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Zusammenfassung der Dissertation
Hauptaugenmerk der Dissertation ist die Entwicklung von neuen mathema-
tischen Methoden für die genetische Stammbaumanalyse. Moderne Sequen-
zierungsmethoden liefern heutzutage sehr große Datenmengen, so dass eine
effiziente Berechnung der so genannten Likelihoodfunktion unumgänglich
ist. Dies gilt insbesondere für Analysen nach dem Maximum-Likelihood
Verfahren, sowie für die Baysche Inferenz auf Stammbäumen.

Die Dissertation ist gegliedert in zwei Hauptteile.

Im ersten Teil untersuchen wir die Schwierigkeit von genetischen Stamm-
baumanalysen auf partitionierten Datensätzen. Als partitionierte Sequen-
zalignments bezeichnen wir all solche Alignments, bei denen wir annehmen,
dass verschiedenen Regionen (Partitionen/Ansammlung von Seiten) ver-
schiedene evolutionäre Modelle zugrunde liegen können. Dieser Teil ist in
drei Kapitel gegliedert.

In Kapitel 4 der vorliegenden Dissertation, zeigen wir, dass die Wahl des
besten evolutionären Modells für jede der individuellen Partitionen schwer
(d.h. NP-Schwer) ist, wenn ein gemeinsamer evolutionärer Stammbaum
angenommen wird. Um NP-Vollständigkeit zu zeigen reduzieren wir das
wohlbekannte 3− SAT Problem [79].

Dieses Kapitel rechtfertigt die Verwendung von Approximationsalgorith-
men um dieses Problem zu lösen.

Im Zusammenhang der Dissertation, dient der rigorose, detaillierte NP-
Schwere Beweis als Beispiel für die folgenden Kapitel. Dem Leser werden
in den darauf folgenden Kapiteln weitere Probleme vorgestellt die ihrerseits
selbst NP-Schwer oder NP-Vollständig sind.

Dieses Resultat wurde von uns in [82] publiziert.

Weiterhin zeigen wir in Kapitel 5, dass die Annahme von verschiede-
nen evolutionären Modellen für verschiedene Partitionen weitere Fra-
gen im Bezug auf Berechnungen von Stammbäumen auf Hochleistungs-
Parallelrechnern aufwerfen. Die Zeit zur Berechnung der so genannten Like-
lihoodfunktion für einen Stammbaum, gegeben eines evolutionären Modells
und eines Sequenzalignments für einen einzelnen Processor/Rechner hängt
unter anderem von zwei Faktoren ab. Erstens ist die Anzahl der Seiten,
die zu berechnen sind entscheidend. Zweitens wird für jedes evolutionäre
Modell eine von der Länge der Partition unabhängige Zeit zur Initialisierung
benötigt. Da jede Partition von einem eigenen Modell abhängt, stellt sich



hier das Problem, die einzelnen Seiten der Partitionen möglichst kosten-
bzw. zeitsparend auf die parallelen Rechner zu verteilen.

Auch hier zeigen wir, dass eine optimale Aufteilung NP-Schwer ist.
Allerdings präsentieren wir einen Approximationsalgorithmus, der das Prob-
lem in polynomieller Zeit nahezu optimal zu lösen vermag. Für den Fall,
dass P 6= NP , kann kein anderer polynomieller Algorithmus ein besseres
Ergebnis für diese Fragestellung garantieren.

Berechnungen auf partitionierten Datensätzen belegen, dass dieser Algo-
rithmus die Laufzeit, verglichen mit den bisher verwendeten Methoden um
einen Faktor von bis zu 5.9 verkürzen kann.

Publiziert haben wir dieses Ergebnis bereits in [81].

Als drittes Resultat im Zusammenhang mit partitionierten Datensätzen
haben wir in Kapitel 6 die so genannte Internode Certainty auf Teilbäu-
men untersucht. Das Bestreben der Internode Certainty ist es, ein Maß
für die Konfidenz an inneren Knoten eines Stammbaumes darzustellen,
welches nicht nur die absolute Anzahl von Beobachtungen widerspiegelt,
sondern auch quantifiziert, wie sehr eine Bipartition im Konflikt mit anderen
Beobachtungen steht. Hierfür wird Shannon‘s Definition der Entropie [123]
herangezogen und als Maß berechnet. Bisherige Resultate, die nicht Teil der
Dissertation sind, beschreiben die Internode Certainty auf Stammbäumen
mit identischen Spezies [115, 116]. Wir generalisieren diese Resultate um
die Berechnung auf Bäumen mit möglicherweise unterschiedlichen Spezies
zu erlauben. Hierfür werden diverse mathematische Korrekturverfahren
entwickelt und getestet. Publiziert wurden diese Ergebnisse in [83].

Im zweiten Teil der Dissertation beschäftigen wir uns mit wiederholen-
den Strukturen in der Topologie von (Stamm-) Bäumen und genetischen
Sequenzen.

Auch dieser Teil ist in drei Kapitel gegliedert. Die ersten beiden Kapitel
behandeln Baumstrukturen, während sich das letzte Kapitel genetischen
Sequenzen widmet.

Die theoretischen Resultate zu wiederholenden Strukturen in Bäumen
wurden bereits in [54, 51] veröffentlicht. In Kapitel 7 präsentieren wir den
Algorithmus um alle identischen Teilbäume in einem gegebenen Baum iden-
tifizieren zu können. Dieser Algorithmus läuft in linearer Zeit und liefert
bewiesenermaßen das korrekte Ergebnis. Der Algorithmus wurde konzipiert
um Wiederholungen zu finden, egal ob Knoten beschriftet sind, oder nicht;
oder die Reihenfolge der Knoten untereinander beliebig ist, oder nicht. Der



Algorithmus findet wiederholende Topologien sowohl auf gewurzelten als
auch auf ungewurzelten Bäumen. Auch für eine Sammlung von gewurzelten
Bäumen können auf ähnliche Weise alle sich wiederholenden Muster erkannt
werden.

Letzteres machen wir uns für die Berechnung von Stammbäumen zu
Nutzen.

Die Hauptlast bei der Suche nach dem besten Stammbaum (nach dem
Maximum-Likelihood Kriterium) liegt bei der eigentlichen Berechnung der
Likelihoodfunktion. Hier machen wir uns zu Nutzen, dass identische Bäume
auch die gleiche Wahrscheinlichkeit zu dem Likelihood beitragen.

Da wir bei Maximum-Likelihood Analysen von unterschiedlichen evolu-
tionären Zeiten (Kantenlängen) and verschiedenen Kanten ausgehen, sind
Wiederholungen nur dann identisch, wenn sie an der gleichen Stelle im
Baum auftreten. Wiederholungen sind also auf Ebene des Sequenzalign-
ments zu finden, nicht in der eigentlichen Baumtopologie. Hierfür nehmen
wir implizit einen, von der Topologie und Kantenlängen identischen, Baum
pro Seite im Alignment an. Die Beschriftungen an den Blattknoten hängen
somit von der entsprechenden Seite im Alignment ab.

In Kapitel 8 zeigen wir einen für genetische Stammbäume adaptierten
bzw. optimierten Algorithmus der eben diese identischen Teilbäume identi-
fiziert. Wir analysieren die Auswirkung auf die Laufzeit bei der Berech-
nung der Likelihoodfunktion, wenn identische Teilbäume nicht mehrfach
berechnet werden müssen. Zusätzlich zur eigentlichen Laufzeitverbesserung
braucht der vorgeschlagene Algorithmus weniger Speicherkapazitäten als
herkömmliche Methoden. Dies wirkt sich besonders auf Analysen mit großen
Datenmengen aus.

Auch für diesen praktischen Teil ist eine Publikation vorgesehen. Eine
vorläufige Version kann in [84] gefunden werden.

Den letzten Beitrag dieser Dissertation liefert ein abschließendes Kapitel
(Kapitel 9) zur Sequenz Alignierung. Hier untersuchen wir einen weitver-
breiteten Algorithmus zur paarweisen Alignierung von je zwei Sequenzen
[59].

Wir zeigen, dass die ursprüngliche Formulierung irreführend, oder sogar
fehlerhaft ist.

Wir untersuchen, wie weit verbreitet dieser Fehler heutzutage ist, indem
wir Sachbücher, Universitätsvorlesungen und Softwareprogramme unter-
suchen. Wir zeigen auf, dass der Fehler in renommierten Büchern vorkommt



und regelmäßig in Vorlesungen gelehrt wird (etwa 50% der untersuchten Vor-
lesungen mit einer Vollständigen Beschreibung des Algorithmuses enthalten
fehlerhaftes Material). Auch die von uns analysierte Software gibt längst
nicht immer die zu erwartenden Ergebnisse.

Dieses Kapitel, bzw. die angestrebte Publikation (Vorläufige Version
in [53]), sollen Nutzer und Entwickler der Software auf dieses Verhalten
aufmerksam machen.
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Part 0:

Introduction





1 Motivation and Related Work
Evolution The evolutionary history of species has been of interest to hu-
manity ever since Charles Darwin first formulated his theory of evolution
and natural selection in ”On the Origin of Species” in 1859 [29]. The un-
derlying idea is that species adapt to the environment they live in, and thus
evolve. New species may arise as a result, while other species face extinction.
Consequently, all life on earth shares a common evolutionary history.

The relationships within this so-called tree of life can provide insight as to
which species are closely related to each other. Usually, these relationships
are represented as a tree structure. The terminal nodes denote the current,
extant species, while the inner nodes, connecting the species are hypothetical
common ancestors of the respective species. We call such a tree a phylogeny
(see Figure 1.1).

Platypus

Fruit Bat
Cow

Dolphin

Human
King Cobra

Nightingale

Crocodile

Figure 1.1: Phylogeny of exemplary species. The framed species are mammals.

Beyond a mere academic interest in capturing the evolutionary history
of species, phylogenetic analyses have a wide range of applications (see [129],
for an overview). For example, in the field of medicine, the development
of new drugs can be guided by phylogenetics [85, 120]. In the field of law,
phylogenetic analyses in criminal cases, can prove the innocence of the ac-
cused [32]. Epidemiologists can understand the spread of pandemics and the
development of resistances [11, 88]. Conservation biologists can use these
methods to show, among other questions, which species are endangered and
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need protection, or face extinction [8, 139].

Original attempts at building these phylogenies compared morphological
similarities and differences among different species. For example, bovines
(such as cows) and primates (such as humans) have hair and give birth to
live young, while birds have feathers and lay hard shelled eggs. Thus, it
can be concluded that the former two, which are both mammals, are more
closely related to each other than to birds. Looking at only morphological
traits however can be misleading. For example, not all species of a common
subgroup may share all characteristics. There exist mammals, such as the
platypus, that lay leathery eggs. Thus, using this morphological trait for
finding similarities is obviously not sufficient. On the other hand, a specific
characteristic can be present in species from different taxonomic classes
by having evolved independently. Bats, which are mammals, for example
have wings. If this characteristic is used for a classification, bats might
erroneously be thought of as being closely related to birds instead of other
mammals.

Genetics Gregor Mendel laid the ground work for modern genetics with
his discoveries about heredity among peas in 1866 [99]. In 1972, more than
a century after Mendel‘s discoveries, the first DNA gene sequence was suc-
cessfully decoded (sequenced) [102]. Rapid developments in this area have
enabled the sequencing of full genomes for a plethora of species since then,
including the human genome.

With these genetic sequences as a basis, a more targeted reconstruction
of phylogenies is possible.

Among other events, random mutations at single positions within the
DNA sequences of organisms can occur between one generation and the next.
Other nucleotides may randomly be added (insertion) or deleted (deletion)
from a sequence. Thus, species change, that is evolve, over time. See Figure
1.2 for exemplary mutation events between two sequences. Similar to the
case of observing morphological similarities, we can deduce a phylogenetic
relationship between species using this genetic code. Intuitively, the more
similar two genetic sequences are, the fewer mutations will have occurred.
From this, we deduce that less time has passed since both species had a
common ancestor.
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Molecular Phylogenetics Simple distance based methods can be used
to reconstruct a phylogenetic tree by recursively grouping the least distant
species together.

Alternatively, a score may be defined for each tree structure. Different
tree structures can then be iteratively proposed and scored. The best scoring
tree is then our best guess at the correct phylogeny.

A simple scoring function is the so-called parsimony score [20, 47]. Here,
simply the minimum required number of mutations to explain a given tree is
calculated. More sophisticated methods are the maximum likelihood (ML)
method for tree inference [17, 43] and the Bayesian inference (BI) method
[93]. Maximum likelihood and Bayesian analyses, are the focus of this thesis.

For ML, not only the numbers of mutations are counted, but a model
of evolution is assumed in order to be able to calculate the probability of
attaining the data, that is the distinct genetic sequences at the tips, from a
theoretic common ancestor, given the tree structure. This probability is the
so-called likelihood of the tree. The data is given by a so-called multiple
sequence alignment (MSA) (see Figure 1.3). That is, each individual se-
quence of any one species (taxon) is arranged (aligned) in such a way, that
the characters of all species at a given position (site) are assumed to share
a common evolutionary history. The sequences in the alignment can either
be composed of the four DNA characters (the nucleotides A, C, G, and T), or
other symbols, such as the twenty amino acids which these DNA characters

Site: 1 2 3 4 5 6 7 8 9 10 11
Sequence 1: T T A T G T A G C C -

| | | | | |
| A G | | |
| | | | | |

Sequence 2: T T G T T T A - C G T

Figure 1.2: Exemplary evolution between Sequence 1 and Sequence 2. Sites 3
and 10 show a simple mutation event. Site 5 shows two mutation events of which
only one is observed in the presented sequences. Site 7 demonstrates two mutation
events, while no difference is apparent in the resulting sequences at this site. Site 8
shows a deletion from Sequence 1 (or an insertion in Sequence 2). Similarly site 11
shows an insertion in Sequence 1 (or a deletion from Sequence 2). Note, that we
can not generally distinguish whether an insertion or deletion event occurred since
we do not know the original ancestral sequence.
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encode. The model of evolution determines how likely mutations from one
DNA nucleotide (or amino acid) to another are within a certain amount of
time. A notion of evolutionary time is given by the branch lengths in the
tree (see Figure 1.4). Intuitively, the more time passes, the more likely a
nucleotide changes into another.

The BI method not only calculates the likelihood, but also estimates
the posterior probability [12, 92] of phylogenetic trees and chosen model
parameters. The posterior probability is computed using the likelihood of
the tree, as well as some prior probabilities for the tree structure and evolu-
tionary model parameters. To actually calculate the posterior probability,
the prior probability for the data, in this case the DNA sequences, must be
known as well. Since this value is usually hard to obtain, Markov Chain

Sequence 1: T T A T G T A G C C
Sequence 2: T A T T T A C C T
Sequence 3: T T G T T T A C G T

Sequence 1: T T A T G T A G C C -
Sequence 2: - T A T T T A - C C T
Sequence 3: T T G T T T A - C G T

Figure 1.3: Shown are three raw DNA sequences, and a MSA of these three
sequences. The framed nucleotides represent one site of the alignment.

Platypus

Fruit Bat
Cow

Dolphin

Human
King Cobra

Nightingale

Crocodile

b1

b2

b3
b4

b5

b6

b7

b8

b9

b10

b11

b12

b14

Figure 1.4: Tree with branch lengths b1 through b14.
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Taxa: 3 4 5 6 7 8 9 10 n
Unrooted: 1 3 15 105 945 10395 135135 2027025 (2n−5)!

2n−3(n−3)!
Rooted: 3 15 105 945 10395 135135 2027025 34459425 (2n−3)!

2n−2(n−2)!

Table 1.1: Numbers of unrooted and rooted bifurcating phylogenetic trees for given
numbers of taxa. Note, that the number of unrooted trees for n taxa is equivalent
to the number of rooted trees for (n− 1) taxa.

Monte Carlo methods [66, 100] are typically employed instead, to estimate
the posterior probability.

Note that, the number of possible phylogenies grows super-exponentially
with the number of species [43] (see Table 1.1 for actual values). Fur-
thermore, finding the optimal phylogenetic tree, using, for example, the
parsimony or ML criterion is known to be NP-hard (see [23, 55, 112]).
Thus, unless P = NP one must rely on heuristics to obtain phylogenies in
a reasonable time frame. Due to the huge number of possible trees, it is
easy to imagine that exact BI is hard as well. Given an infinite amount of
time, the Markov Chain Monte Carlo method actually yields exact results.
However, due to limited computer resources, this is obviously not feasible.

Several software tools exist that implement such heuristics. For exam-
ple, PhyML [63] and RAxML [130] are tools for ML tree inference, whereas
ExaBayes [2] and MrBayes [114] are exemplary BI tools.

The cost of computing the likelihood function is asymptotically linear
to the size of the data (length of the sequence alignment times number of
species). Modern sequencing technologies provide ever growing amounts of
data and continuously more and more genomes are sequenced. The human
genome alone is already roughly three billion nucleotides long. For both
methods, ML and BI, repeatedly calculating the likelihood for different tree
topologies is thus the most time consuming task (numbers between 85%
and 98% of the total runtime have been reported [6]). Efficient methods for
calculating this likelihood function are thus needed.
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2 Overview and Contribution
In this section we briefly give an overview over the structure of the thesis.
The following chapter (Chapter 3) will provide some common notations and
definitions which we will use throughout this work. Each individual chapter
will provide additional notations and definitions as needed.

All results in this thesis are either already published works [54, 51,
52, 81, 82, 83], currently under review (one of which is available as a
pre-print at http://biorxiv.org/content/early/2016/01/04/035873,
[84]), or in the process of submission (again, a pre-print can be found at
http://www.biorxiv.org/content/biorxiv/early/2015/11/12/031500,
[53]). The following chapters, including parts of the introduction are based
on these publications.
Other publications by me (as first or co-author) that were written during
my time as a PhD student are [2, 50, 67, 151]. The works were published
in internationally recognized journals on mathematics and computational
theory, such as "Philosophical Transactions of the Royal Society A: Math-
ematical, Physical and Engineering Sciences" and "Theoretical Computer
Science", as well as high impact journals from the field of biology and bioin-
formatics, such as "Molecular Biology and Evolution" and "Bioinformatics".
Other papers appeared in the proceedings of internationally renowned con-
ferences, where we presented the results.

The main body of this work is split into two distinct parts. The first
part solves problems associated with so-called partitioned alignments. The
second part deals with repeating structures within tree topologies, that is
identical subtrees within a tree. In this part we also analyze (and point out
mistakes in) a commonly used algorithm for aligning DNA sequences.

The first part is divided into three chapters.
In Chapter 4 we show that the optimal choice of an evolutionary model

that maximizes the likelihood, is not simple. In fact, it is NP-hard if branch
lengths are assumed to be the same for all partitions in the alignment, at
least three models are present to choose from, and the data at hand has at
least nine character states. Firstly, this serves as a justification for using
heuristics to assign models to partitions. Secondly, in the context of this
thesis, this chapter serves as an exemplary, rigorous, prove of NP-hardness.
NP-hard and NP-complete problems can be found throughout the thesis
and in the field of phylogenetics in general. This chapter is based on [82].
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Chapter 5 analyzes the problem of optimally assigning sites of an align-
ment to parallel processors to ensure a near-optimal load balance for likeli-
hood calculations. Again, this problem is NP-hard. However, we provide a
polynomial time algorithm with a close to optimal approximation. In fact,
if P 6= NP , this algorithm guarantees an optimal worst case performance,
among polynomial time algorithms. This new assignment scheme was im-
plemented in standard software tools. The new assignment significantly
improves the parallel efficiency of likelihood-based inferences compared to
previous implementations. We observed a performance improvement of up
to 5.9 times faster inferences. This Chapter is based on [81].

The last chapter on partitioned alignments, Chapter 6, shows how to
calculate the so-called internode certainty from partial gene trees. The
internode certainty is a measure of confidence that not only reflects the
absolute support of a clade (subtree) in a phylogenetic tree, but also takes
the degree of conflict into account. The input is a reference tree, for example
the ML tree, and a collection of trees with potentially fewer taxa than the
reference tree. The contents of this chapter has been published in [83].

The second part of the thesis deals with repeating structures within trees,
as well as the so-called pairwise global alignment between two sequences.
Again, this part is organized into three chapters.

Chapter 7 demonstrates how to calculate all repeating (sub-)tree struc-
tures in an arbitrary tree. The algorithm works with rooted as well as
unrooted trees, and labeled as well as unlabeled trees (that is, whether
some character or symbols are given at the nodes or not). Further, subtree
repeats on ordered as well as unordered trees (that is, whether the order of
nodes in a (sub-)tree is important to its identity, or not) can be computed.
The presented algorithm runs in linear time and requires linear space, mak-
ing it time and space optimal. The chapter is based on [51].

Chapter 8 shows how to apply the results of Chapter 7 to phylogenetic
trees. They can be used to speed up the likelihood calculations. An op-
timized algorithm for the application to phylogenetic trees is given. With
this algorithm we observed a speed-up of up to more than 5 times faster
execution times if repeats for full tree traversals are calculated on the fly.
In fact, all tested data sets yield a speed up factor of more than two for this
case.

If repeats can be precomputed and do not need to be updated (in partic-
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ular, when the tree topology remains fixed) a speed up of almost ten times
faster run times is observed in the best case. Run time improvements due to
the new algorithm are analyzed in detail and memory savings are reported.
A pre-print is available at http://biorxiv.org/content/early/2016/01/
04/035873 [84].

Finally, in Chapter 9 we take a critical look at global pairwise sequence
alignment methods. We show that the original publication of the quadratic
time algorithm for this problem contains several irregularities. Mistakes
resulting from these irregularities can easily be overlooked, as evident by
the numerous implementations that yield erroneous results. We show how
to avoid these errors, and analyze a number of books, software tools and
university lecture slides to asses the severity and prevalence of these errors.
A pre-print with the contents of this chapter is available at http://www.
biorxiv.org/content/biorxiv/early/2015/11/12/031500 [53].
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3 Common Notations, Formulas, and Definitions
We will now give a brief overview over the notations and definitions we will
use throughout this thesis.

3.1 Alignment

First, we need an understanding of the data that is used for computing the
likelihood function.

Multiple Sequence Alignment. Modern sequencing methods provide
us with raw DNA sequences for different species or individuals in a popula-
tion. However, in order to correctly compute the likelihood that some tree
topology yields exactly these sequences, all nucleotides at a given position
in the sequences must share the same evolutionary history. Due to inser-
tions and deletions of nucleotides in the genetic code, which accumulate
during the process of evolution, this might not be true for nucleotides at the
same position in the raw sequences. For this reason, a so-called multiple
sequence alignment (MSA) must first be established (see Figure 1.3 on
page 6). This multiple sequence alignment is given by an m × n matrix
A, where m is the number of species and n at least as large as the longest
sequence of the individual species. The entries within A are the original
nucleotides of the DNA sequences, possibly containing so-called indels
(insertions or deletions, also called gaps). We denote such an indel by the
special character ”-”. A site ai of the alignment A, with i = 1, . . . , n, is the
i-th column of this matrix. Thus, each site contains at most one nucleotide
character form any of the DNA sequences together with possible indels.
All nucleotides at a site are then assumed to have evolved from a common
ancestral nucleotide (in other words, the nucleotides at a given site are
homologous). The actual calculation of such a multiple sequence alignment
from raw DNA sequences is beyond the scope of this thesis. Several publi-
cations [60, 71] and implementations [37, 138] exist that cover this topic.

In this thesis, we are however interested in so-called global pairwise se-
quence alignment. Here, only two sequences are aligned with each other.
Chapter 9 gives an overview of related work for this topic. There, we show
that the original description of one of the most widely used algorithms for
aligning pairwise sequences, actually contains several irregularities.

For the pairwise sequence alignment, the goal is to optimize (minimize
or maximize) the score of an alignment between two sequences. For this,
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a numerical value is defined for any pair of homologous characters in the
sequences. For example, if both sequences have the same nucleotide at a
position, a matching score is counted. If the two nucleotides disagree, a
miss match is counted. If one sequence contains a gap, a gap cost is applied.
See Figure 3.1 for an intuitive example.

Sequence 1: - A A A - T A G C C -
Sequence 2: T A A A T T A - C C T

Figure 3.1: Let the match score be 5, the miss score be −8, and the gap penalty
be −5. Then, the above alignment has a score of 15.

Several polynomial time algorithms exist for computing the optimal pair-
wise sequence alignment (see for example [106]).

Instead of demanding a constant penalty for any one gap encountered
in the alignment of two sequences, it is biologically reasonable to assign
so-called affine gap costs instead. Here, a typically high penalty is invoked
whenever a new gap is started (gap opening penalty), and only a small
penalty is applied to each individual gap (gap extension penalty). See Figure
3.2 for an example scoring. This means, that gaps are more likely to be

Sequence 1: A A A - - T A G C C
Sequence 2: T A A A T T A C C T

Figure 3.2: Let the match score be 5, the miss score be −8, the gap open penalty
be −12, and the gap extension penalty be −1. Then, the above alignment has a
score of −13. The alignment of the same sequences as seen in Figure 3.1 would
obtain a worse score of −17 under this scoring scheme.

placed consecutively in an optimal pairwise sequence alignment, than to be
scattered throughout the alignment. The biological motivation behind this
is, that gaps are unlikely to occur, but if a gap is encountered, more than
one position of the alignment may be affected.

Gotoh‘s algorithm [59], which we analyze in Section 9, can find the op-
timal pairwise global sequence alignment under these affine gap costs in
quadratic time.

Partitioned Alignment. It is often reasonable to assume that different
sites in the alignment evolve according to different models of evolution. This
is reasonable, for example, if sites come from different genes, or from regions
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with different mutation rates, within the genome. For example, functionally
important parts, such as protein coding regions, of the genome may be less
likely to accumulate mutations than non-coding regions. The reason for this
is, that the fitness (chance of producing offspring) drastically decreases if
the mutation is lethal to the organism. Thus, different model parameters
may be chosen for the different regions. For this reason we define the notion
of a partitioned alignment.

Definition 1 (Partitioned Alignment). Let A be an alignment. Further, let
p be the number of partitions. We define the p partitions, P1, P2,· · · ,Pp
such that each site a ∈ A must satisfy a ∈ Pi for exactly one i ∈ {1, 2, ..., p}.

Gene 1: Gene 2:
Sequence 1: T T A T G T A G C C
Sequence 2: T A T T T A C C T
Sequence 3: T T G T T T A C G T

P1: P2:
Sequence 1: T T A T - G T A G C C -
Sequence 2: - T A T T - T A - C C T
Sequence 3: T T G T - T T A - C G T

Figure 3.3: Shown are two genes for three raw DNA sequences, and a partitioned
MSA of these three sequences. Note that this alignment differs from the unparti-
tioned alignment of the same sequences presented in Figure 1.3 (page 6).

We then may choose to link, or unlink, some parameters between these
partitions. For example, one distinct model of evolution might be assumed
per partition, while the tree structure may be required to be the same for
all partitions. If the tree structure is linked across partitions we often talk
about the species tree. If, on the other hand, a specific tree topology is
analyzed for each partition, we call the resulting topologies gene trees.
The choice of linking or unlinking parameters across partitions can either
be biologically motivated, result oriented, or even a question of resource
management. Choosing different mutation rates for different partitions is a
biologically motivated example for unlinking the model parameters across
partitions. The question whether we are interested in gene trees or species
trees is a result oriented decision. Lastly, the more parameters are linked
across partitions, the less parameters have to be estimated and optimized
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overall. This can help to avoid over-fitting the data, as well as allow us to
save computational resources.

Programs such as PartitionFinder [91] can help to decide which partitions
to link together under the same evolutionary model.

3.2 Model of Evolution and Transition Probability

In order to calculate the likelihood for each of the sites of the alignment,
a model of evolution is needed. That is, the probability of one nucleotide
mutating into another, given a certain amount of time, must be known.

Instantaneous Rate Matrix Usually, changes from one nucleotide to
another are assumed to follow a continuous-time Markov chain (also called
continuous-time Markov process) with exponential waiting times. The states
of the corresponding Markov chain are the actual nucleotides (or amino
acids). See Figure 3.4 for an illustration. To accurately model this, a
frequency Π ∈ R|Σ|, where Σ = {state1, states2, . . .} is the set of states
and Π =: (πstate1 , . . . , πstate|Σ|) (Σ = {A, C, G, T}, and Π = (πA, πC , πG, πT ),
for DNA), and a symmetrical instantaneous transition rate matrix R ∈

R|Σ|×|Σ| must be given. Note, that we require
|Σ|∑
i=1

πstatei

!= 1.
The frequencies and the rate matrix may be estimated from the data

at hand, or be picked from a set of predefined models. Such predefined
models are usually estimated using large amounts of data. These large
amounts of data then ensure that over-fitting of the parameters is unlikely.
For example, simply counting the numbers of differences in closely related
sequences can give estimates for the rate matrix. Several such models have
been published for protein data (see for example [77, 86, 145]).

Since the rate matrix is assumed to be time reversible and normalized,
and the frequencies sum up to 1.0, the number of free parameters for a
DNA model is 5 + 3 = 8. For protein data (20 states) we similarly get
189 + 19 = 208 free parameters. Thus, estimating the rate matrix from the
data is more common for analyses with DNA sequences, while predefined
models are typically applied to amino acid data sets. This is often done to
avoid over parameterizing the analysis.

Picking the optimal model from a set of predefined models is the focus
of Chapter 4.
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Transition Probability Matrix From standard text books on stochastic
processes [14, p. 268] we get the following definition for calculating the
transition probabilities of nucleotides.

P (t) = eQ·t, (1)

where Q = R · D(Π), with D(Π)i,i = πstatei and zero else, is the so-called
Q-Matrix. The transition probability from some state i to another state j
in time t is then denoted by P (i→ j|t) = P (t)i,j .

In order to efficiently evaluate this matrix exponential, some observations
are required. First, R is a symmetric matrix. However, Q = R ·D(Π) is not
generally symmetric. This is unfortunate, as this matrix exponential can
easily be computed for symmetrical matrices by using the so-called spectral
decomposition (also called eigen decomposition). To still apply the spectral

rA,C

rA,G

rA,T

G

C T

A
πA πG

πC πT

Figure 3.4: Markov chain for mutations between DNA nucleotides. The states are
the four nucleotides A, C, G and T. Frequencies πA, πC, πG, and πT denote the proba-
bility of starting at any of these nucleotides, as well as the probability of observing
any of these nucleotides after an infinite amount of time passes, regardless of the
initial starting state (nucleotide). If we are at state A, the Markov chain waits for
some time t, where t is exponentially distributed with λ = (rA,C + rA,G + rA,T). A
jump is then performed to state C with probability rA,C

rA,C+rA,G+rA,T
, to G with probability

rA,G
rA,C+rA,G+rA,T

or to T with probability rA,T
rA,C+rA,G+rA,T

. Then, a new waiting time is draw
for the new state C, G or T.
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decomposition, some further operations are required. Observe, that Q′ :=
Π̂QΠ̂−1, with Π̂i,j = √πi if i = j and Π̂i,j = 0 else, is, in fact, a symmetrical
matrix.

Applying the spectral decomposition to Q′ we get Q′ = U ′ΛU ′T , where
Λ is the diagonal matrix with the eigenvalues λ1, . . . , λn of Q′ as diagonal
elements. The columns of the orthogonal matrix U ′ and thus the rows of U ′T
are the corresponding eigenvectors of Q′. Since U ′ΛU ′T = Q′ = Π̂QΠ̂−1, we
can decompose Q as Q = (Π̂−1U ′)Λ(U ′T Π̂) =: UΛU−1. Given this spectral
decomposition we can easily compute the transition probability (Equation
(1)).

P (t) = eUΛ·tU−1 (2)

=
∞∑
i=0

(UΛtU−1)i

i! (3)

= U(
∞∑
i=0

Λit
i! )U−1 (4)

= UeΛtU−1 (5)
= U · E · U−1, (6)

with Ei,j = eλi·t if i = j and Ei,j = 0 else. Thus,

P (t)i,j =
∑

k=1,...,s
eλk·t · Ui,k · U−1

k,j . (7)

If U , U−1 and Λ are known, this value can be computed easily for any two
states i and j, and any time t. In practice, computing the spectral decompo-
sition to obtain U , U−1 and Λ takes a non-trivial amount of computational
time. Since the calculations to obtain a spectral decomposition have to be
applied separately for each model of evolution, this computational time is
large enough to be of concern for efficient parallel likelihood function imple-
mentations.

The production-level ML based phylogenetic inference software ExaML
[131] for supercomputers originally implemented two sub optimal data dis-
tribution approaches: The first is the cyclic data distribution scheme that
does not balance the number of unique partitions per processor, but just
assigns single sites to processors in a cyclic fashion. The second approach
is the whole-partition data distribution or monolithic distribution scheme.
Here, the individual partitions are not considered divisible and are assigned
monolithically to processors using the longest processing time heuristic for
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P1: Model 1 P2: Model 2 P3: Model 3
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Sequence 1: T T A T - G T A G C C -
Sequence 2: - T A T T - T A - C C T
Sequence 3: T T G T - T T A - C G T

Processor 1 Processor 2
cyclic: {a1 , a3 , a5 | a7 , a9 | a11 } {a2 , a4 | a6 , a8 | a10 , a12 }
monolithic: {a1 , a2 , a3 , a4 , a5 } {a6 , a7 , a8 , a9 | a10 , a11 , a12 }
balanced: {a1 , a2 , a3 , a4 , a5 | a6 } { a7 , a8 , a9 | a10 , a11 , a12 }

Figure 3.5: MSA divided into three partitions. Models are assumed to be unlinked
across partitions. That is, each partition has its own model of evolution. Under
the cyclic data distribution scheme, each of the two processors is assigned 6 sites to
compute. Each processor also has to compute transition probabilities for 3 different
models. Under the monolithic data distribution scheme, processor 1 is assigned
5 sites and needs to compute the probabilities from one set of model parameters.
Processor 2 must compute 7 sites with two distinct sets of model parameters. The
third, balanced, distribution scheme minimizes the maximum number of sites (6)
and models (2) per processor.

the ’classic’ multi-processor scheduling problem [152]. This ensures that the
total and maximum number of initialization steps (substitution matrix cal-
culations) is minimized, at the cost of not being balanced with respect to
the sites per processor. See Figure 3.5 for an intuitive illustration of these
distribution schemes.

It is easy to construct worst case examples for each of the two existing
distribution schemes that show their sub-optimal behavior. For the cyclic
distribution scheme, simply assume a MAS with n partitions and n sites
each. If we use the cyclic distribution scheme to distribute the sites to n
processors, each processor must evaluate n sites, as well as calculate n model
parameters. Other distribution schemes require only the calculation of one
model per processor while retaining the number of n sites per processor.

For a worst case example of the monolithic distribution scheme, assume
(n− 1) partitions with one site each, and one partition with ((n− 1)2 + n)
sites. Monolithically distributing these partitions to n processors results in
one processor doing almost all the work. Specifically, one processor computes
((n−1)2 +n) out of n2 sites. However, each processor only computes one set
of model parameters. By having each processor calculate sites from at most
one more model, we can drastically reduce the number of sites per processor
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to n.
Given these two examples, we see, that an efficient distribution of sites

to processors is performance critical.
In Chapter 5 we analyze how to minimize the time used for this step

in a parallel environment for partitioned alignments. The objective there is
to minimize the number of spectral decompositions each processor has to
compute, while the number of sites allocated to each processor must remain
balanced. Computational run time is compared to that of the cyclic and
monolithic data distribution schemes.

3.3 Trees

Next we will define the actual tree structure on which a likelihood can be
computed. Again, our notation is analogous to the definitions provided in
standard text books (see for example [87]).

Definition 2 (Tree). A tree T = (V,E) is an acyclic connected graph. V
is the node set and E the set of edges with E ⊂ V × V .

Two nodes i and j are connected to one another, if there exists an edge
e1 = (i, j) ∈ E, or e2 = (j, i) ∈ E.

Definition 3 (degree). The degree δ(i) of a node i in an undirected tree T
is the number of edges leading to i. That is, δ(i) = |{e ∈ E|i ∈ e}|

Definition 4 (Diameter). The diameter of an unrooted tree T is denoted
by d(T ) and is defined as the number of edges of the longest path between
any two leafs (nodes with degree 1) of T .

Definition 5 (unrooted tree). A tree T is unrooted iff it is undirected.

In case of an unrooted tree T = (V,E) we may write e = {i, j} for e ∈ E.
The phylogeny presented in Figure 1.1 (see page 3) is such an unrooted tree.

Definition 6 (rooted tree). A directed tree T is rooted iff there exists a
single node r ∈ V such that each other node can be reached from r using
only edges in E. The node r is then called root of T .

See Figure 3.6 for an example.

Definition 7 (Child, Parent, and Sibling). For a rooted tree T = (V,E),
we call u ∈ V a child of v iff (v, u) ∈ E. In this case, we call v the parent
of u and define parent(u) := v.

We call u ∈ V and u′ ∈ V siblings iff there exists a node v ∈ V , such
that (v, u) and (v, u′) ∈ E.
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See Figure 3.7 for an illustration.

Definition 8 (Subtree). The (rooted) subtree of T that contains node v
as its root node, obtained by removing edge (v, u), is denoted by T̂ (v, u).
We consider only full subtrees, that is, subtrees which contain all nodes and
edges that can be reached from v when only the edge (v, u) is removed from
the tree. The special case T̂ (v, v) denotes the tree containing all nodes that

Human Dolphin Cow Fruit Bat Platypus King Cobra Nightingale Crocodile

r

Figure 3.6: An exemplary rooted labeled tree.

n1

n2

n3

Figure 3.7: Given is the relation between nodes n1, n2, and n3 in some tree. Node
n1 is the parent of nodes n2 and n3. Thus, n2 and n3 are children of node n1, and
siblings of each other.
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is rooted in v.
For simplicity, we refer to T̂ (v, parent(v)) as T̂ (v).

Definition 9 (Alphabet). An alphabet Σ is a finite, non-empty set whose
elements are called symbols.

A string over an alphabet Σ is a finite, possibly empty, string of symbols
of Σ.

The length of a string x is denoted by |x|, and the concatenation of
two strings x and y by xy.

Definition 10 (Labeled Tree). A tree T is called labeled if every node, or
some nodes, of T are labeled by a symbol, or string, from some alphabet Σ
(in our case DNA characters).

Otherwise it is called unlabeled.

Different nodes may have the same label.
Chapter 7 explains how to find repeating structures within any of these

types of trees (for example, unrooted unordered labeled trees).

Phylogenetic trees comprise additional assumptions. Here, phylogenetic
trees are assumed to be fully binary and generally unrooted. (However,
in order to compute the likelihood function (see Section 3.4), an artificial
rooting must be assumed.)

Definition 11 (Phylogenetic Topology). Let T = (V,E) be a tree, and let
N be the set of species of a phylogenetic analysis. Then V =: N ∪I, where I
is the set of inner nodes. An unrooted phylogenetic tree topology T fulfills
the following properties

@e ∈ E s.t. e ∈ N ×N (8)
δ(i) = 1 ∀i ∈ N (9)
δ(i) = 3 ∀i ∈ I. (10)

Additionally, the nodes i ∈ N are labeled with the respective genetic
sequences, and/or the corresponding species names, while the nodes I typi-
cally remain unlabeled. The nodes in N are either called tip nodes or taxa
(or sometimes simply species).

For phylogenetic analyses, we typically assume the species labels, as well
as the sequence labels to be unique. In general, this is not the case for all
labeled trees. Labels may be repeated across different nodes.
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In addition to the actual topology, we also need a measure of evolutionary
time between nodes. For this reason, we define the branch lengths. See
Figure 3.8.

Definition 12 (branch lengths). Let T = (V,E) be a phylogenetic tree
topology. Then, b(e) ∈ R≥0, where e ∈ E, denotes the branch length for edge
e.

b((n1, n3))

b((n1, n2))

n1

n2

n3

Figure 3.8: Branch length notation for a triplet of nodes, n1, n2, and n3. The
branch between nodes n1 and n2 is denoted by e1 := (n1, n2). Analogously, e2 :=
(n1, n2) is the branch between nodes n1 and n2.

If branch lengths are used, we may also write T = (V,E, b) for a phy-
logeny, or phylogenetic tree.

Note, that this definition, and the interpretation of time is not exact.
At least two factors affect the probability of changing from one nucleotide
to another. These factors are the time, and an overall rate of change. The
amount of time that passes intuitively affects how likely a mutation from
one nucleotide to another is to be observed. The more time passes, the more
mutations accumulate. On the other hand, mutations are not equally likely
to occur in all species, nor all positions of an alignment (see the reasoning
for partitioned alignments on page 12). For example, viruses accumulate
mutations more quickly than other species, such as humans or insects. Thus,
in the same amount of time, more mutations are expected within the viral
genome. The rate of change takes exactly this into account. However, it
is non-trivial to distinguish between the time and rate of change. Thus,
we simply set the branch lengths b to be the product of the two. That is,
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bi(e) = b(e) · ri, where e ∈ E, and i denotes a partition, or corresponding
model of evolution.

Finding the optimal branch length configuration for a fixed tree topology
and a given evolutionary model represents a non-trivial numerical problem
[44] and the solution may not be unique [22]. On real data, good approxima-
tions of the optimal branch length assignment can be computed efficiently,
for example using the Newton-Raphson procedure [44, 57].

3.4 Likelihood Function

Now, we have everything we need to compute the likelihood function.
The likelihood of the data, given a tree with fixed branch lengths, and

known substitution probabilities can be computed in polynomial time (with
respect to the number of sequences and sites in the alignment) using the
Felsenstein pruning algorithm [40]. Using this algorithm, the likelihood of a
phylogenetic tree T is calculated by computing the conditional likelihoods
at each inner node of T .

The conditional likelihoods are computed independently for each site
(column in the MSA). They are computed via a post-order traversal of T ,
starting from a virtual root. Note that, as long as the statistical model of
evolution is time-reversible (that is, evolution occurred in the same way if
followed forward or backward in time) the likelihood score is invariant with
respect to the location of the virtual root in T [17].

Also note that, the likelihood of a tree, given an alignment, is multiplica-
tive across the sites of the alignment. That is, to obtain the overall phyloge-
netic likelihood, the individual likelihood values for each site are multiplied
together. Biologically this means that we assume that the nucleotides at dif-
ferent positions in the alignment evolve independently of one-another. The
advantage of making this assumption is that the likelihood values for each
site can be computed independently. This is especially important for paral-
lelizing likelihood calculations. Each processor can compute any number of
sites independently of the likelihood values obtained by other sites.

For computational stability, the logarithm of the likelihood function
is calculated instead of the actual likelihood. One advantage is, that the
likelihood values across sites are now additive instead of multiplicative.

For a node k with child nodes i and j we compute the conditional
likelihoods at site s for each possible state (for example, A, C, G, T for DNA
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data) as follows (see also [41]):

L
(k)
Xk

(s) =
( T∑
Xi=A

P (Xk → Xi|b((k, i))L(i)
Xi

(s)
)( T∑
Xj=A

P (Xk → Xj |b((k, j))L(j)
Xj

(s)
)
,

(11)

j

i

A LH
(i)
A

C LH
(i)
C

G LH
(i)
G

T LH
(i)
T

A LH
(j)
A

C LH
(j)
C

G LH
(j)
G

T LH
(j)
Tb((k, j))

b((k, i))

k

A
C
G
T

Figure 3.9: Conditional likelihood vectors at nodes i and j. The conditional
likelihood vectors at node k can be computed using the given values (and a model of
evolution) by Equation (11)

where L(k)
Xk

(s) is the conditional likelihood of observing the DNA nucleotide
state Xk at site s for the subtree rooted at k.
See Figure 3.9 for an illustration of the values.

The function P (Xk → Xi|b((k, i)) gives the probability that nucleotide
Xk evolved into nucleotide Xi after time b((k, i)) (the branch length between
k to i). If i is a tip (leaf) and site s consists of a nucleotide, say A, then
L

(i)
A (s) := 1.0 and L

(i)
C (s) := L

(i)
G (s) := L

(i)
T (s) := 0.0. Analogously, all of

this holds for j, as well.
The so-called conditional likelihood vector (CLV) for a particular

site s at a given node i is denoted by the ordered set

Li(s) =
T⋃

x=A
L(i)
x (s). (12)

Finally, we compute the overall likelihood for a single site s at the virtual
root r of the tree by multiplying the frequencies πx of observing a nucleotide
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state x with the likelihood of that state at r:

L(r)(s) =
T∑

x=A
πxL

(r)
x (s). (13)

Once the likelihood for each site has been computed, the overall likelihood
of the tree is the product over these per-site likelihoods. That is, the log-
likelihood of the tree T , L(T ), is given by:

L(T ) =
n∑
i=1

L(r)(si), (14)

where n is the number of sites in the alignment and si is the i-th site of the
alignment.

If two sites have the same nucleotides at all tip nodes in the subtree
rooted at node k, Equation (11) must, by construction, yield the same
conditional probabilities for all states Xk for both sites. Avoiding these
redundant operations during the likelihood computation is the focus of
Chapter 8.

Actual tree search strategies are beyond the scope of this thesis. Thus,
we will not go into detail here. However, Figure 3.10 gives an overview over
two common tree search mechanisms. Interested readers may also find the
following standard text book on this topic helpful [43]. Note that both ML,
and BI, heavily rely on the repeated calculation of the likelihood values.
Phylogenetic software tools may spend as much as 85% to 98% of the total
runtime in evaluating the likelihood function [6]. Thus, efficient methods
for calculating this function are paramount to speeding up phylogenetic
analyses.

3.5 Bipartition Support

In order to evaluate the results obtained by running a phylogenetic analysis,
the notion of bipartitions on trees is helpful.

Definition 13 (Bipartition). Given a taxon set S, a bipartition B of S is
defined as a tuple of taxon subsets (X,Y ) with X, Y ⊂ S and X ∪ Y = S,
X ∩ Y = ∅. We write, B = X|Y = Y |X.

In phylogenetic trees, a bipartition is obtained by removing a single edge
from the tree. Let b = (n1, n2) be an edge connecting nodes n1 and n2 in
some unrooted phylogenetic tree T . The bipartition that is obtained by
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T2 T4

T1 T3

(a) Tree with four subtrees T1, T2, T3,
and T4. A Nearest neighbor interchange
move is performed by switching positions
of any two of these subtrees.

T2 T4

T3 T1

(b) Resulting topology, after the NNI
move is applied.

T2 T4

T3
T1

(c) Tree with four subtrees T1, T2, T3,
and T4. A SPR move is performed by
disconnecting any of these subtrees and
re-inserting it within any other.

T4

T2

T3

(d) Tree after SPR move is performed.

Figure 3.10: On top (a and b), the Nearest Neighbor Interchange (NNI) move is
shown. On the bottom (c and d), the Subtree Pruning and Regrafting (SPR) move
is illustrated. Iterative application of these (and other topological moves) are used
to search and traverse the tree space.

removing b is denoted by B(b), which we define as: B(b) = X(n1)|X(n2),
where X(n1) and X(n2) are all taxa that are still connected to nodes n1
and n2 respectively, if branch b is removed.

Definition 14 (Trivial bipartition). We call a bipartition B = X|Y trivial
iff |X| = 1 or |Y | = 1.

Trivial bipartitions are uninformative, since having only a single taxon
in either X or Y means that this taxon is connected to the rest of the tree.
This is trivially given for any tree containing this taxon.

25



Bipartitions with |X| ≥ 2 and |Y | ≥ 2 are called non-trivial. In contrast
to trivial bipartitions, non-trivial bipartitions contain information about
the structure of the underlying topology.
Henceforth, the term bipartition will always refer to a non-trivial bipartition.

Two bipartitions that do not have the same taxon set may still agree
on the topology for the taxa included in both bipartitions. For the case
that the taxon set of one bipartition is a subset of the taxon set of another
bipartition, we define sub- and super-bipartition relations between them.

Definition 15 (Sub-bipartition, super-bipartition). We denote B1 = X1|Y1
as a sub-bipartition of B2 = X2|Y2 if X1 ⊆ X2 and Y1 ⊆ Y2, or X1 ⊆ Y2
and Y1 ⊆ X2.
The bipartition B2 is then said to be a super-bipartition of B1.

A common method in phylogenetics is to measure the bipartition sup-
port for each bipartition in a reference tree. The reference tree may, for
example be a ML tree for some data set. A list of alternative trees is then
computed, for example by simply re-running the analysis with different ran-
dom starting points, or altering the alignment in some way [95] (for example
by bootstrapping [38, 42] or jackknifing [124]). Usually, not all of these trees
are equivalent. Many trees, even if they are ultimately different, will share
common bipartitions. The support for any bipartition of the reference tree
can then simply be computed by counting the number of alternative trees,
that also contain exactly this bipartition (as illustrated by Figure 3.11).

Species 1 Species 3

Species 4Species 2

12|34 = 60%

Species 1 Species 3

Species 4Species 2

Species 3 Species 1

Species 4Species 2

Species 1 Species 3

Species 4Species 2

Species 4 Species 3

Species 1Species 2

Species 1 Species 3

Species 4Species 2

Figure 3.11: The only (non-trivial) bipartition in the reference tree (12|34) is
supported by 60% of all other trees.

A more invested method for measuring the support for bipartitions in
a reference tree is discussed in Chapter 6. There, Shannon‘s measure of
entropy is calculated to asses the support, and conflict, of bipartitions.
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Another useful application of bipartitions in phylogenetics, is the Robin-
son Foulds (RF) distance measure of trees [111]. Here, the distance between
two trees T1 and T2 is computed by counting how many bipartitions each
tree contains, that the other does not.

Definition 16 (RF-Distance). The RF distance between two trees T1 =
(V1, E1) and T2 = (V2, E2), RF (T1, T2) is:

RF (T1, T2) = |{B(b1)|b1 ∈ E1, B(b1) non-trivial,B(b1) 6= B(b2)∀b2 ∈ E2}|
+ |{B(b2)|b2 ∈ E2, B(b2) non-trivial,B(b2) 6= B(b1)∀b1 ∈ E1}|.

(15)

This value is often normalized by the number of bipartitions in both
trees. This normalized distance is then called relative RF distance.

27





Part I:

Tree Inference on
Partitioned Alignments





4 Hardness of Model Assignment
As stated in Chapter 3, in phylogenetics, computing the likelihood that a
given tree generated the observed sequence data requires calculating the
probability of observing the sequenced data for a given tree (topology and
branch lengths) under a statistical model of sequence evolution. Here, we
focus on selecting an appropriate model for the data, which represents a
generally non-trivial task. It is well-known, that an inappropriate model,
which does not fit the data, can generate misleading tree topologies [18, 19,
96].

More specifically, we consider the case of partitioned protein sequence
alignments (see Section 3.1, page 12), where each partition may have an
individual model of evolution. That is, the model of evolution is unlinked
across partitions. Our objective is to maximize the likelihood of the per-
partition protein model assignments (e.g., JTT, WAG, etc. [77, 145]) when
branches are linked across partitions on a given, fixed tree topology. That
is, branch lengths are not estimated individually for each partition. Linked
branch lengths across partitions substantially reduce the number of free
parameters.

For p partitions and |M | possible substitution models, there are |M |p
possible model assignments. Since the number of combinations grows ex-
ponentially with p, an exhaustive search for the highest scoring assignment
is computationally prohibitive for |M | > 1. We show that the problem
of finding the optimal protein substitution model assignment under linked
branch lengths on a given, tree topology, is NP-hard. Our results imply
that one should employ heuristics to approximate the solution, instead of
striving for the exact solution. Alternatively, the problem can be simplified
by relaxing the assumptions.

This chapter was first published in the journal of Theoretical Computer
Science as ”Is the Protein Model Assignment problem under linked branch
lengths NP-hard?”, with Jörg Hauser and Alexandros Stamatakis as co-
authors, in 2014 [82]. The paper was recognized by the journal of Theoretical
Computer Science, as one of their top 5 downloaded papers (4th) between
2010 and 2014.
The NP-hardness proof presented here is my main contribution to this topic.
Alexandros Stamatakis first stated the problem, while Jörg Hauser imple-
mented and tested different heuristic solutions. These results are analyzed
in more detail in a separate publication [67]. Both Stamatakis and Hauser
helped to write the paper.
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4.1 Motivation and Related Work

In phylogenetics, many of the questions that we try to answer have been
shown to be hard (NP-hard) to solve [3, 30, 55]. Among these are some of
the most fundamental problems, such as finding the ML for a given MSA
[23, 112] or even finding an optimal MSA [39], which are proven to be NP-
hard. Some problems may not even have a unique solution, as is the case
with finding the ML phylogeny [133]. In fact, many trees may obtain the
same likelihood and thus, form a so-called terrace [117].

Here we are not interested in the actual phylogenetic tree search, but in
the optimal assignment of evolutionary models to partitions of a partitioned
MSA for a fixed tree. At present, a plethora of empirical protein substitu-
tion models is available, such as JTT, DAYHOFF, WAG, etc. [77, 86, 145]
some of which are collections of substitution matrices that contain differ-
ent matrices such as the PAM or BLOSUM families [31, 70]. They are
provided in the form of an instantaneous 20 × 20 substitution matrix and
the corresponding base frequencies (prior probabilities) of the states. Given
this matrix (usually denoted as Q-matrix), one can calculate the transition
probabilities from one state to another for a given time/branch length t.
If each partition can be evaluated independently from the others, this task
is almost trivial and an optimal solution can be found in polynomial time.
However, if we assume that the branch lengths of the phylogenetic tree are
jointly estimated over all partitions, the model choice for each partition is
no longer independent from the choice of the models allocated to the other
partitions. Under this assumption, the optimal assignment of models to
partitions, with respect to the phylogenetic likelihood, is NP-hard, even if
we assume a fixed tree topology.

When analyzing large multi-gene datasets joint branch length estimates
can be used to reduce the number of free model parameters and thereby
avoid over-parameterizing the model. Each set of independent per-partition
branch lengths increases the number of model parameters by 2n−3 where n
is the number of taxa. Therefore, the option to link branch lengths is offered
in numerous phylogenetic tools such as RAxML [128] and PartitionFinder
[91]. Numerous analyses of multi-gene alignments use this feature (see for
example, [61, 94, 126]. Other results suggest that branch lengths may, un-
der certain conditions, inherently be correlated across partitions [78], which
provides an additional motivation to link branch lengths across partitions.

Tests on real-world data-sets performed by Hauser et al. [67] revealed
that suboptimal model assignments under linked branch lengths can change
the final tree topologies. They carried out tests on two previously published
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multi-gene data-sets [101, 150] using RAxML-Light version 1.0.5 [128]. On
these datasets, a total of 150 runs were conducted, on randomly chosen
subsets containing three partitions and 50 species each. Thereafter, the
best model assignment (with respect to its log likelihood score on the same
fixed tree) was determined for each subset using linked and unlinked branch
lengths. In 57% of the cases these model assignments were not identical. For
the cases (subsets) where the model assignments differed, tree searches with
RAxML under linked branch lengths using the two alternative model assign-
ments were conducted. For 86% of these runs, the inferred best-known ML
trees were different. On average, the Robinson Foulds distance [111] (confer
page 27) between different trees inferred under the optimal and suboptimal
model amounted to 9%. In other words, using the optimal protein model
assignment under linked branch lengths on empirical data frequently yields
a different tree topology with respect to the tree obtained from a suboptimal
model assignment. Thus, the Protein Model Assignment problem (PMA?)
‘matters’ since it alters the inferred tree topology. All data-sets from Hauser
et al. are available for download at https://github.com/Kobert/PMA.

4.2 Problem Definition: The Protein Model Assignment
Problem

We define the Protein Model Assignment problem (PMA?) as follows: Find
the best-fit model from a set of available models for each partition of a pro-
tein alignment on some given, fixed, tree topology. Further assume that
the branch lengths are linked across partitions. In other words, the branch
lengths are estimated/optimized jointly across all partitions of the align-
ment. The following is a more formal definition:

LetM be a set of evolutionary models. Usually a model is defined by its
Q-matrix. Here, the evolutionary models from which the Protein Model As-
signment problem (PMA?) can choose, are regarded as probability functions
whose values represent the transition probability from one state to another,
given a certain amount of time t, and the equilibrium frequencies for each
state. The matrix and the frequencies are required for the actual likeli-
hood calculations. We introduce this abstract view to avoid the calculations
required for obtaining the transition-probabilities from the instantaneous
transition rates in Q.

We denote a given model Mi with k states as:

Mi = (P,Π), where Π ∈ [0, 1]k, (16)
P : R→ [0, 1]k×k. (17)
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Here PX,Y (t) := P (X → Y |t) is the probability of a transition/mutation
from state X to state Y in time t, and πX is the equilibrium frequency of
state X. For amino acid sequences we have 20 states, that is, k = 20.

Let A be an alignment for a set of taxa, divided into the p partitions P1,
P2,· · · ,Pp. Let (T, β) = ((V,E), β(m)) be a phylogenetic tree with nodes V ,
edges E and edge weights (branch lengths) β. Here, the branch lengths β(m)
are given as edge weights under a chosen phylogenetic model assignment m.
Formally we write β : Mp → R|E|.

For this chapter, we assume that an optimal branch length configuration
exists and is given for each possible model assignment via a “black box” or
an “oracle”. That is, β(m) always denotes the branch length value that max-
imizes the tree likelihood under model assignmentm (m ∈Mp). For reasons
of complexity we may also assume this function only to take approximate
values that fit polynomial sized storage.

PMA? can be formulated as follows:

Definition 17 (PMA?). Given A, M , T as defined above, find the model
assignment m ∈ Mp that maximizes the likelihood function for A, M and
T . That is, maximize P (A|(T, β(m)),m), the probability of observing the
alignment, given the phylogenetic tree, with respect to m.

To show that PMA? is NP-hard, it suffices to show that a corresponding
decision problem is NP-complete.

Definition 18 (PMA Decision problem for PMA?). We define the PMA
decision problem as follows. For a partitioned protein alignment A, a tree
T containing all n species of the alignment, and a set of possible models M ,
does there exist a model assignment m such that the optimal branch length
configuration β(m) yields a likelihood above some chosen threshold b̂?

In other words:

PMA(A, T,M, b̂) =
{
true, ∃ m ∈Mp s.t. LH(A|(T, β(m)),m) ≥ b̂
false, else

where LH(A|(T, β(m)),m) is the probability of observing the data A under
the given tree (T, β(m)) and substitution models m chosen from Mp, that is,
the likelihood. An instance of PMA is uniquely defined by the choice of A,
T , M , and b̂.

We demonstrate that the decision problem PMA is NP-complete by ini-
tially showing that it is in fact in NP. Then, we reduce the well-known
boolean satisfiability problem (SAT, which is known to be NP-complete) to
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the decision problem. By definition of NP-completeness, this implies that
our problem is also NP-complete [27].

Obviously, the original protein model assignment optimization problem
is at least as hard as PMA. If we can obtain the solution of the maximization
problem from an oracle, we can verify whether the optimal solution is greater
than some real value b̂ or not.

4.3 Boolean Satisfiability Problem

SAT and 1-3-SAT One of the most well studied NP-complete prob-
lems is the boolean satisfiability problem (SAT ), which has been proven
to be NP-complete by Cook in 1971 [27]. Here, we show that there ex-
ists a polynomial time reduction from SAT to PMA. From this, we de-
duce that PMA ∈ NP-complete since any problem in NP can first be
reduced to SAT, by definition of NP-completeness, and subsequently to
PMA. Again, by definition of NP-completeness, this suffices for showing
that PMA ∈ NP-complete.

For simplicity, we consider a special form of the boolean satisfiability
problem called one-in-three-SAT (1-3-SAT ) [119].

The 1 − 3 − SAT problem is defined as follows. For variables vi, i =
1, · · · , n and their negations ¬vi, i = 1, · · · , n a true/false assignment a has
the following form:

a : {v1, v2, · · · , vn,¬v1,¬v2, · · · ,¬vn} → {true, false}, (18)

where a(vi) 6= a(¬vi), ∀i = 1, · · · , n. Any l ∈ {v1, v2, · · · , vn,¬v1,¬v2, · · · ,¬vn}
is called a literal, and we define ¬(¬l) = l.

A clause Cj = C(l1,j , l2,j , l3,j) is said to be true/satisfied under a, if
exactly one of the three literals l1,j , l2,j , l3,j is set to true in the assignment
a. For 1-3-SAT (as well as for the less restrictive 3-SAT [79]) each clause
must contain at most 3 literals. Each literal l1,j , l2,j , l3,j represents one of
the variables or negated variables.

An instance c of 1-3-SAT consists of a combination of clauses.

c = C1 ∧ C2 ∧ ... ∧ Cm. (19)

The assignment a is called truthful/feasible for an instance c, if and only
if, all clauses C1, C2,· · · Cm are true under a. An instance c is satisfiable
iff there exists an assignment a, such that a is feasible for c.
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1-3-unique-SAT For technical reasons, we impose one additional restric-
tion to the 1-3-SAT problem. We require that, each problem instance con-
tains only clauses in which each variable appears at most once. In other
words, no literal may appear twice in any clause, nor in a clause that con-
tains its negation. Thus, li,j 6= lk,j and li,j 6= ¬lk,j∀j, ∀k ∈ {1, 2, 3} \ {i}.
We denote this as 1-3-u-SAT (1-3-unique-SAT ) problem. Keep in mind that
the clauses C(v1, v1, v2) and C(v1,¬v1, v2) can not be part of any 1-3-u-SAT
instance.

The following observation shows that the problem is still NP-complete
under this restriction.

Observation 19. 1-3-u-SAT ∈ NP-complete.

Proof. The 1-3-SAT problem is known to be NP-complete [119]. What
needs to be shown is that, an instance c of 1-3-SAT can be transformed into
an instance c̄ of 1-3-u-SAT in polynomial time, such that c̄ is satisfiable
under 1-3-u-SAT iff c is satisfiable under 1-3-SAT. We show that any clause
of a 1-3-SAT problem can be represented by at most 4 new clauses while
adding at most 2 new variables, such that the original clause is satisfiable
for an 1-3-SAT instance iff the new clauses are satisfiable for 1-3-u-SAT.

Note that, if we require some literal l to be true for any feasible true/false
assignment, we can enforce this under the new setting by introducing two
new variables a and b and two new clauses as follows:

C(¬l, a, b) ∧ C(¬l,¬a,¬b) (20)

Furthermore, whenever some literal l̂ appears twice in a clause, it must be
set to false for any truthful assignment of 1-3-SAT and its negation must
consequently be true. This can be achieved by replacing l with ¬l̂ in (20). If
the given clause contains a third literal, it must consequently be set to true,
which can again be achieved by two new clauses of the above form. If no
third literal exists, the clause can never be satisfied. This can be achieved
by (in addition to forcing l̂ to be false) also requiring ¬l̂ to be false with two
clauses in the form of (20), which must result in an unsolvable instance. The
case where some clause contains both, a literal l̂ and its negation ¬l̂ implies
that a possible third literal must be set to false in any truthful assignment of
1-3-SAT, since either l̂ or its negation ¬l̂ will be true. This is again ensured
by Equation (20).

Thus, at most two auxiliary variables a and b have to be added, since a
and b can be reused for any other clause as well. The number of clauses grows
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by a factor of four at most. Using the above algorithm, any instance c of 1-3-
SAT can be transformed into an instance ĉ of 1-3-u-SAT in polynomial time,
and c is satisfiable under 1-3-SAT iff ĉ is satisfiable under 1-3-u-Sat.

In the following Section we show how to reduce the 1-3-u-SAT problem
to the PMA problem.

4.4 NP-Completeness

PMA is in NP: First we need to show that PMA is in fact in NP. While
this seems trivial at first glance, it still warrants some consideration since
we have so far allowed arbitrary real values for branch lengths and other
parameters which might require us to provide non-polynomial memory for
storing these values. The first observation is, that for the test parameter
b̂ we can simply choose a rational number that fits some polynomial stor-
age. For the branch lengths we may refine the “black box”, that we use to
obtain the branch length values, to either return approximated values that
fit the polynomial storage, or to return the approximated likelihood value
for any given model assignment. The second approach is easy to validate if
the likelihood approximation works in such a way, that the largest rational
number to fit polynomial storage is chosen such that it is smaller than or
equal to the actual likelihood. The drawback is that we can not interpret
the branch length values in any way. As we will see later, this is unfortunate,
since there is a clear correspondence between branch lengths of PMA and
the true/false assignment of 1-3-SAT. Where appropriate we will mention
the changes that have to be made in order to account for approximated
branch lengths, as suggested in the first approach. Given that polynomial
storage is guaranteed by observing one of the afore mentioned methods, we
can observe that:

Observation 20. PMA ∈ NP

Proof. By definition the class NP contains all problems for which a true
solution can be verified in polynomial time using a deterministic Turing ma-
chine. PMA is in NP, since, as we recall from Section 3.4, the likelihood can
be computed in polynomial time, using the Felsenstein pruning algorithm
[40]. Thus, we can check if a solution (model assignment and corresponding
branch lengths) is true in polynomial time by calculating whether it yields
a likelihood larger than b̂ or not.
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Reduction of 1-3-unique-SAT to PMA: We will now give a polyno-
mial time algorithm to transform an arbitrary instance c of 1-3-u-SAT into
an instance ĉ = ĉ(c) of PMA that is satisfiable iff the original problem c is
satisfiable. More specifically, we show how the alignment, the partitions, the
tree topology, and models can be constructed and how a truthful solution
of PMA can be interpreted as a truthful solution of 1-3-u-SAT. We require
at least 9 distinct states for the proof of NP-completeness. This means that
the results hold for amino acid data, which has 20 states, but no claim can
be made for DNA (4 states) or binary (2 states) data. While both, DNA
and binary data, are widely used in phylogenetics, models selection as we
define it here is usually irrelevant for DNA and binary data. Instead of
choosing from a finite set of precomputed models, as we do for protein data,
one estimates the rates from the data at hand (as explained in Section 3.2,
page 14 ). One example for this is the General Time Reversible model,
GTR [136], which can be estimated from the data. In the following let
k be the number of states with k ≥ 9. We also require that at least 3
models of protein substitution are available to choose from. In practice,
one can choose from the available set of empirical models (WAG, JTT,
DAYHOFF, PAM, etc.). Here, we construct artificial models M1, M2, and
M3 to prove NP-completeness. The models M1, M2, and M3 are very dif-
ferent from one another and different from any realistic model that would
be used in practice (WAG, JTT,...). However, the results from Hauser
et al. [67] imply that PMA? is also not easy to solve given the standard
models. None of the heuristics described in that paper (except for exhaus-
tive search) can identify the best scoring model assignment for all test cases.

An instance of 1-3-u-SAT consists of variables/literals and their arrange-
ment in clauses. A solution is a true/false assignment to the variables. We
can map this to a PMA instance as follows:

Topology and Alignment
The species in the alignment and phylogenetic tree are the variables and

their corresponding negations. We therefore need 2n species to achieve this,
where n is the number of variables in 1-3-u-SAT. Hence, our phylogenetic
tree has 2n taxa. We impose the following constraint on the tree topology:
Each variable/species is a direct neighbor of the species representing its
negation. Apart from that, an arbitrary tree topology can be constructed
as long as it complies with this topological constraint (see Figure 4.1).

Let Sorigin, S0, S1, S2, S3, S−1, S−2, S−3, Sint be nine unique states
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X1

X2 X3

X4

¬X3¬X2

¬X4

¬X1

Figure 4.1: Exemplary tree for n = 4 variables/species/taxa.

(Figure 4.4 illustrates the choice of names for these states). Each clause,
Ci = C(l1,i, l2,i, l3,i) in c corresponds to one partition Si in ĉ and each par-
tition contains exactly one site. To each of the species that correspond to
one of the literals l1,i, l2,i and l3,i, we assign the unique state values of S1,
S2, and S3 at site si respectively. The corresponding negations, ¬l1,i, ¬l2,i
and ¬l3,i are assigned the characters S−1, S−2, and S−3, in that order. For
all other species, we assign the value S0 at site si (see Figure 4.2). Each
partition has exactly one site, with exactly one occurrence of S1, S2, S3,
S−1, S−2, S−3 for 6 different species and state S0 for all other species. Note
that, S1, S2, S3, S−1, S−2, S−3 and S0 are fixed values. We require that the
literals at a position in a clause must always gain the same state and their
negation the appropriate consistent counterpart.

Model Construction
The models that are assigned must be of a certain form as outlined below.

We distinguish among models based on whether they allow for transitions
to states S1, S2, S3 and S−1, S−2, S−3 from certain other states and for
certain branch lengths with ‘high’/not ‘near-zero’ probability or not. We
denote a probability as ‘high’, if it is greater or equal to some given real
value b with 0 < b < 1/4. We call a probability ‘near-zero’ or ‘diminishing’
when it is less than or equal to ε, where ε is defined in relation to b and
πS0 , where πS0 is simply the frequency (as defined in Section 3.2, page 14)
of some state S0. It is chosen such that ε < (b2·n·πS0 )m

k·k2ṅ−2 , where 2n is the
number of species, m the number of sites (or the number of clauses for 1-
3-u-SAT ), k the number of states, and πS0 with 0 < πS0 ≤ 1 an arbitrary,
but fixed real value. The branch lengths that we specifically consider are
tb−, tmin and tb+ with tb− < tmin < tb+. These values can not be chosen
arbitrarily, but must comply with some restrictions depending on b and
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Figure 4.2: Exemplary transformation of two clauses of SAT into an alignment of
PMA. Clauses C1 and C2 correspond to sites 1 and 2 in the alignment respectively.
Keep in mind that each site is in fact a single site partition and can thus be assigned
its own model of evolution.

πS0 . All models must satisfy πSorigin ≥ πS0 , P (Sorigin → S0|t = tb+) ≥ b
and P (S0 → S0|t = tb−) ≥ b. Where P (X → Y |t) is the probability of
transitioning from stateX to state Y in time t, and πSorigin is the equilibrium
frequency of state Sorigin.

An important property that we require from these models is that, for
each of the three models, it is only possible to reach either state S1 or S−1,
either state S2 or S−2, and either state S3 or S−3 with non-diminishing
probability for any branch length t. Moreover, only one of the three states
S1, S2, S3 can be reached with ‘high’ probability within time t ≥ tmin.
Analogously, only a single one of the three states S−1, S−2 or S−3 can
evolve from any other state X with a probability greater or equal to b on a
branch shorter than tmin. For an illustration of this see Figure 4.3.

The following three models satisfy the aforementioned requirements.
For model M1 = M1(ĉ(c)) we require that:

P (Sorigin → S1|t = tb+) ≥ b, P (X → S1|t) < ε ∀t < tmin∀X 6= S1,
P (S−1 → S1|t) < ε ∀t,
P (Sorigin → S−2|t = tb+) ≥ b, P (X → S−2|t) < ε ∀t < tmin∀X 6= S−2,
P (S2 → S−2|t) < ε ∀t,
P (Sorigin → S−3|t = tb+) ≥ b, P (X → S−3|t) < ε ∀t < tmin∀X 6= S−3
P (S3 → S−3|t) < ε ∀t.
And
P (Sorigin → S−1|t = tb−) ≥ b, P (X → S−1|t) < ε ∀t ≥ tmin∀X,
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M1 M2 M3

S1 S1

S2

S2

S3

S3S3

S−1S−2 S−2S−1S−3 S−3S1

S−1 S2 S−2 S−3
tb−

tb+

Figure 4.3: Illustration of how the different models M1, M2 and M3 allow for
transitions to S1, S2, S3, S−1, S−2 and S−3 after time tb− and tb+. After time
tb− exactly one of S−1, S−2 and S−3 can ever be reached. Similarly after time tb+
exactly one of S1, S2 and S3 can be reached.

P (Sorigin → S2|t = tb−) ≥ b, P (X → S2|t) < ε ∀t ≥ tmin∀X,
P (Sorigin → S3|t = tb−) ≥ b, P (X → S3|t) < ε ∀t ≥ tmin∀X.

Analogously for model M2 = M2(ĉ(c)):
P (Sorigin → S−1|t = tb+) ≥ b, P (X → S−1|t) < ε ∀t < tmin∀X 6= S−1,
P (S1 → S−1|t) < ε ∀t,
P (Sorigin → S2|t = tb+) ≥ b, P (X → S2|t) < ε ∀t < tmin∀X 6= S2,
P (S−2 → S2|t) < ε ∀t,
P (Sorigin → S−3|t = tb+) ≥ b, P (X → S−3|t) < ε ∀t < tmin∀X 6= S−3
P (S3 → S−3|t) < ε ∀t.
And
P (Sorigin → S1|t = tb−) ≥ b, P (X → S1|t) < ε ∀t ≥ tmin∀X,
P (Sorigin → S−2|t = tb−) ≥ b, P (X → S−2|t) < ε ∀t ≥ tmin∀X,
P (Sorigin → S3|t = tb−) ≥ b, P (X → S3|t) < ε ∀t ≥ tmin∀X.

And for model M3 = M3(ĉ(c)):
P (Sorigin → S−1|t = tb+) ≥ b, P (X → S−1|t) < ε ∀t < tmin∀X 6= S−1,
P (S1 → S−1|t) < ε ∀t,
P (Sorigin → S−2|t = tb+) ≥ b, P (X → S−2|t) < ε ∀t < tmin∀X 6= S−2,
P (S2 → S−2|t) < ε ∀t,
P (Sorigin → S3|t = tb+) ≥ b, P (X → S3|t) < ε ∀t < tmin∀X 6= S3
P (S−3 → S3|t) < ε ∀t.
And
P (Sorigin → S1|t = tb−) ≥ b, P (X → S1|t) < ε ∀t ≥ tmin∀X,
P (Sorigin → S2|t = tb−) ≥ b, P (X → S2|t) < ε ∀t ≥ tmin∀X,
P (Sorigin → S−3|t = tb−) ≥ b, P (X → S−3|t) < ε ∀t ≥ tmin∀X.
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Figure 4.4 illustrates the behavior of a stochastic process by example of
model M3.

All other properties of the probability functions can be freely chosen.
Models M1, M2 and M3 are simplified and do not, in their stated form,
comply with the assumptions we made when observing that PMA∈NP. If
we want to accommodate approximated branch lengths that fit polynomial
storage, we need to further adjust these probability requirements. Instead
of requiring P (X → X|t = t̄) ≥ b for some state X and Y and a time
t̄, we must require P (X → X|t = t̂) ≥ b for all t̂ ∈ B(t̄), where B(t̄) is
the ball around t̄ with a radius that is large enough to accommodate the
approximated branch length of t̄. If this is obeyed, polynomial storage can
be guaranteed.

Sorigin

Sorigin

Sorigin

Sorigin

t = 0 t = tb+

S3

S0

S−2

S−1
Sint → S−1

Sint → S−2

Sint → S3

Sorigin → S1

Sorigin → S0

Sorigin → S−3

Sorigin → S2

t = tb− t = tmin

S1 → Sint

S2 → Sint

S−3 → Sint

Figure 4.4: Four exemplary runs of a stochastic process that starts in state Sorigin

and moves according to model M3. State Sorigin is always (with high probability)
left before time tb− is reached. States S1, S2 and S−3 change to Sint before time
tmin with high probability. State Sint is left, with high probability, at some time t
with tmin < t < tb+. Sorigin is called origin because all other states can be reached
from it. Sint is an intermediate state separating S1 and S−1, S2 and S−2, and S3
and S−3, respectively.

The models are given by explicit probabilities of transitioning from one
state to another, given some time t (and the equilibrium state frequen-
cies). In practice, a model is defined by the so called Q-matrix (see Section
3.2, page 14), which specifies instantaneous transition rates (qi,j) instead of
transition probabilities. The instantaneous rates are translated into prob-
abilities [62, 148]. For the sake of simplicity, we use explicit probability
functions. We could however also construct three Q-matrices whose corre-
sponding probabilities satisfy the requirements of models M1, M2, and M3,
respectively.
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One way to construct the probability functions with the above prop-
erties, requires a total of 9 states. Let b and ε be given. For model
M1 choose qSorigin,S0 = qSorigin,S−1 = qSorigin,S2 = qSorigin,S3 large enough
and qS−1,Sint = qS2,Sint = qS3,Sint small enough such that P (Sorigin →
X|t = tb−) ≥ b for X ∈ {S0, S−1, S2, S3}. At the same time qS−1,Sint

must be large enough such that P (Sorigin → S−1|t = tmin) < ε. The
transition rates qSint,S1 = qSint,S−2 = qSint,S−3 must be chosen such that
P (Sorigin → S1|t = tmin) < ε and P (Sorigin → S1|t = tb+) ≥ b (See Figure
4.4). For these reasons tb−, tmin and tb+ can not be arbitrarily chosen, but
must be far enough apart from one another. All other rates qi,j can be set
to 0 to make the above construction feasible. Models M2 and M3 can be
constructed analogously.

If we want to accommodate more than three models, each additional
model must at least fulfill the requirements of model M1, M2 or M3. Al-
ternatively, we can use a more restrictive model where at least all those
probabilities that are smaller than ε, forM1, M2 orM3 must also be smaller
than ε for the new model.

Proof of Correctness: We now show that the instance c of 1-3-u-SAT is
satisfiable, iffwe can find a model assignment and respective branch lengths
for the corresponding PMA instance ĉ(c) as defined above, that yields a
likelihood above b̂. The value b̂ = b̂(ĉ(c)) is defined as b̂ := (b2·n · πS0)m,
where n is equal to the number of variables and m is the number of clauses
in c.

Initially, we observe three properties.

Observation 21. If some site Si yields a likelihood of at most ε for some
ε ∈ [0, 1], then the overall likelihood for the entire alignment must be less
than or equal to ε.

This holds since the likelihood function is multiplicative across sites and
each site can only ever have a likelihood of at most 1, but must be greater
or equal to 0.

Observation 22. If we find a site si such that the probability ε̂ of reaching
a tip from an ancestral node is sufficiently small for at least one tip (for
given branch lengths) and for all possible states of the ancestral state, we
observe that this site must yield a likelihood of less than ε̂ · k · k2·n−2, where
k is the number of possible states.

This holds, since we need to sum over all k possible states at the root of
the tree to obtain the likelihood and over all k2·n−2 possible state configu-
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rations for the inner nodes. Each configuration can contribute at most ε̂ to
the site likelihood.

By Observation 22 we get the following result. If we choose ε̂ = ε,
with 0 < ε <

(b2·n·πS0 )m

k·k2·n−2 , where k is the number of states (b, πS0 > 0), the
likelihood at site si is strictly smaller than (b2·n ·πS0)m. By Observation 21,
this means that PMA(ĉ(c)) returns false for this case.

Now we consider the case, where there exists a model configuration,
where the probability of going from state Sorigin at the respective ancestral
node to the tip states in the time given by the branch length is always greater
or equal to b (0 < b < 1/4 is chosen such that models M1, M2 and M3 can
be constructed).

Observation 23. Given the above assumptions, PMA(ĉ(c)) returns true.

Proof. We consider a contracted tree (also called star-tree) that is obtained
by setting all branch lengths for branches that connect inner nodes, to zero,
and place the virtual root for likelihood computations on one of these inner
(zero length) branches (see Figure 4.5).

¬X1 → S−1
¬X4 → S3

X1 → S1

X4 → S−3
¬X3 → S0

X3 → S0

¬X2 → S2

X2 → S−2

Figure 4.5: Contracted tree with exemplary tip states for clause C =
C(x1,¬x2,¬x4). The site given by clause C, yields a likelihood greater or equal
to b̂ for this tree under model M3.

We observe that, the resulting likelihood must be greater or equal to
(b2·n · πS0). If we consider the term for observing state Sorigin at the root,
which is used to calculate the likelihood, we observe that the probability
of going from Sorigin to Sorigin in time t = 0 is 1 (P (Sorigin → Sorigin|t =
0) = 1) and P (Sorigin → Xj |tj) ≥ b for the states Xj at all tip-nodes j, by
assumption. Hence, the above observation is true. The factor πS0 is given,
because the base frequency of state Sorigin, πSorigin , which forms part of the
likelihood computation when assuming an observed state Sorigin at the root,
is always greater or equal to πS0 , by construction of the models. Since this is
a feasible branch length and model assignment, the optimal branch length
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and model assignment must yield a likelihood that is at least as large as
(b2·n · πS0). Thus, if all m sites yield at least this likelihood, the likelihood
of the tree for the entire alignment is greater or equal to (b2·n · πS0)m, that
is, PMA(ĉ(c)) returns true.

Now, we need to show that these two cases for PMA(ĉ(c)), as detailed
in Observations 22 and 23, actually correspond to c being satisfiable and
unsatisfiable, respectively. For any given branch length assignment, let the
corresponding true/false assignment be given by:
a(li) =false iff the branch leading to species li is of length less than tmin.
And a(li) =true otherwise (see Figure 4.6).

X2 X3

¬X4

¬X1

X1

¬X2

X4

¬X3

Figure 4.6: Branch length configuration translating to the following true/false
assignment: x1 =False, x2 =True, x3 =True, x4 =False.

We show that the above branch length assignment for PMA allows for
likelihood values greater/lower than the chosen threshold at any site i, iff
the corresponding clause in c of 1-3-u-SAT is satisfied/not satisfied under
the true-false assignment as obtained by the process we described above.

Theorem 24. The 1-3-u-SAT instance c is satisfiable, iff there exists a
model assignment m, from the models M1 = M1(ĉ(c)), M2 = M2(ĉ(c)) and
M3 = M3(ĉ(c)) for the partitions (sites) Si of ĉ(c) such that the likelihood
calculated for some rooting of the tree with optimal branch lengths b(m) is
greater or equal to b̂ = b̂(ĉ(c)). Here, ĉ(c) is the PMA instance correspond-
ing to c.

In other words: 1-3-u-SAT (c) =true ⇔ PMA(ĉ(c)) =true.

Proof. Note that, if the branch lengths of two branches leading to a variable
xi and its negation ¬xi are of the same length class (i.e., if both are smaller
than tmin, or if both are greater or equal to tmin), the likelihood of the
tree is always smaller than b̂. This corresponds to a false assignment of the
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variables in 1-3-u-SAT, since the condition a(xi) 6= a(¬xi) is violated for
variable xi. Therefore, we will only consider the remaining cases, where the
branch of xi is greater or equal to tmin and the leading branch to ¬xi is
smaller than tmin, and vice versa (see Figure 4.7). If a variable does not
appear in any clause, this contradiction does not hold. However, in this
case it does not matter whether the variable is assigned true or false in the
original 1-3-SAT problem either, such that we can discard these variables.

tb+

tb− S−1

S1
tb+

tb+

S1

S1

S−1
S−1

tb−

tb−

· · · · · · · · ·

b) c)a)

Figure 4.7: For case a) model M1 yields a ’high’ likelihood. Models M2 and M3
yield a ’diminishing’ probability. For case b) and case c) all of M1, M2 and M3
yield a ’diminishing’ likelihood as only S1 or S−1 can be reached after time tb+ and
tb−.

If any clause of c only contains literals that are set to false in the assign-
ment obtained from the branch length solution of PMA, the corresponding
alignment site will yield a likelihood smaller than ε. This holds, because the
three literals are set to false, iff the branches leading to these literals have a
length smaller than tmin. However, the models were chosen such that only
two literals (i.e., their respective representation in the alignment (states S1,
S2 and S3)), can be reached with a probability greater or equal to b within at
most tmin time. The third literal/tip-branch must contribute a probability
of less than ε. As we have seen, this implies that PMA returns false. Anal-
ogously, if for a site i two branches leading to leafs that represent literals
in the corresponding clause, have branch lengths exceeding tmin, this means
that PMA and 1-3-u-SAT (under the corresponding true/false assignment)
return false. Again, because of the way we have defined the models, one of
the two tip-branches (leading to states S1, S2, or S3) with length greater
than tmin must contribute a probability of less than ε. That is, the overall
likelihood is smaller than b̂. For an illustration see Figure 4.8.

Now we consider the case where PMA (as well as 1-3-u-SAT ) reports
true. Let β(m) be the optimal branch length configuration for tree T under
the model assignment m. Let us further assume that, for each site i, exactly
one branch leading to a tip with states S1, S2 or S3 at site i has a length
greater or equal to tmin. This is equivalent to requiring exactly one literal
to be set to true per clause (i.e., the true/false assignment is true for our
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S1

S−1

S0

S0

S2

S−2

S3

S−3

Clade 1

Clade 2

Figure 4.8: Tree with tip-states for a site corresponding to clause C =
C(x1, x3, x4). Clade 1 contributes a ’high’ probability under model M1 but a di-
minishing probability under models M2 and M3. Similarly Clade 2 contributes a
’high’ probability under model M2 but a diminishing probability under models M1
and M3. Thus the overall likelihood contribution is diminishing for any of the three
models.

instance of 1-3-u-SAT ), under the corresponding true/false assignment.
Let us consider an alternate branch length assignment β?(β(m)) with the

following properties: Any branch leading to a tip that has length t < tmin
in β is assigned length t? = tb− in β?. Any branch with length t ≥ tmin in
β, leading to a tip, is set to length t? = tb+ in β?. All other branch lengths
are assumed to be optimized for β?. Obviously, the likelihood of T under
β must be greater or equal to that of T under β?. However, the resulting
true/false assignment for c is identical in both cases.

For each site (partition) i of the alignment, we can easily decide which
model to assign. If the branch leading to the species/literal that was assigned
state S1 at position i is of length tb+, select model M1. Analogously, select
modelM2 orM3 if the branch leading to S2 or S3 has length tb+. If we apply
these rules, all branches leading to one of the three literals of the clause
corresponding to site i and their corresponding negations yield a probability
greater or equal to b. All other branches yield a probability of at least b,
independently of the model selected. This means that the overall likelihood
of the tree is at least b̂ (See Observation 23). Since the likelihood of T under
β can only be greater or equal than that of T under β?, PMA reports true.

We have shown that, any branch length assignment for PMA translates
into a true/false assignment of 1-3-u-SAT. This true/false assignment is true
for the instance c, iff the corresponding branch length assignment returns
true under the optimal model assignment. Hence, we have shown that,
1-3-u-SAT reduces to PMA.
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The proof presented above is constructed in such a way, that it is pos-
sible, not only, to verify that an instance c of 1-3-u-SAT is solvable, iff the
corresponding instance ĉ(c) of PMA is solvable. In addition, we also present
a means for interpreting the solution of a truthful PMA instance as a truthful
assignment of 1-3-u-SAT.

Corollary 25. PMA ∈ NP-complete.

Proof. The corollary follows from Theorem 24 and PMA ∈ NP, as shown in
Observation 20.

Corollary 26. The Protein Model Assignment Problem (PMA?) is NP-
hard.

4.5 Computational Results

Here we have shown that PMA* is NP-hard. This leads to the question of
how hard this problem is to solve in practice and how good polynomial time
heuristics can approximate the optimal solution. These questions are the
focus of Hauser et al. in [67]. For that publication I was co-author, so we
now give a brief summary of the results obtained therein. For more details,
please refer to the afore mentioned paper.

The analysis was done on two previously published multi-gene data-
sets [101, 150] using RAxML-Light version 1.0.5 [128]. A total of 150 runs
were conducted, on randomly chosen subsets containing 3 partitions and 50
species each. With only 3 partitions PMA? can still be solved exhaustively,
and hence exactly, within an acceptable time frame. This exact solution was
compared to various heuristics, in terms of the actual model assignment and
the resulting ML tree topology, when a ML search was performed under the
respective model assignments.

The so called naïve heuristic simply optimizes the model assignment un-
der unlinked branch lengths. In 57% of the cases these model assignments
were not identical to those found during the exhaustive search. Perform-
ing a ML search (with linked branch lengths) under this model assignment
resulted in a different tree topology for 86% of the samples.

Among other heuristics, the steepest ascent heuristic yielded ’good’ re-
sults. Nonetheless, this heuristic failed to find the best scoring assignment in
7% of the cases. The relative Robinson Foulds distance [111] (see Definition
16, page 27) between the trees inferred under the optimal and suboptimal
(heuristic) model assignment amount to an average of 3%.
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4.6 Conclusion

We have shown that the Protein Model Assignment problem (PMA?) is
NP-hard. In other words, unless P = NP, no polynomial time algorithm
exists that solves this problem exactly.

To reduce the computational effort, one can either relax the constraints
or apply heuristics to solve this problem without the guarantee of obtaining
the exact solution. One intuitive way to relax the problem is to assume
unlinked branch lengths instead of linked branch lengths. Our tests indicate
that, this can often yield different trees compared to the optimal solution
though.

With respect to potential heuristic approaches, one can, for example, em-
ploy hill-climbing methods. These can however converge to a local optimum
and do not guarantee a globally optimal model assignment. Furthermore,
we have shown how to obtain a solution for an instance of 1-3-u-SAT (and
by reduction, of 1-3-SAT ) by solving an instance of the Protein Assignment
Problem (PMA).

The proof presented in this chapter does not make assumptions about
time reversibility of the substitution models. It is an open question whether
the results hold if we restrict ourselves to time-reversible models. Moreover,
the proof makes use of 9 distinct states and requires a minimum of 3 mod-
els. For practical reasons, requiring 9 distinct states does not limit us in a
meaningful way, since we can apply the result to protein model selection (20
states). For data with a lower number of states, such as DNA (4 states) or
binary (2 states) data, model selection is usually not done by assigning pre-
computed empirical models, but by directly optimizing a rate matrix from
the data at hand [136]. From a theoretical point of view, this question is still
interesting to answer. However, it is not obvious whether the results can be
broadened, for instance, whether PMA? is NP-hard for DNA (4 states) or
binary (2 states) data, or a minimum of 2 models. If the problem is still
NP-hard when we allow only 2 models, the proof must likely use a different
NP-hard problem than the boolean satisfiability problem for the reduction,
as 2SAT can be solved in polynomial time [9].
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5 Distibution of Partitions to Parallel Processors
Motivated by load balance issues in parallel calculations of the phyloge-
netic likelihood function we address the problem of distributing divisible
items to a given number of bins. The task is to balance the overall sum
of (fractional) item sizes per bin, while keeping the maximum number of
unique elements in any bin to a minimum. We show that this problem is
NP-hard and give a polynomial time approximation algorithm that yields
a solution where the sums of (possibly fractional) item sizes are balanced
across bins. Moreover, the maximum number of unique elements in the bins
is guaranteed to exceed the optimal solution by at most one element. We im-
plement the algorithm in two production-level parallel codes for large-scale
likelihood-based phylogenetic inference: ExaML [131] and ExaBayes [2].
For ExaML, we observe best-case runtime improvements of up to a factor
of 5.9 compared to the previously implemented data distribution algorithms.

This chapter has been published in Algorithms in Bioinformatics as ”The
divisible load balance problem and its application to phylogenetic inference”
in 2014 [81]. The publication was co-authored with Andre Aberer, Tomáš
Flouri, and Alexandros Stamatakis.
My contribution to this topic are the actual algorithm for load balancing,
the NP-hardness proof, and the proof for near optimality. Stamatakis first
formulated the problem in a practical setting. Flouri helped finalize and
formalize the algorithm. Aberer implemented and tested the algorithm. All
authors were involved in the writing of the paper.

5.1 Motivation and Related Work

Motivation. Maximizing the efficiency of parallel codes by distributing
the data in such a way as to optimize load balance is one of the major
objectives in high performance computing.

Here, we address a specific case of job scheduling (data distribution)
which, to the best of our knowledge, has not been addressed before. We have
a list of N divisible jobs, each of which consists of si atomic tasks, where
1 ≤ i ≤ N , and B processors (or bins). All jobs have an equal, constant
startup latency α, and each task, regardless of the job it appears in, requires
a constant amount of time β to be processed. Although these times are
constant, they depend on the available hardware architecture, and hence
are not known a priori. Moreover, the jobs are independent of one another.
We also assume that processors are equally fast. Therefore, any task takes
time β to execute, independently of the processor it is scheduled to run on.

51



Any job can be partitioned (or decomposed) into disjoint sets of its original
tasks, which can then be distributed to different processors. However, each
such set incurs its own startup latency α on the processor on which it is
scheduled to run. Thus, a job of k tasks takes time k · β + α to execute on
any processor. The tasks (even of the same job) are independent of each
other, that is, they can be executed in any order, and the sole purpose of
the job configuration is to group together the tasks that require the same
initialization step and hence minimize the overall startup latency.

Our work is motivated by parallel likelihood computations in phyloge-
netics (see [43, 148] for an overview). There, we are given a MSA that is
typically subdivided into distinct partitions (as introduced in Section 3.1,
page 12). Given the alignment and a partition scheme, the likelihood on a
given candidate tree can be calculated. To this end, transition probabili-
ties for the statistical nucleotide substitution model need to be calculated
(start-up cost α in our context) for each partition separately because they
are typically considered to evolve under different models (see Section 3.2,
page 14). Note that, all alignment sites that belong to the same partition
have identical model parameters.

The partitions are the divisible jobs to be distributed among processors.
Each partition has a fixed number of sites (columns from the alignment),
which denote the size of the partition. The sites represent the independent
tasks a job (partition) consists of. Since alignment sites are assumed to
evolve independently in the likelihood model, the calculations on a single site
can be performed independently of all other sites (see Equation (14), page
24). Thus, a single partition can easily be split among multiple processors.

As we reason in Section 3.2 (page 16), the overhead α is actually perfor-
mance critical.

Finally, note that, parallel implementations of the phylogenetic likeli-
hood function now form part of several widely-used tools [49, 103, 134] and
the results presented in this chapter are generally applicable to all tools.

Related work. A related problem is bin-packing with item fragmentation.
Here, items may be fragmented, which can potentially reduce the total num-
ber of bins needed for packing the instance. However, since fragmentation
incurs overhead, unnecessary fragmentations should be avoided. The goal
is to pack all items in a minimum number of bins. For an overview of the
fractional bin packing problem see [58, Chapter 33]. However, in contrast to
our problem, the number of bins is not part of the input but is the objective
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function.
The most closely related domain of research is divisible load theory

(DLT). Here, the goal is to distribute optimal fractions of the total load
among several processors such that the entire load is processed in a minimal
amount of time. For a review on DLT, see [13]. However, in general DLT
can accommodate more complex models, taking into account a number of
factors, such as network parameters or processor speeds. Our problem falls
into the category of scheduling divisible loads with start-up costs (see for
instance [15, 141]). To our knowledge the problem we present has not been
solved before.

There exists previous work by our group on improving the load-balance
in parallel phylogenetic likelihood calculations [152]. There, for the sake of
code simplicity, single partitions/jobs are assumed to be indivisible. Thus,
the scheduling problem addressed there was equivalent to the ’classic’ multi-
processor scheduling problem.

Overview. In Section 5.2 we formally define two variations of the prob-
lem. We then prove that the problem is NP-hard (Section 5.3). The main
contribution of this chapter can be found in Section 5.4, where we give a
polynomial-time approximation algorithm which yields solutions that assign
at most one element more, that is, sites from one additional partition, to any
processor (or bin) than the optimal solution. We analyze the algorithm com-
plexity and prove the OPT+1 approximation in Section 5.5. Unless P = NP
[27, 79], no polynomial time algorithm can guarantee a better worst case ap-
proximation. Finally, in Section 5.6, we present the performance gains we
obtain, when employing our algorithm for distributing partitions in ExaML
[131], available at http://www.exelixis-lab.org/web/software/examl/
index.html .
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5.2 Problem Definition: Load Balancing

Assume we have N divisible items of sizes s1, s2, . . . , sN , and B available
bins. Our task is to find an assignment of the N items to the B bins, by
allowing an item to be partitioned into several sub-items whose total size is
the size of the original item, in order to achieve the following two goals:

1. The sum of sizes of the (possibly partitioned) items assigned to each
bin is well-balanced.

2. The maximum load over all bins is minimal with respect to the number
of items added.

In the rest of the text we will use the term solid for the items that are not
partitioned, and fractional for those that are partitioned.

We can now formally introduce two variations of the problem; one where
we only allow items of integer sizes, and one where the sizes can be repre-
sented by real numbers. In the case of integers, the problem can be formu-
lated as the following integer program.

Problem 27 (LBN). Given a sequence of positive integers s1, s2, . . . , sN
and a positive integer B,

minimize max{
∑N

j=1 xi,j | i = 1, 2, . . . , B }

subject to ∑B
i=1 qi,j = sj, 1 ≤ j ≤ N∑N
j=1 qi,j ≥ bσ/Bc, 1 ≤ i ≤ B∑N
j=1 qi,j ≤ dσ/Be, 1 ≤ i ≤ B

σ =
∑N
i=1 si

0 ≤ qi,j ≤ xi,j · sj, 1 ≤ i ≤ B, 1 ≤ j ≤ N

q ∈ NB×N≥0

x ∈ {0, 1}B×N

By removing the imposed restriction of integer sizes, and hence allowing
for positive real values as the sizes of both solid and fractional items, we
obtain the following mixed integer program.
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Problem 28 (LBR). Given a sequence of positive real values s1, s2, . . . , sN
and a positive integer value B,

minimize max{
∑N

j=1 xi,j | i = 1, 2, . . . , B }

subject to ∑B
i=1 qi,j = sj, 1 ≤ j ≤ N∑N
j=1 qi,j = σ/B, 1 ≤ i ≤ B

σ =
∑N
i=1 si

0 ≤ qi,j ≤ xi,j · sj, 1 ≤ i ≤ B, 1 ≤ j ≤ N

q ∈ RB×N

x ∈ {0, 1}B×N

If for some bin i and element j we get a solution with qi,j < sj , we say
that element j is only assigned to bin i partially, or that only a fraction of
element j is assigned to bin i. If qi,j = sj we say that element j is fully
assigned to bin i.

5.3 NP-Hardness

We now show that problems LBN and LBR are NP-hard by reducing the
well-known Partition [79] problem. We reduce it to another decision prob-
lem that decides whether a set can be broken into disjoint sets of equal car-
dinality and equal sum of elements (see Problem ECP, Def. 30), which can
be solved by the two flavors of our problem.

Definition 29 (Partition). Is it possible to partition a set S of posi-
tive integers into two disjoint subsets Q and R, such that Q ·∪ R = S and∑
q∈Q q =

∑
r∈R r?

Definition 30 (ECP). Let p and k be two positive integers and S a set of
positive integers such that |S| = p · k. Is it possible to partition S into p
disjoint sets S1, S2, . . . , Sp of k elements each, such that

⋃
· pi=1 Si = S and∑

s∈Si
s =

∑
s∈Sj

s, for all 1 ≤ i ≤ p and 1 ≤ j ≤ p?

Clearly, if we can solve our original optimization problems LBN and LBR
for any S exactly, we can also answer whether ECP returns true or false for
the same set S. Thus, if we can show that ECP is NP-Complete we know
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that the original problems are NP-hard.
To show that ECP is NP-Complete, it is sufficient to show that ECP is
in NP, that is the set of polynomial time verifiable problems, and some
NP-Complete problem (here Partition) reduces to it.

Lemma 31. ECP is NP-Complete.

Proof. The first part, i.e., ECP ∈ NP, is trivial. Given a solution (that is,
the sets S1,. . .,Sp), we are able to verify, in polynomial time to p, that the
conditions for problem ECP hold, by summing the elements of each set.

For the reduction of Partition to ECP consider the set S to be an
instance of Partition.

We derive an instance Ŝ of ECP from S, such that Partition(S) is true
iff ECP(Ŝ) is true for 2 bins (that is p = 2).

To this end, we define Ŝ = S ∪ (a · S) a set of integers, with a =
(1 +

∑
s∈S s) and (a · S) = { a · s | s ∈ S }.

Clearly, if there is a solution for Partition given S, there must also
be a solution for ECP given Ŝ. If Q,R ⊂ S is a solution for Partition,
Q ∪ (a ·R), then R ∪ (a ·Q) is a solution for ECP.

Similarly, let Q̂, R̂ be a solution for ECP given Ŝ. Let Q = Q̂ ∩ S,
R = R̂ ∩ S, (a ·Q) = Q̂ ∩ (a · S) and (a ·R) = R̂ ∩ (a · S).

Trivially, it holds that Q = { q ∈ Q̂ | q < a }, R = {r ∈ R̂ | r < a} and
(a ·Q) = Q̂ \Q, (a ·R) = R̂ \R.

Thus, we obtain Q∪R = S and (a ·Q)∪ (a ·R) = (a ·S). We also obtain
that

∑
q∈Q q =

∑
r∈R r (and

∑
q∈(a·Q) q =

∑
r∈(a·R) r).

We prove that the equations hold by contradiction:
Suppose this was not the case for some solution of ECP, that is

∑
q∈Q q 6=∑

r∈R r and hence
∑
q∈(a·Q) q 6=

∑
r∈(a·R) r.

By definition, (a ·Q) and (a ·R), q/a and r/a are integer values for any
q ∈ (a ·Q) and r ∈ (a ·R), and therefore:

|
∑

q∈(a·Q)
q −

∑
r∈(a·R)

r| = |
∑

q∈(a·Q)
a · q/a−

∑
r∈(a·R)

a · r/a|

= a · |

≥1︷ ︸︸ ︷∑
q∈(a·Q)

q/a−
∑

r∈(a·R)
r/a| ≥ a

However,
∑
s∈Q∪R=S s < a. Thus,

∑
q∈Q∪(a·Q)=Q̂ q 6=

∑
r∈R∪(a·R)=R̂ r which

contradicts the assumption of Q̂, R̂ being a solution for ECP(Ŝ,2).
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Therefore, Partition reduces to ECP, which means that ECP is NP-
Complete.

Corollary 32. The optimization problems LBN and LBR are NP-hard.

This follows directly from Lemma 31 and the fact that an answer for
ECP can be obtained by solving the optimization problem.

5.4 Algorithm

LoadBalance(N,B, S)
B Phase 1 — Initialization
1. Sort S in ascending order and let S = (s1, s2, . . . , sN )
2. σ =

∑N
i←1 si

3. c← dσ/Be
4. r ← c ·B − σ
5. for i← 1 to B do
6. size[b]← 0; items[b]← 0; list[b]← ∅
7. full_bins← 0; b← 0;

B Phase 2 — Initial filling
8. for i← 1 to N do
9. if size[b] + si ≤ c then

10. size[b]← size[b] + si
11. items[b] = items[b] + 1
12. Enqueue(list[b], (i, 1, si))
13. if size[b] = c then
14. full_bins← full_bins + 1
15. if full_bins = B − r then c← c− 1
16. else
17. break
18. b← (b+ 1) mod B

Figure 5.1: The algorithm accepts three arguments N,B and S, where N is the
number of items in list S, and B is the number of bins

As seen in Section 5.3, finding an optimal solution to this problem is
hard. To overcome this hurdle, we propose an approximation algorithm
running in polynomial time that guarantees a near-optimal solution. For an
in-depth analysis of the complexity of the algorithm, see Section 5.5. The
input for the algorithm is a list S of N integer weights (numbers of sites for
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the partitions) and the number of bins B (processors) these elements must
be assigned to. The idea of the algorithm can be explained by the following
three steps:

1. Sort S in ascending order.

2. Starting from the first (solid) element in the sorted list S, assign ele-
ments from S to the B bins in a cyclic manner (at any time no two
bins can have a difference of more than one element) until any bin can
not entirely hold the proposed next item.

3. Break the remaining elements from S to fill the remaining space in the
bins.

Fig. 5.1 presents the pseudo code for the first two phases, while Fig. 5.2
illustrates phase 3. The output of this algorithm is an assignment, list =
(list[1], . . . , list[p]), of (possibly fractional) elements to bins. Each entry in
list is a set of triplets that specify which portion of an integer sized element
is assigned to a bin. Let (j, i, k) ∈ list[l] be one such triplet for bin number l.
We interpret this triplet as follows: bin l is assigned the fraction of element
j that starts at i and ends at k (including i and k).

For the application in phylogenetics, each triplet specifies which portion
(how many sites) of a partition is assigned to which processor. Again, let
(j, i, k) ∈ list[l] be one such triplet for some processor l. We interpret this
triplet as follows: processor l is assigned sites i through k of partition j.

If i 6= 1 or k 6= sj (recall sj is the size of element j), we say that element j
is partially assigned to bin i, that is, only a fraction of element j is assigned
to bin i. Otherwise, if i = 1 and k = sj , then the triplet represents a solid
element, i.e., element j is fully assigned to bin i.

For applications that allow any fraction of an integer to be assigned to
a bin, not just whole integer values (that is, problem LBR), we redefine the
variable c to be exactly σ/B, without rounding. Additionally, the output
(list) must correctly state which ranges of the elements are assigned to which
bin and not give integer lower and upper bounds.

We give two examples of how algorithm LoadBalance works on a spe-
cific set of integers.

Example 33. Consider the set {2, 2, 3, 5, 9} and three bins. During ini-
tialization (phase 1) we have c = 7 and r = 0. Phase 2 makes the
following assignments: list[1] = {(1, 1, 2), (4, 1, 5)}, list[2] = {(2, 1, 2)},
list[3] = {(3, 1, 3)}. Adding the next element of size 9 is not possible since
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B Phase 3 — Partitioning items into bins
19. low← B; `← B; high← 1; h← 1
20. while i ≤ N do
21. while size[`] ≥ c do
22. low← low− 1; `← low
23. while size[h] ≥ c do
24. high← high + 1; h← high
25. if size[h] + add ≥ c then
26. items[h]← items[h] + 1
27. Enqueue(list[h], (i, si − add + 1, si − add− size[d] + c))
28. add← size[h] + add− c
29. size[h]← c
30. full_bins← full_bins + 1
31. if full_bins = B − r then c← c− 1
32. else
33. items[`]← items[`] + 1
34. if size[`] + add < c then
35. size[`]← size[`] + add
36. Enqueue(list[`], (i, si − add + 1, si))
37. add← 0
38. high← high− 1; h← `
39. low← low− 1; `← low
40. else
41. Enqueue(list[`], (i, si − add + 1, si − add− size[d] + c))
42. add← size[`] + add− c
43. size[`]← c
44. full_bins← full_bins + 1
45. if full_bins = B − r then c← c− 1
46. if add = 0 then
47. i← i+ 1; add← si

Figure 5.2: Phase 3 of the algorithm

size[2] + 9 = 2 + 9 = 11 > c. Thus, phase 2 ends. Phase 3 splits the
last element of size 9 among bins 2 and 3, and the solution is list[1] =
{(1, 1, 2), (4, 1, 5)}, list[2] = {(2, 1, 2), (5, 1, 5)}, list[3] = {(3, 1, 3), (5, 6, 9)}.
With max{|list[1]|, |list[2]|, |list[3]|} = 2. This is also an optimal solution.

Example 34. Consider the set {1, 1, 2, 3, 3, 6} and two bins. During

59



the initialization (phase 1) we have c = 8 and r = 0. Phase 2 gen-
erates the following assignments: list[1] = {(1, 1, 1), (3, 1, 2), (5, 1, 3)},
list[2] = {(2, 1, 1), (4, 1, 3)}. The last element of size 6 can not be fully
assigned to bin 2, thus phase 2 terminates. Finally, phase 3 splits the
last element of size 6 among the two bins, and the solution is list[1] =
{(1, 1, 1), (3, 1, 2), (5, 1, 3), (6, 1, 2)}, list[2] = {(2, 1, 1), (4, 1, 3), (6, 3, 6)}. We
get max{|list[1]|, |list[2]|} = 4. However, an optimal solution list?1 =
{(1, 1, 1), (2, 1, 1), (6, 1, 6)}, list?2 = {(3, 1, 2), (4, 1, 3), (5, 1, 3)} with
max{|list?1|, |list?2|} = 3 exists.

As we can see in Example 34, algorithm LoadBalance fails to find the
optimal solution in certain cases. However in the next section we show that
the difference of 1, as observed in Example 34, already represents the worst
case scenario.

5.5 Algorithm analysis

We now show that the score obtained by algorithm LoadBalance, for
any given set of integers and any number of bins, is at most one above the
optimal solution. We then give the asymptotic time and space complexities.

Near-optimal solution: Before we start with the proof, we make three
observations associated with the algorithm that facilitate the proof. We use
the same notation as in the description of the algorithm. That is, items[i]
indicates the number of items in bin i, size[i] the sum of sizes of items in bin
i, and list[i] is a list of records per item in bin i, describing which fraction
of the particular item is assigned to bin i.

Observation 35. During phase 2 of algorithm LoadBalance, it holds
that

size[i] > size[j]
for any two bins j and i, such that items[i] = items[j] + 1.

The list of integers was sorted in Phase 1 of the algorithm to a non-
decreasing sequence. Hence, any item added to a bin during the i-th cyclic
iteration over bins, must be smaller or equal to an item that is added during
iteration i+1. Let skl denote the item that is added to bin k during iteration
l. For two bins j and i, it holds that

siitems[j]+1 ≥ s
j
items[j], s

i
items[j] ≥ s

j
items[j]−1, . . . , s

i
2 ≥ s

j
1.

Since si1 > 0, we obtain that
∑items[j]+1
l=1 sil = size[i] > size[j] =

∑items[j]
l=1 sjl .

60



Observation 36. For all bins i and j during phase 2 of algorithm
LoadBalance, it holds that

items[j] ≤ items[i] + 1.

This follows directly from Observation 35.

Observation 37. Phase 3 appends at most 2 more (fractional) items to a
bin.

Any remaining (unassigned) item of size s in this phase satisfies the
condition size[j] + s > c, for any bin j and capacity c as computed in
Fig. 5.1. Therefore, each bin will be assigned at most one fractional item
that does not fill it completely, and one new element that is guaranteed to
fill it up.

Lemma 38. Let OPT(S,B) be the score for the optimal solution for a
set S distributed to B bins. Let list be the solution produced by Algorithm
LoadBalance for the same set S and B bins. Then:

max{ |list[i] | i = 1, 2, . . . , B } ≤ OPT(S,B) + 1

Proof. Let ĵ be the bin that terminates phase 2. That is, ĵ is the last bin
considered for any assignment in phase 2. After phase 2, if there exists a bin
j with items[j] = items[ĵ] + 1 we get, by Observation 35 and the pigeonhole
principle, that OPT(S,B) ≥ items[ĵ] + 1. Otherwise, if no such bin exists,
OPT(S,B) ≥ items[ĵ]. Let K be the number of unassigned elements at the
beginning of phase 3. Let J be the number of bins j with items[j] = items[ĵ].
We distinguish between three cases. First assume that items[j] = items[ĵ]
for all bins j and K > 0. Clearly, OPT(S,B) ≥ items[ĵ]+1. By observation
37 we know that items[j] ≤ items[ĵ]+2. Thus the lemma holds for this case.
Now considerK > J and items[j] 6= items[ĵ] for some bin j, that is, there are
more unassigned elements than there are bins with only items[ĵ] elements
assigned to them. By the pigeonhole principle, OPT(S,B) ≥ items[ĵ] + 2.
By observation 37 we get that items[j] ≤ items[ĵ] + 1 + 2 = items[ĵ] + 3 for
all j. Thus the lemma holds for this case as well. For the last case assume
K ≤ J and items[j] 6= items[ĵ] for some bin j. After a process is assigned a
fractional element that does not fill it completely, it is immediately filled up
with the next element. Since preference is given to any bin j with items[j] =
items[ĵ] and there are at least as many such bins as remaining elements to
be added (K ≤ J), we get that items[j] ≤ items[ĵ] + 2. Since we have seen
above that OPT(S,B) ≥ items[ĵ] + 1, the lemma holds. As this covers all
cases, the lemma is proven.
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Run-time: The runtime analysis is straight forward. Phase 1 of the algo-
rithm consists of initializing variables, sorting N items by size in ascending
order and computing their sum. Using an algorithm such as Merge-Sort,
Phase 1 requires O(N log(N)) time. Phase 2 requires O(N) time to consider
at most N items, and assign them to B bins in a cyclic manner. Phase 3
appends at most 2 items to a bin (see Observation 37), and hence has a time
complexity of O(B). This yields an overall asymptotic run-time complexity
of O(N log(N) + B). Finally, LoadBalance requires O(B) space due to
the arrays items, size and list, that are each of size B.

5.6 Computational Results

As mentioned before, the scheduling problem arises for parallel phyloge-
netic likelihood calculations on large partitioned multi-gene or whole-genome
datasets. This type of partitioned analyses represent common practice at
present (see for example [61, 94, 126]).

The number of MSA partitions, the number of alignment sites per parti-
tion, and the number of available processors are the input to our algorithm.

In order to evaluate the new distribution scheme, we compare it to the
two original schemes presented in Section 3.2 (page 16), that is, the cyclic,
and the whole-partition or monolithic data distribution schemes. The run-
time is measured as the total ExaML runtime. Note that, our algorithm has
also been implemented in ExaBayes1 [2] which is a code for large-scale BI.

Methods: We performed runtime experiments on a real-world alignment.
The alignment comprises 144 species and 38 400 amino acid characters (data
from the 1KITE project [76, 104]). We used the alignment to create 9
distinct partitioning schemes with an increasing number of partitions. For
each scheme, partition lengths were drawn at random, while the number
of partitions per scheme was fixed to 24, 36, 48, 72, 96, 144, 192, 288,
384, and 768, respectively. To generate n partition lengths, we drew n
random numbers x1, . . . , xn from an exponential distribution exp(1) + 0.1.
For a partition p, the value of xp/

∑
i=1..n xi then specifies the proportion of

characters that belong to partition p. The offset of 0.1 was added to random
numbers to prevent partition lengths from becoming unrealistically small,
since the exponential distribution strongly favors small values. Fig. 5.4
displays the distributions of the partition lengths for each of the 9 partition

1Available at http://www.exelixis-lab.org/web/software/exabayes/index.html
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Figure 5.3: Runtime comparison for ExaML employing algorithm
LoadBalance, the cyclic data distribution scheme, or the monolithic parti-
tion distribution scheme.

schemes. As expected, partition lengths are distributed uniformly on the
log-scale.

We executed ExaML using 24 and 48 processes, respectively, to assess
performance with our new data distribution algorithm and compare it with
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Figure 5.4: Number of characters/sites in each partition for the various parti-
tioning schemes.

the cyclic and monolithic partition distribution performance. We used a
cluster equipped with Intel SandyBridge nodes (2 × 6 cores per node) and
an Infiniband interconnect. Thus, a total of 2 nodes was needed for runs with
24 processes and 4 nodes for runs with 48 processes (inducing higher inter-
node communication costs). In Fig. 5.3.b, the run-times for the monolithic
partition distribution approach with less than 48 partitions are omitted,
since they are identical to executing the runs on 24 processes. The reason
is that this method does not divide partitions and thus, in case the number
of partitions is smaller than the number of available processors, the extra
processors will remain unused.

Results: As illustrated by Fig. 5.3, with algorithm LoadBalance, Ex-
aML always runs at least as fast as the two previous data distribution strate-
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gies with one minor exception. Compared to the cyclic data distribution,
LoadBalance is 3.5× faster for 24 processes and up to 5.9× faster for 48
processes. Using LoadBalance, ExaML requires up to 3.6× less runtime
than with the monolithic partition distribution scheme for 24 processes and
for 48 processes the runtime can be improved by a factor of up to 3.9×. For
large numbers of partitions, the runtime of the monolithic partition distri-
bution scheme converges against the runtime of LoadBalance. This is ex-
pected, since by increasing the number of partitions we break the alignment
into smaller chunks and the chance of any heuristic to attain a near-optimal
load/data distribution increases. However, if the same run is executed with
more processes (i.e., 48 instead of 24), this break-even point shifts towards
a higher number of partitions, as shown in Fig. 5.3.

The results show that, cyclic data distribution performance is acceptable
for many processes and few partitions, whereas monolithic whole-partition
data distribution is on par with our new heuristic for analyses with few pro-
cesses and many partitions. Both Figures show, that there exists a region
where neither of the previous strategies exhibits acceptable performance
compared to LoadBalance and that this performance gap widens, as par-
allelism increases.

Finally, employing LoadBalance, ExaML executes twice as fast with
48 processes than with 24 processes and thus exhibits an optimum scaling
factor of about 2.07 in all cases. For comparison, under the cyclic data dis-
tribution, scaling factors ranged from 1.24 to 1.75 and under whole partition
distribution, scaling factors ranged from 1.00 (i.e., no parallel runtime im-
provement) to 2.04. The slight super-linear speedups are due to increased
cache efficiency.

5.7 Conclusion

We have introduced an approximation algorithm for solving a NP-hard
scheduling problem with an acceptable worst-case performance guarantee.
This theoretical work was motivated by our efforts to improve parallel effi-
ciency of phylogenetic likelihood calculations. By implementing the approx-
imation algorithm in ExaML, a dedicated code for large-scale ML-based
phylogenetic analyses on supercomputers, we showed that (i) the data dis-
tribution is near-optimal, irrespective of the number of partitions, their
lengths, and the number of processes used and (ii) substantial run time
improvements can be achieved, thus saving scarce supercomputer resources.
The data distribution algorithm is generally applicable to any code that
parallelizes likelihood calculations.
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6 Calculating the Internode Certainty and Re-
lated Measures on Partial Gene Trees

Lastly for tree inferences on partitioned MSA, we present, implement, and
evaluate an approach to calculate the internode certainty and tree certainty
on a given reference tree from a collection of partial gene trees. Previously,
the calculation of these values was only possible from a collection of gene
trees with exactly the same taxon set as the reference tree. An application
to sets of partial gene trees requires mathematical corrections in the intern-
ode certainty and tree certainty calculations. We implement our methods in
RAxML and test them on empirical data sets. These tests imply that the
inclusion of partial trees does matter. However, in order to provide mean-
ingful measurements, any data set should also contain comprehensive trees.

A manuscript containing the contents of this chapter has been published in
Molecular Biology and Evolution as ”Computing the Internode Certainty
and Related Measures from Partial Gene Trees” in 2016 [83]. Antonis
Rokas, Leonidas Salichos, and Alexandros Stamatakis helped prepare the
manuscript.
Antonis Rokas and Leonidas Salichos originally defined the internode cer-
tainty in [115]. Salichos and Rokas also provided an adjusted data set for
testing the internode certainty on partial gene trees for this chapter, and
summarize the biological implications of the results. Stamatakis helped
develop the adjustment methods and provided the framework for imple-
menting the internode certainty calculation from partial gene trees using
RAxML [130]. My contribution is the actual development of the methods
for calculating the internode certainty from partial gene trees, as well as the
implementation of the methods, and the evaluation on real life data sets.

6.1 Motivation and Related Work

Recently Salichos and Rokas [115] proposed a set of novel measures for quan-
tifying the confidence for bipartitions in a phylogenetic tree. These measures
are the so-called Internode Certainty (IC) and Tree Certainty (TC), which
are calculated for a specific reference tree, given a collection of other trees
with the exact same taxon set.
The calculation of their scores was implemented [116] in the phylogenetic
software RAxML [130].
The underlying idea of Internode Certainty is to assess the degree of conflict
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of each internal branch, connecting two internal nodes of a phylogenetic ref-
erence tree, by calculating Shannon‘s Measure of Entropy [123]. This score
is evaluated for each bipartition in the reference tree independently. The
basis for the calculations are the frequency of occurrence of this bipartition
and the frequencies of occurrences of a set of conflicting bipartitions from
the collection of trees. In contrast to classical bipartition confidence scores
for the branches, such as simple bipartition support or posterior probabili-
ties, the IC score also reflects to which degree the most favored bipartition
is contested.

The reference tree itself can, for example, be constructed from this tree
set, or can be a ML tree for a MSA. The tree collection may, for example,
come from running multiple phylogenetic searches on the same data set,
multiple bootstrap runs [38, 42], or running the analyses separately on dif-
ferent genes or different subsets of the genes (as done for example in [69]).
While for the first two cases the assumption of having the same taxon set is
reasonable, this is often not the case for different genes. Gene sequences may
be available for different subsets of taxa, simply due to sequence availability
or the absence of some genes in certain species.
In this chapter, we show how to compute an appropriately corrected in-
ternode certainty (IC ) on collections of partial gene trees. When using
partial bipartitions for calculating the IC and TC scores we need to solve
two problems. First, we need to calculate their respective adjusted support
(analogous to the frequency of occurrence) (Section 6.3.1). Unlike in the
standard case, with full taxon sets, this information cannot be directly ob-
tained. Then, we also need to identify all conflicting bipartitions (Section
6.3).

An alternative method for calculating these frequencies has recently been
independently developed by et al. [125]. The method developed by Smith
et al. is similar to what we denote as lossless support (see page 75).

6.2 Definitions: Bipartitions, Internode Certainty, and Tree
Certainty

Most concepts and notation that we will use throughout the chapter have
been defined in the introductory chapter (see Section 3.5, page 24). In
addition to the definitions there, we formally define internode certainty and
tree certainty here. For this, we first need a notion of compatibility and
conflict between bipartitions.
Definition 39 (Conflicting bipartitions). Two bipartitions B1 = X1|Y1 and
B2 = X2|Y2 are conflicting/incompatible if there exists no single tree
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topology that explains/contains both bipartitions. Otherwise, if such a tree
exists, they must be compatible. More formally, the bipartitions B1 and B2
are incompatible if and only if all of the following properties hold (see for
example [16]):

X1 ∩X2 6= ∅
∧ X1 ∩ Y2 6= ∅
∧ Y1 ∩X2 6= ∅
∧ Y1 ∩ Y2 6= ∅.

This definition of conflict and compatibility is valid irrespective of
whether the taxon sets of B1 and B2 are identical or not.

Definition 40 (Internode certainty). The Internode certainty (IC) score
(as defined in [115]) is calculated using Shannon‘s measure of entropy [123].
For a branch b we define IC(b) as follows:

IC(b) = 1 +XB(b) · log2(XB(b)) +XB? · log2(XB?), (21)

where B(b) is the bipartition induced by removing branch b, and B? is the
bipartition from the tree collection that has the highest frequency of occur-
rence and is incompatible with B(b). The terms denoted by X are the relative
frequencies of the involved bipartitions. More formally, we define X(B(b))
as,

XB(b) := f(B(b))
f(B(b)) + f(B?) , XB? := f(B?)

f(B(b)) + f(B?) , (22)

where f simply denotes the frequency of occurrence of a bipartition in the
tree set.

For the standard case of IC calculations (without partial gene trees),
the frequency of occurrence f is simply the number of observed bipartitions
in the tree set. In Section 6.3.1 we will show how to calculate the support
(adjusted frequencies) for bipartitions from partial gene trees. We compute
this support using the observed frequencies of occurrence. The support
for partial bipartitions can then be used analogously to the frequency of
occurrence in Equation 22 for calculating the IC scores.
Similarly to the IC score, Salichos et al. [116] also introduced the ICA
(internode certainty all) value for each branch.
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Definition 41 (Internode certainty all).

ICA(b) = 1 +
∑

Bc∈C(b)
XBc · logn(XBc), (23)

where C(b), as defined in [116], is B(b) union with a set of bipartitions that
conflict with B(b) and with each other, while the sum of support for elements
in C(b) is maximized and n is defined as n = |C(b)|. Note that C(b) has a
slightly different definition in [115].

Again, the terms denoted by X are the relative support of the biparti-
tions involved in Equation 23. That is,

XB̂ = f(B̂)∑
Bc∈C(b)

f(Bc)

for all involved bipartitions B̂ ∈ C(b).
The set C(b) however is not easy to obtain. In fact, as we show in the
following observation, maximizing the sum of supports for elements in C(b)
renders the search for an optimal choice of C(b) NP-hard.

Observation 42. Finding the optimal set C(b) is NP-hard.

This can easily be seen by considering the related, known to be NP-hard,
maximum weight independent set problem [56]. Alternatively, the similarity
to the problem of constructing the asymmetric median tree, which is also
known to be NP-hard [108], can be observed.
For the maximum weight independent set problem, we are confronted with
an undirected graph whose nodes have weights. The task is then to find a
set of nodes that maximize the sum of weights, such that no two nodes in
this set are connected via an edge. A reduction from this problem, to finding
C(b) is straight-forward. Let (W,E) be an undirected graph with weighted
nodes W and edges E. Let B(b) = xy|vz. First, we introduce one bipar-
tition xz|vy for every node in W , with support equal to the node weight.
Then, for every pair of bipartitions where the corresponding nodes in W do
not share an edge in E, we add four taxa that are unique to those biparti-
tions, in such a way that they can never be compatible (consider . . . ab|cd . . .
and . . . ac|bd . . .). If we find C(b) for the newly introduced bipartitions, the
corresponding nodes yield a maximum weight independent set.
For this reason, the definition of the ICA, used and implemented in [116],
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which we also use here, does not guarantee C(b) to contain the set of con-
flicting bipartitions that maximize the sum of support. Instead C(b) is
constructed via a greedy addition strategy.

Additionally, Salichos and Rokas [115] advocate to use a threshold of
5% support frequency for conflicting bipartitions in C(b). That is, C(b)
may only take elements B̂ that have support

f(B̂) ≥ 0.05. (24)

This is done to speed up calculations. Under this restriction, the problem of
maximizing the support for C(b) is no longer NP-hard. However, the search
space is still large enough to warrant a greedy addition strategy, instead of
searching for the best solution exhaustively.
Furthermore, if B(b) does not have the largest frequency among all bipar-
titions in C(b), the IC(B) and ICA(b) scores are multiplied with −1 to
indicate this. This distinction is necessary since we may have |ICA(b̂)| =
|ICA(b)| for some b̂ ∈ C(b). So an artificial negative value denotes that the
bipartition in the reference tree is not only strongly contested, but not even
the bipartition with the highest support. This can for example occur when
the reference tree is the maximum-likelihood tree, and the tree set contains
bootstrap replicates.

From the IC scores and ICA scores the respective Tree Certainties TC
and TCA can be computed. These are defined as follows:

Definition 43 (Tree certainty). The TC (tree certainty) and TCA (tree
certainty all) scores are simply the sum over all respective IC or ICA
scores. That is,

TC =
∑

b internal branch
in reference tree

IC(b) (25)

TCA =
∑

b internal branch
in reference tree

ICA(b). (26)

Furthermore, the relative TC and TCA scores are defined as the re-
spective values normalized by the number of internal branches b, that is,
branches for which B(b) is a non-trivial bipartition.

As we can see, all we need to calculate the IC, TC, ICA, and TCA
scores is to calculate f(B̂) (Section 6.3.1) and C(b) (Section 6.3.2).
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Figure 6.1: Overview of the proposed methods.
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6.3 Adjusting the Internode Certainty

Now we must consider how to obtain the relevant information, that is the
sets C and corrected support f , from partial bipartitions.
First, we formally define the input. We are given a so-called reference
tree T with taxon set S(T ), node set V (T ) ⊇ S(T ), and a set of branches
E(T ) ⊂ V (T ) × V (T ) connecting the nodes of V (T ). Let Ê(T ) ⊂ E(T )
be the set of internal branches. That is, for b ∈ Ê the bipartition B(b) is
non-trivial.
Additionally, we are given a collection of trees T̂ . From this collection we
can easily extract the set of all non-trivial bipartitions Bip. The bipartitions
in Bip are used to adjust the frequencies of other bipartitions. The taxon
sets of the bipartitions in Bip are subsets of, or equal to, S(T ). We call a
bipartition with fewer than |S(T )| taxa a partial bipartition. A bipartition
that includes all taxa from S(T ) is called comprehensive or full bipartition.
From Bip and the bipartitions in the reference tree, we can construct a set
of bipartitions P , for which we will adjust the score.

Figure 6.1 gives an overview of the steps explained in the following sec-
tions.

6.3.1 Correcting the Support

We aim to measure the support, the given set of partial trees T̂ (or bipar-
tition set Bip), induces for any of the bipartitions in P . We call this the
adjusted frequency or adjusted support. If Bip and P only contain
comprehensive bipartitions, the support for any given bipartition is simply
equal to its frequency of occurrence.
In case of partial bipartitions, some thought must be given to this process.
Imagine a comprehensive bipartition B = X|Y in P , and a sub-bipartition
D of B in Bip. Even though D does not exactly match B, it also does not
contradict it. More so, it supports the super-bipartition, by agreeing on a
common sub-topology.

We distinguish whether the observed sub-bipartition D from Bip is al-
lowed to support any possible bipartition, even those not observed in Bip
and P , or just those we observe in P . There seems to be no clear answer as
to which of these assumptions is more realistic. The choice is thus merely
a matter of definition or biological interpretation. If we allow the support
to be divided among all possible partitions we assume that any bipartition
is as likely to have occurred in reality as any other. If we distribute the
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support only among observed bipartitions, we imply that we have observed
the truth, and other bipartitions (those not observed) cannot have occurred.

Support of all possible bipartitions: Probabilistic Support If we
assume that an observed sub-bipartition from Bip supports all possible
super-bipartitions, not just those in P , with equal probability, the impact on
the adjusted support of each such super-bipartition from P (C(b)) quickly
becomes negligible. Consider the following example:
Let B = X|Y ∈ P , be a super-bipartition of D = x|y ∈ Bip with |X \ x|+
|Y \y| = k. That is, B contains k taxa that D does not contain. There are 2k
distinct bipartitions with taxon set X ∪ Y that also contain the constraints
set by D. For k = 10 we already obtain 210 = 1024. That is, the support
of D will only increase (adjust) the support of B by less than one permille.
More formally, let RB be the set of sub-partitions in Bip of the comprehen-
sive bipartition B in P and fD the support for a partial bipartition D in
Bip. Then the adjusted support for B, fB is

fB =
∑

D∈RB

fD
2(|S(T )|−nD) ,

where nD is the number of taxa D, and |S(T )| the number of taxa in the
reference tree. We use |S(T )| in this formula, since any bipartition in P
is implicitly a comprehensive bipartition. That is, even though we do not
explicitly assign the remaining taxa from a partial bipartition B = X|Y in
P to X or Y , they must belong to one of these sets. The missing taxa in D
thus have 1

2 probability to belong to the same set (X or Y ) each.
The effect of such an adjustment scheme is that partial bipartitions in

Bip with fewer taxa affect the TC and IC scores substantially less than
bipartitions with more taxa. This can also be observed in our computational
results in Section 6.5. Since fB is the sum over the observed frequency, times
the probability of constructing the actual bipartition implied by B we call
this the probabilistic adjustment scheme.

The motivation behind the probabilistic adjustment scheme is that a
partial bipartition can stem from any full bipartition that complies with the
constraints induced by this partial bipartition. Furthermore, a frequency
f > 1 for a partial bipartition can emerge due to the existence of several
different, implied full bipartitions. Consider the following example: let B1 =
ABY |XCD and B2 = ABX|Y CD be two bipartitions from two distinct
gene trees. Now, assume that taxa X and Y are not present in these gene
trees (e.g., due to incomplete species sampling). In this case, the respective
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trees of these two gene trees only contain the same partial bipartition Bp =
AB|CD.

By re-distributing the frequency of Bp via the probabilistic adjustment
scheme to all possible bipartitions, we distribute the corresponding support
among B1 and B2, as well as B3 = ABXY |CD and B4 = AB|XY CD.

Support of observed bipartitions: Observed Support Now suppose
that B1 and B2 are in P since they are present in some comprehensive, or
partial gene trees. Further suppose, that the bipartitions B3 and B4 (as
defined above) are not in P since they were never observed in the tree set.
Due to missing data, other partial gene trees may produce bipartition Bp.
In the above example for the probabilistic support, the support of Bp is not
only distributed solely among B1 and B2, but also among B3 and B4, even
though B3 and B4 were not observed in the tree set.

Thus, if we do not want to discard some of the frequency of occurrence
when calculating the adjusted support from partial bipartitions, we can
distribute their frequency of occurrence uniformly among comprehensive
bipartitions in P . When we assume the prior distribution of bipartitions
in P to be uniform, this process is simple. For a given partial bipartition
D in Bip, with support fD, let SD be the set of bipartitions in P that are
super-bipartitions of D. Then, D contributes fD

|SD| support to any B ∈ SD.
In other words, the adjusted support for each full bipartition B is

fB =
∑

D s.t. B∈SD

fD
|SD|

. (27)

Since this distribution scheme splits the support for each sub-bipartition
among bipartitions that we observed in the tree set only, we call this the
observed support distribution scheme.

Support of conflicting bipartitions: Lossless Support One problem
with the adjustment strategy explained above is that trees with more taxa
typically have more bipartitions in P than trees with fewer taxa. For an
intuitive understanding of why this can be problematic consider the example
illustrated in Figure 2. Let bipartitions B1 and B2 come from the same tree.
Further, let bipartition B3 be the only, and exclusive, sub-bipartition of B1
and B2 in Bip. Similarly, let bipartition B4 be the only super-bipartition of
B5. Let the sub-bipartitions B3 and B5 both have a frequency of occurrence
of f and let B1 and B2 be conflicting with B4. If we apply the above
distribution scheme, bipartitions B1 and B2 have an adjusted frequency of
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Figure 6.2: Distribution of adjusted support for the observed and lossless adjust-
ment scheme.

f/2, while B4 has an adjusted frequency of f . Penalizing bipartitions from
trees with larger taxon sets however seems unwarranted. Thus, we propose
a correction method that takes this into account. In order to circumvent
this behavior we choose to distribute the frequency of any sub-bipartition
only to a set of conflicting super-bipartitions (namely bipartitions in C(b)).
That is:

f bB =
∑

D s.t. B∈SD

fD
|SD ∩ C(b)| . (28)

Where SD is defined as before. Note that, the adjusted support now depends
on the set of conflicting bipartitions C(b) which is defined by a branch b.
This means that, the adjusted support for a given (conflicting) bipartition
must be calculated separately for each reference bipartition B(b).

This distribution scheme allocates the entire frequency of sub-bipartitions
exclusively to these conflicting bipartitions. Thus, the sum of adjusted
frequencies for all conflicting bipartitions is exactly equal to the sum of
frequencies of occurrence of the found sub-bipartitions. For this reason we
call this the lossless adjustment scheme.

Note that, C(b) is obtained via a greedy addition strategy, depending on
the adjusted support of bipartitions. Since the adjusted support according
to the lossless adjustment scheme depends on C(b) we obtain a recursive
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definition. To alleviate this, we simply precompute the above explained
probabilistic adjustment scheme to obtain an adjusted support for each bi-
partition. The set of conflicting bipartitions C(b) is then found with respect
to the probabilistically adjusted support values. Then, using C(b), the ac-
tual lossless support adjustment is calculated and replaces the probabilistic
support in the calculation of IC and ICA values.

For the above example we get the following. Let {B1, B4} be the set of
conflicting bipartitions. Then, the support for B1 and B4 after applying the
lossless distribution scheme is f for both bipartitions, which is the desired
behavior for this distribution scheme.

6.3.2 Finding Conflicting Bipartitions

From Bip we construct a set of maximal bipartitions P . That is, bipar-
titions that are not themselves sub-bipartitions of any other bipartition in
Bip. Once we have constructed P , we can calculate the internode certainty
IC(b) as before. The construction of P is trivial. The set P simply con-
tains all bipartitions that are not themselves strict sub-bipartitions of other
bipartitions in Bip. We do this step, since any information contained in a
sub-bipartition is also contained in the super-bipartition. That is, the im-
plied gene tree (or species tree) for the super-bipartition can also explain
the gene tree for all taxa in the sub-bipartition. How the frequency of oc-
currence of the sub-bipartition affects the frequency of occurrence of the
super-bipartition has been explained in Section 6.3.1.

We implicitly assume that each bipartition in P should actually contain
all taxa from S(T ). To achieve this, we keep the placement of the missing
taxa ambiguous. That is, we assume that, each missing taxon has a uniform
probability to fall into either side of the bipartition.

To construct C(b) greedily as proposed above, the support of the bipar-
titions must be known. However, the lossless support adjustment scheme
explained above is only reasonable on a set of conflicting bipartitions (that
is, C(b) itself). To avoid this recursive dependency, we first compute an ad-
justed support that does not depend on C(b) for this case. (Here we use the
probabilistic adjusted support, as explained in Section 6.3.1, to obtain an
initial adjusted support.) Then, a greedy algorithm is used to approximate
the set C(b) with the highest sum of adjusted support, with respect to the
initial adjustment. Once C(b) is obtained, the support for all bipartitions in
C(b) is adjusted using the new method, which depends on a set of conflicting
bipartitions. These new values then replace the initial estimate via the first
adjustment scheme.
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Keeping the above in mind, we can easily construct C(b) from P for every
branch b in Ê(T ). Note that, we also defined the reference bipartition B(b)
to be in C(b). Thus, we simply start with B(b) and iterate through the ele-
ments of P in decreasing order of adjusted support (that is, the probabilistic
adjusted support if we are to apply the probabilistic or lossless distribution
scheme, and the observed adjusted support if this distribution is desired)
and add every bipartition that conflicts with all other bipartitions added
to C(b) so far. During this process the threshold given in Equation 24 is
applied.

Given B(b), C(b), and Bip we can calculate the IC and ICA values
as defined in Equations 21 and 23 under the probabilistic or observed ad-
justment schemes. For the lossless adjustment scheme, the actual adjusted
frequencies have to be calculated separately for each bipartition in C(b) for
all reference bipartitions b in this step.

6.4 Example

We now present a simple example for calculating the IC score under the
different adjustment schemes. To this end, we analyze the tree set shown
in Figure 6.3. From these trees we initially extract the following bipartition
lists:

Bip = {AB|CDEF, ABE|CDF, ABED|CF,
AB|CD, AC|BEF, ACB|EF, AC|FBE,
ACF |BE}

P ={AB|CDEF, ABCD|EF, ABEF |CD,
ABE|CDF, ABED|CF, AC|BEF,
ACF |BE}

={R1, R2, R3, B2, B3, B5, B8}.

We can now immediately calculate the probabilistic and observed support
for bipartitions in P . As mentioned before, the lossless adjustment can
only be calculated on sets of conflicting bipartitions. Let fpB and foB be the
probabilistic and observed support of a bipartition B. Further, let fB :=
(fpB, foB).

Then, as B1 in the Figure is exactly identical to R1, and B4 is a sub-
bipartition of R1 with 2 missing taxa, fpR1

= f1 + 1
4f2. At the same time, R1

is the only super-bipartition of B1. However, two other bipartitions, namely
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Figure 6.3: Example tree set for IC calculations.

R3 and B2, are super-bipartitions of B4. Thus, we obtain foR1
= f1 + 1

3f2.
All other bipartitions in P can be scored analogously to obtain the following
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probabilistic and observed support value pairs:

fR1 =(f1 + 1
4f2, f1 + 1

3f2)

fR2 =(1
2f3, f3)

fR3 =(1
4f2,

1
3f2)

fB2 =(f1 + 1
4f2, f1 + 1

3f2)

fB3 =(f1, f1)

fB5 =(1
2f3 + 1

2f4, f3 + f4)

fB8 =(1
2f4, f4).

Given the above, we can now calculate the IC scores for bipartitions R1,
R2, and R3. Assume that we have the following frequencies, f1 = 3, f2 = 4,
f3 = 6, and f4 = 6. Bipartition R1 = AB|CDEF conflicts with both,
B5 = AC|BEF , and B8 = ACF |BE. However, since B5 and B8 do not
conflict with each other, only one of them is included in the list of conflicting
bipartitions. Since B5 has a higher adjusted support than B8, we include B5.
If b is the branch that gives rise to bipartition R1 in the reference tree, then
C(b) = {R1, B5}. Under the probabilistic adjustment scheme we obtain:

−IC(b) = 1+
f1 + 1

4f2

(f1 + 1
4f2) + (1

2f3 + 1
2f4)

log2(
f1 + 1

4f2

(f1 + 1
4f2) + (1

2f3 + 1
2f4)

)

+
1
2f3 + 1

2f4

(f1 + 1
4f2) + (1

2f3 + 1
2f4)

log2(
1
2f3 + 1

2f4

(f1 + 1
4f2) + (1

2f3 + 1
2f4)

)

= 1+
3 + 1

44
(3 + 1

44) + 3 + 3
log2(

3 + 1
44

(3 + 1
44) + 3 + 3

)

+ 6
(3 + 1

44) + 6
+ log2( 6

(3 + 1
44) + 6

)

≈ 0.0290

The negative value of IC(b) is due to the fact that, under the observed
adjustment scheme, B5 has a higher adjusted support than R1. Similarly,
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under the observed adjustment scheme we obtain:

−IC(b) = 1+
f1 + 1

3f2

(f1 + 1
3f2) + (f3 + f4)

log2(
f1 + 1

3f2

(f1 + 1
3f2) + (f3 + f4)

)

+ (f3 + f4)
(f1 + 1

3f2) + (f3 + f4)
log2( (f3 + f4)

(f1 + 1
3f2) + (f3 + f4)

)

= 1+
3 + 1

34
(3 + 1

34) + 6 + 6
log2(

3 + 1
34

(3 + 1
34) + 6 + 6

)

+ 6 + 6
(3 + 1

34) + 6 + 6
+ log2( 6 + 6

(3 + 1
34) + 6 + 6

)

≈ 0.1653 .

Given C(b), we can now also compute the lossless adjusted support. We
obtain a support of f1 + f2 = 7 for R1, and a support of f3 + f4 = 6 + 6
for B5. With these numbers at hand, we can calculate the IC score under
lossless adjustment as:

−IC(b) =1 + 7
7 + 12 log2( 7

7 + 12) + 12
7 + 12 log2( 12

7 + 12) ≈ 0.0505.

This can be done analogously for bipartitions R2 and R3. For R2 =
ABCD|EF we observe three conflicting bipartitions: B2 = ABE|DCF ,
B3 = ABED|CF , and B8 = ACF |BE. The corresponding frequencies for
the above bipartitions are:

fR2 =(1
2f3, f3) = (3, 6)

fB2 =(f1 + 1
4f2, f1 + 1

3f2) = (4, 4 + 1
3)

fB3 =(f1, f1) = (3, 3)

fB8 =(1
4f4, f4) = (1 + 1

2 , 6).

Under the probabilistic support, we thus obtain C(b) = {R2, B2}, where
b is the branch that corresponds to the reference bipartition with R2 =
B(b). However, the set of conflicting bipartitions is different for the observed
adjustment scheme. Here, C(b) = {R2, B8}. As a consequence we obtain
the following IC scores:

−IC(b) =1 + 3
3 + 4 log2( 3

3 + 4) + 4
3 + 4 log2( 4

3 + 4) ≈ 0.0148
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under the probabilistic scheme, and

IC(b) =1 + 6
6 + 6 log2( 6

6 + 6) + 6
6 + 6 log2( 6

6 + 6) = 0

under the observed adjustment scheme. The adjusted frequencies for bipar-
titions R2 and B2, under the lossless adjustment scheme, are f3 = 6 and
f1 + f2 = 7, respectively. Thus, the IC score is

−IC(b) =1 + 6
6 + 7 log2( 6

6 + 7) + 7
6 + 7 log2( 7

6 + 7) ≈ 0.0043.

For reference bipartition R3 = ABEF |CD, there is only one conflicting
bipartition in P , namely B3 = ABED|CF . Thus, the calculation of IC(b) is
straight-forward (as before b is the branch inducing the reference bipartition:
R3). Under the probabilistic scheme we obtain:

−IC(b) =1 + 1
1 + 3 log2( 1

1 + 3) + 3
1 + 3 log2( 3

1 + 3) ≈ 0.1887.

Under the observed adjustment we get:

−IC(b) =1 +
4
3

4
3 + 3

log2(
4
3

4
3 + 3

) + 3
4
3 + 3

log2( 3
4
3 + 3

) ≈ 0.1095.

Finally, under the lossless adjustment scheme we obtain:

IC(b) =1 + 4
4 + 3 log2( 4

4 + 3) + 3
4 + 3 log2( 3

4 + 3) ≈ 0.0148.
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6.5 Results and Discussion

For implementing the methods described in Section 6.3, we used the frame-
work of the RAxML [130] software (version 8.1.20).

The resulting proof of concept implementations, and all data sets used
for our experiments in Sections 6.5.1 and 6.5.2 (as well as the above example
of Section 6.4) are available at https://github.com/Kobert/ICTC. Usage
of the software is explained there as well. The probabilistic and lossless dis-
tribution schemes are also included in the latest production level version of
RAxML (https://github.com/stamatak/standard-RAxML, version 8.2.4).
We chose to omit the implementation for the observed support adjustment
from the official RAxML release, as it does not seem to offer any advantages
over the other two methods.

6.5.1 Accuracy of the Methods

In this section we asses the accuracy of the proposed adjustment schemes.
For this reason, we re-analyze the yeast data set originally presented in [115].
The comprehensive trees in the data set contain 23 taxa. After applying
some filtering techniques to the genes, we obtained a set of 1275 gene trees.
In the filtering step, genes are discarded, if (i) the average sequence length is
less than 150 characters or (ii) more than half the sites contain indels after
alignment. In [115], a slightly smaller subset of 1070 trees is used.

To understand which adjustment scheme better recovers the underly-
ing truth, we randomly prune taxa from this comprehensive tree set and
compare the results between adjustment schemes. Evidently, a “good” ad-
justment scheme will yield IC and ICA values that are as similar as possible
to the IC/ICA values of the comprehensive tree set. Thus we consider the
IC/ICA on the comprehensive tree set as the correct values.

For each of the 1275 trees, we select and prune a random number of
taxa. We draw the numbers of taxa to prune per tree from a geometric
distribution with parameter p. We use a geometric distribution because
the expectation is that thereby we will retain p · 1275 comprehensive trees,
for which 0 taxa have been pruned. An additional restriction is that each
pruned tree must comprise at least 4 taxa to comprise at least one non-
trivial bipartition. Given the number of taxa we wish to prune, we select
taxa to prune uniformly at random using the newick-tools toolkit2.

2https://github.com/xflouris/newick-tools

83

https://github.com/Kobert/ICTC
https://github.com/stamatak/standard-RAxML


IC ICA

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.1 p = 0.3 p = 0.5 p = 0.7
Probabilistic 0.31 0.20 0.18 0.08 0.26 0.18 0.18 0.12
Observed 0.42 0.27 0.15 0.07 0.39 0.25 0.19 0.08
Lossless 0.65 0.44 0.24 0.17 0.60 0.44 0.28 0.15

Table 6.1: Differences D in IC/ICA scores, between the scores calculated by the
adjustment schemes and the reference scores for the comprehensive tree set.

Using different values for p we generate four partial tree sets. For each
of these tree sets we conduct analyses including all 1275 trees (comprehen-
sive and partial). We compare the results to the IC/ICA scores for 1275
comprehensive trees.

Similarly, in a second round of experiments we compare the results
obtained by removing all comprehensive trees from the tree sets, to the
reference IC and ICA scores for the comprehensive tree set.

To quantify, which correction method yields more accurate results, we
define the following distance/accuracy measure. Let IC(b) be the inter node
certainty for branch b if no taxa are pruned. Similarly, let ICA(b) be the
internode certainty for the same branch b under an adjustment scheme for
a data set with partial gene trees. The accuracy D of an adjustment scheme
is then defined as:

D = 1
N

∑
b internal branch
in reference tree

||IC(b)| − |ICA(b)||
max{|IC(b)|, |ICA(b)|} , (29)

where N is the number of internal branches in the reference tree (N = 20 for
our test data set). The measure D is the average, weighted, component-wise
difference between the two results. A low value of D indicates high similarity
between the results. Furthermore, by definition, D ranges between 0 and 1.

Table 6.1 depicts this distance D for the different tree sets and adjust-
ment schemes we tested. As we can see, both, the probabilistic, and observed
adjustment methods are more accurate than the lossless method.

In Table 6.2 we observe that the probabilistic and observed adjustment
schemes are not more accurate than the lossless method for tree sets that
only contain partial gene trees. From Table 6.3 it also becomes evident that
the lossless adjustment scheme tends to overestimate the IC and ICA values
less frequently than the two alternative methods.
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IC ICA

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.1 p = 0.3 p = 0.5 p = 0.7
Probabilistic 0.50 0.52 0.53 0.53 0.47 0.48 0.50 0.50
Observed 0.50 0.51 0.53 0.53 0.45 0.48 0.50 0.49
Lossless 0.61 0.48 0.50 0.52 0.46 0.43 0.47 0.49

Table 6.2: Differences D in IC/ICA scores, between the pruned tree sets only
containing partial gene trees and the reference values.

IC ICA

All trees p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.1 p = 0.3 p = 0.5 p = 0.7
Probabilistic 0.4 0.35 0.35 0.15 0.25 0.25 0.2 0.15
Observed 0.15 0.3 0.4 0.2 0.2 0.2 0.2 0.1
Lossless 0.1 0.25 0.15 0.25 0.2 0.2 0.25 0.1
Partial trees p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.1 p = 0.3 p = 0.5 p = 0.7
Probabilistic 0.8 0.8 0.85 0.85 0.8 0.8 0.85 0.85
Observed 0.65 0.75 0.8 0.85 0.65 0.75 0.8 0.85
Lossless 0.3 0.65 0.75 0.8 0.25 0.65 0.75 0.8

Table 6.3: Fraction of branches for which the adjusted IC/ICA scores are higher
than the IC/ICA reference scores. The top table contains values for all three
adjustment schemes if all trees (comprehensive and simulated partial) are included
in the analysis. The bottom table shows the values for all three methods if only
partial trees are analyzed.

Another important observation is that, in most cases, accuracy decreases
for any adjustment scheme when analyzing tree sets that exclusively con-
tain partial gene trees. Intuitively, this can be explained by the fact that
(i) we have less trees to base our analysis on, and (ii) only the reference
bipartitions now contain all 23 taxa. Since a partial bipartition distributes
its frequency among all its super-bipartitions in P , it is intuitively clear
that, bipartitions with more taxa are more likely to accumulate distributed
frequencies from more sub-bipartitions than bipartitions with fewer taxa.
Conflicting bipartitions (with less than 23 taxa) are thus not assigned suf-
ficient support to compete with the reference bipartitions. This behavior
can be observed in Table 6.3. There, we display the numbers of times the
certainty in a branch under the different adjustment schemes was higher
than the certainty obtained from the comprehensive trees.
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6.5.2 Empirical Data Analyses

In this section we present an additional, yet different, analysis of the above
yeast data set. We do not only use the 1275 comprehensive trees, but now
also include additional partial gene trees. After applying the aforementioned
filters again (6.5.1), the tree set set comprises 2494 trees. The comprehensive
trees are the same 1275 trees as in Section 6.5.1. The remaining 1219 trees
are partial trees. The number of taxa in these partial trees ranges from 4 to
22 (see Figure 6.4 for the exact distribution of taxon numbers over partial
gene trees). Unlike in Section 6.5.1, these partial trees are not simulated, but
the result of phylogenetic analyses on the corresponding gene alignments.

In addition, we also analyze a gene tree set from avian genomes. The
data was previously published in [76]. Here, we analyze a subset of 2000
gene trees with up to 48 taxa. Of these trees, 500 contain the full 48 taxa
while the remaining trees contain either 47 taxa (500 trees) or 41-43 taxa
(1000 trees). The taxon number distribution over trees is provided in Figure
6.4.

First, we report the results for the yeast data set. We present the IC
and ICA scores for all internal branches under the three adjustment schemes
and compare them to the scores obtained for the subset of comprehensive
trees. Figure 6.5 shows the topology of the reference tree. Tables 6.4 and
Table 6.5 show the respective IC and ICA values.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
23 Taxa None 95 29 9 3 48 27 5 95 2 14 1 56 94 75 71 71 7 1 <1 99
4-23 Taxa Probabilistic 89 28 8 3 46 28 6 91 2 15 1 52 92 72 65 70 7 2 <1 92
4-23 Taxa Observed 89 12 12 3 52 24 4 58 1 14 2 36 91 69 64 69 7 2 1 57
4-23 Taxa Lossless 82 2 15 2 39 26 5 41 <1 10 3 15 89 61 56 65 7 1 <1 68

Table 6.4: IC scores for all non-trivial bipartitions multiplied by 100 and rounded
down. The bipartition labels are shown in Figure 6.5. The data set can either
consist of only full trees (23 taxa), or partial and full trees (4-23 taxa).

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
23 Taxa None 95 23 7 8 48 25 14 95 3 12 2 45 94 75 71 71 7 8 9 98
4-23 Taxa Probabilistic 89 21 6 13 46 26 14 91 3 11 1 38 92 72 60 70 25 7 11 92
4-23 Taxa Observed 89 15 9 12 52 24 12 58 2 11 11 34 91 69 59 69 24 7 11 57
4-23 Taxa Lossless 82 13 10 7 39 27 13 46 3 9 8 29 89 61 49 65 7 5 5 68

Table 6.5: ICA scores for all non-trivial bipartitions multiplied by 100 and rounded
down. The bipartition labels are shown in Figure 6.5. The data sets again either
consist of only full trees (23 taxa), or partial and full trees (4-23 taxa).

The values for the individual IC and ICA scores can be higher for the
lossless adjustment scheme than for the probabilistic adjustment scheme
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Figure 6.4: Distribution of taxon number over trees in the yeast data set (top)
and the avian data set (bottom).

and the observed adjustment scheme. However, the relative TC and TCA
values suggest, that the lossless adjustment attributes a lower certainty to
individual bipartitions as well as the entire tree. The actual values are 0.298
for the relative TC score and 0.322 for the relative TCA score for the lossless
adjustment; 0.389 and 0.399 for the probabilistic adjustment; and 0.339 and
0.364 for the observed adjustment scheme.

By comparing the 23-taxa yeast species tree values without adjustment
against the three approaches that contain both complete and missing data
(probabilistic, observed and lossless), we can conclude that, overall, the
values appear very similar and they tend to provide additional support for
the reference topology. Among the adjustment strategies, the probabilistic
adjustment yields values that are closest to those obtained by the analysis
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Figure 6.5: Bipartition numbers corresponding to the presented tables, for the
yeast data set.
Taxon key: Kwal: Kluyveromyces waltii, Kthe: Kluyveromyces thermotolerans,
Sklu: Saccharomyces kluyveri, Klac: Kluyveromyces lactis, Egos: Eremothecium
gossypii, Zrou: Zygosacharomyces rouxii, Kpol: Kluyveromyces polysporus, Cgla:
Candida glabrata, Scas: Saccharomyces castellii, Sbay: Saccharomyces bayanus,
Skud: Saccharomyces kudriavzevii, Smik: Saccharomyces mikatae, Spar: Saccha-
romyces paradoxus, Scer: Saccharomyces cerevisiae, Clus: Candida lusitaniae,
Cdub: Candida dubliniensis, Calb: Candida albicans, Ctro: Candida tropicalis,
Cpar: Candida parapsilosis, Lelo: Lodderomyces elongisporus, Psti: Pichia stipitis,
Cgui: Candida guilliermondii, Dhan: Debaryomyces hansenii

of only comprehensive trees. This is expected, since for the probabilistic
adjustment, smaller bipartitions contribute less to the overall scores than
larger bipartitions. Full bipartitions/trees are thus affecting the outcome
most under this adjustment scheme.

Previous ambiguous bipartitions, concerning for example the placement
of species like S. castelii (conf. bipartitions 9 and 8), C. lusitaniae (conf.
bipartitions 20 and 19), D. hansenii (bipartition 18), and K. lactis (biparti-
tion 3), remain equally uncertain, showing very similar (close to 0) IC and
ICA values.

The split between the Candida and Saccharomyces clade (bipartition
20) is well documented in the literature [34, 48, 115]. The same holds for
bipartition 8, the Saccharomyces sensu stricto clade [89, 113, 115]. Thus,
a high certainty for these bipartitions is expected. As we can see in Table
6.4, the analysis of only comprehensive trees supports these two biparti-
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tions with IC values of 0.99 for bipartition 20, and 0.95 for bipartition 8.
However, the generally conservative lossless distribution approach, as well
as the observed support adjustment scheme, provide reduced certainty for
these two bipartitions; the divergence of Candida from the Saccharomyces
clade (bipartition 20) is, for the lossless distribution scheme, depicted with
an IC value of 0.68, and the Saccharomyces sensu stricto clade (bipartition
8) obtains an IC score of 0.41; the observed adjusted support for these bi-
partitions is reduced to 0.57 for bipartition 20, and 0.58 for bipartition 8.
The probabilistic adjusted IC values for the branches inducing these splits
are 0.92 for bipartition 20, and 0.91 for bipartition 8. A similar behavior
can be seen for the ICA values.

In addition, under the lossless adjustment, the previously resolved place-
ment of Z. rouxii (a clade with relatively low gene support frequency of
62% in [115]) remains unresolved with IC and ICA values of 0.15 and 0.29
respectively.

Next, we analyze the behavior of the adjustment schemes if only partial
trees are provided. See Tables 6.6 and 6.7.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
23 Taxa None 95 29 9 3 48 27 5 95 2 14 1 56 94 75 71 71 7 1 <1 99
4-22 Taxa Probabilistic 93 64 61 58 72 66 59 85 39 46 43 64 95 77 83 78 56 49 47 93
4-22 Taxa Observed 89 23 58 36 80 75 70 80 1 1 <1 20 93 79 82 78 54 13 16 43
4-22 Taxa Lossless 80 24 58 12 66 57 32 68 24 12 12 2 88 54 42 49 43 12 38 7

Table 6.6: IC scores for all non-trivial bipartitions multiplied by 100 and rounded
down. The bipartition labels are shown in Figure 6.5. Here, the data set only
contains trees with partial taxon sets.

Taxa Adjustment Bip. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
23 Taxa None 95 23 7 8 48 25 14 95 3 12 2 45 94 75 71 71 7 8 9 98
4-22 Taxa Probabilistic 93 64 54 51 72 66 59 85 40 46 34 58 95 77 83 78 56 43 45 93
4-22 Taxa Observed 89 23 48 33 80 75 70 80 17 20 18 20 93 79 82 78 54 29 24 43
4-22 Taxa Lossless 80 27 58 24 66 57 29 68 24 11 12 2 88 54 42 49 43 12 38 22

Table 6.7: ICA scores for all non-trivial bipartitions multiplied by 100 and rounded
down. The bipartition labels are shown in Figure 6.5. Again, the data set only
contains trees with partial taxon sets.

The relative TC (and TCA) that result from these calculations are 0.668
(0.651) for the probabilistic distribution, 0.499 (0.532) for the observed dis-
tribution, and 0.394 (0.407) for the lossless distribution scheme. The relative
TC and TCA without correction (obtained from the values shown in Tables
6.4 and 6.5), for trees with full taxon sets, are 0.406 and 0.409. The higher
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TC and TCA values obtained for the former two adjustment methods sug-
gest that these approaches are not providing the conflicting bipartitions with
a sufficiently adjusted support, to compare to the reference bipartition. The
reference bipartitions always contain 23 taxa for this data set. Now however,
no conflicting bipartition can have that many taxa, as comprehensive trees
are not included in the above analysis of only partial trees.

Analyzing the second data set with a total of 2000 trees yields similar re-
sults. See Table 6.8 for the TC and TCA values for this data set. Again, the
values of the analysis restricted to a comprehensive tree set are compared
to the results obtained when including partial gene trees, and restricting
the analysis to partial gene trees. Specifically, we see that, the probabilis-

Taxa adjustment TC TCA

48 taxa None -3.14 -3.17
41-48 Taxa Probabilistic -2.44 7.72
41-48 Taxa Lossless -5.05 -1.35
41-47 Taxa Probabilistic 9.34 15.75
41-47 Taxa Lossless 6.01 6.01

Table 6.8: IC and ICA scores for different subsets of the data set for the proba-
bilistic and lossless distribution schemes.

tic support for analyzing the full data set, of 2000 trees, again gives TC
values more closely in accordance with the values obtained for the analysis
restricted to the 500 full trees, than the lossless adjustment scheme.

Here, the tree set does not support the reference tree well (as evident
by the negative TC). At the same time, the TCA under the probabilistic
adjustment scheme is actually positive.

For this data set, the discrepancy can be explained by the fact that the
most frequent conflicting bipartitions not supported by much more than the
second most supported conflicting bipartition. If the support for the refer-
ence bipartition is much smaller than that of the most frequent conflicting
bipartition, the internode-certainty will approach −1. Let the support for
the most frequent conflicting bipartition be f . As the support of the second
most frequent conflicting bipartition approaches f , the ICA value tends to-
wards 0.0. If the reference bipartition is the bipartition with the highest
adjusted support in C(b), this effect is less pronounced.

For the analysis of partial bipartitions only, we again see that the con-
flicting bipartitions are not as well supported under any tested adjustment
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scheme. Again, the lossless adjustment scheme yields decreased certainty.
Thus, we advocate that this adjustment scheme is used if one wants to
reduce the risk of overestimating certainties.

6.6 Conclusion

We have seen that, the inclusion of partial trees into any certainty esti-
mation is beneficial, as the partial trees do contain information that is
not necessarily contained in the full/comprehensive trees. This is evident
by the different TC and TCA scores we obtained for the empirical data sets.

Further, the selection of the most appropriate adjustment scheme de-
pends on the data at hand. The lossless adjustment scheme is most appro-
priate, for tree sets that do not contain any comprehensive trees, since it
yields more conservative certainty estimates. For gene tree sets that contain
both, comprehensive, as well as partial trees, the probabilistic and observed
adjustment schemes yield results that are more accurate with respect to the
reference IC and ICA values.

In general, we advocate the inclusion of (some) comprehensive trees
in any analysis that also includes partial trees. This is motivated by the
fact that the pruned data sets that contained comprehensive trees generally
yielded more accurate results than tree sets not containing comprehensive
trees.
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7 Calculating Subtree Repeats on General Trees
Given a labeled tree T , as defined in Section 3.3 (page 18), our goal is
to group repeating subtrees of T into equivalence classes with respect to
their topologies and the node labels. We present an explicit, simple, and
time-optimal algorithm for solving this problem for unrooted unordered
labeled trees, and show that the running time of our method is linear with
respect to the size of T . Unordered means, that the order of the adjacent
nodes (children/neighbors) of any node of T is irrelevant. An unrooted tree
T does not have a node that is designated as root and can also be referred
to as an undirected tree. Further we show how the presented algorithm can
easily be modified to operate on trees that do not satisfy some or any of the
aforementioned assumptions on the tree structure; for instance, how it can
be applied to rooted, ordered or unlabeled trees.

We sequentially published three papers on this topic. First, in [54], we solved
this problem for rooted trees only. The solution for general trees (rooted
and unrooted) was presented in [52]. An extended version of [52] appeared
in the "Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences", in 2014, under the title of "An optimal
algorithm for computing all subtree repeats in trees" [51]. The following
chapter is based on this publication. Besides me, Tomáš Flouri, Solon Pissis,
and Alexandros Stamatakis (co-) authored and wrote these three papers.
Solon Pissis and Tomáš Flouri first formulated the problem for rooted trees.
Together, Flouri, and I devised the forward stage of the algorithm (for rooted
trees). Flouri proved the linear runtime, while I provided correctness proofs.
I, with the help of Tomáš Flouri, contributed the backwards stage (for un-
rooted trees) and the related proofs and observations.

7.1 Motivation and Related Work

Tree data structures are among the most common and well-studied of all
combinatorial structures. They are present in a wide range of applications,
such as, in the implementation of functional programming languages [74],
term-rewriting systems [72], programming environments [10], code optimiza-
tion in compiler design [5], code selection [46], theorem proving [80], and
computational biology [98]. Thus, efficiently extracting the repeating pat-
terns in a tree structure, represents an important computational problem.

Recently, Christou et al. [25] presented a linear-time algorithm for com-
puting all subtree repeats in rooted ordered unlabeled trees. In [24], Christou
et al. extended this algorithm to compute all subtree repeats in rooted or-
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dered labeled trees in linear time and space. The authors considered only
full subtrees, that is, subtrees which contain all nodes and edges that can be
reached from their root.

The limitation of the aforementioned results is that they cannot be ap-
plied to unordered nor unrooted trees. By unrooted, we mean that the input
tree does not have a dedicated root node; and, by unordered, we mean that
the order of the adjacent nodes (children/neighbors) of any node of the tree
is irrelevant. Such trees are a generalization of rooted ordered trees, and,
hence, they arise naturally in a broader range of real-world applications.
For instance, unrooted unordered trees are used in the field of (molecular)
phylogenetics [43, 148].

Biological motivation. As we explain in the Introduction (Chapter 1,
page 5), the field of molecular phylogenetics deals with inferring the evolu-
tionary relationships among species using molecular sequencing technologies
and statistical methods. Phylogenetic inference methods typically return un-
rooted unordered labeled trees that represent the evolutionary history of the
organisms under study. These trees depict evolutionary relationships among
the molecular sequences of extant organisms (living organisms) that are lo-
cated at the tips (leaves) of those trees and hypothetical common ancestors
at the inner nodes of the tree. With the advent of so-called next-generation
sequencing technologies, large-scale multi-national sequencing projects such
as, for instance, 1KITE [76, 104] emerge. In these projects, large phylo-
genies that comprise thousands of species and massive amounts of whole-
transcriptome or even whole-genome data need to be reconstructed.

In phylogenetic inference software, a common technique for optimizing
the likelihood function, which typically consumes ≈ 95% of total execution
time, is to eliminate duplicate sites (equivalent columns in the MSA). This
is achieved by compressing identical sites into site patterns and assigning
them a corresponding weight. This can be done because duplicate sites
yield exactly the same likelihood iff they evolve under the same statistical
model of evolution. When two sites are identical, this means that the leaves
of the tree are labeled equally. Consider a forest of trees with the same
topology, where, for each tree, the labels are defined by the molecular data
stored at a particular site of the MSA and the position of the tips. Knowing
equivalent subtrees within such a forest would allow someone to minimize the
number of operations required to compute the likelihood of a phylogenetic
tree. This can be seen as a generalization of the site compression technique.
This application to phylogenetics is the focus of Chapter 8.
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Our Contribution. In this chapter, we extend the series of results pre-
sented in [25] and [24] by introducing an algorithm that computes all subtree
repeats in unrooted unordered labeled trees in linear time and space. The
importance of our contribution is underlined by the fact that the presented
algorithm can be easily modified to work on trees that do not satisfy some
or any of the above assumptions on the tree structure; for example, it can
be applied to rooted, ordered, or unlabeled trees.

7.2 Definitions: Central Points, Tree Rooting, and Heights

As explained in Section 3.3 (page 18), an unrooted unordered tree is an
undirected unordered acyclic connected graph T = (V,E) where V is the
set of nodes and E the set of edges such that E ⊂ V ×V with |E| = |V |−1.
The number of nodes of a tree T is denoted by |T | := |V |.

Some additional definitions are needed here.

Definition 44 (Tree Center, Central and Bicentral Tree). The tree center
of an unrooted tree T = (V,E) is the set of all vertices such that the greatest
node distance to any leaf is minimal.

If an unrooted tree T has one node that is a tree center, it is called a
central tree.

If two adjacent nodes are contained in the tree center, it is called a
bicentral tree [65].

Definition 45 (Rooting an Unrooted Tree). For an unrooted tree T =
(V,E), let T̂ (T ) = (V̂ , Â) be the rooted tree on V̂ = V ∪ {r}, where Â is
defined such that |Â| is minimal with (u, v) ∈ Â only if {u, v} ∈ E and each
node other than r is reachable from one central point. If T is a bicentral
tree, we add the additional root node r to V and add two edges to Â, namely
(r, v) and (r, u), where v and u are the central points of T . The edge between
its two central points is not added. Otherwise, if T is a central tree, with
tree center u, we set r := u and thus V̂ = V .

Note that under the definitions given in Section 3.3 (page 18) two central
points of a bicentral tree are thus siblings of each other.

Definition 46 (Height). The height of a rooted (sub)tree T̂ (v, u) of
some tree T , denoted by h(v, u), is defined as the number of edges on the
longest path from the root v to some leaf of T̂ (v, u). The height of a node
v, denoted by h(v), is defined as the length of the longest path from v to
some leaf in T̂ (T ).
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For simplicity, in the rest of the text, we denote: a rooted unordered
labeled tree by T̂ ; an unrooted unordered labeled tree by T ; and the rooted
(directed) version of T by T̂ (T ), as defined above.

7.3 Problem Definition: Subtree Repeats

Two trees T̂1 = (V1, A1) and T̂2 = (V2, A2) are equal, denoted by T̂1 = T̂2,
if there exists a bijective mapping f : V1 → V2 such that the following two
properties hold

(v1, v2) ∈ A1 ⇔ (f(v1), f(v2)) ∈ A2

label(v) = label(f(v)),∀v ∈ V1.

A subtree repeat R in a tree T is a set of node tuples (u1, v1), . . . , (u|R|, v|R|),
such that T̂ (u1, v1) = · · · = T̂ (u|R|, v|R|). We call |R| the repetition frequency
of R. If |R| = 1 we say that the subtree T̂ (u1, v1) does not repeat. An
overlapping subtree repeat is a subtree repeat R, where at least one node v
is contained in all |R| trees. If no such v exists, we call it a non-overlapping
subtree repeat. A total repeat R is a subtree repeat that contains all nodes
in T , that is, R = {(u1, u1), . . . , (u|R|, u|R|)}. See Fig. 7.1 in this regard.

In the following, we consider the problem of computing all such subtree
repeats of an unrooted tree T .
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Figure 7.1: (a) An unrooted tree T consisting of 10 nodes; a non-overlapping
subtree repeat R = {(3, 2), (4, 1)} is marked with dashed rounded rectangles; an-
other non-overlapping subtree repeat containing the trees T̂ (1, 2), T̂ (2, 1) is marked
with dashed rectangles (b) An overlapping subtree repeat R = {(2, 3), (1, 4)} of T
resulting from the deletion of the dashed edge and its corresponding dotted subtree.
This is an overlapping subtree repeat since nodes 1 and 2–and the node labeled by
c–are in both subtrees. A total repeat R = {(1, 1), (2, 2)} of T can be obtained by
keeping all the edges and rooting T in node 1 (T̂ (1, 1)) and 2 (T̂ (2, 2)), respectively.
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7.4 Algorithm

The algorithm for finding all subtree repeats works in two stages: the
forward/non-overlapping stage and the backward/overlapping stage. The
forward stage finds all non-overlapping subtree repeats of some tree T . The
backward stage uses the identifiers assigned during the forward stage to
detect all overlapping subtree repeats, including total repeats.

The forward/non-overlapping stage: We initially present a brief de-
scription of the algorithmic steps. Thereafter, we provide a formal descrip-
tion of each step in Algorithm 1. This algorithm is related to that of [4] for
deciding tree isomorphism.

In the following, we identify each node in the tree by a unique integer
in the range of 1 to |T |. Such a unique integer labeling can be obtained, for
instance, by a pre- or post-order tree traversal.

The basic idea of the algorithm can be explained by the following steps:

1. Partition nodes by height.

2. Assign a unique identifier to each label in Σ.

3. For each height level starting from 0 (the leaves).

i For each node v of the current height level construct a string con-
taining the identifier of the label of v and the identifiers of the
subtrees that are attached to v.

ii For each such string, sort the identifiers within the string.
iii Lexicographically sort the strings (for the current height level).
iv Find non-overlapping subtree repeats as identical adjacent strings

in the lexicographically sorted sequence of strings.
v Assign unique identifiers to each set of repeating subtrees (equiv-

alence class).

We will explain each step by referring to the corresponding lines in Algo-
rithm 1.

Partitioning the nodes according to their height requires time linear with
respect to the size of the tree, and is described in line 2 of Algorithm 1. This
is done using an array H of queues, where H[i], for all 0 ≤ i ≤ bd(T )/2c,
contains all nodes of height i. Thereafter, we assign a unique identifier to
each label in Σ in lines 3-7. The main loop of the algorithm starts at line
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Algorithm 1: Forward-Stage
Input : Unrooted tree T = (V,E) labeled from Σ
Output: Sets Rreps of non-overlapping subtree repeats of T

1 B Partition tree nodes by height
2 for all v ∈ V do Compute h(v) and Enqueue(H[h(v)], v)
3 cnt← 0
4 B Assign a number from 1 to |Σ| to each label
5 for all labels ` ∈ Σ do
6 cnt← cnt + 1
7 L[`]← cnt
8 B Compute subtree repeats
9 reps← 0

10 for i← 0 to bd(T )/2c do
11 S ← ∅
12 B Construct a string of numbers for each node v and its children
13 foreach v ∈ H[i] do
14 Let children(v) = {u | {u, v} ∈ E } \ {parent(v)} and

cv = |children(v)|
15 sv ← L[label(v)]K[u1]K[u2] . . .K[ucv

], if
children(v) = {u1, u2, . . . , ucv

}
16 S ← S ∪ {sv}
17 B Remap numbers [1, |T |+ |Σ|) to [1, |H[i]|+

∑
v∈H[i] cv]

18 R← Remap(S)
19 B Bucket sort strings
20 Bucket sort the (unique) numbers of all strings in R.
21 Let R′ be the set of individually sorted strings that have been extracted

from the respective sorted list from the previous step.
22 Lexicographically sort the strings in R′ using radix sort and obtain a

sorted list R′′ of strings r1, r2, . . . , r|R′′|.
23 Let each ri be of the form ki

1k
2
i . . . k

i
|ri| and the corresponding, original

unsorted string si of the form L[vi
1]K[vi

2] . . .K[vi
|ri|].

24 reps← reps + 1
25 Rreps ← {(v1

1 , parent(v1
1))}

26 K[v1
1 ]← reps + cnt

27 for j ← 2 to k do
28 if rj = rj−1 then
29 Rreps ← Rreps ∪ {(vj

1, parent(v
j
1))}

30 else
31 reps← reps + 1
32 Rreps ← {(vj

1, parent(v
j
1))}

33 K[vj
1]← reps + cnt
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8 and processes the nodes at each height level starting bottom-up from the
leaves towards the central points. The main loop consists of four steps.
First, a string is constructed for each node v which comprises the identifier
for the label at v followed by the identifiers assigned to u1, u2, . . . , ucv . The
identifiers of u1, u2, . . . , ucv represent the subtrees T̂ (u1), T̂ (u2), . . . , T̂ (ucv ),
where u1, u2, . . . , ucv are the children of v (lines 11-16). Assume that this
particular step constructs k strings s1, s2, . . . , sk.

In the next step, we sort the identifiers within each string. To obtain this
sorting in linear time, we first need to remap individual identifiers contained
as letters in those strings to the range [1,m]. Here, m is the number of
unique identifiers in the strings constructed for this particular height, and
the following property holds: m ≤

∑k
i=1 |si|. We then apply a bucket sort to

these remapped identifiers and reconstruct the ordered strings r1, r2, . . . , rk
(lines 17-20).

The next step for the current height level is to find the subtree repeats
as identical strings. To achieve this, we lexicographically sort the ordered
strings r1, r2, . . . , rk (line 22), and check neighboring strings for equivalence
(lines 23-33). For each equivalence class Ri we choose a new, unique identi-
fier, that is assigned to the root nodes of all the subtrees in that class (lines
26 and 33). Finally, each set Ri contains exactly the tuples of those nodes
that are the roots of a particular non-overlapping subtree repeat of T and
their respective parents.

Remapping from D1 = [1, |T | + |Σ|) to D2 = [1, |H[i]| +
∑
v∈H[i] cv] can

be done using an array A of size |T |+ |Σ|, a counter m, and a queue Q. We
read the numbers of the strings one by one. If a number x from domain D1
is read for the first time, we increase the counter m by one, set A[x] := m,
and place m in Q. Subsequently, we replace x by m in the string. In case a
number x has already been read, that is, A[x] 6= 0, we replace x by A[x] in
the string. When the remapping step is completed, only the altered positions
in array A will be cleaned up, by traversing the elements of Q.

Theorem 47 (Correctness). Given an unrooted tree T , Algorithm 1 cor-
rectly computes all non-overlapping subtree repeats.

Proof. First note that if any two subtrees T̂1 and T̂2 are repeats of each
other, they must, by definition, be of the same height. So the algorithm
is correct in only comparing trees of the same height. Additionally, non-
overlapping subtree repeats of a tree T can only be of height bd(T )/2c or
less, where d(T ) is the diameter of T . Therefore, the algorithm is correct in
stopping after processing all bd(T )/2c+ 1 height classes, in order to extract
all the non-overlapping subtree repeats. Since the algorithm only extracts
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non-overlapping repeats, we define repeats to mean non-overlapping repeats
for the rest of this proof. In addition, for simplicity, we consider the rooted
version of T for the rest of this proof.

We show that the algorithm correctly computes all repeats for a tree of
any height by induction. For the base case we consider an arbitrary tree of
height 1 (trees with height 0 are trivial). Any tree of height 1 only has the
root node and any number of leafs attached to it. At the root we can never
find a subtree repeat, so we only need to consider the next lower (height)
level, that is, the leaf nodes. Any two leafs with identical labels will, by
construction of the algorithm, be assigned the same identifiers and thus be
correctly recognized as repeats of each other.

Now, assume that all (sub)trees of height m − 1 have correctly been
assigned with identifiers by the algorithm and that they are identical for
two (sub)trees iff they are unordered repeats of each other.

Consider an arbitrary tree of height m + 1. The number of repeats for
the tree spanned from the root (node r) is always one (the whole tree). Now
consider the subtrees of height m. The root of any subtree of height m must
be a child of r. For any child of r that induces a tree of height smaller
than m, all repeats have already been correctly calculated according to our
assumption.

Two (sub)trees are repeats of each other iff the two roots have the same
label and there is a one-to-one mapping from subtrees induced by children of
the root of one tree to topologically equivalent subtrees induced by children
of the root of the second tree. By the induction hypothesis, all such topo-
logically equivalent subtrees of height m − 1 or smaller have already been
assigned identifiers that are unique for each equivalence class. Thus, decid-
ing whether two subtrees are repeats of each other can be done by comparing
the root labels and the corresponding identifiers of their children, which is
exactly the process described in the algorithm. The approach used in the
algorithm correctly identifies identically labeled strings since the order of
identifiers has been sorted for a given height class. Thus the algorithm finds
all repeats of height m (and m+ 1 at the root).

Theorem 48 (Complexity). Algorithm 1 runs in time and space O(|T |).

Proof. We prove the linearity of the algorithm by analyzing each of the
steps in the outline of the algorithm. Steps 1 and 2 are trivial and can be
computed in |T | and |Σ| steps, respectively. Notice that |Σ| ≤ |T |.

The main for loop visits each node of T once. For each node v a string
sv is constructed which contains the identifier of the label of v and the
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identifiers assigned to the child nodes of v. Thus, each node is visited at
most twice: once as parent and once as child. This leads to 2n − 1 node
traversals, where n is the number of nodes of T , since the root node is the
only node that is visited exactly once. The constructed strings for a height
level i are composed of the nodes in H[i] and their respective children.
In total we have c(i) :=

∑
v∈H[i] cv child nodes at a height level i, where

cv is the number of children of node v. Therefore, the total size of all
constructed strings for a particular height level i is |H[i]| + c(i). Step 3ii
runs in linear time with respect to the number of nodes at each height level
i and their children. This is because the remapping is computed in linear
time with respect to |H[i]| + c(i). By the remapping, we ensure that the
identifiers in each string are within the range of 1 to |H[i]| + c(i). Using
bucket sort we can then sort the remapped identifiers in time |H[i]| + c(i)
for each height level i. Consequently, the identifiers in each string can be
sorted in time |H[i]| + c(i) by traversing the sorted list of identifiers and
positioning the respective identifier in the corresponding string on a first-
read-first-place basis. This requires additional space |H[i]| + c(i) to keep
track which remapped identifier corresponds to which strings.

After remapping and sorting the strings, finding identical strings as re-
peats requires a lexicographical sorting of the strings. Strings that are iden-
tical form classes of repeats. Lexicographical sorting (using radix sort) re-
quires time O(|H[i]|+ c(i)) and at most space for storing |T |+ |Σ| elements
since the identifiers are in the range of 1 to |T | + |Σ|. This memory space
needs to be allocated only once. Moreover, the elements that have been used
are cleared/cleaned-up at each step via the queue Q in linear time.

By summing over all height levels we obtain
∑bd(T )/2c
i=0 (|H[i]| + c(i)) =

2n− 1. Thus the total time over all height levels for each step described in
the loop is O(|T |). The overall time and space complexity of the algorithm
is thus O(|T |).

We conclude this section with an example demonstrating Algorithm 1.
Consider the tree T from Fig. 7.2. The superscript indices denote the num-
ber associated with each node, which, in this particular example, correspond
to a pre-order traversal of T̂ (T ) by designating node 1 as the root. Lines 1-2
partition the nodes of T in bd(T )/2c+ 1 sets according to their height. The
sets H[0] = {3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 23, 25, 26, 28}, H[1] =
{4, 12, 18, 22, 24, 27}, H[2] = {2, 9, 21} and H[3] = {1, 16} are created. Lines
5-7 create a mapping between labels and numbers. L[a] = 1, L[b] = 2,
L[c] = 3, and L[d] = 4.
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Figure 7.2: Graphical representation of tree T . The superscript indices denote
the unique identifier assigned to each node by traversing T .

Height Step Process Repeats
Strings: S 2, 1, 3, 2, 4, 4, 2, 2, 3, 1, 1, 2, 3, 4, 2, 3, 4 R1 = {3, 7, 11, 13, 19, 25}
Remapping: R 1, 2, 3, 1, 4, 4, 1, 1, 3, 2, 2, 1, 3, 4, 1, 3, 4 R2 = {5, 15, 17}

0 Sorting: R′ 1, 2, 3, 1, 4, 4, 1, 1, 3, 2, 2, 1, 3, 4, 1, 3, 4 R3 = {6, 14, 20, 26}
Repeats: R′′ 1, 1, 1, 1, 1, 1︸ ︷︷ ︸

5

, 2, 2, 2︸ ︷︷ ︸
6

, 3, 3, 3, 3︸ ︷︷ ︸
7

, 4, 4, 4, 4︸ ︷︷ ︸
8

R4 = {8, 10, 23, 28}

Strings: S 3 6 7 5, 3 5 7 6, 2 5 7, 1 8, 2 5 7, 1 8
Remapping: R 1 2 3 4, 1 4 3 2, 5 4 3, 6 7, 5 4 3, 6 7 R7 = {22, 27}

1 Sorting: R′ 1 2 3 4, 1 2 3 4, 3 4 5, 6 7, 3 4 5, 6 7 R5 = {4, 12}
Repeats: R′′ 1 2 3 4, 1 2 3 4︸ ︷︷ ︸

9

, 3 4 5, 3 4 5︸ ︷︷ ︸
10

, 6 7, 6 7︸ ︷︷ ︸
11

R6 = {18, 24}

Strings: S 1 5 9 8, 1 8 5 9, 1 11 10 11
Remapping: R 1 2 3 4, 1 4 2 3, 1 5 6 5

2 Sorting: R′ 1 2 3 4, 1 2 3 4, 1 5 5 6 R8 = {2, 9}

Repeats: R′′ 1 2 3 4, 1 2 3 4︸ ︷︷ ︸
12

, 1 5 5 6︸ ︷︷ ︸
13

R9 = {21}

Strings: S 2 6 10 13, 1 12 12
Remapping: R 1 2 3 4, 5 6 6

3 Sorting: R′ 1 2 3 4, 5 6 6 R10 = {16}

Repeats: R′′ 1 2 3 4︸ ︷︷ ︸
14

, 5 6 6︸ ︷︷ ︸
15

R11 = {1}

Table 7.1: State of lists S,R,R′, R′′ for each height level and resulting sets Rreps
of non-overlapping subtree repeats

Table 7.1 shows the state of lists S,R,R′, R′′ during the computation of
the main loop of Algorithm 1 for each height level, where S is the list of
string identifiers, R is the list of remapped identifiers, R′ is the list of indi-
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vidually sorted remapped identifiers, and R′′ is the list R′ lexicographically
sorted. Fig. 7.3 depicts tree T with the respective identifiers for each node
as assigned by Algorithm 1.
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Figure 7.3: Graphical representation of tree T with the associated identifier for
each node as assigned by Algorithm 1.

The backward/overlapping stage: Now we show how to calculate the
overlapping and total subtree repeats. For this, we first introduce some
additional definitions.

Definition 49 (Sibling repeat). Given an unrooted tree T , two equal sub-
trees of T̂ (T ) whose roots have the same parent are called a sibling repeat.

Definition 50 (Child repeat—recursively defined). Given an unrooted tree
T , two subtrees of T̂ (T ) whose roots have the same identifiers and whose
root’s respective parents are roots of trees in the same sibling or child repeat,
are called a child repeat.

Note that, with these definitions we get that two trees with roots u and
v, respectively, are child or sibling repeats of each other iff the unique path
between nodes u and v is symmetrical with respect to the node identifiers
of the nodes traversed on the path.

The two following lemmas illustrate why it is necessary and sufficient
to know the identifiers from the forward stage to compute all overlapping
subtree repeats.
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Lemma 51 (Sufficient conditions). Let r be the parent of u and v, where
u and v are roots of a sibling repeat. Then the trees T̂ (u, u) and T̂ (v, v) are
elements of the same total repeat. The trees T̂ (r, u) and T̂ (r, v) are elements
of the same overlapping subtree repeat.

Let u and v be roots of a child repeat. Furthermore let ru and rv be
the parents of u and v, respectively. Then the trees T̂ (u, u) and T̂ (v, v) are
elements of the same total repeat, and the trees T̂ (ru, u) and T̂ (rv, v) are
elements of the same overlapping subtree repeat.

Proof. Trivial, by inspection; see Fig. 7.2.

In Fig. 7.2, the trees T̂ (2, 1) and T̂ (9, 1) form a sibling repeat, thus the
trees T̂ (4, 2) and T̂ (12, 9) form a child repeat. From the sibling repeat, we
get that T̂ (2, 2) and T̂ (9, 9) are elements of a total repeat, while T̂ (1, 2)
and T̂ (1, 9) are within the same overlapping repeat. Analogously, for the
child repeat we get the trees T̂ (4, 4) and T̂ (12, 12) as total repeats and
{(2, 4), (9, 12)} as an overlapping repeat.

Note that Lemma 51 implies that all nodes of a subtree that is element
of an overlapping subtree repeat with repetition frequency |R| are roots of
trees in overlapping repeat classes of frequency at least |R|.

Lemma 52 (Necessary conditions). Any two trees that are elements of a
total repeat must have been assigned the same identifiers at their respective
roots during the forward stage, and be rooted in roots of either sibling or
child repeats.

Any two trees that are elements of an overlapping subtree repeat, but
not of a total repeat, must have been assigned the same identifiers at their
respective roots during the forward stage, and be rooted in parents of roots
of either sibling or child repeats.

Proof. We first look at the case of total repeats. Let T̂ (u, u) = T̂ (v, v). We
now consider the unique path p between u and v. Obviously, for equality
among these two trees to hold, the path must be symmetrical, which by
recursion implies that u and v are roots of either sibling or child repeats;
see Fig. 7.4.

The case of other overlapping subtree repeats works analogously. Let
T̂ (ru, u) = T̂ (rv, v) not be total, but overlapping subtree repeat. These
trees are obtained by removing a single edge from the tree: {ru, u} and
{rv, v}, respectively. Let p be the path between u and v. Since the trees are
elements of an overlapping subtree repeat, ru and rv must lie on this path.
Additionally, since ru and rv are on the path from u to v, h(v) = h(u), and
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since any tree is acyclic, then ru and rv must be closer to the central points
than u and v, respectively. Since there is an edge connecting ru with u and
rv with v this means that ru and rv are parents of u and v, respectively.
Again, the path p is symmetrical with respect to the node labels of nodes
along the path, so u and v are roots of either sibling or child repeats.

u1

u2

v1

v2

uk vk

w

Figure 7.4: T (v2, vk) = T (u2, uk) is an overlapping repeat iff T (uk, u2) =
T (vk, v2) is a child repeat, which is true iff identifier(uk) = identifier(vk),
identifier(u2) = identifier(v2), identifier(u1) = identifier(v1).

Given these two lemmas, we can compute all overlapping subtree repeats
by checking for sibling and child repeats. This can be done by comparing
the identifiers assigned to nodes in the forward stage. The actual procedure
of computing all overlapping subtree repeats is described in Algorithm 2.
Algorithm 2 takes as input an unrooted tree T that has been processed
by Algorithm 1; that is, each node of tree T has already been assigned an
identifier according to its non-overlapping repeat class. First, the algorithm
considers the rooted version of T , that is T̂ (T ). This is done since many
operations and definitions rely on T̂ (T ). Next, we define a queue Q, whose
elements are sets of nodes. Initially, Q contains only the root node (more
specifically, a set containing only the root node) of T̂ (T ) (line 2). Processing
Q is done by dequeuing a single set of nodes at a time (lines 5-16). For a
given set U of Q, the algorithm creates a set I containing the identifiers of
children of all the nodes in U . Then, the algorithm remaps these identifiers
to the range of [1, |I|] constructing a new set I ′ (line 12). Then, we construct
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Algorithm 2: Backward-Stage
Input : Unrooted tree T = (V,E) labeled from Σ with identifiers

assigned by Algorithm 1
Output: Sets R′reps of overlapping subtree repeats of T

1 B Initialize queue Q with the root node r of T̂ (T )
2 Enqueue(Q, {r})
3 B Compute overlapping subtree repeats
4 while Queue-Not-Empty(Q) do
5 U ← Dequeue(Q)
6 B Get the identifiers of the children of the nodes in U
7 Let cod(U) be the cumulated out degree of all the nodes in U
8 Let children(U) = {u1, u2, . . . , ucod(U)} be the children of the

nodes in U
9 Let ids(children(U)) = {i1, i2, . . . , icod(U)} be the identifiers of

{u1, u2, . . . , ucod(U)}
10 I ← ids(children(U))
11 B Remap numbers [1, |T |+ |Σ|) to [1, |I|]
12 I ′ ← Remap(I)
13 Let I ′ = {i′1, i′2, . . . , i′cod(U)} be the remapped identifiers of

{u1, u2, . . . , ucod(U)}
14 Let C =< i′1, u1 >,< i′2, u2 >, . . . , < i′cod(U), ucod(U)) > be a list of

tuples
15 B Bucket sort the remapped identifiers
16 Bucket sort the list C by i′1, i′2, . . . , i′cod(U).
17 B Extract the equivalence classes
18 foreach

E = {v1, v2, . . . , vk}of nodes with equivalent identifiers in C do
19 Enqueue(Q,E)
20 for i← 1 to k do
21 R′reps ← R′reps ∪ {(parent(vi), vi)}
22 R′reps+1 ← R′reps+1 ∪ {(vi, vi)}
23 reps← reps + 2
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a list C of tuples, such that each tuple contains the remapped identifier of a
child and the corresponding node. Therefore, we can use bucket sort to sort
these tuples by the remapped identifiers in time linear in the cardinality of
I.

We are now in a position to apply Lemmas 51 and 52. By Lemma 52,
finding sibling and child repeats is done by creating sets of nodes with equiv-
alent identifiers in C (line 18). This can be easily done due to the sorting
part of the algorithm. These sets are then enqueued in Q, and, by Lemma 51
and 52, all resulting subtree repeats (overlapping and total) are, thus, cre-
ated (lines 21-22). Hence we immediately obtain the following result.

Theorem 53 (Correctness). Given an unrooted tree T with identifiers as-
signed by Algorithm 1, Algorithm 2 correctly computes all overlapping subtree
repeats, including total repeats.

Algorithm 2 enqueues each node of T once. For each enqueued node, a
constant number of operations is performed. Therefore we get the following
result.

Theorem 54 (Complexity). Algorithm 2 runs in time and space O(|T |).

7.5 Properties of Subtree Repeats

In this section, we provide properties which could potentially be used to
speed-up an implementation of the above algorithms.

Property 7.1 (Trivial path). If we find a non-overlapping subtree with
repetition frequency 1, no node that lays on the path from the root of that
subtree to the farthest central point (including the central point itself) can
have a repetition frequency other than 1 for non-overlapping subtree repeats
rooted in this node. We call this path the trivial path.

Proof. The proof is trivial. Assume some node v on the trivial path would
induce a non-overlapping subtree repeat with frequency higher than 1. By
definition, all subtrees of the subtree rooted in v must be contained in all
subtrees in this repeat. In particular the original subtree with repetition
frequency 1.

The implications for implementations are obvious. Any time we en-
counter a subtree with repetition frequency 1, we can mark all nodes on the
trivial path as trivial, and add them to their own repeat class.
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Property 7.2 (Inclusion of trivial path). All trees from overlapping subtree
repeats with repetition frequency higher than 1 must contain all nodes that
lay on any trivial path.

Proof. The proof is trivial. We prove the property by contradiction. Let v
be a node on the trivial path. Then, by construction of overlapping subtree
repeats only a single subtree in the repeat contains v. However, since v
is on the trivial path, there must be a subtree without repeats induced by
it. That is, no other subtree in the same overlapping repeat can have this
subtree included, which contradicts the equality among trees.

7.6 Conclusion

We presented a simple and time-optimal algorithm for computing all full
subtree repeats in unrooted unordered labeled trees; and showed that the
running time of our method is linear with respect to the size of the input
tree.

The presented algorithm can easily be modified to operate on trees that
do not satisfy some or any of the aforementioned assumptions on the tree
structure.

• Rooted trees: In a rooted tree T̂ , only non-overlapping repeats can
occur. Therefore it is sufficient to apply Algorithm 1 with the following
modifications: first, we define T̂ (T̂ ) := T̂ ; second, the main for loop
must iterate over the height of T̂ , instead of depending on its diameter.

• Ordered trees: If for a node the order of its adjacent nodes is relevant,
that is, the tree is ordered, the bucket sort procedures in Algorithms 1
and 2 must be omitted. Additionally, sibling repeats must not be
merged in line 19 of Algorithm 2 but rather be enqueued separately.

• Unlabeled trees: Trivially, an unlabeled tree can be seen as a labeled
tree with a single uniform symbol assigned to all nodes.

Algorithm 1 can also be used to compute subtree repeats over a forest of
rooted unordered trees. The method is the same as for the case of a single
tree. The method reports all subtree repeats by clustering the identifiers
of equal subtrees from all trees in the forest into an equivalence class. The
correctness of this approach can be trivially obtained by connecting the
roots of all trees in the forest with a virtual root node, and applying the
algorithm to this single tree. This solves the problem involved in the concrete
application scenario discussed in Section 7.1. However, the application to
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likelihood calculations on phylogenetic trees is studied in more detail in
Chapter 8.

Algorithm 1 can also be directly applied to solve the maximal leaf-
agreement isomorphic descendant subtree (MLAIDS) problem [73]. MLAIDS
is defined as follows: given a set of k phylogenetic (evolutionary) trees, find
k maximal subtrees from the given trees, such that the leaves as well as the
structure of the subtrees are equal. Thus, in a biological context, it is easy
to find out which bipartitions (for example in a reference tree) are supported
by all trees from a given tree set (for example bootstrap trees) (see Section
3.5 ,page 26).
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8 Application of Subtree Repeats to Phylogenetic
Trees

The phylogenetic likelihood function is the major computational bottleneck
in ML phylogenetic inferences and BI. We present and implement a new
method for identifying and omitting redundant operations in phylogenetic
likelihood calculations. We assess the performance improvement that can
be attained by comparing our new approach to one of the fastest and most
highly tuned implementations of the phylogenetic likelihood function. Fur-
thermore, we also report on the memory savings that can be attained via
our method. Our method is generic, that is, it can seamlessly be integrated
into any phylogenetic likelihood implementation.

We intend to publish a manuscript, containing the contents of this chapter.
The intended title for this manuscript is ”Efficient detection of repeating
sites to accelerate phylogenetic likelihood calculations”. A pre-print can
be obrained at http://biorxiv.org/content/early/2016/01/04/035873
[84]. Tomáš Flouri and Alexandros Stamatakis co-authored this paper with
me.
Tomáš Flouri and I devised the algorithm for an efficient calculation of the
likelihood function, and jointly implemented the software. Together we set
up, and conducted, the experiments for evaluating the run time improve-
ments and memory saving due to our algorithm. Alexandros Stamatakis
provided additional expertise on implementation details, and provided the
data sets. All authors were involved in the writing of this manuscript.

8.1 Motivation and Related Work

As discussed before, in phylogenetic tree analyses, such as ML based tree
searches or BI, the by far most costly operation is the repeated evaluation of
the phylogenetic likelihood function (PLF). It is already known, that many
operations performed during the PLF evaluation in popular ML tools such
as PhyML [63] and RAxML [130] or BI tools such as ExaBayes [2] or Mr-
Bayes [114], are redundant and can be omitted to accelerate the PLF.

Savings can be achieved by taking into account that (sub-)trees with
identical leaf labels (in our case nucleotides), identical branch lengths and
the same model parameters always yield the same likelihood score or condi-
tional likelihood values.

Therefore, we can save computations by detecting repeating site pat-
terns in the MSA for a given (sub-)tree topology. We will refer to those
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repeating site patterns as repeats.

A commonly used method exploiting this property consists in only evalu-
ating the likelihood of unique sites (columns) of a MSA. Assuming that only
one set of model parameters is used for the particular MSA (i.e. unparti-
tioned analysis), identical sites yield the same likelihood. Therefore, the
likelihood can still be accurately calculated by assigning a weight to each
unique site. These weights correspond to the site frequency in the original
MSA. Felsenstein refers to this method as aliasing in the documentation of
PHYLIP [45].

Another standard technique for accelerating the PLF for inner nodes
whose descendants are tips (or leaves) is to precompute the conditional like-
lihood for any combination of two states. Since there is small, finite number
of character states, those precomputed entries can be stored in a lookup
table, and queried when needed, instead of repeatedly re-computing them.

These two techniques are standard methods and are incorporated in vir-
tually all PLF implementations. The benefits are faster computation times
and often, in the case of the first method, considerable memory savings in
the order of d · s · r · (t − 2) · c, where d is the number of duplicate sites,
s the number of states, r the number of rate categories, t the number of
taxa (tips), and c a constant size for storing a conditional likelihood entry
(typically 8 bytes for double precision). For example, on a phylogeny of
200 taxa with 100 000 duplicate sites, 4 states (nucleotide data) and 4 rate
categories, the memory savings could be as high as 2.5 gigabytes, not to
mention the savings in redundant PLF computations.

We present a general method for speeding up PLF calculations which,
at the same time, reduces memory usage to a minimum. We aim to detect
all conditional likelihood vectors at any node in the tree, that yield identi-
cal likelihood values. Computing these likelihood entries only once is thus
sufficient. However, certain considerations must be made.

First, the algorithm must allow for the efficient detection of repeats.
That is, the overhead incurred by finding repeats must be small to allow for
a faster overall PLF execution. Furthermore, hardware related issues, such
as non-linear cache accesses have to be considered. For this reason, to test
the speed of the new algorithm, the performance is measured against one of
the fastest and highly optimized software for PLF calculations. Additionally,
the bookkeeping overhead must be small such that it does not substantially
increase the PLF memory footprint.

Second, the algorithm, and the corresponding data structures, must be
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flexible enough to allow for so-called partial tree traversals. When propos-
ing new tree topologies via some tree rearrangement (e.g. nearest neighbor
joining, subtree pruning and regrafting, as illustrated on page 25) , not all
conditional likelihood vectors need to be updated. An efficient method for
calculating repeats must take this into account and analogously only update
the necessary data structures for the partial traversal (i.e., subset of condi-
tional likelihoods). Thus, the overall goal is to minimize the book-keeping
cost for detecting repeats such that the trade-off is favorable.

Our results. We present a new, simple algorithm that generalizes the
common PLF optimization techniques explained above and satisfies the ef-
ficiency properties; it detects identical sites at any node of the phylogenetic
tree and not only at the (selected) root, and thus minimizes the number of
operations required for likelihood evaluation.

It is based on our linear-time linear-space (on the size of tree) algorithm
for detecting repeating patterns in general rooted non-phylogenetic trees [51]
(see Chapter 7). In order to obtain the desired run-time improvements, we
present an adapted version of this algorithm for the PLF that reduces book-
keeping overhead and relies on two additional properties of phylogenies as
opposed to general multifurcating (or n−ary) trees.

First, we assume a bifurcating (binary) tree. This assumption can be
relaxed to allow multifurcating trees by using a bifurcating tree that arbi-
trarily resolves the multifurcations.

Second, the calculation of the so-called conditional likelihood depends
on the transition probability of one state to another. These probabilities
are not generally the same for different branches in the tree. Thus, we only
consider identical nucleotide patterns to be repeats if they appear at the
tips of the same (ordered) subtree.

We show that even a rudimentary sub-optimal implementation of the
PLF, that makes use of our method, consistently outperforms one of the
most efficient PLF implementations available with a 2- to 10- fold speedup.
In addition, the memory requirements are always significantly lower than
for all widely used PLF implementations, in some cases up to 4 times less
memory is required.

For the examples of the theoretical part of this chapter, and for the sake
of simplicity, we assume that genetic sequences only contain the four DNA
bases (that is, A, C, G, T). The approach we present can be easily adapted
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to any other number and set of states (e.g., degenerate DNA characters and
gaps and protein sequence data). The data sets we use for benchmarking
our method in Section 8.4 are empirical DNA and protein data sets that do
contain gaps and ambiguous characters.

Related work. Sumner et al. presented a method that relies on so-called
partial likelihood tensors [135]. There, for each site of the alignment, the
nucleotides at each tip node are iteratively included in the calculations. Let
si be the nucleotide for site s at tip node i. The values are first calculated
for (s1), then (s1, s2), (s1, s2, s3) and so on, until (s1, s2, s3, . . . , sm) has been
processed, where m is the number of tip nodes. If the likelihood for another
site s′ with s′1 = s1, s′2 = s2 and s′3 6= s3 is to be computed, the results
for s restricted to the first two tip nodes (s1, s2) can be reused for this site.
A lexicographical sorting of the sites is applied in order to approximately
maximize the number of operations that can be saved with this method. The
authors report run-time improvements for data sets with up to 16 taxa. For
more than 16 taxa, the performance of the method is reported to degrade
significantly. In addition, the authors measured the relative speedup of the
PLF with respect to their own, unoptimized implementation and not the
absolute speedup with respect to the fastest implementation available at
that time.

In [75] the idea of using general subtree site repeats for avoiding redun-
dant PLF operations is mentioned, but dismissed as not practical because
of the high bookkeeping overhead. Instead, only repeating subtree patterns
consisting entirely of gaps are considered since they can be easily identi-
fied by using and updating bit vectors, that is, the bookkeeping overhead
is low. In so-called gappy MSAs, with a high percentage of gaps, the au-
thors report a speedup of 25-40% and 65% resp. 68% memory savings on
gappy alignments consisting of 81.53% resp. 83.4% gaps. The underlying
data structure used for identifying such repeating subtree sites is called sub-
tree equality vector (SEV) and was originally introduced in [132]. There,
only homogeneous subtree columns are considered. That is, a repeat is only
stored as such, if all nucleotides in this subtree column are the same. This is
done to avoid the perceived complexity associated with finding general (het-
erogeneous) subtree site repeats. In [132] a speedup of 19-22% is reported
for the PLF computation.

Similar to [135], the authors of [109] devised a method for accelerating the
likelihood computation of a site by storing and reusing the results obtained
for a preceding site. Since only the results for one single site (the preceding
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site) are retained, an appropriate sorting of the sites is required. This column
sorting approach is reported to yield speedups in settings where the PLF
is evaluated multiple times for the same topology. The authors showed
that, sorting the sites in order to maximize the saving potential, can lead
to run-time reductions of roughly 10% to over 80%. This corresponds to
a more than 5-fold speedup. However, the authors also note, that an ideal
algorithm for PLF calculations would reuse all previously computed values
from all sites and not just the neighboring ones. Furthermore, the optimal
column sorting relies on solving the NP-hard traveling salesman problem and
relies on the tree topology. Thus, in order to maintain a polynomial time
execution of the algorithm, a search heuristic, that can yield sub-optimal
results, is used. This means, that the chosen column sorting may not yield
the maximum amount of savings.

The most similar method to what we describe here also deploys a flavor
of subtree repeats to accelerate the PLF has been presented in [140]. There,
the PLF is used for a positive selection test. However, the authors focus on
the performance for a fixed tree topology only that is repeatedly traversed.
Thus, the overhead for detecting repeats is negligible, since repeats need to
be computed only once. Here, we present a general method for dynamically
changing trees. Performance was tested against the well known CODEML
software of the PAML package [149].

8.2 Definition of Site Repeats and Observations

First, we introduce, and review the notations which we will use throughout
the chapter.

Trees As usual (see Section 3.3, page 18), a tree T = (V,E, b) is a con-
nected acyclic graph where V is the set of nodes and E the set of edges (or
branches), such that E ⊂ V × V . We use the notation e = (u, v) ∈ E to
denote an edge e with end-points u, v ∈ V and b(e) to denote the associated
branch length. The set L(T ) denotes the tip nodes. As defined in the intro-
duction (Section 3.3, page 19) we use T̂ (u) to denote a subtree of a (rooted)
tree T , rooted at node u.

The phylogenetic likelihood function Before we introduce our method,
it is necessary to review description of PLF computations. As defined in
Section 3.4 (page 22), the likelihood is a function of the states Σ, the transi-
tion probabilities P for all branches, and the equilibrium frequencies of the
states Π.
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Figure 8.1: (a) Sites 1, 2 and 5 form repeats at node w as they share the same
pattern AC.Another repeating pattern is located at sites 3 and 4 (CG) for the same
node. Note that, node u also induces a subtree with pattern AC at the tips. However,
since branch lengths can be different than for the subtree rooted at node w, the
conditional likelihoods may differ as well. Analogously, sites 2 and 5 are site repeats
for node v as they have the same pattern CT, and hence the conditional likelihood
is the same for those two sites. Finally, sites 2 and 5 form repeats for node u
(ACCT). (b) Repeats are not necessarily substrings of MSA sites. For this particular
tree topology, node v has two sets of repeats: sites 2 and 5 (ACT) and sites 3 and 4
(CGG). The repeats are not contiguous in the alignment columns.

To evaluate the likelihood, using the Felsenstein pruning algorithm, we
iteratively evaluates Equation 11 (Section 3.4, page 23) for all internal nodes.
Recall that Equation 11 defines the conditional likelihood of a node v for
state s at site i as

L(v)
s (i) =

(∑
x∈Σ

P (s→ x|b((v, w))L(w)
x (i)

)(∑
x∈Σ

P (s→ x|b((v, u))L(u)
x (i)

)
,

where u and w are the two descendants of v. Further recall that the condi-
tional likelihood vector (CLV) (Equation 12, page 23) is defined as

Lv(i) =
⋃
∀s∈Σ

L(v)
s (i).

Site repeats We now introduce site repeats.

Definition 55 (Site repeat). Let T̂ (u) be a subtree of T rooted at node u,
which represents the relations among |L(T̂ (u))| taxa (tip nodes). We denote
the sequence of the i-th taxon xi = xi1x

i
2 . . . x

i
n.

Two sites j and k are called repeats of one another iff xij = xik for all
taxa i, 1 ≤ i ≤ |L(T̂ (u))|, in T̂ (u).
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Figure 8.2: Tables with identifier associations of nodes w (a),v (b), and u (c). The
respective lists at the bottom store the corresponding CLVs that must be computed
for each unique identifier. Table (a) shows that two likelihood computations need
to be performed for node w (sites 1 and 3), while the rest of the sites are repeats of
those two. Tables (b) and (c) show the corresponding information for nodes v and
u.

Next, we make two observations.

Observation 56. If two sites j and k are not repeats in some tree T̂ (u),
then they are not repeats in any tree that has T̂ (u) as a subtree.

Observation 57. Let u be a node whose two direct descendants (children)
are nodes v and w. If two sites j and k are repeats in both T̂ (v) and T̂ (w),
then j and k are also repeats in T̂ (u).

With these two observations we can formulate the algorithm for detect-
ing site repeats in binary phylogenetic trees.

Before we formalize the algorithm though, let us consider Figure 8.1
again. From Observations 56 and 57, we see that the only repeating sites
at the root node (node u), are sites 2 and 5. This is obviously correct, since
both have the nucleotide pattern ACCT at the tips.

8.3 Algorithm

The method we propose identifies site repeats at each node in a bottom-up
(post-order) traversal of the tree, meaning that a node can only be processed
once the repeats for both its two children have been identified. Tip nodes
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only have the trivial repeats of all sites that show a common character (for
DNA, A, C, G, or T, respectively). Therefore, the method always starts at
an inner node whose two children are tip nodes. By construction, such a
node always exists in any binary tree and assuming four nucleotide states,
there are 16 possible combinations of homologous nucleotide pairs in the
sequences of its two child nodes. Let σ̂ be the set of observed states (4
for nucleotides, or 16 when considering ambiguities and gaps). We use a
bijective mapping τ : σ̂ × σ̂ → {1, 2, . . . , σ̂2} to assign a unique identifier to
each nucleotide pair. The problem of identifying repeats is thus reduced to
filling, and querying the corresponding entries in a list of CLVs.

Tip–Tip case. Assuming that xv resp. xw are the sequences at the two
children v and w of the parent node u, site i of u is assigned the identifier
φu(i) = τ(xvi , xwi ). This function assigns the same identifier to sites which
are repeats in T̂ (u). Figure 8.2 illustrates the assignment of identifiers to
combinations of nucleotides at the tips for the example given in Figure 8.1.
The CLV entries are computed only once for each identifier (for example,
the first time it is encountered) at the parent node u. By Observation 57, if
a site i is a repeat of site j, that is, they were assigned the same identifier,
then the method can either (a) copy the CLV from site j (run time saving),
or (b) completely omit the likelihood value, since it can always be retrieved
from site j (run time and memory saving). Furthermore, by Observation
56, we know that each repeat is found by this method.

Tip–Inner and Inner–Inner cases. We proceed analogously to detect
repeats at nodes for which at least one child node is not a tip node. Again,
let u be the parent node and v and w the two child nodes for which all repeats
have already been computed. Further, let φv(i) and φw(i) be the respective
identifiers of v and w at site i. We define the maximum over all φv(i) and
φw(i) as vmax and wmax respectively. The values vmax and wmax are also
the numbers of unique repeats at nodes v and w. Now, finding repeats at
u is again simply a matter of filling the appropriate lists/matrices. Given
vmax and wmax, there are at most vmax× wmax combinations at the sites.
See Figure 8.2c for the identifier calculation at node u for the example tree
and MSA in Figure 8.1. Figure 8.3 shows the combined overall result.

Figure 8.4 outlines algorithm Repeats(u, v, w, φ), which calculates the
CLV for a given node u, with child nodes v and w. Using algorithm Re-
peats we can now design the overall method by conducting a post-order
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φw 1 1 2 2 1
φt1 A A C C A
φt2 C C G G C

φv 1 2 3 4 2
φt3 A C C G C
φt4 C T G G T

φu 1 2 3 4 2
φw 1 1 2 2 1
φv 1 2 3 4 2

Figure 8.3: Identifiers (here φx) are shown for every site of the alignment at every
node in the tree. As we have already observed, sites 2 and 5 are repeats at node u,
and thus, have been assigned the same identifier.

traversal on all nodes of a tree T . For this, the tip nodes tj can be assigned
constant identifier sequences that correspond to their respective DNA se-
quences. The actual nucleotides A, C, G, and T can simply be mapped to
integers. Note that, in most (if not all) phylogenetic inference tools, nu-
cleotides are encoded using the one-hot (also called 1 out of N) encoding,
which ensures that the binary representations of their identifiers have exactly
one bit set (e.g., A 7→ 1, C 7→ 2, G 7→ 4 and T 7→ 8). This is beneficial be-
cause the identifiers of ambiguities which are typically represented as disjoint
unions of nucleotides, can be encoded as the bit-wise OR of the identifiers of
the respective nucleotides. To simplify the method description, we discard
ambiguities and consider only the four nucleotide bases. Hence, we use the
encoding

A→ 1, C→ 2, G→ 3, T→ 4.

Lookup Table Since our focus is on an efficient implementation of the
algorithm, we need to consider some technical issues in more detail. First,
matrix M (defined in algorithm Repeats) can, in the worst case, become
quadratic in size with respect to the number of sites in the alignment. This
is unfortunate, since fillingM affects overall asymptotic run-time. However,
in terms of practical space requirements, M needs to be allocated only once
and can be re-used for each inner node. For that, a linear list clean with one
entry per MSA site, can be used to keep track of which entries are valid, that
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Repeats(u, v, w, φ)
B Initialization

1. vmax← 0
2. wmax← 0
3. for i← 1 to n do Get max identifier of node v
4. if φv(i) > vmax then vmax← φv(i)
5. for i← 1 to n do Get max identifier of node w
6. if φw(i) > wmax then wmax← φw(i)
7. M ← {0}vmax×wmax Initialize matrix M
8. LH← {0}n
9. ident ← 0

B Computation
10. for i← 1 to n do Iterate over sites
11. if M [φv(i), φw(i)] = 0 then Check if site is not a repeat
12. ident← ident + 1 Increase identifier count
13. M [φv(i), φw(i)]← ident Set an identifier for the site
14. LH[ident]← Lu(i) Compute likelihood entries for site
15. CLV[i]← LH[ident] Place likelihood entry in CLV
16. else Site is a repeat
17. CLV[i]← LH[M [φv(i), φu(i)]] Copy likelihood entry from repeat
18. φu(i)←M [φv(i), φw(i)] Set site identifier
19. return CLV return CLV

Figure 8.4: Algorithm to compute the CLV of a parent node p. The most costly
operation is the calculation of the CLVs, here, denoted by Lu(i). The algorithm
thus minimizes the number of calls to this function.

is, contain identifiers assigned to sites of current node, and which entries are
invalid and contain identifiers assigned to sites for a previous node. After
assigning an identifier i to a site of a node u, which we store in the array
M , for example at position d, we also store the pair (d, u) in array clean at
position i. Later on, when we process a different node, say v, and by chance,
decide to give the same identifier i to some site, and again, by chance, the
location for which we have to query matrixM is d, the element clean[i] helps
us to distinguish between valid and invalid records in M . Invalid records
are equivalent to empty records and are overwritten. Further, in the actual
implementation we limit the size of M to a constant maximum size. We
implement this limit to avoid the impact of the quadratic complexity for
filling M . Table 8.2 of Section 8.4 gives an overview of the size of M for
different data sets. Since dynamically tuning the size of M to the data set
can have a negative impact on the run-time and memory performance, the
size of M is an input parameter. In addition, as M grows larger (i.e., we
move closer to the root of the tree), it is less likely to encounter repeats in
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the alignment. Note that, at the CLV of the root, there will be no repeats at
all, since they have been removed by compressing MSA sites into patterns.
One may also consider the following alternative view. If M is an n × n
matrix, where n is the number of sites in the alignment, there can be no
repeats, as every site must, by construction, have a unique identifier. If
at least two sites were repeats of another, the maximal identifier would be
strictly less that n and thus, M would not be a n× n matrix. Thus, if the
product of maximum identifiers for two child nodes at some node u (that is,
vmax× wmax) exceeds our threshold for the size of M , we do not calculate
repeats any more. Instead, the CLV entries are calculated separately for all
sites. In other words, if calculating repeats becomes disadvantageous, repeat
calculations are omitted. This allows for tuning the trade-off between repeat
detection overhead, and PLF efficiency.

Memory savings Notice that, given algorithm Repeats, not all entries
in the CLVs of the child nodes v and w are needed to calculate the CLV at
the parent node u. In particular, the CLV entries at site i for nodes v and
w are only needed if the CLV at site i must be computed for u (see Figure
8.5). In fact, only the CLVs in array LH of algorithm Repeats must be
stored. Let LH[u, j] be the CLV computed by Algorithm 8.4 for node u and
site with identifier j. Then, the CLV for any site i is simply LH[φu(i)]. In
practice, this observation enables us to reduce the memory footprint of the
PLF. Each CLV entry stores more than one single or double precision floating
point values. For example, RAxML holds one double precision floating point
number per DNA character and per evolutionary rate at each such CLV
entry. Typically, the Γ model of rate heterogeneity is used (see [147]) with
4 rate categories. Thus, the memory footprint of a standard PLF algorithm
for a MSA with n sequences of length m is 8 × 4 × 4 × (n − 2) ×m bytes.
On the other hand, storing the site identifiers at each node only requires
a single, unsigned integer per site. Thus, the memory required for storing
CLVs without compression is 4 · 4 = 16 times higher than that of the site
identifier list.

Thus, despite the fact that, we need additional data structures, and
hence space for keeping track of the site identifiers at nodes, the memory
requirements (if we do not store unnecessary CLV entries) are smaller than
those of standard production level tools [49, 130]. While the identifiers are
not the only additional data structures required for the actual implementa-
tion of the algorithm, the above argument illustrates that storing fewer CLV
entries can help to save substantial amounts of RAM.
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u

v w

φu 1 1 2 2 1

φv 1 - 2 - - φw 1 - 2 - -

Figure 8.5: Not all sites are needed for the likelihood calculation at parent node
u. According to the identifiers of this example, sites 2 and 5 are repeats of site 1,
and site 4 is a repeat of site 3. Therefore, the CLVs at sites 2, 4, and 5 do not need
to be computed nor stored, as the CLV for sites 2 and 5, and site 4, of node u can
be copied from sites 1, and 3, respectively.

The overall algorithm, with memory savings and a bounded M , is given
by algorithm Repeats-Full in Figure 8.6. One main difference to the
snippet of Figure 8.4, is the introduction of a new array (maxid) which
stores the maximal identifier assigned to each of the 2m − 1 nodes of the
rooted tree T (assuming T has m tip nodes). Thereby, we eliminate the run
time O(n) required for finding the maximal identifiers of the two children
nodes (lines 3-6 in Figure 8.4) at the cost of Θ(m) memory. The second
difference is that, we can no longer use the original set Lu(i) for the CLV
entries for site i at a node u. This is due to the memory saving technique
which omits the computation and storage of unnecessary CLVs as illustrated
in Figure 8.5. The problem is that the CLV of the two children may not
reside at entries i because repeats might have occurred. Therefore, the new
ordered set L̂u(i) is defined as

L̂u(i) =
⋃
∀s∈Σ

( ∑
∀sv∈Σ

P (s→ sv|b((u, v)))L(v)
sv

(φv(i))
)( ∑

∀sw∈Σ
P (s→ sw|b((u,w)))L(w)

sw
(φw(i))

)

and the conditional likelihoods L(v)
x (φv(i)) resp. L(w)

x (φw(i)) can be ob-
tained for all states x, from CLV[v, φv(i)] respectively CLV[w, φw(i)].
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Repeats-Full(T, τ, tsize, x, n,m)
B Initialization

1. M ← {0}tsize Initialize matrix M
2. clean← {0, 0}n Initialize clean array
3. maxid← {0}2m−1 Initialize maxid array
4. P ← {u1, u2, . . . , um−1} Post-order traversal of inner nodes
5. B Map nucleotides at tips to integers
6. for u in L(T ) do Iterate over all tip nodes u
7. for i← 1 to n do Iterate over all sites of sequence xu
8. φu(i)← τ(xui ) Use mapping τ to encode nucleotide xui

B Traverse all inner nodes in post-order
9. for u in P do Iterate through inner nodes
10. v ← Left-Child(u) Set v as the left child of u
11. w ← Right-Child(u) Set w as the right child of u
12. vmax← maxid(v) Get maximal identifier of v
13. wmax← maxid(w) Get maximal identifier of w
14. if vmax× wmax > tsize then Check if table size reached
15. for i← 1 to n do
16. CLV[u, i] ← L̂u(i) L̂u(i) uses CLV[v, φv(i)] and CLV[w, φw(i)]
17. φu(i)← i
18. else we can still use site repeats
19. ident← 0
20. for i← 1 to n do
21. mpos← (φv(i)− 1)× wmax + φw(i) linearize two coordinates into one index
22. if M [mpos] = 0 or If matrix entry is empty or contains invalid

clean[M [mpos]] 6= (mpos, u) then data, then compute likelihood from scratch
23. ident← ident + 1
24. M [mpos]← ident
25. clean[M [mpos]]← (mpos, u)
26. CLV[u, ident]← L̂u(i) L̂u(i) uses CLV[v, φv(i)] and CLV[w, φw(i)]
27. φu(i)←M [mpos]
28. maxid(u)← ident Store max identifier for u
29. return CLV return CLV

Figure 8.6: Full description for computing all CLVs of a tree T with the memory
saving technique and site repeat detection. Input parameters are the tree T of m
taxa, the sequences (of size n) for each of the m taxa (denoted xu for the sequence
at tip node u), a mapping τ for encoding the MSA data to integer values, and the
size tsize of the matrix used for computing site repeats. The algorithm computes
only the necessary CLVs required for evaluating the likelihood of tree T , avoiding
PLF calls on site repeats.

Observation 58 (Runtime). Algorithm 8.6 computes all subtree repeats,
and the corresponding CLVs, in linear time, with respect to the size of the
alignment (number of sites times number of nodes).

This trivially holds by inspection.
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8.4 Computational Results

We can now compare the performance of the PLF implementation us-
ing our algorithm, against a standard implementation for this task. We
implemented a rudimentary version of our algorithm in a new, low-level
implementation of the Phylogenetic Likelihood Library PLL [49] (which we
refer to as LLPLL) that does not make use of the highly optimized PLF of
PLL, but allows for a straight-forward implementation of our method.

We used two implementations of our method. First, SRDT which com-
putes the site repeats assuming a dynamically changing topology. That
is, repeats are computed before any likelihood computation. The second
utilization (SRCT) assumes a constant tree topology and therefore pre-
computes all site repeats once and uses that information every time the
likelihood function is called without re-computing repeats.

For assessing the performance of our methods, we use the AVX-
vectorized, sequential PLF implementation from PLL which uses the same,
highly optimized PLF as RAxML. We selected the PLL/RAxML because
(i) it is our own code and (ii) it is currently among the fastest and most
optimized PLF implementations available. This thus guarantees a fair com-
parison, and ensures that our method can truly be used in practice for
speeding up state-of-the-art inference tools. We use two flavors of PLL in
our experiments; the plain version (we refer to it as PLL) and the memory
saving SEV-based implementation of PLF (accessible using the -U switch
in RAxML) which we refer to as PLL-SEV.

To obtain an accurate speedup estimate, we also used AVX intrinsics
in our low-level implementation (LLPLL). However, it is still sub-optimal
as PLL is faster with a speedup of approximately 1.40 - 1.45 as we show
further.

Experimental setup. We performed four types of experiments for as-
sessing the performance of our method. The results indicate that the sub-
optimal implementation enhanced by a proof-of-concept utilization of our
method outperforms the PLL likelihood function by a factor of up to 10.
The four experiments cover the typical PLF use cases.

First, we exhaustively assess the performance of full traversals for all
possible rootings of the trees on two data sets. Second, we assess the per-
formance of full traversals on all selected datasets for a limited number of
rootings drawn at random. Third, we evaluate the performance for partial
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traversals. Finally, we assess PLF performance for fixed tree topologies. In
this setting, preprocessing of site repeats is done only once and not for each
likelihood evaluation.

For the experiments we used a 4-core Intel i7-2600 multi-core system with
16 GB RAM. In order to provide meaningful results, we always executed
several (usually 10 000) independent likelihood computations.

Data sets. We used a mixture of empirical and simulated nucleotide data
sets which are summarized in Table 8.1. The data sets contain gaps and
ambiguous DNA characters. Table 8.1 also reports the percentages of gaps
and site repeats in the alignments. The number of gaps are important,
since they relate to the performance of the PLL-SEV implementation. The
percentages of site repeats are given for an arbitrary root of the parsimony
trees calculated for the data sets using RAxML [130]. Different trees, as
well as different rootings usually give different values. We present only
the values for the parsimony trees, as they are the tree topologies used
for evaluating the performance of the SRDT and SRCT methods. The
data set with 2 000 taxa has the lowest percentage of repeats, however, this
data set still produces 86.95% repeats (which directly translate to identical
conditional likelihood entries). We want to emphasize that we did not choose
these data sets for their high numbers of repeats. In fact, the fraction of
site repeats for each data set was previously unknown to us. The data sets
and software used for testing, are available on-line3,4. For the run-time
comparisons we focus purely on the PLF evaluation. Branch lengths and
model parameters are fixed, and remain unchanged as they do not impact
the run-time of PLF. The underlying trees are parsimony trees inferred with
RAxML [130]. Since the calculation of the PLF takes up up to 85%-98% of
the total run-time [6] of ML phylogenetic tree inferences, accelerating the
performance of the PLF significantly impacts the overall execution time of
ML analyses.

The memory savings due to calculating site repeats, as well as the actual
size of the look up table to allow the computation of all repeats, are presented
in Table 8.2. The size of the look up table was bounded by 200 MB. This
corresponds to roughly 50 million entries (namely 4 byte unsigned integer
values). The actual memory for the look up table was only allocated as
needed. For most data sets, less than 200 MB of memory were thus used

3https://github.com/stamatak/test-Datasets/
4http://sco.h-its.org/exelixis/web/software/site-repeats/
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Sequences [-] 59 128 354 404 500 994 1 512 2 000 3 782 7 764
Sites [-] 6 951 29 198 460 13 158 1 398 5 533 1 577 1 251 1 371 851
Repeats [%] 92.04 91.78 94.65 96.49 89.43 94.63 90.09 86.95 94.18 87.62
Gaps [%] 44.24 32.48 14.71 78.92 2.25 71.39 3.02 12.65 2.70 20.60

Table 8.1: Nucleotide data sets summary. Sequences denotes the number of taxa
in the data set. Sites is the length of the provided MSA. Repeats denotes the amount
(in percentage) of sites in the MSA which are repeats of another at any node, and
can thus be copied or omitted. This amount depends on the chosen root of the
tree structure and the tree topology itself. The (unrooted) trees were obtained by
running a maximum parsimony tree search for each of the data sets, and we chose
one random node as the root to estimate the number and the table indicates the
amount of repeats for that particular rooting. Gaps indicates the amount of gaps in
the alignment.

Sequences 59 128 354 404 500 994 1 512 2 000 3 782 7 764
Sites 6951 29 198 460 13 158 1 398 5533 1 577 1 251 1 371 851
Memory PLL [MB] 53 474 24.5 680 93 707 312 328 678 875
Memory PLL-SEV [MB] 46 403 21.5 326 93 256 308 297 674 819
Memory SRCT [MB] 32 303 7.5 202 34 164 104 120 171 298
Table size 5.3 220.1 0.07 23.5 0.81 6.6 2.9 2.4 2.8 0.86

Table 8.2: Memory requirements for the different methods. Table size denotes the
size of the lookup table M of Algorithm Repeats-Full, in millions of entries, that
are needed to compute all possible repeats. Memory requirements for M , in MB, are
thus four times as high as the presented numbers, since all entries are implemented
as unsigned integers.

(confer Table 8.2). The notable exception is the data set containing 128
taxa. For this data set, 220.1 million entries (roughly 880 MB) in M are
needed in the worst case. Since we bound the size of M to 200 MB, this
means that not all repeats were found when analyzing this particular data
set.

Exhaustive evaluation of all rooting First, we evaluate the run-time
impact of distinct rootings. The two data sets we used for this experi-
ment have 59 and 354 taxa. Our implementation with site repeats enabled
(SRDT), with site repeats disabled (LLPLL), as well as PLL and PLL-SEV
were executed to perform PLF calculations (full tree traversals) for rootings
on tip nodes. All of these implementations make use of an AVX vectorized
function for calculating conditional likelihoods. This choice of rootings was
selected because PLL requires that likelihood evaluations on unrooted trees
based on full traversals are performed only on terminal edges, that is edges
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whose one end-point is a tip node. Hence in this experiment we exhaustively
evaluate the PLF for all possible rootings on tip nodes. For each rooting,
we executed 10 000 independent PLF computations. The size of matrix M
is limited to 200 MB for all data sets. As we can see in Table 8.2, this is suf-
ficient to find all repeats for these two data sets. This initial analysis helps
us understand the effect of root placement on the number of site repeats
present in a full tree traversal and as a consequence on run-times.

For the 354 taxon data set, SRDT had an average run-time of 11.714
seconds (for 10 000 iterations) and reached maximum and minimum run-
times of 15.207 and 10.211 seconds, respectively. The standard of run-times
among all rootings was 0.94. PLL needed, on average, 58.112 seconds for
this data set with maximum and minimum run-times of 61.067 and 57.573
respectively and a standard deviation of 0.54. Enabling the SEV method,
PLL-SEV reduced the average run-time to 54.449 seconds, with minimum
and maximum run-times of 55.128 and 57.299 seconds respectively. The
standard deviation lowered to 0.411162.

For the 59 taxon data set, SRDT had an average runtime of 37.491
seconds. The respective maximum and minimum run-times were 44.787
and 31.515 seconds, and the standard deviation 3.197. PLL needed, on
average, 134.769 seconds with a maximum run-time of 141.031 and minimum
of 132.727 seconds. The standard deviation was 1.66. The average run-time
of PLL-SEV was 124.733 seconds, with minimum and maximum run-times
at 122.558 and 132.341, respectively, and a standard deviation of 2.05294.
From this we see that, while the mean was higher for the PLL than the
SRDT method, the standard deviation was lower for the PLL.

To get an initial estimate of how the original LLPLL implementation
performs in comparison to PLL (and PLL-SEV) we measured its run-times
by disabling site repeats. For the 354 taxon data set, the implementation
averaged to 81.283 seconds, and and 194.932 seconds for the 59 taxon. The
standard deviation was 0.231 and 0.783 for the two data sets, respectively.
For these two specific data sets (354 and 59), PLL and PLL-SEV are on
average faster by a factor of 1.4 and 1.45 (for PLL) and a factor of 1.49 and
1.56 (for PLL-SEV) respectively. The differences in speed between LLPLL
and PLL can be explained by two factors. First of all, PLL is a highly
optimized software for PLF calculations that directly derived from RAxML,
which has been developed and optimized for over 10 years. Second, the
standard optimization method explained in the introduction, namely, the
look up table for tip-tip cases is not implemented for the LLPLL method
yet. The reason for this is that the look up at a tip-tip node is replaced by
the general repeats method implemented in SRDT, which has been disabled
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Summary of speedups obtained using SRDT for a sample of rootings
Data set 59 128 354 404 500 994 1512 2000 3782 7764
Speedup over PLL 3.46 3.27 4.96 5.31 2.78 4.5 3.03 2.47 4.06 2.63
Speedup over PLL-SEV 3.15 2.97 4.74 2.99 2.93 1.91 3.18 2.39 4.25 2.65

Table 8.3: Speedup obtained when using SRDT over PLL and PLL-SEV for each
of the ten data sets. SRDT is consistently faster than both methods.

for this test.

Evaluation of a sample of rootings For the actual comparison of run
times for full tree traversals between SRDT and PLL, we use the nucleotide
data sets with taxon numbers ranging from 59 taxa to 7764 taxa (see Table
8.1). The run times were measured for 10 different rootings. These rootings
were randomly chosen, and are not necessarily the same for the SRDT and
PLL methods. Given the standard deviation, as demonstrated above, for
different run times of the PLL under different rootings, this is a reason-
able comparison. For the PLL method, the nodes for the different rootings
were again restricted to be tip nodes only. For each rooting, we again con-
ducted 10 000 full tree traversals and calculated the ratio of the time needed
by SRDT, divided by the time needed by the PLL. The presented overall
speedup of our new method per data set is then the average speedup over
all 10 rootings. Table 8.3 shows the run-time improvements. As we can
see, the SRDT implementation is always at least more than twice as fast
as the PLL. In fact, the lowest observed average speedup (over the general
PLL method) was 2.47. The maximal speed up was obtained for the data
set containing 404 taxa. Here, the SRDT implementation was 5.31 times
faster than the PLL. In table 8.1 we also see that this particular data set has
the highest relative number of repeats among all analyzed data sets. This
reinforces the initial intuitive assumption that the amount of repeats posi-
tively influences the runtime improvement. On the other hand, the largest
decrease in speedup when comparing to PLL-SEV was for data sets 404 and
994 which contain over 70% gaps. Note also, that for data sets with a lower
amount of gaps, run-time for PLL-SEV increased compared to PLL (data
sets 1512, 3782 and 7764).

Partial traversal performance In phylogenetic inferences, to calculate
the overall likelihood of the tree, it is not always necessary to conduct full
tree traversals, in particular when conducting BI or ML tree searches that
deploy local topological updates using, for instance nearest neighbor inter-
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change (NNI) or subtree pruning and re-grafting (SPR) moves (confer Figure
3.10, Section 3.4, page 25). We need to assess the performance of our ap-
proach for this type of partial CLV updates as well, since less CLVs are
updated and they might be located at the inner part of the tree where the
number of repeats is lower. Therefore, we also assess performance, by emu-
lating partial CLV updates. To this end, for each rooting where we evaluate
the overall likelihood, we pick a random path into two directions away from
it. At each node on this path we take a randomized decision on whether
to stop the traversal (with probability (1 − p)), or continue to a randomly
chosen child node with probability p. The traversal stops if both directions
of the path have either been stopped with probability p, or a tip node has
been reached. This pattern of CLV updates emulates the topological moves
described in [90] for BI. As mentioned before, additionally to the time spend
in the PLF, other factors such as optimizing branch lengths and model pa-
rameters for ML, also contribute to the overall execution time. Here we
concentrate only on measuring the time for calculating the PLF. Figure 8.7
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Figure 8.7: Plotted are the runtime improvements of the SRDT method over the
LLPLL method against the average number of updated CLVs. The colors distinguish
the different data sets. Each data set is represented by eleven measurements for
eleven different nodes.
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shows the run-time improvements of the SRDT method over LLPLL. For
each data set, eleven nodes are chosen at random. For each of those nodes,
10 000 partial updates are simulated and timed by recalculating the CLVs
along the path chosen by the above method (with p = 0.95). We present
the individual average speed ups of each rooting for each data set, plotted
against the number of average nodes that are updated for this particular
rooting. We choose to only compare the SRDT method to LPLL, since for
comparing it to the PLL it would be very hard to implement exactly iden-
tical partial traversals because of the different internal structures of PLL
and SRDT. Thus, the speedup for the partial updates is not the absolute
speedup for PLF implementations. Instead, our results demonstrate the rel-
ative speedup that can be achieved by incorporating repeats into any PLF
implementation. For the full traversals over all possible rootings, the PLL
was 1.4-1.45 times faster than the LLPLL method (see page 129). Assum-
ing that these values are representative, the SRDT method still allows for
faster PLF computations than the PLL for most, if not all, data sets, under
this setting. Furthermore, as we discussed before, the speed difference is
partially due to the lack of a dedicated tip-tip evaluation scheme for the
LLPLL method. However, given the experimental set up here, a node for
which both children are tips is included in the path, which is to be up-
dated, at most twice. Thus, it remains to be evaluated, whether the speed
difference between the LLPLL and PLL method persist under this setting.

Performance on fixed topologies Many phylogenetic tools use a fixed
tree topology on which the likelihood is repeatedly calculated. Divergence
time estimates [68] and model selection [1] are examples of this.

Under this setting, repeats can be pre-computed once and then reused
for subsequent PLF invocations. Table 8.4 shows the run time improvement
of the SRCT method over PLL and PLL-SEV under this setting.

Noticeably, for the data set containing 404 taxa we again observe the
largest run time improvement of all analyzed data sets. Here, we observe an
almost ten fold speed up (9.96 times faster run times).

8.5 Conclusion

We have seen that taking into account repeating patterns in the alignment
does matter for an efficient PLF implementation. On fixed topologies, where
repeats are only pre-processed once, we obtain an almost 10 fold run time
improvement. When repeats need to be computed on the fly for changing
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Summary of speedups obtained using SRCT when considering fixed topologies
Sequences 59 128 354 404 500 994 1512 2000 3782 7764
Sites 6951 29198 460 13158 1398 5533 1577 1251 1371 851
Speedup over PLL 5.71 4.64 8.59 9.96 4.29 8.16 4.66 3.62 6.86 3.91
Speedup over PLL-SEV 5.22 4.23 8.22 9.96 5.44 3.30 4.88 3.48 7.18 3.93

Table 8.4: Speedups of the new SRCT method which considers a fixed topology
over the PLL and PLL-SEV.

topologies, we still observe a run time improvement of up to more than five
times faster execution times.

All of this can be achieved without requiring more memory overhead
than standard production level software for calculating the PLF. In fact,
the memory footprint of our presented method is less than that of the stan-
dard software by a factor of up to more than four times smaller memory
consumption.
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9 Are all Global Alignment Methods Correct?
Pairwise sequence alignment as explained in Section 3.1 (page 11) is one of
the most fundamental operation in bioinformatics. Gotoh’s algorithm [59]
for this purpose is widely used and perhaps more importantly, implemented.
A plethora of distinct formulations exist for this algorithm which, as we
show, causes confusion in the field. More importantly, this confusion leads
to numerous implementation issues and errors, of which typical end-users
are not aware. Foremost, we point out two mathematical irregularities in
Gotoh’s 1982 paper. First, there are minor issues in the indices of the
dynamic programming algorithm. Second, we describe a more critical prob-
lem in the initialization of the dynamic programming matrix for global
sequence alignment. While the index issue becomes apparent immediately
when implementing the procedure, the initialization issue is more involved
and can easily be overseen. This observation is corroborated by several text
books and lecture notes, where the initialization issue is either present, or
circumvented via additional assumptions. As we show, the above two issues
can and do generate incorrectly aligned sequences. Five out of ten imple-
mentations we analyzed yield sub-optimal sequence alignments. Finally, we
provide a correct version and implementation of the algorithm.

We have prepared a manuscript titled ”Are all Global Alignment Meth-
ods Correct?”, with the contents of this chapter. A pre-print is avail-
able at http://www.biorxiv.org/content/biorxiv/early/2015/11/12/
031500 [53]. Tomáš Flouri, Torbjørn Rognes, Alexandros Stamatakis, I (co-)
authored the manuscript.
Tomáš Flouri first recognized the irregularities in the original Gotoh publi-
cation [59]. Flouri and I provided a formal description of the problems and
alternative formulations (and an implementation) to avoid them. Together,
we analyzed the existing tools, lecture slides, books, and scientific papers to
asses the spread and persistence of the mistakes. Rognes and Stamatakis
confirmed the mistakes and helped write the paper.

9.1 Motivation and Related Work

The Needleman-Wunsch (NW) [106] and Smith-Waterman [127] algorithms
for computing optimal global and local alignments are among the most im-
portant algorithms in bioinformatics and computational biology. They are
typically presented in undergraduate lectures at many computer science and
bioinformatics departments around the globe.

Although Needleman and Wunsch described their algorithm in their sem-
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inal paper in 1970, the algorithm had already been discovered several times
before. In fact, Damerau and Levenshtein independently described the al-
gorithm in 1964 [28] and 1965 [97].

Analogous algorithms with quadratic run-times were also independently
developed by Vintsyuk in 1968 for speech processing [142], and in 1974 by
Wagner and Fischer for string matching [143].

In 1972, Sankoff presented an improved dynamic programming algo-
rithm with quadratic time complexity for this problem by making addi-
tional assumptions [118]. The algorithm by Sankoff maximizes the number
of matches between two sequences, without penalizing gaps.

Needleman and Wunsch described their algorithm in terms of maximiz-
ing similarity between two sequences. Levenshtein described the problem in
terms of minimizing the edit distance, that is, the cost of edit operations (in-
sertion, deletion, substitution) for transforming one sequence into another.
In 1974, Sellers showed that these two variations are in fact equivalent [121].

Finally, in 1982 Gotoh presented a quadratic time algorithm to compute
global sequence alignments with affine gap penalties [59]. Note that, Gotoh’s
approach also reduces the time complexity of the Smith-Waterman local
alignment algorithm.

While the underlying idea of Gotoh’s algorithm is valid and can yield
the optimal pairwise sequence alignment, there are two issues that can lead
to erroneous, that is, sub-optimal, alignments based on Gotoh’s original
description. The first issue (index issue) is straight-forward and simply a
case of ambiguous indices. However, the second issue (initialization issue),
which affects global alignments only, has a more substantial impact on
alignment optimality and correctness.

There exist several distinct formulations based on Gotoh’s original al-
gorithm. Some of these are equivalent to Gotoh’s algorithm, while others
require additional assumptions to yield correct results. For instance, Durbin
describes an algorithm that, by design, only computes alignments where
an insertion can not be directly followed by a deletion and vice versa [35].
The algorithm is correct, if some restrictions are imposed on the affine gap
penalty function and scoring matrix values. A sufficient condition is that
the highest mismatch penalty is at most twice the gap extension penalty.
Incidentally, on page 31 of [35], Durbin states this condition. On page 30
however, a different condition is given. For the latter, it is easy to show,
that the condition is not sufficient for ensuring that insertions can not be
followed by deletions in the optimal alignment.
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All of the above generates confusion in the implementation of global
alignment methods. Gotoh’s initialization description is presented wrongly
in standard textbooks (such as [64]) and in a plethora of online teaching
material. Of the implementations we analyzed, some yield erroneous results,
while others implicitly place additional assumptions on the alignment (e.g.,
no insertion can follow a deletion). This means that, the same two sequences
can yield different alignments, depending on the software that is being used.

Overview. First, we give a description of Gotoh’s algorithm (Section 9.2),
as it represents the cornerstone for constructing pairwise sequence align-
ments. Then, we present a detailed analysis of the problems that were
introduced in the original paper and show how to avoid them (Section 9.3).
Last, we assess the impact of these ambiguities by listing books, implementa-
tions, and online lecture slides that either contain a mistaken interpretation
of Gotoh’s algorithm (books and lecture slides) or yield sub-optimal align-
ments (implementations). For lecture slides, we quantify the impact of the
error, by the ratio of correct to incorrect presentations, and to lecture slides,
where a formal initialization is missing altogether.

To illustrate the two error types, we first recapitulate Gotoh’s algorithm
for alignments with affine gap penalties. We use the same notation as in
Gotoh’s original paper.

9.2 Gotoh’s Algorithm

Let wk = uk + v (u ≥ 0, v ≥ 0) be the gap penalty for a gap of length
k, where v is the gap opening penalty and u is the gap extension penalty.
Let A = a1a2 . . . aM and B = b1b2 . . . bN be the two sequences we want to
align. Further, assume that a weighting function d(am, bn) is given to score
an aligned pair of residues am and bn. Typically, d(am, bn) ≤ 0 if am = bn,
and d(am, bn) > 0 if am 6= bn. The NW algorithm calculates the cells of a
dynamic programming matrix Dm,n using the recursion:

Dm,n = min(Dm−1,n−1 + d(am, bn), Pm,n, Qm,n) (30)
where

Pm,n = min
1≤k≤m

(Dm−k,n + wk) (31)

and
Qm,n = min

1≤k≤n
(Dm,n−k + wk) (32)
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Here, Dm,n is the score of a globally optimal alignment of the first m
residues of A with the first n residues of B. Pm,n is the score of an optimal
alignment of the first m residues of A with the first n residues of B that
ends with a deletion of at least one residue from A, such that am is aligned
with the gap symbol. Finally, Qm,n is the score of an optimal alignment of
the first m residues of A with the first n residues of B that ends with an
insertion of at least one residue from B, such that bn is aligned with the gap
symbol. Although, at first sight, Pm,n and Qm,n appear to require m−1 (or
n−1) steps, they can be obtained in a single step via the following expansion
of the recursive formulation:

Pm,n = min{Dm−1,n + w1, min
2≤k≤m

(Dm−k,n + wk)} (33)

= min{Dm−1,n + w1, min
1≤k≤m−1

(Dm−1−k,n + wk+1)} (34)

= min{Dm−1,n + w1, min
1≤k≤m−1

(Dm−1−k,n + wk) + u} (35)

= min(Dm−1,n + w1, Pm−1,n + u) (36)

The same applies analogously to Qm,n:

Qm,n = min(Dm,n−1 + w1, Qm,n−1 + u) (37)

9.3 Original problems with Gotoh’s Algorithm

We have found two issues with the original Gotoh paper [59]. With respect
to the initialization, Gotoh states:

“At the beginning of the induction, one may set Dm,0 = Pm,0 = wm(1 ≤
m ≤M), and D0,n = Q0,n = wn(1 ≤ n ≤ N). Alternatively, Dm,0 = Pm,0 =
0 and D0,n = Q0,n = wn, or Dm,0 = Pm,0 = 0 and D0,n = Q0,n = 0 may be
chosen in searching for the most locally similar subsequences . . . ”.

Note that, the second sentence (at least the second part of it) refers to
local alignments which are not affected by the error. Apart from the two
issues we present in this Chapter, there are additional issues in Gotoh’s
paper, particularly in the description of the matrix traceback. In 1986,
Altschul gave a detailed description of traceback issues introduced by Gotoh
which can lead to sub-optimal alignments as well. For more information and
examples see [7].

Index Issue. The first apparent issue is that wrong indices are used for
initializing the P and Q matrices. Initially, the entries Pm,0 and Q0,n, as well
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as Dm,0 and D0,n (for 1 ≤ m ≤ M , 1 ≤ n ≤ N) are assigned some values.
However, this is inconsistent with the recursions defined in equations 33
and 37. Consider computing the following entry P1,1 of P (or Q1,1 of Q).
Equation 33 then reads as follows:

P1,1 = min(D0,1 + w1, P0,1 + u).

Here D0,1 is defined but P0,1 is not defined. However, P1,0 is defined, so this
may be a simple case of flipped indices. The same applies to matrix Q.

Initialization Issue. The more substantial problem are the actual val-
ues that are assigned to initialize P and Q. For global alignments, Go-
toh proposes to initialize D0,n = Q0,n = wn and Dm,0 = Pm,0 = wm (for
1 ≤ m ≤ M , 1 ≤ n ≤ N). Correcting the indices for P and Q we obtain
D0,n = P0,n = wn and Dm,0 = Qm,0 = wm. The value D0,0 is defined as
D0,0 = 0. Let us consider P1,i as defined in Equation 33 for some i ∈ [1, N ]:

P1,i = min(D0,i + w1, P0,i + u) (38)
= min(wi + w1, wi + u) (39)
= min(wi + u+ v, wi + u) (40)
= wi + u. (41)

Similarly, for j ∈ [1,M ]:
Qj,1 = wj + u. (42)

To illustrate why this result is wrong, we consider a simple one-nucleotide
example. Let A = a1 and B = b1. Further let d(a1, b1) := 5, the gap opening
penalty v := 2, and the gap extension penalty u := 1. Now

D0,1 = D1,0 = P0,1 = Q1,0 = w1 = v + u = 2 + 1 = 3.

Thus, by equations 38 and 42 we obtain,

P1,1 = w1 + u = v + u+ u = 2 + 1 + 1 = 4
Q1,1 = w1 + u = v + u+ u = 2 + 1 + 1 = 4.

Plugging these values into Equation 30 we obtain

D1,1 = min(D0,0 + d(a1, b1), P1,1, Q1,1)
= min(0 + 5, 4, 4)
= 4.

This implies that, the best alignment for A and B is:
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A: - a1
B: b1 -

or
A: a1 -
B: - b1.

However, the actual correct score for both of these alignments is w1 +w1 =
3 + 3 = 6 6= 4. Aligning A and B as

A: a1
B: b1.

yields a score of d(a1, b1) = 5 < 6. Thus, conducting the initialization as
proposed by Gotoh yields a sub-optimal solution for this simple example.
Nonetheless, there is a straight-forward solution to this problem. We need
to initialize the values for P and Q as P0,n ≥ wn+ v and Qm,0 ≥ wn+ v (for
1 ≤ n ≤ N , 1 ≤ m ≤ M) to obtain the correct, optimal alignment score. If
P0,n = wn + v we can re-state Equation 38 as:

P1,i = min(D0,i + w1, P0,i + u)
= P0,i + u

= wi + v + u.

For P0,n > wn + v we get

P1,i = min(D0,i + w1, P0,i + u)
= D0,i + w1

= wi + v + u

as well. A popular choice for P0,n, in publications by authors that seem to
be aware of this issue, is P0,n := ∞ (see for example [7, 122]). A similar
choice can be made for Q.
Using the corrected formula for our simple example of A = a1, B = b1,
d(a1, b1) = 5, v = 2, and u = 1, we see that the values are correctly com-
puted.

P1,1 = Q1,1 = w1 + v + u = v + u+ v + u = 2 + 1 + 2 + 1 = 6

By Equation 30 we get

D1,1 = min(D0,0 + d(a1, b1), P1,1, Q1,1)
= min(0 + 5, 6, 6)
= 5
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which is the correct result.
The values of P1,k (and analogously Qk,1) need to contain two gap open-

ing penalties. By definition, they should represent the score of an optimal
alignment of the first residue of A with the first k residues of B and end
with a deletion of a1, that is, an alignment of a1 with the gap symbol. The
resulting alignment will then always start with an insertion of the k first
symbols of B followed by a deletion of the first symbol of A. However, ac-
cording to Gotoh’s description, only a single gap opening penalty will be
included.

9.4 Impact of the Errors

Even though Gotoh’s paper was published over thirty years ago, the above
error still persists in many papers and bioinformatics lectures. Furthermore,
we are not aware of any previous work that specifically addresses the issues
we have identified. Note that, there do exist publications that explain and/or
implement a working or corrected version of the algorithm (e.g., [7, 33, 105,
110]). Other works either ignore this problem (e.g., [137]) or restrict values
of v, u, and d(a, b) such that the issue disappears. For example, in 1972
Sankoff [118] originally solved the problem only for u = v = 0, and Durbin
[35] gives an algorithm that performs well if 2u is greater than the highest
value of d.

Even though, some authors corrected these mistakes on their own, nu-
merous other publications, textbooks, and lecture notes still use the initial,
incorrect, description. In the following, we list textbooks and lecture slides
that contain the error. Further, we list software packages that yield sub-
optimal alignments due to the issues described here or because of other
conceptual errors. Note that, all open source software packages and im-
plementations listed are available at http://www.exelixis-lab.org/web/
software/alignment/.

Books: The following two standard text books contain the initialization
error.

• “Algorithms on Strings, Trees, and Sequences” by Gusfield, 2009 [64],

• “Introduction to Computational Biology” by Waterman, 1995 [144].

Fortunately, several books exist that contain a correct description of a
global alignment algorithm, for instance [122].
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Software:

NW-align. The alignment program NW-align5 (e.g. discussed in
[146]) shows the behavior described in Section 9.3 when aligning GGTGTGA
with TCGCGT. NW-align assigns a score of −11 for gap opening and −1 for
gap extension. Note that, the interpretation of affine gap costs is slightly
different from Gotoh’s definition. Here, a gap of length k contributes a
penalty of “−11 − (k − 1)” instead of “−11 − k” as defined in Section 9.2.
NW-align produces the following alignment:

- G G T G T G A
· | · | ·

T - - C G C G T

where the mismatch penalties are defined as d(T,C) := −1, d(A, T ) := 0
and d(G,T ) := −2. The score for the matches is defined as d(G,G) := 6.
Thus, the score for this alignment is −11− 11− 1− 1 + 6− 1 + 6 + 0 = −13.
Considering the alignment

G G T G T G A
· · | · | ·

- T C G C G T

we can see that the result obtained by NW-align is sub-optimal, since the
above alignment has a better score of −11− 2− 1 + 6− 1 + 6 + 0 = −3.

Bio++. Bio++[36] is a C++ library for Bioinformatics that includes
methods for sequence comparison. The implementation of the Needleman-
Wunsch-Gotoh method in the library can also generate sub-optimal align-
ments. Aligning the sequences AAAGGG and TTAAAAGGGGTT by assigning 0 for
a match, −1 for a mismatch, −5 for gap opening, and −1 for gap extension
with the command

./bpp AAAGGG TTAAAAGGGGTT 0 -1 -5 -1

yields the following alignment with a score of −20:

- - - - - A A A - G G G
| · · | · ·

T T A A A A G G G G T T

However, the following alignment has a better score of −15:
5Y. Zhang, http://zhanglab.ccmb.med.umich.edu/NW-align
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A A A - - - - - - G G G
· · | | · ·
T T A A A A G G G G T T

The sequences and parameters used here, are the same as used by Altschul
[7] to demonstrate the error in Gotoh’s description of the traceback method.
Interestingly, we observed another irregularity using Bio++. Running the
implementation with the following options:

./bpp AAATTTGC CGCCTTAC 10 -30 -40 -1

where the third argument (10) is the match score, the forth argument (-30)
is the mismatch score and the last two arguments are the gap opening (-40)
and extension costs (-1), yields the alignment.

A A A T T T G C - - - - - - -
|

- - - - - - - C G C C T T A C

Surprisingly, flipping the input sequences
./bpp CGCCTTAC AAATTTGC 10 -30 -40 -1

yields a different alignment with a different score:
C G C C T T A C - - - - - - - -

- - - - - - - - A A A T T T G C

Nonetheless, both alignments are sub-optimal, since the alignment
C G C C T T A - - - - - - C

| |
- - - - - - A A A T T T G C

yields a better score of −72 (compared to −84 and −96 respectively).

T-Coffee. The T-Coffee package [107] for sequence alignment also
implements the Gotoh algorithm. The command line used to produce the
results below is
./t_coffee al.fa -dp_mode gotoh_pair_wise -gapopen -40 . . .

. . . -gapext -1 -tg_mode=0 -matrix=score.mat

where al.fa contains the sequences TAAATTTGC and TCGCCTTAC. The gap
opening penalty is −40, the gap extension penalty −1. The file score.mat
defines a match score of 10 and a uniform mismatch score of −30. The
resulting alignment as computed with T-Coffee is:
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T A A A T T T G - - - - - C
| · | |
T - - - - - C G C C T T A C

This alignment is sub-optimal. Consider the following alternative alignment:

- - - - - - T A A A T T T G C
| | |

T C G C C T T A - - - - - - C

For the given parameters, the alignment returned by T-Coffee has a score
of −90. However, the alternative alignment above, has a score of −62.

It might well be that the error in the pair-wise alignment also affects
the MSA algorithm in T-Coffee. However, T-Coffee does not only exe-
cute sequence-sequence, profile-sequence, or profile-profile alignments steps
in the progressive MSA algorithm, but also uses additional concepts (e.g.,
the alignment information library). Therefore, it was not possible to reliably
assess if this errors also affects the MSA procedure.

FOGSAA. The authors in [21] describe a branch-and-bound algo-
rithm for global alignment that outperforms (in terms of speed) any optimal
global alignment method including the widely used NW algorithm. Upon
request via email, the authors provided us their implementation. To assess
the correctness and speed of FOGSAA, the authors compared it to their own
re-implementation of the NW algorithm. However, we obtained sub-optimal
solutions when using this NW implementation to globally align sequences
with affine gap penalties. For instance, given the sequences AAATTTGC and
CGCCTTAC with the parameters match 10, mismatch −30, gap opening −40
and gap extension −1, we obtain the following alignment:

A A A T T T G C - - - - -
· | |
C - - - - - G C C T T A C

with a score of −100. The command we used is:

./nw s1.txt s2.txt 1 1 10 -30 -40 -1

However, the following alignment is the optimal solution for this example:

- - - - - - A A A T T T G C
| |

C G C C T T A - - - - - - C

with a score of −72.
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HUSAR, MATLAB & BioPython. Several implementations make
the assumption that an insertion can not be followed directly by a deletion
(or vice versa) in the optimal alignment. An algorithm that performs well
(i.e., generates optimal alignments) under this assumption is the one by
Durbin [35]. HUSAR is the information system of the DKFZ (German
Cancer Research) and comprises several applications for sequence analysis.
One such application is GAP, which performs pairwise sequence alignment
and allows for affine gaps. While experimenting with it, we found that,
GAP yields optimal alignments under the assumption that an insertion
cannot follow a deletion (or vice versa). For instance, given a match score of
10, a mismatch of −30, gap opening −25, and gap extension −1, it generates
the following alignment

- - A G A T
· |

C T C - - T

with score −74. The parameters are passed with:

gap -MATRix=score.cmp -ENDWeight

where -MATRix is the substitution matrix file name and -ENDWeight ensures
that end gaps are also penalized. Assuming that, insertions and deletions
can not reside immediately next to each other, this is the optimal solution.
However, if we omit this assumption, the optimal alignment is

- - - A G A T
|

C T C - - - T

with a score of −46.
The corresponding function (nwalign()) in MATLAB6 yields an equiv-

alent (in terms of alignment score) solution to GAP:

- - C T C T
· |

A G A T - -

The MATLAB call is:
6 c©2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of

The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trade-
marks. Other product or brand names may be trademarks or registered trademarks of
their respective holders.
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nwalign(’CTCT’,’AGAT’, ’Alphabet’, ’NT’, ’ScoringMatrix’, M,. . .

. . . ’GapOpen’, 25, ’ExtendGap’, 1)

Note that, MATLAB returns a score of −72 for this alignment. This is due
to the different possible interpretations of affine gap scores. That is, a gap
of length k can contribute to the score with v + (k − 1)u instead of v + ku.
Alternatively, one can apply a gap opening penalty of −26 to get the score
of −74 reported by GAP for this alignment. The module pairwise27 of
the Biopython library [26] behaves analogously. The function
alignments = pairwise2.align.globalms("AGAT", "CTCT",...

...10, -30, -25, -1)

also yields alignments (including those found by GAP and MATLAB)
with a score of −72. All three software packages do apparently not allow
for insertions that are immediately followed by deletions. However, they do
accept input values for which the optimal alignment does not exhibit this
property.

nwalign. The nwalign8 implementation is a python library (actually
written in C) which implements global alignment with affine gaps. In some
cases, it produces sub-optimal alignments as well. Again, consider the ex-
ample of AGAT and CTCT. Given the same setup that we used for HUSAR
(GAP), that is, a match score of 10, mismatch of −30, gap opening −25,
and gap extension −1. The command:
./nwalign –gap_open -25 –gap_extend -1 –match 10 ...

...–matrix MATRIX AGAT CTCT

generates the correct alignment:
- - - A G A T

|
C T C - - - T

However, changing the scoring scheme to penalize opening a gap with
−30 instead of −25 generates the following sub-optimal alignment:

- - A G A T
· |

C T C - - T
7Available at http://biopython.org/DIST/docs/api/Bio.pairwise2-module.html
8This program (nwalign) is available at https://pypi.python.org/pypi/nwalign/
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Lecture slides: To further quantify the impact of the problem, we clas-
sified 31 lecture slides reported as the most popular results of Google
search for the terms global alignment, affine gaps, Needleman-Wunsch, Go-
toh Algorithm, into three distinct categories: Correct, incomplete and wrong.

We observed that the majority (≈52.6%) of the slides (16 lectures) are
incomplete, since the initialization of the matrices is not explicitly given. Of
course, lecture slides are only a part of the actual lectures. Hence, from the
available resources we can not judge with certainty, whether an initialization
(correct or incorrect) was presented to the students, for example orally, or
via additional course material.

Approximately 25.8% of the slides (8 lectures) are correct. That is, a
quadratic time algorithm is presented and a correct initialization is given.
Slides that describe algorithms which make additional assumptions (e.g.,
Durbin [35]) are classified as correct if the initialization is correct for that
particular case.

The remaining 22.6% of the slides (7 lectures) are wrong, that is, an in-
correct initialization as described in Section 9.3 is provided. Other mistakes,
such as stating incorrect conditions for avoiding subsequent insertions and
deletions in the optimal alignment, are not counted as mistakes here.

Slides that only describe the algorithm for locally aligning two sequences,
without giving an algorithm for globally aligning sequences were discarded.

List of incomplete lectures (16):
"http://www.cs.utoronto.ca/~brudno/csc2427/Lec8Notes.pdf"

"ftp://statgen.ncsu.edu/pub/thorne/bioinf2/gotoh.pdf"
"http://www.cs.umd.edu/class/fall2011/cmsc858s/Gap_Scores.pdf"
"http://math.mit.edu/classes/18.417/Slides/alignment.pdf"
"http://users.ece.utexas.edu/~hvikalo/ee381v/lecture5h.pdf"
"http://ls11-www.cs.uni-dortmund.de/people/rahmann/teaching/
ws2008-09/GrundlegendeBioinformatik/skript.pdf"
"http://www.csie.ntu.edu.tw/~kmchao/bioinformatics13spr/
alignment.ppt"
"http://labs.bio.unc.edu/Vision/courses/162F02/03.pair.align.
ppt,http://labs.bio.unc.edu/Vision/courses/162F02/04.mult.
align.ppt"
"http://web.calstatela.edu/faculty/nwarter/courses/bioinfo/
Bioinformatics_Sequence_Align_003.ppt"
"http://robotics.stanford.edu/~serafim/cs262/Slides/Lecture3.
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ppt"
"http://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/
Lec6-EditDistance.pdf"
"http://thor.info.uaic.ro/~ciortuz/SLIDES/pairAlign.pdf"
"http://www.cs.rice.edu/~nakhleh/COMP571/Slides/
SequenceAlignment-PairwiseDP.pdf"
"http://www.cs.tau.ac.il/~bchor/CG09/CG2-alignment.ppt"
"http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/slides/
cs481-Week4.2.pdf"
"http://angom.myweb.cs.uwindsor.ca/teaching/cs558/
558-Lecture3.pptx"

List of correct lectures (8):
"http://ab.inf.uni-tuebingen.de/teaching/ws06/albi1/script/

pairalign_script.pdf"
"http://users-cs.au.dk/cstorm/courses/AiBS_e14/slides/
AffineGapcost.pdf"
"http://www3.cs.stonybrook.edu/~rp/class/549f14/lectures/
CSE549-Lec04.pdf"
"http://www.bioinf.uni-freiburg.de/Lehre/Courses/2014_SS/V_
Bioinformatik_1/gap-penalty-gotoh.pdf"
"http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/slides/Ch2_
sequence_similarity.pdf"
"http://www.cs.cmu.edu/~ckingsf/class/02-714/Lec08-gaps.pdf"
"http://www.csie.ntu.edu.tw/~kmchao/seq11spr/Presentation_
Sequence-final.pptx"
"http://wwwmayr.informatik.tu-muenchen.de/lehre/2009SS/cb/
slides/CB1-2009-06-19.pdf"

List of lectures containing mistake (7):
http://math.ucdenver.edu/~billups/courses/ma5610/lectures/

lec4.pdf
http://www.cise.ufl.edu/~cap5510fa13/02-CAP5510-Fall13.pptx
http://www.cs.uku.fi/~kilpelai/BSA05/lectures/print10.pdf
http://www.cse.msu.edu/~torng/Classes/Archives/cse960.01/
Lectures/SequenceAlignment.ppt
http://www.haverford.edu/biology/GenomicsCourse/manduchi.ppt
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http://www.site.uottawa.ca/~lucia/courses/5126-10/
lecturenotes/03-05SequenceSimilarity.pdf
https://www.site.uottawa.ca/~turcotte/teaching/csi-5126/
lectures/04/handouts.pdf

9.5 Conclusion

We have seen that, even though Gotoh published his findings more than
thirty years ago, the initial ambiguous definition still result in wrong in-
terpretations today. Reputed Books, widely used software, and university
lecture slides on this topic contain this error. Adding to the confusion in
this field is the availability of a plethora of different formulations for this
algorithm.

We pointed out the mistakes in detail, and give a correct formulation,
as well as an exemplary implementation, to avoid this problem.
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Part III:

Addendum





10 Outlook and Future Work
Hardness of Model Assignment For the NP-hardness proof presented
in Chapter 4 we made a few necessary assumptions.

First, the proof makes use of 9 distinct states and requires a minimum
of 3 models. As we argued before, requiring 9 distinct states does not limit
us in practice. Model selection is usually applied to protein data sets with
20 states. For data sets with lower numbers of states, such as 4 states for
DNA or 2 states for binary data, a rate matrix is usually estimated from
the data at hand.

For completeness, it is still interesting to know, for which number of
states and models this problem remains NP-hard.

In particular, knowing, for what combination of states and models the
question is polynomial time solvable remains important. For these cases,
exact polynomial time algorithms may be devised to actually find an optimal
model assignment.

The other open question is whether the results hold if we restrict our-
selves to time-reversible models. For the proof in Chapter 4 we constructed
three models which were in fact not time reversible. However, time re-
versibility is often assumed by phylogenetic software tools such as RAxML
[130].

Again, if the model assignment problem is actually polynomial time solv-
able under this restriction, optimal model assignments may be used in prac-
tical tree inferences.

Given the NP-hardness proof presented here, further effort may also be
invested into developing efficient heuristics for approximating the optimal
model assignment (as done for example in [67]). This may allow for a more
accurate phylogenetic tree reconstructions in the future.

Distribution of Partitions to Parallel Processors The algorithm pre-
sented in Chapter 5 is rather mature. There is little room for improvement
on the actual algorithm for the stated problem.

Future effort may be invested into deriving related problems and apply-
ing the presented algorithm to them. Alternatively, more involved problem
descriptions may be contrived, which build up on the original algorithm.

For example, computational costs for sites may not be constant. Instead,
the cost may depend on which processor a site is assigned to, or what other
sites of the specific partition are computed by the same processor. One
such example is the application of subtree repeats to phylogenetic likelihood
calculations, as done in Chapter 8. Repeating site patterns may then only
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be calculated for the same partition on the same processor. Obviously, if
two repeating sites are assigned to the same processor, the computations for
one such site may be skipped entirely. If, however, both sites are computed
by different processors, both processors may calculate each site in full (or
only partially, depending on other sites assigned to the processors).

Calculating the Internode Certainty and Related Measures on
Partial Gene Trees There is no clear indicator of which method is the
best (let alone which method is correct) for calculating the internode cer-
tainty (and related measures) on partial gene trees. Thus, many more vari-
ations for distributing the frequencies may be devised and tested.

One possible improvement is to incorporate the correlation of placements
of taxa in a tree set. Let two taxa appear in the same bipartition with high
frequency (frequency close to 1.0) throughout all trees that contain both taxa
in the tree set. Intuitively, the probability of placing these taxa together in
a bipartition where at least one is missing could be assumed to be higher
than 0.5 (that is, not uniform for both sets of the bipartition).

Calculating Subtree Repeats on General Trees The problem of cal-
culating subtree repeats for arbitrary trees in linear time is addressed rather
exhaustively in Chapter 7.

Future work may include the application to different scientific fields.
For example, applications in language processing come to mind. Repeat-
ing words, phrases, or sentences could quickly be recognized. Automatic
content detection or plagiarism detection are possible applications for this.
Furthermore, pattern, or file compression methods may be developed using
our algorithms.

Another generalization of subtree repeats is the detection of repeat-
ing structures in general graphs. Special graph structures, such as planar
graphs, bipartite graphs, or directed connected acyclic graphs may poten-
tially be analyzed using similar methods.

Application of Subtree Repeats to Phylogenetic Trees The main
concern of Chapter 8 is an efficient calculation of the likelihood function.
Thus, improvements and optimizations are always possible for any imple-
mentation.

Furthermore, actual tree search algorithms must be implemented to work
in conjunction with our method for efficiently computing the conditional
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likelihood vectors. Actual maximum likelihood or Bayesian inferences are
beyond the implementation we present here. The algorithm we developed
can, in future work, be incorporated into existing software tools for these
tasks.

Additionally, the implementation of subtree repeat detection must keep
up with current developments in computer hardware architectures. Imple-
mentation improvements may come in the form parallel processing capabil-
ities or more efficient vectorization schemes.

Other topics Beyond the topics presented in this dissertation, there are
many other exciting open questions in the field on molecular evolution, in
particular phylogenetics, and next generation sequencing.

For example, an abstract view of the tree space that discards the notion
of topology can be envisioned. This may allow us to avoid the process of
random tree generation, for example via NNI or SPR moves (see Figure 3.10,
Section 3.4, page 25). Instead, only distances between taxa are estimated.
Obviously, not all combinations of distances between pairs of taxa are com-
patible. Thus, the distances are not independent of one another. In fact,
many such combinations will not result in valid phylogenies.

However, iterative decision making for the distances between taxa, and
certain limitations on the distances can guarantee an underlying assumed
topology. Optimization methods, similar to those used for branch length
optimization, such as the Newton-Raphson method may be used to obtain
reasonable results. Alternatively, simple distance-based methods may yield
a starting phylogeny, to which the above mentioned optimization (Newton-
Raphson or similar) is iteratively applied.

For a data set with m taxa we may thus reduce the problem of finding
the optimal tree topology to them×m dimensional, possiblym dimensional,
Euclidean space.
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