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Abstract

High level programming languages, in particular the lazy, pure, func-
tional kind, liberate the programmer from having to think about the
low-level details of how his code is going to be executed, and they give
the compiler extra leeway in optimising the program. This distance to
the actual machine makes it harder to reason about the effect of the com-
piler’s transformations on the program'’s performance. Therefore, these
transformations are often only evaluated empirically by measuring the
performance of a few benchmark programs. This yields useful evidence,
but not universal assurance.

Formal semantics of programming languages can serve as guide rails
to the implementation of a compiler, and formal proofs can universally
show that the compiler does not inadvertently change the meaning of a
program. Can they also be used effectively to establish that a program
transformation performed by the compiler is indeed an optimisation?

In this thesis, I answer this question in three steps: I develop a new
compiler transformation; I build the tools to analyse it in an interactive
theorem prover; finally I prove safety of the transformation, i.e. that the
transformed program — in a suitable abstract sense — performs at least
as well as the original one.

My compiler transformation and accompanying program analysis Call
Arity, which is now shipped with the Haskell compiler GHC, solves



Abstract

a long-standing problem with the list fusion program transformation:
Accumulator passing list consumers like foldl and sum would, if they
were allowed to take part in list fusion, produce badly performing code.
Call Arity empowers the compiler to further rewrite such code, by eta-
expanding function definitions, into a form that runs efficiently again.
The key ingredient is a novel cardinality analysis based on the notion of
co-call graphs, which can detect whether a variable is used at most once,
even in the presence of recursion.

I provide empirical evidence that my analysis is indeed able to solve
the problem: Now list fusion can provide significant improvements in
these cases. The measurements also show that there are instances besides
list fusion where the transformation fires and improves the program.
No program in the benchmark suite regressed as a result of introducing
Call Arity.

In order to be able to verify these statements formally, I formalise Launch-
bury’s natural semantics for lazy evaluation in the interactive theorem
prover Isabelle. As Launchbury’s semantics is a very successful and
commonly accepted semantics for lambda calculus with mutually re-
cursive let-bindings that models lazy evaluation, it is a natural choice
for this endeavour.

My formalisation uses nominal logic, in the form of the Isabelle pack-
age Nominal2, to handle the issue of names and binders, which is gener-
ally one of the main hurdles in any formalisation work in programming
languages. It is one of the largest Isabelle developments using this
method, and the first to effectively combine it with the HOLCF package
for domain theory. My first attempt to combine these turned out to be
a dead end. I explain how and why that did not go well and how I
eventually overcame the challenges.

Furthermore, I give the first rigorous adequacy proof of Launchbury’s
semantics. The proof sketch given by Launchbury has resisted past
attempts to complete it. I found a more elegant and direct proof by
slightly deviating from his outline.

Equipped with this formalisation, I model the Call Arity analysis and
transformation in Isabelle and prove that it does not degrade program
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performance. My abstract measure of performance is the number of
allocations performed by the program; I explain why this is a suitable
choice for my use case. The proof is modular and introduces trace trees
as a suitable domain for abstract cardinality analyses.

Every formal development, whether machine-checked or not, has
a formalisation gap between the model and the modelled artefact. I
discuss the breadth of the gap, in particular its limits given that Call
Arity is but one part in a large, real-world compiler.

All in all I present novel program analyses to solve an open problem
with [ist fusion and to generally improve the compiler, and I demonstrate
how formal methods can be used to prove an operational property —
safety — at this high level.
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Zusammenfassung

Hohere Programmiersprachen, insbesondere rein funktionale mit Be-
darfsauswertung, befreien den Programmierer von der Pflicht, sich dar-
uber Gedanken zu machen, wie ihr Programm tatsdchlich auf der Ma-
schine ausgefiihrt werden wird. Ebenso hat der Compiler beim Optimie-
ren von Programmen in solchen Sprachen grofieren Spielraum. Dieser
Abstand zur Maschine macht es allerdings auch schwieriger, vorher-
zusagen, wie sich die Programmtransformationen des Compilers auf
die Leistung des Programms auswirkt. Daher werden solche Transfor-
mationen oft nur empirisch untersucht, indem die Leistung von ein
paar wenigen Beispielprogrammen gemessen wird. So werden zwar
durchaus wertvolle Anhaltspunkte gewonnen, jedoch keine allgemein
giiltigen Aussagen.

Formale Semantiken von Programmiersprachen konnen als Leitplan-
ken bei der Implementierung eines Compilers dienen, und formale Be-
weise konnen allgemeingiiltig zeigen, dass ein Compiler die Bedeutung
eines Programmes nicht unbeabsichtigt verdndert. Kénnen wir mit ihrer
Hilfe auch beweisen, dass eine Programmtransformation, wie sie der
Compiler vornimmt, in der Tat eine Optimierung ist?

Dieser Frage gehe ich in dieser Arbeit in drei Schritten nach: Ich ent-
wickle eine neue Compiler-Transformation; ich baue die Werkzeuge um
sie in einem interaktiven Theorembeweiser zu untersuchen; letztendlich

ix



Zusammenfassung

beweise ich, dass das umgeschriebene Programm - in einem geeigneten
abstrakten Sinne — mindestens so performant ist als zuvor.

Meine Compiler-Transformation, genannt Call Arity, wird inzwischen
mit dem Haskell-Compiler GHC ausgeliefert und 16st ein schon lan-
ge bestehendes Problem mit der Programmtransformation list-fusion:
Funktionen wie foldl und sum, die Listen verarbeiten und dabei einen
Akkumulator verwenden, haben, wenn auch sie von list-fusion umge-
schrieben wiirden, zu unerwiinscht langsamen Code gefiihrt. Call Arity
ermoglicht es dem Compiler, solchen Code weiter umzuschreiben und
wieder in eine effiziente Form zu bringen, in dem er Funktionsdefinition
geeignet eta-expandiert. Die dabei entscheidende Zutat ist eine neue
Kardinalitdts-Analyse, die erkennen kann, wenn eine Variable hchstens
einmal verwendet wird — und das sogar bei rekursivem Code.

Ich zeige empirisch, dass meine Analyse tatsdchlich das Problem 16st
und nun auch in diesen Féllen list-fusion die Leistung der Programme
signifikant verbessern kann. Ich zeige auch, dass es Situationen jenseits
von list-fusion gibt, in denen meine Transformation anspringt und zu
Verbesserungen fiihrt.

Um diese Aussagen auch formal tiberpriifen zu kénnen, formalisiere
ich Launchburys Semantik fiir Sprachen mit Bedarfsauswertung im
interaktiven Theorembeweiser Isabelle. Diese verbreitete und allgemein
akzeptierte Semantik modelliert Bedarfsauswertung im Lambda-Kalkiil
mit wechselseitiger Rekursion und ist daher in meinem Fall die Semantik
der Wahl.

Um die Problematik von Namen und Bindungen, die generell eine der
Hauptschwierigkeiten bei der Formalisierung von Programmierspra-
chen ist, in den Griff zu bekommen, verwende ich Nominallogik, die
fur Isabelle im Paket Nominal2 implementiert ist. Meine Formalisierung
ist eine der grofiten Isabelle-Formalisierungen, die Nominal2 verwendet,
und die erste, die es effektiv mit dem HOLCF-Paket, welches Doman-
entheorie umsetzt, kombiniert. Mein erster Anlauf, diese Techniken zu
kombinieren, scheiterte; ich erklare, wie und warum, und beschreibe,
wie ich die Probleme letztendlich {iberwand.



Zusammenfassung

Dartiber hinaus habe ich den ersten rigorosen Beweis, dass Launchburys
Semantik addquat ist, gefiihrt. Launchburys Beweisansatz widersteht
bisher jeglichen Versuchen, ihn zu vervollstandigen. Ich wich ein wenig
von dem Weg ab, den er umrissen hat, und fand so einen eleganteren
und direkteren Beweis.

Auf dieser Formalisierung baue ich auf, modelliere die Call Arity-Trans-
formation und -Analyse in Isabelle und beweise, dass sie die Leistung
der Programme nicht verringert. Als abstraktes Leistungsmaf} verwende
ich dabei die Anzahl der Speicherzellen, die das Programm anfordert.
Ich erkldre, warum dies in meinem Fall eine geeignete Wahl ist. Der
Beweis ist modular und fiithrt das Konzept der trace trees ein, mit der
sich abstrakte Kardinalitdts-Analysen beschreiben lassen.

Bei jeder Formalisierung, ob Computer-gepriift oder nicht, entsteht
ein Formalisierungs-Spalt zwischen dem Modell und dem Modellier-
ten. Ich bemesse die Breite des Spaltes, der sich im vorliegenden Fall
insbesondere daraus ergibt, dass Call Arity nur ein Teil eines grofien,
produktiv eingesetzten Compilers ist.

Insgesamt fiihre ich also eine neue Programmanalyse ein, die ein offe-
nes Problem mit list fusion 16st und auch dartiber hinaus den Compiler
verbessert. Dariiber hinaus zeige ich, wie formale Methoden genutzt
werden kénnen um auf dieser hohen Abstraktionsebene Beweise tiber
nicht-funktionale Eigenschaften wie das Performanceverhalten zu fith-
ren.
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Functional programming combines
the flexibility and power of abstract
mathematics with the intuitive
clarity of abstract mathematics.

Randall Munroe, xkcd #1270

CHAPTER 1

Introduction

It is a pleasure to create programs in functional programming languages,
as they allow for a very high-level style of programming, using abstrac-
tion and composition. It suits the human brain that is trying to solve a
problem, instead of accommodating the machine that has to implement
the instructions.

But such an abstraction comes at a cost: Generally, programs written
in such high-level style perform worse than manually tweaked low-level
code. Therefore, we reach out to optimising compilers, with the hope
that they can amend this overhead, at least to some extent.

An optimising compiler necessarily needs to be conservative in how it
changes the programs: We would not be happy if the program becomes
faster, but suddenly computes wrong results. Naturally, this limits the
compiler’s latitude in applying fancy and far-reaching transformations.
Conversely, the more declarative the language is — i.e. the less low-
level details it specifies — and the fewer side-effects can occur, the more
possibilities for optimising transformations arise.

This explains why compilers of pure, lazy functional programming
languages, such as Haskell, can pull quite astonishing tricks on the code.
A prime example for such a far-reaching transformation is list fusion:
This technique transforms a program built from smaller components,
each producing and/or consuming a list of values, into one combined
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loop. This not only avoids having to allocate, traverse and deallocate the
list structure of each intermediate value, it also puts the actual processing
codes next to each other, allowing for local optimisations to work on
code that was originally far apart.

Unfortunately, there are many instances of code where the sufficiently
smart compiler could do something clever — and often the uninitiated
user actually expects that clever thing to happen — but the real compilers
out there just do not do it yet. This thesis is about one such instance: A
large number of list processing functions, including common combina-
tors such as sum and length, were not set up to take part in list fusion.
This is not because including them in the technique is difficult to do,
but because the code that results from such a transformation would
perform very badly.

I found a new program analysis, called Call Arity, which gives the
compiler enough information to further transform that problematic
code into nice, straightforward and efficient code — code that is roughly
what a programmer would write manually, if he chose to program such
low-level code. I motivate and describe the analysis and its impact on
program performance, determined empirically.

The same language treats — purity and laziness — which make it easier
for the compiler to transform programs also ease a rigorous, formal
discussion of the artefacts at hand. I therefore evaluate Call Arity not
only empirically, but also prove that it is correct (i.e. does not change
the meaning of the program) and safe (i.e. does not make the program’s
performance worse). While the former is common practice in this field
of research, the latter is rarely done with such rigour.

What makes me so confident that my proof deserves to be called
rigorous? If I just did a pen-and-paper proof, I would not trust it to
that extent. For that reason, I implemented the syntax, the semantics
and the compiler transformations in the theorem prover Isabelle and
performed all proofs therein. Occasionally, this required derivations
from the pen-and-paper presentation given in this thesis. I discuss
these differences, and other noteworthy facts about the formalisation,
in dedicated sections in the following chapters.
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Such a formal proof requires a formal semantics for the programming
language at hand, and in order to make statements about an operational
property, the semantics has to be sufficiently detailed. Launchbury’s
natural semantics for lazy evaluation [Lau93] is such a semantics, and
can be considered a standard semantics in lazy functional programming
language research. I implemented this semantics in Isabelle, including
proofs of the two fundamental properties: correctness and adequacy
(with regard to a standard denotational semantics). As no rigorous proof
of adequacy existed before, I present my proof in detail.

I have structured this thesis as follows: This chapter contains a brief
introduction to the Haskell compiler GHC, in particular its intermedi-
ate language Core, its evaluation strategy and list fusion, introduces
the central notion of arity, describes nominal logic and the interactive
theorem prover Isabelle. Chapter 2 lays the foundation by formally
introducing the syntax and the various semantics, and contains rigorous
correctness and adequacy proofs for Launchbury’s semantics. Chapter 3
motivates, describes and empirically evaluates Call Arity. Chapter 4
builds on the previous two chapters and contains the formal proof that
Call Arity is safe.

Appendix A contains the Isabelle formulation of the main results and
relevant definitions. Appendix B lists the Haskell implementation of
Call Arity. The bibliography and an index of used symbols and terms,
including short explanations, follow. Figure 1 contains a map to the main
artefacts and how they relate to each other. In the interest of readability
I omit elaborate definitions and descriptions in the figure; if necessary,
consult the index.

The present book is essentially my thesis, which is officially published
separately [Brel6]. I have fixed spelling mistakes, adjusted the typog-
raphy, slightly expanded Section 4.6 and mentioned newer, independet
measurements in Section 3.5.4.
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Figure 1: Main artefacts of this thesis and their relationship



1.1 Notation and conventions

1.1 Notation and conventions

I use mostly standard mathematical notation in this text, and any custom
notation is introduced upon its first use. The index at the end of the thesis
also includes symbols and notations, together with a short description
of each entry.

Proofs are concluded by a black square (m), theorems, lemmas, defi-
nitions and examples span to the next diamond ().

When a function argument is just a single symbol, possibly with sub-
or superscripts, I usually omit the parentheses for better readability: fve;
instead of fv(eq).

Variables printed with a dot (e.g. &) refer to lists whose elements are
usually referred to by the plain variable (e.g. «). Variables printed with a
bar (e.g. &) refer to objects that are partial or total maps from variable
names to whatever the plain variable usually stands for. The same
notation is used to distinguish related functions: If 7" is a plain function
with one argument of a certain type, then 7 is a function that expects a
list of elements of that type and 7 expects a map from variables names
to values of that type.

Source code listings and code fragments within the text are typeset us-
ing a proportional sans-serif font, with language keywords highlighted
by heavy type: if p a then f 1 else f 2.

When writing Haskell code, I use some Unicode syntax instead of
the more common ASCII representation, in particular a lambda instead
of a backslash for lambda abstractions, and a proper arrow instead of
>,eg M —=x)a—a

The Isabelle code snippets are produced by Isabelle from the sources,
and printed in the usual I£TEX style of Isabelle’s document generation
facilities. The name of the Isabelle file containing the snipped is given in
the top-right corner, unless it is the same as for the preceding snippet.

” //I//

There are various schools of writing concerning the use of “we”,
and “the author”. Since a dissertation thesis is necessarily more tied to
the person than a paper, even if it was a single author paper, I decided
to use the first person singular whenever I describe what I have done
or not done, and why I have done so. Nevertheless, large parts of the
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text, especially the proofs, are an invitation to you, the reader, to follow
my train of thoughts. Optimistically assuming that you follow this
invitation, I will commonly use “we” in these parts, referring to you
and me, just as if we were standing in front of a blackboard where I
walk you through my proof.

I do not avoid the passive voice as fundamentally as other authors
would: It is used whenever I believe readability is best served this way.

1.2 Reproducibility and artefacts

This thesis describes a few artefacts that cannot be included in their en-
tirety in the document, or that will evolve further in the future and thus
diverge from what is discussed here. This includes the Call Arity imple-
mentation, which is part of the GHC source tree, and the Isabelle formal-
isations of Launchbury’s semantics [Bre13] and of the safety of Call Arity
[Bre15d]. Furthermore, I have conducted performance measurements of
which only a summary is included in this text (Section 3.5.3), but neither
the raw data nor the tools that produced them.

In the interest of reproducibility and verifiability, I have collected
all these artefacts on http://www.joachim-breitner.de/thesis. In particular,
there you will find:

o The Isabelle sources of both developments, in precisely the version
that is described in this document, in three formats: The plain . thy
file, a browsable HTML version and the Isabelle-generated IATEX
output.

e Scripts to fetch and build GHC in the version discussed in this
thesis (7.10.3).

e Patches to that version of GHC to produce the various variants
compared in the benchmark sections.

e Scripts to run the benchmark suite, collect the results and produce
Tables 1 and 3 in the benchmark sections.
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o Code that I have created to check claims in this thesis, e.g. about
the performance cost of unsaturated function calls (Section 1.4.3)
and the effect of Call Arity on difference lists (Table 2).

e The IXTEX sources of the thesis document itself.

o Errata, if necessary.

1.3 Lazy evaluation

With the title of this thesis sporting the term lazy evaluation so promi-
nently, it seems prudent to briefly introduce it in general terms.
Consider the function

writeErrorToLog e =
writeToLog ("Error " +4 errNum e ++4 ": " 4+ errDesc €)

which turns an error, given as an element of a structured data type, into
a readable text and uses a hypothetical writeToLog function to write the
text to a log file. In most programming languages, writeErrorToLog e
would first calculate the text and only then call writeToLog. But assume
that in the application at hand, logging is optional, and actually turned
off: writeToLog would have to discard the text passed to it, and the
calculation would have been useless. This behaviour is called strict
evaluation or call-by-value.

In a programming language with lazy evaluation, the function writeEr-
ror ToLog would not actually assemble the text, but defer this calculation,
by creating a thunk that serves as a placeholder. If writeToLog decides
that no log file is to be written, it will discard the thunk and the use-
less calculation never happens. On the other hand, if writeToLog does
write to the log file, this will eventually require the actual value of the
argument and only then trigger the evaluation of the thunk. We also
say that its evaluation is forced.

The point of lazy evaluation is not just to avoid useless computation:
One of its main benefits is that code can be refactored much more easily.
Consider the following plausible implementation of writeToLog:
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writeTolLog txt =
if logLevel >= 1 then appendFile "error.log" txt
else return ()

This function does two things: It decides whether logging is actually
required, and if so, it performs the logging. Likely there are more places
where we need to decide whether logging is required, so it is desirable to
abstract over this procedure and implement it in a definition of its own:
ifLogging action =
if loglLevel >= 1 then action
else return ()

writeToLog txt = ifLogging (appendFile "error.log" txt)

In a programming language with strict evaluation, this will not work
as intended: The argument appendFile "error.log" txt would be evaluated
before ifLogging gets a chance to check the log level. Our refactoring just
broke the program! Note that even in strict languages, the if-then-else-
construct evaluates the two branches lazily, but this is a built-in special
case for this syntactic construct, and not available for the programmer
to abstract over.

In a programming language with lazy evaluation, however, this refac-
toring is valid. This way, lazy evaluation allows the programmer to
define custom control structures.

Another aspect of lazy evaluation that is crucial to my work is sharing:
Although the argument to a function is not evaluated until it is used
for the first time, it will not be evaluated a second time. For example
the code map (2”'b *) xs, which multiplies every element of the list xs
by a certain power of two, will not actually calculate 2”'b if the list xs is
empty. But even if xs has more than one element, 2"'b is calculated only
once, and the result is shared between the various uses. This feature
distinguishes lazy evaluation, also called call-by-need, from call-by-name
evaluation. According to the latter scheme, which is of less practical
relevance, the calculation of an argument is also deferred until it is
needed, but it would be re-evaluated repeatedly if used more than once.
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A common way to implement sharing is to add code to every thunk that,
after the evaluation of the thunk has been triggered and its value has
been calculated, replaces the thunk by this value, so that every existing
reference to the thunk now references the value. This mechanism is
called updating.

1.4 The GHC Haskell compiler

The programming language Haskell has been created in the 1990s by
a committee with the aim to overcome the then wild growths of lazy
functional programming languages. The committee produced a series of
language specifications, including the final Haskell 98 language report
[Pey03].! This standardisation allowed a number of Haskell compilers
to emerge.

These days, still a number of compilers are actively developed, but
while most of them are dedicated to special purposes or research, only
one compiler is of practical relevance: The Glasgow Haskell Compiler
(GHCQ).

In order for my work to have an impact on actual users using Haskell
to solve real problems, I implemented Call Arity within GHC. It was first
shipped with GHC-7.10, released on March 27th 2015%. GHC’s internal
structure necessarily influenced the design and implementation of Call
Arity, so I will outline its relevant features here.

1.4.1 GHC Core

Speaking in terms of syntax, Haskell is a large language: As of version
7.10.3 of GHC, the data types used to represent the abstract syntax
tree of an Haskell expression have over 79 constructors, and 24 more
are required to express the Haskell types. Therefore GHC - like most
compilers — transforms the source language into a smaller intermediate

1 After a long phase of stability, a revision was published in 2010 and is now the most

recent Haskell specification [Mar10]. With regard to this thesis, the differences are
irrelevant.
The coincidence with my birthday is, well, coincidental.
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language. In this case, the intermediate language is GHC Core and uses
only the 15 constructors given in Fig. 2 to represent expressions.

The translation from Haskell to Core is not just a matter of simple
syntactic desugaring, as the type systems differ noticeably: Haskell has
features in the type system that have a computational meaning; most
prominently type classes. Therefore, GHC has to type-check the full
Haskell program, and as a side-effect of type-checking the compiler
produces the code that implements these features. In the case of type
classes the compiler generates dictionaries® for each instance and passes
them around as regular function arguments.

data Expr b = Var Id
| Lit Literal
| App (Expr b) (Expr b)
| Lam b (Expr b)

| Let (Bind b) (Expr b)

| Case (Expr b) b Type [(AltCon, [b], Expr b)]
| Cast (Expr b) Coercion

| Tick (Tickish Id) (Expr b)

| Type Type

| Coercion Coercion

data AltCon = DataAlt DataCon
| LitAlt Literal
| DEFAULT

data Bind b = NonRec b (Expr b)
| Rec [(b, (Expr b))]

Figure 2: The data type representing GHC Core expressions

3 From an operational point of view, these might better be called tuples, as they are

single-constructor data types and the members are at fixed, statically known positions.
There is no runtime string-based lookup as in “dictionaries” in dynamic languages.

10
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Nevertheless, Core does have a type system, and Core terms are explic-
itly typed. This is used as an effective quality assurance tool [MP12]:
The internal type checker (called linter) would complain if the Core gen-
erated from the Haskell source is not well-typed, or if any of the further
processing steps breaks the typing. The type system is relatively small
(12 constructors) but powerful enough to support all features of the
Haskell type system, including fancy extensions like GADTs [PVWWO06]
and type families [SPCS08].

The theory behind Core is System F¢, an explicitly typed lambda
calculus with explicit type abstraction and application as well as type
equality witnesses called coercions [SCPDO07]. The latter add another 15
constructors to the count. Core and its theoretical counterpart, System
Fc, are continuously refined, recently by a stratification of the coercions
into roles [WVPZ11; BEPW14].

Most of the published research around Core and System Fc revolves
around the type system: How to make it more expressive and more
powerful. There is, however, a lack of operational treatments of Core
in the literature. The extended version of [BEPW14] contains a small-
step semantics of System Fc. It serves not as a description of Core’s
operational behaviour but rather as a tool to prove type safety of System
Fc and punts on let-bindings completely. Eisenberg also maintains a
small-step semantics for full Core [Eis15], which is call-by-name. There
is no description of how Core implements lazy evaluation besides the
actual implementation in GHC, i.e. the Core-to-STG transformation. This
lack contributed to the breadth of the formalisation gap of this work
(Section 4.5.2).

Almost all of the optimisations performed by GHC are Core-to-Core
transformations; Call Arity is no exception. But as not all features of
Core are relevant in the description and discussion of Call Arity, the
trimmed down lambda calculus introduced in Section 2.1 serves to take
the role of Core; I discuss this simplification in Section 4.5.1.

11
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1.4.2 Rewrite rules and list fusion

When we teach functional programming, we often use equational rea-
soning to explain when two programs are the same, or to derive more
specialised or faster programs from specifications or existing programs,
e.g. as Bird does [Bir89]. Such equational reasoning is especially power-
ful in pure, lazy languages, as more equalities hold here: For example,
bindings may be floated out of or into expressions, or inlined completely,
common code patterns can be abstracted into higher-order functions etc.

But instead of expecting the programmer to apply such equalities, we
can actually teach the compiler to do that. This mechanism, called rewrite
rules, lets the author of a software library specify rules that contain a
code pattern (the left-hand side of the rule) and replacements (the right-
hand side of a rule), with free variables that will be matched by any
code [PTHO1].

For example, the code

{-# RULES

"map/map" forall f g xs. map f (map g xs) = map (f. g) xs

#-}

allows the compiler to make use of the functoriality of map and replace
code like

sum (map (+1) (map (x2) [0..10]))
by
sum (map ((+1) . (x2)) [0..10]),
which calls map only once, and hence avoids the allocation, traversal
and deallocation of one intermediate list.

What about the other intermediate lists in that code? Can we get rid
of them as well? After all, the code could well be written completely
list-lessly:*

4 Due to the excessive use of the stack, this is not an efficient way to sum the elements of
a list, and a real implementation would use a strict accumulator and tail recursion. For
the sake of this explanation, please bear with me here.

12
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go 0
wheregon|n>10 =0
| otherwise = (n*2 4+ 1) + go (n + 1)

This feat is done by list fusion [GLP93], which is essentially a set of
rewrite rules that tell the compiler how to transform the high-level code
with lists into the nice code above. The central idea is that instead of
allocating the list constructors (: and []), the producer of a list passes
the head of the list and the (already processed) tail of the list to a func-
tion provided by the consumer. Thus a list producer is expected to
use the following build function to produce a list, instead of using the
constructors directly:

build :: forall a. (forallb. (a = b — b) = b — b) — [a]
build g = g (:) []

The higher rank type signature ensures that g is consistent in using
the argument provided by build to produce the result: By requiring the
argument g to build a result of an arbitrary type b, it has no choice but
to use the given arguments (here (:) and []) to construct it.

A list producer implemented using build is called a good producer.

For example, instead of defining the enumeration function naively as
[n.m] = gonm

wheregonm|n>m =]
| otherwise = n : go (n+1) m
it can be defined in terms of build, and thus the actual code in go is
abstract in the list constructors:
[n..m] = build (go n m)
where gon m cons nil | n > m = nil
| otherwise = n ‘cons’ go (n+1) m cons nil

The build function has a counterpart that is to be used by list con-

sumers; it is the well-known right-fold:

foldr: (@a—b—b) >b—[a] = b
foldr k z = go
where go [] =z
go (yiys) =y 'k’ goys

13
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Any list consumer implemented via foldr is called a good consumer.
It is a typical exercise for beginners to write a list consuming function
like sum in terms of foldr:>

sum :: [Int] — Int
sum xs = foldr (+) 0 xs

After rewriting as many list producers as possible in terms of build,
and as many list consumers as possible in terms of foldr, what have we
gained? The benefit comes from one single and generally applicable
rewrite rule

{-# RULES

"fold/build" forall k z g. foldr k z (build g) =gk z

#-}
which fuses a good producer with a good consumer. It makes the pro-
ducer use the consumer’s combinators instead of the actual list construc-
tors, and thus eliminates the intermediate list.

Simplifying our example a bit, we can see that sum [0..10] would, after

some inlining, become
foldr (+) 0 (build (go 0 10))

where gon mconsnil [n >m =il

| otherwise = n ‘cons’ go (n+1) m cons nil

where the rewrite rule is applicable, and GHC rewrites this to
go010(+)0

where gon m cons nil [n > m = nil

| otherwise = n ‘cons’ go (n+1) m cons nil

which can further be simplified (by a constant propagation and dropping
unused arguments) to
go 010

wheregonm|n>m =0

| otherwise = n + go (n+1) m

which is roughly the code we would write by hand.

5 As mentioned in the previous footnote, this is not a good and practical definition for

summation. In your code, please do use sum = foldl' (+) 0 instead!

14
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A function like map is both a list consumer and a list producer, but it
poses no problem to make it both a good consumer and a good producer:
map :: (a = b) — [a] — [b]

map f xs = build (Acons nil — foldr (A x ys — f x ‘cons’ ys) nil xs)

With this definition for map, the compiler will indeed transform the
expression sum (map (+1) (map (*2) [0..10])) into the nice list-less code
on page 12.

It is remarkable that list fusion does not have to be a built-in feature
of the compiler, but can be completely defined by library code using
rewrite rules.

List fusion based on foldr/build is but one of several techniques to
eliminate intermediate data structures; there is unfoldr /destroy [Sve02]
and stream fusion [CLS07]; they differ in what functions can be effi-
ciently turned into good producers and consumers [Coul0]. I focus
on foldr/build as that is the technique used for the list data type in the
Haskell standard libraries.

1.4.3 Evaluation and function arities

When GHC is done optimising the program at the Core stage, it trans-
forms it to machine code via yet another intermediate language. GHC
Core is translated to the Spineless Tagless G-Machine (STG) [Pey92]. Al-
though still a functional language based on the untyped lambda calculus,
it already determines many low-level details of the eventual execution:
In particular, allocation of data and of function closures is explicit, the
memory layout of data structures is known and all functions have a
particular arity, i.e. number of parameters. So although it is not machine
code yet, together with the runtime system (which is implemented in C),
most details of the runtime behaviour are known by now.

The function arity at this stage has an important effect on performance,
as a mismatch between the number of arguments a function expects and
the number of arguments it is called with causes significant overhead
during execution.

15
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multA :: Int — Int — Int
multAOy =0
multA xy =x %y

multB :: Int — Int — Int
multB0O=X_—0
multBx =y — xxvy

Figure 3: Semantically equal functions with different arities

Consider the two functions in Fig. 3, which both implement a short-
circuiting multiplication operator. The first has an arity of 2, while
the second has an arity of 1. This matters: Evaluating the expression
multB 1 2 is more than 25% slower than evaluating multA 1 2! Why
is that so?

For the former, the compiler sees that enough arguments are given
to multA to satisfy its arity, so it puts them in registers and simply calls
the code of multA.

For the latter, the code first pushes onto the stack a continuation that
will, eventually, apply its argument to 2. Then it calls multB with only
the first argument in an register. multB then evaluates this argument
and checks that is not zero. It then allocates, on the heap, a function
closure capturing x, and passes it to the continuation on the stack. This
continuation, implemented generically in the runtime, analyses the func-
tion closure to see that it indeed expects one more argument, so it finally
passes the second argument, and the actual computation can happen.

This example demonstrates why it is important for good performance
to have functions expect as many arguments as they are being called
with.

Could the compiler simply always make a function expect as many
arguments as possible? No!

Compare the expression sum (map (multA n) [1..1000]) with the ex-
pression sum (map (multB n) [1..1000]). The former will call multA one
thousand times and thus perform the check n == 0 over and over again,

16
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while the latter calls multB once, hence performs the check once, and
then re-uses the returned function a thousand times. In this example the
check is rather cheap, but even then, for n=0, the latter code is 20% faster.
With different, more expensive checks, the performance difference can
become arbitrarily large.

More details about how GHC implements function calls, and why it
does it that way, can be found in [MP06].

1.5 Arities and eta-expansion

The notion of arity is central to this thesis, and deserves a more abstract
definition in terms of eta-expansion. This definition formally builds
on the syntax and semantics introduced later, but can be understood
on its own.

Eta-expansion replaces an expression e by (\z.e z), where z is fresh
with regard to e. More generally, the n-fold eta-expansion is described by

En(e) = (N\z1...2p.021... 2y),

where the z; are distinct and fresh with regard to e.

We intuitively consider an expression e to have arity « € IN if we
can replace it by &,(e) without negative effect on the performance —
whatever that means precisely. Analogously, for a variable bound by
let x = ¢, its arity x, is the arity of e.

Example
The Haskell function
let fx=if xthen\y -y +1
else Ay >y —1
can be considered to have arity 2: If we eta-expand its right-hand side,
and apply some mild simplifications, we get

let fxy=if xtheny + 1
else y — 1

which should in general perform better than the original code. Note that
in a lazy language, x will be evaluated at most once. o

17
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In this example, I determined the arity of an expression based on its
definition and obtained its internal arity. Such an analysis has been part
of GHC since a while and is described in [XP05].

For the rest of this work, however, I treat ¢ as a black box and instead
look at how it is being used, i.e. its context, to determine its external arity.
For that, I can give an alternative definition: An expression e has arity «
if upon every evaluation of ¢, there are at least « arguments on the stack.

Example
In the Haskell code

letfx=ifgxthen\y -y +1

else \y -y —1
infl2+f34
the function f has arity 2: Because it is always called with two argu-
ments, the eta-expansion itself has no effect, but it allows for subsequent
optimisations that improve the code to

letfxy=if gxtheny + 1

else y — 1
infl24f34.
The internal arity is insufficient to justify this, as in a different context,
this transformation could create havoc: Assume the function is passed
to a higher-order function such as map (f 1) [1.1000]. If f were now
eta-expanded, the possibly costly call to g 1 would no longer be shared
and repeated a thousand times. o

If an expression has arity «, then it also has arity &’ for &’ < «; every
expression has arity 0. The arities can thus be arranged to form a lattice:

---Cc3c2cico.

For convenience, I set 0 — 1 = 0. As mentioned in Section 1.1, & is a
partial map from variable names to arities, and & is a list of arities.

18
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1.6 Nominal logic

In pen-and-paper proofs about programming languages, it is customary
to consider alpha-equivalent terms as equal, i.e. \x.x = A\y.y. The
human brain is relatively good in following that reasoning, keeping track
of the scope of variables and implicitly making the right assumptions
about what names in a proof may be equal to another. For example, in
a proof by induction on the formation of terms, it often goes without
saying that in the case for \x. e, the x is fresh and not related to any name
occurring outside the scope of this lambda.

Such loose reasoning stands in the way of a rigorous and formal
treatment. If the formalisation introduces terms as raw terms where the
name of the bound variable contributes to the identity of the object, i.e.
Ax.x # \y.y, then in every inductive proof one would have to worry
about the bound variable possibly being equal to some name in the
context, and if that poses a problem, one has to explicitly alpha-rename
the lambda abstraction, which in turn requires a proof that the statement
of the lemma indeed respects alpha-equivalence.

One alternative is to use nameless representations such as de-Bruijn
indices. With these, every term has a unique representation and the
issue of alpha-equivalency disappears. The downsides of such an ap-
proach are the need for two different syntactic constructors for variables
— one for the index of a bound name, and one for the name of a free
variable — and the relatively unnatural syntax, which stands in the way
of readability

A way out is provided by nominal logic, as devised by Pitts [Pit03].
This formalism allows us to use names as usual in binders and terms,
while still equating alpha-equivalent terms, and it provides induction
principles that allow us to assume bound names to be as fresh as we
intuitively want them to be.

This section gives a shallow introduction to nominal logic. I took
inspiration from [UTO05], simplified some details and omitted the proofs.

In the main body of the thesis I present my definitions and proofs in
the intuitive and somewhat loose way, without making use of concepts
specific to nominal logic. In particular I do not bother to state the equiv-
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ariance of my definitions and predicates. Having a machine-checked
formalisation, where all these slightly annoying and not very enlight-
ening details have been taken care of, gives me the certainty that no
problems lurk here.

1.6.1 Permutation sets

A core idea in nominal logic is that the effect of permuting names in an
object describes its binding structure.

Full nominal logic supports an infinite number of distinct sorts of
names, or atoms, but as I do not need this expressiveness, I restrict this
exposition to one sort of atoms, here suggestively named Var.

We are concerned with sets that admit swapping names:

Definition 1 (PSets)
A pset is a set X with an action e of the group Sym(Var) on X. o

Deciphering the group theory language, this means that there is an
operation e that satisfies, for every x € X,
- ()ex=xand
- (711 - 712) @ x = 711 ® (71 @ x) for all permutations 711, 712
where () is the identity permutation, and - the usual composition of
permutations.
The set of atoms, Var, is naturally a pset, with the standard action of
the permutation group.
Any set can be turned into a pset using the trivial operation, i.e. Tex =
x for all elements x of the set. This way, objects that do not “contain
names”, e.g. the set of natural numbers, or the Booleans, can be elegantly
part of the formalism. Such a pset is called pure.
Products and sums of psets are psets, with the permutations acting on
the components. Similarly, the set of lists with elements in a pset is a pset.
Functions from psets to psets are psets, with the action defined as

mef=Ax.me(f(m ex)).

Note that the permutation acting on the argument has to be inverted.
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1.6.2 Support and freshness

Usually, when discussing names and binders, one of the first definitions
is that of fve, the set of free variables of some term e. Intuitively, it is the
set of variables occurring in e that are not hidden behind some binder.

But this intuition gets us only so far: Consider the identity function
id: Var — Var. On the one hand, it does not operate on any variables,
it just passes them through. On the other hand, its graph mentions all
variables. So what should its set of free variables be — nothing ({}) or
everything (Var)?

Nominal logic avoids this problem by giving a general and abstract
definition of the set of free variables® of an element of any pset:

Definition 2 (Free and fresh variables)
The set of free variables of an element x of some pset X is defined as

fvx={a|card{b| (ab) ex # x} = co}. o
A variable v is fresh with regard to x if v ¢ fv x.

Spelled out, this says that a variable a is free in x if there are infinitely
many other variables b such that swapping these two affects x. Or, more
vaguely, a matters to x.

From this definition, many useful and expected equalities about fv
can be derived:
fvo = {v} for v € Var.
fv((x,y)) =fvxUfvy.
fvx = {} if x is from a pure pset.
fv(id) = {}, as w e id = id for all permutations 7.
Ifa,b ¢ fvx, then (ab) e x = x.

When talking about programming languages, we are used to having
“enough” variables, i.e. there is always one that is fresh with regard to
everything else around.

This is not true in general. For example, let f: Var — IN be a bijection,
then fv f = Var, as every transposition (ab) changes f. If such an object

6 Thisis commonly called the support. I use the term free variables in this introduction, as

the notions coincide in all cases relevant to this thesis.
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would appear during a proof, we would not be able to say “let x be a
variable that is fresh with regard to f”

But in practice, such objects do not occur, and there is always a fresh
variable. This is captured by the following

Definition 3 (Finite support)
A pset X is said to have finite support if fv x is finite for all x € X. ©

Since Var is infinite, it immediately follows that for every x from a pset
with finite support, there is a variable a that is fresh with regard to x.

The pset Var, as well as every pure pset, is a set with finite support.
Products, sums and lists of psets with finite support have themselves
finite support.

Sets of functions from psets with finite support, or from an infinite set
to a pset with finite support, do in general not have finite support. This
can be slightly annoying, as discussed in Section 2.6.2.

1.6.3 Abstractions

The point of nominal logic is to provide a convenient way to work
with abstractions. Formally, a nominal abstraction over a pset X is any
operation [_]._: Var — X — X that fulfils

(i) te ([a].x) = [ ea].(rrex)and

(i) [a].x; = [b]l.xp <= x1 = (ab)exyA(a=bVa¢fvxy).

For a pset X with finite support, this implies

fv([a].x) = fvx\ {a},

which further shows that this notion of free variables coincides with
our intuition and expectation.

This notion of abstraction can be extended to multiple binders, e.g. to
represent mutually recursive let-expressions [UK12].

1.6.4 Strong induction rules

My use case for nominal logic is to model the syntax of the lambda
calculus, and to get better induction principles.
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Consider this inductive definition of lambda expressions:
e€Expri=xlee| Axe

where x is a meta-variable referring to elements of Var. This would yield
the following induction rule

(Vx € Var.P(x)) =
(Ver,er € Exp.P(e1) = P(e2) = Pleg e2)) =
(Vx € Var,e € Exp. P(¢) = P(Ax.e)) = P(e)

where in the case for lambda expressions, the proof obligation is to be
discharged for any variable x, even if that variable is part of the context
(i.e. mentioned in P). This can be a major hurdle during a proof.

If one had Exp as a permutation set such that Ax.e is a proper nominal
induction, then it would be possible to prove a stronger induction rule:

(Vs € X,x € Var.P(5,x)) =

(Vs € X,e1,ep € Exp. P(s,e1) = P(s,en) = P(s,e1e)) =

(Vs € X,x € Var,e € Exp.x ¢ fvs = P(s,e) = P(s,Ax.e)) =
P(s,e)

Here the proposition P explicitly specifies its “context” in its first pa-
rameter, which may be of any pset X with finite support. In the case for
the lambda abstraction, we may additionally, and without any manual
naming or renaming, assume the variable x to be fresh with regard to
that context.

The construction of Exp as a permutation set with a nominal abstrac-
tion is not trivial and described in [UTO05]. Luckily, we do not have to
worry about that: The implementation of nominal logic in Isabelle takes
care of that (cf. Section 1.7.2).

1.6.5 Equivariance

The last concept from nominal logic that I need to introduce at this point
is that of equivariance. In order to systematically construct inductively
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defined types as psets, and then to define functions over terms of such
types by giving equations for each of these “constructors”, the involved
operations and functions need to be well-behaving, i.e. oblivious to the
concrete names involved. This intuition is captured by the following

Definition 4 (Equivariance)
A function f: X3 — X5 = -+ = X;;, = X, n > 0, between psets is
called equivariant if

Te f(x1,X0,...,%n) = f(rmex, TO@X, ..., TTO®Xy). o

Most common operations, such as tupling, list concatenation, the con-
structors of Exp etc. are equivariant, and this ability to freely move
permutations around is crucial to, for example, being able to prove

(Ax.ex) = (Ay.ey).

1.7 lIsabelle

This work has been formalised in the interactive theorem prover Isabelle
[NPWO2]. Roughly speaking, an interactive theorem prover has the
appearance of a text editor that allows the user to write mathematics
(definitions, theorems, proofs), with the very peculiar feature that it
understands what is written, and either points out problems to the user,
or confirms the correctness of the math.

There are a number of such systems in use, with Coq [Coq04] and
Isabelle being the most prominent examples. One distinguishing feature
of Isabelle is its genericity: It provides a meta-logical framework that
can be instantiated with different concrete logics.

I build on the logic Isabelle/HOL, which implements a typed higher-
order logic of total functions, in contrast to, for example, Isabelle/ZF,
which builds on untyped set theory a la Zermelo-Fraenkel. Although I,
like — presumably — most mathematicians, have been taught mathemat-
ics assuming set theory as the foundation of all math, all the actual math
that we commonly do happens in an implicitly typed setting, and the
choice of Isabelle/HOL over Isabelle/ZF is indeed natural. Furthermore,
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the tooling provided by Isabelle —libraries of existing formalisations, con-
servative extensions, proof automation — is much more comprehensive
for Isabelle/HOL.”

This theses builds on and refers to the Isabelle 2016 release.

1.7.1 The prettiness of Isabelle code

One distinguishing feature of Isabelle is its proof language Isar [Nip02],
which has a somewhat legible syntax with keywords in English and
allows for proofs that are nicely structured and readable. Furthermore,
Isabelle supports generating IATEX code from its theory files. So the
question arises whether I could have avoided re-writing everything in
the hand-written style, by generating the all the definitions, proofs and
theorems of this thesis out of my Isabelle theories.

For some parts, this would certainly be a viable option. Consider
the hand-written proof and the corresponding fragment of the Isabelle
theory in Fig. 4, taken from the case for application in the proof of
Theorem 2. To a reader who knows some Isabelle syntax, it is pleasing
to see how similar the hand-written proof and the Isabelle formalisation
are. However, even this carefully selected fragment still has its warts:

e The syntax does not quite match up. For example, the abstract
syntax tree node for an application is written explicitly using the
App constructor, whereas it is nicer to simply write e x. This is not
possible in Isabelle — juxtaposition cannot be overloaded.?

In some cases, I can define custom syntax in Isabelle that comes
very close to what I want. The _ |f, _ operator is a good example
for that. Unfortunately, this often comes at the cost of extra incon-
venience when entering these symbols. In antiquotations, where
Isabelle is asked to produce a certain existing term, such as the
conclusion of a previously proven lemma, Isabelle can make use
of such fancy syntax automatically, and hence for free, but regular

7 InIsabelle 2016, the HOL directory is more than 13 times the size of the ZF directory,
measured in lines of code.

8 At least not within reasonable use of the system.
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Isabelle theories will be converted to IXTEX as they are entered, so
in order to get fancy syntax, fancy syntax needs to be typed in.

An Isabelle formalisation will almost always contain some techni-
calities that I would like not to pervade the presentation.

A good example for that is the seemingly stray centre dot after Fn:
My formalisation uses the HOLCF package [Huf12], which has a
type dedicated to continuous functions. This design choice avoids
having to explicitly state continuity as a side conditions, but it
also means that normal juxtaposition cannot be used to apply such
functions, and a dedicated binary operator has to be used explicitly
— this is the “-” seen in some of the Isabelle listings in this thesis.

While Isabelle commands are chosen so that a theory is reminiscent
of a proper English text, it is not a great pleasure to read. Many Is-
abelle commands (such as by simp) are only relevant to the system,
but should be omitted when addressing a human reader, and other
bits of technical syntax (e.g. invoking the induction hypothesis as
Application.hyps(9) [OF prem1]) would be out of place.

There are ways to hide any part of the Isabelle code from the gen-
erated IATEX, but these markers would in turn clutter the Isabelle
source code, and defeat the purpose of having a faithful represen-
tation of the proof in print.

Other parts of the development are even further away from a clean
and easy-to-digest presentation, so I chose to keep most of the Isabelle
development separate from the dissertation thesis. Appendix A contains
a few snippets of the development, namely the main theorems and all
definitions that are involved in them. The full formalisation is published
in the Archive of Formal Proof [Brel3; Brel5d].
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le xTgryo = [elgryp 4rn {TRpx
{ by the denotation of application }
= Dw-eTgapp 4en B0 x
{ by the induction hypothesis }
= Dwv-eTgapp ten {AF0 x
{ see above }
= Igapor v tape »
{ by the denotation of lambda abstraction }
= [e'ly=xlgapo
{by Lemma 5 }
= [vlgop,
{ by the induction hypothesis }

have [[Appex}]ﬂrﬂ,g ([[eﬂ{lrﬂ’(’) LFn ({T[o) x CorrectnessOriginal.thy
by simp

also have ... = ([ Lam [y]. e/ﬂ{]Al}g) IEn ({Tlo) x
using Application.hyps(9)[OF prem1] by simp

also have ... = ([ Lam [y]. elﬂﬂAl}Q) IFn ({A}o) x
unfolding *..

also have ... = (Fn-(A z. HE/H({IABQ)(y — 7)) {En ({Alo) x
by simp

also have ... = [ '] (ya}o)(y = ({a}e) x)
by simp

also have ... = [ ¢/[y :=x] H{IAU’Q
unfolding ESem_subst..

alsohave... =[v H‘ﬂ®|}€
by (rule Application.hyps(12)[OF prem2])

finally

show [[Appex]}ﬂrﬂg = ﬂvﬂﬂ@ﬂg'

Figure 4: A hand-written proof and the corresponding Isabelle code
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1.7.2 Nominal logic in Isabelle

I have outlined the concepts of nominal logic in Section 1.6 in general
terms. In my formalisation, I did not implement this machinery myself,
but rather build on the Nominal2 package for Isabelle by Christian
Urban and others [UT05; UK12], which provides all the basic concepts
of nominal logic, together with tools to work with them.

Permutation sets are modelled as types within the type class pt, which
fixes the permutation action e. In the context of this type class, the pack-
age provides general definitions for support (supp), freshness (fresh, or
written infix as f). Type classes that extend pt with additional require-
ments are fs for permutation sets with finite support and pure for pure
permutation sets.

I define the function fv as the support, restricted to one sort of atoms:

definition fv :: ‘a::pt = 'buat_base set Nominal-Utils.thy
where fv e = {v. atom v € supp e}

Nominal2 provides the proof method perm_simp which simplifies
proof goals involving permutations by pushing them inside expressions
as far as possible. It maintains a list of equivariance theorems that
the user can extend with equivariance lemmas about newly defined
constants.

The command nominal_datatype allows the user to conveniently con-
struct a permutation set corresponding to a usual, inductive definition
with binding structure annotated. See Section 2.6.1 for an example.

The constructors of such a data type cannot be used as constructors
with Isabelle tools like fun, because they do not completely behave
as such. For example, they are not necessarily injective. Therefore,
Nominal2 provides the separate command nominal_function to define
functions over a nominal data type. It is not completely automatic and
requires the user to discharge a number of proof obligations, such as
equivariance of the function’s graph and representation independence
of the equations.

Similarly, Nominal2 provides the command nominal_inductive, which
can be used, after defining an inductive predicate as usual with induc-
tive, to specify which free variables of a rule should not clash with the
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context during a proof by induction. It requires the user to prove that
the variable is fresh with regard to the conclusion of the rule, and in
return generates a stronger induction rule akin to the one shown in
Section 1.6.4. The proof method nominal_induct, which can be used in-
stead of the usual induct method, supports the additional option avoiding
and instantiates the strong induction rule so that the desired additional
freshness assumptions become available.

1.7.3 Domain theory and the HOLCF package

Applications of domain theory, i.e. the mathematical field that studies
certain partial orders, pervade programming language research: They
are used to give semantics to recursive functions and to recursive types;
they structure program analysis results and tell us how to find fixpoints.

As my use of domain theory in this thesis is quite standard, I will
elide most of the technicalities and usually state just the partial order
used. My domains are of the pointed, chain-complete kind. I consider
only w-chains, i.e. sequences (a;);cy with a; C a;,1; completeness of the
domain implies that every such chain has a least upper bound | |;c 4;-
A domain is called pointed if it has a least element, written L.

This choice is motivated by my use of the Isabelle package HOLCF
[Huf12], which is a comprehensive suite of definitions and tools for
working with domain theory in Isabelle. In particular, it allows me to de-
fine possibly complex recursive domains such as the domain used by the
resourced denotational semantics in Section 2.3.3, with one command:

domain CValue CValue.thy
= CFn (lazy (C — CValue) — (C — CValue))
| CB (lazy bool discr)

This will not only define the type CValue, but also the two injection
functions CFn and CB, corresponding projection functions and induction
principles. The command fixrec can then define functions over such
a domains.
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The type CValue is then automatically made a member of a number of
type classes that come with HOLCF. Most relevant for us are
e po for types supporting a partial order, written with square opera-
tors and relations, i.e. C,
e cpo for complete partial orders, i.e. types in po where additionally
every w-chain has a least upper bound and
e pcpo for pointed complete partial order, which extends cpo by the
requirement that a least element L exists.

HOLCEF introduces a type dedicated to continuous functions, written
'a — 'b, which is separate from Isabelle’s regular function type, written
'a = 'b. Encoding the continuity of functions in the types avoid having
to explicitly assume functions to be continuous in the various lemmas.

This is particularly important when some definition is only well-
defined if its arguments are continuous, as it is the case for the fixed-point
operator fix : (‘a —'a) —'a (with ‘a::pcpo, i.e. the type a has an instance of
the type class pcpo). Without this trick, fix would not be a total function,
and working with partial functions in Isabelle is always annoying to
some degree.

The downside of this design choice is that such continuous functions
cannot be applied directly. Therefore, HOLCF introduces an explicit
function application operator _-_: (‘s —'b) = ‘o = 'b. I advise to simply
assume this operator is not there when reading Isabelle code using
HOLCFE.

The custom type has further consequences: Existing tools to define
new functions, such as definition, fun and the Nominal-specific com-
mand nominal_function know how to define normal functions, but are
unable to produce values of type ‘a — b. In these cases, [ have to resort
to defining the function by using the — again HOLCF-specific — lambda
abstraction for continuous functions written (A x. e) on the right-hand
side of the definition. I can still prove the intended function equations,
with the argument on the left-hand side, manually afterwards, as long
as the function definition is indeed continuous.

The standard proof principle for functions defined in terms of the afore-
mentioned fix is fixed-point induction: In order to prove that a predicate
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P holds for fix-F, where the functorial F is of type ‘a—'a with a::;pcpo,
it suffices to prove that
o the predicate P is admissible, i.e. if it holds for all elements of a
chain, then it holds for the least upper bound of the chain,
e P holds for L and
e P holds for any F-x, given that P holds for x.

A derived proof principle is that of parallel fixed-point induction which
can be used to establish that a binary predicate P (usually an equality or
inequality) holds for fix-F and fix-G. This requires a proof that

o the predicate P, understood as a predicate on tuples, is admissible,
e P 1 1 holdsand
e P (F-x) (F-y) holds, given that P x y holds.

Both principles are provided by HOLCF as lemmas, and an extensible
set of syntax-directed lemmas helps to take care of the admissibility
proof obligation.

31






I'mean, ostensibly, yes. Honestly,
we hacked most of it together with
Perl.

Randall Munroe, xkcd #224

CHAPTER 2

Formalizing Launchbury’s
natural semantics

Formal semantics are the basic building block of all rigorous program-
ming language research. Not only do they force us to think our work
through in all details — without a precise definition of the meaning of
programs, we cannot conduct any proofs. Therefore, as I do want to
be able to prove theorems about my work, I need a suitable semantics,
and also implement it in Isabelle.

Furthermore, semantics provide a common ground for the research
community: If the same semantics are used, then results can easily
be compared and combined. Therefore, I should not just define a se-
mantics that happens to suit me, but preferably choose an existing,
well-established semantics to build on.

One such semantics is John Launchbury’s “Natural Semantics for Lazy
Evaluation” [Lau93], which has several important traits: It is simple, as
it has only four rules. It is detailed enough to model lazy evaluation. It
is abstract enough to not model unnecessary details. And it is widely
accepted as a standard semantics.

Using a standard denotational semantics, Launchbury underpins his
natural semantics by claiming correctness (evaluation in the natural
semantics preserves denotation) and adequacy (all programs with a
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2 Formalizing Launchbury’s natural semantics

denotation have a derivation in the natural semantics). While he proves
correctness in sufficient detail, he only outlines the adequacy proof — an
omission that resisted fixing, despite the popularity of the semantics,
and despite serious attempts to follow his proof sketch (e.g. [SHO14]).

In this chapter, I reproduce Launchbury’s semantics, including sub-
sequent improvements by Sestoft [Ses97] and modernisations to how
names binding is handled. This yields a definition that is suitable for
formalisation in Isabelle. The original correctness proof was almost di-
rectly usable in the mechanisation and required only minor adjustments,
which I discuss. I then provide a full adequacy proof, where I do not
follow Launchbury’s outline directly, but find a more elegant and direct
proof. Parts of this chapter, in particular the adequacy proof, has been
submitted to the Journal of Functional Programming [Brel5c].

Dedicated sections explicate the differences to Launchbury’s work,
serving two purposes: The reasons for deviation can be educational
to someone attempting a similar formalisation. Furthermore they are
checklists when combining this work with other Launchbury-based
developments.

Finally, in preparation of Chapter 4, I extend the semantics and the
proofs with a simple base type, and introduce a corresponding small-
step semantics.

2.1 Launchbury’s semantics

Launchbury defines a semantics for the simple untyped lambda calculus
given in Fig. 5, consisting of variables, lambda abstractions, applications
and mutually recursive bindings.

The set of free variables of an expression e is denoted by fv ¢; I overload
this notation and use fv with arguments of other types that may con-
tain variable names. For example for tuples (or, equivalently, multiple
arguments), we have fv(I',e) = fvI Ufve.

A variable x is fresh with regard to an expression ¢ (or a similar object)
if x ¢ fve. The expression e with every free occurrence of x replaced
by y is written as e[x:=y].
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x,y,z,w € Var
e € Exp == \x.e
|ex
| x

|letx; =e1,...,x, =eyine

Figure 5: Launchbury’s core lambda calculus

I equate alpha-equivalent lambda abstractions (Ax. x = \y.y) and the
bound variable is not part of the set of free variables (fv(\x.y x) = {y}).
let bindings are handled likewise. The theoretical foundation used is
nominal logic (see Section 1.6). This does impose a few well-formedness
side conditions, such as equivariance of definitions over expressions. I
skip them in this presentation, and do so with good conscience, as they
have been covered in the machine-checked proofs.

Note that the term on the right hand side of an application has to
be a variable. A general lambda term of the form e; e, would have to
be pre-processed to let x = e, in e; x before it can be handled by my
semantics. This restriction simplifies the semantics, as all bindings on
the heap are created by a let expression and we do not have to ensure
separately that the evaluation of a function’s argument is shared. This is
a standard trick applied by Launchbury [Lau93] and others [Ses97; GS01;
HH14]. In some of the less formal parts of this thesis, e.g. in examples, I
occasionally use expressions as arguments in the interest of readability.
This should be understood as a shorthand for the proper, let-bound form.

2.1.1 Natural semantics

Launchbury gives meaning to this language by way of a natural seman-
tics. I present his semantics with minor adjustments due to Sestoft and
myself, and explain these differences in Section 2.1.3.
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LAM

IF:xx.elp T:hxee

TielpA:y.ed  A:dly=x]§.0:0
Iex|,©®:0

APP

FZElLLU{x}A:Z)
x—=el:xpx—0vA:v

VAR

domANfv(T, L) ={} AT:el©:v
T:letAine | ®:v

LET

Figure 6: Launchbury natural semantics, as revised by Sestoft

The semantics is given by a relation
IF:eypA:v

with the intuition that the expression e within the heap I' reduces to the
value v, while modifying the heap to A, while avoiding the names in the
set L. The relation is defined inductively by the rules in Fig. 6, which
obey the following naming conventions:

I'A,© € Heap = Var — Exp
v € Val =\x.e

A heap is a partial function from variables to expressions (Var — Exp),
and usually represented by I', A or ®. The same type is used for the list
of bindings in a let. The domain of a heap I', written domT, is the set
of variables bound by the heap.

In contrast to expressions, heaps are not alpha-equated, so we have
domTI C fvI. [ write x — e for the singleton heap and use commas to
combine heaps with distinct domains.

A v represents a value, i.e. an expression in weak head normal form.
So far, the only values are lambda abstractions; this will change when I
add Booleans in Section 2.4.2. I use the predicate isVal e to denote that
the expression e is a value.
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The first rule, LAM, does not actually “do” anything: Expression and
heap on the left and on the right are the same. This rule thus states that
to evaluate an expression that is already a value, nothing has to be done.

The second rule, APP, handles evaluation of an application. As we
want to model lazy evaluation, first the called expression e is evaluated.
The argument x, which by our syntactic restriction is just a variable, is
then substituted into the the resulting lambda abstracted expression,
and evaluation continues with that. Observe that the argument itself
is not necessarily evaluated.

Rule VAR takes care of evaluating a variable x. This is only possible
if it is mentioned in the heap.

During the evaluation of the expression ¢, the binding x +— ¢ is re-
moved from the heap: This way, if the evaluation of ¢ would itself
require the evaluation of x, the VAR rule does not apply over and over
again, but rather the inference is stuck. An inference algorithm derived
from these rules would exhibit the same behaviour as a runtime for lazy
functional programs that sports blackholing, where a thunk under eval-
uation is replaced by a so-called blackhole which, if evaluated, aborts
the program [Pey92].

This rule also implements sharing: After having evaluated e to a value
v, this is not only returned as the result of the computation, but also
added to the resulting heap as the new binding for x. This updating of x
ensures that any further evaluation of x will immediately return with
its once evaluated value.

The final rule, LET, implements let-bindings, which may be mutually
recursive, simply by moving them to the heap. The let-expression itself
represents an alpha-equivalency class and hence does not have names
for the bound values, so it is the application of this rule that actually
determines dom A, and the first assumption of the rule ensures that these
variables do not clash with existing ones.

The set L was not present in Launchbury’s rules. It was added by
Sestoft [Ses97] to keep track of variables that must be avoided when
choosing new names in the LET rule, but would otherwise not be present
in the judgement any more, because they were blackholed by VAR. I
explain this modification in greater detail in Section 2.1.3).
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The semantics has a few noteworthy properties, which I describe in the
following lemmas.
Evaluation does not forget bindings:

Lemmal
IfT:e |y A:vthendomI C domA.

Proof
by induction on the derivationof I': e |} A : v. n

Furthermore, names that appear as new bindings on the heap do not
clash with any names in the set L:

Lemma 2
IfT:elp A:vthen (domA\domT)NL = {}.

Proof

by induction on the derivation of I' : ¢ I} A : v. In the case for let
expressions, we use that the names cho