveniently con-
struct a permutation set corresponding to a usual, inductive definition
with binding structure annotated. See Section 2.6.1 for an example.

The constructors of such a data type cannot be used as constructors
with Isabelle tools like fun, because they do not completely behave
as such. For example, they are not necessarily injective. Therefore,
Nominal2 provides the separate command nominal_function to define
functions over a nominal data type. It is not completely automatic and
requires the user to discharge a number of proof obligations, such as
equivariance of the function’s graph and representation independence
of the equations.

Similarly, Nominal2 provides the command nominal_inductive, which
can be used, after defining an inductive predicate as usual with induc-
tive, to specify which free variables of a rule should not clash with the

28

1.7 Isabelle

context during a proof by induction. It requires the user to prove that
the variable is fresh with regard to the conclusion of the rule, and in
return generates a stronger induction rule akin to the one shown in
Section 1.6.4. The proof method nominal_induct, which can be used in-
stead of the usual induct method, supports the additional option avoiding
and instantiates the strong induction rule so that the desired additional
freshness assumptions become available.

1.7.3 Domain theory and the HOLCF package

Applications of domain theory, i.e. the mathematical field that studies
certain partial orders, pervade programming language research: They
are used to give semantics to recursive functions and to recursive types;
they structure program analysis results and tell us how to find fixpoints.

As my use of domain theory in this thesis is quite standard, I will
elide most of the technicalities and usually state just the partial order
used. My domains are of the pointed, chain-complete kind. I consider
only ω-chains, i.e. sequences (ai)i∈N with ai v ai+1; completeness of the
domain implies that every such chain has a least upper bound

⊔
i∈N ai.

A domain is called pointed if it has a least element, written ⊥.
This choice is motivated by my use of the Isabelle package HOLCF

[Huf12], which is a comprehensive suite of definitions and tools for
working with domain theory in Isabelle. In particular, it allows me to de-
fine possibly complex recursive domains such as the domain used by the
resourced denotational semantics in Section 2.3.3, with one command:

CValue.thydomain CValue
= CFn (lazy (C → CValue) → (C → CValue))
| CB (lazy bool discr)

This will not only define the type CValue, but also the two injection
functions CFn and CB, corresponding projection functions and induction
principles. The command fixrec can then define functions over such
a domains.

29

1 Introduction

The type CValue is then automatically made a member of a number of
type classes that come with HOLCF. Most relevant for us are
• po for types supporting a partial order, written with square opera-

tors and relations, i.e. v,
• cpo for complete partial orders, i.e. types in po where additionally

every ω-chain has a least upper bound and
• pcpo for pointed complete partial order, which extends cpo by the

requirement that a least element ⊥ exists.
HOLCF introduces a type dedicated to continuous functions, written

′a→ ′b, which is separate from Isabelle’s regular function type, written
′a⇒ ′b. Encoding the continuity of functions in the types avoid having
to explicitly assume functions to be continuous in the various lemmas.

This is particularly important when some definition is only well-
defined if its arguments are continuous, as it is the case for the fixed-point
operator fix : (′a→ ′a)→ ′a (with ′a::pcpo, i.e. the type ′a has an instance of
the type class pcpo). Without this trick, fix would not be a total function,
and working with partial functions in Isabelle is always annoying to
some degree.

The downside of this design choice is that such continuous functions
cannot be applied directly. Therefore, HOLCF introduces an explicit
function application operator _·_ : (′a→ ′b)⇒ ′a⇒ ′b. I advise to simply
assume this operator is not there when reading Isabelle code using
HOLCF.

The custom type has further consequences: Existing tools to define
new functions, such as definition, fun and the Nominal-specific com-
mand nominal_function know how to define normal functions, but are
unable to produce values of type ′a→ ′b. In these cases, I have to resort
to defining the function by using the – again HOLCF-specific – lambda
abstraction for continuous functions written (Λ x. e) on the right-hand
side of the definition. I can still prove the intended function equations,
with the argument on the left-hand side, manually afterwards, as long
as the function definition is indeed continuous.

The standard proof principle for functions defined in terms of the afore-
mentioned fix is fixed-point induction: In order to prove that a predicate

30

1.7 Isabelle

P holds for fix·F, where the functorial F is of type ′a→ ′a with ′a::pcpo,
it suffices to prove that
• the predicate P is admissible, i.e. if it holds for all elements of a

chain, then it holds for the least upper bound of the chain,
• P holds for ⊥ and
• P holds for any F·x, given that P holds for x.

A derived proof principle is that of parallel fixed-point induction which
can be used to establish that a binary predicate P (usually an equality or
inequality) holds for fix·F and fix·G. This requires a proof that
• the predicate P, understood as a predicate on tuples, is admissible,
• P ⊥ ⊥ holds and
• P (F·x) (F·y) holds, given that P x y holds.

Both principles are provided by HOLCF as lemmas, and an extensible
set of syntax-directed lemmas helps to take care of the admissibility
proof obligation.

31

I mean, ostensibly, yes. Honestly,
we hacked most of it together with
Perl.

Randall Munroe, xkcd #224

CHAPTER 2

Formalizing Launchbury’s
natural semantics

Formal semantics are the basic building block of all rigorous program-
ming language research. Not only do they force us to think our work
through in all details – without a precise definition of the meaning of
programs, we cannot conduct any proofs. Therefore, as I do want to
be able to prove theorems about my work, I need a suitable semantics,
and also implement it in Isabelle.

Furthermore, semantics provide a common ground for the research
community: If the same semantics are used, then results can easily
be compared and combined. Therefore, I should not just define a se-
mantics that happens to suit me, but preferably choose an existing,
well-established semantics to build on.

One such semantics is John Launchbury’s “Natural Semantics for Lazy
Evaluation” [Lau93], which has several important traits: It is simple, as
it has only four rules. It is detailed enough to model lazy evaluation. It
is abstract enough to not model unnecessary details. And it is widely
accepted as a standard semantics.

Using a standard denotational semantics, Launchbury underpins his
natural semantics by claiming correctness (evaluation in the natural
semantics preserves denotation) and adequacy (all programs with a

33

http://xkcd.com/224

2 Formalizing Launchbury’s natural semantics

denotation have a derivation in the natural semantics). While he proves
correctness in sufficient detail, he only outlines the adequacy proof – an
omission that resisted fixing, despite the popularity of the semantics,
and despite serious attempts to follow his proof sketch (e.g. [SHO14]).

In this chapter, I reproduce Launchbury’s semantics, including sub-
sequent improvements by Sestoft [Ses97] and modernisations to how
names binding is handled. This yields a definition that is suitable for
formalisation in Isabelle. The original correctness proof was almost di-
rectly usable in the mechanisation and required only minor adjustments,
which I discuss. I then provide a full adequacy proof, where I do not
follow Launchbury’s outline directly, but find a more elegant and direct
proof. Parts of this chapter, in particular the adequacy proof, has been
submitted to the Journal of Functional Programming [Bre15c].

Dedicated sections explicate the differences to Launchbury’s work,
serving two purposes: The reasons for deviation can be educational
to someone attempting a similar formalisation. Furthermore they are
checklists when combining this work with other Launchbury-based
developments.

Finally, in preparation of Chapter 4, I extend the semantics and the
proofs with a simple base type, and introduce a corresponding small-
step semantics.

2.1 Launchbury’s semantics

Launchbury defines a semantics for the simple untyped lambda calculus
given in Fig. 5, consisting of variables, lambda abstractions, applications
and mutually recursive bindings.

The set of free variables of an expression e is denoted by fv e; I overload
this notation and use fv with arguments of other types that may con-
tain variable names. For example for tuples (or, equivalently, multiple
arguments), we have fv(Γ, e) = fv Γ ∪ fv e.

A variable x is fresh with regard to an expression e (or a similar object)
if x /∈ fv e. The expression e with every free occurrence of x replaced
by y is written as e[x := y].

34

2.1 Launchbury’s semantics

x, y, z, w ∈ Var

e ∈ Exp ::= ńx. e

| e x

| x

| let x1 = e1, . . . , xn = en in e

Figure 5: Launchbury’s core lambda calculus

I equate alpha-equivalent lambda abstractions (ńx. x = ńy. y) and the
bound variable is not part of the set of free variables (fv(ńx. y x) = {y}).
let bindings are handled likewise. The theoretical foundation used is
nominal logic (see Section 1.6). This does impose a few well-formedness
side conditions, such as equivariance of definitions over expressions. I
skip them in this presentation, and do so with good conscience, as they
have been covered in the machine-checked proofs.

Note that the term on the right hand side of an application has to
be a variable. A general lambda term of the form e1 e2 would have to
be pre-processed to let x = e2 in e1 x before it can be handled by my
semantics. This restriction simplifies the semantics, as all bindings on
the heap are created by a let expression and we do not have to ensure
separately that the evaluation of a function’s argument is shared. This is
a standard trick applied by Launchbury [Lau93] and others [Ses97; GS01;
HH14]. In some of the less formal parts of this thesis, e.g. in examples, I
occasionally use expressions as arguments in the interest of readability.
This should be understood as a shorthand for the proper, let-bound form.

2.1.1 Natural semantics

Launchbury gives meaning to this language by way of a natural seman-
tics. I present his semantics with minor adjustments due to Sestoft and
myself, and explain these differences in Section 2.1.3.

35

2 Formalizing Launchbury’s natural semantics

Γ : ńx. e ⇓L Γ : ńx. e
LAM

Γ : e ⇓L ∆ : ńy. e′ ∆ : e′[y := x] ⇓L Θ : v
Γ : e x ⇓L Θ : v

APP

Γ : e ⇓L∪{x} ∆ : v

x 7→ e, Γ : x ⇓L x 7→ v, ∆ : v
VAR

dom∆ ∩ fv(Γ, L) = {} ∆, Γ : e ⇓L Θ : v
Γ : let ∆ in e ⇓L Θ : v

LET

Figure 6: Launchbury natural semantics, as revised by Sestoft

The semantics is given by a relation

Γ : e ⇓L ∆ : v

with the intuition that the expression e within the heap Γ reduces to the
value v, while modifying the heap to ∆, while avoiding the names in the
set L. The relation is defined inductively by the rules in Fig. 6, which
obey the following naming conventions:

Γ, ∆, Θ ∈ Heap = Var ⇀ Exp

v ∈ Val ::= ńx. e

A heap is a partial function from variables to expressions (Var ⇀ Exp),
and usually represented by Γ, ∆ or Θ. The same type is used for the list
of bindings in a let. The domain of a heap Γ, written dom Γ, is the set
of variables bound by the heap.

In contrast to expressions, heaps are not alpha-equated, so we have
dom Γ ⊆ fv Γ. I write x 7→ e for the singleton heap and use commas to
combine heaps with distinct domains.

A v represents a value, i.e. an expression in weak head normal form.
So far, the only values are lambda abstractions; this will change when I
add Booleans in Section 2.4.2. I use the predicate isVal e to denote that
the expression e is a value.

36

2.1 Launchbury’s semantics

The first rule, LAM, does not actually “do” anything: Expression and
heap on the left and on the right are the same. This rule thus states that
to evaluate an expression that is already a value, nothing has to be done.

The second rule, APP, handles evaluation of an application. As we
want to model lazy evaluation, first the called expression e is evaluated.
The argument x, which by our syntactic restriction is just a variable, is
then substituted into the the resulting lambda abstracted expression,
and evaluation continues with that. Observe that the argument itself
is not necessarily evaluated.

Rule VAR takes care of evaluating a variable x. This is only possible
if it is mentioned in the heap.

During the evaluation of the expression e, the binding x 7→ e is re-
moved from the heap: This way, if the evaluation of e would itself
require the evaluation of x, the VAR rule does not apply over and over
again, but rather the inference is stuck. An inference algorithm derived
from these rules would exhibit the same behaviour as a runtime for lazy
functional programs that sports blackholing, where a thunk under eval-
uation is replaced by a so-called blackhole which, if evaluated, aborts
the program [Pey92].

This rule also implements sharing: After having evaluated e to a value
v, this is not only returned as the result of the computation, but also
added to the resulting heap as the new binding for x. This updating of x
ensures that any further evaluation of x will immediately return with
its once evaluated value.

The final rule, LET, implements let-bindings, which may be mutually
recursive, simply by moving them to the heap. The let-expression itself
represents an alpha-equivalency class and hence does not have names
for the bound values, so it is the application of this rule that actually
determines dom∆, and the first assumption of the rule ensures that these
variables do not clash with existing ones.

The set L was not present in Launchbury’s rules. It was added by
Sestoft [Ses97] to keep track of variables that must be avoided when
choosing new names in the LET rule, but would otherwise not be present
in the judgement any more, because they were blackholed by VAR. I
explain this modification in greater detail in Section 2.1.3).

37

2 Formalizing Launchbury’s natural semantics

The semantics has a few noteworthy properties, which I describe in the
following lemmas.

Evaluation does not forget bindings:

Lemma 1
If Γ : e ⇓L ∆ : v then dom Γ ⊆ dom∆.

Proof
by induction on the derivation of Γ : e ⇓L ∆ : v. �

Furthermore, names that appear as new bindings on the heap do not
clash with any names in the set L:

Lemma 2
If Γ : e ⇓L ∆ : v then (dom∆ \ dom Γ) ∩ L = {}.

Proof
by induction on the derivation of Γ : e ⇓L ∆ : v. In the case for let
expressions, we use that the names chosen for the bound variables are
fresh with regard to L, as dom∆ ∩ fv(Γ, e, L) = {}. �

I consider a judgement Γ : e ⇓L ∆ : v to be closed if fv(Γ, e) ⊆ dom Γ ∪ L,
i.e. all occurring names are either bound in the heap, or explicitly listed
in the set L of names to avoid.

Note that this is preserved by the semantics in the following sense:

Lemma 3
If Γ : e ⇓L ∆ : v holds and fv(Γ, e) ⊆ dom Γ∪ L, then fv(∆, v) ⊆ dom∆∪ L.

Proof
In light of Lemma 1, this follows from: If Γ : e ⇓L ∆ : v holds, and x′ is
fresh with regard to Γ and e, then x′ is either also fresh with regard to ∆
and v, or x′ appears in dom∆, in which case x′ /∈ L must hold. I prove
this by induction on the derivation.
Case: LAM

This case is trivial.
Case: APP

By the first induction hypothesis, there are two subcases to consider:

38

2.1 Launchbury’s semantics

• The variable x′ is still fresh with regard to ∆ and ńy. e′. In order to
invoke the second induction hypothesis, we need to show that x′

is fresh with regard to e′[y := x]. This is the case, as x′ 6= x, by the
assumption, and either x′ = y, or x is fresh with regard to e′.

• The variable x′ appears in dom∆ and is not in L. By Lemma 1, it
then also appears in domΘ.

Case: VAR

As x′ is fresh with regard to (x 7→ e, Γ) and x, we have x′ 6= x. Fur-
thermore, x′ is also fresh with regard to Γ and e, so we can invoke the
induction hypothesis.

• If x′ is still fresh with regard to ∆ and v, then it is also fresh with
regard to (x 7→ v, ∆), as x′ 6= x.

• If x′ ∈ dom∆ and x′ /∈ L ∪ {x}, we obviously also have that
x′ ∈ dom (x 7→ v, ∆) and x /∈ L.

Case: LET

As this case introduces new names on the heap, this decides what side
of the disjunction in the proposition x′ ends up in.

• If x′ ∈ dom∆, then x′ ∈ dom (∆, Γ), and by Lemma 1, x′ ∈ domΘ.
Also, by the freshness condition on LET, x′ /∈ L.

• Otherwise, x is fresh with regard to (∆, Γ) and e by the assumption,
so we can invoke the induction hypothesis. �

2.1.2 Denotational semantics

In order to show that the natural semantics behaves as expected, Launch-
bury defines a standard denotational semantics for expressions and
heaps, following Abramsky [Abr90]. The semantic domain Value is the
initial solution to the domain equation

Value = (Value→ Value)⊥,

39

2 Formalizing Launchbury’s natural semantics

in the category of pointed chain-complete partial orders with continuous
functions. In this domain, we can distinguish ⊥ from λx.⊥.

The injection

Fn(_) : (Value→ Value)→ Value

turns values of type Value → Value into non-bottom values of Value,
while the deconstruction

_ ↓Fn _: Value→ Value→ Value

does the converse, defined as

v1 ↓Fn v2 =

{
f v2 if v1 = Fn(f)
⊥ otherwise.

The partial order v on Value is the usual, with Fn(f) v Fn(g) if
∀x. f x v g x for f , g ∈ Value → Value, and ⊥ below everything.

A semantic environment maps variables to values,

ρ ∈ Env = Var→ Value,

and the initial environment ⊥ maps all variables to ⊥. Environments
are ordered by lifting the order on Value pointwise.

With the domain of an environment ρ, written dom ρ, I denote the set of
variables that are not mapped to ⊥.

The environment ρ|S, where S is a set of variables, is the restriction
of ρ to S:

(ρ|S) x =

{
ρ x, if x ∈ S
⊥ if x 6∈ S.

The environment ρ \S is defined as the restriction of ρ to the complement
of S, i.e. ρ \ S := ρ|Var\S.

The semantics of expressions and heaps are mutually recursive. The
meaning of an expression e ∈ Exp in an environment ρ ∈ Env is written
as JeKρ ∈ Value and is defined by the equations in Fig. 7.

40

2.1 Launchbury’s semantics

Jńx. eKρ := Fn(λv.JeKρt[x 7→v])

Je xKρ := JeKρ ↓Fn ρ x

JxKρ := ρ x

Jlet ∆ in eKρ := JeK{{∆}}ρ.

Figure 7: The standard denotational semantics

We can map this function over a heap to obtain an environment:

JΓKρ x :=

{
JeKρ, if (x 7→ e) ∈ Γ
⊥ if x /∈ dom Γ.

The semantics of a heap Γ ∈ Heap in an environment ρ, written
{{Γ}}ρ ∈ Env, is then obtained as a least fixed point:

{{Γ}}ρ = (µρ′. ρ++dom ΓJΓKρ′)

where

(ρ++S ρ′) x :=

{
ρ x, if x /∈ S
ρ′ x, if x ∈ S

is a restricted update operator.
The least fixed point exists, as all involved operations are monotone

and continuous, and by unrolling the fixed point once, we can see

Lemma 4 (Application of the heap semantics)

({{Γ}}ρ) x =

{
JeK{{Γ}}ρ, if (x 7→ e) ∈ Γ
ρ x, if x /∈ dom Γ. �

The following substitution lemma plays an important role in finding a
more direct proof of adequacy, but is also required for the correctness
proof, as performed by Launchbury:

41

2 Formalizing Launchbury’s natural semantics

Lemma 5 (Semantics of substitution)

JeKρ(y 7→ρ x) = Je[y := x]Kρ. �

Proof
We first show ∀ρ. ρ x = ρ y =⇒ {{e}}ρ = {{e[y := x]}}ρ by induction on
e, using parallel fixed-point induction in the case for let. This allows us
to calculate

JeKρ(y 7→ρ x) = Je[y := x]Kρ(y 7→ρ x) { as ρ(y 7→ ρ x) x = ρ(y 7→ ρ x) y }

= Je[y := x]Kρ { as y /∈ fv(e[y := x]). } �

I sometimes write {{Γ}} instead of {{Γ}}⊥. In an expression {{Γ}}({{∆}}ρ)
I omit the parentheses and write {{Γ}}{{∆}}ρ.

2.1.3 Discussions of modifications

It is rare that a formal system developed with pen and on paper can
be formalised to the letter, partly because of vagueness (what, exactly,
is a “completely” fresh variable?), partly because of formalisation con-
venience, and partly because the stated facts – even if morally correct –
are wrong when read scrupulously. Launchbury’s work is no exception.
This section discusses the required divergence from Launchbury’s work.

Naming

Getting the naming issues right is one of the major issues when for-
malising anything involving bound variables. In Launchbury’s work,
the names are manifestly part of the syntax, i.e. ńx. x 6= ńy. y, and his
rules involve explicit renaming of bound variables to fresh ones in the
rule VAR. His definition of freshness is a global one, so the validity of a
derivation using VAR depends on everything around it. This is morally
what we want, but very impractical.

Sestoft [Ses97] noticed this problem and fixed it by adding a set L of
variables to the judgement, so that every variable to be avoided occurs

42

2.1 Launchbury’s semantics

somewhere in Γ, e, or L. Instead of renaming all bound variables in
the rule VAR, he chooses fresh names for the new heap bindings in the
rule LET.

I build on that, but go one step further and completely avoid bound
names in the expressions, i.e. ńx. x = ńy. y. I still have them in the syntax,
of course, but these are just representatives of an α-equivalency class.
Nominal logic (cf. Section 1.6) forms the formal foundation for this. So
in my rule LET I do not have to rename the variables, but simply may
assume that the variables used in the representation of the let-expression
are sufficiently fresh.

The names of bindings on the heap are not abstracted away in that
manner; this follows [SHO12].

Closed judgements

Launchbury deliberately allows non-closed configurations in his deriva-
tions, i.e. configurations with free variables in the terms that have no
corresponding binding on the heap. This is a necessity, as rule VAR

models blackholing by removing a binding from the heap during its
evaluation.

With the addition of the set of variables to avoid, which will always
contain such variables, the question of whether non-closed configura-
tions should be allowed can be revisited. And indeed, Sestoft defines
the notion of L-good configurations, where all free variables are either
bound on the heap, or contained in L. He shows that this property is
preserved by the operational semantics and subsequently considers only
L-good configurations. I follow this example with my definition of closed
judgements. Threading the closedness requirement through a proof
by rule induction is a typical chore contributing to the overhead of a
machine-checked formalisation.

43

2 Formalizing Launchbury’s natural semantics

Join vs. update

Launchbury specifies his denotational semantics using a binary oper-
ation t on environments:

{{Γ}}ρ = (µρ′. ρ t JΓKρ′)

He does not define it explicitly, but the statements in his Section 5.2.1
leave no doubt that he indeed intended this operation to denote the least
upper bound of its arguments, as one would expect. Unfortunately, with
this definition, his Theorem 2 is false.

The proposition of the theorem (which corresponds to Theorem 2 in
this document) is

Γ : e ⇓L ∆ : v =⇒ ∀ρ ∈ Env. JeK{{Γ}}ρ = JvK{{∆}}ρ

and a counter example is given by

e = x,

v = (ńa. let b = b in b),

Γ = ∆ = (x 7→ v), and

ρ = (x 7→ Fn(λ_.Fn(λx.x))).

Note that the denotation of v is Fn(λ_.⊥) in every environment. We
have Γ : e ⇓{} ∆ : v, so according to the theorem, JeK{{Γ}}ρ = JvK{{∆}}ρ
should hold, but the following calculation show that it does not:

JeK{{Γ}}ρ =
(
{{Γ}}ρ

)
x

= ρ x t JvK{{Γ}}ρ
= Fn(λ_.Fn(λx.x)) t Fn(λ_.⊥)
= Fn(λ_.Fn(λx.x) t⊥)
= Fn(λ_.Fn(λx.x))

6= Fn(λ_.⊥)
= JvK{{∆}}ρ.

44

2.2 Correctness

The crucial property of the counter-example is that ρ contains compatible,
but better information for a variable also bound in Γ. The mistake in his
correctness proof is in the step ({{x 7→ v, ∆}}ρ) x = JvK{{x 7→v,∆}}ρ in the
case for VAR, which should be ({{x 7→ v, ∆}}ρ) x = JvK{{x 7→v,∆}}ρ t ρ x.

Intuitively, such rogue ρ are not relevant for a proof of the main The-
orem 1. Nevertheless, this issue needs to be fixed before attempting a
formal proof. One possible fix is to replace t by a right-sided update
operation that just throws away information from the left argument for
those variables bound on the right. The syntax ρ++S ρ′ denotes this
operation. If that is used instead of the least upper bound, then the proof
goes through in full rigour.

It is slightly annoying having to specify the set S in this operation
explicitly, as it is usually clear “from the context”: Morally, it is the set of
variables that the object on the right talks about. But as environments, i.e.
total functions from Var→ Value, do not distinguish between variables
not mentioned at all and variables mentioned, but bound to ⊥, this
information is not easily exploitable in a formal setting.

For the same reason Theorem 2 uses the more explicit equality be-
tween restricted environments instead of Launchbury’s ordering ≤ on
environments. I elaborate on this in Section 2.2.1.

2.2 Correctness

The main correctness theorem for the natural semantics is
Theorem 1 (Correctness)
If Γ : e ⇓L ∆ : v holds and is closed, then

JeK{{Γ}} = JvK{{∆}}. �

A proof by rule induction requires the following generalisation:

Theorem 2 (Correctness, generalized)
If Γ : e ⇓L ∆ : v holds and is closed, then for all environments ρ ∈ Env,
we have

JeK{{Γ}}ρ = JvK{{∆}}ρ and ({{Γ}}ρ)|dom Γ = ({{∆}}ρ)|dom Γ. �

45

2 Formalizing Launchbury’s natural semantics

The proof follows Launchbury’s steps, but differs in some details. In the
interest of a self-contained presentation, I give the full proof here. Two
technical lemmas used in the proof are stated and proved subsequently.

For clarity, ρ =|S ρ′ abbreviates ρ|S = ρ′|S.

Proof
by induction on the derivation of Γ : e ⇓L ∆ : v. Note that in such a
derivation, all occurring judgements are closed.

Case: LAM

This case is trivial.

Case: APP

The induction hypotheses are JeK{{Γ}}ρ = Jńy. e′K{{∆}}ρ and {{Γ}}ρ =|dom Γ

{{∆}}ρ as well as Je′[y := x]K{{∆}}ρ = JvK{{Θ}}ρ and {{∆}}ρ =|dom∆
{{Θ}}ρ.

We have {{Γ}}ρ x = {{∆}}ρ x: If x ∈ dom Γ, this follows from the
induction hypothesis. Otherwise, we know x ∈ L, as the judgement is
closed, and the new names bound in ∆ avoid L, so we have ρ x on both
sides.

While the second part follows from the corresponding induction hy-
potheses and dom Γ ⊆ dom∆ (Lemma 1), the first part is a simple calcu-
lation:

Je xK{{Γ}}ρ = JeK{{Γ}}ρ ↓Fn {{Γ}}ρ x

{ by the denotation of application }

= Jńy. e′K{{∆}}ρ ↓Fn {{Γ}}ρ x

{ by the induction hypothesis }

= Jńy. e′K{{∆}}ρ ↓Fn {{∆}}ρ x

{ see above }

= Je′K({{∆}}ρ)(y 7→{{∆}}ρ x)

{ by the denotation of lambda abstraction }

= Je′[y := x]K{{∆}}ρ
{ by Lemma 5 }

46

2.2 Correctness

= JvK{{Θ}}ρ
{ by the induction hypothesis }

Case: VAR

We know that JeK{{Γ}}ρ′ = JvK{{∆}}ρ′ and {{Γ}}ρ′ =|dom Γ
{{∆}}ρ′ for all

environments ρ′.
We begin with the second part:

{{x 7→ e, Γ}}ρ = µρ′. (ρ++dom Γ{{Γ}}ρ′)[x 7→ JeK{{Γ}}ρ′]

{ by the following Lemma 6 }

= µρ′. (ρ++dom Γ{{Γ}}ρ′)[x 7→ JvK{{∆}}ρ′]

{
by the induction hypothesis. Note that
we invoke it for ρ′ with ρ′ 6= ρ! }

=|dom (x 7→e,Γ)
µρ′. (ρ++dom∆{{∆}}ρ′)[x 7→ JvK{{∆}}ρ′]

{ by the induction hypothesis; see below }

= {{x 7→ v, ∆}}ρ
{ again by Lemma 6 }

The second but last step is quite technical, as the |dom (x 7→e,Γ) op-
erator needs to commute with the fixed-point operator. This goes
through by parallel fixed-point induction if we first generalise it to
|Var\dom∆∪ dom (x 7→e,Γ), the restriction to the complement of the new vari-
ables added to the heap during evaluation of x.

The first part now follows from the second part:

JxK{{x 7→e,Γ}}ρ = ({{x 7→ e, Γ}}ρ) x

= ({{x 7→ v, ∆}}ρ) x

{ by the second part and x ∈ dom (x 7→ e, Γ) }

= JvK{{x 7→v,∆}}ρ

{ by Lemma 4. }

47

2 Formalizing Launchbury’s natural semantics

Case: LET

We know that JeK{{∆,Γ}}ρ = JvK{{Θ}}ρ and {{∆, Γ}}ρ =|dom (∆,Γ)
{{Θ}}ρ. For

the first part we have

Jlet ∆ in eK{{Γ}}ρ = JeK{{∆}}{{Γ}}ρ { by the denotation of let-expressions }

= JeK{{∆,Γ}}ρ { by the following Lemma 7 }

= JvK{{Θ}}ρ { by the induction hypothesis }

and for the second part we have

{{Γ}}ρ =|dom Γ
{{∆}}{{Γ}}ρ { because dom∆ are fresh }

= {{∆, Γ}}ρ { again by Lemma 7 }

=|dom (∆,Γ)
{{Θ}}ρ. { by the induction hypothesis. } �

In the case for VAR, I switched from the usual, simultaneous definition
of the heap semantics to an iterative one, in order to be able to make
use of the induction hypothesis:

Lemma 6 (Iterative definition of the heap semantics)

{{x 7→ e, Γ}}ρ = µρ′.
(
(ρ++dom Γ {{Γ}}ρ′)[x 7→ JeK{{Γ}}ρ′]

)
. �

A corresponding lemma can be found in Launchbury [Lau93], but with-
out proof. As the proof involves some delicate juggling of fixed points,
I include it here in detail:

Proof
Let

L = λρ′.
(
ρ++dom (x 7→e,Γ)Jx 7→ e, ΓKρ′

)
be the functorial of the fixed point on the left hand side, and

R = λρ′.
(
(ρ++dom Γ {{Γ}}ρ′)[x 7→ JeK{{Γ}}ρ′]

)
.

the functorial of the fixed point on the right hand side.

48

2.2 Correctness

By Lemma 4, we have

(µL) y = Je′KµL for y 7→ e′ ∈ dom Γ, (1)

(µL) x = JeKµL, (2)

(µL) y = ρ y for y /∈ dom (x 7→ e, Γ). (3)

Similarly, by unrolling the fixed points, we have

(µR) y = Je′K{{Γ}}(µR) for y 7→ e′ ∈ dom Γ, (4)

(µR) x = JeK{{Γ}}(µR), (5)

(µR) y = ρ y for y /∈ dom (x 7→ e, Γ), (6)

and also for ρ′ ∈ Env (in particular for ρ′ = (µL) and ρ′ = (µR)), again
using Lemma 4,

({{Γ}}ρ′) y = Je′K{{Γ}}ρ′ for y 7→ e′ ∈ dom Γ, (7)

({{Γ}}ρ′) y = ρ′ y for y /∈ dom Γ. (8)

We obtain

{{Γ}}(µR) = (µR) (9)

from comparing (4)–(6) with (7) and (8). We can also show

{{Γ}}(µL) = (µL), (10)

by antisymmetry ofv and using that least fixed points are least pre-fixed
points:

v: We need to show that (µL) ++dom ΓJΓK(µL) v (µL), which follows
from (1).

w: We need to show that

{{Γ}}(µL) ++dom (x 7→e,Γ)Jx 7→ e, ΓK{{Γ}}(µL) v {{Γ}}(µL).

For dom Γ, this follows from (7), so we show JeK{{Γ}}(µL) v (µL) x =
JeK(µL), which follows from the monotonicity of JeK_ and case v.

49

2 Formalizing Launchbury’s natural semantics

To show the conclusion of the lemma, i.e. (µL) = (µR), we again use
antisymmetry and the leastness of least fixed points:

v: We need to show that L (µR) = µR, i.e.

– ρ y = (µR) y for y /∈ dom (x 7→ e, Γ), which follows from (6),
– Je′KµR = (µR) y for y 7→ e′ ∈ Γ, which follows from (4) and

(9) and
– JeKµR = (µR) x, which follows from (5) and (9).

w: Now we have to show that R (µL) = (µL), i.e.

– ρ y = (µL) y for y /∈ dom (x 7→ e, Γ), which follows from (3),
– Je′K{{Γ}}(µL) = (µL) y for y 7→ e′ ∈ Γ, which follows from (1)

and (10), and
– JeK{{Γ}}(µL) = (µL) x, which follows from (2) and (10). �

The final lemma required for the correctness proof shows that the de-
notation of a set of bindings with only fresh variables can be merged
with the heap it was defined over:

Lemma 7 (Merging the heap semantics)
If dom∆ is fresh with regard to Γ and ρ, then

{{∆}}{{Γ}}ρ = {{∆, Γ}}ρ. �

Proof
We use the antisymmetry of v, and the leastness of least fixed points.

v: We need to show that {{Γ}}ρ++dom∆J∆K{{∆,Γ}}ρ = {{∆, Γ}}ρ, which
we verify pointwise.

– For x ∈ dom∆, this follows directly from Lemma 4.
– For x /∈ dom∆, this holds as the variables bound in ∆ are

fresh, so the bindings in {{Γ}}ρ keep their semantics.

w: We need to show that ρ++dom (∆,Γ)J∆, ΓK{{∆}}{{Γ}}ρ = {{∆}}{{Γ}}ρ.

– For x ∈ dom∆, this follows from unrolling the fixed point on
the right hand side once.

50

2.2 Correctness

– For x 7→ e ∈ dom Γ (and hence x /∈ dom∆), we have

(ρ++dom (∆,Γ)J∆, ΓK{{∆}}{{Γ}}ρ) x

= JeK{{∆}}{{Γ}}ρ
{ by Lemma 4 }

= JeK{{Γ}}ρ
{ because dom∆ is fresh with regard to e }

= ({{Γ}}ρ) x

{ by unrolling the fixed point }

= (J∆K{{Γ}}ρ) x

{ because x /∈ dom∆ and Lemma 4. }

– For x /∈ dom (∆, Γ), we have ρ x on both sides. �

2.2.1 Discussions of modifications

My main Theorem 1 and the generalisation in Theorem 2 differ from
Launchbury’s corresponding Theorem 2. The additional requirement
that the judgements are closed has already been discussed in Section 2.1.3.

Furthermore, the second part of Theorem 2 is phrased differently.
Launchbury states {{Γ}}ρ ≤ {{∆}}ρ where ρ ≤ ρ′ is defined as

∀x. ρ x 6= ⊥ =⇒ ρ x = ρ′ x,

i.e. ρ′ agrees with ρ on all variables that have a meaning in ρ. The issue
with this definition is that there are two reasons why {{Γ}}ρ x = ⊥ can
hold: Either x /∈ dom Γ, or x ∈ dom Γ, but bound to a diverging value.
Only the first case is intended here, and actually ≤ is used as if only
that case can happen, e.g. in the treatment of VAR in the correctness
proof. I therefore avoid the problematic ≤ relation and explicitly show
{{Γ}}ρ =|dom Γ

{{∆}}ρ.

51

2 Formalizing Launchbury’s natural semantics

2.3 Adequacy

A correctness theorem for a natural semantics is not worth much on its
own. Imagine a mistake in side condition of the LET rule that accidentally
prevents any judgement to be derived for programs with a let – the
correctness theorem would still hold.

It is therefore desirable to prove that all programs that have a meaning,
in this case according to the denotational semantics, indeed have a
derivation:

Theorem 3 (Adequacy)
For all expressions e, heap Γ and set of variables L, if JeK{{Γ}} 6= ⊥, then
there exists a heap ∆ and a value v so that Γ : e ⇓L ∆ : v. �

The proof uses a modified denotational semantics that keeps track of the
number of steps required to determine the non-bottomness of e, which
I introduce in the next subsection. I will then show that the natural
semantics is adequate with regard to the modified denotational seman-
tics, and make the connection by showing how the two denotational
semantics relate.

2.3.1 The resourced denotational semantics

The domain used to count the resources is a solution to the equation
C = C⊥. The lifting is done by the injection function C : C → C, so the
elements are

⊥ @ C ⊥ @ C (C ⊥) @ · · · @ Cn @ · · · @ C∞

This is isomorphic to the extended naturals. I use r for variables ranging
over C. The notation f |r restricts a function f with domain C to take at
most r resources: (f |r) r′ := f (r u r′).

The resourced semantics NJeKσ of an expression e in environment σ
is now a function which takes an additional argument r of type C to
indicate the number of steps the semantics is still allowed to perform:
Every recursive call in the definition of NJeKσ r peels one application
of C off r until none are left.

52

2.3 Adequacy

NJeKσ ⊥ := ⊥
NJńx. eKσ (C r) := CFn (λv.NJeKσt[x 7→v]|r)
NJe xKσ (C r) := ((NJeKσ r) ↓CFn (σ x)|r) r

NJxKσ (C r) := σ x r

NJlet ∆ in eKσ (C r) := NJeK{{∆}}σ r

Figure 8: The resourced denotational semantics

The type of the environment changes as well: It is now Var→ (C→
CValue). I use σ for variables ranging over such resourced environments.

The intuition is that if we pass in an infinite number of resources, the
two semantics coincide:

∀x. ρ x = σ x C∞ =⇒ JeKρ = NJeKσ C∞,

as Launchbury puts it. While this intuition is intuitively true, it cannot
be stated that naively: Because the semantics of an expression is now a
function taking a C, this needs to be reflected in the domain equation,
which therefore constructs a different domain, as observed by Sánchez-
Gil et al.:

CValue = ((C→ CValue)→ (C→ CValue))⊥

The lifting and the projection functions are hence

CFn (_) : (C→ CValue)→ (C→ CValue)→ CValue

_ ↓CFn _: CValue→ (C→ CValue)→ (C→ CValue).

The definition of the resourced semantics, given in Fig. 8, resembles
the definition of the standard semantics with some additional resource
bookkeeping. The semantics of the heap is defined as before:

N{{Γ}}σ := (µσ′. σ ++dom ΓNJΓKσ′).

Given the similarity between this semantics and the standard seman-
tics, it is not surprising that Lemmas 4, 5, 6 and 7 hold as well. In fact,

53

2 Formalizing Launchbury’s natural semantics

in the formal development, they are stated and proved abstractly, using
locales [Bal14] as a modularisation tool, and then simply instantiated for
both variants of the semantics. I describe this approach in Section 2.6.3.

The correctness lemma needs some adjustments, as a more evalu-
ated expression requires fewer resources. It therefore only provides an
inequality:

Lemma 8 (Correctness, resourced)
If Γ : e ⇓L ∆ : v holds and is closed, then for all resourced envi-
ronments σ we have NJeK{{Γ}}σ v NJvK{{∆}}σ and (N{{Γ}}σ)|dom Γ v
(N{{∆}}σ)|dom Γ. �

Proof
Analogously to the proof of Theorem 2. �

2.3.2 Denotational black holes

The major difficulty in proving computational adequacy is the black-
holing behaviour of the operational semantics: During the evaluation
of a variable x the corresponding binding is removed from the heap.
Operationally, this is desirable: If the variable is called again during its
own evaluation, we would have an infinite loop anyways.

But obviously, the variable is still mentioned in the current config-
uration, and simply removing the binding will change the denotation
of the configuration in unwanted ways: There is no hope of proving
NJeKN{{x 7→e,Γ}} = NJeKN{{Γ}}.

But a weaker statement holds, which reflects the idea of “not using
x during its own evaluation” more closely:

Lemma 9 (Denotational blackholing)

NJeKN{{x 7→e,Γ}}r 6= ⊥ =⇒ NJeKN{{Γ}}r 6= ⊥ �

This is a consequence of the following lemma, which states that dur-
ing the evaluation of an expression using finite resources, only fewer
resources will be passed to the members of the environment (which are
of type C → CValue):

54

2.3 Adequacy

Lemma 10

NJeKσ|C r = NJeK(σ|r)|C r

where σ|r is an abbreviation for λx.(σ x)|r. �

Proof
by induction on the expression e.

In order to show NJeKσ|C r = NJeK(σ|r)|C r it suffices to show that
NJeKσ (C r′) = NJeK(σ|r) (C r′) for any r′ v r.

The critical case is the one for variables, where e = x. We have

NJxKσ (C r′) = σ x r′ = (σ x|r) r′ = NJxK(σ|r) (C r′)

as r′ v r.
In the other cases, the result follows from the fact that nested expres-

sions are evaluated with r′ resources or, in the case of lambda abstraction,
wrapped inside a |r′ restriction operator.

For the case of let, a related lemma for heaps needs to be proven by par-
allel fixed-point induction, namely ∀r. (N{{Γ}}σ)|r = (N{{Γ}}(σ|r))|r. �

Equipped with this lemma, we can begin the

Proof (of Lemma 9)
Let r′ be the least resource such that NJeKN{{x 7→e,Γ}}(C r′) 6= ⊥. Such an
r′ exists by the assumption, and C r′ v r, and by the continuity of the
semantics r′ 6= C∞. In particular, NJeKN{{x 7→e,Γ}}r′ = ⊥.

We first show
N{{x 7→ e, Γ}}|r′ v N{{Γ}} (∗)

by bounded fixed-point induction. So given an arbitrary environment
σ v N{{x 7→ e, Γ}}, we may assume σ|r′ v N{{Γ}} and have to prove
NJx 7→ e, ΓKσ|r′ v N{{Γ}}, which we do point-wise:

For y 7→ e′ ∈ Γ, this follows from

NJx 7→ e, ΓKσ|r′ y = NJe′Kσ|r′
= NJe′Kσ|r′ |r′ { by Lemma 10 }

v NJe′Kσ|r′

55

2 Formalizing Launchbury’s natural semantics

v NJe′KN{{Γ}} { by the induction hypothesis }

= N{{Γ}} y { by Lemma 4 }

while for x, this follows from

NJx 7→ e, ΓKσ|r′ x = NJeKσ|r′
v NJeKN{{x 7→e,Γ}}|r′ { using σ v N{{x 7→ e, Γ}} }

= ⊥ { by the choice of r′ }

= N{{Γ}} x { as x /∈ dom Γ. }

So we can conclude the proof with

⊥ @ NJeKN{{x 7→e,Γ}}(C r′) { by the choice of r′ }

= NJeKN{{x 7→e,Γ}}|r′ (C r′) { by Lemma 10 }

v NJeKN{{Γ}}(C r′) { by (∗) }

v NJeKN{{Γ}}r { as C r′ v r } �

2.3.3 Resourced adequacy

Now the necessary tools to handle blackholing are in place for the ade-
quacy proof with regard to the resourced semantics.

Lemma 11 (Resourced semantics adequacy)
For all e, Γ and L, if NJeKN{{Γ}} r 6= ⊥, then there exists ∆ and v so that
Γ : e ⇓L ∆ : v. �
Proof
Because the semantics is continuous, it suffices to show this for r = Cn ⊥,
and perform induction on this n, with arbitrary e, Γ and L.

The case r = C0 ⊥ = ⊥ is vacuously true, as NJeKN{{Γ}} ⊥ = ⊥.
For the inductive case assume that the lemma holds for r, and that
NJeKN{{Γ}} (C r) 6= ⊥. We proceed by case analysis on the expression e.
Case: e = x.
From the assumption we know that Γ = x 7→ e′, Γ′ for some e′ and Γ′,
as otherwise the denotation would be bottom, and furthermore that
NJe′KN{{x 7→e′ ,Γ′}} r 6= ⊥

56

2.3 Adequacy

With Lemma 9 this implies NJe′KN{{Γ′}} r 6= ⊥, so the induction hypothe-
sis applies and provides ∆ and v with Γ′ : e′ ⇓L∪{x} ∆ : v. This implies
x 7→ e′, Γ′ : x ⇓L ∆ : v by rule VAR, as desired.
Case: e = e′ x.
Assume that fv(Γ, e′) ⊆ L. No generality is lost here: If a derivation in
the natural semantics with a larger set of variables to avoid than required
holds, then the same derivation is also valid with the required set L.

From the assumption we know (NJe′KN{{Γ}} r ↓CFn (N{{Γ}} x)|r) r 6=
⊥. In particular (NJe′KN{{Γ}} r) 6= ⊥, so by the induction hypothesis we
have ∆, y and e′′ with Γ : e′ ⇓L ∆ : ńy. e′′, the first hypothesis of APP.

This judgement is closed by the extra assumption, so Lemma 8 ensures
that NJe′KN{{Γ}} v NJńy. e′′KN{{∆}} and N{{Γ}} v N{{∆}}. We can insert
that into the inequality above to calculate

⊥ @
(
NJe′KN{{Γ}} r ↓CFn (N{{Γ}} x)|r

)
r

v
(
NJńy. e′′KN{{∆}} r ↓CFn (N{{∆}} x)|r

)
r

v
(
NJńy. e′′KN{{∆}} r ↓CFn N{{∆}} x

)
r

=
(
CFn (λv.NJe′′KN{{∆}}t[y 7→v]|r) ↓CFn N{{∆}} x

)
r

v
(
CFn (λv.NJe′′KN{{∆}}t[y 7→v]) ↓CFn N{{∆}} x

)
r

= NJe′′KN{{∆}}t[y 7→(N{{∆}} x)] r

= NJe′′[y := x]KN{{∆}} r { by Lemma 5 }

which, using the induction hypothesis again, provides us with Θ and
v so that the second hypothesis of APP, ∆ : e′′[y := x] ⇓L Θ : v, holds,
concluding this case.
Case: e = ńy. e′

This case follows immediately from rule LAM with ∆ = Γ and v = ńy. e′.
Case: e = let ∆ in e′

We have

⊥ @ NJlet ∆ in e′KN{{Γ}} r

v NJe′KN{{∆}}N{{Γ}}
= NJe′KN{{∆,Γ}} { by Lemma 7 }

57

2 Formalizing Launchbury’s natural semantics

so we have Θ and v with ∆, Γ : e′ ⇓L Θ : v and hence Γ : let ∆ in e′ ⇓L
Θ : v by rule LET, as desired. �

2.3.4 Relating the denotational semantics

Lemma 11 is almost what we want, but it talks about the resourced
denotational semantics. In order to obtain that result for the standard
denotational semantics, we need to relate these two semantics. We
cannot simply equate them, as they have different denotational domains
Value and C → CValue. So we are looking for a relation /. between
Value and CValue that expresses the intuition that they behave the same,
if the latter is given infinite resources. In particular, it is specified by
the two equations

⊥ /. ⊥
and

(∀x y. x /. y C∞ =⇒ f x /. g y C∞) ⇐⇒ Fn(f) /. CFn (g).

Unfortunately, this is not admissible as an inductive definition, as it
is self-referential in a non-monotone way, so the construction of this
relation is non-trivial. This was observed and performed by Sánchez-Gil
et al. [SHO11], and I have subsequently implemented this construction
in Isabelle.

I lift this relation to environments ρ ∈ Env and resourced environ-
ments σ ∈ Var → (C → Value) by

ρ /.∗ σ ⇐⇒ ∀x. ρ x /. σ x C∞.

This allows us to state precisely how the two denotational semantics
are related:

Lemma 12 (The denotational semantics are related)
For all environments ρ ∈ Env and σ ∈ Var→ (C→ Value) with ρ /.∗ σ,
we have

JeKρ /. NJeKσ C∞. �

58

2.3 Adequacy

Proof
Intuitively, the proof is obvious: As we are only concerned with infinite
resources, all the resource counting added to the denotational semantics
becomes moot and the semantics are obviously related. A more rigorous
proof can be found in [SHO11] and in my formal verification. �

Corollary 13
For all heaps Γ, we have {{Γ}} /.∗ N{{Γ}}.

Proof
by parallel fixed-point induction and Lemma 12. �

I describe my Isabelle formalisation of [SHO11] in Section 2.6.4, including
the mistakes in the original work that I found and fixed.

2.3.5 Concluding the adequacy

With this in place, I can give the

Proof (of Theorem 3)
By Corollary 13 we have {{Γ}} /.∗ N{{Γ}}, and with Lemma 12 this
implies JeK{{Γ}} /. NJeKN{{Γ}} C∞.

With the assumption JeK{{Γ}} 6= ⊥ and the definition of /. this ensures
that NJeK{{Γ}} C∞ 6= ⊥, and we can apply Lemma 11, as desired. �

2.3.6 Discussions of modifications

My adequacy proof diverges quite a bit from Launchbury’s. As it is the
first rigorous proof, I discuss the differences in greater detail.

Launchbury performs the adequacy proof by introducing an alterna-
tive natural semantics (ANS) that is closer to the denotational semantics
than the original natural semantics (NS). He replaces the rules APP and
VAR with the two rules given in Fig. 9. There are three differences to
be spotted:

1. In the rule for applications, instead of substituting the argument x
for the parameter y, the variable y is added to the heap, bound to
x, adding an indirection.

59

2 Formalizing Launchbury’s natural semantics

Γ : e ⇓L ∆ : ńy. e′ y 7→ x, ∆ : e′ ⇓L Θ : v
Γ : e x ⇓L Θ : v

APP’

x 7→ e, Γ : e ⇓L ∆ : v
x 7→ e, Γ : x ⇓L ∆ : v

VAR’

Figure 9: Launchbury’s alternative natural semantics

2. In the rule for variables, no update is performed: Even after x has
been evaluated to the value v, the binding x on the heap is not
modified at all.

3. Also in the rule for variables, no blackholing is performed: The
binding for x stays on the heap during its evaluation.

Without much ado, Launchbury states that the original natural semantics
and the alternative natural semantics are equivalent, which is intuitively
convincing. Unfortunately, it turned out that a rigorous proof of this
fact is highly non-trivial, as the actual structure of the heaps during
evaluation differs a lot: The modification to the application rule causes
many indirections, which need to be taken care of. Furthermore, the
lack of updates in the variable rules causes possibly complex, allocating
expressions to be evaluated many times, each time adding further copies
of already existing expressions to the heap. On the other side, the up-
dates in the original semantics further obscure the relationship between
the heaps in the original and the alternative semantics. On top of all that
add the technical difficulty that is due to naming issues: Variables that
are fresh in one derivation might not be fresh in the other, and explicit
renamings need to be carried along.

Sánchez-Gil et al. have attempted to perform this proof. They broke it
down into two smaller steps, going from the original semantics to one
with only the variable rule changes (called No-update natural semantics,
NNS), and from there to the ANS. So far, they have performed the second
step, the equivalence between NNS and ANS, in a pen-and-paper proof

60

2.3 Adequacy

[SHO15], while relation between NS and NNS has yet resisted a proper
proof [SHO14].

Considering these difficulties, I went a different path, and bridged
the differences not on the side of the natural semantics, but on the
denotational side, which turned out to work well:

1. The denotational semantics for lambda expressions changes the
environment (Jńx. eKρ := Fn(λv.JeKρt[x 7→v])), while the natural se-
mantics uses substitution into the expression: e[y := x].

This difference is easily bridged on the denotational side by the
substitution Lemma 5, which we need anyways for the correctness
proof. See the last line of the application case in the proof of
Lemma 11 for this step.

2. The removal of updates had surprisingly no effect on the adequacy
proof: The main chore of the adequacy proof is to produce evi-
dence for the assumptions of the corresponding natural semantics
inference rule, which is then, in the last step, applied to produce
the desired judgement. The removal of updates only changes the
conclusion of the rule, so the adequacy proof is unchanged.

Of course updates are not completely irrelevant, and they do affect
the adequacy proof indirectly. The adequacy proof uses the cor-
rectness theorem for the resourced natural semantics (Lemma 8),
and there the removal of updates from the semantics would make
a noticeable difference.

3. Finally, and most trickily, there is the issue of blackholing. I ex-
plain my solution in Section 2.3.2, which works due to a small
modification to the resourced denotational semantics.

My proof relies on the property that when we calculate the seman-
tics of NJeKσ r, we never pass more than r resources to the values
bound in σ (Lemma 10). This concurs with the intuition about
resources.

In Launchbury’s original definition of the resourced semantics,
this lemma does not hold: The equation for lambda expression

61

2 Formalizing Launchbury’s natural semantics

ignores the resources passed to it and returns a function involving
the semantics of the body:

NJńx. eKσ (C r) := CFn (λv.NJeKσt[x 7→v])

With that definition, NJńx. yKσ (C ⊥) = CFn (λ_. σ y), which de-
pends on σ y r for all r, contradicting Lemma 10.

Therefore, I restrict the argument of CFn (_) to cap any resources
passed to it at r. Analogously I adjust the equation for applications
to cap any resources passed to the value of the argument in the
environment, σ x.

These modifications do not affect the proof relating the two deno-
tational semantics (Lemma 12), as there we always pass infinite
resources, and |C∞ is the identity function.

2.4 Data type encodings and base values

Launchbury’s semantics is a typical core calculus used for research: Mini-
malistic as far as possible. Lambda abstraction, application and variables
are enough to have a full functional programming language, and let
expressions are added to talk explicitly about sharing and recursion.

2.4.1 Data types via Church encoding

Many other features of a typical programming language are omitted,
and that is fine, because they can often be modelled with these primitive
building blocks. For example data constructors and case analysis are
expressible using a suitable encoding, such as the Church encoding.
Consider tuples:

The constructor of a product type can be implemented as

Pair = ńx y z. z x y

with the projection functions

fst = ńp. p (ńx y. x)

snd = ńp. p (ńx y. y).

62

2.4 Data type encodings and base values

For the purposes of analysing lazy evaluation, these encodings suffi-
ciently capture the behaviour of constructors. In particular, the semantics
is set up so that the arguments of such a constructor are evaluated at
most once, matching the expected behaviour of “real” constructors in
a lazy language.

Example
Consider the following code, which stores an unevaluated expression
f x in the Pair constructor, extracts it later and evaluates it twice.

let f = ńx y. y
p = Pair (f x) (f y)

in (fst p) (fst p) x

We expect the redex (f x) to be evaluated only once, and indeed, this
is the case. But note that the example code does not actually follow my
syntax, because we have non-trivial expressions as arguments. By the
mentioned preprocessing, the code should actually be

let f = ńx y. y
p = (let y2 = f y in let y1 = f x in Pair y1 y2)

in let y3 = fst p in fst p y3 x

If this expression is called e, then we have [] : e ⇓{} ∆ : v where

∆ = f 7→ ńx y. y,

p 7→ ńz. z y1 y2,

y3 7→ ńy. y,

y2 7→ f y,

y1 7→ ńy. y,

and v = x, and the pair now stores its first argument in its evaluated
form, while the second argument is still unevaluated. Tracing the com-
plete derivation of this judgement (which is a too large to be reproduced
here) we see that (f x) is indeed evaluated only once. �

63

2 Formalizing Launchbury’s natural semantics

There is, however, a trait of “real” constructors and case analysis that is
not easily modelled by the Church encoding: With the Haskell code

case b of True → do this
False → do that

it is obvious that either do this or do that is executed, but not both. The
same cannot be said for the corresponding code in a Church encoding
of Booleans:

True = ńx y. x

False = ńx y. y

ifThenElse = ńp x y. p x y

where the code ifThenElse b (do this) (do that) may well evaluate both
branches – there is no guarantee that b is one of the well-behaving
expressions True or False.

In the later chapters, I am modelling an analysis that makes use of
exactly that: A case analysis evaluates at most one of its branches (and
exactly one, unless the scrutinee diverges). To prove that analysis to be
correct, I need the language at hand to include a built-in case analysis
operator that exhibits that behaviour – the above Church encoding is
not enough.

But as just that feature is needed, I add just what is required to model
it, and not more: Two constructors without arguments, and an if-then-
else-construct. I deliberately do not add more complex data types that
can carry parameters: As just explained, that would not add anything
of value to the semantics.

2.4.2 Adding Booleans

The extended language sports three additional syntactical constructs,
two of which are also values:

e ∈ Exp ::= . . . | Ct | Cf | e ? et : ef
v ∈ Val ::= . . . | Ct | Cf

64

2.4 Data type encodings and base values

The notation e ? et : ef , taken from the ternary operator in C-like lan-
guages, is a succinct way to write an if-then-else construct, and the use
of t and f in variable indices avoids repeating rules for the two cases, if
the meta variable b is used to represent either of these. This can be seen
in the two additional rules for the natural semantics:

Γ : Cb ⇓L Γ : Cb
CON

Γ : e ⇓L ∆ : Cb ∆ : eb ⇓L Θ : v
Γ : e ? et : ef ⇓L Θ : v

IFTHENELSE

As the other rules of the semantics are unchanged, the proofs by
induction performed in this chapter only need to be extended by the
two additional cases.

The required changes to the denotational semantics are a bit more
involved, as the semantic domain changes: Besides functions, the seman-
tics can also return Booleans, and the equation becomes

Value = ((Value→ Value) + 2)⊥,

where + is the disjoint sum and 2 the discrete two-element domain with
the (conveniently named) elements {t, f}. In addition to the existing
injection and deconstruction functions

Fn(_) : (Value→ Value)→ Value

_ ↓Fn _: Value→ Value→ Value

there is the additional injection function

B(_) : 2→ Value

and the deconstruction function

_ ↓B (_, _) : Value→ Value→ Value→ Value

where

v ↓B (v1, v2) =


v1 if v = B(t)
v2 if v = B(f)
⊥ otherwise.

65

2 Formalizing Launchbury’s natural semantics

The partial order v on Value relates neither values of the form Fn(f)
with B(b) nor B(t) with B(f).

The denotation of the new syntactic constructs is given by

JCbKρ := B(b)

Je ? et : efKρ := JeKρ ↓B (JetKρ, JefKρ)

The thus extended natural semantics is still correct with regard to the
denotational semantics:

Proof (of Theorem 2)
Two additional cases need to be handled.

Case: CON

This case is trivial, just like case LAM.

Case: IFTHENELSE

The induction hypotheses are JeK{{Γ}}ρ = JCbK{{∆}}ρ and {{Γ}}ρ =|dom Γ
{{∆}}ρ as well as JebK{{∆}}ρ = JvK{{Θ}}ρ and {{∆}}ρ =|dom∆

{{Θ}}ρ.
We have JebK{{Γ}}ρ = JebK{{∆}}ρ: Because the judgement is closed, i.e.

fv(eb) ⊆ dom Γ ∪ L, it suffices to show {{Γ}}ρ =|dom Γ∪L
{{∆}}ρ. The induc-

tion hypothesis provides the equality on dom Γ, and for x ∈ L \ dom Γ
we also have x /∈ dom∆ by Lemma 2, so we have ρ x on both sides.

Like in case APP, the second part follows from the corresponding in-
duction hypotheses and dom Γ ⊆ dom∆. The first part can be calculated:

Je ? et : efK{{Γ}}ρ = JeK{{Γ}}ρ ↓B (JetK{{Γ}}ρ, JefK{{Γ}}ρ)

{ by the denotation of the !if-!then-!else construct }

= JCbK{{∆}}ρ ↓B (JetK{{Γ}}ρ, JefK{{Γ}}ρ)

{ by the induction hypothesis }

= B(b) ↓B (JetK{{Γ}}ρ, JefK{{Γ}}ρ)

{ by the denotation of the constructor }

= JebK{{Γ}}ρ
= JebK{{∆}}ρ

{ see above }

66

2.4 Data type encodings and base values

= JvK{{Θ}}ρ
{ by the induction hypothesis } �

The adequacy proof can also be recovered, after extending the resourced
domain CValue to contain {t, f}, i.e.

CValue =
(
((C→ CValue)→ (C→ CValue)) + 2

)
⊥

with the analogous injection function and deconstructor

CB(_) : 2→ CValue

_ ↓CB (_, _) : CValue→ CValue→ CValue→ CValue.

which allow the definition of the resourced denotational semantics to
be extended by

NJCbKρ := CB(b)

NJe ? et : efKρ := NJeKρ ↓CB (NJetKρ,NJefKρ).

Proof (of Lemma 11)
We need to extend the case analysis on e:

Case: e = Cb
follows immediately from the rule CON.

Case: e = e′ ? et : ef
The assumption NJe′ ? et : efKN{{Γ}} 6= ⊥ resolves to

NJe′KN{{Γ}} ↓CB (NJetKN{{Γ}},NJefKN{{Γ}}) 6= ⊥.

From this, we can conclude thatNJe′KN{{Γ}} = CB(b) for a b ∈ {t, f}, and
NJebKN{{Γ}} 6= ⊥.

We can therefore apply the first induction hypothesis and obtain ∆
and v so that Γ : e′ ⇓L′ ∆ : v, where L′ = L ∪ fv(Γ, e′) – the extended
set of variables ensures that the judgement is closed. By the correctness
of the resourced denotational semantics (Lemma 8, the proof of which
can be extended analogously to Theorem 2), we have NJvKN{{∆}} v
NJe′KN{{Γ}} = CB(b), so the value v necessarily is v = Cb.

67

2 Formalizing Launchbury’s natural semantics

The correctness lemma also states N{{Γ}} v N{{∆}}, so NJebKN{{∆}} 6= ⊥
and the induction hypothesis provides Θ and v′ with ∆ : eb ⇓L′ Θ : v′.

By rule IFTHENELSE, this shows Γ : e′ ? et : ef ⇓L′ Θ : v′ and hence, as
L ⊆ L′, we have Γ : e′ ? et : ef ⇓L Θ : v′ as desired. �

The three semantics and the corresponding proofs thus allowed for a
modular extension by Booleans: I just added new cases to the syntax,
the natural rules, the denotational domains and the various functions,
but left the overall structure of the proofs and the other cases as they
were. I had to be careful not to make use of the lemma “If Γ : e ⇓L ∆ : v,
then v is a lambda abstraction,” which no longer holds in the extended
version; this comes up in the proof of Lemma 11.

2.5 A small-step semantics

One important feature of Launchbury’s natural big-step-semantic is
that the stack is implicit: During the evaluation of an application, for
example, the argument is not stored anywhere in the configuration, but
lives only in the rules. This is elegant and convenient if during a proof
the stack does not need to be taken into account, e.g. in the adequacy
proof, but causes headaches when the stack is relevant to the discussion
at hand, which will be the case in Chapter 4.

For such feats, a semantics with an explicit stack in the configuration
is better suited. As explained in the beginning of the chapter, I need to
refrain from just building my own semantics that happens to suit me9

but rather build on existing, well-received definitions.
Sestoft has derived a small-step semantics with an explicit stack from

Launchbury’s semantics, called the mark-1 abstract machine, and proved
it to be equivalent to Launchbury’s semantics. I follow that path and
pave it by formalising it in Isabelle. I include my addition of Booleans
(Section 2.4.2) in the treatment, but it is a modular extension: Simply
ignore the cases related to Booleans and you obtain the plain semantics.

9 I tried that, and it did not go well.

68

2.5 A small-step semantics

(Γ, e x, S)⇒ (Γ, e, $x·S) APP1

(Γ, ńy. e, $x·S)⇒ (Γ, e[y := x], S) APP2

(x 7→ e) ∈ Γ =⇒ (Γ, x, S)⇒ (Γ \ x, e, #x·S) VAR1

isVal e =⇒ (Γ, e, #x·S)⇒ (Γ[x 7→ e], e, S) VAR2

(Γ, (e ? et : ef), S)⇒ (Γ, e, (et : ef)·S) IF1

b ∈ {t, f} =⇒ (Γ,Cb, (et : ef)·S)⇒ (Γ, eb, S) IF2

dom∆ ∩ fv(Γ, S) = {} =⇒
(Γ, let ∆ in e, S)⇒ ((∆, Γ), e, S) LET1

Figure 10: The small-step semantics, due to Sestoft [Ses97]

2.5.1 Sestoft’s mark-1 abstract machine

Sestoft’s semantics operates on configurations (Γ, e, S) that consist of the
heap Γ, the control e (i.e. the expression currently under evaluation) and
the stack S.

The stack is constructed from
• the empty stack, [],
• arguments, written $x·S and put on the stack during the evaluation

of an application,
• update markers, written #x·S and put on the stack during the

evaluation of a variable’s right-hand-side, and
• alternatives, written (et : ef)·S and put on the stack during the

evaluation of the scrutinee of an if-then-else-construct.
Throughout this work we assume all configurations to be good, i.e. dom Γ
and #S := {x | #x ∈ S} are disjoint and the update markers on the
stack are distinct.

The relation⇒, given in Fig. 10, defines the semantics of a one-step-
reduction. As usual,⇒∗denotes the reflexive transitive closure of this
relation.

Note that the semantics takes good configurations to good configu-
rations.

69

2 Formalizing Launchbury’s natural semantics

2.5.2 Relating Sestoft’s and Launchbury’s semantics

Sestoft’s small-step and Launchbury’s big-step semantics are closely
related, this section explicates this relationship. I follow [Ses97] here,
making minor adjustments to ease the implementation in Isabelle.

Lemma 14 (Small-step simulates big-step)
If Γ : e ⇓L ∆ : v and fv(Γ, e, S) ⊆ dom Γ ∪ L, then (Γ, e, S)⇒∗ (∆, v, S).

Proof
By induction on the derivation of Γ : e ⇓L ∆ : v, with S arbitrary.
Case: LAM and CON

are trivial, as⇒∗ is reflexive.
Case: APP

The side condition of the first induction hypothesis follows from the
assumption by fv(Γ, e x, S) = fv(Γ, e, $x·S).

From that follows the side condition of the second induction hypothe-
sis, i.e. fv(∆, e′[y := x], S) ⊆ dom∆ ∪ L, using dom Γ ⊆ dom∆ (Lemma 1)
and using that the natural semantics preserves closedness.

It remains to do a simple calculation:

(Γ, e x, S)⇒ (Γ, x, $x·S) { by APP1 }

⇒∗ (∆, ńy. e′, $x·S) { first induction hypothesis }

⇒ (∆, e′[y := x], S) { by APP2 }

⇒∗ (Θ, v, S) { second induction hypothesis }

Case: VAR

follows from this calculation:

((x 7→ e, Γ), x, S)⇒ (Γ, e, #x·S) { by VAR1 }

⇒∗ (∆, v, #x·S) { induction hypothesis }

⇒ ((x 7→ e, ∆), e, S) { by VAR2 }

The side condition of the induction hypothesis, i.e. the inequality
fv((Γ, e, #x·S)) ⊆ dom Γ ∪ (L ∪ {x}), follows directly from the given
assumption fv((x 7→ e, Γ), x, S) ⊆ dom (x 7→ e, Γ) ∪ L.

70

2.5 A small-step semantics

Case: LET

The calculation is short:

(Γ, let ∆ in e, S)⇒ ((∆, Γ), e, S) { by LET1 }

⇒∗ (Θ, v, S) { by induction hypothesis }

where the side-condition of LET1 follows from the side-condition of LET.
Case: IFTHENELSE

resembles the case for APP, with a similar proof for the side conditions,
and the calculation

(Γ, e ? et : ef , S)⇒ (Γ, e, (et : ef)·S) { by IF1 }

⇒∗ (∆,Cb, (et : ef)·S) { induction hypothesis }

⇒ (∆, eb, S) { by IF2 }

⇒ (Θ, v, S) { induction hypothesis } �

The proof of the other direction, i.e. that an evaluation in the small-step
semantics has a corresponding derivation in the big-step-semantics, is
a bit more involved, as we need to recover the tree-structure of the
big-step-semantics from the flat sequence of configurations in the small
step semantics.

To that end, we use the notion of a balanced execution: An execution
c1 ⇒ · · · ⇒ cn, n ≥ 1, is balanced if the stack of each intermediate
configuration ci, i ∈ {1, . . . , n − 1} is an extension of the stack of c1,
and the stack of cn equals the stack of c1. We write c1 ⇒∗b c2 for such
a balanced execution.

As every rule of the semantics only pushes or pops at most one element
off the stack, balanced executions can be broken into smaller parts,
which are still balanced, as shown by the following “intermediate value
theorem”:
Lemma 15
Given a balanced execution c1 ⇒ c2 ⇒ · · · ⇒ c5 where the stack of c2
is the stack of c1 with one element pushed, then there are intermediate
states c3 and c4 so that

c1 ⇒ c2 ⇒∗b c3 ⇒ c4 ⇒∗b c5. �

71

2 Formalizing Launchbury’s natural semantics

Proof
Because the execution is balanced, c5 and c1 have the same stack. In
particular, the stack of c5 does not extend the stack of c2. Let c4 be the
first configuration in that sequence whose stack does not extend the
stack of c2, and c3 be the configuration preceding c4. I claim that c2 ⇒∗ c3
and c4 ⇒∗ c5 are indeed balanced.

Every stack in c2 ⇒∗ c3 extends the stack of c2 by construction. Fur-
thermore, the stack of c3 is equal to the stack of c2: If it was not, then
the stack of the configuration following c3, namely c4, would still be an
extension of c2’s stack, contradicting the choice of c4.

The stack of c4 is equal to the stack of c5: As it follows an extension of
c2’s stack, but itself is not an extension of that, it must be c2 with the top
element popped. By assumption, that is c1’s stack. So c4 and c5 have the
same stack, and all intermediate states have a stack that is an extension
of that. �

Example
This execution is balanced and fulfils the assumptions of Lemma 15, as
the second stack equals the first with one element pushed:

(Γ, x y, S)⇒ (Γ, x, $x·S)
⇒ ([], (ńy. (ńz. z)), #x·$x·S)
⇒ (Γ, (ńy. (ńz. z)), $x·S)
⇒ (Γ, (ńz. z), S)

where Γ = x 7→ (ńy. (ńz. z)).
Lemma 15 decomposes this sequences into the two balanced execu-

tions
(Γ, x, $x·S)⇒∗b (Γ, (ńy. (ńz. z)), $x·S)

and
(Γ, (ńz. z), S)⇒∗b (Γ, (ńz. z), S).

where the second balanced execution does not actually do any steps. �

72

2.5 A small-step semantics

Lemma 16 (Big-step simulates small-step)
Let (Γ, e, S)⇒∗b (∆, v, S) with isVal v. Then Γ : e ⇓#S ∆ : v.

Proof
by complete induction on the number of steps in (Γ, e, S)⇒∗b (∆, v, S).

If there are no intermediate steps, then Γ = ∆, e = v and we have
Γ : v ⇓#S Γ : v either by LAM or CON.

Otherwise, we proceed by case analysis on the first rule applied in
the execution. This rule cannot be APP2, VAR2 or IF2, as these pop an
element off the stack, in contradiction to the execution being balanced.

Case: APP1
We have e = e′ x and using Lemma 15, we can decompose the execution
as follows:

(Γ, e′x, S)⇒ (Γ, e′, $x·S)⇒∗b (∆′, e3, $x·S)⇒ (∆′′, e4, S)⇒∗b (∆, v, S).

As only rule APP2 pops argument marker $x off the stack, we obtain

(Γ, e′x, S)⇒ (Γ, e′, $x·S)⇒∗b (∆′, ńy. e′′, $x·S)
⇒ (∆′, e′′[y := x], S)⇒∗b (∆, v, S).

By induction, the first balanced execution yields Γ : e′ ⇓#S ∆′ : ńy. e′′,
while the second yields ∆′ : e′′[y := x] ⇓#S ∆ : v, which, by APP, con-
cludes this case.

Case: VAR1
By an analogous decomposition using Lemma 15 we find e = x and

(Γ, x, S)⇒ (Γ \ {x}, e′, #x·S)⇒∗b (∆′, z, #x·S)
⇒ ((x 7→ z, ∆′), z, S)⇒∗b (∆, v, S)

with (x 7→ e′) ∈ Γ and isVal z.
The balanced execution (x 7→ z, ∆′, z, S)⇒∗b (∆, v, S) is actually empty:

With a value as the current execution, only rules APP2, VAR2 and IF2 can
apply. But these pop an element off the stack, so they cannot begin a
balanced execution. Therefore, ∆ = x 7→ z, ∆′ and z = v.

73

2 Formalizing Launchbury’s natural semantics

Using the induction hypothesis on the other balanced sub-execution, we
obtain Γ \ {x} : e′ ⇓#S∪{x} ∆′ : v which, by VAR, concludes this case.
Case: IF1
Starting as before, we find e = e′ ? et : ef and

(Γ, e′ ? et : ef , S)⇒ (Γ, e′, (et : ef)·S)⇒∗b (∆′,Cb, (et : ef)·S)
⇒ (∆′, eb, S)⇒∗b (∆, v, S).

Using the induction hypothesis on the two balanced sub-execution,
we obtain Γ : e′ ⇓#S ∆′ : Cb and ∆′ : eb ⇓S ∆ : v which, by IFTHENELSE,
conclude this case.
Case: LET1
As this rule does not modify the stack, we have

(Γ, let ∆′ in e′, S)⇒ ((∆′, Γ), e′, S)⇒∗b (∆, v, S).

Using the induction hypothesis on the balanced sub-execution, we
obtain (∆′, Γ) : e′ ⇓#S ∆ : v which, by LET, concludes this case. �

2.5.3 Discussions of modifications

Sestoft’s paper [Ses97] is already on the rigorous side and quite suitable
to be brought into a machine-checkable form. One difference is, of course,
due to my choice of nominal logic to implement name binding: While
Sestoft’s rule for let expressions renames the let-bound variables to fresh
ones, as they enter the the heap, my rule LET1 simply assumes them to
already be fresh. Intuitively, this is equivalent, but the practical benefit
of not having to push the renaming into the expressions by substitution
is great.

Constructors

This section already includes the addition of Booleans and the if-then-
else-construct to the language. Sestoft, following Launchbury, initially
only has variables, application, lambda abstraction and mutually recur-
sive let-bindings. As before, my addition is modular: One can simply
ignore the extra case and obtain a formalisation of Sestoft’s machine.

74

2.5 A small-step semantics

He introduces constructors and case expressions in a separate chapter
of his paper. His constructors support parameters, but the design is
equivalent to mine.

Fusing a proof

The definition of a balanced execution is the same as Sestoft’s, and the
proof of Lemma 16 follows his idea, but is structured differently. Sestoft
first notices, by use of Lemma 15 and rule inversion on the small step
rules, that every balanced execution is of one of these forms:

• It is empty.

• It is a sequence of rule APP1 followed by a balanced execution,
followed by APP2, followed by another balanced execution.

• It is a sequence of rule VAR1 followed by a balanced execution,
followed by VAR2.

• It is a sequence of rule IF1 followed by a balanced execution, fol-
lowed by IF2, followed by another balanced execution.

• It is a sequence of rule LET1 followed by a balanced execution.

This describes a (context-free) grammar of balanced executions, and his
proof of Lemma 16 proceeds by induction on the productions of that
grammar.

I could have followed this path by defining another predicate for
balanced executions, as an inductively defined predicate following these
rules, then proving that all balanced executions are contained in that
grammar and finally performing the proof of Lemma 16 by induction
on that predicate. But that would be considerably more work for little
gain, as long as this grammar of balanced executions is not used again,
so I chose to fuse10 these two steps of the proof into one, by using the
complete induction on the length of the execution and recovering the
tree structure “on the fly” using Lemma 15.
10 It is interesting to see that the ideas behind list fusion, i.e. fusing generators and

consumers of inductive data types, carry over to transforming proofs so well. The
Curry-Howard correspondence at its best.

75

2 Formalizing Launchbury’s natural semantics

2.6 The Isabelle formalisation

A distinguishing feature of this dissertation’s treatment of Launchbury’s
and Sestoft’s semantics is that I have implemented the definitions, the-
orems and proofs in the interactive theorem prover Isabelle [NPW02].
Nevertheless, I chose to write most of this thesis mostly in the classical
style of hand-written mathematics, addressing the reader who is inter-
ested in my constructions, results and proofs and who, although happy
to know that everything is machine-checked, is not interested in the
Isabelle formalisation itself.

In contrast, the following section addresses the reader who also won-
ders how I implemented this in Isabelle, what techniques I used, and
why. The section also serves as a map to find your way around the
Isabelle theories, and draws the connection between the artefacts in the
thesis and the Isabelle development.

2.6.1 Employing nominal logic

In Section 2.1, I introduce the syntax of the lambda calculus and state
that I consider these to be equal up to alpha-conversion. In the Isabelle
formalisation, I use the nominal package (cf. Section 1.6) to create a data
type for expressions in my syntax:

Terms.thynominal_datatype exp =
Var var
| App exp var
| LetA as::assn body::exp binds bn as in body as
| Lam x::var body::exp binds x in body (Lam [_]. _ [100, 100] 100)
| Bool bool
| IfThenElse exp exp exp (((_)/ ? (_)/ : (_)) [0, 0, 10] 10)
and assn =

ANil | ACons var exp assn
binder

bn :: assn ⇒ atom list
where bn ANil = [] | bn (ACons x t as) = (atom x) # (bn as)

76

2.6 The Isabelle formalisation

The annotation binds indicates where in the syntax tree binders are, and
what their scope is. The command nominal_datatype then takes care of
constructing the data type with the desired equalities.

The command does not support nested recursion, so it is not possible
to simply write

| Let Γ::((var × exp) list) body::exp binds domA Γ in body Γ

Instead, I have to effectively re-define the list type along with the
expression type and simultaneously define the function that collects all
the binders. Luckily, the resulting type assn is indeed isomorphic to (var
× exp) list, so subsequently I define conversion functions between these
two types and define the function Let with the desired type.

A definitory command such as nominal_datatype produces a number
of definitions and lemmas, such as distinctness of constructors, size
lemmas and induction rules. I re-state all of these in terms of Let instead
of LetA, which is slightly tedious, but from then on I can use Let exclu-
sively, including in function definitions and inductive proofs, just as if
nominal_datatype supported nested recursion directly.

2.6.2 The type of environments

The type for environments used here is var⇒ Value, as one would expect.
But it was non-trivial to actually implement it this way, and an earlier
version went a different route that, although eventually abandoned, is
worth describing.

The defining equation for the semantics of lambda abstractions is

[[λx. e]]$ = Fn·(Λ v. [[e]]$(x := v)).

Note that the argument on the left hand side is the representative of an
equivalence class (defined using the Nominal package), so this definition
is only allowed if the right hand side is indeed independent of the
actual choice of x. The nominal_function command requires the user to
discharge that proof obligation before the function is actually defined.

This is shown most commonly and easily if x is fresh in all the other
arguments (x /∈ fv $), and indeed the Nominal package allows me to

77

2 Formalizing Launchbury’s natural semantics

specify this as a side condition to the defining equation, which is what
I did in the first version of [Bre13].

But this convenience comes as a price: Such side-conditions are only
allowed if the argument has finite support (otherwise there might be no
variable fulfilling x /∈ fv $). More precisely: The type of the argument
must be a member of the fs typeclass provided by the Nominal package
(cf. Section 1.7.2). The type var⇒ Value cannot be made a member of
this class, as there obviously are elements that have infinite support.

My fix – inspired by HOLCF’s handling of continuity using a dedi-
cated type – was to introduce a new type constructor, fmap, for partial
functions with finite domain. This is fine: Only functions with finite
domain matter in my formalisation.

The introduction of fmap had further consequences. The main type
class of the HOLCF package, which we use to define domains and contin-
uous functions on them, is the class cpo of chain-complete partial orders.
With the usual ordering on partial functions, (var, Value) fmap cannot
be a member of this class: As there is an infinite supply of variables,
there exists a chain of partial functions of ever increasing domain, and
the limit of that chain would necessarily have an infinite domain, and
hence no longer is in fmap.

The fix here is to use a different ordering on fmap and only let elements
be comparable that have the same domain. In my formalisation, the
domain is always known (e.g. all variables bound on some heap), so
this seemed to work out.

But not without causing yet another issue: With this ordering, (var,
Value) fmap is a cpo, but lacks a bottom element, i.e. it is no longer an pcpo,
and HOLCF’s built-in operator µ x. f x for expressing least fixed points,
as they occur in the semantics of heaps, is not available. Furthermore,
t is not a total function, as it is only defined if the arguments have the
same domain. In the end, I had to define a rather convoluted set of
theories that formalise functions that are continuous on a specific set,
fixed points on such sets etc.

Eventually, I finished all proofs using that approach, but it amounted
to an unreasonable amount of extra work and awkward proofs infested
with statements about the domains of environments.

78

2.6 The Isabelle formalisation

In a later refinement, I found a way to solve this problem much more
elegantly. Using a small trick I defined the semantics functions so that

[[λx. e]]$ = Fn·(Λ v. [[e]]$(x := v))

holds unconditionally. Technically, the definition is

[[λx. e]]$ = Fn·(Λ v. [[e]]$|fv (λx. e)(x := v))

where the right-hand-side can be shown to be independent of the choice
of x, as x /∈ fv (λx. e). This definition can more easily be shown to be
well-formed, and once the function is defined, [[e]]$ = [[e]]$|fv e

can

be proved by induction. By using that lemma, I can prove the desired
equation for [[λx. e]]$ as a lemma. The same trick is applied to the
equation for let bindings.

This allows me to use the type var⇒ Value for the semantic environ-
ments and considerably simplifies the formalisation compared to the
initial version of [Bre13].

2.6.3 Abstracting over the denotational semantics

I have defined two denotational semantics in this chapter: The standard
semantics (JeKρ, see Fig. 7) and the resourced denotational semantics
(NJeKσ, see Fig. 8). The definitions are quite similar, and a number of
lemmas hold for both of them. Moreover, both definitions are mutually
recursive with the definition of the respective heap semantics ({{Γ}}ρ
resp. N{{Γ}}σ), which is defined identically in both cases. In the Isabelle
theories, I therefore abstracted over the differences in order to define
a generic semantics function once and instantiate it twice. Given the
rather large and annoying proofs required for a function definition over
nominal terms, this pays off.

I define the heap semantics within a locale that abstractly assumes the
presence of some denotation function for some type of expressions:

HasESem.thylocale has_ESem =
fixes ESem :: ′exp::pt⇒ (′var::at_base⇒ ′value)→ ′value::{pure,pcpo}

79

2 Formalizing Launchbury’s natural semantics

At this point, the concrete type of expressions, variables and semantics
values is left open (the initial apostrophe in ’value denotes a type vari-
able). No further assumptions about ESem are required to define the
heap semantics, besides those encoded in the type of ESem:

• The expressions contain variables (pt, provided by the Nominal
package, as explained in Section 1.7.2).

• The type of variables is a base value in terms of the Nominal
package (at_base). In our setting, var is the only such type.

• The semantics is continuous in the environment (use of→ instead
of⇒, provided by the HOLCF package).

• The type of the semantic values is oblivious to names (type class
pure, provided by the Nominal package) and it forms a pointed
chain-complete partial order (type class pcpo, provided by the
HOLCF package).

The former restriction on ’value makes it easier to prove the functions
to be equivariant, while the latter is a natural requirement for the fixed
point based definition for the heap semantics, which is

HeapSemantics.thydefinition
HSem :: (′var × ′exp) list⇒ (′var⇒ ′value)→ (′var⇒ ′value)
where HSem Γ = (Λ $. (µ $ ′. $ ++domA Γ [[Γ]]$ ′))

The Isabelle command definition allows to define regular functions
(type constructor⇒) by giving the parameters on the left, but it does
not know anything about HOLCF’s type of continuous functions (type
constructor →). Therefore, the second argument is consumed by a
lambda-abstraction using HOLCF’s continuous lambda operator Λ.

The two denotational semantics differ in the concrete domain (Value
vs. (C→ CValue)), and therefore the injection and deconstruction func-
tions are different. Furthermore the resourced denotational semantics
needs to keep track of the consumed resources. In order to abstractly
define the semantics of expressions, I define a locale that provides these
components:

80

2.6 The Isabelle formalisation

AbstractDenotational.thylocale semantic_domain =
fixes Fn :: (′Value→ ′Value) → (′Value::{pcpo_pt,pure})
fixes Fn_project :: ′Value → (′Value → ′Value)
fixes B :: bool discr → ′Value
fixes B_project :: ′Value→ ′Value→ ′Value→ ′Value
fixes tick :: ′Value → ′Value

The locale parameter tick is used to count the resources as they are
consumed.

The type class pcpo_pt combines the classes pcpo (for pointed chain-
complete partial orders) with pt (for types that may contain names),
additionally ensuring that the permutation of names is continuous.

Within this locale, I define the abstract denotational semantics:

nominal_function
ESem :: exp ⇒ (var ⇒ ′Value) → ′Value

where
ESem (Lam [x]. e) = (Λ $. tick·(Fn·(Λ v. ESem e·(($ f |‘ fv (Lam [x]. e))(x := v)))))
| ESem (App e x) = (Λ $. tick·(Fn_project·(ESem e·$)·($ x)))
| ESem (Var x) = (Λ $. tick·($ x))
| ESem (Let as body) = (Λ $. tick·(ESem body·(has_ESem.HSem ESem as·($ f |‘ fv
(Let as body)))))
| ESem (Bool b) = (Λ $. tick·(B·(Discr b)))
| ESem (scrut ? e1 : e2) = (Λ $. tick·((B_project·(ESem scrut·$))·(ESem e1·$)·(ESem
e2·$)))

Note that this definition has a non-trivial recursion pattern: It uses
nested recursion via the heap semantics defined in the has_ESem locale,
to which I therefore have to pass the expression semantics ESem – the
very thing that I am defining here – as an argument.

From the abstract denotational semantics I can produce the concrete
ones by interpretation, where the parameters of the locale are specified.
For the standard denotational semantics, no resource accounting takes
place, so the last parameter is the (continuous) identity:

Denotational.thy
interpretation semantic_domain Fn Fn_project B B_project (Λ x. x).

81

2 Formalizing Launchbury’s natural semantics

The arguments to pass for the resourced denotational semantics are
not simply the injection and deconstruction function themselves, as the
resource argument needs to be passed along:

ResourcedDenotational.thyinterpretation semantic_domain
Λ f . Λ r. CFn·(Λ v. (f ·(v))|r)
Λ x y. (Λ r. (x·r ↓CFn y|r)·r)
Λ b r. CB·b
Λ scrut v1 v2 r. CB_project·(scrut·r)·(v1·r)·(v2·r)
C_case.

The case analysis function on C, which was produced by the HOLCF
package when I defined the domain C, happens to have the right type
(C→ ’a)→ C→ ’a to serve as the tick argument to the locale.

In order to convince myself that despite all this abstraction and defini-
tional detours, I have defined the semantics that I claim I have defined,
I stated the equations as a lemma and proved them. For the standard
denotational semantics, this reads:

Denotational.thylemma ESem_simps:
[[Lam [x]. e]]$ = Fn·(Λ v. [[e]]$(x := v))

[[App e x]]$ = [[e]]$ ↓Fn $ x
[[Var x]]$ = $ x
[[Bool b]]$ = B·(Discr b)
[[(scrut ? e1 : e2)]]$ = B_project·([[scrut]]$)·([[e1]]$)·([[e2]]$)
[[Let Γ body]]$ = [[body]]{|Γ|}$
by simp_all

2.6.4 Relating the domains Value and CValue

In order to relate the two denotational semantics, I defined the relation
/. in Section 2.3.4, closely following the work of Sánchez-Gil et al. in
[SHO11]. Their domain D corresponds to my Value, their domain E is
my type C → CValue and A is CValue.

While Sánchez-Gil et al. construct their domain “by hand”, by a series
of domain approximations Dn resp. En, I can use Isabelle’s HOLCF
package to construct the domain directly from its domain equation

82

2.6 The Isabelle formalisation

(which already includes Booleans; as mentioned in Section 2.4.2 this
addition is modular and can be ignored to obtain a formalisation closer
to the work of Sánchez-Gil et al.).

Value.thydomain Value = Fn (lazy Value→ Value) | B (lazy bool discr)

CValue.thydomain CValue
= CFn (lazy (C → CValue) → (C → CValue))
| CB (lazy bool discr)

In my formalisation, the approximations are just subsets of the full
domain, and the n-injection φE

n : En → E is the identity here.
The projections in [SHO11] correspond to the take-functions generated

by the HOLCF package, which produce finite approximations of their
arguments. For example, ψD

n : E→ En becomes Value_take with type nat
⇒ Value→ Value. The Isabelle theories introduce the former notation as
abbreviations for the latter to better match the presentation in [SHO11].

Section 2.3 of [SHO11] contains the following two equations without
proof:

ψE
n ((e ↓CFn a) c) = (ψE

n+1(e) ↓CFn ψA
n (a)) c (2)

ψD
n (d ↓Fn d′) = ψD

n+1(d) ↓Fn ψD
n (d′) (3)

Unfortunately, these equations do not hold in general. A counter-
example to (3) can be given by

d = Fn(λe.(e ↓Fn ⊥)),
d′ = Fn(λ_.Fn(λ_.⊥)) and

n = 1.

In this case, the left-hand-side of the equation simplifies to Fn(λ_.⊥),
while the right-hand-side is simply ⊥. A counter-example to (2) can be
constructed analogously.

The critical property of d′ is that it is “two levels deep”. On the left
hand side, d ↓Fn d′ passes one argument to d′ and hence returns a result
that is one level deep, which goes through ψD

1 unaltered, while on the

83

2 Formalizing Launchbury’s natural semantics

right hand side, ψD
1 (d′) cuts off the structure of d′ after one level and

returns Fn(λ_.⊥).
Therefore, in order for the equation to hold, the argument to d on the

left-hand needs to be at most one level deep. An extra invocation of ψD
n

on the left hand side can ensure this:

ψD
n (d ↓Fn ψD

n (d′)) = ψD
n+1(d) ↓Fn ψD

n (d′)

This lemma can already be found in [AO93], equation 4.3.5 (1).
The problematic equations are used in the proof of the only-if direction

of Proposition 9 in [SHO11]. I fixed this by applying take-induction,
which inserts the extra call to ψD

n in the right spot and allows me to
proceed using the fixed lemma.

2.7 Related work

A large number of developments on formal semantics of functional
programming languages in the last two decades build on Launchbury’s
work; here is a short selection: Van Eekelen & de Mol [EM04] add
strictness annotations to the syntax and semantics of Launchbury’s work.
Nakata & Hasegawa [NH09] define a small-step semantics for call-by-
need and relate it to a Launchbury-derived big-step semantics. Nakata
[Nak10] modifies the denotational semantics to distinguish direct cycles
from looping recursion. Sánchez-Gil et al. [SHO10] extend Launchbury’s
semantics with distributed evaluation. Baker-Finch et al. [BKT00] create
a semantics for parallel call-by-need based on Launchbury’s.

While many of them implicitly or explicitly rely on the correctness
and adequacy proof as spelled out by Launchbury, some stick with the
original definition of the heap semantics using t, for which the proofs do
not got through [EM04; NH09; SHO10; BKHT99], while others use right-
sided updates, without further explanation [Nak10; BKT00]. The work
by Baker-Finch et al. is particularly interesting, as they switched from the
original to the fixed definition between the earlier tech report and the
later ICFP publication, unfortunately without motivating that change.

84

2.7 Related work

Such disagreement about the precise definition of the semantics is annoy-
ing, as it creates avoidable incompatibilities between these publications.
I hope that my fully rigorous treatment will resolve this confusion and
allows future work to standardise on the “right” definition.

Furthermore, none of these works discuss the holes in Launchbury’s
adequacy proof, even those that explicitly state the adequacy of their
extended semantics. My adequacy proof is better suited for such exten-
sions, as it is rigorous and furthermore avoids the intermediate natural
semantics.

This list is just a small collection of many more Launchbury-like se-
mantics. Often the relation to a denotational semantics is not stated,
but nevertheless they are standing on the foundations laid by Launch-
bury. Therefore, it is not surprising that others have worked on formally
fortifying these foundations as well:

In particular Sánchez-Gil et al. worked towards rigorously proving
Launchbury’s semantics correct and adequate. They noted that the
relation between the standard and the resourced denotational semantics
is not as trivial as it seemed at first, and worked out a detailed pen-and-
paper proof [SHO11]. I have formalised this, fixing mistakes in the proof,
and build on their result here (Lemma 12).

They also bridged half the gap between Launchbury’s natural and
alternative natural semantics [SHO15], and plan to bridge the other half.
I avoided these very tedious proofs by bridging the difference on the
denotational side (Section 2.3.6).

As a step towards a mechanisation of their work in Coq, they address
the naming issues and suggest a mixed representation, using de Bruijn
indices for locally bound variables and names for free variables [SHO12].
This approach corresponds to my treatment of names in the formal
development, using the Nominal logic machinery [UK12] locally but
not for names bound in heaps, and can be found in other formalisation
works as well [PB10].

The aim of this development is to be able to formally prove properties
of the language or the compiler, but not so much to prove individual
functional programs to be correct; there are better ways to do that. In

85

2 Formalizing Launchbury’s natural semantics

the context of using Isabelle to prove properties of Haskell programs,
noteworthy approaches include Haskabelle [RH15], which transforms
Haskell code into Isabelle code, but punts on issues of laziness; Isabelle’s
code generation facilities [Haf09], which go the other way; and HOLCF-
Prelude [BHMS13], which models Haskell’s lazy semantics, albeit with-
out observable sharing, using HOLCF function definitions in Isabelle.

86

The problem with Haskell is that it’s
a language built on lazy evaluation
and nobody’s actually called for it.

Randall Munroe, xkcd #1312

CHAPTER 3

Call Arity

After more than two decades of development of Haskell compilers, one
has become slightly spoiled by the quality and power of optimisations
performed by the compiler. For example, list fusion allows us to write
concise and easy to understand code using combinators and list compre-
hensions and still get the efficiency of a tight loop that avoids allocating
the intermediate lists.

Unfortunately, not all list-processing functions used to take part in list
fusion. In particular, before my work, left folds like foldl, foldl’, length
and derived functions like sum were not fusing, and an expression like
sum (filter f [42..2016]) still allocated and traversed one list.

The issue is that in order to take part in list fusion, these need to be
expressed as right folds, which requires higher-order parameters as in

foldl k z xs = foldr (ńv fn z → fn (k z v)) id xs z.

The resulting fused code would be allocating and calling function clo-
sures on the heap, causing the final program to run too slowly (see
Section 1.4.3).

Already Andrew Gill noted that eta-expansion based on an arity anal-
ysis would help here [Gil96]. Previous arity analyses, however, are not
precise enough to allow for a fusing foldl.

87

http://xkcd.com/1312

3 Call Arity

let tA = if f a then ... else ...
in let goA x = if f (tB + x) then goA (x+1) else x

tB = let goB y = if f y then goB (goA y) else tA
in goB 0 1

in goA (goA 1)

Figure 11: Is it safe to eta-expand tA?

Why is this so hard? Consider the slightly contrived example in
Fig. 11: Our goal is to eta-expand the definition of tA. For that, we
need to ensure that it is always called with one argument, which is not
obvious: Syntactically, the only use of tA is in goB, and there it occurs
without an argument. But we see that goB is initially called with two
arguments, and under that assumption calls itself with two arguments
as well, and it therefore always calls tA with one argument – done.

But tA is a thunk – i.e. not in head normal form – and even if there
are many calls to tA, the call to f a is only evaluated once. If we were to
eta-expand tA we would be duplicating that possibly expensive work!
So we are only allowed to eta-expand tA if we know that it is called
at most once. This is tricky: tA is called from a recursive function goB,
which itself is called from the mutual recursion consisting of goA and
tB, and that recursion is started multiple times!

Nevertheless we know that tA is evaluated at most once: tB is a thunk,
so although it will be called multiple times by the outer recursion, its
right-hand side is only evaluated once. Furthermore, the recursion
involving goB is started once and stops when the call to tA happens.
Together, this implies that we are allowed to eta-expand tA without
losing any work.

I have developed an analysis, dubbed Call Arity, that is capable of
this reasoning and correctly detects that tA can be eta-expanded. It is a
combination of a standard forward call arity analysis ([Gil96], [XP05])
with a novel cardinality analysis, dubbed co-call analysis. The latter
determines for an expression and two variables whether one evaluation
of the expression can possibly call both variables and – as a special case

88

3.1 The need for co-call analysis

– which variables it calls at most once. I found that this is just the right
amount of information to handle tricky cases as those in Fig. 11.

In this chapter, which is based on the work that I presented at the
Trends in Functional Programming conference in 2014 [Bre15a], I ap-
proach the analysis from the practical, empirical side. Section 3.1 moti-
vates the need for and the design of the Call Arity analysis. The following
two sections describe the co-call graph data structure that is central to
the analysis (Section 3.2) and the analysis itself (Section 3.3). Section 3.4
describes a few aspects of the implementation (which is reproduced in
its entirety in Appendix B.2). Finally, Section 3.5 discusses the analysis
and quantifies the performance improvements. Notes on related and
future work follow.

3.1 The need for co-call analysis

The main contribution of this chapter is the description of the co-call
cardinality analysis and its importance for arity analysis. I want to
motivate the analysis based on a sequence of ever more complicated
arity analysis puzzles.

3.1.1 A syntactical analysis

The simplest such puzzle is the following code, where a function is
defined as taking one argument, but always called with two arguments:

let f x = . . .
in f 1 2 + f 3 4.

Are we allowed to eta-expand f by another argument? Yes! How would
we find out about it? We would analyse each expression of the syntax
tree and ask

“For each free variable, what is a lower bound on the number
of arguments passed to it?”

This will tell us that f is always called with two arguments, so we eta-
expand it.

89

3 Call Arity

3.1.2 Incoming arity

Here is a slightly more difficult puzzle:

let f x = ...
g y = f (y+1)

in g 1 2 + g 3 4.

Are we still allowed to eta-expand f? The previous syntactic approach
fails, as the right-hand side of g mentions f with only one argument.
However, g itself can be eta-expanded, and once that is done we would
see that g’s right hand side is called with one argument more. We could
run the previous analysis, simplify the code, and run the analysis once
more, but we can do better by asking, for every expression:

“If this expression is called with n arguments, for each free
variable, what is a lower bound on the number of arguments
passed to it?”

The body of the let will report to call g with two arguments. The
pattern on the left-hand side of the definition of g consumes one of them,
so we can analyse the right-hand side with an incoming arity of 1, and
thus find out that f is always called with two arguments.

For recursive functions this is more powerful than just running the
simpler variant multiple times. Consider

let f x = . . .
g y = if y > 10 then f y else g (y + 1)

in g 1 2 + g 3 4.

A purely syntactical approach will never be able to eta-expand g or f.
But by assuming an incoming arity we can handle the recursive case: The
body of the let reports that g is called with two arguments. We initially
assume that to be true for all calls to g. Next we analyse the right-hand
side of g and will learn – under our assumption – that it calls g with two
arguments, too, so our assumption was justified and we can proceed.

Of course, it may well be that the assumption is refuted by analysing
the definition of the recursive function:

90

3.1 The need for co-call analysis

let f x = . . .
g y = if y > 10 then f y else foo (g (y+1))

in g 1 2 + g 3 4.

The body still reports that it calls g with two arguments, but – even
under that assumption – the right-hand side of g calls g with only one
argument. So we have to re-analyse g with one argument, which in turn
calls f with one argument and no eta-expansion is possible here.

This corresponds to the analysis outlined in [Gil96].

3.1.3 Called-once information

So far we have only eta-expanded functions; for these the final analysis
in the previous section is sufficient. But there is also the case of thunks:
If the expression bound to a variable x is not in head-normal form,
i.e. the outermost syntactic construct is a function call, case expression
or let-binding, but not a lambda abstraction or constructor, then that
expression is evaluated upon its first call, and the result is shared with
further calls to x.

If we were to eta-expand the expression, though, the expensive oper-
ation is hidden under a lambda and will be evaluated for every call to
x. Therefore, it is crucial that thunks are only eta-expanded if they are
going to be called at most once. So we need to distinguish the situation

let t = foo x
in if x then t 1 else t 2.

where t is called at most once and eta-expansion is allowed, from

let t = foo x
in t 1 + t 2.

where t is called multiple times and must not be eta-expanded.
An analysis that could help us here would be answering this question:

“If this expression is called once with n arguments, for each
free variable, what is a lower bound on the number of argu-
ments passed to it, and are we calling it at most once?”

91

3 Call Arity

In the first example, both branches of the if would report to call t only
once (with one argument), so the whole body of the let calls t only once
and we can eta-expand t. In the second example the two subexpressions
t 1 and t 2 are both going to be evaluated. Combined they call t twice
and we cannot eta-expand t.

3.1.4 Mutually exclusive calls

What can we say in the case of a thunk that is called from within a
recursion, like in the following code?

let t = foo x
in let g y = if y > 10 then t else g (y+1)

in g 1 2

Clearly t is called at most once, but the current state of the analysis does
not see that: The right-hand side of g reports to call t and g at most
once. But

let t = foo x
in let g y = if y > 10 then id else g (t y)

in g 1 2

would yield the same result, although t is called many times!
How can we extend our analysis to distinguish these two cases? The

crucial difference is that in the first code, g calls either t or g, while the
second one calls both of them together. So we would like to know, for
each expression:

“If this expression is called once with n arguments, for each
free variable, what is a lower bound on the number of ar-
guments passed to it? Additionally, what set of variables is
called mutually exclusively and at most once?”

In the first example, the right-hand side would report to call {t, g}
mutually exclusively and this allows us to see that the call to t does not
lie on the recursive path, so there will be at most one call to t in every
run of the recursion. We also need the information that the body of the
let (which reports {g}) and the right-hand side of g both call g at most

92

3.1 The need for co-call analysis

once; if the recursion were started multiple times, or were not linear,
then we would get many calls to t as well.

3.1.5 Co-call analysis

The final puzzle in this sequence is the code

let t1 = foo x
in let g x = if x > 10

then t1
else let t2 = bar x

in let h y = if y > 10
then g (t2 y)
else h (y+1)

in h 1 x
in g 1 2.

which shows the shortcomings of the previous iteration and the strength
of the actual co-call analysis.

Note that both recursions are well-behaved: They are entered once
and each recursive function calls either itself once or calls the thunk
t1 resp. t2 once. So we would like to see both t1 and t2 eta-expanded.
Unfortunately, with the analysis above, we can only get one of them.

The problematic subexpression is g (t2 y): We need to know that g
is called at most once and that t2 is called at most once. But we cannot
return {g, t2} as that is a lie – they are not mutually exclusive – and the
best we can do is to arbitrarily return either {g} or {t2}.

To avoid this dilemma we extend the analysis one last time, in order
to preserve all valuable information.

We now ask, for each expression:

“If this expression is called once with n arguments, for each
free variable, what is a lower bound on the number of argu-
ments passed to it, and for each pair of free variables, can
both be called during the same execution of the expression?”

93

3 Call Arity

The latter tells us, as a special case, whether one variable may be called
multiple times.

For the problematic expression g (t2 y) we would find that g might be
called together with t2, but neither of them is called twice. For the right-
hand side of h the analysis would tell us that either h is called at most
once and on its own, or g and t2 are called together, but each at most
once. The whole inner let therefore calls t2 and g at most once, so we get
to eta-expand t2 and learn that the outer recursion is well-behaved.

3.2 The type of co-call graphs

This information – i.e. which pairs of variables can both be called during
the same execution – can be represented by a graph on the set of variables.
These graphs are undirected, non-transitive and can have loops. I denote
the set of such graphs with Graph, and the intuition is that
• only the nodes of G (denoted by dom G) are called, and that
• an edge x—y ∈ G indicates that x and y can be called together,

while the absence of an edge guarantees that calls to x resp. y are
mutually exclusive.

In particular, the absence of a loop, i.e. x—x ∈ G, implies that x is called
at most once.

Example
Consider the three graphs

G1 = x y ,

G2 = x y , and

G3 = x y .

The first graph allows at most one call to y and at most one call to x, both
of which can occur together. In contrast, the graph G2 allows any number
of calls to y, together with at most one call to x, while G3 describes that
any execution performs either at most one call to x or any number of calls
to y. �

94

3.3 The Call Arity analysis

I often identify the graphs with their set of edges, e.g. in the definition
of the Cartesian product of two sets of variables, which is

V ×V′ := {x—y | x ∈ V ∧ y ∈ V′ ∨ y ∈ V ∧ x ∈ V′},

and specify its set of nodes separately – which in this case is given by
dom (V × V′) := domV ∪ domV′.

I write V2 := V × V for the complete graph on the variables in the
set V.

The set of neighbours of a variable is Nx(G) := {y | x—y ∈ G}. The
graph G \ V is G with nodes in V removed, while G

∣∣
V is G with only

nodes in V retained.
The graphs are obviously partially ordered by inclusion, i.e.

G v G′ ⇐⇒ dom G ⊆ dom G′ ∧ G ⊆ G′,

with the empty graph {} being the least element.

3.3 The Call Arity analysis

Thus having motivated the need for a co-call-based analysis in order to
get a precise arity analysis, I devote this section to a formal description of
it. I build on the syntax introduced in Section 2.1, allowing expressions
as arguments in function calls.

3.3.1 The specification

The goal of the analysis is to determine the call arity of every variable x.
As defined in Section 1.5, this is a natural number αx indicating that the
compiler can replace a binding let x = e with let x = ńz1 . . . zα. e z1 . . . zα

without losing any sharing.
The bottom-up analysis considers each expression e under the as-

sumption of an incoming arity α – which is the number of arguments the
expression is currently being applied to – and determines with at least
how many arguments e calls its free variables, and which free variables
can be called together.

95

3 Call Arity

Separating these two aspects into two functions, we have

Aα : Exp→ (Var ⇀ N) arity analysis

Gα : Exp→ Graph co-call analysis

where ⇀ denotes a partial map and Graph is the type of undirected
graphs (with self-edges) over the set of variables.

The informal specifications for Aα and Gα are
• If Aα(e) x = m, then every call from e (applied to α arguments) to

x passes at least m arguments.
• If x1 and x2 are not adjacent in Gα(e), then no execution of e (ap-

plied to α arguments) will call both x1 and x2. In particular, if
x—x /∈ Gα(e), then x will be called at most once.

We can define a partial order on the results that expresses the notion
of precision: If x is correct and x v y, then y is also correct, but possibly
less precise.

In particular for A, A′ : (Var ⇀ N) we have

A v A′ ⇐⇒ ∀x ∈ dom (A). A x ≥ A′ x

(note the contravariance), because it is always safe to assume that x is
called with fewer arguments.

The partial order on Graph introduced in Section 3.2 is also compatible
with this notion of precision: If we have G v G′, then every behaviour
that is allowed by G is also allowed by G′, as it is always safe to pes-
simistically assume that any two variables are called together, or to
assume that one variable is called multiple times.

Thus the always correct and least useful analysis result maps every
variable to 0 (making no statements about the number of arguments
passed to them), and returns the complete graph on all variables as the
co-call graph (allowing everything to be called with everything else).

The bottom of the lattice, i.e. the best information, is the empty map
and the empty graph. This is the analysis result we expect for closed
values such as (ńy. y) or Ct.

96

3.3 The Call Arity analysis

Aα(x) = [x 7→ α]

Gα(x) = x

Aα(e1 e2) = Aα+1(e1) tA0(e2)

Gα(e1 e2) =

{
Gα+1(e1) t {x}2 t fv(e1)× {x} if e2 = x
Gα+1(e1) t G0(e2) t fv(e1)× fv(e2) otherwise

A0(ńx. e) = A0(e)

Aα+1(ńx. e) = Aα(e)

G0(ńx. e) = (fv e)2

Gα+1(ńx. e) = Gα(e)

Aα(e ? e1 : e2) = A0(e) tAα(e1) tAα(e2)

Gα(e ? e1 : e2) = G0(e) t Gα(e1) t Gα(e2) t fv e× (fv(e1) ∪ fv(e2))

Figure 12: The Call Arity analysis equations

3.3.2 The equations

From the specification we can derive equations for every syntactical
construct, given in Figs. 12, 13 and 14.

Note that from the above definition of v, the least upper bound of
two arity analysis results A, A′ ∈ (Var ⇀ N) is the pointwise minimum.

Case 1: Variables

Evaluating a variable with an incoming arity of α yields a call to that
variable with α arguments, so the arity analysis returns a singleton map.
Because we are interested in the effect of one evaluation, we return x as
called at-most once, i.e. the graph has the node x, but no edges.

Case 2: Application

In this case, the incoming arity is adjusted: If e1 e2 is being called with α
arguments, then e1 is called with α + 1 arguments. On the other hand

97

3 Call Arity

we do not know how many arguments e2 is called with – this analysis is
not higher order (see Section 3.6.2) – so we analyse it with an incoming
arity of 0.

The co-call analysis reports all possible co-calls from both e1 and e2.
Additionally, it reports that everything that may be called by e1 can be
called together with everything called by e2.

In the evaluation of a Core program, an argument to a function is
shared and thus evaluated only once. Therefore, the co-call information
in G0(e2) can be used as is. There is, however, an exception: If the
argument is trivial, i.e. a variable x, the Core-to-STG transformation
does not introduce an explicit binding for the argument, and no sharing
happens at this point. So if e1 uses its argument more than once, x
will itself be called multiple times. Hence the analysis pessimistically
includes {x}2 in the result. This corner case was not handled in an earlier
version of Call Arity, see Section 4.5.2 for a discussion of this bug.

Case 3: Lambda abstraction

For lambda abstractions, we have to distinguish two cases. The good
case is if the incoming arity is nonzero, i.e. we want to know the be-
haviour of the expression when applied once to some arguments. In that
case, we know that the body is evaluated once, applied to one argument
less, and the co-call information from the body can be used directly.

If the incoming arity is zero we have to assume that the lambda
abstraction is used as-is, for example as a parameter to a higher-order
function, or stored in a data type. In particular, it is possible that it
is going to be called multiple times. So while the incoming arity on
the body of the lambda stays zero (which is always correct), we cannot
obtain any useful co-call results and have to assume that every variable
mentioned in e is called with every other.

Naturally, there is no point in passing arity or co-call information
about the abstracted variable out of its scope. In the interest of a concise
presentation, this is not explicated in Fig. 12. Section 4.3.4 contains a
more pedantic formal presentation.

98

3.3 The Call Arity analysis

Example
The expression e = ńx. (x0 ? x1 : x2) will, when analysed with an incom-
ing arity of 1 resp. 0 yield

G1(e) = x0
x1

x2
, resp. G0(e) = x0

x1

x2
. �

Case 4: Case analysis

The arity analysis of a case expression is straightforward: The incoming
arity is fed into each of the alternatives, while the scrutinee is analysed
with an incoming arity of zero; the results are combined using t.

The co-call analysis proceeds likewise. Furthermore, extra co-call
edges are added, connecting everything that may be called by the scruti-
nee with everything that may be called in the alternatives – analogous
to analysing applications.

This may be an over-approximation: The analysis will yield

G0((z ? x1 : x2)(z ? x3 : x4)) = z
x1

x2

x3

x4

which contains the edge x1—x4, although x1 cannot be called together
with x4 (and analogously for x2—x3), as the conditionals will choose
the same branch in both cases.

Case 5: Non-recursive let

This case is slightly more complicated than the previous, so we describe
it in multiple equations in Fig. 13.

We analyse the body of the let-expression first, using the incoming
arity of the whole expression. Based on that we determine our main
analysis result, the call arity of the variable. There are two cases:

1. If the right-hand side expression e1 is a thunk and the body of the
let may possibly call it twice, i.e. there is a self-loop in the co-call
graph, then there is a risk of losing work when eta-expanding e1,
so we do not do that.

99

3 Call Arity

αx =

{
0 if x—x ∈ Gα(e2) and ¬isVal(e1)

Aα(e2) x otherwise

Grhs =

{
Gαx (e1) if x—x /∈ Gα(e2) or αx = 0
fv(e1)

2 otherwise

E = fv(e1)× Nx(Gα(e2))

A = Aαx (e1) tAα(e2)

G = Grhs t Gα(e2) t E

Aα(let x = e1 in e2) = A Gα(let x = e1 in e2) = G

Figure 13: Equations for a non-recursive let x = e1 in e2

2. Otherwise, the call arity is the minimum number of arguments
passed to x by the code in e2, as reported by Aα(e2).

Depending on this result we need to adjust the co-call information ob-
tained from e1. Again, there are two cases:

1. We can use the co-call graph from e1 if e1 is evaluated at most once.
This is obviously the case if x is called at most once in the first
place. It is also the case if e1 is (and stays!) a thunk, because its
result will be shared and further calls to x can be ignored here.

2. If e1 may be evaluated multiple times we cannot get useful co-call
information and therefore return the complete graph on everything
that is possibly called by e1.

Finally we combine the results from the body and the right-hand side,
and add the appropriate extra co-call edges. We can be more precise
than in the application case because we can exclude variables that are
not called together with x from the complete bipartite graph.

Note again that we do not clutter the presentation here with removing
the local variable from the final analysis results. The implementation
removes x from A and G before returning them.

100

3.3 The Call Arity analysis

Example
Consider the expression

e = let z = (x ?(ńy. x2) : x3) in ń_. (x1 ? x2 : z y)

with an incoming arity of 1. The co-call graph of the body is

G1(ń_. (x1 ? x2 : z y)) = x1
x2

z y

and A1(ń_. (x1 ? x2 : z y)) z = 1. The right-hand side of z’s definition is
a thunk, so we must be careful when eta-expanding it. But there is no
self-loop at z in the graph, so z is called at most once. The call-arity of z
is thus αz = 1 and we analyse its right-hand side with an incoming arity
of 1 to obtain

G1(x ?(ńy. x2) : x3) = x
x2

x3.

The additional edges E connect all free variables of the right-hand
side ({x, x2, x3}) with everything called together with z from the body
({x1, y}) and the overall result (skipping the now out-of-scope z) is

G1(e) = x
x2

x3

x1

y.

Note that although x2 occurs in both the body and the right-hand side,
there is no self-loop at x2: The analysis has detected that x2 is called at
most once.

The results are very different if we analyse e with an incoming arity of
0. The body is a lambda abstraction, so it may be called many times, and
we have

G0(ń_. (x1 ? x2 : z y)) = x1

x2

z
y .

This time there is a self-loop at z, and we need to set αz = 0 to be on
the safe side. This also means that z stays a thunk and we still get some
useful information from the right-hand side:

101

3 Call Arity

G0(x ?(ń_. x2) : x3) = x
x2

x3.

Due to the lower incoming arity we can no longer rule out that x2 is
called multiple times, as it is hidden inside a lambda abstraction. The
final graph now becomes quite large, because everything in the body is
potentially called together with z:

G0(e) = x1

x2

y

x

x3
.

This is almost the complete graph, but it is still possible to derive that x
and x3 are called at most once. �

Case 6: Recursive let

The final case, described in Fig. 14, is the most complicated. It is also the
reason why the figures are labelled “Equations” and not “Definitions”:
They are also mutually recursive and it is the task of the implementation
to find a suitable solution strategy (see Section 3.4.2).

The complication arises from the fact that the result of the analysis
affects its parameters: If the right-hand side of a variable calls itself
with a lower arity than the body, we need to use the lower arity as the
call arity. Therefore, the final result (A and G in the equations) is also
used to determine the basis for the call-arity and co-call information
of the variables.

Thunks aside, we can think of one recursive binding let x = e1 in e2
as an arbitrarily large number of nested non-recursive bindings
let x = e1
in let x = e1

in let x = e1
in . . . let x = e1

in e2.
The co-call information G can be thought of the co-call information

of this expression, and this is how xi—xi /∈ G has to interpreted: Not

102

3.3 The Call Arity analysis

A = Aα(e) t
⊔

i
Aαxi

(e1)

G = Gα(e) t
⊔

i
Gi t

⊔
i

Ei

αxi =

{
0 if ¬isVal(ei)

A xi otherwise

Gi =

{
Gαxi

(ei) if xi—xi /∈ G or αxi = 0

fv(ei)
2 otherwise

Ei =

{
fv(ei)× N(Gα(e) t

⊔
j Gj) if αxi 6= 0

fv(ei)× N(Gα(e) t
⊔

j 6=i Gj) if αxi = 0

N(G) = {z | z—xi ∈ G, i = 1 . . .}

Aα(let xi = ei in e) = A Gα(let xi = ei in e) = G

Figure 14: Equations for a recursive let xi = ei in e

103

that there is at most one call to xi in the whole recursion (there probably
are many, why else would there be a recursive let), but rather that when
doing such an unrolling of the recursion, there is at most one call to xi
leaving the scope of the outermost non-recursive let.

This analogy is flawed for thunks, where multiple nested non-recursive
bindings would have a different sharing behaviour. Therefore, I set
αxi = 0 for all thunks in a recursive let; this preserves sharing.

The formulas for the additional co-calls Ei are a bit more complicated
than in the non-recursive case, and differ for thunks and non-thunks.
Consider one execution that reaches a call to xi. What other variables
might have been called on the way? If the call came directly from the
body e, then we need to consider everything that is adjacent to xi in
Gα(e). But it is also possible that the body has called some other xj, j 6= i
and ej then has called xi – in that case, we need to take those variables
adjacent to xj in Gα(e) and those adjacent to xi in Gj.

3 Call Arity

In general, every call that can occur together with any recursive call in
any of the expressions can occur together with whatever xi does.

For a thunk we can get slightly better information: A non-thunk ei can
be evaluated multiple times during the recursion, so its free variables
can be called together with variables on ei’s own recursive path. A thunk,
however, is evaluated at most once, even in a recursive group, so for the
calculation of additional co-call edges it is sufficient to consider only the
other right-hand sides (and the body of the let, of course).

Example
Consider the expression

let x1 = ńy. (y1 ? x2 y : z1)

x2 = ńy. (y2 ? x1 y : z2)

in ńy. x1 y y

with an incoming arity of 1. It is an example for a nice tail-call recursion
as it is commonly produced by list fusion: The body has one call into the
recursive group, and each function in the group also calls at most one of
them.

The minimal solution to the equations in Fig. 14 in this example is

G1(e) = {}
αx1 = αx2 = 2

G1 = G2(e1) = {y1} × {x2, z1}
G2 = G2(e2) = {y2} × {x1, z2}

E1 = {y1, x2, z1} × {y1, y2}
E2 = {y2, x1, z2} × {y1, y2}

and the final result is

G = x1
x1

x2

y1

y2

z1

z2
,

104

3.4 The implementation

where we see that at most one of z1 and z2 is called by the recursive
group, and neither of them twice.

In contrast consider this recursion which forks in x2:

let x1 = ńy. (y1 ? x2 y : z1)

x2 = ńy. (y2 ? x1 (x1 y y) : z2)

in ńy. x1 y y.

We see that now z1 and z2 are possibly called together and multiple
times. Indeed x1—x1 ∈ G2(e2) causes x1 ∈ N(. . .) in the equation for
Ei, so especially x1—x1 ∈ E2 ⊆ G. Therefore, G1 = fv(e1)

2 and we also
have x2—x2 ∈ G and G2 = fv(e2)

2. Eventually, we find that the result is
the complete graph on all variables, i.e. E = {x1, x2, y1, y2, z1, z2}2, and
in particular z1—z2 ∈ E, as expected. �

3.4 The implementation

This section is of primary interest to those readers who want to under-
stand the implementation of Call Arity in GHC. I explain some of the
design choices and how the the code relates to the definitions in this
thesis.

The Call Arity analysis is implemented in GHC as a separate Core-
to-Core pass, where Core is GHC’s typed intermediate language based
on System FC (cf. Section 1.4.1). See Appendix B.2 for the code of the
analysis.

This pass does not actually do the eta-expansion; it merely annotates
let-bound variables with their call arity. A subsequent pass of GHC’s
simplifier then performs the expansion, using the same code as for
the regular, definition-based arity analysis, and immediately applies
optimisations made possible by the eta-expansion. This separation of
concerns keeps the Call Arity implementation concise and close to the
formalisation presented here.

GHC Core obviously has more syntactical constructs than our toy
lambda calculus, including literals, coercion values, casts, profiling an-
notations (“ticks”), type lambdas and type applications, but these are

105

3 Call Arity

irrelevant for our purposes: For literals and coercion values Call Arity
returns the bottom of the lattice; the others are transparent to the anal-
ysis. In particular type arguments are not counted towards the arity
here, which coincides with the meaning of arity as returned by GHC’s
regular arity analysis.

I want the analysis to make one pass over the syntax tree (up to the
iterative calculation of fixed points for recursive bindings, Section 3.4.2).
So instead of having two functions – one for the arity analysis and
one for the co-call analysis – I defined one function callArityAnal which
returns a tuple (UnVarGraph, VarEnv Arity), where the UnVarGraph is a
data structure for undirected graphs on variable names (see Section 3.4.4)
and VarEnv Arity is a partial map from variable names to Arity, which
is a type synonym for Int.

The equations refer to fv e, the set of free variables of an expression.
In the implementation, I do not use GHC’s corresponding function
exprFreeIds, as this would require another traversal of the expression.
Instead I use dom (Aα(e)), which by construction happens to be the set
of free variables of e, independent of α, as at this stage in the compiler
pipeline, “obviously” dead code has been removed.

In the sequence of Core-to-Core passes, I inserted Call Arity and its
eta-expanding simplifier pass after the simplifier’s phase 0, as that is
when all the rewrite rules have been active [PTH01], and before the
strictness analyser. This way, the latter has a chance to unbox any new
function parameters introduced by Call Arity, such as the accumulator
in a call to sum.

3.4.1 Interesting variables

The analysis as presented in the previous section would be too expensive
if implemented as is. This can be observed when compiling GHC’s
DynFlags module, which defines a record type with 157 elements. The
Core code for a setter of one of the fields is

setX42 x (DynFlags x1 . . . x41 _ x43 . . . x157)
= (DynFlags x1 . . . x41 x x43 . . . x157).

106

3.4 The implementation

For the body of the function, the analysis would report that 157 variables
are called with (at least) 0 arguments, and that all of them are co-called
with every other, a graph with 12246 edges. And none of this informa-
tion is useful: The variables come from function parameters or pattern
matches and there is no definition that we can possibly eta-expand!

Therefore, the code keeps track of the set of interesting variables, and
only returns information about them. Currently, interesting variables
are all let-bound variables of function type, while function parameters
and pattern match variables are not interesting.

Generally, considering fewer variables as interesting will trade preci-
sion for performance, but preserves soundness: It would be perfectly
sound, for example, to consider the variables of a very large recursive
group to be uninteresting.

The complete type signature of the analysis is therefore

callArityAnal :: Arity → VarSet → CoreExpr →
((UnVarGraph, VarEnv Arity), CoreExpr)

where the arguments are
• the incoming arity,
• the set of interesting variables and
• the expression to analyse

and the return values are the co-call graph and arity information (both
restricted to the set of interesting variables) and the expression with the
Call Arity result annotation added.

3.4.2 Finding the fixed points

The equations in the previous section specify the analysis, but do not
provide an algorithm: In the case of a recursive let (Fig. 14), the equations
are mutually recursive and the implementation has to employ a suitable
strategy to find a solution.

The implementation finds the solution by iteratively approaching the
fixpoint, using memorisation of intermediate results.

• Initially, it sets A = Aα(e) and G = Gα(e).

107

3 Call Arity

• For every variable xi ∈ dom A that has not been analysed before, or
has been analysed before with different values for αxi or xi—xi ∈ G,
it (re-)analyses it, remembering the parameters and memorising
the result Aαxi

(e1) and Gi.

• If any variable has been (re)analysed in this iteration, it recalculates
A and G and repeats from step 2.

This process will terminate, as shown by a simple standard argument:
The variant that proves this consists of αxi and whether xi—xi ∈ G. The
former starts at some natural number and decreases, the latter may start
as not true, but once it is true, it stays true. Therefore, these parameters
can change only a finite number of times, and the loop terminates once
all of them are unchanged during one iteration. The monotonicity of the
parameters follows from the monotonicity of the equations for Aα and
Gα: We have that α ≥ α′ implies Aα(e) v Aα′(e) and Gα(e) v Gα′(e).

3.4.3 Top-level values

GHC supports modular compilation. Therefore, for exported functions,
the compiler does not have the call sites available to analyse. Nev-
ertheless I do want it to be able to analyse and eta-expand at least
non-exported top-level functions.

To solve this elegantly I treat a module

module Foo(foo) where
bar = . . .
foo = . . .

as if it were a sequence of let-bindings

let bar = . . . in
let foo = . . . in
e

where e represents the external code for which I assume the worst: It
calls all exported variables (foo here) with 0 arguments and the co-call
graph is the complete graph. This prevents unwanted expansion of foo,
but still allows us to eta-expand bar based on how it is called by foo.

108

3.4 The implementation

Unfortunately, it also means that adding a top-level function to the
export list of the module can prevent Call Arity from eta-expanding it
and other functions in the module. If, for example, I export all difference-
list producing functions in the code mentioned in Section 3.5.3, then I lose
the benefits from Call Arity. In this sense, Call Arity can be considered
a whole program analysis that happens to be useful in a setting with
separate compilation as well.

3.4.4 The graph data structure

The analysis often builds complete bipartite graphs and complete graphs
between sets of variables. A usual graph representation like adjacency
lists would be quadratic in size and too inefficient for this use.

Hence, the data type UnVarGraph used in the implementation is specifi-
cally crafted for this purpose, see Appendix B.1 for the code. It represents
graphs symbolically, as multisets (“bags” in the lingua of GHC code) of
complete bipartite and complete graphs:

data Gen = CBPG VarSet VarSet
| CG VarSet

type UnVarGraph = Bag Gen

This allows for very quick, O(1), creation and combination of graphs.
The important query operation, calculating the set of neighbours of a
node, is done by traversing the generating subgraphs.

One disadvantage of this data structure is that it does not normalise
the representation. In particular, the union of a graph with itself is
twice as large. I had to take that into account when I implemented the
calculation of fixed points: It would be very inefficient to update G by
merging it with the new results in each iteration. Instead, G is always
reassembled from Gα(e) and the – new or memorised – results from the
bound expressions.

I experimented with simplifying the graph representation using iden-
tities like S1× S2 ∪ S2

1 ∪ S2
2 = (S1 ∪ S2)

2, but it did not pay off, especially
as deciding set equality can be expensive.

109

3 Call Arity

3.5 Discussion

3.5.1 Call Arity and list fusion

As hinted at in the introduction, I devised Call Arity mainly to allow
for a fusing foldl, i.e. a definition of foldl in terms of foldr that takes part
in list fusion while still producing good code. How exactly does Call
Arity help here?

Consider the code sum (filter f [42..2016]). Previously, only filter would
fuse with the list comprehension, eliminating one intermediate list, but
the call to sum, being a left-fold, would remain: Compiled with previous
versions of GHC, this produces code roughly equivalent to

let go = ńx → let r = if x == 2016
then []
else go (x + 1)

in if f x then x : r else r
in foldl (+) 0 (go 42).

If we changed the definition of foldl to use foldr, as in

foldl k z xs = foldr (ńv fn z → fn (k z v)) id xs z.

all lists are completely fused and we obtain the code

let go = ńx → let r = if x == 2016
then id
else go (x + 1)

in if f x
then ńa → r (a + x)
else r

in go 42 0.

Without Call Arity, this was the final code, and as such quite inefficient:
The recursive loop go has become a function that takes one argument,
then allocates a function closure for r on the heap, and finally returns an-
other heap-allocated function closure which will pop the next argument
from the stack – not the fastest way to evaluate this simple program.

110

3.5 Discussion

With Call Arity the compiler detects that go and r can both safely be
eta-expanded with another argument, yielding the code

let go = ń x a → let r = ńa → if x == 2016
then a
else go (x + 1) a

in if f x
then r (a + x)
else r a

in go 42 0

where the number of arguments passed matches the number of lambdas
that are manifest on the outer level. This avoids allocations of function
closures and allows the runtime to do fast calls [MP06], or even tail-
recursive jumps.

3.5.2 Limitations

A particularly tricky case is list fusion with generators with multiple
(or non-linear) recursion. This arises when flattening a tree to a list.
Consider the code

data Tree = Tip Int | Bin Tree Tree

toList :: Tree → [Int]
toList tree = build (toListFB tree)

toListFB root cons nil = go root nil
where
go (Tip x) rest = cons x rest
go (Bin l r) rest = go l (go r rest)

which is a good producer; for example filter f (toList t) is compiled to

let go = ńt rest → case t of
Tip x → if f x then x : rest else rest
Bin l r → go l (go r rest)

in go t [].

111

3 Call Arity

If we add a left-fold to the pipeline, i.e. foldl (+) 0 (filter f (toList t)),
where the foldl is implemented via foldr, the resulting code (before Call
Arity) is

let go = ńt fn → case t of
Tip x → if f x then (ńa → fn (x + a)) else fn
Bin l r → go l (go r fn)

in go t id 0.

Although go is always being called with three arguments, my analysis
does not see this. For that it would have to detect that go calls its
second parameter with one argument; as it is a forward analysis (in the
nomenclature of [XP05]) it cannot do that.

And even if GHC could eta-expand it (in fact it can, due to the one-
shot annotation discussed in Section 3.6.3), the result would not be much
better: For the recursion, the runtime still needs to create a function
closure for the unsaturated call go r fn, which is then called slowly by
go, as explained in Section 1.4.3.

Things look better if we adjust the definition of toList so that the
worker is tail-recursive. This requires an explicit stack, keeping track of
the branches of the tree that are yet to be visited:

toListFB root cons nil = go root nil []
where
go (Tip x) s = cons x (goS s)
go (Bin l r) s = go l (r:s)
goS [] = nil
goS (x:xs) = go x xs

Now the resulting code is a nice tail-recursive loop, and it even allows
GHC to unbox the accumulator, which usually provides a large perfor-
mance benefit.

But the code that we would really want to see, and which we would
write by hand, is

let go = ńt a → case t of
Tip x → if f x then a + x else a
Bin l r → go l (go r a)

in go t 0

112

3.5 Discussion

with no continuations or explicit stack whatsoever and just the accumu-
lator (unboxed by GHC) is being passed through the recursion. Such
a transformation would require much more involved changes to the
code than just eta-expansion followed by simplification, and is out of
scope for Call Arity.

We (the GHC developers) still decided to let foldl take part in list
fusion based on the benchmark results, presented in the next section.
They indicate that the real-world benefits in the common case of linear
recursion are larger than the penalty in the non-linear recursion, and if
necessary, the producer can be adjusted to be linearly recursive.

3.5.3 Measurements

No work on compiler optimisations without some benchmark results! I
compare four variants, all based on the GHC 7.10.3 codebase (revision
97e7c29):

(A) For the baseline, I removed the Call Arity analysis code and undid
the changes to the library code, i.e. reverted foldl to its naive, non-
fusing definition.

(B) To measure the effect of Call Arity analysis alone I enable it again,
but left foldl with the naive definition.

(C) The current, unmodified state of the compiler, with Call Arity en-
abled and foldl implemented via foldr, is the most relevant variant;
in the table this column is highlighted.

(D) To assess the importance of Call Arity for allowing foldl to take part
in list fusion, I also measure GHC without Call Arity, but with foldl
implemented via foldr.

Setup

The ubiquitous benchmark suite for Haskell is nofib [Par93], a set of 100
example Haskell programs, ranging from small micro-benchmarks to

113

3 Call Arity

“real” applications. Most benchmarks support different modes to make
them run longer. My numbers all result from the “slow” mode.

The measurements are taken on an 8-core Intel i7-3770 machine with
16 GB of RAM running Ubuntu 14.04 on Linux 3.13.0.

Initially, I attempted to use the actual run time measurements, but it
turned out to be a mostly pointless endeavour. For example the knights
benchmark would become 9% slower when enabling Call Arity (i.e. when
comparing (A) to (B)), a completely unexpected result, given that the
changes to the GHC Core code were reasonable. Further investigation
using performance data obtained from the CPU indicated that with the
changed code, the CPU’s instruction decoder was idling for more cycles,
hinting at cache effects and/or bad program layout.

Indeed: When I compiled the code with the compiler flag -g, which
includes debugging information in the resulting binary, but should
otherwise not affect the relative performance characteristics much, the
unexpected difference vanished. I conclude that non-local changes to the
Haskell or Core code will change the layout of the generated program
code in unpredictable ways and render such run time measurements
mostly meaningless.

This conclusion has been drawn before [MDHS09], and recently, tools
to mitigate this effect, e.g. by randomising the code layout [CB13], were
created. Unfortunately, these currently target specific C compilers, so
I could not use them here.

In the following measurements, I avoid this problem by not measuring
program execution time, but simply by counting the number of instruc-
tions performed. This way, the variability in execution time due to code
layout does not affect the results. To obtain the instruction counts I
employ valgrind [NS07], which runs the benchmarks on a virtual CPU
and thus produces more reliable and reproducible measurements.

Results

My results are shown in Table 1. The three columns correspond to the
variants (B), (C) and (D) described above, and the given percentages are

114

changes relative to (A). Negative numbers indicate improvement. I list
those benchmarks where there a difference of 1% or more is observed.

3.5 Discussion

Table 1: Nofib results, relative to (A)

Bytes allocated Instructions executed

(B) (C) (D) (B) (C) (D)
Arity Analysis X X X X
Co-call Analysis X X X X
foldl via foldr X X X X

anna -1.5% -1.7% +0.1% -0.5% -0.4% +0.7%
bernouilli -0.0% -4.2% +4.5% +0.0% -3.5% +22.5%
binary-trees -0.0% -0.0% 0.0% -7.3% -7.3% -0.0%
fem 0.0% -2.6% -1.6% -0.0% -4.4% -1.4%
fft2 -0.0% -48.2% -48.1% +0.0% -18.6% -14.3%
fibheaps -4.5% -4.5% 0.0% -12.0% -12.0% -0.0%
fish -5.1% -5.1% 0.0% -3.9% -3.9% +0.0%
fluid -0.3% -8.4% -7.7% +0.7% -3.6% -4.5%
fulsom -0.4% -0.4% 0.0% -1.5% -1.5% +0.0%
gen_regexps 0.0% -53.9% +33.8% -0.0% -7.8% +205.8%
gg 0.0% 0.0% 0.0% +0.0% +0.0% -1.1%
hidden -0.2% -6.0% +1.2% -0.3% -4.6% +1.2%
hpg -0.1% -1.3% -1.2% -0.0% -1.8% -0.8%
integrate -0.0% -60.9% -60.9% +0.0% -47.2% -47.2%
lcss -0.0% -0.0% 0.0% -2.5% -2.5% -0.0%
life -0.0% -0.0% +0.0% -0.3% -0.3% +2.1%
maillist 0.0% 0.0% 0.0% -0.1% -0.6% +1.0%
minimax 0.0% -15.5% +4.0% -0.0% -13.6% +4.7%
scs -1.7% -2.5% +0.4% -1.5% -1.9% -0.2%
simple 0.0% -9.4% +8.2% -0.0% -1.9% +17.6%
x2n1 -0.0% -77.4% +84.0% -0.0% -8.3% +245.7%
. . . and 78 more

Min -5.1% -77.4% -60.9% -12.0% -47.2% -47.2%
Max 0.0% +0.0% +84.0% +0.7% +0.8% +245.7%
Geometric Mean -0.2% -4.5% -0.6% -0.3% -1.7% +2.0%

115

3 Call Arity

As expected, enabling Call Arity does not increase the number of
dynamic allocations; if it did, something would be wrong – see Chapter 4
for a formal proof of that statement.

On its own, the analysis rarely has an effect: Programmers tend to
give their functions the right arities in the first place, and this includes
the code in nofib.

Some of the improvements, e.g. in fibheaps, can be attributed to the
use of take: Even before the introduction of Call Arity, it was set up to be
a good consumer, producing similar higher-order code as foldl would.
Call Arity can successfully optimise that.

But the real strength of Call Arity can only be seen in combination
with making foldl a good consumer: Allocation improves considerably
and without the analysis, this change to foldl would actually degrade
the run time performance.

The last column (D) shows that without Call Arity, making foldl a good
consumer is a bad idea, and that in some cases, the number of allocations
and instructions go through the roof.

Difference lists

Another setting, besides list fusion, where non-expanded function def-
initions may emerge is when function types are hidden behind a type
abstraction, and combined using abstract combinators. A good example
for this is the type of difference lists, which represent lists as functions of
type [a] → [a]. Module DList in Fig. 15 contains a standard implementa-
tion of difference lists. Note that all combinators are eta-reduced: The
argument providing the tail of the list is omitted.

As a micro-benchmark, the code in module Bench in Fig. 15 converts
a list of non-negative integers into their decimal representation, space
separated.

Table 2 lists the execution time of applying doIt to a list of 1,000,000
integers, measured using criterion [OSu15]. We can see that without
the help of Call Arity, the code is actually 16% slower than the equivalent

116

3.5 Discussion

module DList where
newtype DList a = DL ([a] → [a])

fromDList :: DList a → [a]
fromDList (DL f) = f []

singleton :: a → DList a
singleton c = DL (c:)

empty :: DList a
empty = DL id

(<>) :: DList a → DList a → DList a
DL f <> DL g = DL (f . g)

module Bench (doIt) where
import DList
import Data.Char (intToDigit)

showInt :: Int → DList Char
showInt n | n < 10 = singleton (intToDigit n)

| otherwise = showInt (n ‘div‘ 10) <> showInt (n ‘mod‘ 10)

go :: [Int] -> DList Char
go [] = empty
go (x:xs) = showInt x <> singleton ’ ’ <> go xs

doIt :: [Int] → String
doIt xs = fromDList (go xs)

Figure 15: Difference lists

117

3 Call Arity

code using String and string concatenation naively. With Call Arity
enabled, the difference list code runs twice as fast, beating the String
code by 35%.

The benefits of Call Arity are less pronounced if some of the involved
functions are exported. In that case, the compiler has to make conserva-
tive assumptions about how often the function is called and Call Arity
cannot eta-expand it. If showInt or go is added to the export list of mod-
ule Bench the performance advantage compared to the String version
disappears in the noise.

Table 2: Difference list speedup

Running time
Call Arity X X X
showInt exported X X
go exported X

String 129ms 128ms 128ms 136ms
DList 151ms 84ms 131ms 130ms

3.5.4 Compiler performance

Call Arity could affect the compile times in two ways: It increases them,
because the compiler does more work. But it also reduces them, as the
compiler itself has been optimised more. Table 3 shows the change in
allocations done and time spent by the compiler while compiling the
nofib test suite, as well as while compiling GHC itself.

In the nofib row we can see that the latter is indeed happening –
enabling Call Arity reduces the number of allocations performed by
the compiler, despite it doing more work – but this does not incur
a significant change in compiler run time. The change to foldl alone
increases compile times slightly.

In the second row, there is a third factor: The code base itself increases,
due to the addition of the Call Arity code itself, which is reflected by
the benchmark results.

118

3.6 Related work

Note that the benchmark suite is not designed to produce stable mea-
surements of compile time, e.g. the compiler is run only once, so the
significance of these numbers should not be taken too serious.

Ağacan measured the contribution of individual compiler passes to
the overall compilation time, by compiling selected, widely used Haskell
libraries and their dependencies. He reported his findings on the GHC
developer’s mailing list11, and found that Call Arity is responsible for
1.1% of the compilation time.

Table 3: Compiling nofib and GHC, relative to (A)

Bytes allocated Compile time

(B) (C) (D) (B) (C) (D)
Arity Analysis X X X X
Co-call Analysis X X X X
foldl via foldr X X X X

nofib -0.1% -0.1% +0.1% -0.1% -1.4% +0.3%
ghc +3.8% +3.8% -0.0% +5.7% +6.0% -0.2%

3.6 Related work

Gill mentions in his thesis on list fusion [Gil96] that eta-expansion is
required to make foldl a good consumer that produces good code, and
outlines a simple arity analysis. It does not discuss thunks at all and is
equivalent to the second refinement in Section 3.1.

3.6.1 GHC’s arity analyses

The compiler already comes with an arity analysis, which works comple-
mentary to Call Arity: It ignores how functions are being used and takes
their definition into account. It traverses the syntax tree and for each
expression returns its arity, i.e. the number of arguments the expression

11 March 29, 2016; https://mail.haskell.org/pipermail/ghc-devs/2016-March/011651.html

119

https://mail.haskell.org/pipermail/ghc-devs/2016-March/011651.html

3 Call Arity

can be applied to before doing any real work. This allows the transfor-
mation to turn x ?(ńy. e1) :(ńy. e2) into ńy. (x ? e1 : e2) on the grounds that
the check whether x is true or false is a negligible amount of work, and
it is therefore better to eta-expand the expression, even if this means that
the check is done repeatedly. But this is just a heuristics, and can lead to
unwanted performance losses, e.g. if the scrutinee does a deep pattern
match.12 Therefore, Call Arity would refrain from doing this unless it
knows for sure that the expression is going to be called at most once.

This arity analyser can make use of one-shot annotations on lambda
binders. Such an annotation indicates that the lambda will be called
at most once, which allows the analysis to derive greater arities and
expand thunks: If the lambdas in (f x) ?(ńy. e1) :(ńy. e2) are annotated
as one-shot, this would be expanded to ńy. ((f x) ? e1 : e2).

The working notes in [XP05] describe this analysis as the forward arity
analysis. Like Call Arity, it can only determine arities of let-bound ex-
pressions and will not make any use of arity information on parameters.

Consider, for example,

let g = . . .
s f = f 3

in . . . (s g) . . .

where we would have a chance to find out that g is always called with
at least one argument.

A backward arity analysis capable of doing this is also described in
[XP05]. This analysis calculates the arity transformer of a function f: A
mapping from the number of arguments f is called with to the number
of arguments passed to f’s parameters. It is not implemented in GHC
as such, but subsumed by the combined strictness/demand/cardinality
analyser.

This analyser would assign to function s a strictness signature of
<C(S),1*C1(U)>. The strictness information on the left indicates that s
is strict in its first argument, and also in the value returned by calling its
first argument as a function; the usage information on the right indicates
that evaluating s f will evaluate f at most once, call it at most once, and

12 See for example http://ghc.haskell.org/trac/ghc/ticket/11029.

120

http://ghc.haskell.org/trac/ghc/ticket/11029

3.6 Related work

the result of that call will be used. The latest description of this analyser
can be found in [SVP14].

Neither of these two analyses is capable of transforming the bad code
from Fig. 11 into the desired form: The former has to give up as the
expression f a might be expensive; the latter looks at the definition of
goB before analysing the body and is therefore unable to make use of
the fact that goB is always called with two arguments.

3.6.2 Higher order sharing analyses

The role of the co-call analysis in this setting is to provide a simple
form of sharing analysis (using the nomenclature of [HHM07]), which is
required to safely eta-expand thunks. Such analyses have been under
investigation for a long time, e.g. to avoid the updating of thunks that are
used at most once, or to enforce uniqueness constraints. These systems
often support a higher-order analysis in some way, e.g. using detailed
usage types [SVP14], possibly with polyvariance [HHM07].

It would be desirable to have such expressive usage types available in
our analysis, and I do not foresee a problem in using them. It will, how-
ever, be hard to obtain them: The co-call analysis does not just analyse
the code as it is, but rather anticipates its shape after eta-expansion based
on the Call Arity result. So in order to determine a precise higher-order
demand type for a function f, we need to know its Call Arity. For that
we need to analyse the scope of f for how it is used, which is where
we want to make use of the higher-order information on f. Going this
route would require a fixed-point iteration for every binding, which is
prohibitively expensive.

This is also why integrating Call Arity directly into GHC’s existing
demand analyser [SVP14], which analyses function bodies before their
uses, would be difficult.

Another noteworthy difference to the cited analyses is that these either
skip the discussion of recursive bindings, or treat them too imprecisely
to handle code resulting from list fusion. It would be interesting to see if
the concept of a co-call graph could be used in a stand-alone backward
sharing analysis to improve precision in the presence of recursion.

121

3 Call Arity

3.6.3 Explicit one-shot annotation

While I was pondering the issue of a well-fusing foldl, I was pursuing
also another way of solving the problem, besides Call Arity:

For that I created a magic, built-in function

oneShot :: (a → b) → a → b.

It is semantically the identity, but the compiler may assume that the
function oneShot f is called at most once. I can use this function when
implementing foldl in terms of foldr:

foldl k z xs = foldr (ń v fn → oneShot (ńz → fn (k z v))) id xs z

This solves our problem with the bad code generated for sum (filter
f [42..2016]) from Section 3.5.1: The compiler sees

let go = ńx → let r = if x == 2016 then id else go (x + 1)
in if f x then oneShot (ńa → r (a + x)) else r

in go 42 0

and, because the ńa is marked as oneShot, the existing arity analysis will
happily eta-expand go.

Note that oneShot is unchecked: The programmer or library author has
the full responsibility to ensure that the function is really applied only
once. This is given in the case of foldl, as we know the definition of foldr
and that it applies its argument at most once for each element of the list.

The GHC developers initially decided to go the Call Arity route be-
cause it turned out to be no less powerful than the explicit annotation,
has the potential to optimise existing user code as well, and ensures the
correctness of the transformation.

Later, the developers decided that it does not hurt to simply employ
both approaches in GHC. The nofib benchmark suite does not exhibit
such a case, but it is quite possible that there are instances out there,
maybe similar to the tree example in Section 3.5.2, where Call Arity fails
and the oneShot annotation might save the day.

Table 4 compares the performance of
• using only oneShot,
• using only Call Arity and
• using both, as it is the case in the released version of GHC

122

3.6 Related work

against the baseline of GHC 7.10.3 without oneShot and Call Arity, but
with foldl implemented as foldr (i.e. variant (D) in Section 3.5.3). It shows
that in most cases, oneShot and Call Arity yield the same performance
gains, and only a few benchmarks (e.g. fibheaps, scs) show that Call
Arity is a bit more powerful.

Table 4: Measuring the effect of one-shot annotations

Bytes allocated Instructions executed

Call Arity X X X X
oneShot X X X X

anna -0.2% -1.7% -1.8% -0.6% -1.1% -1.1%
bernouilli -8.3% -8.3% -8.3% -21.3% -21.2% -21.3%
binary-trees 0.0% -0.0% -0.0% -0.0% -7.3% -7.3%
cacheprof -1.2% -0.6% -0.0% -1.6% -2.7% +0.9%
fem -1.0% -1.0% -1.0% -3.1% -3.1% -3.1%
fft2 -0.2% -0.2% -0.2% -5.2% -5.1% -5.1%
fibheaps 0.0% -4.5% -4.5% +0.0% -12.0% -12.0%
fish 0.0% -5.1% -5.1% -0.0% -3.9% -3.9%
fulsom 0.0% -0.4% -0.4% -0.0% -1.5% -1.5%
gen_regexps -65.6% -65.6% -65.6% -69.9% -69.9% -69.9%
gg 0.0% 0.0% 0.0% +1.2% +1.2% +1.1%
hidden -6.9% -7.0% -7.0% -5.5% -5.7% -5.7%
hpg 0.0% -0.1% -0.1% +0.0% -1.0% -1.0%
lcss 0.0% -0.0% -0.0% +0.0% -2.5% -2.5%
life -0.0% -0.0% -0.0% -2.7% -0.2% -2.4%
maillist +0.0% +0.0% 0.0% -1.5% -0.2% -1.6%
minimax -18.8% -18.8% -18.8% -17.5% -17.5% -17.5%
scs -1.2% -2.9% -2.9% -0.4% -2.1% -1.7%
simple -16.3% -16.3% -16.3% -16.6% -16.6% -16.6%
x2n1 -87.7% -87.7% -87.7% -73.5% -73.5% -73.5%
. . . and 80 more

Min -87.7% -87.7% -87.7% -73.5% -73.5% -73.5%
Max +0.0% +0.0% 0.0% +1.2% +1.2% +1.1%
Geometric Mean -3.7% -3.8% -3.8% -3.3% -3.6% -3.6%

123

3 Call Arity

3.6.4 unfoldr/destroy and stream fusion

There are various contenders to foldr/build-based list fusion, such as un-
foldr/destroy [Sve02] and stream fusion [CLS07]. They have no problem
fusing foldl, but have their own shortcomings, such as difficulties fus-
ing unzip, filter and/or concatMap; a thorough comparison is contained
in [Cou10]. After two decades, this is still an area of active research
[FHG14].

These systems are in practical use in array libraries like bytestring
and vector. For the typical uses of lists they were inferior to foldr/build-
based fusion, and hence the latter is used for the standard Haskell list
type. Given the recent advances on both fronts, a reevaluation of this
choice is due.

3.6.5 Worker-wrapper list fusion

On the GHC mailing list, Takano suggested an extension to foldr/build-
based list fusion that will generate good code for left folds directly
[Tak14]. The idea is that the consumer not only specifies what the
generator should use instead of the list constructors (:) and [], but also
a pair of worker-wrapper functions.

Slightly simplified, he extends foldr to foldrW. This function takes two
additional arguments, here called wrap and unwrap, which can be used
by the consumer to specify the actual type of the recursion.

foldrW :: (forall e. f e → (e → b → b))
→ (forall e. (e → b → b) → f e)
→ (a → b → b) → b → [a] → b

foldrW wrap unwrap f z0 list0 = wrap go list0 z0
where
go = unwrap $ ń list z’ → case list of [] → z’

x:xs → f x (wrap go xs z’)

Conversely, he extends build to buildW: Besides passing the list con-
structors, this also passes a wrapper that does not actually change the
type:

124

3.6 Related work

newtype Simple b e = Simple { runSimple :: e → b → b }

buildW :: (forall b f . (forall e. f e → (e → b → b))
→ (forall e. (e → b → b) → f e)
→ (a → b → b) → b → b)

→ [a]
buildW g = g runSimple Simple (:) []

This way, he can specify a fusion rule similar to the foldr/build rule:

{-# RULES
"foldrW/buildW" forall wrap unwrap f z g.

foldrW wrap unwrap f z (buildW g) = g wrap unwrap f z
#-}

Now every list consuming function that wants to benefit from this
system needs to specify a custom pair of wrapper and unwrapper func-
tions. For example, his definition of foldl in terms of the extended foldrW
becomes

foldl :: forall a b. (b → a → b) → b → [a] → b
foldl f z = ńxs → foldrW wrap unwrap g id xs z
where
wrap :: forall e. Simple b e → (e → (b → b) → (b → b))
wrap s e k a = k (s e a)
unwrap :: forall e. (e → (b → b) → (b → b)) → Simple b e
unwrap u = ńe a → u e id a
g x next acc = next (f acc x).

Conversely, list producing functions should be defined in terms of
buildW, and making sure that the wrappers are used to shape the re-
cursion:

[from..to] = buildW (eftFB from to)
eftFB from to wrap unwrap c n = wrap go from n
where
go = unwrap $ ńi rest → if i <= to

then c i (wrap go (i + 1) rest)
else rest.

125

3 Call Arity

This proposal initially looked promising: It handles the case of fusing
foldl well, and appears to be more powerful in tricky cases like fusing
foldl with a list produced by treeToList (see Section 3.5.2).

Nevertheless, a thorough evaluation13 by David Feuer and Dan Doel
revealed that the system is rather unsafe: The above fusion rule is not
universally correct, and with certain combinations of producers and
consumers, this can yield wrong results. A way forward would be to
identify sufficient conditions about the arguments to foldrW resp. buildW
that guarantee that fusion is safe, but so far, such conditions have not
been found. Given these problems, the GHC developers decided to not
pursue this approach any further for now.

3.6.6 Control flow based analyses

The Call Arity analysis uses domain theory to describe its result, and
iteratively finds a fixed point in the case of recursive bindings. This
suggests connections to the field of data flow analysis, where analysis
results are commonly calculated on a control-flow graph representation
of the program. It is not obvious how to represent a Core program as
such a graph, and although there are approaches to control-flow analysis
of functional programs (see [Mid12] for a recent survey), they are not
used in the Haskell compiler.

GHC does employ data flow analysis based transformations, but at a
much later phase and lower level, namely in the code generator [RDP10].
We do not want Call Arity to happen that late in the pipeline, as some
Core-to-Core transformations benefit from the effect of Call Arity, e.g.
by unboxing the accumulator of sum specialised to Int.

3.7 Future work

As usual, there is always room for improvement, both in the analysis
itself and in how it is used.

13 https://ghc.haskell.org/trac/ghc/ticket/9545

126

https://ghc.haskell.org/trac/ghc/ticket/9545

3.7 Future work

3.7.1 Improvements to the analysis

Call Arity does not fully exploit the behaviour of thunks in mutual
recursion. Consider this example:

let go x = if x > 10 then x else go (t1 x)
t1 = if f (t2 a) then (ńy → go (y+1)) else (ńy → go (y+2))
t2 = if f b then (ńy → go (y+1)) else (ńy → go (y+2))

in go 1 2

Currently, Call Arity will refrain from eta-expanding t1 and t2, as they
are part of a recursive binding. But t2 is in fact called at most once! All
calls to t2 are done by t1, and t1’s result will be shared.

It remains to be seen if such situations occur in the wild and whether
the benefits justify the implementation overhead.

3.7.2 Tighter integration into GHC

As explained in Section 3.6.2, Call Arity cannot be directly merged into
GHC’s existing demand analyser [SVP14], as they need to process let-
bindings in a different order.

There is, however, a potential for better cooperation of Call Arity with
the existing analyses and transformations in both directions:

Call Arity could make some use of the strictness and demand anno-
tation that happen to be already present in the code, e.g. on imported
identifiers. If, for example, the function f in the expression f (ńx. g
x) happens to be annotated with the information that it calls its first
argument at most once with one argument, then we could improve the
analysis result and report that g is called at most once.

I am, however, reluctant to add this functionality: It would imply that
some programs might be optimised better by splitting them into more
modules, which is a harsh violation of the principle of least surprise.

Similarly, the other passes could use the information that was found
out by the Call Arity pass: Thunks that are determined by Call Arity
to be called at most once can be marked as one-shot, even if no eta-
expansion is possible, which would allow the code generator to omit
the code that implements the updating.

127

3 Call Arity

If we were willing to pay the price to include function parameters in
the set of interesting variables (Section 3.4.1), then although Call Arity
cannot make use of the thus found information to eta-expand anything,
it could create a preliminary demand signature for the function that
might help the subsequent pass of the demand analyser to get more
precise results, or at least to converge earlier.

Finally, the information that a let-bound function or thunk is called
at most once from within a recursive function allows more aggressive
inlining.

For example, currently GHC does not transform

let a = f x0
b = g x0

in let go 0 = a
go 1 = b
go i = go (h i)

in go n

into

let go 0 = f x0
go 1 = g x0
go i = go (h i)

in go n

as in general, inlining into a recursive group can duplicate work [PM02].
In this case, it would be safe, as a and b are called at most once, and
Call Arity is able to determine that. In principle, extending GHC to do
this is not a problem; practically, the so-called float-out pass will simply
undo this change, because – again in general – floating things out of a
recursive group is a good idea, as it can increase sharing. In this case, no
sharing can be gained, as the expression f x0 is evaluated only once, but
this fact is not visible to GHC after a and b have been inlined.14

14 https://ghc.haskell.org/trac/ghc/ticket/10918

128

https://ghc.haskell.org/trac/ghc/ticket/10918

I started with P ∧ ¬P and derived
your Mom’s phone number.

Randall Munroe, xkcd #704

CHAPTER 4

The safety of Call Arity

The previous chapter introduced a new analysis and transformation for
an optimising compiler, and analyses it in the usual detail: A somewhat
formal description of the transformation is accompanied by empirical
evidence of its usefulness based on benchmark results.

That none of the benchmarks exhibited reduced performance, at least
when measured by the number of allocations, suggests that the transfor-
mation is indeed a safe optimisation, i.e. does not make matters worse.
Nevertheless, I found this unsatisfying: The benchmark suite only con-
tains a small number of example programs – how can I be sure that my
transformation really never makes matters worse?

To that end, I want to actually prove that my transformation is safe,
and I want to do it in a machine-verified way, in order to attain the
highest level of assurance that the proof is correct.

Therefore, I set out to go all the way: I took the Call Arity analysis,
formalised it in the interactive theorem prover Isabelle and created a
machine-checked proof not only of functional correctness, but also that
the performance of the transformed program is not worse than that of
the original program. This chapter, parts of which I have presented at
the Haskell Symposium 2015 [Bre15b], describes this endeavour.

Recall that it is only safe to eta-expand a thunk if the thunk is called
at most once. So an arity analysis requires a cardinality analysis, which

129

http://xkcd.com/704

4 The safety of Call Arity

determines how often a function or a thunk is called, in order to be able
to eta-expand a thunk. If the cardinality analysis were wrong and we
would eta-expand a thunk that is called multiple times, we would lose
the benefits of sharing and suddenly repeat work.

A correctness proof with regard to a standard denotational semantics
would not rule that out! A more detailed semantics is required instead.
I use the abstract machine introduced in Chapter 2, where the explicit
heap allows me to prove that the number of heap allocations does not
increase by transforming the program. This is a suitable criterion for
safety in this context, as explained shortly.

4.1 Proof outline

In my introduction of the Call Arity analysis in Chapter 3, I explain and
motivate the various details of the definition. These might be convincing
points that Call Arity might indeed be safe, but are far from a general,
rigorous proof. How can I go about producing such a proof?

First, I need to find a suitable semantics. The elegant standard denota-
tional semantics for functional programs, such as the one in Section 2.1.2,
are unfortunately too abstract and admit no observation of program per-
formance. Therefore, I use a standard small-step operational semantics
similar to Sestoft’s mark 1 abstract machine, introduced in Section 2.5.

With that semantics, I could have followed Sands [MS99] and mea-
sured performance by counting evaluation steps. But that turns out to
be too finegrained: The eta-expansion transformation causes additional
beta-reductions to be performed during evaluation, and without subse-
quent simplification – which does happen in a real compiler, but which
I do not want to include in the proof – these increase the number of
steps in my semantics.

Therefore, I measure the performance by counting the number of al-
locations performed during the evaluation. This is sufficient to detect
accidental duplication of work, as shown by this gedankenexperiment:
Consider a program e1, which is transformed to e2, and a subexpression e
of e1 that also occurs in e2. By replacing e with let x1 = x1,. . . , xn = xn in e,

130

4.1 Proof outline

where the variables are fresh, we can force each evaluation of e to per-
form at least n allocations, for an arbitrary large choice of n. So if e2
happens to evaluate e more often than e1, we can choose n large enough
to make e2 allocate more than e1. Conversely, if our criterion holds, we
can conclude that the transformation does not duplicate work.

This measure is also realistic: When working on GHC, the number
of bytes allocated by a benchmark or a test case is the prime measure
that developers observe to detect improvements and regressions, as in
practice, it correlates very well with execution time and memory usage,
while being more stable across differing environments.

A transformation is safe in this sense if the transformed program
performs no more allocations than the original program.

The arity transformation eta-expands expressions, so in order to prove
it safe, I identify conditions when eta-expansion itself is safe, and ensure
that these conditions are always met.

A sufficient condition for the safety of an n-fold eta-expansion of an
expression e is that whenever e is evaluated, the top n elements on the
stack are arguments, and neither continuations of a case expression, as
eta-expansion would introduce a type error, nor update markers for
thunks, as eta-expansion would prevent the sharing. This is stated as
Lemma 17.

The safety proof for the arity analysis (Lemma 18) keeps track of
some invariants during the evaluation which ensure that we can ap-
ply Lemma 17 whenever an eta-expanded expression is about to be
evaluated.

I perform the proof first for a naive arity analysis without a cardi-
nality analysis, i.e. one that needs to be conservative in this case. This
corresponds to previous work on arity analysis, and furthermore, this
is sufficient to prove that the transformation is semantics preserving
(Theorem 4).

I then formally introduce the concept of a cardinality analysis in Sec-
tion 4.3. I do not simply prove safety of the co-call graph based analysis
directly, but split it up into a series of increasingly concrete proofs, each
building on the result of the previous, for two reasons:

131

4 The safety of Call Arity

• It is nice to separate various aspects of the proof (i.e. the interaction
of the arity analysis with the cardinality analysis; the gap between
the steps of the semantics and the structurally recursive nature of
the analysis; different treatments of recursive and non-recursive
bindings) into individual steps, but more importantly

• while the co-call graph data structure is sufficiently expressive to
implement the analysis, it is an unsuitable abstraction for the safety
proof. There, we need to describe the possibly complex recursion
patterns of the heap as a whole with sufficient detail to identify
and make use that some expressions call each other in a nice and
linear fashion.

In the first refinement, the cardinality analysis is completely abstract: Its
input is the whole configuration and its result is simply which variables
on the heap are going to be called more than once. We give conditions
(Definition 11) when an arity analysis using such a cardinality analysis
is safe (Lemma 23).

The next refinement assumes a cardinality analysis that now looks
just at expressions, not whole configurations, and returns a much richer
analysis result: A trace tree which is a (possibly) infinite tree where each
path corresponds to one possible execution and the edges are labelled
by the variables called during that evaluation.

Given such a trace tree analysis, an abstract analysis as described
in the first refinement can be implemented: The trees describing the
expressions in a configuration (on the heap, as the control or in the
stack) can be combined to a tree describing the behaviour of the whole
configuration. This calculation, named s in Section 4.3.2, is quite natural
for trace trees, but would be hard to define on co-call graphs only. From
that tree I can determine the cardinalities of the individual variables.
I specify conditions on the trace tree analysis (Definition 14) and in
Lemma 26 show them to be sufficient to fulfil the specification of the
first refinement.

The third and final refinement assumes an analysis that returns a co-
call graph for each expression. Co-call graphs can be seen as compact
approximations of trace trees, with edges between variables that can

132

4.2 Arity analyses

occur on the same path in the tree. The specification in Definition 15
is shown in Lemma 27 to be sufficient to fulfil the specification of the
second refinement.

Eventually, I give the definition of the real Call Arity analysis in
Section 4.3.4, and as it fulfils the specification of the final refinement, the
desired safety theorem (Theorem 5) follows.

4.2 Arity analyses

In general, an arity analysis is a function that, given a binding (Γ, e),
consisting of variable names bound to right-hand-sides in Γ and the body
e, determines the arity of each of the bound expressions. It depends on
the number α of arguments passed to e and may return ⊥ for a name
that is not called at all:

Aα(Γ, e) : Var→N⊥.

Given such an analysis, we can run it over a program and transform
it accordingly. The transformation function traverses the syntax tree,
keeping track of the number of arguments passed along the way:

Tα(x) = x

Tα(e x) = Tα+1(e) x

Tα(ńx. e) = (ńx.Tα−1(e))

Tα(Cb) = Cb for b ∈ {t, f}
Tα(e ? et : ef) = T0(e) ?Tα(et) :Tα(ef)

Tα(let Γ in e) = let TAα(Γ,e)(Γ) in Tα(e)

The actual transformation happens at a binding, where it eta-expands
bound expressions according to the result of the arity analysis, using the
n-fold eta expansion operator introduced in Section 1.5. If the analysis
determines that a binding is never called, it simply leaves it alone:

Tᾱ(Γ) =
[

x 7→
{

e if ᾱ(x) = ⊥
Eα(Tα(e)) if ᾱ(x) = α

}∣∣∣(x 7→ e) ∈ Γ
]
.

133

4 The safety of Call Arity

As motivated earlier, I consider an arity analysis A to be safe if the trans-
formed program does not perform more allocations than the original
program. A – technical – benefit of this measure is that the number
of allocations always equals the size of the heap plus the number of
update markers on the stack, as no garbage collector is modelled in the
semantics:
Definition 5 (Safe transformation)
A program transformation T is safe if for every execution

([], e, [])⇒∗ (Γ, v, [])

with isVal v, there is an execution

([],T(e), [])⇒∗ (Γ′, v′, [])

with isVal(v′) and |dom Γ′| ≤ |dom Γ|.
An arity analysis A is safe if the transformation T is safe. �

This formulation of safety works nicely as the semantics is deterministic
up to the choice of variable names. For a genuinely non-deterministic
semantics, a definition of safety would have to distinguish different
executions and ensure that for each of them, a corresponding execution
of the transformed expression exists and does not allocate more.

Note that this definition does not entail functional, i.e. semantic, cor-
rectness, which is discussed and proved in Section 4.2.2.

Specification

I begin by stating sufficient conditions for an arity analysis to be safe.
In order to phrase the conditions, I also need to know the arities an
expression e calls its free variables with, assuming it is itself called with
α arguments:

Aα(e) : Var→N⊥

For notational simplicity, I define A⊥(e) := ⊥.
The specification consists of a few naming hygiene conditions and an

inequality for most syntactical constructs:

134

4.2 Arity analyses

Definition 6 (Arity analysis specification)

domAα(e) ⊆ fv e (A-dom)

domAα(Γ, e) ⊆ dom Γ (Ah-dom)

z /∈ {x, y} =⇒ Aα(e[x := y]) z = Aα(e) z (A-subst)

x, y /∈ dom Γ =⇒
Aα(Γ[x := y], e[x := y]) = Aα(Γ, e) (Ah-subst)

[x 7→ α] v Aα(x) (A-Var)

Aα+1(e) t [x 7→ 0] v Aα(e x) (A-App)

Aα−1(e) \ {x} v Aα(ńx. e) (A-Lam)

A0(e) tAα(et) tAα(ef) v Aα(e ? et : ef) (A-If)

AAα(Γ,e)(Γ) tAα(e) v Aα(Γ, e) tAα(let Γ in e) (A-Let)

where
Aα(Γ) :=

⊔ {
A(α x)(e)

∣∣(x 7→ e) ∈ Γ
}

. �

These conditions come quite naturally: An expression should not report
calls to names that it does not know about. Replacing one variable
by another should not affect the arity of other variables. A variable,
evaluated with a certain arity, should report (at most) that arity.

In the rules for application and lambda abstraction we keep track of
the number of arguments. As this models a forward analysis which
looks at bodies before right-hand-sides, we get no useful information on
how the argument x in an application e x is called by e.

In rule (A-If), the scrutinee is evaluated without arguments, hence it
is analysed with arity 0.

The rule (A-Let) is a concise way to capture a few requirements.
Note that, by (A-dom) and (Ah-dom), the domains of Aα(Γ, e) and
Aα(let Γ in e) are disjoint, i.e. Aα(Γ, e) contains the information on how
the names of the current binding are called, while Aα(let Γ in e) informs
us about the free variables. The left-hand side contains all possible calls,
both from the body of the binding and from each bound expression.
These are analysed with the arity reported by Aα(Γ, e). The occurrence
of Aα(Γ, e) on both sides of the inequality anticipates the fixed-point
iteration in the implementation of the analysis.

135

4 The safety of Call Arity

Definition 6 suffices to prove functional correctness (Section 4.2.2 con-
tains a proof of that) but not safety, as the issue of thunks is not touched
upon yet. The simplest way to handle thunks – and the only way without
the aid of a cardinality analysis – is to simply give up when encoun-
tering a thunk:

Definition 7 (No-cardinality analysis specification)

x ∈ thunks Γ =⇒ Aα(Γ, e) x = 0 (Ah-thunk)
�

Safety

The safety of an eta-expanding transformation rests on the simple ob-
servation that, given enough arguments on the stack, an eta-expanded
expression evaluates straight to the original expression:

Lemma 17 (Safety of eta-expansion)

(Γ, Eα(e), $x1 · · · $xα·S)⇒∗ (Γ, e, $x1 · · · $xα·S) �

Proof
(Γ, Eα(e), $x1 · · · $xα·S)

= (Γ, (ńz1 . . . zα. e z1 . . . zα), $x1 · · · $xα·S)
⇒∗(Γ, e x1 . . . xα, S) { by APP2 }

⇒∗(Γ, e, $x1 · · · $xα·S) { by APP1 } �

So the safety proof for the whole transformation now just has to make
sure that whenever we evaluate an eta-expanded value, there are enough
arguments on top of the stack. Let args S denote the number of arguments
on top of the stack.

While tracking the evaluation of the original program in the proof, we
need to construct the corresponding configurations in the evaluation of
the transformed program. Therefore, we need to keep track of the arity
argument to each of the expressions that occurs in a configuration: those
on the heap, the control and those in alternatives on the stack. Together,

136

4.2 Arity analyses

these arguments form an arity annotation written (ᾱ, α, α̇). Given such
an annotation, we can transform a configuration:

T(ᾱ,α,α̇)((Γ, e, S)) = (Tᾱ(Γ),Tα(e), Ṫα̇(S))

where the stack is transformed by

Ṫα·α̇((et : ef)·S) = (Tα(et) :Tα(ef))·Ṫα̇(S)

Ṫα̇($x·S) = $x·Ṫα̇(S)

Ṫα̇(#x·S) = #x·Ṫα̇(S)

Ṫα̇([]) = [].

While carrying the arity annotation through the evaluation of our
programs, we need to ensure that it stays consistent with the current
configuration.

Definition 8 (Arity annotation consistency)
An arity annotation is consistent with a configuration, written (ᾱ, α, α̇) .
(Γ, e, S), if
• dom ᾱ ⊆ dom Γ ∪ #S,
• args S v α,
•
(
Aα(Γ) tAα(e) t Ȧα̇(S)

)∣∣
dom Γ∪#S v α, where

Ȧ[]([]) := ⊥
Ȧα·α̇((et : ef)·S) := Aα(et) tAα(ef) t Ȧα̇(S)

Ȧα̇($x·S) := [x 7→ 0] t Ȧα̇(S)

Ȧα̇(#x·S) := [x 7→ 0] t Ȧα̇(S), and

• α̇ . S, defined as

[] . []

α·α̇ . (et : ef)·S ⇐⇒ α̇ . S ∧ args S v α

α̇ . $x·S ⇐⇒ α̇ . S

α̇ . #x·S ⇐⇒ α̇ . S. �

As this definition does not consider the issue of thunks, I extend it by
one additional requirement:

137

4 The safety of Call Arity

Definition 9 (No-cardinality arity annotation consistency)
An arity annotation is no-cardinality consistent with a configuration,
written (ᾱ, α, α̇) .N (Γ, e, S), iff (ᾱ, α, α̇) . (Γ, e, S) and ᾱ x = 0 for all
x ∈ thunks Γ. �

I do not include this requirement in the definition of . as I will extend it
differently when I add a cardinality analysis in Definition 13.

Clearly (⊥, 0, []) is a consistent annotation for an initial configura-
tion ([], e, []). The rules take consistently annotated configurations to
consistently annotated configurations during the evaluation – with one
exception which causes a minor technical overhead: Upon evaluation
of a variable x, its binding x 7→ e is always taken off the heap first, even
when it is already evaluated, i.e. isVal e:

(Γ[x 7→ e], x, S)⇒ (Γ, e, #x·S)⇒ (Γ[x 7→ e], e, S)

I would not be able to prove consistency in the intermediate state. To
work around this issue, assume that rule VAR1 has an additional con-
straint ¬isVal e and that the rule

(x 7→ e) ∈ Γ, isVal e =⇒ (Γ, x, S)⇒ (Γ, e, S) (VAR′1)

is added. This modification makes the semantics skip over one step,
which is fine (and closer to what happens in reality).

Lemma 18
Assume A fulfils Definitions 6 and 7.

If we have (Γ, e, S) ⇒∗ (Γ′, e′, S′) and (ᾱ, α, α̇) .N (Γ, e, S), then there
exists an arity annotation (ᾱ′, α′, α̇′) with (ᾱ′, α′, α̇′) .N (Γ′, e′, S′), and
T(ᾱ,α,α̇)((Γ, e, S))⇒∗T(ᾱ′ ,α′ ,α̇′)((Γ′, e′, S′)). �

Proof
by the individual steps of⇒∗. For APP1 we have

Aα+1(e) t Ȧα̇($x·S) = Aα+1(e) t [x 7→ 0] t Ȧα̇(S)

v Aα(e x) t Ȧα̇(S)

138

4.2 Arity analyses

using (A-App) and the definition of Ȧ. So with (ᾱ, α, α̇) .N (Γ, e x, S) we
have (ᾱ, α + 1, α̇) .N (Γ, e, $x·S). Furthermore

T(ᾱ,α,α̇)((Γ, e x, S)) = (Tᾱ(Γ), (Tα+1(e)) x, Ṫα̇(S))

⇒ (Tᾱ(Γ),Tα+1(e), $x·Ṫα̇(S))

= T(ᾱ,α+1,α̇)((Γ, e, $x·S))

by rule APP1.
The other cases follow this pattern, where the inequalities in Defini-

tion 6 ensure the preservation of consistency.
In case VAR1 the variable x is bound to a thunk. From consistency we

obtain ᾱ x = 0, so we can use E0(T0(e)) = T0(e). Similarly, α = ᾱ x = 0
holds in case VAR2.

The actual eta-expansion is handled in case VAR′1: We have

args(Ṫα̇(S)) = args S v α v Aα(x) x v ᾱ x,

from consistency and (A-Var) and hence

T(ᾱ,α,α̇)((Γ, x, S))⇒ (Tᾱ(Γ), Eᾱ x(Tᾱ x(e)), Ṫα̇(S)) { VAR′1 }

⇒∗(Tᾱ(Γ),Tᾱ x(e), Ṫα̇(S)) { by Lemma 17 }

= T(ᾱ,ᾱ x,α̇)((Γ, e, S)).

Case: LET1
The new variables in ∆ are fresh with regard to Γ and S, hence also with
regard to ᾱ according to the naming hygiene conditions in (ᾱ, α, α̇) .N

(Γ, let ∆ in e, S). So in order to have (Aα(∆, e) t ᾱ, α, α̇) . (∆ · Γ, e, S), it
suffices to show

(AAα(∆,e)(∆) tAα(e))
∣∣
dom∆∪dom Γ∪#S v Aα(∆, e) t ᾱ,

which follows from (A-Let) andAα(let ∆ in e)
∣∣
dom Γ∪#S v ᾱ. The require-

ment Aα(∆, e) x = 0 for x ∈ thunks∆ holds by (Ah-thunk). �

The main take-away of this lemma is the following corollary, which states
that the transformed program performs the same number of allocations
as the original program.

139

4 The safety of Call Arity

Corollary 19
The arity analysis is safe (in the sense of Definition 5): If ([], e, []) ⇒∗
(Γ, v, []), then there exists Γ′ and v′ such that ([],T0(e), []) ⇒∗ (Γ′, v′, [])
where Γ and Γ′ contain the same number of bindings. �

Proof
We have (⊥, 0, []) .N ([], e, []). Lemma 18 gives us ᾱ, α and α̇ so that
T(⊥,0,[])(([], e, []))⇒∗T(ᾱ,α,α̇)((Γ, v, [])) and Tᾱ(Γ) binds the same names
as Γ. �

4.2.1 A concrete arity analysis

So far, we have a specification for an arity analysis and a proof that every
analysis that fulfils the specification is safe.

One possible implementation is the trivial arity analysis which does
not do anything useful and simply returns the most pessimistic result:
Aα(e) := [x 7→ 0 | x ∈ fv e] and Aα(Γ, e) := [x 7→ 0 | x ∈ dom Γ].

A more realistic arity analysis is defined by

Aα(x) := [x 7→ α]

Aα(e x) := Aα+1(e) t [x 7→ 0]

Aα(ńx. e) := Aα−1(e) \ {x}
Aα(e ? et : ef) := A0(e) tAα(et) tAα(ef)

Aα(Cb) := ⊥ for b ∈ {t, f}
Aα(let Γ in e) := (µᾱ. Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ]) \ dom Γ

and
Aα(Γ, e) := (µᾱ. Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ])

∣∣
dom Γ

where (µᾱ. . . .) denotes the least fixed point, which exists as the involved
operations are continuous and monotone in ᾱ. Moreover, the fixed point
can be found in a finite number of steps by iterating from ⊥, as the
carrier of ᾱ is bounded by the finite set fv Γ ∪ fv e, and the pointwise
partial order on arities has no infinite ascending chains. As this ignores
the issue of thunks, it corresponds to the analysis described in [Gil96].

This implementation fulfils the specifications in Definition 6 and Def-
inition 7, so by Corollary 19, it is safe.

140

4.2 Arity analyses

4.2.2 Functional correctness

This section on the functional correctness of the transformation is a
slight detour in this chapter, which is mainly about the safety of the
transformation. I include it here not only because functional correctness,
i.e. the preservation of semantics, is an important property, but also to
demonstrate that it holds independent of the correctness of a cardinality
analysis.

For this section, we expect the analysis to fulfil the specification in
Definition 6, but do not require any specific behaviour with regard to
thunks, i.e. Definition 7 does not need to hold.
Theorem 4 (Functional correctness of Call Arity)
For all expressions e, we have

JT0(e)K = JeK. �

As usual, in order to prove this, I need to generalise the statement. In this
case, the statement needs to hold for arbitrary incoming arities, instead
of just 0, and furthermore for arbitrary environments instead of just ⊥.

But in the general case, I would not be able to prove plain equality:
Consider the expression e = let x = x in x: When analysed with an
incoming arity of 1, we have

T1(e) = let x = ńy. x y in x
but

JeK⊥ = ⊥ 6= Fn(λ_.⊥) = JT1(e)K⊥.

Therefore, I need to generalise the notion of equality as well, to a weaker
notion that only demands equality when applied to enough arguments:

Definition 10 (Equality up to eta-expansion)
For every α ∈N and v1, v2 ∈ Value let e1 ≈α e2 denote that

v1 ↓Fn z1 ↓Fn . . . ↓Fn zα = v2 ↓Fn z1 ↓Fn . . . ↓Fn zα.

for all z1, . . . , zα ∈ Value
Furthermore, for every arity environment ᾱ ∈ Var → N⊥ and envi-

ronments ρ1, ρ2 ∈ Var→ Value, let

ρ1 ≈ᾱ ρ2 := ∀x ∈ dom ᾱ. (ρ1 x) ≈ᾱ x (ρ2 x). �

141

4 The safety of Call Arity

Note that ≈0 coincides with plain equality. If we have v1 ≈α+1 v2, then
also v1 ↓Fn z ≈α v2 ↓Fn z for all z ∈ Value. Conversely, v1[v] ≈α−1 v2[v]
for all v ∈ Value implies Fn(λv. v1[v]) ≈α Fn(λv. v2[v]).

The relation is monotone in the sense that for α v α′, ≈α′ implies ≈α,
and analogously for the relation on environments.

The main motivation for this definition is that it does not see eta-
expansion:

Lemma 20
JEα(e)Kρ ≈α JeKρ

Proof
by induction of α. �

I proceed by proving soundness of the analysis and then the correctness
of the transformation, in its general form.

Lemma 21
If ρ1 ≈Aα(e) ρ2, then JeKρ1 ≈α JeKρ2 .

Proof
by induction over the expression e.

Case: e = x
By (A-Var), we have α v Aα(e), so the assumption of the lemma im-
plies (ρ1 x) ≈Aα(e) x (ρ2 x), which in turn provides (ρ1 x) ≈α (ρ2 x) as
required.

Case: e = e′ x
By (A-App), the assumption of the lemma implies both ρ1 ≈Aα+1(e′) ρ2

as well as (ρ1 x) ≈0 (ρ2, x). By induction, the former yields Je′Kρ1 ≈α+1
Je′Kρ2 . Therefore

Je′ xKρ1 = Je′Kρ1 ↓Fn ρ1 x

= Je′Kρ1 ↓Fn ρ2 x

≈α Je′Kρ2 ↓Fn ρ2 x

= Je′ xKρ2 .

142

4.2 Arity analyses

Case: e = ńx. e′

By (A-Lam) and the assumption we have ρ1 ≈Aα−1(e′)\{x} ρ2, which, for
any v ∈ Value, yields (ρ1 t [x 7→ v]) ≈Aα−1(e′) (ρ2 t [x 7→ v]). By the
induction hypothesis, this implies Je′Kρ2t[x 7→v] ≈α−1 Je′Kρ2t[x 7→v], and
thus

Jńx. e′Kρ1 = Fn(λv. Je′Kρ1t[x 7→v])

≈α Fn(λv. Je′Kρ2t[x 7→v]) = Jńx. e′Kρ2 .

Case: e = let Γ in e′

This follows immediately from the denotation of let-expressions and
the inductive hypothesis, once we have ({{Γ}}ρ1) ≈Aα(e) ({{Γ}}ρ2). By
(A-Let), this can be generalised to ({{Γ}}ρ1) ≈ᾱ ({{Γ}}ρ2) where ᾱ =
Aα(Γ, e) tAα(let Γ in e).

We prove this by parallel fixed-point induction. The base case is trivial,
so we assume we have

ρ′1 ≈ᾱ ρ′2

for some ρ′1, ρ′2, and we need to show

(ρ1 ++dom ΓJΓKρ′1
) ≈ᾱ (ρ2 ++dom ΓJΓKρ′2

)

which we do point-wise. Let α′ = ᾱ x.
For x 7→ e′′ ∈ Γ, we need to show (Je′′Kρ′1

) ≈α′ (Je′′Kρ′1
). By the

induction hypothesis, this requires ρ′1 ≈Aα′ (e
′′) ρ′2, which in turn follows

from ρ′1 ≈ᾱ ρ′2 and (A-Let).
For x /∈ dom Γ, we need to show (ρ1 x) ≈α′ (ρ2 x). This follows

from ᾱ x = Aα(let Γ in e) x and the assumption of the lemma, namely
ρ1 ≈Aα(let Γ in e) ρ2.
Case: e = Cb
Trivial.
Case: e = e′ ? et : ef
By the assumption, (A-If) and the monotonicity of ≈ᾱ, we can invoke all
three induction hypotheses and obtain Je′Kρ1 ≈0 Je′Kρ2 , JetKρ1 ≈α JetKρ2

and JefKρ1 ≈α JefKρ2 . From this, Je′ ? et : efKρ1 ≈α Je′ ? et : efKρ2 follows by
a case analysis on Je′Kρ1 . �

143

4 The safety of Call Arity

With this in place, we can prove that the transformation is semantics-
preserving:

Lemma 22
JTα(e)Kρ ≈α JeKρ.

Proof
Again, by induction on e, for arbitrary α and ρ.

Case: e = x
Trivial.

Case: e = e′ x
By the induction hypothesis, we have JTα+1(e′)Kρ ≈α+1 Je′Kρ, so

JTα(e′ x)Kρ = JTα+1(e′) xKρ

= JTα+1(e′)Kρ ↓Fn ρ x

≈α Je′Kρ ↓Fn ρ x

= Je′ xKρ.
Case: e = ńx. e′

By the induction hypothesis, we have JTα−1(e′)K′ρ ≈α−1 Je′K′ρ for any ρ′,
so

JTα(ńx. e′)Kρ = Jńx.Tα−1(e′)Kρ

= Fn(λv. JTα+1(e′)Kρt[x 7→v])

≈α Fn(λv. Je′Kρt[x 7→v])

= Jńx. e′Kρ.
Case: e = let Γ in e′

We first need to prove

{{TAα(Γ,e)(Γ)}}ρ ≈Aα(e) {{Γ}}ρ. (∗)

which, using (A-let), follows from

{{TAα(Γ,e)(Γ)}}ρ ≈ᾱ {{Γ}}ρ

with ᾱ = Aα(Γ, e) tAα(let Γ in e).

144

4.2 Arity analyses

Similar to above, we can prove this using parallel fixedpoint induction.
Again, the base case is trivial, so let ρ1, ρ2 be environments for which

ρ1 ≈ᾱ ρ2

holds. We need to show

JTAα(Γ,e)(Γ)Kρ1 ≈ᾱ JΓKρ2 .

which we verify point-wise. Let x 7→ e′′ ∈ Γ and α′ = Aα(Γ, e) x = ᾱ x.
We have

JTAα(Γ,e)(Γ)Kρ1 x = JEα′(Tα′(e
′′))Kρ1

≈α′ JTα′(e
′′)Kρ1 { Lemma 20 }

≈α′ Je′′Kρ1 { ind. hypothesis }

≈α′ Je′′Kρ2 { Lemma 21 }

= JΓKρ2 x

where in order to invoke Lemma 21, we need ρ1 ≈Aα′ (e
′′) ρ2, which

follows from ρ1 ≈ᾱ ρ2 and (A-Let).
Now we can calculate

JTα(let Γ in e′)Kρ = Jlet TAα(Γ,e′)(Γ) in Tα(e′)Kρ

= JTα(e′)K{{TAα(Γ,e′)(Γ)}}ρ

≈α Je′K{{TAα(Γ,e′)(Γ)}}ρ
{ ind. hypothesis }

≈α Je′K{{Γ}}ρ { Lemma 21 and (∗) }

= Jlet Γ in e′Kρ.

Case: e = Cb
Trivial.
Case: e = e′ ? et : ef
By induction we have JT0(e)Kρ ≈0 JeKρ, so JT0(e)Kρ = JeKρ, and by case
analysis on this value, this follows from the induction hypotheses. �

Proof (of Theorem 4)
This follows from Lemma 22 with ρ = ⊥, as ≈0 coincides with regular
equality. �

145

4 The safety of Call Arity

4.3 Cardinality analyses

The previous section proved the safety of a straight-forward arity analy-
sis. But it was severely limited by not being able to eta-expand thunks,
which is desirable in practice.

4.3.1 Abstract cardinality analysis

So the arity analysis needs an accompanying cardinality analysis which
prognoses how often a bound variable is going to be evaluated: I model
this as a function

Cα(Γ, e) : Var→ Card

where Card is the three element lattice

⊥ @ 1 @ ∞,

corresponding to “not called”, “called at most once” and “no informa-
tion”, respectively. We use γ for an element of Card and γ̄ for a mapping
Var → Card.

The expression γ̄ − x, which subtracts one call from the prognosis,
is defined as

(γ̄− x) y =

{
⊥ if y = x and γ̄ y = 1
γ̄ y otherwise.

Specification

I start with a very abstract specification for a safe cardinality analysis
and prove that an arity transformation that makes use of it it is still safe.
I stay oblivious in how the analysis works and defer that to the next
refinement step in Section 4.3.2.

For the specification we not only need the local view on one binding,
as provided by Cα(Γ, e), but also a prognosis on how often each variable
is going to be called in the further execution of a complete and arity-
annotated configuration:

C(ᾱ,α,α̇)((Γ, e, S)) : Var→ Card

146

4.3 Cardinality analyses

Definition 11 (Cardinality analysis specification)
The cardinality prognosis and cardinality analysis fulfil some obvious
naming hygiene conditions:

dom Cα(∆, e) = domAα(∆, e) (Ch-dom)

dom C(ᾱ,α,α̇)((Γ, e, S)) ⊆ fv (Γ, e, S) (C-dom)

ᾱ
∣∣
dom Γ = ᾱ′

∣∣
dom Γ =⇒
C(ᾱ,α,α̇)((Γ, e, S)) = C(ᾱ′ ,α,α̇)((Γ, e, S)) (C-cong)

ᾱ x = ⊥ =⇒ C(ᾱ,α,α̇)((Γ, e, S)) = C(ᾱ,α,α̇)((Γ \ {x}, e, S)) (C-not-called)

Furthermore, the cardinality analysis is likewise a forward analysis and
has to be conservative about function arguments:

$x ∈ S =⇒ [x 7→ ∞] v C(ᾱ,α,α̇)((Γ, e, S)) (C-args)

The prognosis may ignore update markers on the stack:

C(ᾱ,α,α̇)((Γ, e, #x·S)) v C(ᾱ,α,α̇)((Γ, e, S)) (C-upd)

An imminent call better be prognosed:

[x 7→ 1] v C(ᾱ,α,α̇)((Γ, x, S)) (C-call)

Evaluation improves the prognosis: Note that in (C-Var1) and (C-Var′1),
we account for the call to x with the − operator.

C(ᾱ,α+1,α̇)((Γ, e, $x·S)) v C(ᾱ,α,α̇)((Γ, e x, S)) (C-App)

C(ᾱ,α−1,α̇)((Γ, e[y := x], S)) v C(ᾱ,α,α̇)((Γ, ńy. e, $x·S)) (C-Lam)

(x 7→ e) ∈ Γ, ¬isVal e =⇒
C(ᾱ,ᾱ x,α̇)((Γ \ {x}, e, #x·S)) v C(ᾱ,α,α̇)((Γ, x, S))− x (C-Var1)

(x 7→ e) ∈ Γ, isVal e =⇒
C(ᾱ,ᾱ x,α̇)((Γ, e, S)) v C(ᾱ,α,α̇)((Γ, x, S))− x (C-Var′1)

isVal e =⇒
C(ᾱ,0,α̇)((Γ[x 7→ e], e, S)) v C(ᾱ,0,α̇)((Γ, e, #x·S)) (C-Var2)

C(ᾱ,0,α·α̇)((Γ, e, (et : ef)·S)) v C(ᾱ,α,α̇)((Γ, e ? et : ef , S)) (C-If1)

b ∈ {t, f} =⇒C(ᾱ,α,α̇)((Γ, eb, S)) v C(ᾱ,0,α·α̇)((Γ,Cb, (et : ef)·S)) (C-If2)

147

4 The safety of Call Arity

The specification for the let-bindings connects the arity analysis, the
cardinality analysis and the cardinality prognosis:

dom∆ ∩ fv (Γ, S) = {}, dom ᾱ ⊆ dom Γ ∪ #S =⇒
C(Aα(∆,e)tᾱ,α,α̇)((∆ · Γ, e, S)) v Cα(∆, e) t C(ᾱ,α,α̇)((Γ, let ∆ in e, S))

(C-Let)

Finally, we need to ensure that the analysis returns the top element of
the lattice for thunks that might be called more than once. In contrast to
the corresponding Definition 7, this can now make use of the cardinality
analysis:

x ∈ thunks Γ, Cα(Γ, e) x = ∞ =⇒ Aα(Γ, e) x = 0 (Ah-∞-thunk)
�

Safety

The safety proof proceeds similarly to the one for Lemma 18. But now
we are allowed to eta-expand thunks that are called at most once. This
has considerable technical implications for the proof:

• An eta-expanded expression is a value, so in the transformed
program, VAR2 occurs immediately after VAR1. In the original
program, however, an update marker stays on the stack until the
expression is evaluated to a value, and then VAR2 fires without a
correspondence in the evaluation of the transformed program. In
particular, the update marker can interfere with uses of Lemma 17.

• Because the eta-expanded expression is a value, it stays on the
heap as it is, whereas in the original program, it is first evalu-
ated. Evaluation can reduce the number of free variables of the
expression, so subsequent choices of fresh variables in LET1 in the
original evaluation might not be suitable in the evaluation of the
transformed program.

A more complicated variant of Lemma 17 and carrying a variable re-
naming around throughout the proof might solve these problems, but
would complicate it too much. I therefore apply a small trick and simply
allow unwanted update markers to disappear, by defining a variant of
the semantics:

148

4.3 Cardinality analyses

Definition 12 (Forgetful semantics)
The relation⇒# is defined by

(Γ, e, S)⇒ (Γ′, e′, S′) =⇒ (Γ, e, S)⇒# (Γ′, e′, S′)
and

(Γ, e, #x·S)⇒# (Γ, e, S). DROPUPD

�

This way, a one-shot binding can disappear completely after it has been
called, making it easier to relate the original program to the transformed
program. Because⇒# contains⇒, Lemma 17 holds here as well. Af-
terwards, and outside the scope of the safety proof, I will recover the
original semantics from the forgetful semantics.

In the proof I keep track of the set of removed bindings (named r), and
write (Γ, e, S)− r := (Γ \ r, e, S− r) for the configuration with bindings
from the set r removed. The stack (S− r) is S without update markers
#x where x ∈ r.

I also keep track of γ̄ : Var → Card, the current cardinalities of the
variables on the heap:

Definition 13 (Cardinality arity annotation consistency)
I write (ᾱ, α, α̇, γ̄, r) .C (Γ, e, S), iff
• the arity information is consistent, (ᾱ, α, α̇) . (Γ, e, S)− r,
• dom ᾱ = dom γ̄,
• the cardinality information is correct, C(ᾱ,α,α̇)((Γ, e, S)) v γ̄,
• many-called thunks are not going to be eta-expanded, i.e. ᾱ x = 0

for x ∈ thunks Γ with γ̄ x = ∞ and
• only bindings that are not going to be called (γ̄ x = ⊥) are removed,

i.e. r ⊆ (dom Γ ∪ #S)− dom γ̄. �

Lemma 23
Assume A and C fulfil the specifications in Definitions 6 and 11.

If (Γ, e, S) ⇒∗ (Γ′, e′, S′) and (ᾱ, α, α̇, γ̄, r) .C (Γ, e, S) , then there ex-
ists an arity annotation (ᾱ′, α′, α̇′, γ̄′, r′) such that (ᾱ′, α′, α̇′, γ̄′, r′) .C

(Γ′, e′, S′), and T(ᾱ,α,α̇)((Γ, e, S)− r)⇒∗# T(ᾱ′ ,α′ ,α̇′)((Γ′, e′, S′)− r′). �

149

4 The safety of Call Arity

The lemma is an analogue to Lemma 18. The main difference, besides
the extra data to keep track of, is that we produce an evaluation in the
forgetful semantics, with some bindings removed.

Proof
by the individual steps of⇒∗. The preservation of the arity annotation
consistency in the proof of Lemma 18 can be used here as well. Note
that both the arity annotation requirement and the transformation are
applied to (Γ, e, S)− r, so this goes well together. The correctness of the
cardinality information (the second condition in Definition 13) follows
easily from the inequalities in Definition 11.

I elaborate only on the interesting cases:

Case: VAR1
We cannot have γ̄ x = ⊥ because of (C-call).

If γ̄ x = ∞ we get ᾱ x = 0, as before, and nothing surprising happens.
If γ̄ x = 1, we know that this is the only call to x, so we set r′ = r∪{x},

γ̄′ = γ̄− x and use DROPUPD to get rid of the mention of #x on the stack.

Case: VAR2
If x /∈ r, proceed as before. If x ∈ r, then the transformed configurations
are identical and the⇒∗# judgement follows from reflexivity. �

Corollary 24
The cardinality based arity analysis is safe for closed expressions, i.e. if
fv e = {} and ([], e, []) ⇒∗ (Γ, v, []) then there exists Γ′ and v′ such that
([],T0(e), []) ⇒∗ (Γ′, v′, []) where Γ and Γ′ contain the same number of
bindings. �

Proof
We need fv e = {} to have C⊥,0,[](([], e, [])) = ⊥, so that (⊥, 0, [],⊥, []) .C

([], e, []) holds. Now according to Lemma 23 there are ᾱ, α, α̇ and r so
that T(⊥,0,[])(([], e, []))⇒∗# T(ᾱ,α,α̇)((Γ, v, [])− r).

As the forgetful semantics only drops unused bindings, but does
not otherwise behave any different than the real semantics, a technical
lemma allows us to recover T(⊥,0,[])(([], e, []))⇒∗T(ᾱ,α,α̇)((Γ′, v, [])) for a
Γ′ where Tᾱ(Γ)− r = Γ′ − r′. As r ⊆ Γ and r′ ⊆ Γ′, this concludes the
proof of the corollary: Γ, Tᾱ(Γ) and Γ′ all bind the same variables. �

150

4.3 Cardinality analyses

4.3.2 Trace tree cardinality analysis

In the second refinement, I look – still quite abstractly – at the implemen-
tation of the cardinality analysis. For the arity information, the type of
the result required for the transformation (Var→N⊥) was sufficiently
rich to be used in the analysis as well. This is unfortunately not the case
for the cardinality analysis: Even if we know that an expression calls
x and y each at most once, this does not tell us whether these calls can
occur together (as in e x y) or whether they are exclusive (as in e ? x : y).

So I need a richer type that captures the future calls of an expression,
that can distinguish different code paths and that maps easily to the
type Var → Card: This is the type TTree of (possibly infinite) trees,
where each edge is labelled with a variable name, and a node has at
most one outgoing edge for each variable name. The paths in the tree
correspond to the possible executions and the labels on the edges record
each occurring variable call. I use t for values of type TTree.

There are other, equivalent ways to interpret this type: Each TTree
corresponds to a non-empty set of (finite) lists of variable names that is
prefixed-closed (i.e. for every list in the set, its prefixes are also in the
set). Each such list corresponds to a (finite) path in the tree. The function

paths : TTree→ 2[Var]

implements this correspondence.
Yet another view is given by the function

next : Var→ TTree→ TTree⊥,

where nextx t = t′ iff the root of t has an edge labelled x leading to t′,
and nextx t = ⊥ if the root of t has no edge labelled x. In that sense,
TTree represents automata with labelled transitions, and we can actually
define a trace trees t by specifying nextx t for all x ∈ Var.

The basic operations on trees are ⊕, given by paths(t⊕ t′) = paths t ∪
paths(t′), and ⊗, where paths(t⊗ t′) is the set of all interleavings of lists
from paths t with lists from paths(t′). I write t∗ for t⊗ t⊗ t⊗ · · · . A tree
is called repeatable if t = t ⊗ t = t∗.

151

4 The safety of Call Arity

The partial order used on TTree is

t v t′ ⇐⇒ paths t ⊆ paths t′.

I write for the tree with no edges and simply x for x , the tree
with exactly one edge labelled x. The tree t \V is t with all edges with
labels in V contracted, t

∣∣
V is t with all edges but those labelled with

variables in V contracted.
Example
Consider the two trees

t1 =
x

y
and t2 = zx .

Then we have:

t1 ⊕ t2 =
zx

y
t1 ⊗ t2 =

x

yz

zy

z
x

x

zx
y

t∗1 =

x
yx

x
y

y

(t1 ⊗ t2) \ {x} = (t1 ⊗ t2)
∣∣
{y,z} =

yz

zy
�

Given a binding (Γ, e) where we have a TTree describing the calls done
by e, and also one TTree for each expression bound in Γ, how can we
combine that information into one tree describing the behaviour of the
whole binding?

A first attempt might be a function

s : (Var→ TTree)→ TTree→ TTree

defined by

nextx(s t̄ t) :=

{
⊥ if nextx t = ⊥
s t̄ (t′ ⊗ t̄ x) if nextx t = t′,

that traverses the tree t and upon every call interleaves the tree of the
called name, t̄ x, with the remainder of t.

152

4.3 Cardinality analyses

Example
Let t̄ x =

y
, t̄ y = z , t̄ x = and t =

yx . Then

s t̄ t =
zyz

zzy
yx .

�

This is a good start, but it does not cater for thunks, where the first call
behaves differently than later calls. Therefore, we have to tell s which
variables are bound to thunks, and give them special treatment: After
a variable x referring to a thunk is evaluated, we pass on a modified
map where t̄ x = .

Hence I extend the signature to

s : 2Var → (Var→ TTree)→ TTree→ TTree

and the definition is now

nextx(sT t̄ t) :=


⊥ if nextx t = ⊥
sT t̄ (t′ ⊗ t̄ x) if nextx t = t′, x /∈ T
sT (t̄[x 7→]) (t′ ⊗ t̄ x) if nextx t = t′, x ∈ T.

The ability to define this function (relatively) easily is the main advan-
tage of working with trace trees instead of co-call graphs at this stage.

As s is defined in terms of monotone operations, it is itself monotone
in its arguments t̄ and t.

Example
With the same arguments as above, for T = {y} the effect of calling y,
i.e. a call to z, happens only once, and we have

sT t̄ t =
yz

zy
yx .

�

153

4 The safety of Call Arity

We project a TTree to a value of type (Var → Card), as required for a
cardinality analysis, using c : TTree → (Var → Card) defined by

c(t) x :=


⊥, if x does not occur in t
1, if on each path in t, x occurs at most once
∞, otherwise.

From this definition it follows

Lemma 25
c(nextx t) v c(t)− x. �

Specification

A tree cardinality analysis determines for every expression e and arity
α the tree Tα(e) of calls to free variables of e which are performed by
evaluating e with α arguments and using the result in any way. As the
resulting value might be passed to unknown code or stored in a data
structure, we cannot assume anything about how often the resulting
value is used. This justifies the arity parameter: We expect T0(ńx. y) = y∗

but T1(ńx. y) = y.
I write Tᾱ(Γ) for the analysis lifted to bindings, returning ⊥ for vari-

ables not bound in Γ or mapped to ⊥ in ᾱ.
I also need a variant Tα(Γ, e) that, given bindings Γ, an expression e

and an arity α, reports the calls on dom Γ performed by e and Γ with
these bindings in scope.

I can now identify conditions on T that allow to satisfy the specifi-
cations in Definition 11.

Definition 14 (Tree cardinality analysis specification)
I expect the cardinality analysis to agree with the arity analysis on which
variables are called at all:

dom Tα(e) = domAα(e) (T-dom)

dom Tα(Γ, e) = domAα(Γ, e) (Th-dom)

154

4.3 Cardinality analyses

Inequalities for the syntactic constructs:

x∗ ⊗ Tα+1(e) v Tα(e x) (T-App)

(Tα−1(e)) \ {x} v Tα(ńx. e) (T-Lam)

Tα(e[y := x]) v x∗ ⊗ (Tα(e)) \ {y}
(T-subst)

x v Tα(x) (T-Var)

T0(e)⊗ (Tα(et)⊕ Tα(ef)) v Tα(e ? et : ef) (T-If)

(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e))) \ dom Γ v Tα(let Γ in e) (T-Let)

For values, analysed without arguments, the analysis is expected to
return a repeatable tree:

isVal e =⇒ T0(e) is repeatable (T-value)

The specification for Aα(Γ, e) is closely related to (T-Let):

(sthunks Γ (TAα(Γ,e)(Γ)) (Tα(e)))
∣∣
dom Γ v Tα(Γ, e) (Th-s)

And finally, the connection to the arity analysis:

x ∈ thunks Γ, c(Tα(Γ, e)) x = ∞ =⇒ (Aα(Γ, e)) x = 0 (Th-∞-thunk)
�

Safety

Given a tree cardinality analysis, I can define a cardinality analysis in
the sense of the previous section. The definition for Cα(Γ, e) is straight
forward:

Cα(Γ, e) := c(Tα(Γ, e)).

In order to define C(ᾱ,α,α̇)((Γ, e, S)) I need to fold the tree cardinality
analysis over the stack:

Ṫ_([]) := ⊥
Ṫα·α̇((et : ef)·S) := Ṫα̇(S)⊗ (Tα(et)⊕ Tα(ef))

Ṫα̇($x·S) := Ṫα̇(S)⊗ x∗

Ṫα̇(#x·S) := Ṫα̇(S).

155

4 The safety of Call Arity

With this I can define

C(ᾱ,α,α̇)((Γ, e, S)) := c
(
sthunks Γ (Tᾱ(Γ)) (Tα(e)⊗ Ṫα̇(S))

)
,

and set out to prove

Lemma 26
Given a tree cardinality analysis satisfying Definition 14, together with
an arity analysis satisfying Definition 6, the derived cardinality analysis
satisfies Definition 11. �

Proof
The conditions (C-dom) and (Ch-dom) follow directly from (T-dom) and
(Th-dom) with (A-dom) and (Ah-dom).

The conditions (C-cong), (C-not-called) and (C-upd) follow directly
from the definitions of T and Ṫ

We have x∗ v Ṫα̇(S) for $x ∈ S, so (C-args) follows from

[x 7→ ∞] = c(x∗) v c(Ṫα̇(S)) v (C(ᾱ,α,α̇)((Γ, e, S))).

Similar calculations prove (C-call) using (T-Var), (C-App) using (T-App),
(C-Lam) using (T-subst) and (T-Lam), (C-If1) using (T-If).

Condition (C-If2) is where the precision comes from, as we retain the
knowledge that the two code paths are mutually exclusive. The proof is
a direct consequence of t v t⊕ t′.

The variable cases are interesting, as these interact with the heap, and
hence with the s function.

We first show that (C-Var′1) is fulfilled. Abbreviate T := thunks Γ and
note that x /∈ T. We have

C(ᾱ,ᾱ x,α̇)((Γ, e, S))

= c
(
sT (Tᾱ(Γ)) (Tᾱ x(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)) (nextx x⊗ Tᾱ x(e)⊗ Ṫα̇(S))

)
{ as nextx x = }

v c
(
sT (Tᾱ(Γ)) (nextx(x⊗ Ṫα̇(S)))⊗ Tᾱ x(e))

)
{ using (nextx t)⊗ t′ v nextx(t⊗ t′) }

= c
(
nextx(sT (Tᾱ(Γ)) (x⊗ Ṫα̇(S)))

)
{ by the definition of s }

156

4.3 Cardinality analyses

v c
(
sT (Tᾱ(Γ)) (x⊗ Ṫα̇(S))

)
− x { by Lemma 25 }

v c
(
sT (Tᾱ(Γ)) (Tα(x)⊗ Ṫα̇(S))

)
− x { by (T-Var) and s monotone }

= C(ᾱ,α,α̇)((Γ, x, S))− x.

Condition (C-Var1) represents the evaluation of a thunk. The proof is
analogue, using Tᾱ(Γ)[x 7→] = Tᾱ(Γ′) in the step where the definition
of s is unfolded.

For (C-Var2) abbreviate T := thunks Γ = thunks(Γ[x 7→ e]). We know
isVal e, so T0(e) is repeatable, by (T-value). If a repeatable tree t is already
contained in the second argument to s, then we can remove it from the
range of the first argument:

sT (t̄[x 7→ t]) (t⊗ t′) = sT t̄ (t⊗ t′)

Altogether, we show

C(ᾱ,0,α̇)((Γ[x 7→ e], e, S))

= c
(
sT (Tᾱ(Γ[x 7→ e])) (T0(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)[x 7→ Tᾱ x(e)]) (T0(e)⊗ Ṫα̇(S))

)
v c
(
sT (Tᾱ(Γ)[x 7→ T0(e)]) (T0(e)⊗ Ṫα̇(S))

)
= c
(
sT (Tᾱ(Γ)) (T0(e)⊗ Ṫα̇(S))

)
{ by T0(e) repeatable }

= C(ᾱ,0,α̇)((Γ, e, #x·S)).

Proving condition (C-Let) is for the most part a tedious calculation
involving freshness of variables. We use that if the domain of t̄′ is disjoint
from the variables occurring in t̄ (i.e. ∀y. ∀x ∈ t̄ y. t̄′ x =), then

sT (t̄ t t̄′) t = sT t̄ (sT t̄′ t).

Abbreviating T := thunks Γ and T′ := thunks∆, we show:

C(Aα(∆,e)tᾱ,α,α̇)((∆ · Γ, e, S))

= c
(
sT∪T′ (TAα(∆,e)tᾱ(Γ · ∆)) (Tα(e)⊗ Ṫα̇(S))

)
= c
(
sT∪T′ (Tᾱ(Γ)) (sT∪T′ (TAα(∆,e)(∆)) (Tα(e)⊗ Ṫα̇(S)))

)
{ by the above equation }

157

4 The safety of Call Arity

= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e)⊗ Ṫα̇(S)))

)
= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)
{ as dom∆ is fresh with regard to S }

= c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)∣∣
dom∆t

c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e))⊗ Ṫα̇(S))

)
\ dom∆

= c
(
sT′ (TAα(∆,e)(∆)) (Tα(e))

∣∣
dom∆

)
t

c
(
sT (Tᾱ(Γ)) (sT′ (TAα(∆,e)(∆)) (Tα(e)) \ dom∆⊗ Ṫα̇(S))

)
v c
(
Tα(∆, e)

)
t c
(
sT (Tᾱ(Γ)) (Tα(let ∆ in e)⊗ Ṫα̇(S))

)
{ by (Th-s) and (T-Let) }

= Cα(∆, e) t C(ᾱ,α,α̇)((Γ, let ∆ in e, S)).

Finally, (Ah-∞-thunk) follows directly from (Th-∞-thunk). �

4.3.3 Co-call cardinality analysis

The preceding section provides a framework for a cardinality analysis,
but the infinite nature of the TTree data type prevents an implementation
on that level. Therefore, the concrete implementation uses a practically
implementable data type which can serve as an approximation to trace
trees: The co-call graphs introduced in Section 3.2.

We can convert such a graph to a TTree, using the function t : Graph→
TTree given by

paths(t(G)) := {x1 · · · xn | ∀i. xi ∈ dom G ∧ ∀j 6= i. xi—xj ∈ G}.

Conversely, we can approximate a TTree by a Graph, as implemented
by the function g : TTree → Graph where

g(t) :=
⊔
{ġ(ẋ) | ẋ ∈ paths t}

which uses ġ : [Var] → Graph given by

dom ġ(x1 · · · xn) = {x1, . . . , xn}
ġ(x1 · · · xn) := {xi—xj | i 6= j ≤ n}.

158

4.3 Cardinality analyses

The mappings t and g form a monotone Galois connection:

g(t) v G ⇐⇒ t v t(G).

It even is a Galois insertion, as g(t(G)) = G.

Example
For

t =
x

zzy
we have

g(t) = x
y

z
and

t(g(t)) =
x z

zzyz
zzyz

zz
y

which shows that converting from trees to graphs and back loses infor-
mation, in particular about whether something is called twice or more
often, but the resulting tree still contains all the paths of the original
tree. �

Specification

I proceed in the usual scheme, by giving a specification for a safe co-call
cardinality analysis, connecting it to the tree cardinality analysis, and
eventually proving that our implementation fulfils the specification.

A co-call cardinality analysis determines for each expression e and
incoming arity α its co-call graph Gα(e). As before, there is also a variant
that analyses bindings, written Gα(Γ, e). The conditions in the following
definition are obviously designed to connect to Definition 14.

Definition 15 (Co-call cardinality analysis specification)
We want the co-call graph analysis to agree with the arity analysis on
what is called at all:

domGα(e) = domAα(e) (G-dom)

159

4 The safety of Call Arity

As usual, we have inequalities for the syntactic constructs:

Gα+1(e) t ({x} × fv (e x)) v Gα(e x) (G-App)

Gα−1(e) \ {x} v Gα(ńx. e) (G-Lam)

Gα(e[y := x]) \ {x, y} v Gα(e) \ {x, y} (G-subst)

G0(e) t Gα(et) t Gα(ef) t (domA0(e)× (domAα(et) ∪ domAα(ef)))

v Gα(e ? et : ef) (G-If)

Gα(Γ, e) \ dom Γ v Gα(let Γ in e) (G-Let)

isVal e =⇒ (fv e)2 v G0(e) (G-value)

The following conditions concern Gα(Γ, e), which has to cater for the
calls originating in e,

Gα(e) v Gα(Γ, e), (Gh-body)

the calls originating in the right-hand-sides,

(x 7→ e′) ∈ Γ =⇒ GAα(Γ,e) x(e
′) v Gα(Γ, e), (Gh-heap)

and finally the extra edges between what is called from the right-hand-
side of a variable and whatever the variable is called with:

(x 7→ e′) ∈ Γ, isVal(e′) =⇒
(fv e′)× Nx(Ga(γ, e)) v Gα(Γ, e). (Gh-extra)

For thunks, we can be slightly more precise: Only one call to them
matters, so we can ignore a possible edge x—x:

(x 7→ e′) ∈ Γ, ¬isVal(e′) =⇒
(fv e′)× (Nx(Ga(γ, e)) \ {x}) v Gα(Γ, e) (Gh-extra’)

Finally, we need to ensure that the cardinality analysis is actually used
by the arity analysis when dealing with thunks. For recursive bindings,
we never eta-expand thunks:

rec Γ, x ∈ thunks Γ, x ∈ domAα(Γ, e) =⇒
Aα(Γ, e) = 0 (Rec-∞-thunk)

160

4.3 Cardinality analyses

But for a non-recursive thunk, we only have to worry about thunks
which are possibly called multiple times:

x /∈ fv e′, ¬isVal(e′), x—x ∈ Gα(Γ, e) =⇒
Aα([x 7→ e′], e) = 0 (Nonrec-∞-thunk)

�

Safety

From a co-call analysis fulfilling Definition 15 we can derive a tree
cardinality analysis fulfilling Definition 14, using

Tα(e) := t(Gα(e)).

The definition of Tα(Γ, e) differs for non-recursive and recursive bind-
ings.
• For a non-recursive binding Γ = [x 7→ e′] we have Tα(Γ, e) :=

t(Gα(e))
∣∣
dom Γ and

• for recursive Γ we define Tα(Γ, e) := t((domAα(Γ, e))2), i.e. the
bound variables may call each other in any way.

Lemma 27
Given a co-call cardinality analysis satisfying Definition 15, together
with an arity analysis satisfying Definition 6, the derived cardinality
analysis satisfies Definition 14. �

Proof
Most conditions of Definition 14 follow by simple calculation from their
counterpart in Definition 15 using the Galois connection

t v t(G) ⇐⇒ g(t) v G

and identities such as g(t ⊕ t′) = g(t) t g(t′) and g(t ⊗ t′) = g(t) t
g(t′) t (dom t× dom t′).

For (T-Let), we use (G-Let) with the following Lemma 28, instantiated
with T = thunks Γ, t̄ = TAα(Γ,e)(Γ), t = Tα(e) and S = dom Γ. �

161

4 The safety of Call Arity

Lemma 28
Given
• g(t) v G,
• ∀x /∈ S. t̄ x = ⊥,
• ∀x ∈ S. g(t̄ x) v G,
• ∀x ∈ S, x /∈ T. dom (t̄ x)× Nx(G) v G and
• ∀x ∈ S, x ∈ T. dom (t̄ x)× (Nx(G) \ {x}) v G

we have g((sT t̄ t) \ S) v G. �

Intuitively, this lemma describes how we can approximate the trace
tree that is the result of integrating trace trees representing the bound
expressions in a recursive binding with the trace tree describing the calls
from the body. The conditions specify that
• the body is approximated by the graph G,
• the set S encompasses all bound variables,
• the effect of each individual bound trace tree is approximated by

G,
• for a non-thunk x, for every edge x—y ∈ G, there is also an edge

from y to anything that is called by x and
• similarly for a thunk x, but disregarding a possible loop x—x ∈ G.

The absence in G of an edge x—y for x, y ∈ S does not indicate that calls
to x are y are exclusive (they are mutually recursive, so typically both
will be called, many times), but rather that in an infinite unwrapping of
the recursive let, as explained on page 102, the recursion proceeds with
either x or y. Therefore, the inequality in the conclusion of the lemma
disregards variables from S.

Proof
In order to prove g((sT t̄ t) \ S) v G, we have to show that ġ(ẋ \ S) v G
for every path ẋ ∈ paths(sT t̄ t). I write ẋ \ S for the list ẋ with all
elements in S filtered out.

The behaviour of the function s can also be described as follows: In
order to produce the path ẋ ∈ paths(sT t̄ t), s picks a specific path
ẏ ∈ paths t (and disregards t otherwise). Going through each entry x on
ẏ, the function chooses a a specific path from t̄ x and interleaves it into
ẏ after the entry x. This procedure then continues with the interleaved
path, at the position following x.

162

4.3 Cardinality analyses

In order to do a proof by induction, I strengthen the proposition, and
keep track of two sets: The set V of variables not in S that have been
called so far, and the set VT that keeps track of the thunks that have been
called. The assumptions of the strengthened proposition are
• ẋ is a path produced by interleaving the trees from t̄ into ẏ, as

described above,
• ġ(ẏ \VT) v G,
• V × (ẏ \VT) v G,
• V ∩ S = {},
• VT ⊆ S,
• ∀x ∈ VT , t̄ x = ⊥,

and we show not only g(ẋ \ S) v G, but also V × (ẋ \VT) v G.
With V = VT = {}, the assumptions are fulfilled, so by proving this

proposition, we conclude the lemma.
The statement is trivial for ẏ = ẋ = []. Otherwise, ẋ and ẏ are necessar-

ily headed by the same variable, so let ẏ = x · ẏ′ and ẋ = x · ẋ′, where ẋ′

is a path produced by interleaving the trees from t̄′ into an interleaving
of ẏ′ and ż, where ż is a path in the tree t̄ x and t̄′ is t̄ if x /∈ T and t̄[x 7→]
otherwise (cf. the definition of s on page 153).

There are three cases to consider:

• If x refers to a thunk that we have seen before (i.e. x ∈ VT), then
t̄ x is the empty tree. We invoke the inductive hypothesis with the
same V and VT and obtain g(ẋ′ \ S) v G and V × (ẋ′ \ VT) v G.
The assumptions are fulfilled, as x ∈ VT and ż = [], and the
conclusion immediately implies the desired g(ẋ \ S) v G and
V × (ẋ \VT) v G, as x ∈ VT and x ∈ S due to VT ⊆ S.

• Otherwise, if x is a recursive call (i.e. x ∈ S), we again invoke
the inductive hypothesis, this time extending VT by x if x ∈ T.
To establish the assumptions, we first decompose what we have
given:

ġ((x · ẏ′) \VT) = {x} × (ẏ′ \VT) t ġ(ẏ′ \VT).

and

V × ((x · ẏ′) \VT) = V × {x} tV × (ẏ′ \VT).

163

4 The safety of Call Arity

Furthermore, we note that g(ż \VT) v G.

It remains to show that V × (ż \VT) v G. Above decomposition
provides V × {x} v G, so all calls seen so far are adjacent to x in
G, and thus V ⊆ Nx(G) \ {x}. Together with ż ⊆ dom (t̄ x) the
assumption of the lemma provides the desired inequality.

We then obtain g(ẋ′ \ S) v G and V × (ẋ′ \ VT) v G, which,
together with V × {x} v G, implies the desired result.

• The remaining case is that of a call to something not in S, i.e. x /∈ S.
In this case, ż = [], so the above decompositions suffice to establish
the assumptions of the inductive hypothesis. Here, we extend V
with {x} and obtain g(ẋ′ \ S) v G and (V ∪ {x})× (ẋ′ \VT) v G.

This implies the desired result together with V × {x} v G and
{x} × (ẋ′ \ S) v G, which follows from the second conclusion of
the inductive hypothesis due to VT ⊆ S. �

4.3.4 Call Arity, concretely

At last I can give the complete and concrete co-call analysis correspond-
ing to GHC’s Call Arity, and establish its safety via our chain of refine-
ments, simply by checking the conditions in Definition 15. It is a slightly
more concise reformulation of the specification given in Section 3.3.1,
and adjusted to the restricted syntax where application arguments are
always variables.

The arity analysis is:

Aα(x) := [x 7→ α]

Aα(e x) := Aα+1(e) t [x 7→ 0]

Aα(ńx. e) := Aα−1(e) \ {x}
Aα(e ? et : ef) := A0(e) tAα(et) tAα(ef)

Aα(Cb) := ⊥ for b ∈ {t, f}

The analysis of a let expressionAα(let Γ in e) as well as the analysis of a
binding Aα(Γ, e) are defined differently for recursive and non-recursive
bindings.

164

4.3 Cardinality analyses

For a recursive Γ, we have Aα(let Γ in e) := ᾱ \ dom Γ and Aα(Γ, e) :=
ᾱ
∣∣
dom Γ where ᾱ is the least fixed point defined by the equation15

ᾱ = Aᾱ(Γ) tAα(e) t [x 7→ 0 | x ∈ thunks Γ].

For a non-recursive binding Γ = [x 7→ e′] we have Aα(let Γ in e) :=
(Aα′(e′) tAα(e)) \ dom Γ and Aα(Γ, e) := [x 7→ α′] where

α′ :=

{
0 if ¬isVal(e′) and x—x ∈ Gα(e)
Aα(e) x otherwise.

We have domGα(e) = domAα(e) and

Gα(x) := {}
Gα(e x) := Gα+1(e) t ({x} × fv (e x))

G0(ńx. e) := (fv e)2 \ {x}
Gα+1(ńx. e) := Gα(e) \ {x}
Gα(e ? et : ef) := G0(e) t Gα(et) t Gα(ef) t

(domA0(e)× (domAα(et) ∪ domAα(ef)))

Gα(Cb) := {} for b ∈ {t, f}
Gα(let Γ in e) := Gα(Γ, e) \ dom Γ

The analysis result for bindings is different for recursive and non-
recursive bindings and uses the auxiliary function

Gᾱ;G(x 7→ e′) :=

{
(fv(e′))2 if isVal(e′) ∧ x—x ∈ G
Gᾱ x(e′) otherwise,

which calculates the co-calls of an individual binding, adding the extra
edges between multiple invocations of a bound variable, unless it is
bound to a thunk and hence shared.
15 The initial implementation of Call Arity did not include the third term in this equation,

and thunks would erroneously be eta-expanded if they happened to be part of a linearly
recursive bindings. Working towards this formalisation uncovered the bug (see GHC
commit 306d255).

165

4 The safety of Call Arity

For recursive Γ we define Gα(Γ, e) as the least fixed point fulfilling

Gα(Γ, e) = Gα(e) t
⊔

(x 7→e′)∈Γ

GAα(Γ,e);Gα(Γ,e)(x 7→ e′)

t
⊔

(x 7→e′)∈Γ

(fv(e′)× Nx(Gα(Γ, e))).

For a non-recursive Γ = [x 7→ e′], we have

Gα(Γ, e) = Gα(e) t GAα(Γ,e);Gα(e)(x 7→ e′)

t
{
fv(e′)× (Nx(Gα(e)) \ {x}) if ¬isVal(e′)
fv(e′)× Nx(Gα(e)) if isVal(e′).

Theorem 5
Call Arity is safe (in the sense of Definition 5).

Proof
By straightforward calculation (and simple induction for (G-subst)), we
can show that the analyses fulfil Definitions 6 and 15. So by Lemmas 27,
26 and 23 and Corollary 19, Call Arity is safe. �

4.4 The Isabelle formalisation

On their own, the proofs presented in the previous sections are involved,
but otherwise rather standard. What sets them apart from similar work
is that these proofs have been carried out in the interactive theorem
prover Isabelle [NPW02]. This provides a level of assurance that is hard
to reach using pen-and-paper-proofs.

4.4.1 Size and effort

But it also greatly increases the effort involved in obtaining a result like
Theorem 5. The Isabelle development corresponding to this chapter,
including the definitions of the syntax and the semantics (but excluding
unrelated results from Chapter 2, such as correctness and adequacy of

166

4.4 The Isabelle formalisation

the semantics), contains roughly 12,000 lines of code with 1,200 lemmas
(many small, some large) in 75 theories, created over the course of 9
months [Bre15d]. Much of the complexity is owed to the problem of
bindings and to the handling of monotonicity and continuity of the
analysis. See Section 2.6 for more information on the formalisation,
especially how using Nominal logic, as discussed (Sections 1.6 and 2.6.1)
and the HOLCF package (Section 1.7.3) has helped here.

So while the actual result shown here might not have warranted
that effort on its own – after all, performance regressions due to bugs
in the Call Arity analysis do not have very serious consequences – it
lays ground towards formalising more and more parts of the core data
structures and algorithms in our compilers.

4.4.2 Structure

The separation into individual theories (Isabelle’s equivalent to Haskell’s
modules) as well as the use of locales ([Bal14], Isabelle’s approximation to
a module system) helps to gain insight into the structure of an otherwise
very large proof, by ensuring a separation of concerns. For example,
the proof of JT0(e)K = JeK has only the conditions from Definition 6
available, which shows that the cardinality analysis is irrelevant for
functional correctness.

4.4.3 The trace tree type implementation

Isabelle/HOL is a logic of total functions, and it is not a surprise that it
has good support for inductive data types via the datatype command,
where each element of the type has a finite size. But the type of trace
trees introduced in Section 4.3.2 is not of that kind: To model program
behaviour with recursion I need infinite trees as well.

Fortunately, it is possible to define such types in Isabelle/HOL, and
there are actually a few options available:

• The HOLCF package can construct domains with an infinitely deep
structure from a domain equation like

TTree = Var→ TTree⊥

167

4 The safety of Call Arity

which can be implemented as

domain (′a::countable) tree ′= Node (lazy next ′ :: ′a discr→ ′a tree ′)
type_synonym ′a tree = ′a discr→ ′a tree ′

• The codatatype command provides support for co-inductive data
types, which can create the appropriate type directly:

codatatype (lset: ′a) tree = Node (nxt : ′a⇒ ′a tree option)

• The type can be constructed “by hand” using the plain typedef
command.

I have experimented with all three variants and found that the first two
approaches would not provide me with the right tools (e.g. definition
tools, induction principles) that allow me to efficiently define the re-
quired operation and prove the required lemmas, so I turned to the “by
hand” construction.

To that end, I defined the notion of sets of lists where for every list,
all its prefixes are in the set as well. These are the downward-closed
sets under the prefix-order on lists:

TTree.thydefinition downset :: ′a list set ⇒ bool where
downset xss = (∀ x n. x ∈ xss −→ take n x ∈ xss)

Any non-empty downward-closed set is then such a trace tree:

typedef ′a ttree = {xss :: ′a list set . [] ∈ xss ∧ downset xss} by auto

A typedef is only admissible if the given set is not empty; this is
the proof obligation solved automatically using by auto; the set {[]},
corresponding to the tree , is one possible witness of that.

In Section 4.3.2 I describe two concrete interpretation of trace trees:
As sets of traces and as automata with labelled transitions. The actual
type definition is based on the first, so the function paths returns nothing
but the representation of a tree based on that type definition. Using the

168

4.4 The Isabelle formalisation

helpful machinery of the lifting package [HK13], this function is thus
defined to be the identity function, once the abstraction is removed:

lift_definition paths :: ′a ttree⇒ ′a list set is (λ x. x).

The automata view is realised by the two functions possible and nxt
which indicate what labels are present on the root’s edges, and the
corresponding child node.

lift_definition possible :: ′a ttree ⇒ ′a ⇒ bool
is λ xss x. ∃ xs. x#xs ∈ xss.

lift_definition nxt :: ′a ttree ⇒ ′a ⇒ ′a ttree
is λ xss x. insert [] {xs | xs. x#xs ∈ xss}
by (auto simp add: downset_def take_Suc_Cons[symmetric] simp del: take_Suc_Cons)

In order to make nxt a total function I add the empty list to the result,
which only matters if there was no edge with the requested label in the
given tree. The proof obligation following the definition ensures that the
result of nxt is a valid tree, i.e. non-empty and downward closed.

The important operations on trees,⊕ and⊗, are defined in terms of set
union and list interleavings. As the Isabelle theory for list interleavings
already uses the latter symbol, I use ⊕⊕ resp. ⊗⊗ in my formalisation
for the operations on trees:

lift_definition either :: ′a ttree⇒ ′a ttree⇒ ′a ttree (infixl ⊕⊕ 80)
is op ∪
by (auto simp add: downset_def)

lift_definition both :: ′a ttree⇒ ′a ttree⇒ ′a ttree (infixl ⊗⊗ 86)
is λ xss yss .

⋃ {xs ⊗ ys | xs ys. xs ∈ xss ∧ ys ∈ yss}
by (force simp: ex_ex_eq_hint dest: interleave_butlast)

Further operations include, for example, the function without that is
defined in terms of filter:

lift_definition without :: ′a ⇒ ′a ttree ⇒ ′a ttree
is λ x xss. filter (λ x ′. x ′ 6= x) ‘ xss
by (auto intro: downset_filter)(metis filter.simps(1) imageI)

169

4 The safety of Call Arity

Operations like this and the similar ttree_restr are partly the reason
why using the existing infrastructure for co-inductive definitions failed,
as filtering is a notoriously difficult problem here: The paper [LH14]
discusses that problem in depth.

Most of the code in the Isabelle theory on trace trees is concerned with
the s function (see page 153), which is defined as

nextx(sT t̄ t) :=


⊥ if nextx t = ⊥
sT t̄ (t′ ⊗ t̄ x) if nextx t = t′, x /∈ T
sT (t̄[x 7→]) (t′ ⊗ t̄ x) if nextx t = t′, x ∈ T.

In the Isabelle formalisation, I first define a related predicate on traces
(substitute’), by recursion on the trace, as I need to prove that predicate
to be downward-closed before I can lift it to form the real substitute on
trace trees:

definition f_nxt :: (′a⇒ ′a ttree)⇒ ′a set⇒ ′a⇒ (′a⇒ ′a ttree)
where f_nxt f T x = (if x ∈ T then f (x:=empty) else f)

fun substitute ′ :: (′a⇒ ′a ttree)⇒ ′a set⇒ ′a ttree⇒ ′a list⇒ bool where
substitute ′_Nil: substitute ′ f T t [] ←→ True
| substitute ′_Cons: substitute ′ f T t (x#xs) ←→

possible t x ∧ substitute ′ (f_nxt f T x) T (nxt t x ⊗⊗ f x) xs

lift_definition substitute :: (′a⇒ ′a ttree)⇒ ′a set⇒ ′a ttree⇒ ′a ttree
is λ f T t. Collect (substitute ′ f T t)
by (simp add: downset_substitute)

Depending on the proposition that one wants to show, a different
definition of substitute provides a more useful induction scheme. In this
alternative definition, it is emphasised that every path in sT t̄ t comes
from a specific path in t. I formalised this using the following inductive
definition and equivalence proof:

inductive substitute ′ ′ :: (′a⇒ ′a ttree)⇒ ′a set⇒ ′a list⇒ ′a list⇒ bool where
substitute ′ ′_Nil: substitute ′ ′ f T [] []
| substitute ′ ′_Cons:

170

4.5 The formalisation gap

zs ∈ paths (f x) =⇒ xs ′ ∈ interleave xs zs =⇒ substitute ′ ′ (f_nxt f T x) T xs ′ ys
=⇒ substitute ′ ′ f T (x#xs) (x#ys)

lemma substitute_substitute ′ ′:
xs ∈ paths (substitute f T t)←→ (∃ xs ′ ∈ paths t. substitute ′ ′ f T xs ′ xs)

This alternative definition is used in one direction of the following
lemma, which states that sT t̄ t

∣∣
S = sT t̄ (t

∣∣
S) holds if all of t̄, i.e. both its

domain as well as all variables in its range, are in the set S.

lemma ttree_rest_substitute2:
assumes ∀ x. carrier (f x) ⊆ S
assumes const_on f (−S) empty
shows ttree_restr S (substitute f T t) = substitute f T (ttree_restr S t)

This lemma, which I use implicitly without much ado in the proof on
page 158, is a good example how much intuitivity and proof difficulty
can differ:

It is quite obviously true, as s only acts on and adds edges with labels
in S, which is completely ignored by _

∣∣
S.

Nevertheless, the proof consists of more than 120 lines of Isar, not
counting supporting definitions such as the alternative definition of s.
The complexity is owed to the fact that on both sides of the equality, we
have a filtered trees. Induction over a path of filtered tree is not very
useful, as in one step of the induction, still many (filtered) edges can
be traversed by s. So I need to get hold of the original, unfiltered tree,
which in a way hides behind an existential quantifier, and working in
Isabelle with such existentially quantified statement tends to require
more explicit steps.

This also confirms the observation that combining filter-like operations
and co-inductive definitions is tricky.

4.5 The formalisation gap

Every formalisation – whether hand-written or machine-checked – has
a formalisation gap, i.e. a difference to the formalised artefact that is

171

4 The safety of Call Arity

not (and often cannot) be formally bridged. Despite the effort that went
into this formalisation, the gap is not very narrow, and has been wide
enough to fall into.

4.5.1 Core vs. my syntax

The most obvious difference between formalisation and reality is the
syntax of the language: GHC’s Core (Fig. 2) is defined with 15 construc-
tors, while the small lambda calculus that I use to represent Core has
only six (Fig. 5 plus the two in Section 2.4.2). I argue that it is still a rea-
sonable representation of Core: As I explain in Section 3.4, the additional
syntactic constructs are irrelevant to our analysis: It either returns the
trivial result (literals, types, coercions), or transparently looks through
them (casts, ticks, type abstraction and applications).

A similar difference is that Core is typed. Nevertheless it is ok not
to include types in the formalisation, as the Call Arity analysis ignores
them anyways. One might now worry that the transformation might
break type safety. This does not happen, as the type-ignorant Call Arity
code does not actually transform the code: It merely annotates it, and
the existing general-purpose simplifier then actually eta-expands it, if
the types allow this. If they do not (which may be the case with type
families), it will simply refuse to do so. This does not affect the safety
results, as in my proofs I always only require a lower bound on the
analysis result (i.e. an upper bound on the reported arity), so being less
aggressive is always safe.

4.5.2 Core vs. my semantics

As mentioned in Section 1.4.1, there is no official operational semantics
for GHC Core that captures its evaluation behaviour, besides the actual
implementation. It is folklore and my own understanding of GHC inner
workings that justify that I use Launchbury’s semantics to model Core’s
evaluation behaviour.

This is not without pitfalls: Core allows arbitrary expressions as ar-
guments, while my syntax follows Launchbury and restricts that to

172

4.5 The formalisation gap

variables. The transformation is rather simple: Just replace e1 e2 with
let z = e2 in e1 z – this is essentially the first step of the Core-to-STG
transformation as performed by GHC. But this is not the whole story:
If the argument already is a variable, i.e. e1 x, then no extra let-binding
is introduced.

This subtly changes the evaluation behaviour: While the evaluation
of e1 (x y) calls x at most once, the evaluation of e1 x can call x multiple
times. Therefore, the equation for Gα(e1 e2) in Fig. 12 has two cases.

Originally, the Call Arity code did not take that into account and
would return a wrong result in such instances. Interestingly, this could
not be observed: As the argument of an application e1 x is always
analysed with an incoming arity of 0, this would thus be the call arity of
x, and no eta-expansion would happen. Furthermore, when concluding
the analysis of the let-expression where x is bound, αx is definitely 0
and then, according to the equations in Fig. 13 resp. Fig. 14, it does not
matter whether x is called multiple times.

It would make a noticeable difference if the cardinality result is to be
used elsewhere as well, e.g. to avoid the updating of thunks that are
used at most once anyways (Section 3.7.2): Preliminary testing confirms
that this leads to a huge increase of allocations and program run time
if this corner case had not been taken care of.

In order to prove such update-avoidance based on my (or any) analysis
to be correct, one could use a semantics that models these update flags
explicitly. In [PB10] Pirog & Biernacki describe a big-step semantics for
STG which is operationally very close to the GHC runtime, as from it
they derive – formally verified(!) – a virtual machine equivalent to the
STG machine (cf. Section 1.4.3).

But as Call Arity is a Core-to-Core analysis, this clearly shows that
there is demand for a precise formal semantics for GHC’s Core with
enough detail to describe its evaluation and sharing behaviour. It would
help to avoid such mistakes and can serve as a reference for developers
coming up and implementing Core-to-Core transformations and other
parts of the compiler.

173

4 The safety of Call Arity

4.5.3 Core’s annotations

Identifiers in GHC’s core are annotated with a wealth of additional
information – inlining information, occurrence information, strictness
signatures, demand information. As later phases rely on these informa-
tion, they have to be considered part of the language, and should be
included in a formal semantics.

This actually caused a nasty bug16 that appeared in the third release
candidate of GHC 7.10. The symptoms were weird: The program would
skip over a call to error and simply carry on with the rest of the code.
With Call Arity disabled, nothing surprising happened and the exception
was raised as expression. What went wrong?

It boiled down to a function

f :: a → b
f x = error ". . . "

which the strictness analyser annotates with <B,A>b, indicating that once
f is called with one argument, the result is definitely bottom.

In the code at hand, every call to f passes two arguments, i.e. case f
x y of {. . . }. Therefore, Call Arity determines f’s external arity to be 2,
and changes the definition to

f x y = error ". . . " y

The strictness annotation on f, however, is still present, allowing the
simplifier to change the code that contains the call to f to case f x of {},
as passing one argument is enough to cause the exception to be raised.
It also removes all alternatives from the case, as the control flow will
not return.

On their own, each transformation is correct; together, havoc is created:
Due to the eta-expansion, the evaluation of f x does not raise an exception.
Because the case expression has no alternatives any more, the execution
of the final program continues at some other, undefined part of the
program.

One way to fix this would be to completely remove annotations that
might no longer be true after eta-expanding a function definition, losing

16 https://ghc.haskell.org/trac/ghc/ticket/10176

174

https://ghc.haskell.org/trac/ghc/ticket/10176

4.5 The formalisation gap

the benefit that these annotations provide. The actual fix was more
careful and capped the reported arity at the number of arguments with
which, according to the strictness signature, the function is definitely
bottom.

4.5.4 Implementation vs. formalisation

Clearly I have formalised and verified the algorithm behind Call Arity,
but not the implementation. For example, the Isabelle code simply uses
fix to calculate the least fixedpoint during the analysis of a recursive let,
where the implementation has to explicitly iterate the analysis result,
starting from bottom and stopping when a fixed point is reached. Termi-
nation of this implementation is not handled formally, and neither the
correctness of the implementation with regard to its formal description
here or in the Isabelle theories.

I currently do not see a practical way to do so: There are a few Haskell-
specific formal methods, e.g. refinement types in the form of Liquid
Haskell [VSJVP14], but they are not powerful enough to do such a full-
fledged correctness proof with regard to a formal specification. Another
approach would be to employ Isabelle to verify the implementation: As
Haftmann writes [Haf10], this requires either a conversion of the Haskell
implementation into Isabelle using the tool Haskabelle or to go the other
way and using Isabelle’s code generation features [Haf09] to produce
the implementation from the Isabelle definition. Either direction would
require formalising large parts of the existing GHC codebase itself – a
daunting prospect.

Furthermore, GHC works with Haskell code that is structured in mod-
ules and packages; this naturally affects the implementation, which
will, for example, not collect arity and co-call information for external
identifiers, as they cannot be used anyways (see Section 3.4.1). This
implementation short-cut is ignored here.

175

4 The safety of Call Arity

4.5.5 Performance and safety in the larger context

Call Arity is but one transformation in a large number of analyses and
transformations performed by GHC, and the safety result established
in this chapter does not immediately carry over to the whole thing.
It is quite possible that a subsequent transformation works better on
the original code e than on the transformed code T0(e), and that this
difference outweighs the improvement due to Call Arity. In that sense,
the safety theorem is not composable.

The property that I would like to be able to assume about the other
transformations is monotonicity: If e2 is better than e1 before the transfor-
mation, then the transformed e2 is better than the transformed e1, where
“better” refers to the abstract performance measure used – in my case,
the number of allocations. Then it would follow from my safety theorem
that the insertion of Call Arity in the sequence of transformations will
not make the end result perform worse.

In practice, this assumption is certainly “somewhat true”, i.e. holds in
common cases, as also shown by the empirical results. But it is unlikely
true in a complete and rigorous sense, i.e. I expect that one can construct
corner cases where it does not hold.

Finally, my formal notion of performance is of course just an approxi-
mation for real performance, justified by little more than the empirically
observed good correlation between allocations and execution time. For-
mally capturing the actual runtime of a program on modern hardware
with multiple cores, long instruction pipelines, branch prediction and
complex caches is currently way out of reach.

4.6 Related work

This work connects arity and cardinality analyses with operational safety
properties, using an interactive theorem prover to verify its claims; as
such this is a first.

However, this is not the first compiler transformation proven cor-
rect in an interactive theorem prover. After all there is CompCert (e.g.

176

4.6 Related work

[Ler06; Ler12]), a complete verified optimising compiler for C imple-
mented in Coq. Furthermore, a verified Java to Java bytecode compiler
[Loc10] was written using Isabelle’s code generation facilities, and the
CakeML project has produced, among other things, a verified compiler
from CakeML to CakeML bytecode, implemented in the HOL4 theorem
prover [KMNO14]. The Vellvm project provides formal semantics for
LLVM’s intermediate representation and uses it for formal verification of
compiler transformations [ZNMZ13]. These projects address functional
correctness, though, and not (yet) performance.

Using a resource aware program logic for a subset of Java bytecode,
which they have implemented in Isabelle, Aspinall, Beringer and Momi-
gliano validate local optimisations [ABM07] to be indeed optimisations
with regard to a variety of resource algebras. Following the precedent
set by transformation validation, in this work the safety of the trans-
formation is not proved once and for all, but rather for every conrete
program a proof is constructed. The Isabelle formalisations of the proofs
seem to be lost.

In the realm of functional programming languages, a number of formal
treatments of compiler transformations exist, e.g. verification of the
CPS transformation in Coq (e.g. [Chl10; DL07]), Twelf (e.g. [Tia06]) or
Isabelle (e.g. [MO03]). As their focus lies on finding proper techniques
for handling naming, their semantics do not express heap usage and
sharing.

An approach that necessarly produces safe program transformations
are generated transformations: Here, a large number of possible pro-
gram transformations of a specific form are mechanically enumerated
and checked if they are both semantics preserving and performance im-
proving; these checks often build on SMT solvers. The selected concrete
transformations are then safe by construction. Examples of this line of
research include [JNR02], [BA06] and [Buc15].

Sand’s improvement theory [San92] provides a general, inequational alge-
bra to describe the effect of program transformations on performance. Its
notion of improvement is similar to my notion of safety, while the more
general notion of weak improvement allows performance regressions up

177

4 The safety of Call Arity

178

to a constant factor. This theory was adapted for lazy languages, both
for improvement of time [MS99] and space [GS99; GS01].

Recently, Hackett and Hutten [HH14] took up on Sands’ work and
built a general framework to prove worker/wrapper transformations time
improving. And while neither that nor Sands’s work have yet been
machine-checked, at least the semantic correctness of Hutton’s worker/
wrapper framework has been verified using Isabelle [Gam09].

Could I have built my results on theirs, especially as [HH14] uses al-
most the same abstract machine? Indeed, eta-expansion can be phrased
as an instance of the worker/wrapper transformation, with abstraction
and representation contexts Abs = [] and Rep = (ńz1 . . . zn. ([] z1 . . . zn)).
Unfortunately, the assumptions of the worker/wrapper improvement
theorem are not satisfied, and this is to be expected: Sands’ notion of
improvement – and hence Hackett and Hutton’s theorems – guaran-
tee improvement in all contexts, while in my case the eta-expansion is
justified by an analysis of the actual context, and is generally unsafe
in other contexts.

So in the current form, improvement theory is tailored to local transfor-
mations and, as Sands points out in [GS01], would require the introduc-
tion of context information to apply to whole-program transformations
such as Call Arity. Such a grand unified improvement theory for call-by-
need would be a tremendously useful thing to have.

Excuse me, but real programmers
use butterflies.

Randall Munroe, xkcd #378

CHAPTER 5

Conclusion
In this work, I have spanned the arc from down-to-earth compiler trans-
formations over formal semantics to machine-verified proofs of opera-
tional properties of the compiler transformation.

By introducing the Call Arity analysis into the Haskell compiler GHC, I
made it practically possible to let an important class of list-consuming
and -processing functions take part in the list fusion program transfor-
mation, which is an important mechanism to make idiomatic Haskell
code perform well. This solves a long-standing open issue.

My key observation was that in the context of a lazy programming
language, a good arity analysis requires the help of a precise cardinality
analysis, and my key contribution is the novel cardinality analysis based
on the notion of co-call graphs, which allows the compiler to get precise
information about how often a variable is used, even if the call occurs
from within a recursive function.

Empirical measurements show that introducing the analysis improves
the performance of some programs in the standard benchmark suite. Fur-
thermore, changing the definitions of list consumers with accumulators
to now take part in list fusion provides a more significant performance
boost to a number of existing programs, and a huge improvement to
some programs. Thus it now allows performance-aware programmers
to write more high-level code, instead of manually transforming their

179

http://xkcd.com/378

5 Conclusion

code into a less idiomatic form to make up for the compiler’s previous
inability to produce good code in these situations.

One can consider Call Arity to be a whole-program analysis, given
that it works best if all occurrences of a function are known. I have
shown that a compiler employing separate compilation can still make
good use of such a transformation, as inlining in some cases gives the
analysis the chance to see all use-sites of a function’s definition.

To pave the way to a formal treatment of such analyses and transforma-
tions of lazy functional programs, I created a formalisation of Launch-
bury’s natural semantics, of Sestoft’s mark-1 abstract machine and of
related denotational semantics in the interactive theorem prover Isabelle.
These reusable artefacts extend the growing library of formalisations
and lower the barrier of entry for formalising further research on pro-
gramming languages in a machine-checked setting.

The formalisation contains a proof of the adequacy of Launchbury’s
natural semantics with regard to a standard denotational semantics. The
original paper only sketches this proof, and the sketch has so far resisted
attempts to complete it with rigour. By slightly deviating from the path
outlined in the proof sketch, I found a more elegant and more direct
proof of adequacy, which is also machine-checked. This does not shake
the foundations a large swathes of research, as the adequacy theorem
holds as expected, but it fortifies them instead.

My formalisation builds on relatively new mechanisms for dealing
with names and binders in Isabelle, namely the Isabelle package Nom-
inal2, and constitutes one of the largest developments using this tech-
nology. It is also the first to combine it with domain theory in the form
of the HOLCF package.

Finally, I used these formalised semantics to model the Call Arity analy-
sis and transformation and proved not only functional correctness, but
also – and especially – safety: The performance of the program is not
reduced by applying the Call Arity transformation.

I chose to measure performance by counting the number of dynamic
allocations, and I explain why this measure is suitable to ensure that the

180

5 Conclusion

Call Arity analysis does not go wrong, and that it is a good compromise
between formal tractability and “real” performance.

I introduced the notion of trace trees as a suitable abstract type to
think and reason about cardinality analyses. My proof is modularised
using Isabelle’s locales, making it possible to re-use just parts of it. This
should make similar formalisation endeavours, such as a safety proof of
the other arity and cardinality related analyses in GHC, more tractable.

As with most formalisation attempts, by pursuing it I have improved
the understanding of how and why the analysis works, sharpened its
specification and rooted out bugs that the conventional test suite did
not find.

Operational properties of compiler transformations, such as safety,
are rarely investigated on a formal level, especially not with the rigour
provided by a theorem prover. I have demonstrated that such a feat
is possible, with an effort that may be justified in certain high-stake
use cases.

There are limits to the applicability of my safety theorem, as Call Arity
is but one step in a large sequence of other analyses and transformations
performed by the compiler. Therefore, the no-regression result does
not transfer to the complete compiler in complete universality: For
example, if subsequent transformations were not monotonous, then the
introduction of Call Arity could have an overall negative effect on some
programs. I elaborate on this and other aspects of the “formalisation
gap” immanent in such formal work.

To overcome some of the formalisation gap, it would be desirable to
formalise GHC’s Core in Isabelle. Using Isabelle’s code generation to
Haskell and GHC’s plugin architecture, even verified implementations of
Core-to-Core transformations in GHC would appear to be within reach.
This would be a milestone on the way to formally verified compilation
of Real-World-Haskell.

All in all, this thesis exhibits an approach to the design and development
of compiler transformations that is supported by formal methods. I hope
that it will inspire more researchers in this field to dare to not only test
their claims, but actually prove them, and to even do that with the rigour
provided by machine-checked proofs.

181

Honk iff you love formal logic.

Randall Munroe, xkcd #1033

APPENDIX A

Formal definitions and
main theorems

Polemically speaking, formal proofs are irrelevant – only their existence
matters. Once a proposition has been proved, and the proof has been
checked by the theorem prover, this is all that matters to a reader inter-
ested in just the assurance that the proof is fine.

The same cannot be said for definitions and theorems: The machine
cannot check whether these really state what the author claims them to
state! Therefore, this appendix reproduces the Isabelle formulation of
the main theorems of this thesis, together with all definitions required
to understand them.

The intention is to enable the reader to check the formal results pre-
cisely, without reaching out for the actual Isabelle sources. Naturally,
this does not protect against malice on the side of the author. To rule that
out, you’d not only have to process the Isabelle sources yourself, but also
verify each line of code for tricks such as introducing new axioms, using
other unchecked commands or messing with the parser and printer to
obtain misleading results. There is a certain level of assurance that this
is not the case, as my work has been accepted in the Archive of Formal
Proofs [Bre13; Bre15d].

183

http://xkcd.com/1033

A Formal definitions and main theorems

The listings reproduce the Isabelle code as typed, and hence do not
benefit from Isabelle’s pretty-printing abilities; the name of the Isabelle
theory file that contains the code is printed next to the listing, unless
the previous listing is from the same file.

For a few functions, not the actual, technical definition is given here,
but rather a proposition involving the function that completely describes
it. In these cases, the definition that one intuitively wants is not accepted
by the definitory command (e.g. using definition to define a function
in HOLCF’s type of continuous functions) or the proof obligations pro-
duced by such a command are hard to discharge, and a different formu-
lation is easier to work with, and can later be shown to be equivalent
to the desired formulation (e.g. with nominal_function’s equivariance
obligations). Also, in the cases where I use locales to abstract over sim-
ilar definitions, reproducing the locale interface, the abstract function
definition and the actual instantiation of the locale would obscure the
view, so I describe the resulting function as if I had defined it directly.

In the end, in Isabelle/HOL, it does not matter whether a function
is define with one set of equations or another: As long as they fully
describe the function (i.e. if they are exhaustive and terminating), the
resulting constant is identical for all purposes.

A.1 Terms

The definition of the type of terms requires that the type of variables are
defined first. In order to use the Nominal machinery, I need to declare
that type using the atom_decl command. To us, the resulting type is
abstract, and all that we know about it is that it is countably infinite:

Vars.thyatom_decl var

Based on that, I define our type of lambda expressions is defined as
follows. See Section 2.6.1 for an explanation of this construction:

Terms.thynominal_datatype exp =
Var var

184

A.1 Terms

| App exp var
| LetA as::assn body::exp binds bn as in body as
| Lam x::var body::exp binds x in body (Lam [_]. _ [100, 100] 100)
| Bool bool
| IfThenElse exp exp exp (((_)/ ? (_)/ : (_)) [0, 0, 10] 10)
and assn =

ANil | ACons var exp assn
binder

bn :: assn ⇒ atom list
where bn ANil = [] | bn (ACons x t as) = (atom x) # (bn as)

The function atom is provided by the Nominal package. It embeds
our type var into the type atom encompassing all possible name types,
but as we use only one such type in our formalisation, one can assume
var and atom to be isomorphic.

Only lambda abstractions and Booleans are considered to be values,
as characterised by the following function:

nominal_function isVal :: exp ⇒ bool where
isVal (Var x) = False |
isVal (Lam [x]. e) = True |
isVal (App e x) = False |
isVal (Let as e) = False |
isVal (Bool b) = True |
isVal (scrut ? e1 : e2) = False

The type heap that occurs in some of the listing is but a type abbre-
viation:

type_synonym heap = (var × exp) list

The domain of such a heap is the set of variables that are bound to
some expression:

AList-Utils.thydefinition domA
where domA h = fst ‘ set h

As explained in Section 2.6.1, the type assn is but a work-around, and
we’d really like the Let constructor to have such an heap as the parameter.

185

A Formal definitions and main theorems

Therefore, I define a conversion function and define Let in terms of that;
from then on, LetA is not used:

Terms.thyfun heapToAssn :: heap ⇒ assn
where heapToAssn [] = ANil
| heapToAssn ((v,e)#Γ) = ACons v e (heapToAssn Γ)

definition Let :: heap ⇒ exp ⇒ exp
where Let Γ e = LetA (heapToAssn Γ) e

We will use substitution of one variable for another, in variables,
expressions and heaps. For variables, this is easily defined:

Substitution.thyfun
subst_var :: var⇒ var⇒ var⇒ var (_[_::v=_] [1000,100,100] 1000)

where x[y ::v= z] = (if x = y then z else x)

For expressions and heaps, due to them being mutually recursive,
the definition is more involved. In particular, I had to jump through
a few hoops to be able to discharge the proof obligations produced by
nominal_function; the complex default and invariant annotations were
required for that:

nominal_function (default case_sum (λx. Inl undefined) (λx. Inr undefined),
invariant λ a r . (∀ Γ y z . ((a = Inr (Γ, y, z) ∧ atom ‘ domA Γ]∗ (y, z))

−→ map (λx . atom (fst x)) (Sum_Type.projr r) = map (λx . atom (fst x)) Γ)))
subst :: exp⇒ var⇒ var⇒ exp (_[_::=_] [1000,100,100] 1000)

and
subst_heap :: heap⇒ var⇒ var⇒ heap (_[_::h=_] [1000,100,100] 1000)

where
(Var x)[y ::= z] = Var (x[y ::v= z])
| (App e v)[y ::= z] = App (e[y ::= z]) (v[y ::v= z])
| atom ‘ domA Γ]∗ (y,z) =⇒

(Let Γ body)[y ::= z] = Let (Γ[y ::h= z]) (body[y ::= z])
| atom x] (y,z) =⇒ (Lam [x].e)[y ::= z] = Lam [x].(e[y::=z])
| (Bool b)[y ::= z] = Bool b
| (scrut ? e1 : e2)[y ::= z] = (scrut[y ::= z] ? e1[y ::= z] : e2[y ::= z])
| [][y ::h= z] = []
| ((v,e)# Γ)[y ::h= z] = (v, e[y ::= z])# (Γ[y ::h= z])

186

A.2 Semantics

A.2 Semantics

A.2.1 Natural semantics

Launchbury’s natural semantics is defined as an inductive predicate:

Launchbury.thyinductive
reds :: heap⇒ exp⇒ var list⇒ heap⇒ exp⇒ bool
(_ : _ ⇓_ _ : _ [50,50,50,50] 50)

where
Lambda:

Γ : (Lam [x]. e) ⇓L Γ : (Lam [x]. e)
| Application: [[

atom y] (Γ,e,x,L,∆,Θ,z) ;
Γ : e ⇓L ∆ : (Lam [y]. e ′);
∆ : e ′[y ::= x] ⇓L Θ : z

]] =⇒
Γ : App e x ⇓L Θ : z
| Variable: [[

map_of Γ x = Some e; delete x Γ : e ⇓x#L ∆ : z
]] =⇒

Γ : Var x ⇓L (x, z) # ∆ : z
| Let: [[

atom ‘ domA ∆]∗ (Γ, L);
∆ @ Γ : body ⇓L Θ : z

]] =⇒
Γ : Let ∆ body ⇓L Θ : z
| Bool:

Γ : Bool b ⇓L Γ : Bool b
| IfThenElse: [[

Γ : scrut ⇓L ∆ : (Bool b);
∆ : (if b then e1 else e2) ⇓L Θ : z

]] =⇒
Γ : (scrut ? e1 : e2) ⇓L Θ : z

The denotational semantics maps expressions to a denotational do-
main, which is defined using the HOLCF machinery:

187

A Formal definitions and main theorems

Value.thydomain Value = Fn (lazy Value→ Value) | B (lazy bool discr)

fixrec Fn_project :: Value → Value → Value
where Fn_project·(Fn·f) = f

abbreviation Fn_project_abbr (infix ↓Fn 55)
where f ↓Fn v ≡ Fn_project·f ·v

A.2.2 Small-step semantics

Sestoft’s mark-1 abstract machine is defined via the inductive command,
which is convenient even if there is no recursion. I also introduce some
nicer syntax for the transitive reflexive closure.

Sestoft.thyinductive step :: conf ⇒ conf ⇒ bool (infix⇒ 50) where
app1: (Γ, App e x, S) ⇒ (Γ, e , Arg x # S)
| app2: (Γ, Lam [y]. e, Arg x # S) ⇒ (Γ, e[y ::= x] , S)
| var1: map_of Γ x = Some e =⇒ (Γ, Var x, S)⇒ (delete x Γ, e , Upd x # S)
| var2: x /∈ domA Γ =⇒ isVal e =⇒ (Γ, e, Upd x # S)⇒ ((x,e)# Γ, e , S)
| let1: atom ‘ domA ∆]∗ Γ =⇒ atom ‘ domA ∆]∗ S

=⇒ (Γ, Let ∆ e, S) ⇒ (∆@Γ, e , S)
| if 1: (Γ, scrut ? e1 : e2, S) ⇒ (Γ, scrut, Alts e1 e2 # S)
| if 2: (Γ, Bool b, Alts e1 e2 # S)⇒ (Γ, if b then e1 else e2, S)

abbreviation steps (infix⇒∗ 50) where steps ≡ step∗∗

The type conf in the signature of step is also but a type synonym:

SestoftConf.thytype_synonym conf = (heap × exp × stack)

A.2.3 Denotational semantics

The denotational semantics is defined by instantiating a more abstract lo-
cale, as explained in Section 2.6.3. The following equations fully describe
the result, though.

188

A.2 Semantics

Denotational.thyabbreviation
ESem_syn ′ ′ :: exp⇒ (var => Value)⇒ Value ([[_]]_ [60,60] 60)
where [[e]]$ ≡ ESem e · $

lemma ESem_simps:
[[Lam [x]. e]]$ = Fn·(Λ v. [[e]]$(x := v))

[[App e x]]$ = [[e]]$ ↓Fn $ x
[[Var x]]$ = $ x
[[Bool b]]$ = B·(Discr b)
[[(scrut ? e1 : e2)]]$ = B_project·([[scrut]]$)·([[e1]]$)·([[e2]]$)
[[Let Γ body]]$ = [[body]]{|Γ|}$

Towards defining the recursive heap semantics, the function evalHeap
maps a given evaluation function (e.g. the HSem above) over the heap,
producing a function from variable names to values. As this definition
is yet abstract in the choices of expression and value types, its signature
contains lots of type variables:

EvalHeap.thyfun
evalHeap :: (′var × ′exp) list⇒ (′exp⇒ ′value::{pure,pcpo})⇒ ′var⇒ ′value

where
evalHeap [] _ = ⊥
| evalHeap ((x,e)#h) eval = (evalHeap h eval) (x := eval e)

I introduce nicer syntax for this operation and then define the heap
semantics using the fixed-point operator from HOLCF:

HeapSemantics.thyabbreviation HSem_syn ({| _ |}_ [0,60] 60)
where {|Γ|}$ ≡ HSem Γ · $

lemma HSem_def ′: {|Γ|}$ = (µ $ ′. $ ++domA Γ [[Γ]]$ ′)

The following listings will mention the restriction of an environment
to a set, which is defined as follows:

Env.thydefinition env_restr :: ′a set⇒ (′a⇒ ′b::pcpo)⇒ (′a⇒ ′b)
where env_restr S m = (λ x. if x ∈ S then m x else ⊥)

abbreviation env_restr_rev (infixl f |‘ 110)
where env_restr_rev m S ≡ env_restr S m

189

A Formal definitions and main theorems

A.3 Correctness and adequacy theorems

The main results from Chapter 2 are the correctness and adequacy of the
natural semantics with regard to the standard denotational semantics.

The correctness theorem (Theorem 2) is as follows. Note that the
assumption of closedness is written out explicitly.

CorrectnessOriginal.thytheorem correctness:
assumes Γ : e ⇓L ∆ : v
and fv (Γ, e) ⊆ set L ∪ domA Γ
shows [[e]]{|Γ|}$ = [[v]]{|∆|}$
and ({|Γ|}$) f |‘ domA Γ = ({|∆|}$) f |‘ domA Γ

The adequacy theorem (Theorem 3) corresponds even closer to the
original formulation. Note that the set S of variables to avoid is uncon-
strained, i.e. the theorem can produce a judgement for every choice of S.
This only works because the set is represented as a list in the formalisa-
tion, otherwise finiteness of the set would have to be required explicitly.

Adequacy.thytheorem adequacy:
assumes [[e]]{|Γ|} 6= ⊥
shows ∃ ∆ v. Γ : e ⇓S ∆ : v

A.4 Call Arity

For the formalisation of Chapter 4, I introduce a few custom data types.

A.4.1 Arities

I define the type Arity as an isomorphic copy the type of naturals:

Arity.thytypedef Arity = UNIV :: nat set
morphisms Rep_Arity to_Arity by auto

Having a dedicated type for arities allows me to define the partial
order required here. Note that it swaps the arguments of ≤:

190

A.4 Call Arity

instantiation Arity :: po
begin
lift_definition below_Arity :: Arity⇒ Arity⇒ bool is λ x y . y ≤ x.

On the other hand, this additional abstraction layers requires me to
lift a few definitions from the naturals, in particular zero and the prede-
cessor and successor functions. The latter are defined in two steps: First
lifting the function to Arity, and then into HOLCF’s type of continuous
functions:

instantiation Arity :: zero
begin
lift_definition zero_Arity :: Arity is 0.
instance..
end

lift_definition inc_Arity :: Arity ⇒ Arity is Suc.
lift_definition pred_Arity :: Arity⇒ Arity is (λ x . x − 1).

definition inc :: Arity → Arity where
inc = (Λ x. inc_Arity x)

definition pred :: Arity → Arity where
pred = (Λ x. pred_Arity x)

The type AEnv of arity environments is simply var ⇒ Arity⊥. The
following functions provide some useful operations on such and similar
environments: The domain of an environments, singleton environments,
and removal of one entry.

Env.thydefinition edom :: (′key ⇒ ′value::pcpo) ⇒ ′key set
where edom m = {x. m x 6= ⊥}

lemma esing_simps[simp]:
(esing x · n) x = n
x ′ 6= x =⇒ (esing x · n) x ′ = ⊥

definition env_delete :: ′a⇒ (′a⇒ ′b) ⇒ (′a⇒ ′b::pcpo)
where env_delete x m = m(x := ⊥)

191

A Formal definitions and main theorems

A.4.2 Co-call graphs

The type CoCalls of co-call Graphs is defined to be isomorphic to the set
of symmetric relations on var:

CoCallGraph.thytypedef CoCalls = {G :: (var × var) set. sym G}
morphisms Rep_CoCall Abs_CoCall
by (auto intro: exI[where x = {}] symI)

setup_lifting type_definition_CoCalls

The relevant operations are the calculation of the field of the rela-
tion, the member relation, the removal of a node from the graph, the
restriction to a set, the Cartesian products and the set of neighbours.

lift_definition ccField :: CoCalls ⇒ var set is Field.

lift_definition
inCC :: var⇒ var⇒ CoCalls⇒ bool (_−−_∈_ [1000, 1000, 900] 900)
is λ x y s. (x,y) ∈ s.

abbreviation
notInCC :: var⇒ var⇒ CoCalls⇒ bool (_−−_/∈_ [1000, 1000, 900] 900)
where x−−y/∈S ≡ ¬ x−−y∈S

lift_definition cc_delete :: var ⇒ CoCalls ⇒ CoCalls
is λ z. Set.filter (λ (x,y) . x 6= z ∧ y 6= z)

lift_definition cc_restr :: var set⇒ CoCalls⇒ CoCalls
is λ S. Set.filter (λ (x,y) . x ∈ S ∧ y ∈ S)

lift_definition ccProd :: var set⇒ var set⇒ CoCalls (infixr G× 90)
is λ S1 S2. S1 × S2 ∪ S2 × S1
by (auto intro!: symI elim: symE)

definition ccSquare (_2 [80] 80)
where S2 = ccProd S S

lift_definition ccNeighbors :: var⇒ CoCalls⇒ var set
is λ x G. {y .(y,x) ∈ G ∨ (x,y) ∈ G}.

192

A.4 Call Arity

A.4.3 The Call Arity analysis

The equations for the arity analysis are mutually recursive with a few
auxiliary functions to handle the heap.

CoCallAnalysisImpl.thylemma Aexp_simps[simp]:
Aa(Var x) = esing x·(up·a)
Aa(Lam [x]. e) = env_delete x (Apred·a e)
Aa(App e x) = Aexp e·(inc·a) t esing x·(up·0)
¬ nonrec Γ =⇒ Aa(Let Γ e) =

(Afix Γ·(Aa e t (λ_.up·0) f |‘ thunks Γ)) f |‘ (− domA Γ)
x /∈ fv e ′ =⇒ Aa(let x be e ′ in e) =

env_delete x (A⊥ABind_nonrec x e ′·(Aa e, Ga e) e ′ t Aa e)
Aa(Bool b) = ⊥
Aa(scrut ? e1 : e2) = A0 scrut t Aa e1 t Aa e2

lemma CCexp_simps[simp]:
Ga(Var x) = ⊥
G0(Lam [x]. e) = (fv (Lam [x]. e))2

Ginc·a(Lam [x]. e) = cc_delete x (Ga e)
Ga (App e x) = Ginc·a e t {x} G×insert x (fv e)
¬ nonrec Γ =⇒ Ga (Let Γ e) =
(CCfix Γ·(Afix Γ·(Aa e t (λ_.up·0) f |‘ thunks Γ), Ga e)) G|‘ (− domA Γ)

x /∈ fv e ′ =⇒ Ga (let x be e ′ in e) =
cc_delete x
(ccBind x e ′ ·(Aheap_nonrec x e ′·(Aa e, Ga e), Ga e)
t fv e ′G× (ccNeighbors x (Ga e) − (if isVal e ′ then {} else {x})) t Ga e)

Ga (Bool b) = ⊥
Ga (scrut ? e1 : e2) =
G0 scrut t (Ga e1 t Ga e2) t

edom (A0 scrut) G× (edom (Aa e1) ∪ edom (Aa e2))

A superscripted ⊥ indicates that the function is lifted to Arity⊥:
ArityAnalysisSig.thyabbreviation Aexp_bot_syn (A⊥_)

where A⊥a e ≡ fup·(Aexp e)·a

CoCallAnalysisSig.thyabbreviation ccExp_bot_syn (G⊥_)
where G⊥a ≡ (λe. fup·(ccExp e)·a)

193

A Formal definitions and main theorems

The function Afix, building on ABinds and ABind, implements the fix-
pointing in the arity analysis:

ArityAnalysisAbinds.thylemma ABind_eq[simp]: ABind v e · ae = A⊥ae v e

fun ABinds :: heap ⇒ (AEnv → AEnv)
where ABinds [] = ⊥
| ABinds ((v,e)#binds) = ABind v e t ABinds (delete v binds)

ArityAnalysisFix.thylemma Afix_eq: Afix Γ·ae = (µ ae ′. (ABinds Γ·ae ′) t ae)

In the non-recursive case, the function ABind_nonrec is used; this is
where the arity analysis depends on the co-call cardinality analysis.

CoCallFix.thylemma ABind_nonrec_eq:
ABind_nonrec x e·(ae,G) = (if isVal e ∨ x−−x/∈G then ae x else up·0)

The fixed-point calculation of the co-call-graph is defined similarly:

CoCallAnalysisBinds.thylemma ccBind_eq:
ccBind v e·(ae, G) = (if v−−v/∈G ∨ ¬ isVal e then G⊥ae v e G|‘ fv e else (fv e)2)

lemma ccBinds_eq:
ccBinds Γ·i = (

⊔
v 7→e∈map_of Γ. ccBind v e·i)

lemma ccBindsExtra_eq: ccBindsExtra Γ·(ae,G) =
G t ccBinds Γ·(ae,G) t (

⊔
x 7→e∈map_of Γ. fv e G× ccNeighbors x G)

CoCallFix.thylemma CCfix_eq:
CCfix Γ·(ae,G) = (µ G ′. ccBindsExtra Γ·(ae, G ′) t G)

Finally, the actual transformation, which uses the arity analysis, is

ArityTransform.thylemma transform_simps:
T a (App e x) = App (T inc·a e) x

194

A.4 Call Arity

T a (Lam [x]. e) = Lam [x]. T pred·a e
T a (Var x) = Var x
T a (Let Γ e) = Let (map_transform Aeta_expand (Aheap Γ e·a) (map_transform

(λa. T a) (Aheap Γ e·a) Γ)) (T a e)
T a (Bool b) = Bool b
T a (scrut ? e1 : e2) = (T 0 scrut ? T a e1 : T a e2)

where the auxiliary function map_transform applies a transformation
of type Arity⇒ exp⇒ to an Arity environment and a heap:

TransformTools.thylemma lift_transform_simps[simp]:
lift_transform t ⊥ e = e
lift_transform t (up·a) e = t a e

definition
map_transform :: (′a::cont_pt⇒ exp⇒ exp)⇒ (var⇒ ′a⊥)⇒ heap⇒ heap
where map_transform t ae = map_ran (λ x e . lift_transform t (ae x) e)

A.4.4 Call Arity theorems

The Call Arity transformation is functionally correct, i.e. does not change
the semantics (Theorem 4):

ArityAnalysisCorrDenotational.thycorollary Arity_transformation_correct ′:
[[T 0 e]]$ = [[e]]$

The main safety theorem for Call Arity (Theorem 5) reads as follows:

CallArityEnd2EndSafe.thytheorem end2end_closed:
assumes closed: fv e = ({} :: var set)
assumes ([], e, []) ⇒∗ (Γ,v,[]) and isVal v
obtains Γ ′ and v ′

where ([], T 0 e, []) ⇒∗ (Γ ′,v ′,[]) and isVal v ′

and card (domA Γ ′) ≤ card (domA Γ)

195

It’s like someone took a transcript
of a couple arguing at IKEA and
made random edits until it
compiled without errors.

Randall Munroe, xkcd #1513

APPENDIX B

Call Arity code

This appendix lists the actual implementation of Call Arity, as it is
shipped in GHC 7.10.3, which is also the version that I produced the
benchmarks in Section 3.5.3 with. I give the code without modifications
besides
• the removal of comments and notes and
• whitespace-only changes to better fit the page format and to pro-

duce nicer alignment.
The mild pretty-printing and code alignment is performed using lhs2Tex
[HL15].

B.1 Co-call graphs

module UnVarGraph
(UnVarSet
, emptyUnVarSet, mkUnVarSet, varEnvDom,
, unionUnVarSet, unionUnVarSets
, delUnVarSet
, elemUnVarSet, isEmptyUnVarSet
, UnVarGraph
, emptyUnVarGraph

197

http://xkcd.com/1513

B Call Arity code

, unionUnVarGraph, unionUnVarGraphs
, completeGraph, completeBipartiteGraph
, neighbors
, delNode
) where

import Id
import VarEnv
import UniqFM
import Outputable
import Data.List
import Bag
import Unique

import qualified Data.IntSet as S

newtype UnVarSet = UnVarSet (S.IntSet)
deriving Eq

k :: Var→ Int
k v = getKey (getUnique v)

emptyUnVarSet :: UnVarSet
emptyUnVarSet = UnVarSet S.empty

elemUnVarSet :: Var→ UnVarSet→ Bool
elemUnVarSet v (UnVarSet s) = k v ‘S.member‘ s

isEmptyUnVarSet :: UnVarSet→ Bool
isEmptyUnVarSet (UnVarSet s) = S.null s

delUnVarSet :: UnVarSet→ Var→ UnVarSet
delUnVarSet (UnVarSet s) v = UnVarSet $ k v ‘S.delete‘ s

mkUnVarSet :: [Var]→ UnVarSet
mkUnVarSet vs = UnVarSet $ S.fromList $ map k vs

198

B.1 Co-call graphs

varEnvDom :: VarEnv a→ UnVarSet
varEnvDom ae = UnVarSet $ ufmToSet_Directly ae

unionUnVarSet :: UnVarSet→ UnVarSet→ UnVarSet
unionUnVarSet (UnVarSet set1) (UnVarSet set2)
= UnVarSet (set1 ‘S.union‘ set2)

unionUnVarSets :: [UnVarSet]→ UnVarSet
unionUnVarSets = foldr unionUnVarSet emptyUnVarSet

instance Outputable UnVarSet where
ppr (UnVarSet s) = braces $
hcat $ punctuate comma [ppr (getUnique i) | i← S.toList s]

data Gen = CBPG UnVarSet UnVarSet
| CG UnVarSet

newtype UnVarGraph = UnVarGraph (Bag Gen)

emptyUnVarGraph :: UnVarGraph
emptyUnVarGraph = UnVarGraph emptyBag

unionUnVarGraph :: UnVarGraph→ UnVarGraph→ UnVarGraph
unionUnVarGraph (UnVarGraph g1) (UnVarGraph g2)
= UnVarGraph (g1 ‘unionBags‘ g2)

unionUnVarGraphs :: [UnVarGraph]→ UnVarGraph
unionUnVarGraphs = foldl’ unionUnVarGraph emptyUnVarGraph

completeBipartiteGraph :: UnVarSet→ UnVarSet→ UnVarGraph
completeBipartiteGraph s1 s2
= prune $ UnVarGraph $ unitBag $ CBPG s1 s2

completeGraph :: UnVarSet→ UnVarGraph
completeGraph s = prune $ UnVarGraph $ unitBag $ CG s

neighbors :: UnVarGraph→ Var→ UnVarSet

199

B Call Arity code

neighbors (UnVarGraph g) v
= unionUnVarSets $ concatMap go $ bagToList g
where
go (CG s) = (if v ‘elemUnVarSet‘ s then [s] else [])
go (CBPG s1 s2) = (if v ‘elemUnVarSet‘ s1 then [s2] else []) ++

(if v ‘elemUnVarSet‘ s2 then [s1] else [])

delNode :: UnVarGraph→ Var→ UnVarGraph
delNode (UnVarGraph g) v = prune $ UnVarGraph $ mapBag go g
where
go (CG s) = CG (s ‘delUnVarSet‘ v)
go (CBPG s1 s2) = CBPG (s1 ‘delUnVarSet‘ v) (s2 ‘delUnVarSet‘ v)

prune :: UnVarGraph→ UnVarGraph
prune (UnVarGraph g) = UnVarGraph $ filterBag go g
where
go (CG s) = not (isEmptyUnVarSet s)
go (CBPG s1 s2) = not (isEmptyUnVarSet s1) &&

not (isEmptyUnVarSet s2)

instance Outputable Gen where
ppr (CG s) = ppr s<> char ′2′

ppr (CBPG s1 s2) = ppr s1< + > char ′x′ < + > ppr s2
instance Outputable UnVarGraph where
ppr (UnVarGraph g) = ppr g

B.2 The Call Arity analysis

module CallArity (callArityAnalProgram, callArityRHS) where

import VarSet
import VarEnv
import DynFlags (DynFlags)

200

B.2 The Call Arity analysis

import BasicTypes
import CoreSyn
import Id
import CoreArity (typeArity)
import CoreUtils (exprIsHNF, exprIsTrivial)
import UnVarGraph
import Demand

import Control.Arrow (first, second)

callArityAnalProgram :: DynFlags→ CoreProgram→ CoreProgram
callArityAnalProgram _dflags binds = binds’
where
(_, binds’) = callArityTopLvl [] emptyVarSet binds

callArityTopLvl :: [Var]→ VarSet→ [CoreBind]→
(CallArityRes, [CoreBind])

callArityTopLvl exported _ []
= (calledMultipleTimes $

(emptyUnVarGraph, mkVarEnv $ [(v, 0) | v← exported])
, [])

callArityTopLvl exported int1 (b : bs)
= (ae2, b’ : bs’)

where
int2 = bindersOf b
exported’ = filter isExportedId int2++ exported
int’ = int1 ‘addInterestingBinds‘ b
(ae1, bs’) = callArityTopLvl exported’ int’ bs
(ae2, b’) = callArityBind (boringBinds b) ae1 int1 b

callArityRHS :: CoreExpr→ CoreExpr
callArityRHS = snd . callArityAnal 0 emptyVarSet

callArityAnal :: Arity→ VarSet→ CoreExpr→ (CallArityRes, CoreExpr)
callArityAnal _ _ e@(Lit _)
= (emptyArityRes, e)

201

B Call Arity code

callArityAnal _ _ e@(Type _)
= (emptyArityRes, e)

callArityAnal _ _ e@(Coercion _)
= (emptyArityRes, e)

callArityAnal arity int (Tick t e)
= second (Tick t) $ callArityAnal arity int e

callArityAnal arity int (Cast e co)
= second (λe→ Cast e co) $ callArityAnal arity int e

callArityAnal arity int e@(Var v)
| v ‘elemVarSet‘ int
= (unitArityRes v arity, e)
| otherwise
= (emptyArityRes, e)

callArityAnal arity int (Lam v e) | not (isId v)
= second (Lam v) $ callArityAnal arity (int ‘delVarSet‘ v) e

callArityAnal 0 int (Lam v e)
= (ae’, Lam v e’)
where
(ae, e’) = callArityAnal 0 (int ‘delVarSet‘ v) e
ae’ = calledMultipleTimes ae

callArityAnal arity int (Lam v e)
= (ae, Lam v e’)
where
(ae, e’) = callArityAnal (arity− 1) (int ‘delVarSet‘ v) e

callArityAnal arity int (App e (Type t))
= second (λe→ App e (Type t)) $ callArityAnal arity int e

202

B.2 The Call Arity analysis

callArityAnal arity int (App e1 e2)
= (final_ae, App e1’ e2’)
where
(ae1, e1’) = callArityAnal (arity+ 1) int e1
(ae2, e2’) = callArityAnal 0 int e2

ae2’ | exprIsTrivial e2 = calledMultipleTimes ae2
| otherwise = ae2

final_ae = ae1 ‘both‘ ae2’

callArityAnal arity int (Case scrut bndr ty alts)
= (final_ae, Case scrut’ bndr ty alts’)
where
(alt_aes, alts’) = unzip $ map go alts
go (dc, bndrs, e) = let (ae, e’) = callArityAnal arity int e

in (ae, (dc, bndrs, e’))
alt_ae = lubRess alt_aes
(scrut_ae, scrut’) = callArityAnal 0 int scrut

final_ae = scrut_ae ‘both‘ alt_ae

callArityAnal arity int (Let bind e)
= (final_ae, Let bind’ e’)
where
int_body = int ‘addInterestingBinds‘ bind
(ae_body, e’) = callArityAnal arity int_body e
(final_ae, bind’) = callArityBind (boringBinds bind) ae_body int bind

isInteresting :: Var→ Bool
isInteresting v = 0 < length (typeArity (idType v))

interestingBinds :: CoreBind→ [Var]
interestingBinds = filter isInteresting . bindersOf

boringBinds :: CoreBind→ VarSet
boringBinds = mkVarSet . filter (not . isInteresting) . bindersOf

203

B Call Arity code

addInterestingBinds :: VarSet→ CoreBind→ VarSet
addInterestingBinds int bind
= int ‘delVarSetList‘ bindersOf bind

‘extendVarSetList‘ interestingBinds bind
callArityBind ::

VarSet→ CallArityRes→ VarSet→ CoreBind→
(CallArityRes, CoreBind)

callArityBind boring_vars ae_body int (NonRec v rhs)
| otherwise
= (final_ae, NonRec v’ rhs’)
where
is_thunk = not (exprIsHNF rhs)

boring = v ‘elemVarSet‘ boring_vars

(arity, called_once)
| boring = (0, False)
| otherwise = lookupCallArityRes ae_body v

safe_arity | called_once = arity
| is_thunk = 0
| otherwise = arity

trimmed_arity = trimArity v safe_arity

(ae_rhs, rhs’) = callArityAnal trimmed_arity int rhs

ae_rhs’ | called_once = ae_rhs
| safe_arity== 0 = ae_rhs
| otherwise = calledMultipleTimes ae_rhs

called_by_v = domRes ae_rhs’
called_with_v

| boring = domRes ae_body
| otherwise = calledWith ae_body v ‘delUnVarSet‘ v

204

B.2 The Call Arity analysis

final_ae = addCrossCoCalls called_by_v called_with_v
$ ae_rhs’ ‘lubRes‘ resDel v ae_body

v’ = v ‘setIdCallArity‘ trimmed_arity

callArityBind boring_vars ae_body int b@(Rec binds)
= (final_ae, Rec binds’)
where
any_boring = any (‘elemVarSet‘boring_vars) [i | (i, _)← binds]

int_body = int ‘addInterestingBinds‘ b
(ae_rhs, binds’) = fix initial_binds
final_ae = bindersOf b ‘resDelList‘ ae_rhs

initial_binds = [(i, Nothing, e) | (i, e)← binds]

fix :: [(Id, Maybe (Bool, Arity, CallArityRes), CoreExpr)]→
(CallArityRes, [(Id, CoreExpr)])

fix ann_binds
| any_change = fix ann_binds’
| otherwise = (ae, map (λ(i, _, e)→ (i, e)) ann_binds’)

where
aes_old = [(i, ae) | (i, Just (_, _, ae), _)← ann_binds]
ae = callArityRecEnv any_boring aes_old ae_body

rerun (i, mbLastRun, rhs)
| i ‘elemVarSet‘ int_body &&

not (i ‘elemUnVarSet‘ domRes ae)
= (False, (i, Nothing, rhs))

| Just (old_called_once, old_arity, _)← mbLastRun
, called_once== old_called_once
, new_arity== old_arity
= (False, (i, mbLastRun, rhs))

205

B Call Arity code

| otherwise
= let is_thunk = not (exprIsHNF rhs)

safe_arity | is_thunk = 0
| otherwise = new_arity

trimmed_arity = trimArity i safe_arity

(ae_rhs, rhs’) = callArityAnal trimmed_arity
int_body rhs

ae_rhs’ | called_once = ae_rhs
| safe_arity== 0 = ae_rhs
| otherwise = calledMultipleTimes ae_rhs

in (True, (i ‘setIdCallArity‘ trimmed_arity,
Just (called_once, new_arity, ae_rhs’), rhs’))

where
(new_arity, called_once) | i ‘elemVarSet‘ boring_vars

= (0, False)
| otherwise
= lookupCallArityRes ae i

(changes, ann_binds’) = unzip $ map rerun ann_binds
any_change = or changes

callArityRecEnv ::
Bool→ [(Var, CallArityRes)]→ CallArityRes→ CallArityRes

callArityRecEnv any_boring ae_rhss ae_body
= ae_new
where
vars = map fst ae_rhss

ae_combined = lubRess (map snd ae_rhss) ‘lubRes‘ ae_body

206

B.2 The Call Arity analysis

cross_calls
| any_boring = completeGraph (domRes ae_combined)
| length ae_rhss> 25 = completeGraph (domRes ae_combined)
| otherwise = unionUnVarGraphs $ map cross_call ae_rhss

cross_call (v, ae_rhs)
= completeBipartiteGraph called_by_v called_with_v
where
is_thunk = idCallArity v== 0

ae_before_v | is_thunk
= lubRess (map snd $ filter ((/ =v) . fst) ae_rhss)

‘lubRes‘ ae_body
| otherwise
= ae_combined

called_with_v
= unionUnVarSets $ map (calledWith ae_before_v) vars

called_by_v = domRes ae_rhs

ae_new = first (cross_calls‘unionUnVarGraph‘) ae_combined
trimArity :: Id→ Arity→ Arity
trimArity v a = minimum [a, max_arity_by_type, max_arity_by_strsig]
where
max_arity_by_type = length (typeArity (idType v))
max_arity_by_strsig
| isBotRes result_info = length demands
| otherwise = a

(demands, result_info) = splitStrictSig (idStrictness v)

type CallArityRes = (UnVarGraph, VarEnv Arity)

emptyArityRes :: CallArityRes
emptyArityRes = (emptyUnVarGraph, emptyVarEnv)

207

B Call Arity code

unitArityRes :: Var→ Arity→ CallArityRes
unitArityRes v arity = (emptyUnVarGraph, unitVarEnv v arity)

resDelList :: [Var]→ CallArityRes→ CallArityRes
resDelList vs ae = foldr resDel ae vs

resDel :: Var→ CallArityRes→ CallArityRes
resDel v (g, ae) = (g ‘delNode‘ v, ae ‘delVarEnv‘ v)

domRes :: CallArityRes→ UnVarSet
domRes (_, ae) = varEnvDom ae

lookupCallArityRes :: CallArityRes→ Var→ (Arity, Bool)
lookupCallArityRes (g, ae) v
= case lookupVarEnv ae v of

Just a → (a, not (v ‘elemUnVarSet‘ (neighbors g v)))
Nothing→ (0, False)

calledWith :: CallArityRes→ Var→ UnVarSet
calledWith (g, _) v = neighbors g v

addCrossCoCalls :: UnVarSet→ UnVarSet→ CallArityRes→ CallArityRes
addCrossCoCalls set1 set2
= first (completeBipartiteGraph set1 set2‘unionUnVarGraph‘)

calledMultipleTimes :: CallArityRes→ CallArityRes
calledMultipleTimes res
= first (const (completeGraph (domRes res))) res

both :: CallArityRes→ CallArityRes→ CallArityRes
both r1 r2
= addCrossCoCalls (domRes r1) (domRes r2) $ r1 ‘lubRes‘ r2

208

B.2 The Call Arity analysis

lubRes :: CallArityRes→ CallArityRes→ CallArityRes
lubRes (g1, ae1) (g2, ae2)
= (g1 ‘unionUnVarGraph‘ g2, ae1 ‘lubArityEnv‘ ae2)

lubArityEnv :: VarEnv Arity→ VarEnv Arity→ VarEnv Arity
lubArityEnv = plusVarEnv_C min

lubRess :: [CallArityRes]→ CallArityRes
lubRess = foldl lubRes emptyArityRes

209

Bibliography

[Abr90] Samson Abramsky. The lazy lambda calculus. Research top-
ics in functional programming. Ed. by David A. Turner.
Addison-Wesley, 1990. Chap. 4.

[AO93] Samson Abramsky and Chih-Hao Luke Ong. Full Abstrac-
tion in the Lazy Lambda Calculus. Information and Compu-
tation 105.2 (1993). DOI: 10.1006/inco.1993.1044.

[ABM07] David Aspinall, Lennart Beringer and Alberto Momigliano.
Optimisation Validation. Compiler Optimisation Meets Com-
piler Verification (COCV) 2006. Vol. 176-3. ENTCS. 2007.
DOI: 10.1016/j.entcs.2006.06.017.

[BKHT99] Clem Baker-Finch, David King, Jon Hall and Phil Trinder.
An Operational Semantics for Parallel Call-by-Need. Tech. rep.
99/1. Faculty of Mathematics and Computing, The Open
University, 1999.

[BKT00] Clem Baker-Finch, David King and Phil Trinder. An Oper-
ational Semantics for Parallel Lazy Evaluation. International
Conference on Functional Programming (ICFP). ACM,
2000. DOI: 10.1145/351240.351256.

211

http://dx.doi.org/10.1006/inco.1993.1044
http://dx.doi.org/10.1016/j.entcs.2006.06.017
http://dx.doi.org/10.1145/351240.351256

Bibliography

[Bal14] Clemens Ballarin. Locales: A Module System for Mathematical
Theories. Journal of Automated Reasoning 52.2 (2014). DOI:
10.1007/s10817-013-9284-7.

[BA06] Sorav Bansal and Alex Aiken. Automatic Generation of Peep-
hole Superoptimizers. Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM,
2006. DOI: 10.1145/1168857.1168906.

[Bir89] Richard Simpson Bird. Algebraic Identities for Program Calcu-
lation. Computer Journal 32.2 (1989). DOI: 10.1093/comjnl/
32.2.122.

[Bre13] Joachim Breitner. The Correctness of Launchbury’s Natural
Semantics for Lazy Evaluation. Archive of Formal Proofs (Jan.
2013). URL: http://afp.sf.net/entries/Launchbury.shtml.

[Bre15a] Joachim Breitner. Call Arity. Trends in Functional Program-
ming (TFP) 2014. Vol. 8843. LNCS. Springer, 2015. DOI:
10.1007/978-3-319-14675-1 3.

[Bre15b] Joachim Breitner. Formally proving a compiler transformation
safe. Haskell Symposium. ACM, 2015. DOI: 10.1145/280430
2.2804312.

[Bre15c] Joachim Breitner. The Adequacy of Launchbury’s Natural Se-
mantics for Lazy Evaluation. preprint, submitted to the Jour-
nal of Functional Programming. 2015. URL: http://joachim-
breitner.de/publications/LaunchburyAdequacy-preprint.pdf.

[Bre15d] Joachim Breitner. The Safety of Call Arity. Archive of Formal
Proofs (Feb. 2015). URL: http://afp.sf.net/entries/Call Arity.
shtml.

[Bre16] Joachim Breitner. Lazy Evaluation: From natural semantics
to a machine-checked compiler transformation. Ph.D. thesis.
Karlsruhe Institute of Technology, 2016. DOI: 10.5445/IR/
1000054251.

212

http://dx.doi.org/10.1007/s10817-013-9284-7
http://dx.doi.org/10.1145/1168857.1168906
http://dx.doi.org/10.1093/comjnl/32.2.122
http://dx.doi.org/10.1093/comjnl/32.2.122
http://afp.sf.net/entries/Launchbury.shtml
http://dx.doi.org/10.1007/978-3-319-14675-1_3
http://dx.doi.org/10.1145/2804302.2804312
http://dx.doi.org/10.1145/2804302.2804312
http://joachim-breitner.de/publications/LaunchburyAdequacy-preprint.pdf
http://joachim-breitner.de/publications/LaunchburyAdequacy-preprint.pdf
http://afp.sf.net/entries/Call_Arity.shtml
http://afp.sf.net/entries/Call_Arity.shtml
http://dx.doi.org/10.5445/IR/1000054251
http://dx.doi.org/10.5445/IR/1000054251

Bibliography

[BEPW14] Joachim Breitner, Richard A. Eisenberg, Simon Peyton
Jones and Stephanie Weirich. Safe Zero-cost Coercions for
Haskell. International Conference on Functional Program-
ming (ICFP). ACM, 2014. DOI: 10.1145/2628136.2628141.

[BHMS13] Joachim Breitner, Brian Huffman, Neil Mitchell and Chris-
tian Sternagel. Certified HLints with Isabelle/HOLCF-Prelude.
Haskell and Rewriting Techniques (HART). 2013. arXiv:
1306.1340.

[Buc15] Sebastian Buchwald. Optgen: A Generator for Local Optimiza-
tions. Compiler Construction. Vol. 9031. LCNS. Springer,
2015. DOI: 10.1007/978-3-662-46663-6 9.

[Chl10] Adam Chlipala. A Verified Compiler for an Impure Functional
Language. Principles of Programming Languages (POPL).
ACM, 2010. DOI: 10.1145/1706299.1706312.

[Coq04] The Coq development team. The Coq proof assistant reference
manual. Version 8.0. LogiCal Project. 2004. URL: http://coq.
inria.fr.

[Cou10] Duncan Coutts. Stream Fusion: Practical shortcut fusion for
coinductive sequence types. Ph.D. thesis. University of Ox-
ford, 2010.

[CLS07] Duncan Coutts, Roman Leshchinskiy and Don Stewart.
Stream Fusion. From Lists to Streams to Nothing at All. Inter-
national Conference on Functional Programming (ICFP).
ACM, 2007. DOI: 10.1145/1291151.1291199.

[CB13] Charlie Curtsinger and Emery D. Berger. STABILIZER: Sta-
tistically Sound Performance Evaluation. Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS). ACM, 2013. DOI: 10.1145/2451116.2451141.

[DL07] Zaynah Dargaye and Xavier Leroy. Mechanized Verifica-
tion of CPS Transformations. Logic for Programming, Artifi-
cial Intelligence, and Reasoning (LPAR). Vol. 4790. LNCS.
Springer, 2007. DOI: 10.1007/978-3-540-75560-9 17.

213

http://dx.doi.org/10.1145/2628136.2628141
http://arxiv.org/abs/1306.1340
http://dx.doi.org/10.1007/978-3-662-46663-6_9
http://dx.doi.org/10.1145/1706299.1706312
http://coq.inria.fr
http://coq.inria.fr
http://dx.doi.org/10.1145/1291151.1291199
http://dx.doi.org/10.1145/2451116.2451141
http://dx.doi.org/10.1007/978-3-540-75560-9_17

Bibliography

[EM04] Marko van Eekelen and Maarten de Mol. Mixed lazy/strict
graph semantics. Tech. rep. NIII-R0402. Radboud University
Nijmegen, Jan. 2004.

[Eis15] Richard Eisenberg. System FC, as implemented in GHC. Ver-
sion 414e20b. 2015. URL: https://github.com/ghc/ghc/blob/m
aster/docs/core-spec/core-spec.pdf (visited on 04/24/2015).

[FHG14] Andrew Farmer, Christian Höner zu Siederdissen and An-
drew John Gill. The HERMIT in the Stream: Fusing Stream Fu-
sion’s concatMap. Partial Evaluation and Program Manipu-
lation (PEPM). ACM, 2014. DOI: 10.1145/2543728.2543736.

[Gam09] Peter Gammie. The Worker/Wrapper Transformation. Archive
of Formal Proofs (Oct. 2009). URL: http://afp.sf.net/entries/
WorkerWrapper.shtml.

[Gil96] Andrew John Gill. Cheap deforestation for non-strict func-
tional languages. Ph.D. thesis. University of Glasgow, 1996.

[GLP93] Andrew John Gill, John Launchbury and Simon Peyton
Jones. A Short Cut to Deforestation. Functional Programming
Languages and Computer Architecture (FPCA). ACM,
1993. DOI: 10.1145/165180.165214.

[GS99] Jörgen Gustavsson and David Sands. A Foundation for
Space-Safe Transformations of Call-by-Need Programs. Higher
Order Operational Techniques in Semantics (HOOTS).
Vol. 26. ENTCS. 1999. DOI: 10.1016/S1571-0661(05)80284-1.

[GS01] Jörgen Gustavsson and David Sands. Possibilities and Limi-
tations of Call-by-Need Space Improvement. International Con-
ference on Functional Programming (ICFP). ACM, 2001.
DOI: 10.1145/507635.507667.

[HH14] Jennifer Hackett and Graham Hutton. Worker/Wrapper/
Makes It/Faster. International Conference on Functional
Programming (ICFP). ACM, 2014. DOI: 10.1145/2628136.
2628142.

214

https://github.com/ghc/ghc/blob/master/docs/core-spec/core-spec.pdf
https://github.com/ghc/ghc/blob/master/docs/core-spec/core-spec.pdf
http://dx.doi.org/10.1145/2543728.2543736
http://afp.sf.net/entries/WorkerWrapper.shtml
http://afp.sf.net/entries/WorkerWrapper.shtml
http://dx.doi.org/10.1145/165180.165214
http://dx.doi.org/10.1016/S1571-0661(05)80284-1
http://dx.doi.org/10.1145/507635.507667
http://dx.doi.org/10.1145/2628136.2628142
http://dx.doi.org/10.1145/2628136.2628142

Bibliography

[Haf09] Florian Haftmann. Code Generation from Specifications in
Higher Order Logic. Ph.D. thesis. Technische Universität
München, 2009.

[Haf10] Florian Haftmann. From Higher-order Logic to Haskell: There
and Back Again. Partial Evaluation and Program Manipula-
tion (PEPM). ACM, 2010. DOI: 10.1145/1706356.1706385.

[HHM07] Jurriaan Hage, Stefan Holdermans and Arie Middelkoop.
A generic usage analysis with subeffect qualifiers. International
Conference on Functional Programming (ICFP). ACM,
2007. DOI: 10.1145/1291151.1291189.

[HL15] Ralf Hinze and Andres Löh. lhs2tex: Preprocessor for type-
setting Haskell sources with LaTeX. Version 1.19. Apr. 2015.
URL: http://hackage.haskell.org/package/lhs2tex-1.19.

[Huf12] Brian Huffman. HOLCF ’11: A Definitional Domain Theory
for Verifying Functional Programs. Ph.D. thesis. Portland
State University, 2012.

[HK13] Brian Huffman and Ondřej Kunčar. Lifting and Transfer:
A Modular Design for Quotients in Isabelle/HOL. Certified
Programs and Proofs (CPP). Vol. 8307. LCNS. Springer,
2013. DOI: 10.1007/978-3-319-03545-1 9.

[JNR02] Rajeev Joshi, Greg Nelson and Keith Randall. Denali: A
Goal-directed Superoptimizer. ACM, 2002. DOI: 10.1145/5125
29.512566.

[KMNO14] Ramana Kumar, Magnus O. Myreen, Michael Norrish and
Scott Owens. CakeML: A Verified Implementation of ML. Prin-
ciples of Programming Languages (POPL). ACM, 2014.
DOI: 10.1145/2535838.2535841.

[Lau93] John Launchbury. A Natural Semantics for Lazy Evaluation.
Principles of Programming Languages (POPL). ACM, 1993.
DOI: 10.1145/158511.158618.

215

http://dx.doi.org/10.1145/1706356.1706385
http://dx.doi.org/10.1145/1291151.1291189
http://hackage.haskell.org/package/lhs2tex-1.19
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1145/512529.512566
http://dx.doi.org/10.1145/512529.512566
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1145/158511.158618

Bibliography

[Ler06] Xavier Leroy. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. Principles of
Programming Languages (POPL). ACM, 2006. DOI: 10 .
1145/1111037.1111042.

[Ler12] Xavier Leroy. Mechanized Semantics for Compiler Verifica-
tion. Asian Symposium on Programming Languages and
Systems (APLAS). Vol. 7705. LNCS. Invited talk. Springer,
2012. DOI: 10.1007/978-3-642-35182-2 27.

[Loc10] Andreas Lochbihler. Verifying a Compiler for Java Threads.
European Symposium on Programming (ESOP). Vol. 6012.
LNCS. Springer, 2010. DOI: 10.1007/978-3-642-11957-6 23.

[LH14] Andreas Lochbihler and Johannes Hölzl. Recursive Func-
tions on Lazy Lists via Domains and Topologies. Interactive
Theorem Proving (ITP). Vol. 8558. LNCS (LNAI). Springer,
2014. DOI: 10.1007/978-3-319-08970-6 22.

[Mar10] Simon Marlow, ed. Haskell 2010 Language Report. 2010.

[MP06] Simon Marlow and Simon Peyton Jones17. Making a fast
curry: push/enter vs. eval/apply for higher-order languages.
Journal of Functional Programming 16.4-5 (2006). DOI:
10.1017/S0956796806005995.

[MP12] Simon Marlow and Simon Peyton Jones17. The Glasgow
Haskell Compiler. The Architecture of Open Source Appli-
cations, Volume II. Ed. by Amy Brown and Greg Wilson.
Lulu, 2012. Chap. 5.

[Mid12] Jan Midtgaard. Control-flow Analysis of Functional Programs.
ACM Computing Surveys (CSUR) 44.3 (June 2012). DOI:
10.1145/2187671.2187672.

[MO03] Yasuhiko Minamide and Koji Okuma. Verifying CPS Trans-
formations in Isabelle/HOL. Mechanized Reasoning About
Languages with Variable Binding (MERLIN). ACM, 2003.
DOI: 10.1145/976571.976576.

17 famously known as “The Simons”

216

http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1145/1111037.1111042
http://dx.doi.org/10.1007/978-3-642-35182-2_27
http://dx.doi.org/10.1007/978-3-642-11957-6_23
http://dx.doi.org/10.1007/978-3-319-08970-6_22
http://dx.doi.org/10.1017/S0956796806005995
http://dx.doi.org/10.1145/2187671.2187672
http://dx.doi.org/10.1145/976571.976576

Bibliography

[MS99] Andrew K. Moran and David Sands. Improvement in a Lazy
Context: An Operational Theory for Call-By-Need. Principles
of Programming Languages (POPL). ACM, 1999. DOI: 10.
1145/292540.292547.

[MDHS09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth and
Peter F. Sweeney. Producing Wrong Data Without Doing
Anything Obviously Wrong! Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).
ACM, 2009. DOI: 10.1145/1508284.1508275.

[Nak10] Keiko Nakata. Denotational semantics for lazy initialization of
letrec: black holes as exceptions rather than divergence. Fixed
Points in Computer Science (FICS). 2010.

[NH09] Keiko Nakata and Masahito Hasegawa. Small-step and big-
step semantics for call-by-need. Journal of Functional Pro-
gramming 19.6 (2009). DOI: 10.1017/S0956796809990219.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation. Pro-
gramming Language Design and Implementation (PLDI).
ACM, 2007. DOI: 10.1145/1273442.1250746.

[Nip02] Tobias Nipkow. Structured Proofs in Isar/HOL. Types for
Proofs and Programs (TYPES). Vol. 2646. LNCS. Springer,
2002. DOI: 10.1007/3-540-39185-1 15.

[NPW02] Tobias Nipkow, Lawrence C. Paulson and Markus Wen-
zel. Isabelle/HOL – A Proof Assistant for Higher-Order Logic.
Vol. 2283. LNCS. Springer, 2002. DOI: 10.1007/3-540-45949-
9.

[OSu15] Bryan O’Sullivan. criterion: Robust, reliable performance mea-
surement and analysis. Version 1.1.0.0. Mar. 2015. URL: http:
//hackage.haskell.org/package/criterion-1.1.0.0.

[Par93] Will Partain. The nofib Benchmark Suite of Haskell Programs.
Functional Programming 1992. Workshops in Computing.
Springer, 1993. DOI: 10.1007/978-1-4471-3215-8 17.

217

http://dx.doi.org/10.1145/292540.292547
http://dx.doi.org/10.1145/292540.292547
http://dx.doi.org/10.1145/1508284.1508275
http://dx.doi.org/10.1017/S0956796809990219
http://dx.doi.org/10.1145/1273442.1250746
http://dx.doi.org/10.1007/3-540-39185-1_15
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://hackage.haskell.org/package/criterion-1.1.0.0
http://hackage.haskell.org/package/criterion-1.1.0.0
http://dx.doi.org/10.1007/978-1-4471-3215-8_17

Bibliography

[Pey92] Simon Peyton Jones. Implementing Lazy Functional Lan-
guages on Stock Hardware: The Spineless Tagless G-Machine.
Journal of Functional Programming 2.2 (1992). DOI: 10 .
1017/S0956796800000319.

[Pey03] Simon Peyton Jones, ed. Haskell 98 Language and Libraries
– The Revised Report. Journal of Functional Programming
13.1 (2003).

[PM02] Simon Peyton Jones and Simon Marlow17. Secrets of the
Glasgow Haskell Compiler Inliner. Journal of Functional Pro-
gramming 12.5 (2002). DOI: 10.1017/S0956796802004331.

[PTH01] Simon Peyton Jones, Andrew Tolmach and Tony Hoare.
Playing by the rules: rewriting as a practical optimisation tech-
nique in GHC. Haskell Workshop. 2001.

[PVWW06] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie
Weirich and Geoffrey Washburn. Simple Unification-based
Type Inference for GADTs. International Conference on Func-
tional Programming (ICFP). ACM, 2006. DOI: 10 .1145/
1159803.1159811.

[PB10] Maciej Pirog and Dariusz Biernacki. A Systematic Derivation
of the STG Machine Verified in Coq. Haskell Symposium.
ACM, 2010. DOI: 10.1145/1863523.1863528.

[Pit03] Andrew M. Pitts. Nominal logic, a first order theory of names
and binding. Vol. 186. Information and Computation 2. El-
sevier, 2003. DOI: 10.1016/S0890-5401(03)00138-X.

[RDP10] Norman Ramsey, João Dias and Simon Peyton Jones. Hoopl:
A Modular, Reusable Library for Dataflow Analysis and Trans-
formation. Haskell Symposium. ACM, 2010. DOI: 10.1145/
1863523.1863539.

[RH15] Tobias Rittweiler and Florian Haftmann. Haskabelle – con-
verting Haskell source files to Isabelle/HOL theories. 2015. URL:
http://isabelle.in.tum.de/haskabelle.html.

218

http://dx.doi.org/10.1017/S0956796800000319
http://dx.doi.org/10.1017/S0956796800000319
http://dx.doi.org/10.1017/S0956796802004331
http://dx.doi.org/10.1145/1159803.1159811
http://dx.doi.org/10.1145/1159803.1159811
http://dx.doi.org/10.1145/1863523.1863528
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1145/1863523.1863539
http://dx.doi.org/10.1145/1863523.1863539
http://isabelle.in.tum.de/haskabelle.html

Bibliography

[SHO10] Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero and Yolanda
Ortega-Mallén. An Operational Semantics for Distributed
Lazy Evaluation. Trends in Functional Programming (TFP)
2009. Intellect, 2010.

[SHO11] Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero and Yolanda
Ortega-Mallén. Relating function spaces to resourced function
spaces. Symposium on Applied Computing (SAC). ACM,
2011. DOI: 10.1145/1982185.1982469.

[SHO12] Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero and Yolanda
Ortega-Mallén. A Locally Nameless Representation for a Nat-
ural Semantics for Lazy Evaluation. Theoretical Aspects of
Computing (ICTAC). Vol. 7521. LNCS. Springer, 2012. DOI:
10.1007/978-3-642-32943-2 8.

[SHO14] Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero and Yolanda
Ortega-Mallén. Launchbury’s semantics revisited: On the
equivalence of context-heap semantics (Work in progress). XIV
Jornadas sobre Programación y Lenguajes (2014).

[SHO15] Lidia Sánchez-Gil, Mercedes Hidalgo-Herrero and Yolanda
Ortega-Mallén. The role of indirections in lazy natural se-
mantics. Perspectives of System Informatics (PSI) 2014.
Vol. 8974. LNCS. Springer, 2015. DOI: 10.1007/978-3-662-
46823-4 24.

[San92] David Sands. Operational Theories of Improvement in Func-
tional Languages (Extended Abstract). Glasgow Workshop on
Functional Programming 1991. Workshops in Computing.
Springer, 1992. DOI: 10.1007/978-1-4471-3196-0 24.

[SPCS08] Tom Schrijvers, Simon Peyton Jones, Manuel M. T. Chak-
ravarty and Martin Sulzmann. Type Checking with Open
Type Functions. International Conference on Functional
Programming (ICFP). ACM, 2008. DOI: 10.1145/1411204.
1411215.

219

http://dx.doi.org/10.1145/1982185.1982469
http://dx.doi.org/10.1007/978-3-642-32943-2_8
http://dx.doi.org/10.1007/978-3-662-46823-4_24
http://dx.doi.org/10.1007/978-3-662-46823-4_24
http://dx.doi.org/10.1007/978-1-4471-3196-0_24
http://dx.doi.org/10.1145/1411204.1411215
http://dx.doi.org/10.1145/1411204.1411215

Bibliography

[SVP14] Ilya Sergey, Dimitrios Vytiniotis and Simon Peyton Jones.
Modular, Higher-order Cardinality Analysis in Theory and Prac-
tice. Principles of Programming Languages (POPL). ACM,
2014. DOI: 10.1145/2535838.2535861.

[Ses97] Peter Sestoft. Deriving a lazy abstract machine. Journal of
Functional Programming 7.03 (1997). DOI: 10.1017/S09567
96897002712.

[SCPD07] Martin Sulzmann, Manuel M. T. Chakravarty, Simon Pey-
ton Jones and Kevin Donnelly. System F with type equality
coercions. Types in Languages Design and Implementation
(TLDI). ACM, 2007. DOI: 10.1145/1190315.1190324.

[Sve02] Josef Svenningsson. Shortcut Fusion for Accumulating Pa-
rameters & Zip-like Functions. International Conference on
Functional Programming (ICFP). ACM, 2002. DOI: 10.1145/
581478.581491.

[Tak14] Akio Takano. Worker-Wrapper Fusion. Prototype. 2014.
URL: https://github.com/takano-akio/ww-fusion (visited on
02/02/2014).

[Tia06] Ye Henry Tian. Mechanically Verifying Correctness of CPS
Compilation. Computing: The Australasian Theory Sympo-
sium (CATS). Vol. 51. CRPIT. ACS, 2006, pp. 41–51.

[UK12] Christian Urban and Cezary Kaliszyk. General Bindings
and Alpha-Equivalence in Nominal Isabelle. Logical Methods
in Computer Science 8.2 (2012). DOI: 10.2168/LMCS-8(2:
14)2012.

[UT05] Christian Urban and Christine Tasson. Nominal Tech-
niques in Isabelle/HOL. Automated Deduction – CADE-20.
Vol. 3632. LNCS. Springer, 2005. DOI: 10.1007/11532231 4.

[VSJVP14] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis
and Simon Peyton Jones. Refinement types for Haskell. Iter-
national conference on Functional programming (ICFP).
ACM, 2014. DOI: 10.1145/2628136.2628161.

220

http://dx.doi.org/10.1145/2535838.2535861
http://dx.doi.org/10.1017/S0956796897002712
http://dx.doi.org/10.1017/S0956796897002712
http://dx.doi.org/10.1145/1190315.1190324
http://dx.doi.org/10.1145/581478.581491
http://dx.doi.org/10.1145/581478.581491
https://github.com/takano-akio/ww-fusion
http://dx.doi.org/10.2168/LMCS-8(2:14)2012
http://dx.doi.org/10.2168/LMCS-8(2:14)2012
http://dx.doi.org/10.1007/11532231_4
http://dx.doi.org/10.1145/2628136.2628161

Bibliography

[WVPZ11] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton
Jones and Steve Zdancewic. Generative type abstraction
and type-level computation. Principles of Programming Lan-
guages (POPL). ACM, 2011. DOI: 10.1145/1926385.1926411.

[XP05] Dana N. Xu and Simon Peyton Jones. Arity Analysis. Work-
ing notes. 2005.

[ZNMZ13] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin
and Steve Zdancewic. Formal Verification of SSA-based Op-
timizations for LLVM. ACM, 2013. DOI: 10.1145/2491956.
2462164.

221

http://dx.doi.org/10.1145/1926385.1926411
http://dx.doi.org/10.1145/2491956.2462164
http://dx.doi.org/10.1145/2491956.2462164

Index
The following is a combined index and glossary. For each listed symbol,
function or term it references the page of its first occurrence and often
gives a brief explanation.

Symbols

[] . 69
empty stack

. 152
empty trace tree

∞ . 146
top element of Card

1 . 146
called at most once, member of Card

(:) . 69
alternatives (on the stack)

$. 69
argument (on the stack)

. 152
singleton trace tree

223

Index

. 69
update marker (on the stack)

(ᾱ, α, α̇) . 137
arity annotation

2 . 95
complete graph on a set of variables
• . 20
permutation operation on psets (nominal logic)
↓CFn . 53
projection function, CValue→ (C→ CValue)→ (C→ CValue)
· . 30

application operator for continuous functions (HOLCF)
— . 94

edge in a Graph
↓Fn . 40
deconstruction function, Value→ (Value→ Value)

Λ . 80
HOLCF’s continuous lambda operator
−

removing a set of bindings from a configuration 149
subtracting a call from a cardinality environment 146

⊕ . 151
union of trace trees
⊗ . 151
interleaving of trace trees
|

on Graph . 95
on environments .40
on functions taking a C . 52
on trace trees . 152

\
on Graph . 95
on environments .40
on trace trees . 152

224

Index

t
on environments .44

× . 94
Cartesian product of two sets of variables
++ . 41
restricted update operator on environments
↓B (,) . 65
deconstruction function, Value→ (Value→ Value→ Value)
=| . 46
restricted equality on semantic environments
. 137
arity annotation consistency
.C . 149
arity annotation consistency (with cardinality information)
.N . 137
arity annotation consistency (without cardinality information)
→ . 30

type of continuous functions (HOLCF)
⇀ . 36
type of partial functions
⇒ . 69
small step reduction (one step)
⇒# . 149
forgetful small-step semantics
⇒∗ . 69
small step reduction (many steps)
/. 58
relating Value and C→ CValue
/.∗ . 58
relating Heap and Var→ (C→ CValue)

225

Index

v
on (Var ⇀ N) . 96
on C . 52
on Graph . 95
on TTree .152
on Value . 40
on arities . 18
on environments .40

: ⇓ : . 36
Launchbury’s natural semantics

J K . 41
denotational semantics of expressions
NJ K . 53

resourced denotational semantics of expressions
{{ }} .41

denotational semantics of heaps
N{{ }} .53

resourced denotational semantics of heaps

Defined Terms

A () . 96, 134
arity analysis
A (,) . 133

arity analysis of a binding
APP . 36

natural semantics rule for application
APP’ . 60

alternative natural semantics rule for application
APP1, APP2 . 69

small step rules for application
args . 136

number of arguments on top of the stack

226

Index

at_base . 80
class of types representing names (Nominal2)

B() .65
injection function, 2→ Value

C . 52
injection function of domain C

C . 52
domain of resources

C .64
Boolean constructors

c .154
projection from TTree to (Var→ Card)

Card .146
three-element lattice
C () . 146

cardinality analysis of a configuration
CFn () . 53

injection function, (C→ CValue)→ (C→ CValue)→ CValue
C (,) . 146

cardinality analysis of a binding
CON . 65

natural semantics rule for constructors
cpo . 30

type class for complete partial orders (HOLCF)
CValue . 53

resourced semantic domain
dom

domain
of a Graph .94
of a heap . 36
of an environment . 40

Env . 40
semantic environment
E () . 17

eta-expansion

227

Index

Exp .35
type of lambda expressions

fmap .78
type of partial functions with finite domain

Fn() . 40
injection function, (Value→ Value)→ Value

fv . 34
free variables

in nominal logic . 21
g . 158

the Graph approximation of a trace tree
G () . 96, 159

co-call analysis
G (,) .159

co-call analysis of a binding
Graph . 94, 96

undirected graphs over the set of variables
Heap . 36

type of heaps, bindings
IF1 , IF1 . 69

small step rules for case analysis
isVal . 36
LAM . 36

natural semantics rule for lambda abstraction
LET . 36

natural semantics rule for let bindings
LET1 . 69

small step rule for let bindings
N . 17

natural numbers including 0; used to represent arities
NJ K . 53

resourced denotational semantics of expressions
N{{ }} .53

resourced denotational semantics of heaps

228

Index

next .151
a specific immediate subtree of a trace tree

N () . 95
neighbours of a node in a Graph

paths . 151
the set of paths of a trace tree

pcpo . 30
type class for pointed cpos (HOLCF)

po . 30
type class for partial orders (HOLCF)

pt . 80
class of values with names (Nominal2)

pure . 80
class of types with no names (Nominal2)

s . 152
combining the trace trees of a binding

t . 158
the trace tree represented by a Graph
T () . 154

trace tree analysis on heaps
T () . 154

trace tree analysis
T (,) . 154

trace tree analysis on bindings
T () .133

arity transformation of an expression
T () .137

arity transformation of a configuration
T () . 133

arity transformation of a heap
Ṫ () . 137

arity transformation of a stack
TTree . 151

trace trees

229

Index

Val . 36
type of value expressions, subset of Exp

Value . 39
semantic domain

VAR . 36
natural semantics rule for variables

Var . 35
type of variables

VAR’ . 60
alternative natural semantics rule for variables

VAR1 , VAR1 . 69
small step rules for variable

Glossary

arity . 17
arity annotation . 137
atom . 20

a name (nominal logic)
balanced execution . 71
blackholing . 37
build . 13

list fusion interface for list producers
closed judgement . 38
configuration .69

heap, expression and stack (small-step semantics)
consitent . 137

arity annotation with regard to a configuration
de-Bruijn index . 19
equivariance . 23

commutes with name permutations (nominal logic)
eta-expansion . 17
fixed-point induction . 30

230

Index

foldr . 13
list fusion interface for list consumers

fresh . 21, 34
GHC . 9

Core . 10
STG . 15

good consumer . 14
good producer . 13
HOLCF . 29

Isabelle package for domain theory
Isabelle . 24

HOL . 24
HOLCF . 29
Isar . 25

lazy evaluation . 7
list fusion . 13
nominal logic . 19
Nominal2 . 28

Isabelle package for nominal logic
pointed domain . 29

domain with a least element
pset . 20

set with a permutation action (nominal logic)
pure . 20

sets with empty carrier (nominal logic)
rewrite rule . 12
safe transformation . 134
sharing . 8
STG . 15
System FC . 11
thunk . 7

deferred calculation during lazy evaluation
updating . 9

231

In order to solve a long-standing problem with
list fusion, a new compiler transformation,
“Call Arity” is developed and implemented in
the Haskell compiler GHC. It is formally proven
to not degrade program performance; the
proof is machine-checked using the interac-
tive theorem prover Isabelle. To that end, a
formalization of Launchbury’s Natural Seman-
tics for Lazy Evaluation is modelled in Isabelle,
including a correctness and adequacy proof. LAZY

EVALUATION

LAZY EVALUATION

9 783731 505464

ISBN 978-3-7315-0546-4

	Introduction
	Notation and conventions
	Reproducibility and artefacts
	Lazy evaluation
	The GHC Haskell compiler
	GHC Core
	Rewrite rules and list fusion
	Evaluation and function arities

	Arities and eta-expansion
	Nominal logic
	Permutation sets
	Support and freshness
	Abstractions
	Strong induction rules
	Equivariance

	Isabelle
	The prettiness of Isabelle code
	Nominal logic in Isabelle
	Domain theory and the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOLCF package

	Formalizing Launchbury's natural semantics
	Launchbury's semantics
	Natural semantics
	Denotational semantics
	Discussions of modifications

	Correctness
	Discussions of modifications

	Adequacy
	The resourced denotational semantics
	Denotational black holes
	Resourced adequacy
	Relating the denotational semantics
	Concluding the adequacy
	Discussions of modifications

	Data type encodings and base values
	Data types via Church encoding
	Adding Booleans

	A small-step semantics
	Sestoft's mark-1 abstract machine
	Relating Sestoft's and Launchbury's semantics
	Discussions of modifications

	The Isabelle formalisation
	Employing nominal logic
	The type of environments
	Abstracting over the denotational semantics
	Relating the domains Value and CValue

	Related work

	Call Arity
	The need for co-call analysis
	A syntactical analysis
	Incoming arity
	Called-once information
	Mutually exclusive calls
	Co-call analysis

	The type of co-call graphs
	The Call Arity analysis
	The specification
	The equations

	The implementation
	Interesting variables
	Finding the fixed points
	Top-level values
	The graph data structure

	Discussion
	Call Arity and list fusion
	Limitations
	Measurements
	Compiler performance

	Related work
	GHC's arity analyses
	Higher order sharing analyses
	Explicit one-shot annotation
	unfoldr/destroy and stream fusion
	Worker-wrapper list fusion
	Control flow based analyses

	Future work
	Improvements to the analysis
	Tighter integration into GHC

	The safety of Call Arity
	Proof outline
	Arity analyses
	A concrete arity analysis
	Functional correctness

	Cardinality analyses
	Abstract cardinality analysis
	Trace tree cardinality analysis
	Co-call cardinality analysis
	Call Arity, concretely

	The Isabelle formalisation
	Size and effort
	Structure
	The trace tree type implementation

	The formalisation gap
	Core vs. my syntax
	Core vs. my semantics
	Core’s annotations
	Implementation vs. formalisation
	Performance and safety in the larger context

	Related work

	Conclusion
	Formal definitions and main theorems
	Terms
	Semantics
	Natural semantics
	Small-step semantics
	Denotational semantics

	Correctness and adequacy theorems
	Call Arity
	Arities
	Co-call graphs
	The Call Arity analysis
	Call Arity theorems

	Call Arity code
	Co-call graphs
	The Call Arity analysis

	Bibliography
	Index

