
A L G O R I T H M S A N D S O F T WA R E FO R T H E A N A LY S I S O F
L A RG E C O M P L E X N E T WO R K S

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von
C H R I S T I A N L O R E N Z S TAU D T

Tag der mündlichen Prüfung: 21. Juni 2016
erster Gutachter: Juniorprof. Dr. Henning Meyerhenke
zweiter Gutachter: Prof. Dr. Ulrik Brandes

Christian Lorenz Staudt: Algorithms and Software for the Analysis of Large Complex
Networks, c© 2016,
This work is licensed under a Creative Commons Attribution 4.0 International License.

ACKNOWLEDGEMENTS

First of all, I would like to thank Henning Meyerhenke for giving me the opportunity to
work in his group and advising me during the past four years. I also thank Ulrik Brandes
for taking an interest in my research and agreeing to act as second referee. A big thank
you goes to Sasha Gutfraind and Ilya Safro for hosting and advising me during my stay in
Chicago and Clemson. I would like to show my gratitude to my colleagues, in particular
Elisabetta Bergamini, Roland Glantz, Michael Hamann and Moritz von Looz, who were
never too busy to provide support, feedback, critical discussion and encouragement, not
only in research questions. Several research projects presented in this thesis would also
not have been possible without the contributions of talented students who I advised
during their thesis work, research assistance jobs or internships. Special thanks in this
regard is due to Maximilian Vogel, Gerd Lindner and Aleksejs Sazonovs. My thanks also
go to Pratistha Bhattarai, Mark Erb, Kolja Esders, Jannis Koch, Yassine Marrakchi and
Arie Slobbe for their contributions. Many more people (listed in the respective chapter)
contributed to NetworKit, helping to make it a vibrant open-source project. Elisabetta
Bergamini, Michael Hamann, Moritz von Looz, Holger Mühlsteph and Oliver Schneider
kindly agreed to proofread parts of this thesis. Last but not least I thank Bernd Giesinger
and Ralf Kölmel for technical support, and Lilian Beckert and Simone Meinhart for their
help with office work.
Work presented in this thesis was supported by the project Parallel Analysis of Dy-

namic Networks – Algorithm Engineering of Efficient Combinatorial and Numerical
Methods, funded by the Ministry of Science, Research and the Arts Baden-Württemberg,
and by the German Research Foundation (Deutsche Forschungsgemeinschaft) under
grants ME 3619/3-1 and WA 654/22-1 within the Priority Programme 1736 Algorithms
for Big Data.

iii

CONTENTS

Summary ix
Zusammenfassung xiii

i introduction 1
1 network science 3

1.1 Motivating Examples . 3
1.2 Foundations of Network Science . 6

2 characterizing the structure of networks 11
2.1 Graph Terminology . 11
2.2 Distances in Networks . 11
2.3 Centrality . 14
2.4 Partitioning Networks into Cohesive Parts 18
2.5 Network-based Correlations . 19
2.6 Emergent Properties and Simulations on Networks 20

3 objectives and methodology 21
3.1 General Objectives . 21
3.2 Algorithm Engineering and Experimental Algorithmics 22
3.3 Reproducibility . 24

ii networkit: a tool suite for the analysis of large complex
networks 27

4 principles and architecture 29
4.1 Design Goals . 30
4.2 Architecture . 31
4.3 Framework Foundations . 31
4.4 Algorithm and Implementation Patterns 32

4.4.1 Parallelism . 32
4.4.2 Heuristics and Approximation Algorithms 34
4.4.3 Modular Design . 35
4.4.4 Efficient Data Structures . 36

4.5 Open-Source Development and Distribution 37
5 functionality, implementations and use cases 39

5.1 Network Analytics . 39
5.1.1 Distances . 39
5.1.2 Node Centrality . 42
5.1.3 Edge Centrality, Sparsification and Link Prediction 42
5.1.4 Partitioning the Network . 43

5.2 Network Generators . 43
5.3 Example Use Cases . 43

5.3.1 As a Library in an Analysis Pipeline 44
5.3.2 Exploratory Network Analysis with Network Profiles 44

6 comparison and evaluation 49
6.1 Comparison to Related Software . 49

v

6.2 Performance Evaluation . 50
6.2.1 Benchmark . 50
6.2.2 Comparative Benchmark . 51

6.3 Comparison with Distributed Computing Frameworks 52
6.3.1 Distributed Programming Models and Frameworks 53
6.3.2 Experimental Setup . 56
6.3.3 Results . 56

Conclusion of Part II 59

iii community detection in complex networks 61
7 introduction to community detection 63

7.1 Modularity . 63
7.2 Alternative Approaches . 66
7.3 Evaluation of Community Detection Methods 67

8 engineering parallel algorithms for community detection 69
8.1 State of the Art . 70
8.2 Algorithms . 72

8.2.1 Parallel Label Propagation (PLP) 72
8.2.2 Parallel Louvain Method (PLM) 73
8.2.3 Parallel Louvain Method with Refinement (PLMR) 76
8.2.4 Ensemble Preprocessing (EPP) . 76

8.3 Experimental Setup . 77
8.3.1 Framework and Settings . 77
8.3.2 Network Data Sets . 78

8.4 Experiments and Results . 78
8.4.1 Parallel Label Propagation (PLP) 78
8.4.2 Pareto Evaluation . 80
8.4.3 Parallel Louvain Method (PLM) . 82
8.4.4 Parallel Louvain Method with Refinement (PLMR) 82
8.4.5 Ensemble Preprocessing (EPP) . 83
8.4.6 Comparison with State-of-the-Art Competitors 84
8.4.7 LFR Benchmark . 85
8.4.8 One More Massive Network . 88
8.4.9 Weak Scaling . 89

8.5 Qualitative Aspects . 89
8.6 Conclusion . 90

9 detecting communities selectively around seed nodes 93
9.1 Introduction . 93
9.2 Literature Overview . 95
9.3 Measuring Community Quality . 96
9.4 Algorithms . 98

9.4.1 GCE: Greedy Community Expansion 98
9.4.2 selSCAN: a Density-based Approach 99

9.5 Evaluation . 101
9.5.1 LFR Benchmark . 101
9.5.2 Parameter Studies . 101
9.5.3 LFR Benchmark Results . 102

vi

9.5.4 Real-world Social Networks. 103
9.5.5 Results for Real-World Networks 103

9.6 Conclusion . 104
Conclusion of Part III 107

iv edge centrality measures for network sparsification 109
10 rating the centrality of edges 111

10.1 Centrality of Edges . 111
10.2 Edge Centrality Measures . 112

10.2.1 Random Edge (RE) . 112
10.2.2 Triangle Count . 112
10.2.3 (Local) Jaccard Similarity (JS, LJS) 113
10.2.4 Simmelian Backbones (TS, QLS) 114
10.2.5 Edge Forest Fire (EFF) . 115
10.2.6 Algebraic Distance (AD) . 116
10.2.7 Local Degree (LD) . 116

10.3 Experimental Study . 116
10.3.1 Understanding Local Degree Scores 117
10.3.2 Correlations between Edge Scores 118
10.3.3 Running Time . 120

11 sparsification of social networks 123
11.1 Introduction . 124

11.1.1 Context . 124
11.2 Edge Sparsification . 125

11.2.1 Global and Local Filtering . 125
11.3 Implementation . 129
11.4 Experimental Study . 129

11.4.1 Setup . 129
11.4.2 Similarity in Network Properties 130
11.4.3 Epidemic Simulations . 140

Conclusion of Part IV 143

v generative models for realistic synthetic networks 145
12 introduction to generative network models 147

12.1 Applications of Generative Network Models 147
12.2 Exemplary Models . 148

13 generating scaled replicas of real-world networks 151
13.1 Context and Contribution . 152
13.2 Problem Definition and Design Goals . 152

13.2.1 Scaling Behavior of Real-World Networks 153
13.3 Abandoned Approach: A Multiscale Generator for Scaled Replicas 154
13.4 The LFR+ Generator . 156

13.4.1 Original LFR Model . 156
13.4.2 Modification into LFR+ . 157

13.5 Fitting Generative Models to Input Graphs 157
13.5.1 On Fitting Degree Power Laws . 158
13.5.2 Erdős–Rényi, Barabasi-Albert, Chung-Lu and ESMC 159

vii

13.5.3 RMAT . 159
13.5.4 Hyperbolic Unit Disk . 160
13.5.5 BTER . 162
13.5.6 LFR and LFR+ . 163

13.6 Implementations . 163
13.6.1 LFR . 163
13.6.2 Other Models . 164

13.7 Evaluating the Realism of Replicas . 164
13.7.1 Example Replication . 165
13.7.2 Replicating Structural Properties 165
13.7.3 Scaling Behavior of Generators . 172
13.7.4 An Additional Case Study . 176

13.8 Performance . 178
13.9 Conclusion . 178

Conclusion of Part V 181

bibliography 183

Appendices 195

viii

SUMMARY

This thesis is composed of five parts, one introductory part followed by four parts present-
ing contributions in different subtopics. The work presented intersects three main areas,
namely graph algorithmics, network science and applied software engineering. Graph al-
gorithmics is concerned with developing and analyzing algorithms that operate on graphs,
mathematical objects defined as a set of nodes and a set of edges connecting them, for
which a rich mathematical theory exists. Network science is an emerging field of study
and refers essentially to a form of data analysis (i.e. processes concerned with inspecting,
transforming, and modeling data with the goal of discovering useful information) that
focuses on network data, i.e. data on relationships between entities. Analysis methods of
this kind become more and more relevant as many branches of science and technology –
seeking to understand complex systems – shift focus from the separate parts that make
up the system to the relationships and interdependencies between them. Attempts to un-
derstand social phenomena with the help of relational data collected by social media and
online social networking services are a good example for this, but possible applications of
network science methodology have a much wider scope. The resulting network data has
a natural representation in the form of graphs, and motivates the design and evaluation
of graph algorithmic methods to analyze it. Each computational method discussed in
this thesis relates to at least one of the main tasks of data analysis: to extract structural
features from network data, such as methods for community detection (Part III); or to
transform network data, such as methods to sparsify a network and reduce its size while
keeping essential properties (Part IV); or to realistically model networks, for instance
through generative models (Part V). Nowadays the growing volume of relevant network
data increases the demand for highly scalable methods. Evaluating and achieving scal-
ability is therefore a major aspect throughout this thesis, aiming for methods that are
in practice applicable to large networks, or a large number of networks. Techniques em-
ployed to achieve scalability include the introduction of parallelism, the development of
heuristics for computationally expensive problems, or the use of efficient data structures.
Furthermore, my focus is not just on developing and studying graph algorithmic methods
for network science, but but also to robustly implement them and make them readily
available as software tools, accessible to users within and outside of computer science.
This is a main goal of the NetworKit project (Part II).

I briefly summarize the content and contributions of each part in the following. Parts of
this thesis have previously appeared as conference or journal publications. For more bib-
liographical information on the respective publications, refer to the section Publications
in the Appendix.

Part I: Introduction

The algorithmic methods and software tools that make up the contributions of this
thesis find their main applications in the emerging field of network science. Chapter 1
establishes a context by first discussing examples of network studies, then continues by
reviewing formal definitions of network data and its different mathematical representa-
tions. Based on these definitions, Chapter 2 describes a catalog of basic network analysis
methods that are often referred to and employed in the course of this thesis. Chapter

ix

3 clarifies general objectives of the research presented in this thesis in more detail and
discusses methodological questions that apply throughout.

Part II: NetworKit: A Tool Suite for the Analysis of Large Complex Net-
works

NetworKit is an open-source network analysis software package to which I have con-
tributed as initiator, project maintainer, software architect and developer of various
components. NetworKit provides both established and novel analysis algorithms, includ-
ing those presented in this thesis. It serves as the software framework on which imple-
mentations for all algorithmic contributions presented in the following have been built,
as well as a suite of tools with which the majority of network analysis results presented
have been generated. Apart from serving as a code base for algorithm engineering work,
NetworKit is designed to support users from various fields in the exploratory analysis of
large network data sets. Chapter 4 discusses design goals and design principles as well as
algorithm and implementation patterns employed to develop scalable solutions. Chapter
5 gives an overview of the functionality that NetworKit provides, and gives examples of its
applicability as an algorithm library and a tool for exploratory data analysis in different
scenarios. NetworKit interface makes it easy to generate structural profiles of networks,
supporting pattern discovery and hypothesis formation.
Chapter 6 focuses on evaluating NetworKit’s performance in comparison with competing
solutions for network analysis. These include existing software packages with similar tar-
get use cases, target platforms and design choices. Aspects of the comparison include
functionality, user interaction, and supported platforms. For the most relevant competi-
tors, it is shown how NetworKit compares in a performance benchmark on typical network
analysis tasks. In comparison, NetworKit provides the most scalable solutions for a variety
of analysis tasks in terms of running time and memory footprint. We also show through
an experimental study that distributed computing solutions, which are often prominently
considered for large-scale graph analysis, come with a significant overhead, suggesting
the use of shared-memory parallel solutions like NetworKit as long as the graph fits into
the main memory.
The paper NetworKit: A Tool Suite for Large-scale Complex Network Analysis (coau-

thored with Aleksejs Sazonovs and Henning Meyerhenke) describes the main aspects
of NetworKit and is currently in the revision process for the journal Network Science.
The study comparing NetworKit with distributed graph computing frameworks has been
published as Complex Network Analysis on Distributed Systems: An Empirical Compar-
ison (coauthored with Jannis Koch, Maximilian Vogel and Henning Meyerhenke) and
presented at International Symposium on Foundations and Applications of Big Data An-
alytics (FAB 2015).

Part III: Community Detection in Complex Networks

Community detection in networks is the task of dividing a network into subgraphs
which are internally densely and externally sparsely connected. It is a fundamental anal-
ysis method that reveals the modular composition of a network. Chapter 7 discusses gen-
eral concepts, terminology, formalisms (e.g. the target function modularity) and method-
ological questions for community detection. Chapter 8 focuses on global community de-
tection in large-scale networks, i.e. finding all communities of a given graph. The problem

x

has been extensively studied before, yielding several heuristics, but few of them geared to-
wards parallelism. Our algorithm engineering efforts yield two effective parallel heuristics
for finding communities with high modularity: PLP, a parallel label-propagation scheme,
and PLM, a parallelization of the Louvain method. PLM is extended by an optional
refinement phase that yields small improvements in modularity at reasonable computa-
tional cost. In extensive comparative experiments with state-of-the-art algorithms and
implementations, PLP and PLM are shown to be on the Pareto front with respect to the
modularity/running time tradeoff. The result are scalable and robust implementations
in NetworKit, processing close to a billion edges per minute on typical hardware. Chap-
ter 9 is concerned with the subproblem of selective community detection: Given a set of
seed nodes, selective community detection methods find only the communities to which
these seed nodes belong. Numerous approaches have been proposed in the literature, but
their effectiveness has been less than well understood for lack of comparative work. We
implement and compare several methods, including an approach that is novel in this
context. We thereby close a gap in terms of experimental evaluation and contribute to
the clarification of the state of the art, but also conclude that the considered algorithms
either lack effectiveness with respect to retrieving ground-truth communities or suffer
from parameter sensitivity that limits their practicality for explorative network analysis.
In most practical applications, fast and parameter-free global methods (Chapter 8) are
likely superior.
Results have been published as Engineering High-Performance Community Detection

Heuristics for Massive Graphs (coauthored with Henning Meyerhenke) at the Interna-
tional Conference on Parallel Processing (ICPP 2013), and an extended version as Engi-
neering Parallel Algorithms for Community Detection in Massive Networks in the IEEE
Transactions on Parallel and Distributed Systems. The chapter on selective community
detection is based on joint work with Yassine Marrakchi and Henning Meyerhenke, and
has been presented as Detecting Communities around Seed Nodes in Complex Networks
at the First International Workshop on High Performance Big-Graph Data Management,
Analysis and Mining and published in the proceedings of the IEEE International Con-
ference on Big Data (IEEE BigData 2014).

Part IV: Edge Centrality Measures for Network Sparsification

Part IV contains a comparative study of edge centrality measures for the purpose
of sparsifying complex networks. We start from the idea that not all edges are equally
important for the structural properties of a network. By quantifying their importance
(through various centrality measures) and filtering the network, sparsified versions of the
network can be derived that preserve many relevant properties (such as degree distribu-
tion, diameter, node centralities etc.) containing only 20% of edges. Existing and novel
methods are implemented in NetworKit and compared for effectiveness. Chapter 10 ex-
plains how we conceptualize sparsification as computing edge centrality scores followed
by filtering edges by these scores, and describes several such centrality measures. These
methods are then evaluated on a large set of social networks, clarifying their performance
and showing that the LocalDegree measure we propose efficiently preserves a wide range
of properties (Chapter 11).
Part IV is based on joint work with Gerd Lindner, Michael Hamann, Henning Meyer-

henke and Dorothea Wagner. Results appeared as Structure-Preserving Sparsification of
Social Networks in the proceedings of the IEEE/ACM International Conference on Ad-

xi

vances in Social Networks Analysis and Mining (ASONAM 2015). An extended version
has recently been accepted for publication in the journal Social Network Analysis and
Mining.

Part V: Generative Models for Realistic Synthetic Networks

In experimental algorithmics, random synthetic instances are a standard tool, but their
use should be backed by evidence that results obtained on synthetic instances are repre-
sentative for behavior on real data. For algorithms operating on complex networks, where
much depends on the structure of input networks, the problem is especially relevant and
especially complicated. Accordingly, Part V focused on generative models for realistic
synthetic graphs. Related work has proposed a variety of models, some of them with
claims of comprehensive realism, i.e. matching patterns commonly observed in real com-
plex networks. We approach a definition of realism from two different angles, as structure
replication and running time replication.
Beyond the goal of creating replicas of the same size, in this work we specifically target

the use case of producing a scaled replica of a given original network, which has so far
not received much attention in the literature. We propose suitable fitting schemes which
parametrize the considered models in order to generate a scaled-up version of the input
graph. As the most promising approach for both goals, we propose the LFR+ generator, a
modification of the LFR model for community detection benchmarks. We harness the true
flexibility of LFR’s algorithmic methods to increase the realism of the replication. Our fast
implementation in NetworKit generates graphs according to the plain LFR and extended
LFR+ models and does so significantly faster than the reference implementation, also
by introducing parallelism. LFR+ improves on its predecessor LFR in terms of flexibility,
realism, and efficiency of implementation. Specifically, LFR+ is generally more realistic
than the RMAT, BTER and Hyperbolic Unit Disk Graph models, all of which have been
proposed as realistic to the point of yielding substitutes of real network data. We show
that our design yields a scalable and effective tool for replicating a given network – and
possibly scale it by orders of magnitude – while closely preserving important properties
on the micro- and macro level. This yields realistic test data for the engineering of
computational methods on networks where suitable real data is not available.
Part V is based on joint work with Sasha Gutfraind, Ilya Safro, Henning Meyerhenke

and Michael Hamann, which is unpublished at the time of completion of this thesis.

xii

ZUSAMMENFASSUNG

Diese Dissertation besteht aus fünf Teilen, einem einleitenden Teil gefolgt von vier Teilen,
die jeweils Beiträge zu verschiedenen Teilthemen präsentieren. Die hier dargestellte Ar-
beit befindet sich in der Schnittmenge von drei Fachgebieten, nämlich Graphenalgorith-
mik, Network Science und angewandte Softwaretechnik. Die Graphenalgorithmik befasst
sich mit der Entwicklung und Analyse von Algorithmen zur Verarbeitung von Graphen,
mathematischen Objekten bestehend aus einer Menge von Knoten und einer Menge von
diese verbindenden Kanten, für die eine reichhaltige mathematische Theorie existiert.
Network Science – die sich im Entstehen befindende Wissenschaft der Netzwerke – beze-
ichnet im Wesentlichen eine Form der Datenanalyse (d.h. Prozesse zur Untersuchung,
Transformation und Modellierung von Daten mit dem Ziel, nützliche Informationen zu
entdecken), die sich auf Netzwerkdaten fokussiert, d.h. Daten zu den Beziehungen zwis-
chen Entitäten. Analysemethoden dieser Art werden in dem Maße zunehmend relevant,
wie sich aktuell in vielen Bereichen von Wissenschaft und Technik, die komplexe Systeme
zu verstehen versuchen, das Blickfeld verlagert – von den separaten Teilen eines Systems
hin zu den Beziehungen und Interdependenzen zwischen ihnen. Der Versuch, soziale
Phänomene mithilfe der von Social Media- und Social Networking-Diensten im Internet
gesammelten relationalen Daten zu verstehen, ist ein treffendes Beispiel dafür, die Band-
breite an möglichen Anwendungen dieser Methodik ist jedoch viel größer. Die im Zuge
dessen gesammelten Netzwerkdaten lassen sich natürlicherweise in Form von Graphen
repräsentieren. Dies motiviert die Entwicklung und Evaluierung von Graphenalgorith-
men zu ihrer Analyse. Jeder der in dieser Dissertation besprochenen Methoden steht in
Verbindung mit mindestens einer der Hauptaufgabenstellungen der Datenanalyse: es geht
darum, strukturelle Eigenschaften eines Netzwerks zu bestimmen, beispielsweise mit den
Methoden zur Community Detection (Teil III); oder Netzwerkdaten zu transformieren, so
beispielsweise mit Methoden, die Netzwerke ausdünnen und die Datenmenge verringern,
während wichtige Struktureigenschaften erhalten bleiben (Teil IV); oder Netzwerke real-
istisch zu modellieren, beispielsweise mithilfe von generativen Modellen (Teil V). Heutzu-
tage führt die wachsende Menge an relevanten netzwerkförmigen Daten zu einem Bedarf
an hochskalierbaren Methoden. Skalierbarkeit zu bewerten und zu erreichen ist deshalb
ein wesentlicher Aspekt in allen Teilen dieser Arbeit. Wir zielen auf Methoden ab, die in
der Praxis auf große Netzwerke oder eine große Anzahl an Netzwerken effizient anwend-
bar sind. Unter den Techniken, die wir anwenden, um Skalierbarkeit zu erreichen, sind
beispielsweise die Einführung von Parallelverarbeitung, die Entwicklung von Heuristiken
für rechenintensive Probleme, oder die Verwendung effizienter Datenstrukturen. Darüber
hinaus liegt der Schwerpunkt nicht nur bei der Entwicklung und Analyse graphenalgorith-
mischer Methoden, sondern auch darauf, sie robust zu implementieren und sie in Form
von Softwarewerkzeugen griffbereit für Anwender innerhalb und außerhalb der Informatik
zur Verfügung zu stellen. Dies ist ein Hauptziel des Projektes NetworKit.
Im Folgenden fasse ich kurz den Inhalt und die Beiträge jedes Teils meiner Dissertation

zusammen. Teile dieser Arbeit sind zuvor als Konferenzpapiere oder Zeitschriftenartikel
erschienen. Für weitere bibliographische Informationen verweise ich auf den Abschnitt
Publications im Anhang.

xiii

Teil I: Einleitung

Die algorithmischen Methoden und Softwarewerkzeuge, die die Beiträge dieser Arbeit
darstellen, finden ihre Anwendung im jungen Wissenschaftsfeld Network Science. Kapitel
1 baut einen Kontext auf, indem zuerst Beispiele für Netzwerkstudien diskutiert werden,
dann eine formale Defintion von Netzwerkdaten und ihren verschiedenen mathematischen
Repräsentationen. Basierend auf diesen Definitionen beschreibt Kapitel 2 einen Katalog
von grundlegenden Netzwerkanalysemethoden, die im Zuge der Dissertation häufig ref-
erenziert und angewendet werden. Kapitel 3 erläutert allgemeine Zielsetzungen der hier
präsentierten Forschung und bespricht methodologische Fragestellungen, die für alle Teile
der Arbeit gelten.

Teil II: NetworKit: Ein Werkzeugkasten für die Analyse großer komplexer
Netzwerke

NetworKit ist ein Open-Source Softwarepaket zur Netzwerkanalyse, zu dem ich als Ini-
tiator, Maintainer, Softwarearchitekt und Entwickler verschiedener Komponenten beige-
tragen habe. NetworKit stellt sowohl etablierte als auch innovative Netzwerkanalysealgo-
rithmen zur Verfügung, inklusive der in dieser Arbeit präsentierten. Es dient als Software-
framework, auf dem alle Implementierungen der im folgenden dargestellten algorithmis-
chen Beiträge basieren, sowie als Palette von Werkzeugen, mit denen der Großteil der
dargestellten Netzwerkanalyseergebnisse generiert wurde. Abgesehen von seiner Funk-
tion als Codebasis für Algorithm Engineering zielt NetworKit darauf ab, Anwender aus
verschiedenen Fachgebieten bei der explorativen Analyse großer Netzwerke zu unter-
stützen. Kapitel 4 bespricht Ziele und Grundlagen für das Design von NetworKit, sowie
wiederkehrende Muster bei Algorithmenentwurf und Implementierung, die angewandt
wurden, um skalierbare Lösungen zu entwickeln. Kapitel 5 liefert eine Übersicht der bere-
itgestellten Funktionalität, sowie Anwendungsbeispiele als Algorithmenbibliothek und
als Werkzeug zur explorativen Datenanalyse in verschiedenen Szenarien. Die Benutzer-
schnittstelle von NetworKit ermöglicht es dem Nutzer, Strukturprofile von Netzwerken
zu erstellen und dabei Muster in den Daten zu erkennen und darüber Hypothesen zu
bilden. Kapitel 6 evaluiert die Performance von NetworKit im Vergleich mit konkurri-
erenden Softwarelösungen zur Netzwerkanalyse. Diese beinhalten Softwarepakete mit
ähnlichen Anwendungsszenarien, Zielplattformen und Designentscheidungen. Verglichen
Aspekte beinhalten Funktionalität, Nutzerinteraktion und unterstützte Plattformen. Für
die relevantesten Konkurrenten zeigt ein Benchmark, wie NetworKit bei typischen Analy-
seaufgaben im Vergleich abschneidet. Dabei stellt sich heraus, dass NetworKit in Punkto
Laufzeit und Speicherverbrauch die skalierbarsten Lösungen für eine Reihe von Analy-
seaufgaben liefert. Wir zeigen ebenfalls im Rahmen einer experimentellen Studie, dass
Lösungen zum verteilten parallelen Rechnen, die häufig an erster Stelle für die Analyse
großer Graphen in Betracht gezogen werden, mit einem erheblichen Overhead behaftet
sind, sodass es angeraten ist, Shared Memory-Lösungen wie NetworKit zu verwenden,
solange der Graph in den Hauptspeicher passt.
Das Papier NetworKit: A Tool Suite for Large-scale Complex Network Analysis (in

Koautorenschaft mit Aleksejs Sazonovs und Henning Meyerhenke) beschreibt die wichtig-
sten Aspekte von NetworKit und befindet sich zur Zeit im Begutachtungsprozess für die
Zeitschrift Network Science. Die Studie, die NetworKit mit Frameworks für verteilte Sys-
teme vergleicht, erschien als Complex Network Analysis on Distributed Systems: An Em-
pirical Comparison (in Koautorenschaft mit Jannis Koch, Maximilian Vogel and Henning

xiv

Meyerhenke) und wurde im Rahmen des International Symposium on Foundations and
Applications of Big Data Analytics (FAB 2015) präsentiert.

Teil III: Community Detection in komplexen Netzwerken

Community Detection bezeichnet die Aufgabenstellung, ein Netzwerk in Subgraphen zu
zerlegen, die intern dicht und nach außen hin dünn verbunden sind. Das ist eine grundle-
gende Analysemethode, die den modularen Aufbau eines Netzwerks offenlegt. Kapitel 7
bespricht allgemeine Konzepte, Terminologie, Formalismen (z.B. die Zielfunktion Mod-
ularity) and methodologische Fragestellungen zum Thema Community Detection. Im
Fokus von Kapitel 8 steht globale Community Detection in großen Netzwerken, d.h.
die Ermittlung aller Communities eines gegebenen Graphen. Das Problemfeld wurde
bereits ausgiebig bearbeitet, woraus sich einige Heuristiken ergaben, doch nur wenige
davon sind auf Parallelverarbeitung ausgerichtet. Unser Algorithm Engineering ergibt
zwei effektive parallele Heuristiken, um Communities mit hoher Modularity zu finden:
PLP, ein Verfahren, was auf der parallelen Ausbreitung von Knotenlabels basiert, und
PLM, eine Parallelisierung der sog. Louvain-Methode. PLM wird erweitert durch eine op-
tionale Verfeinerungsphase, die zu einer leichten Verbesserung der Modularity zum Preis
eines geringfügig erhöhten Rechenaufwands führt. In einem umfassenden experimentellen
Vergleich mit dem Stand der Technik wird gezeigt, dass PLP und PLM bezüglich des
Kompromisses zwischen Modularity und Laufzeit auf der Pareto-Front liegen. Das Ergeb-
nis dieser Arbeit sind skalierbare und robuste Implementierungen in NetworKit, die auf
typischer Hardware Verarbeitungsraten von nahezu einer Milliarde Kanten pro Minute
erzielen. Kapitel 9 befasst sich mit dem Teilproblem selektiver Community Detection:
Selektive Community Detection-Methoden finden zu einer gegebenen Menge von ini-
tialen Knoten nur die Communities, zu denen diese initialen Knoten gehören. Zahlreiche
Verfahren wurden in der Literatur vorgestellt, doch ihre Effektivität ist unzureichend
geklärt aufgrund des Mangels an vergleichender Arbeit. Wir implementieren und vergle-
ichen mehrere Methoden, darunter eine in diesem Kontext neuartige Methode. Dadurch
schließen wir eine Lücke in der experimentellen Evaluation und tragen zur Klärung des
Stands der Technik bei, kommen aber auch zu dem Schluss, dass die betrachteten Algo-
rithmen entweder unzureichend effektiv sind oder höchst empfindlich auf Parameterän-
derungen reagieren, was ihren praktischen Nutzen für explorative Netzwerkanalyse be-
grenzt. Für die meisten Anwendungen sind schnelle, parameterfreie globale Methoden
(Kapitel 8) mit hoher Wahrscheinlichkeit überlegen.

Ergebnisse wurden als Engineering High-Performance Community Detection Heuris-
tics for Massive Graphs (in Koautorenschaft mit Henning Meyerhenke) auf der Inter-
national Conference on Parallel Processing (ICPP 2013) und in erweiterter Fassung als
Engineering Parallel Algorithms for Community Detection in Massive Networks in der
Zeitschrift IEEE Transactions on Parallel and Distributed Systems publiziert. Das Kapi-
tel zur selektiven Community Detection basiert auf gemeinsamer Arbeit mit Yassine
Marrakchi und Henning Meyerhenke, und wurde als Detecting Communities around Seed
Nodes in Complex Networks im First International Workshop on High Performance Big-
Graph Data Management, Analysis and Mining präsentiert und im Tagungsband der
IEEE International Conference on Big Data (IEEE BigData 2014) veröffentlicht.

xv

Teil IV: Kantenzentralitätsmaße zur Ausdünnung von Netzwerken

Teil IV enthält eine vergleichende Studie von Kantenzentralitätsmaßen zum Zweck
der Ausdünnung komplexer Netzwerke. Wir gehen von der Idee aus, dass nicht alle
Kanten gleichermaßen wichtig sind für die strukturellen Eigenschaften eines Netzwerks.
Indem wir ihre Wichtigkeit mittels verschiedener Zentralitätsmaße quantifizieren und an-
hand dessen das Netzwerk filtern, erhalten wir ausgedünnte Versionen des Netzwerks, die
nur noch bis zu 20% der Kanten enthalten und dennoch viele relevante Eigenschaften
(z.B. Gradverteilung, Durchmesser, Knotenzentralitäten etc.) erhalten. Existierende und
neuartige Methoden wurden in NetworKit implementiert und bezüglich ihrer Effektivität
verglichen. Kapitel 10 erklärt, wie wir Ausdünnung als die Berechnung von Kantenzen-
tralitäten gefolgt von einem Filterungsschritt auffassen, und beschreibt einige solcher
Zentralitätsmaße. Diese Methoden werden dann auf einer großen Menge an sozialen Net-
zwerken evaluiert, um ihre Leistungsfähigkeit zu klären. Wir zeigen, dass das von uns
vorgeschlagene Maß LocalDegree effizient ein breites Spektrum an Eigenschaften erhält
(Chapter 11).

Teil IV basiert auf Kollaboration mit Gerd Lindner, Michael Hamann, Henning Mey-
erhenke und Dorothea Wagner. Resultate erschienen als Structure-Preserving Sparsifica-
tion of Social Networks im Tagungsband der IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2015). Eine erweiterte Ver-
sion wurde vor kurzem zur Veröffentlichung in der Zeitschrift Social Network Analysis
and Mining angenommen

Teil V: Generative Modelle für realistische synthetische Netzwerke

In der experimentellen Algorithmik sind synthetische Instanzen ein Standardwerkzeug.
Es sollte jedoch Belege dafür geben, dass auf synthetischen Instanzen beobachtete Re-
sultate repräsentativ sind für das Verhalten auf realen Daten. Das Verhalten von Algo-
rithmen, die auf komplexen Netzwerken operieren, hängt oft stark von der Struktur der
Netzwerke ab, deshalb ist dieses Problem hier sowohl besonders relevant als auch kom-
pliziert. Teil V behandelt daher generative Modelle für realistische synthetische Graphen.
Verwandte Arbeiten haben bereits eine Vielzahl an Modellen vorgestellt, von denen einige
den Anspruch haben, umfassend realistisch zu sein, d.h. in realen komplexen Netzwerken
häufig beobachteten Muster gut abzubilden. Wir nähern uns einer Definition von Realis-
mus von zwei verschiedenen Blickwinkeln, als der Replizierung von Strukturen sowie der
Replizierung von Laufzeiten.
Ein Ziel ist es Repliken derselben Größe zu erstellen. Darüber hinaus widmen wir uns

insbesondere dem Anwendungsszenario, eine skalierte Replik eines gegebenen Original-
netzwerks zu generieren, was in der Literatur bisher wenig betrachtet wurde. Wir stellen
geeignete Verfahren vor, um die betrachteten Modelle so zu parametrisieren, dass sie
hochskalierte Versionen des Eingabegraphen generieren. Als vielversprechendsten Ansatz
stellen wir den LFR+ Generator vor, eine Modifikation des LFR Modells für Commu-
nity Detection-Benchmarks. Wir machen uns die tatsächliche Flexibilität der bei LFR
eingesetzten algorithmischen Methoden zu nutze, um den Realismus der Modellierung
zu verbessern. Unsere schnelle Implementierung in NetworKit generiert Graphen anhand
des gewöhnlichen LFR-Modells und des erweiterten LFR+-Modells, und tut dies deut-
lich schneller als die Referenzimplementierung, auch mithilfe von Parallelverarbeitung.
Gegenüber seinem Vorgänger zeichnet sich LFR+ durch mehr Flexibilität, Realismus
und Effizienz aus. Insbesondere ist LFR+ im Allgemeinen realistischer als die Modelle

xvi

RMAT; BTER und Hyperbolic Unit Disk Graphs, die alle als so realistisch gelten, dass
sie stellvertretend für reale Daten verwendet werden können. Wir zeigen, dass unser En-
twuf ein skalierbares und effektives Werkzeug ergibt, um ein reales Netzwerkes inklusive
wichtiger Eigenschaften auf der Mikro- und Makroebene nachzubilden – und eventuell
um Größenordnungen zu skalieren. Dies liefert realistische Testdaten für das Algorithm
Engineering auf Netzwerken für den Fall, dass geeignete reale Daten nicht zur Verfügung
stehen.
Teil V basiert auf einer aktuellen Kollaboration mit Sasha Gutfraind, Ilya Safro, Hen-

ning Meyerhenke und Michael Hamann, und wurde bisher nicht publiziert.

xvii

Part I

I N T RO D U C T I O N

1
NETWORK SC IENCE

Nan-in, a Japanese master during the Meiji era, received a university professor who
came to inquire about Zen. Nan-in served tea. He poured his visitor’s cup full, and
then kept on pouring. The professor watched the overflow until he no longer could
restrain himself. "It is overfull. No more will go in!"

"Like this cup," Nan-in said, "you are full of your own opinions and speculations.
How can I show you Zen unless you first empty your cup?"

– traditional Zen koan

The algorithmic methods and software tools presented in this thesis find their main
applications in the emerging field of network science. In this introductory chapter, I
delineate the field and briefly discuss disciplinary and historical as well as methodolog-
ical aspects. Network science is interdisciplinary by nature and intersects with multiple
academic fields, including sociology, statistics, complex systems studies, and computer
science. Several examples from previous literature illustrate the wide range of possible
applications of network science methodology. In the following I introduce central terms
and concepts and clarify what defines network data, the common input for all methods
discussed in the course of this thesis.

1.1 motivating examples

“Networks are everywhere” is the rallying cry of an emerging discipline. As of 2016, a
Google Scholar search for the phrase returns over 500 publications. This slogan is an ex-
pression of excitement upon discovering that methods of network science are potentially
applicable to a vast variety of relevant phenomena, spanning social (e.g. a friendship
graph), technical (e.g. the internet or electric power grids), biological (e.g. protein inter-
action networks) and informational (e.g. the world wide web) domains. At the same time,
the slogan is — on a closer look — a sign of a certain immaturity of the discipline. After
all, why don’t we regularly hear statisticians exclaiming in excitement that “tabular data
is everywhere”?
Perhaps it is best to begin with some examples, illustrating the broad applicability of

network methods, before delineating the term “network science” more rigorously. Surveys
such as [COJT+11] have cataloged some of the broad spectrum of examples from the
literature in which networks have been used to map and understand real world systems.
To illustrate this, it is worth looking at a few examples in more detail. In the following, I
discuss some successful (or at least creative) applications of network science methodology
in the study of research questions in different domains.
Early in the history of network science methods it became clear that modeling social

systems as a set of actors with ties between them provides a useful perspective on social
phenomena. Hence, many methods for the analysis of complex networks were pioneered
on social networks [Fre04]. This historical association is still strong so that network meth-
ods are still frequently but incorrectly subsumed under the term “social network analysis”.
Nonetheless, social networks are of course highly relevant and intuitive examples for the

3

4 network science

methods described in the following, and network analysis has developed into one of the
main techniques of computational sociology. While in the early days the collection of social
network data (e.g. with the help of questionnaires) was troublesome, the current rise of
online social networking services allows for social network analysis on an unprecedented
scale. Certainly the largest and most prominent example is the massive amount of social
network data collected by Facebook. Ugander et al. [UKBM11] first describe a structural
profile of the Facebook social graph - containing at the time 721 million individuals and
about 70 billion friendship links - using a catalog of common measures (many of which
are described in Chapter 2). Among its key properties, they find an average distance of
4.7 hops between individuals (confirming again the small world phenomenon in networks,
also known as “six degrees of separation” [dSPK79]) and a strongly skewed distribution
in the number of friendship links per user (though not, as often claimed, a power law
distribution, cf. Sec. 2.3). The structure of the network also leads to an apparent paradox
with important psychological implications, namely that “your friends have more friends
than you” (i.e. 83.6% of Facebook users have less friends than the median friend count
of their friends).
Differentiating between different kinds of ties according to their position in the network

structure (cf. Chapter 10 and in particular Sec. 10.1) is an idea that has received attention
already very early in the history of social network analysis (e.g. in the famous study on
how “weak ties” between distant acquaintances bridge tightly knit communities and are
vital for the spreading of novel information [Gra73]). More recently — in an effort to
distinguish strong from weak social ties in online social networking data — researchers
with access to the Facebook social graph answered the question whether a particular
type of tie, namely romantic partnership, can be identified from the network structure
alone [BK14]: Given all the connections among a person’s friends, they demonstrate that
it is possible to identify the person’s romantic partner with high accuracy, and without
relying on any data other than the network structure. The algorithm that performs
this classification task relies on a new measure of tie strength (i.e. edge centrality, see
Def. 29). The measure, termed dispersion, assigns a high rating to a friendship link
between two people when their mutual friends are not well connected to one another.
This expresses the notion that the romantic partner is likely to have connections into
multiple contexts of a person’s social life, termed social foci, which are recognizable
in the network as densely connected groups of nodes (i.e. communities, cf. Chapter 7).
The strong performance of their classification algorithm also draws attention to the
issue that online social networking services are able to infer a surprising amount of
personal information which users have not chosen to disclose explicitly. In this context,
social network analysis has gained a political dimension, since it has come to light that
intelligence agencies such as the NSA are collecting massive amounts of social network
data on the general population.

Another creative application of network science methodology comes from a study that
compares characteristics of real social networks with social networks depicted in mythol-
ogy, in particular three heroic epics, the ancient Greek Iliad, the Old English Beowulf
and the Irish Táin Bó Cuailnge [MCK12]. The researchers are looking for quantitative ev-
idence on the question whether these narratives are entirely fictional or likely to contain
a historic core. The social networks they contain are compared to real social networks
(e.g. from online social networking and scientific collaborations) on the one hand, and
imaginary social networks in other works of fiction, formed by characters appearing

1.1 motivating examples 5

together in Marvel comic books, in Tolkien’s Fellowship of the Ring or Hugo’s Les Mis-
érables, on the other. This comparison is done according to a set of network properties,
such as mean degree and clustering coefficient (Sec. 2.3), mean shortest path length and
diameter (Sec. 2.2), absolute size of giant component (Sec. 2.4) and degree assortativity
(Def. 21). Thereby, they construct and compare structural profiles of the network, similar
to but less extensive than the approach described in Sec. 5.3.2 of this thesis. The core
idea is that imaginary social networks cannot hide their artificiality while characteristics
of historically real social networks are carried on in the story even when fictional elements
are introduced. Real social networks have been found to be typically highly clustered,
have a low diameter (“small world phenomenon”) and positive degree assortativity, which
are here assumed to be essential properties. Accordingly, lack of degree assortativity in
the Táin network and other structural differences are reported as evidence for being
imaginary. Playful as this study may be, it does provide a good example of how network
theory opens a new perspective and previously unavailable means of quantitative analysis
on a well-studied subject.
Complex networks are also of interest in economics, for example the network created

by users of the Bitcoin currency. Bitcoin is a decentralized digital currency that is imple-
mented through a peer-to-peer system of software clients, some of which invest computing
power to verify transactions cryptographically and ensure the desired properties of the
currency. The widespread adoption of Bitcoin has enabled the analysis of financial links
and flows with an unprecedented scope since the system maintains a complete public list
of all transactions. In the network model of a 2013 study [KPCV14], a node represents
a Bitcoin address and a directed edge represents a payment (with an associated time
stamp and amount), yielding a graph that grows to ca. 13 million nodes and 44 million
edges. Basic network statistics such as degree distribution and clustering (Sec. 2.3) are
computed, and their temporal evolution is tracked. The study finds that the network is
governed by “rich get richer” dynamics in the literal sense, resulting in a highly hetero-
geneous wealth distribution. After an initial phase of fluctuations, network properties
stabilized to their typical values as Bitcoin “went mainstream” and gained commercial
value.

Network models are by no means restricted to social phenomena, in the sense of a set
of actors as nodes and their interactions as edges. Among the complex systems for which
a network model can be naturally applied is the brain. A connectome is a network that
maps connections in the brain. The study of the connectome is based on the assumption
that understanding the connection patterns of this biological computer is fundamental
for neuroscience. Connectome data sets usually fall into the categories of anatomical
networks, in which edges represent physical connections between elements of the brain, or
functional networks, in which edges are derived from dynamic activation patterns of brain
regions (e.g. correlations of activation-level time series) [BS09]. Connectome networks can
be defined on different scales, from individual neurons and axons as nodes and edges, to
more macroscopic structures such as fiber tracts. Mapping the connectome with high
resolution continues to present unresolved challenges for imaging technology. As of 2015,
the roundworm C. elegans remains the only organism for which the full connectome on the
neuronal scale has been reconstructed. With advances in imaging, we can expect to obtain
massive complex networks that also reach the boundaries of computing capabilities. It is
estimated that the neuronal-scale connectome of the human brain is a graph on the order
of 1010 nodes and 1014 edges [ACG+09]. At various scales, the anatomical network of the

6 network science

human brain is characterized, for instance, by a low diameter (Def. 8), a skewed degree
distribution (cf. Sec. 2.3) and the presence of connector hubs, high-degree nodes connected
to different communities (cf. Chapter 7). Brain network properties are also being explored
as diagnostic markers, e.g. by linking a loss of clustering (Def. 16) in functional brain
networks to Alzheimer’s disease, and schizophrenia to a loss of hierarchical organization,
as reflected by a change in correlation between the two centrality measures (cf. Sec.2.3)
node degree and clustering coefficient [BS09]. Connectome analysis can also establish
relationships between network-structural measures and cognitive function. For instance,
regions found to have high betweenness centrality (Def. 17) in anatomical connectomes
are the precuneus (linked to episodic memory, visuospatial processing, reflections upon
self, and aspects of consciousness), the insula (linked to emotion and consciousness), the
superior parietal (linked to spatial orientation) and the superior frontal cortex (linked
to self-awareness) [IMSCR+08]. Assuming that communication between brain regions is
efficient and follows shortest paths, those regions are in the position to mediate much of
the communication. Network science methodology has even been used to study the effect
of psychedelic drugs on the brain: After a dose of psilocybin, the active ingredient of
“magic mushrooms”, subjects showed a massive rise in the connectivity and integration
of the functional connectome, with many functional connections only present in the
psychedelic state [PET+14].

1.2 foundations of network science

These and many more studies paint a picture of the wide applicability of network analysis
methods, but what exactly is at the core of network science? From the preceding examples,
one might conclude that it is defined by the mapping of a complex system (a brain, an
economy, a society. . .) as a network. The term complex system is notoriously difficult to
define, but study of complex systems is concerned with understanding systems composed
of many parts with nontrivially patterned relationships among them, which give rise to
emergent properties of the system as a whole. Science has followed mainly an analytical
approach over the course of its history, taking complex phenomena apart by identifying
and describing their simpler parts [BY02]. Study of complex systems motivates a shift of
perspective towards the interconnections between these parts. Interconnections become
“first class citizens” in theories about the system in question. Accordingly, a network
approach is especially suited to map and analyze such systems, and we often subsume
under “network science” any research that uses graphs to describe complex systems. Still,
it is helpful to adopt another perspective that is both more general and more rigorous.
According to this perspective, network science is a form of statistics that focuses on
relationships between parts as a special form of data. Following the framework defined
by Brandes et al. [BRMW13] [Bra16], it is important to clarify what defines network data
as opposed to other types of data. Network analysis – just as any form of statistics or
data analysis – starts with the assignment of values to variables. A variable x : D → R
assigns to each element from a domain D a value in the range R. Possible ranges for the
values may differ, as well as the operations defined on them, commonly known as different
scales of measurement (including nominal, ordinal, interval, and ratio levels). A network
data set contains both atomic units of observation (the elements of the phenomenon
or system, yielding the nodes of the network) and dyadic units of observation (links,
relationships or associations between elements, yielding the edges of the network). What

1.2 foundations of network science 7

makes it network data is that the data set contains variables defined on a domain of
dyads:

Definition 1 (Network). Let N be a set of atomic elements. Then a subset D ⊆ N ×N
of dyads is called a dyadic domain. A network is a mapping x : D → R from elements
(u, v) of the dyadic domain D to values x(u, v) from a value range R ⊆ R.

We call x an undirected network if (u, v) ∈ D ⇐⇒ (v,u) ∈ D and x(u, v) = x(v,u),
and a directed network otherwise. For undirected networks, we let {u, v} represent both
(u, v) and (v,u) for simplicity. �

We consider only one-mode networks in the course of this work, but the definition
can be extended to cover two-mode networks, in which dyads D ⊆ N ×A contain one
element each from two disjoint sets (see [BRMW13] [Bra16]). Dyads may be directed or
undirected, and in the following we assume dyads to be undirected unless noted. The
values a dyadic variable can assume may be binary (R = {0, 1}, indicating presence or
absence of an association) or otherwise valued. Furthermore, it is essential that these
dyads intersect via common elements, so that it is meaningful to speak of one network
as an entity to analyze.
In order to make a phenomenon accessible to studying it with network science methods

(including those described in this thesis), it is essential to form a network model of the
phenomenon. This entails two steps: The abstraction of the phenomenon into a network
concept, and the representation of aspects of the phenomenon in the form of network
data.

phenomenon network concept network data
abstraction representation

network model

Figure 1: The process of network model formation [BRMW13]

For clarity, let us retrace the process of network model formation in the example of
a study on dolphin social networks [LSB+03]: Hoping to gain insights into the complex
social behavior of a population of dolphins living in a fiord off the coast of New Zealand,
researchers postulated that it can be abstracted to a set of long-lasting companionship
ties (not unlike human friendship ties). Here, individual dolphins are treated as the set
of atomic units of observation N , and pair-wise associations between dolphins are the
dyads D ⊆ N ×N on which the study focuses. This yields the network concept, which
motivated the collection of network data through empirical observation. Over a period
of 7 years, an association between two dolphins was observed if both were photographed
swimming together in a coordinated group (or school). Since an edge of the network
should represent long-lasting rather than incidental associations, the observation data
was further processed. A weight in the form of HWI(u, v) = X

X+0.5(Yu+Yv)
was assigned

to a dyad {u, v}, where X is the number of schools where dolphin u and dolphin v were
seen together, Yu is the number of schools where dolphin u was sighted but not dolphin
v, and Yv is the number of schools where dolphin v was sighted but not dolphin u. To

8 network science

arrive at binary, unweighted network data, in which an association is either present or
not present, these weights were tested for significance with respect to a suitable null
model in which individuals were randomly permuted within the observed groups. If a
dyad {u, v} had a weight significantly higher than expected, an edge {u, v} in the social
network was created.
A network can be naturally represented as a graph, a mathematical object consisting of

a set of nodes (representing the atomic units) and edges (representing dyadic variables), so
much so that the terms are often used interchangeably. Nonetheless, a distinction between
the terms is conceptually useful, referring to a network as the set of observed values
associated to overlapping dyads, and a graph as a specific combinatorial representation
of this data, among other possible representations (e.g. the adjacency matrix). In this
sense, not every possible graph represents a network, but every network has a graph
representation, defined as follows:

Definition 2 (Graph of a Network). A graph G = (V ,E) consists of a set of nodes
V (sometimes called vertices), a set of edges E (sometimes called links), and a weight
function ω : E → R. Given a network x : D ⊆ N ×N , its graph G = (V ,E,ω) is defined
as

V = N
E = {(u, v) ∈ D : x(u, v) 6∈ {0,∞}}

ω(u, v) = x(u, v) if (u, v) ∈ E

For values from a binary range R = {0, 1}, the weight function ω is usually omitted. If
x is an undirected network (according to Def. 1), we represent it as an undirected graph
and denote edges as sets {u, v} accordingly. In the following definitions, we assume a
graph to be undirected unless specified. �

Accordingly, network theory draws heavily from mathematical graph theory, includ-
ing definitions of concepts, analytical arguments and specifically the formulation of its
algorithmic tools, as we shall see in the remainder of the thesis.
Continuing with our example, Fig. 2 shows a node-edge diagram of the graph represent-

ing the dolphin social network, including additional attributes. As a small and intuitive
example, this network will be used frequently in the course of this thesis to illustrate
concepts.
Apart from graphs, network data can also be represented in matrix form:

Definition 3 (Matrix of a Network). Given a network x : D ⊆ N ×N , it can be
represented as a |N | × |N | matrix M with entries

muv =

x(u, v) if (u, v) ∈ D

0 otherwise
(1)

If values x(u, v) are from a binary range R = {0, 1}, M is called the adjacency matrix
of the network. �

The matrix representation allows for the formulation of concepts and algorithms in
the language of linear algebra. All of the following definitions could interchangeably be

1.2 foundations of network science 9

Beak

Beescratch

Bumper

CCL

Cross

DN16
DN21

DN63

Double

Feather

Fish

Five

Fork

Gallatin

Grin

Haecksel

Hook

Jet
Jonah

KnitKringel

MN105

MN23MN60

MN83
MusNotch

Number1

Oscar

Patchback

PL

Quasi

Ripplefluke

Scabs

Shmuddel

SMN5 SN100

SN4
SN63

SN89

SN9 SN90

SN96

Stripes Thumper

Topless

TR120

TR77

TR82

TR88

TR99

Trigger

TSN103

TSN83

Upbang

Vau

Wave

Web

Whitetip

Zap

Zig

Zipfel

Figure 2: A node-edge diagram of the dolphin social network. Node labels are the names re-
searchers assigned to the individual dolphins. Node color indicates male (pink), female
(blue) or unknown (gray).

formulated with either of the mathematical representations. The graph representation is
used in most cases, but matrix representation is used where it is arguably more intuitive.
This chapter described network science as being characterized by a distinct kind of data

analysis methodology. Clearly, domain-specific knowledge is required to apply network
science methodology to a specific research problem, from the formulation of the network
model to the collection of network data, from the selection of analytics to the qualitative
interpretation of their quantitative results. With this in mind, the perspective that pure
network scientists will discover “universal laws” of networks of all possible domains (which
they need not be experts on) is perhaps less realistic. Instead – as the field matures,
and it becomes common to see the world in network terms – network methods will
increasingly find their place – alongside other quantitative methods – in the data analysis
tool boxes of researchers from all kinds of areas. But since network science formulates
abstractions that are general across problem domains, computer science can contribute
general computational tools. This is the context in which the following contributions
should be placed.

2
CHARACTERIZ ING THE STRUCTURE OF NETWORKS

ACHILLES: Oh, yes, it comes back to me now: the famous Zen koan about Zen
Master Zeno. As you say it is very simple indeed.

TORTOISE: Zen Koan? Zen Master? What do you mean?
ACHILLES: It goes like this: Two monks were arguing about a flag. One said,

“The flag is moving.” The other said, “The wind is moving.” The sixth patriarch,
Zeno, happened to be passing by. He told them, “Not the wind, not the flag, mind
is moving.”

– from Gödel, Escher, Bach, an endless geek bible

As described in Chapter 1, a considerable part of network science methods focuses
on characterizing the structure of a network. This chapter provides a short introduction
and classification of quantitative network analysis methods, an extract from the vast
catalog of available methods that have been extensively surveyed by, for instance, New-
man [New10]. It describes common measures of network structure that are frequently
employed throughout the remainder of the thesis.

2.1 graph terminology

Beforehand, recall the definition of a graph representation of a network (Def. 2). We
further declare the following useful terminology on graphs:

Definition 4 (Graph (cont.)). Let G = (V ,E) be a graph. Conventionally we refer to
the number of nodes |V | as n and the number of edges |E| as m. The density of an
undirected graph is m

n·(n−1)·0.5 .
A graph G′ = (V ′ ⊆ V ,E′ ⊆ E \ {(u, v) : u 6∈ V ′ ∨ v 6∈ V ′}) is called a subgraph of G.
Given an edge containing nodes u and v, we say that the edge is incident to u and v

and both nodes are adjacent. In an undirectd graph, the set of nodes adjacent to u is
called its (one-hop) neighborhood N(u) = {v ∈ V : {u, v} ∈ E}. �

Since the algorithmic contributions introduced in Parts III, IV and V apply only to
undirected networks, we assume undirected graphs as default in the following definitions.
Several of the following concepts can be generalized to directed networks with or without
modifying the definition, and the NetworKit tool suite described in Part II is designed
to handle directed graphs appropriately by applying the respective variants of common
analysis tasks, but discussion of this is omitted here for the sake of brevity.

2.2 distances in networks

Many fundamental measures of a network’s structure depend on some notion of distance
between nodes in a graph. Any node distance measure satisfies the following definition:

Definition 5 (Node Distance Measure). Let G = (V ,E) be an undirected graph. A
node distance measure is a function d : V × V → R with the properties of a metric, i.e.

11

12 characterizing the structure of networks

• non-negativity: d(u, v) ≥ 0

• coincidence axiom: d(u, v) = 0 ⇐⇒ u = v

• symmetry: d(u, v) = d(v,u)

• subadditivity: d(u,w) ≤ d(u, v) + d(v,w)

�

A natural way to define distance between nodes is in terms of the paths connecting
them, and the length of these paths. Of obvious interest is the most cost-effective way of
reaching the target node from the source.

Definition 6 (Paths). A path pst is a sequence of edges ({ui, vi}) for i ∈ (0, . . . , k) so
that u0 = s, vk = t and vi = ui+1. We call s the source and t the target node of the path.
A path with s = t is called a cycle.

Given a non-negative weight function ω : E → R+ that assigns costs to edges, a
shortest path σst is a path with minimum weight ∑e∈pst

ω(e) among all paths pst. In
unweighted graphs, this is a path with a minimum number of edges. �

Accordingly, shortest paths yields a straightforward node distance metric:

Definition 7 (Shortest Path Distance). The shortest path distance ds(u, v) is defined
by the length of a shortest path σuv. �

A value from the distribution of shortest-path distances which is frequently discussed
as an important structural property of a network (e.g. under the keyword small world
phenomenon) is its maximum:

Definition 8 (Diameter). The diameter of a graph G is the maximum shortest-path
distance ds(u, v) among all pairs of nodes in G:

δ(G) := max
u,v∈V

ds(u, v) (2)

�

Instead of the extremal value of shortest-path distances, the effective diameter is often
reported, referring to the distance δp(G) so that the p-quantile of all node pairs has at
most this distance. A conventional value for p is 0.9. The distribution of shortest path
distances in unweighted graphs has been studied under the term neighborhood function
[BRV11].

Definition 9 (Neighborhood Function). The neighborhood function νG of a graph G =

(V ,E) yields for each k ∈ (1, . . . , δ(G)) the number of pairs of nodes that can be con-
nected in less than k hops.

νG(k) :

 N→N

k 7→ |{{u, v} ∈ (V2) : ds(u, v) < k|}
(3)

�

2.2 distances in networks 13

However, other measures of node distance can be defined, taking into account not only
the shortest paths. As a simple example, the overlap of neighborhoods N(u) ∩N(v) is
frequently used to quantify distance (or similarity, cf. Sec. 9.4.2) – which is, speaking of
unweighted graphs, equivalent to considering the number of paths of length two between
u and v. The scope can be widened by considering paths of greater or arbitrary lengths.
Such measures become relevant in the context of routing and diffusion processes in which
things traveling through the network do not necessarily take just the most cost-effective
route. Among these processes is the flow of electricity in a network of electrical poles (=
nodes) connected by conductors (= edges), forming circuits (= paths). One such distance
measure is known as effective resistance, as it has been first defined within this context.

Definition 10 (Effective Resistance). Let G = (V ,E) represent an electrical network,
and let Iuv be the electrical current resulting from a voltage difference ∆Vuv applied to u
and v. The effective resistance ρ(u, v) is the resistance of a hypothetical single conductor
{u, v} directly connecting u and v and replacing all other paths puv, so that Iuv flows
when ∆Vuv is applied. �

Effective resistance is derived from the well known principle that circuits in series are
additive in resistance, while circuits in parallel are additive in conductance. Hence nodes
connected by many (preferably short or lightweight) paths are close in terms of effective
resistance. Understanding this, we can generalize from electrical networks to all networks
in which analogous flow processes happen, and even all networks where - from a purely
static point of view - this notion of connectedness is meaningful. The same reasoning
applies to random-walk based measures of distance, where the existence of many short
paths between two nodes leads to a low expected time for a random walk to travel
between them:

Definition 11 (Random Walk, Access Time and Commute Time). For an undirected
graph G = (V ,E), a random walk of length k steps is a stochastic process with random
variables u0,u1, . . . ,uk where ui+1 is a node chosen uniformly at random from the neigh-
borhood of ui. The access time ξ(u, v) is the expected number of steps a random walk
from u takes to reach v. The commute time κ(u, v) = ξ(u, v) + ξ(v,u) is the expected
time for the random walk to reach v and return to u. �

With this understanding, it is not surprising that effective resistance and commute time
are equivalent measures of node distance, formally expressed by the equality 2mρ(u, v) =
κ(u, v) [Ham11].
Algebraic distance [CS11] α is another similar approach to quantifying the structural

distance of two nodes u and v in graphs. Its essential property, analogous to effective resis-
tance and commute time, is that α(u, v) decreases with the number of paths connecting
u and v as well as with decreasing lengths of those paths. It follows that nodes within the
same dense subgraph of the network are close in terms of α. Algebraic distance can also
be described in terms of random walks on graphs and, roughly speaking, α(u, v) is low
if a random walk starting at u has a high probability of reaching v after few steps. The
iterative definition and calculation of α is described in Sec. 5.1.1. We revisit algebraic
distance in Chapters 9 and 11 in order to quantify the “range” of edges.

14 characterizing the structure of networks

2.3 centrality

Network analysis methods which provide a ranking of nodes by their structural impor-
tance can be categorized as node centrality measures. A large variety of indicators have
been proposed under this term. (The centiserver.org project [JSYA+15] lists over 100
different examples from the literature.) Their common denominator can be formulated
as follows:

Definition 12 (Node Centrality Measure). A node centrality measure is a function
c : V → A which assigns to each node u an attribute value x ∈ A of (at least) ordinal
scale of measurement. The assigned value depends on the position of the node u within
the network G as defined by a set of edges E′ ⊆ E. �

The attribute value range A is typically N or R≥0. We presuppose in the following
definitions that the function receives G as an argument and omit it for brevity.
One of the simplest measures that fits this definition is known in graph theory as the

degree of a node.

Definition 13 (Node Degree). The degree of a node is a centrality measure which assigns
to each node the number of edges incident to it.

deg(u) :

 V →N

u 7→ |{u, v} ∈ E|
(4)

�

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

2526

27
28

29

30 31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

Figure 3: Dolphins social network - node color and size according to node degree

According to degree centrality, having more connections makes a node more structurally
important. The observation that the distribution of degrees in many real-world complex
networks is strongly skewed (e.g. may follow a power law of the form P (k) ∼ k−γ for
degrees k and some characteristic exponent γ) has been highly publicized (e.g. [BA99]),
and is certainly a fundamental property of such networks. At the same time, it should
be stressed that distributions of other, more complex centralities can be of equal interest
- an idea we resume when discussing structural profiles of networks (see Chapter 5).

http://www.centiserver.org/

2.3 centrality 15

Like notions of distance, notions of centrality can vary by their scope in the graph.
We refer to the scope of the node degree centrality as local (or microscopic), since only
directly incident edges are taken into account. In contrast, the scope of other centrality
measures (e.g. betweenness centrality, see Def. 17) is global (or macroscopic), since every
edge of the network potentially influences the centrality score of a node.
The node degree quantifies a very simple idea of centrality in which more local con-

nections mean higher structural importance, without differentiating between different
types of edges, or the source of the edge. Accordingly, there is a need for centrality mea-
sures that are more discriminating and more global in scope. Among these measures are
eigenvector centrality and its well-known variant PageRank.

Definition 14 (Eigenvector Centrality). Let A be the adjacency matrix of a network
and let the nodes u ∈ V be indexed by i ∈ (1, . . . ,n). The eigenvector centrality of a
node ui is defined as

ce(ui) :

 V → R≥0

ui 7→ xi
(5)

where the value xi satisfies the equation

xi = c
n∑
j=1

Aijxj (6)

�

Rewritten as 1
cx = Ax, Eq. 6 corresponds to the eigenvector equation Ax = λx, hence

the vector of centrality values x is an eigenvector of A. Furthermore, the Perron-Frobenius
theorem implies that only the greatest eigenvalue λmax satisfies the requirement that all
entries in x are positive and thus valid centrality scores. This formalizes the intuitive
requirement that the centrality of a node should be proportional to the centrality of its
neighbors. An algorithm for a variant of eigenvector centrality has been introduced as
PageRank, and is a component of the search engine of Google by providing a ranking
of webpages based on hyperlink graph analysis [PBMW99]. A requirement for strict
eigenvector centrality is that the graph is connected. This is avoided in PageRank by
introducing a probability for random jumps between nodes, which can also be interpreted
as adding auxiliary edges to make the graph connected.

Definition 15 (PageRank). Let A be the adjacency matrix of a network and let the
nodes u ∈ V be indexed by i ∈ (1, . . . ,n). Also, let α be a constant in the interval (0, 1).
The PageRank centrality of a node ui is defined as

cp(ui) :

 V → R≥0

ui 7→ xi
(7)

where the value xi satisfies the equation

xi = α
n∑
j=1

Aji
deg(uj)

xj +
1− α
n

(8)

�

16 characterizing the structure of networks

In Eq. 8, α is called damping factor and represents the probability that the user will
continue in the random walk. Equivalently, 1 − α is the probability of jumping to a
random node. Also, notice that if deg(uj) = 0, we will assume a degree of 1. In the
example in Fig. 4, a strong correlation between degree and PageRank is apparent, which
is typical, though not trivially true.

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

2526

27
28

29

30 31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

Figure 4: Dolphins social network - node color and size according to PageRank

The local clustering coefficient is a centrality index that is focused on connections
among a node’s neighbors:

Definition 16 (Local Clustering Coefficient). Let W (v) denote the set of edge pairs (or
wedges) {{u, v}, {v,w}} containing v as the central node, and T (v) the set of triangles
{{u, v}, {v,w}, {u,w}}. The local clustering coefficient of v is defined as

cl(v) :

 V → [0, 1]
v 7→ |T (v)|

|W (v)| = |T (v)| · (
deg(v)

2)
−1 (9)

�

A node with high cl(u) can be considered redundant since its removal leaves many
direct connections between its neighbors. For the example in Fig. 5, we see how small
tightly knit subgroups of low-degree, highly clustered nodes are pointed out by this
centrality measure. Although often treated as belonging to a separate category in the
literature, the local clustering coefficient is clearly a centrality measure. The question of
which values are “good” or “bad” is one of context-specific interpretation, not of formal
definition.

2.3 centrality 17

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

2526

27
28

29

30 31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

Figure 5: Dolphins social network - node color and size according to local clustering coefficient

Betweenness, another centrality measure that is clearly global in scope, applies espe-
cially to networks in which routing or transport processes move something along the
network’s shortest paths. A node that is positioned on many such paths is considered to
be of structural importance, for example because its outage may disrupt the network.

Definition 17 (Betweenness). Naming |σst| the number of shortest paths from a node
s to a node t and |σst(u)| the number of shortest paths from s to t that go through u,
the (normalized) betweenness centrality of u is defined as [Fre77]:

cb(u) :

 V → R≥0

u 7→ 1
n(n−1)

∑
s 6=u6=t

|σst(u)|
|σst|

(10)

�

While it is hard to imagine specific routing processes in a dolphin social network,
betweenness can also be interpreted with respect to the static structure of the network:
Fig. 6 interestingly shows how betweenness points out one animal in particular whose
companionship links place it in an intermediate position between two densely linked
subgroups (i.e. communities) of this dolphin population. Note how this individual did
not stand out with respect to the other centrality measures.

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

2526

27
28

29

30 31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

Figure 6: Dolphins social network - node color and size according to betweenness

18 characterizing the structure of networks

This section has listed some of the most commonly applied and fundamental centrality
measures, but the possibilities of mathematically describing the importance of a node
depending on how it is embedded into the network are countless. At the same time,
questions about the applicability and interpretation of any centrality measure - whether
common, uncommon or defined ad-hoc - must be answered within the context of the
network phenomenon that is being studied. Therefore we should not subscribe to the
idea that there is a fixed set of measures that are per se relevant in network analyses.
Analogously to centralities on nodes, we can differentiate and rank edges by their

position within the network’s structure, yielding edge centrality measures. This concept
is examined in Chapter 10, with a focus on structure-preserving sparsification of networks.

2.4 partitioning networks into cohesive parts

Various analysis methods are concerned with breaking down the node set into subsets
depending on their connection patterns within the network. Depending on whether these
subsets are overlapping or disjoint, the result can be formalized as a partition or a cover
of the node set:

Definition 18 (Partition and Cover). A partition ζ = {C1, . . . ,Ck} of a graph G =

(V ,E) is a subdivision of the node set V so that each v ∈ V is contained in exactly one
subset Ci. A cover η = {C1, . . . ,Ck} of G is a subdivision of V so that each v ∈ V is
contained in at least one subset. �

A graph can be partitioned into its subsets of mutually reachable nodes, its connected
components:

Definition 19 (Connected Component). In an undirected graph G, a connected com-
ponent is a maximal subgraph C so that for every pair of nodes {s, t} with t 6= s there
exists a path p(s, t). Detecting the connected components yields a partition of G. �

Here, the common pattern of cohesion is the existence of a path between each pair in
the component. Different criteria of commonality lead to different concepts: For instance,
a community is loosely defined as a set of nodes whose internal connections are dense and
whose external connections are sparse. Chapter 7 discusses the concept in more depth,
and Chapter 8 presents efficient algorithms to detect communities.

Another subdivision into increasingly cohesive parts is provided by k-core decomposi-
tion:

Definition 20 (k-Cores and k-Shells). The k-core of an undirected graph G is the largest
subgraph of G in which every node has degree of at least k within the subgraph. The set
of nodes which belong to the k-core but not the k+ 1-core is called the k-shell. The core
number ck(v) of a node v is the largest k for which v is still contained in a k-core of G. �

In addition to a partition and a cover of the graph, core decomposition also yields
a centrality measure because the core number allows a ranking of nodes according to
Def. 12. In the example in Fig. 7, we see that the majority of dolphins have the highest
core number k = 4. This illustrates how core decomposition can be used to discriminate
peripheral from well-connected nodes.

2.5 network-based correlations 19

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

2526

27
28

29

30 31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

Figure 7: Dolphins social network - node color and size according to core number

2.5 network-based correlations

Another frequently applied angle of analysis looks at how structural measures or at-
tributes correlate throughout the network. The most prominent concept of this kind is
referred to as assortativity: A network is called assortative with respect to a node at-
tribute a if there is a positive correlation between au and av for edges {u, v} [New02].
Hence, a network’s assortativity coefficient quantifies the tendency of nodes to connect
to nodes that are like them with respect to the attribute a. Conversely, the network is
called dissortative if the correlation is negative, i.e. connections tend to exist between
unlike nodes. Synonymously we may speak of homophily and heterophily in networks.

Definition 21 (Assortativity). For a ratio-scaled node attribute A, let x and y be two
vectors of length m where {xu, yv} are the attribute values for the nodes of edge {u, v}.
Then the assortativity with respect to the attribute is defined as the Pearson correlation
coefficient

rxy :=
∑m
i=1(xi − x̄)(yi − ȳ)√∑m

i=1(xi − x̄)2 ·
∑m
i=1(yi − ȳ)2

(11)

where x̄ = 1
m

∑m
i=1 xi and ȳ = 1

m

∑m
i=1 yi are the means of the respective vector.

For a nominal/categorial node attribute B with k different values, let E be a k × k
matrix, with entries eij representing the fraction of edges connecting nodes of type i to
nodes of type j, and the row and column sums ai and bi. Then the assortativity coefficient
with respect to the nominal attribute B is defined as

r =

∑
i eii −

∑
i aibi

1−∑i aibi
(12)

�

Network analysis may study the assortativity of external node attributes, or of graph-
structural node properties. A simple case of the latter is degree assortativity, the corre-
lation coefficient that quantifies the tendency of nodes to connect to nodes with similar
degree. However, assortativity with respect to any node centrality measure is potentially
a meaningful structural property of the network, as discussed in the context of network

20 characterizing the structure of networks

profiles (Chapter 5). For our dolphin social network example, we get a degree assorta-
tivity coefficient of -0.043, making the network neither assortative nor dissortative with
respect to node degrees.

2.6 emergent properties and simulations on networks

Beyond characterizing the static structure of a network with measures such as those
discussed above, we may also characterize it in terms of the behavior of processes occur-
ring in the network. To the extent that it is determined by the network structure, the
behavior of processes can be seen as an emergent property of the network. Processes on
networks can be studied through simulation, and epidemic models on networks serve as
a prime example: Epidemic models are simplified means of describing the transmission
of communicable diseases through a population of individuals, which can intuitively be
applied to networks, where edges represent possible infectious contacts between individ-
uals. Studies have recognized the importance of social networks in disease transmission
[SKL+10]. One possible model, the SEIR model [KR08], assigns one of four states to
each node: Initially one node has been exposed (E) to the infection and all other nodes
are susceptible (S). An exposed node becomes infectious (I) after a number of time steps.
At each time step, an infectious node contacts all of its neighbors, and with a certain
transmission probability, a susceptible neighbor becomes exposed. Nodes stay infectious
for a given number of steps, and are then removed (R), either by immunization or death.
Counting the number of nodes of each state at each time step yields epidemic curves
that describe the dynamics of the outbreak. There is a nontrivial relationship between
network structure and epidemic dynamics (e.g., they have been connected to spectral
properties of the graph [WCWF03]). Experiments running an SEIR epidemic model are
used to provide additional data for the characterization of networks in Chapters 11.

3
OBJECT IVES AND METHODOLOGY

A novice was trying to fix a broken Lisp machine by turning the power off and
on. The master, seeing what the novice was doing, spoke sternly: "You cannot fix a
machine by just power-cycling it with no understanding of what is going wrong."

The master turned the machine off and on. The machine worked.

– traditional hacker koan

This chapter clarifies general objectives of the research presented in this thesis. Subse-
quently we discuss methodological questions that apply throughout.

3.1 general objectives

Contributions presented in this thesis fall into one or several of the following areas of
improvement:
Performance and Scalability: Since promising large network data sets are increasingly

common, it is an active current research project to develop scalable methods for the
analysis of large networks. Naturally, most analysis methods have been pioneered on
small networks (e.g. social networks). Nowadays, various driving factors (among them
large-scale web applications, online social networking, . . .) contribute to the widespread
availability of large network data sets, some examples of which are shown for size com-
parison in Fig. 8. There is consequently a growing demand for highly scalable analysis
algorithms and efficient implementations. In a general sense, we define scalability as the
capability to effectively apply algorithms to the growing volume of data that arises in
practice. Scalability in the special sense of good parallel scaling behavior (speedup with
the number of processors) is a factor in general scalability, and has also been the focus
of our engineering work. For each contribution we follow at least one of three paths to
achieve higher scalability: algorithmic improvements (finding computational “shortcuts”
to a solution), parallelization (distributing computation to multiple processors), as well
as heuristics and approximations (yielding an inexact but qualitatively similar result,
e.g. through statistical methods). For example, Chapter 8 introduces a parallelization of
a heuristic for the modularity optimization problem which enables community detection
in larger networks in shorter time, given the resources of a typical multicore workstation.
Its implementation in NetworKit is among the fastest currently available.
Effectiveness and Practicality: We put a strong focus on the suitability of algorithms

as practical data analysis tools. Achieving computational speedups, i.e. computing a so-
lution to a formally defined problem faster, is therefore rarely the sole focus. Extensive
experimental analysis and comparison is devoted to the question of suitability and ef-
fectiveness for a practical purpose, e.g. in order to identify problems with previously
proposed solutions and to subsequently develop more capable methods. For example,
Chapter 11 clarifies the effectiveness of edge sparsification methods, and Chapters 12
and 13 of generative models.
Conceptualization and Systematization: Network science is often introduced as a loose

collection of quantitative methods, perhaps an indication of a field in a stage of for-

21

22 objectives and methodology

mation rather than a stage of maturity. It is therefore a current project to formulate
conceptual frameworks by identifying connections, commonalities, taxonomies, and ab-
stractions among these methods. For instance, such abstractions are useful in software
architecture. They have frequently resulted in proper modularizations which enhance the
value of NetworKit as a software framework. An example of this is provided in Chapter
11, where it is shown how a loose collection of sparsification methods from literature
can be unified, compared and implemented as local or global filtering by edge centrality
scores.
Usability and Availability: Interdisciplinary by nature, network science needs to contin-

ually overcome disciplinary barriers. It is a relevant social phenomenon that innovations
often stay effectively confined to specialist communities. For instance, a faster network
analysis algorithm may have been presented to the algorithmics community through
publications in their respective venues, but may not be easily accessible to potential
practitioners from various sciences. The NetworKit project aims to provide a short path
from algorithm research to ready-to-use software, through development in an open-source
model with free software licensing, user-friendly packaging and distribution, and integra-
tion into a preexisting ecosystem of software tools.

101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015

edges

Zachary's karate club

dolphins social network

C. elegans connectome

US power grid

PGP web of trust (2004)

Linux kernel source file includes

Enron emails (1999-2003)

Internet autonomous systems (2005)

CS collaborations (DBLP)

Wikipedia hyperlinks

Twitter follower graph (2012)

Facebook social graph (2011)

NSA social graph (?)

human connectome (neuronal)

Figure 8: Comparision of network sizes

3.2 algorithm engineering and experimental algorithmics

Throughout this work algorithm engineering [San09] methodology is applied. Algorithm
engineering is defined by an iterative approach to algorithm development, cycling through
the stages of algorithm design, theoretical analysis, implementation and experimental
evaluation. A strong focus is put on the experimental part. For instance, running time
analysis does not just take the form of deriving asymptotical, worst-case bounds, but in-
cludes reporting of absolute running times on real inputs. The algorithm engineering ap-
proach is particularly pertinent to the field of complex network analysis. Firstly, in many
instances we consider heuristics that are less amenable to rigourous theoretical analysis,
e.g. with respect to computational complexity or result quality guarantees. To the extent
that the algorithms described in this thesis are variants or efficient implementations of

3.2 algorithm engineering and experimental algorithmics 23

known algorithms, theoretical results like running time bounds are treated briefly and
referenced in previous work. Secondly, algorithm performance is often highly dependent
on the structure of the input. Consequently, it is hard and often ill-advised to gener-
alize from particular networks to complex networks in general. Furthermore, observed
performance differences are often hard to trace back definitively to particular structural
features. It is therefore crucial to perform experimental evaluation on representative real
inputs and realistic models, and do so on an adequately large scale.

falsifiable
hypotheses

realistic models

design

implementation

experimentsanalysis

algorithm
libraries

performance
guarantees

real inputs

ap
pl

ic
at

io
ns

Figure 9: Basic elements of the algorithm engineering methodology [San09]

Sanders, while obviously not arguing against basic research and free theoretical explo-
ration of algorithmic concepts, stresses the need for algorithm research to be grounded
in real applications, criticizing “[. . .] those papers that begin with a vague claim of
relevance to some fashionable application area before diving deep into theoretical con-
structions that look completely irrelevant for the claimed application. Often this is not
intentionally misleading but more like a game of ‘Chinese whispers’ where a research area
starts as a sensible abstraction of an application area but then develops a life of itself,
mutating into a mathematical game with its own rules.” This comment seems especially
pertinent in the context of network science algorithmics, where a quick reference to the
vast amount of possible areas of real-world application is often considered motivation
enough. Algorithmics, where the main object of study is a method, and the possibilities
of creating novel methods are limitless, could certainly benefit from stronger feedback to
applications. Real-world computational problems should guide researchers in their deci-
sions about which methods to work on, and help to clearly decide which methods are
most effective for solving them.
Experimental work plays a crucial role in the algorithm engineering process. According

to David Johnson [Joh02], different types of work in experimental algorithmics can be
distinguished, including:

1. The horse race paper, which aims to prove the superiority of an algorithm, based
on standard benchmarks and in comparison with previous competitors.

2. The experimental analysis paper, which aims to better understand the strengths
and weaknesses of algorithmic ideas in practice.

24 objectives and methodology

3. The experimental average-case paper, which generates conjectures about the average-
case behavior of algorithms where direct probabilistic analysis is too hard.

4. The experimental mathematics paper, where the objective is to study the properties
of the output of algorithms.

These types apply to different extents to the work presented in this thesis: Chapter 8 is
built around a classic horse race, where parallelizations and fast implementations of algo-
rithms for a well-defined optimization problem are evaluated, with previous benchmarks
and readily comparable competitors existing. (Though in the context of the “big picture”
problem of community detection as a data mining task, the restriction to a single result
quality measure enables a horse race but masks certain problems, as briefly discussed in
Chapter 7). Still, the horse race paper is perhaps an all too common template, beginning
with a novel algorithm idea and ending with the inescapable claim of having significantly
improved the state of the art in some respect. This may cause some work - to continue
with the equestrian metaphor - to jump the gun and make claims of superiority before
proper standards of comparison have been established, and before something that could
be considered a “state of the art” (which implies comparability with respect to a single
goal) has become recognizable. This is why parts of this thesis that perhaps started out
with a horse race in mind have evolved more into the experimental analysis type of work.
The literature on selective community detection methods may serve as an example for
a collection of methods that may be novel but are poorly understood in comparison to
each other, a state of affairs that Chapter 9 tries to correct to some extent. The work
on network sparsification in Chapter 11 was conceived as such an experimental analysis
from the start, comparing and classifying various existing and novel methods with re-
spect to their behavior, with scalable implementations as a welcome byproduct. While
it does present novel algorithmic ideas and performance improvements of existing ones,
Chapter 13 is also to a large extent experimental analysis of behavior and practical utility
of graph generators, as well as experimental mathematics that seeks to characterize the
structure of generated graphs. Throughout these chapters, experimental evidence is used
for conclusions about the performance of algorithms, since algorithms on complex net-
works are not very accessible to a theoretical average-case analysis. However, we should
rather speak of typical-case performance, since the notion of an “average” complex net-
work would be nonsensical. We therefore focus on “typical” instances that we consider
structurally similar to other real-world instances of high interest, such as social networks,
web graphs, internet topology and power grid networks, and connectome data sets.

3.3 reproducibility

The algorithm engineering process raises some interesting questions about experimental
design and evaluation. Consider for example a critical argument formulated by Jérôme
Kunegis, initiator of the KONECT project [Kun13a]: Suppose we perform experiments to
determine wether algorithmX performs better than algorithm Y . Experiments show that
algorithm X performs better on 6 out of 10 datasets. Can we conclude the superiority
of algorithm X? We must be able to reject the null hypothesis that X and Y win
with equal probability on any data set and that results on datasets are independent. In
fact, under the null hypothesis, the probability of obtaining the result above is 17 %.
Hence the experimental result is not significant. 65 datasets would be needed to get a

3.3 reproducibility 25

statistically significant result (assuming a p-value of ≤ 0.05) for a 60 % outcome. In
the case of the graph algorithms we consider, it gets worse: The above argument is
based purely on the number of experimental data points and assumes independence of
the observations. It does not consider intricate effects that the input graph structure
may have on the performance of an algorithm. According to experience, such effects are
observed frequently and can be strong, but hard to analyze.
In contrast, it is common in related literature to find empirical results obtained on a

more or less careful selection of network data sets to be implicitly or explicitly generalized
to “complex networks” or even “graphs” in general. Questions of statistical significance
are not usually discussed in experimental algorithmics papers. It may happen that con-
clusions supported by few experimental data points face criticism in peer review, but
this is more often than not based on a rough intuition of plausibility rather than rigorous
methodological arguments.
Watchful readers of the remainder of the thesis will observe that this has been written

in hindsight and parts are equally guilty of not fulfilling higher standards of statistical
reasoning. These are often yet to be determined and universally adopted by the respec-
tive research communities. However, some work has already been dedicated to addressing
these problems and to formulating best practices (cf. [Joh02], [McG12]). Experimental
work presented here is generally following the best practices, as well as avoiding some
of the pitfalls pointed out in [Joh02]. So in defense of the empirical conclusions pre-
sented in this thesis, let me point out some common principles that were applied when
performing experimental algorithmics: To support claims of general applicability to com-
plex networks empirically, experimental data sets are selected to cover a wide range
of origins and structural properties (cf. Chapter 8). In some cases it was advisable to
restrict the spectrum of networks and conclusions to a specific class of networks with im-
portant structural similarities (such as online social networks, cf. Chapter 11). Running
time measurements are generally aggregates over a small number of runs, to compen-
sate for possible interference from other running processes, or nondeterminism due to
race conditions for parallel computations. When comparing performance of algorithms
or implementations, reproducing the behavior of competitors on your own experimental
platform is preferable to relying on reported data. Therefore, experimental parts often
include re-runs or re-implementations of relevant competitors. The testbeds of instances
are compiled from publicly accessible data repositories on the web. Last but not least,
implementations to all algorithms presented in this thesis are openly available in source
code and as ready-to-use software as part of the NetworKit package, facilitating peer
review and reproduction of results.

Part II

N E T WO R K I T : A T O O L S U I T E FO R T H E A N A LY S I S O F
L A RG E C O M P L E X N E T WO R K S

4
PRINC IPLES AND ARCHITECTURE

There was a time when rumors began to reach Master Foo and his students of a
prodigiously gifted programmer, a young man who wandered the length and breadth
of the land performing mighty feats of coding and humiliating all who dared set their
skill against his.

Eventually this prodigy came to visit Master Foo, who received him politely
and offered him tea. The Prodigy accepted with equal politeness and explained the
motive for his visit.

“I have come to you,” he said “seeking a code and design review of my latest
project. For it is of surpassing complexity, and I do not have peers capable of
understanding it. Only an acknowledged master such as yourself" – and here the
Prodigy bowed deeply – "can have the discernment required.”

Master Foo bowed politely in return and began examining the Prodigy’s code.
After some time he raised his eyes from the screen. “This code is at first sight very
impressive,” he said. “It is elegant in design, utilizing original algorithms of great
ingenuity, and appears to be implemented in a craftsmanlike way which minimizes
the possibility of errors.”

The Prodigy looked very pleased at this praise, but Master Foo continued: “How-
ever, I detect one significant flaw.” “Flaw?” the Prodigy said. “What flaw?” “This
code is difficult to read,” said Master Foo. “It is only thinly commented, its in-
variants are not specified, and I see no narrative description of its architecture or
internal data structures anywhere. These problems will seriously impede your co-
operation with other programmers.” The Prodigy drew himself up haughtily. “I do
not seek the cooperation of other programmers,” he said. “Every time I thought I
had found one who might match me in skill I have been disappointed. Thus, I work
alone.” “But even the hacker who works alone,” said Master Foo, “collaborates with
others, and must constantly communicate clearly to them, lest his work become
confused and lost.”“Of what others do you speak?” the Prodigy demanded. Master
Foo said: “All your future selves.”

Upon hearing this, the Prodigy was enlightened.

– from The Unix Koans of Master Foo

Part II introduces NetworKit, an open-source software package for the analysis of large
complex networks. NetworKit serves as the software framework on which implementa-
tions for all algorithmic contributions presented in this thesis have been built, as well as
a suite of tools with which the majority of network analysis results presented have been
generated. The design goals of NetworKit focus on high performance on the one hand
and flexibility and ease of integration on the other. This is achieved through a hybrid de-
sign combining kernels written in C++ with a Python front end for integration into the
Python ecosystem of tested tools for data analysis and scientific computing. NetworKit
provides the tools to characterize the structure of networks containing up to billions of
edges on a typical multicore workstation. A primary goal for the software is to package
results of our recent algorithm engineering efforts and put them into the hands of do-
main experts. The methodology applied to develop scalable solutions to network analysis
problems, including techniques like parallelization, heuristics for computationally expen-
sive problems, efficient data structures, and modular software architecture is described
in Chapter 4. The package provides a wide range of functionality (including common
and novel analytics algorithms and graph generators) for various use cases, discussed in

29

30 principles and architecture

Chapter 5. In performance benchmarks in comparison with related software (Chapter 6),
NetworKit shows the best performance on a range of typical analysis tasks.

A paper describing the package is currently under review for the journal Network
Science, hence all chapters of this part are based on joint work with coauthors Aleksejs
Sazonovs and Henning Meyerhenke. Credit is due to Maximilian Vogel and Michael
Hamann for continuous algorithm and software engineering on the package. Furthermore,
numerous people have contributed code to the project, namely Lukas Barth, Miriam
Beddig, Elisabetta Bergamini, Stefan Bertsch, Pratistha Bhattarai, Andreas Bilke, Simon
Bischof, Michele Borassi, Guido Brückner, Mark Erb, Kolja Esders, Patrick Flick, Lukas
Hartmann, Daniel Hoske, Gerd Lindner, Moritz v. Looz, Yassine Marrakchi, Mustafa
Özdayi, Marcel Radermacher, Matteo Riondato, Klara Reichard, Marvin Ritter, Arie
Slobbe, Florian Weber, Michael Wegner and Jörg Weisbarth.

4.1 design goals

Since promising large network data sets are increasingly common in the age of big data, it
is an active current research project to develop scalable methods for the analysis of large
networks. In order to process massive graphs, we need algorithms whose running time is
essentially linear in the number of edges. Many analysis methods have been pioneered
on small networks (for the study of social networks prior to the arrival of massive online
social networking services), so that underlying algorithms with higher complexity were
viable. As we shall see in the following, developing a scalable analysis tool suite often
entails replacing them with suitable linear- or nearly-linear-time variants. Furthermore,
solutions should employ parallel processing: While sequential performance is stalling,
multicore machines become pervasive, and algorithms and software need to follow this
development. Within the project, scalable network analysis methods are developed, tested
and packaged as ready-to-use software. In this process we frequently apply the following
algorithm and software engineering patterns: parallelization; heuristics or approximation
algorithms for computationally intensive problems; efficient data structures; and modular
software architecture. With NetworKit, we intend to push the boundaries of what can be
done interactively on a shared-memory parallel computer, also by users without in-depth
programming skills. The tools we provide make it easy to characterize large networks
and are geared towards network science research.
There is a variety of software packages which provide graph algorithms in general and

network analysis capabilities in particular (see Section 6.1 for a comparison to related
packages). However, NetworKit aims to balance a specific combination of strengths. Our
software is designed to stand out with respect to two main aspects:
Performance: Algorithms and data structures are selected and implemented with high

performance and parallelism in mind. Some implementations are among the fastest in
published research. For example, community detection in a 3.3 billion edge web graph
can be performed on a 16-core server with hyperthreading in less than three minutes
[SM16].
Usability and Itegration: Networks are as diverse as the series of questions we might

ask of them – e.g. what is the largest connected component, what are the most central
nodes in it and how do they connect to each other? A practical tool for network analysis
should therefore provide modular functions which do not restrict the user to predefined

4.2 architecture 31

workflows. An interactive shell, which the Python language provides, is one prerequisite
for that. While NetworKit works with the standard Python 3 interpreter, calling the
module from the IPython shell and Jupyter Notebook HTML interface [PGO13] allows
us to integrate it into a fully fledged computing environment for scientific workflows,
from data preparation to creating figures. It is also easy to set up and control a remote
compute server. As a Python module, NetworKit enables seamless integration with Python
libraries for scientific computing and data analysis, e.g. pandas for data frame processing
and analytics, matplotlib for plotting or numpy and scipy for numerical and scientific
computing. For certain tasks, we provide interfaces to specialized external tools, e.g.
Gephi [BHJ09] for graph visualization.

4.2 architecture

In order to achieve the design goals described above, we implement NetworKit as a two-
layer hybrid of performance-aware code written in C++ with an interface and additional
functionality written in Python. NetworKit is distributed as a Python package, ready to
be used interactively from a Python shell, which is the main usage scenario we envision
for domain scientists. The code can be used as a library for application programming as
well, either at the Python or C++ level. Throughout the project we use object-oriented
and functional concepts. Shared-memory parallelism is realized with OpenMP, providing
loop parallelization and synchronization constructs while abstracting away the details of
thread creation and handling. The roughly 45,000 lines of C++ code include core imple-
mentations and unit tests. As illustrated in Figure 10, connecting these native implemen-
tations to the Python world is enabled by the Cython toolchain [BBC+11]. Currently
we use Cython to integrate native code by compiling it into a Python extension module.
The Python layer comprises about 4,000 lines of code. The resulting Python module
networkit is organized into several submodules for different areas of functionality, such
as community detection or node centrality. A submodule may bundle and expose C++
classes or exist entirely on the Python layer.

4.3 framework foundations

As the central data structure, the Graph class implements a directed or undirected, op-
tionally weighted graph using an adjacency array data structure with O(n+m) memory
requirement for a graph with n nodes and m edges. Nodes are represented by 64 bit
integer indices from a consecutive range, and an edge is identified by a pair of nodes.
Optionally, edges can be indexed as well. This approach enables a lean graph data struc-
ture, while also allowing arbitrary node and edge attributes to be stored in any container
addressable by indices. While some algorithms may benefit from different data layouts,
this lean, general-purpose representation has proven suitable for writing performant im-
plementations. In particular, it supports dynamic modifications to the graph in a flexible
manner, unlike the compressed sparse row format common in high-performance scientific
computing. Fig. 11 illustrates the basic layout of the graph data structure schematically,
given a small undirected, unweighted graph. Node indices from the range 0 . . . z address
a collection of arrays (implemented as std::vector): ex stores a boolean that marks a
node as deleted, so it is skipped during iteration; deg stores the degree of a node for
O(1)-time access; adj) stores for each node u the indices of its neighbors v, and in this

http://openmp.org
http://cython.org/

32 principles and architecture

C++ / OpenMP

Data Structures I/OAlgorithms

Cython

Python
Task-oriented Interface Additional

Functionality

Pythonized Classes

Wrapper Classes

NetworKit

submodule submodule

pandas

numpy

matplotlib

ext. Python modules

submodule

Python shell / program

Figure 10: NetworKit architecture overview (→ represents call from/to)

undirected graph a symmetric entry for u must exist in the adjacencies of v; optionally,
eid stores for each of the adjacencies (u, v) an edge identifier. Our graph API aims for
an intuitive and concise formulation of graph algorithms on both the C++ and Python
layer (see Fig. 13 for an example).

4.4 algorithm and implementation patterns

Our main focus are scalable algorithms in order to support network analysis on massive
networks. We identify several algorithm and implementation patterns that help to achieve
this goal and present them below by means of case studies. For experimental results we
express processing speed in “edges per second”, an intuitive way to aggregate real running
time over a set of graphs and normalize by graph size.

4.4.1 Parallelism

Our first case study concerns the core decomposition of a graph, which allows a fine-
grained subdivision of the node set according to connectedness.
More formally, the k-core is the maximal induced subgraph whose nodes have at least
degree k. The decomposition also categorizes nodes according to the highest-order core
in which they are contained, assigning a core number to each node (the largest k for
which the node belongs to the k-core). The sequential kernel implemented in NetworKit
runs in O(m) time, matching other implementations [BZ11].

4.4 algorithm and implementation patterns 33

40

z

2 3 4 6 0 1 2 3

0

0
1
2
3
4
5
6
7

deg adj eid

0
0
0

0

3
2

2

3

4

5
6

7

7
5

6
7

6

0 4
1 4

0

1

2

3

4

5

5

3 5 3

6 7

7 6

Figure 11: Schematic of networkit.Graph: example graph (undirected, unweighted, indexed) and
data structure content

The main algorithmic idea we reuse for computing the core numbers is to start with
k = 0 and increase k iteratively. Within each iteration phase, all nodes with degree k
are successively removed (thus, also nodes whose degree was larger at the beginning of
the phase can become affected by a removal of a neighbor). Our implementation uses a
bucket priority queue. From this data structure we can extract the nodes with a certain
minimum residual degree in amortized constant time. The same time holds for updates
of the neighbor degrees, resulting in O(m) in total.
While the above implementation already scales to large inputs, it can still make a

significant difference if a user needs to wait minutes or seconds for an answer. Thus, we
also provide a parallel implementation. The sequential algorithm cannot be made parallel
easily due to its sequential access to the bucket priority queue. For achieving a higher
degree of parallelism, we follow [DRZ14]. Their ParK algorithm replaces the extract-min
operation in the above algorithm by identifying the node set V ′ with nodes of minimum
residual degree while iterating in parallel over all (active) nodes. V ′ is then further
processed similarly to the node retrieved by extract-min in the above algorithm, only in
parallel again. ParK thus performs more sequential work, but with thread-local buffers it
relies on a minimal amount of synchronization. Moreover, its data access pattern is more
cache-friendly, which additionally contributes to better performance.

106 107 108 109

edges/s

CoreDecompositionSeq(nk)

CoreDecomposition(nk)

Figure 12: Core decomposition: sequential versus parallel performance

34 principles and architecture

Fig. 12 is the result of running time measurements on a test set of networks (see
Sec. 6.2 for the setup). We see that on average, processing speed is increased by almost
an order of magnitude through parallelization. Some overhead of the parallel algorithm
implies that speedup is only noticeable on large graphs, hence the large variance. For
example, processing time for the 260 million edge uk-2002 web graph is reduced from 22
to 2 seconds.

4.4.2 Heuristics and Approximation Algorithms

In this example we illustrate how inexact methods deliver appropriate solutions for an
otherwise computationally impractical problem. Betweenness centrality is a well-known
node centrality measure that has an intuitive interpretation in transport networks: As-
suming that the transport processes taking place in the network are efficient, they follow
shortest paths through the network, and therefore preferably pass through nodes with
high betweenness. For instance, their removal would interfere strongly with the function
of the network. It is clear that network analysts would like to be able to identify such
nodes in networks of any size. NetworKit comes with an implementation of the currently
fastest known algorithm for betweenness [Bra01], which has O(nm) running time in
unweighted graphs.
With a closer look at the algorithm, opportunities for parallelization are apparent:

Several single-source shortest path searches can be run in parallel to compute the in-
termediate dependency values whose sum yields a node’s betweenness. Figure 13 shows
C++ code for the parallel version, which is simplified to focus on the core algorithm,
but the actual implementation is similarly concise. To avoid race conditions, each thread
works on its own dependency array, which need to be aggregated into one betweenness
array in the end (lines 35-39).

We now evaluate the performance of the implementations experimentally (see Section
6.2 for settings). Figure 14 shows aggregated running speed over a set of smaller networks
(from Table 4). In practice, this means that the sequential version of Brandes’ algorithm
(BetweennessSeq) takes almost 8 hours to process the 600k edge graph caidaRouterLevel
(representing internet router-level topology [CAI03]). Parallelism with 32 (hyper)threads
(Betweenness) reduces the running time to ca. 90 minutes. Still, parallelization does not
change the algorithm’s inherent complexity. This means that running times rise so steeply
with the size of the input graph that computing an exact solution to betweenness is not
viable on the large networks we want to target. In typical use cases, obtaining exact val-
ues for betweenness is not necessary, though. An approximate result is likely good enough
to appreciate the structure of the network for exploratory analysis, and to identify a set
of top betweenness nodes. Therefore, we use a heuristic approach based on computing
a relatively small number of randomly chosen shortest-path trees [GSS08]. In contrast
to the exact algorithm, running the approximative algorithm with 42 samples takes 6
seconds sequentially. Applying this algorithm cuts running time by orders of magnitude,
but still yields a ranking of nodes that is highly similar to a ranking by exact between-
ness values. We observe that the distribution of relative rank errors (exact rank divided
by approximated rank) has little variance around 1.0. Nodes on average maintain the
rank they would have according to exact betweenness even with such a small number of
samples. Concretely we see, for instance, that the top ten nodes in the exact between-
ness ranking are (3, 14, 22, 2, 58, 10, 54, 39, 127, 55) and (14, 3, 22, 58, 2, 55, 10, 127, 26, 6)

4.4 algorithm and implementation patterns 35

1 // thread-local scores for efficient parallelism
2 count maxThreads = omp_get_max_threads();
3 count z = G.upperNodeIdBound();
4 std::vector<std::vector<double>> scorePerThread(maxThreads, std::vector<double>(z));
5
6 auto computeDependencies = [&](node s) {
7 std::vector<double> dependency(z, 0.0);
8 // run SSSP algorithm and count paths
9 std::unique_ptr<SSSP> sssp;

10 if (G.isWeighted()) {
11 sssp.reset(new Dijkstra(G, s, true, true));
12 } else {
13 sssp.reset(new BFS(G, s, true, true));
14 }
15 sssp->run();
16 // compute dependencies for nodes in order of decreasing distance from s
17 std::vector<node> stack = sssp->getStack();
18 while (!stack.empty()) {
19 node t = stack.back();
20 stack.pop_back();
21 for (node p : sssp->getPredecessors(t)) {
22 double w = sssp->numberOfPaths(p)/sssp->numberOfPaths(t);
23 double c = w * (1 + dependency[t]);
24 dependency[p] += c;
25 }
26 if (t != s) {
27 scorePerThread[omp_get_thread_num()][t] += dependency[t];
28 }
29 }
30 };
31
32 // iterate over nodes in parallel and apply
33 G.balancedParallelForNodes(computeDependencies);
34
35 // add up all thread-local values
36 for (auto& localScore : scorePerThread) {
37 G.parallelForNodes([&](node v){
38 scoreData[v] += localScore[v];
39 });
40 }

Figure 13: Code example: Parallel calculation of betweenness centrality

in the approximate ranking. Experiments of this type (see [GSS08]) confirm that in typ-
ical cases betweenness can be closely approximated with a relatively small number s of
shortest-path searches. Therefore we can replace an O(nm) algorithm with one of time
complexity O(sm) in many use cases. The inexact algorithm offers the same opportu-
nities for parallelization, yielding additional speedups: In the example above, parallel
running time is down to 1.5 seconds on 32 (hyper)threads.

If a true approximation with a guaranteed error bound is desired, NetworKit users can
apply another inexact algorithm [RK15] which accepts an error bound parameter ε. It
sacrifices some computational efficiency but allows a proof that the resulting betweenness
scores have at most ±ε difference from the exact scores (with a user-supplied probability).

4.4.3 Modular Design

In terms of software design, we aim at a modular architecture with proper encapsulation
of algorithms into software components (classes and modules). This requires extensive

36 principles and architecture

101 102 103 104 105 106 107

edges/s

BetweennessApproxSeq(nk)

BetweennessApprox(nk)

Betweenness(nk)

BetweennessSeq(nk)

Figure 14: Processing speed of exact and inexact algorithms for betweenness centrality

software engineering work but has clear benefits. Among them are extensibility and code
reuse: For example, new centrality measures can be easily added by implementing a
subclass with the code specific to the centrality computation, while code applicable to
all centrality measures and a common interface remains in the base class. Through these
and other modularizations, developers can add a new centrality measure and get derived
measures almost “for free”. These include for instance the centralization index [Fre79]
and the assortativity coefficient [Fre79], which can be defined with respect to any node
centrality measure and may in each case be a key feature of the network.
Modular design also allows for optimizations on one algorithm to benefit other client

algorithms. For instance, betweenness and other centrality measures (such as closeness)
require the computation of shortest paths, which is done via breadth-first search in
unweighted graphs and Dijkstra’s algorithm in weighted graphs, decoupled to avoid code
redundancy (see lines 10-14 in Fig. 13).

4.4.4 Efficient Data Structures

Figure 15: Black: Points corresponding to network nodes. Grey: Edges between nearby points.
Red: Boundaries of polar quadtree cells. Blue: Sample node whose neighborhood is
visualized by the purple circle and blue edges. (Source: [vLMP15])

4.5 open-source development and distribution 37

The case study on data structures deals with a generative network model. Such models are
important as they simplify complex network research in several respects (see Section 5.2).
Theoretical analyses have shown that hyperbolic unit-disk graphs (HUDGs) [KPK+10]
have many features also found in real complex networks [BFM14, GPP12, KM15]. The
model is based on hyperbolic geometry, into which complex networks can be embedded
naturally. During the generation process vertices are distributed randomly on a hyper-
bolic disk of radius R and edges are inserted for every node pair whose distance is below
R. The straightforward HUDG generation process would probe the distance of all pairs,
yielding a quadratic time complexity. This impedes the creation of massive networks.
NetworKit provides the first generation algorithm for HUDGs with subquadratic running
time (O((n3/2 +m) logn) with high probability) [vLMP15]. The acceleration stems pri-
marily from the reduction of distance computations through a polar quadtree adapted
to hyperbolic space. Instead of probing each pair of nodes, the generator performs for
each node one efficient range query supported by the quadtree. In practice this leads to
an acceleration of at least two orders of magnitude. With the quadtree-based approach
networks with billions of edges can be generated in parallel in a few minutes [vLMP15].
By exploiting previous results on efficient Erdős–Rényi graph generation [BB05], the
quadtree can be extended to use more general neighborhoods [vLM15].

4.5 open-source development and distribution

Through open-source development we would like to encourage usage and contributions
by a diverse community, including data analysts from various fields as well as algorithm
engineers. While the core developer team is located at KIT, NetworKit is becoming a com-
munity project with a growing number of external users and contributors. The code is
free software licensed under the permissive MIT License. The package source, documen-
tation, and additional resources can be obtained from http://networkit.iti.kit.edu.
The package networkit is also installable via the Python package manager pip. For
custom-built applications, the Python layer may be omitted by building a subset of
functionality as a native library.

http://networkit.iti.kit.edu

5
FUNCTIONAL ITY , IMPLEMENTATIONS AND USE CASES

A manager asked a programmer how long it would take him to finish the program
on which he was working. “It will be finished tomorrow,” the programmer promptly
replied. “I think you are being unrealistic,” said the manager, “Truthfully, how long
will it take?” The programmer thought for a moment. “I have some features that I
wish to add. This will take at least two weeks,” he finally said. “Even that is too
much to expect,” insisted the manager, “I will be satisfied if you simply tell me
when the program is complete.” The programmer agreed to this.

Several years later, the manager retired. On the way to his retirement luncheon,
he discovered the programmer asleep at his terminal. He had been programming all
night.

– from The Tao of Programming

This chapter contains a discussion of the set of functionality that NetworKit provides.
The package is organized into modules, each bundling several components, e.g. network
analysis algorithms, random graph generators, or utility code. We discuss in more detail a
core set of algorithms. For selected algorithms, we showcase their efficient implementation.
We also discuss possible use cases of NetworKit, on the one hand as an algorithm library in
a specialized data analysis pipeline, and a tool for interactive exploratory data analysis
on the other. NetworKit’s capability to quickly generate and visualize comprehensive
structure profiles of large networks aids the user in discovering patterns in network data
and formulating hypotheses about them. We discuss a profile of a connectome data set
as an example.

5.1 network analytics

Table 1 provides an overview of the modular structure of NetworKit. Each of the modules
of the package is concerned with an area of functionality, and contains several compo-
nents. A component is a piece of software that performs a certain task, e.g. computes a
network analytic measure. As a general software architecture pattern that is followed, a
component is a class, which is instantiated with constructor arguments (e.g. the input
graph, algorithm parameters, etc). Computation is triggered by calling a run method on
the object. Afterwards, “getter” methods are used to retrieve results of the computation.
The following describes the core set of network analysis algorithms implemented in

NetworKit. Table 2 summarizes the core set of algorithms for typical problems.

5.1.1 Distances

NetworKit contains various components related to distances in networks. Shortest path
distances can be computed by breadth-first search (BFS) in unweighted networks and
Dijkstra’s algorithm in weighted networks. Other properties based on shortest paths in-
clude the diameter (Def. 8). We use the iFUB algorithm [CGH+13] both for the exact
computation as well as an estimation of a lower and upper bound on the diameter. iFub
has a worst case complexity of O(nm) but has shown excellent typical-case performance

39

40 functionality, implementations and use cases

module description example components
algebraic interface to matrix network representa-

tions
adjacencyMatrix

centrality node centrality measures (Sec. 2.3)
DegreeCentrality
PageRank
CoreDecomposition

clique clique finding MaxClique
coarsening graph coarsening methods ParallelPartitionCoarsening (Sec.

8.2.2)
coloring graph coloring SpectralColoring

community community detection (Ch. 7, 8) PLM
Modularity

components connected components ConnectedComponents (Sec. 2.4)
StronglyConnectedComponents

correlation correlations in networks (Sec. 2.5) Assortativity

distance graph distance measures (Sec. 2.2)
Diameter
NeighborhoodFunction
AlgebraicDistance

dynamic support for dynamic graphs
engineering tools for algorithm engineering experi-

ments
flow graph flow algorithms EdmondsKarp
generators generative models (Ch. 12, 13) LFRGenerator
gephi import/export for Gephi

graph graph data structure and fundamental
operations (Sec. 4.3)

Graph
BFS

graphio graph file input/output GraphMLReader
linkprediction link prediction (Sec. 5.1.3) PreferentialAttachmentIndex
matching graph matching PathGrowingMatcher
nxadapter graph conversion for NetworkX
partitioning graph partitioning SpectralPartitioner
profiling network profiling tool (Sec. 5.3.2)
sampling tools for sampling from graphs
scd selective community detection (Ch. 9) PageRankNibble
simulation simulations on networks (Sec. 2.6) EpidemicSimulationSEIR
sparsification network sparsification methods and

tools, edge centrality measures (Ch.
10,11)

LocalDegreeScore

structures fundamental data structures Partition
Cover (Sec. 2.4)

Table 1: Overview of NetworKit modules

5.1 network analytics 41

category task algorithm time space
centrality degree – O(n) O(n)

betweenness [Bra01] O(nm) O(n+m)

ap. betweeenness [GSS08],[RK15] O(sm) O(n+m)

closeness shortest-path search
from each node

O(mn) O(n)

ap. closeness [EW04] O(sm) O(n)

PageRank power iteration O(m) typ-
ical (Sec.
5.1.2)

O(n)

eigenvector centrality power iteration O(m) typi-
cal

O(n)

Katz centrality [Kat53] O(m) typi-
cal

O(n)

k-path centrality [ATK+11] see [ATK+11]
local clustering coefficient parallel iterator O(nd2) O(n)

k-core decomposition [DRZ14] O(m)

partitions connected components BFS O(m) O(n)

community detection PLM, PLP [SM16] O(m) O(m),O(n)
global diameter iFub [CGH+13] O(m) typi-

cal
O(n)

Table 2: Selection of analysis algorithms contained in NetworKit. Complexity expressed in terms
of n nodes, m edges, s samples and maximum node degree d

on complex networks, where it often converges on the exact value in linear time. We also
distribute an implementation of a linear-time algorithm for approximating the neighbor-
hood function (Def. 9) [PGF02].
As introduced in Sec. 2.2, algebraic distance [CS11] (α) is a method for quantifying the

structural distance of two nodes u and v in graphs. α is computed by performing iterative
local updates on d-dimensional “coordinates” of a node. Each node is associated with
d initially random values xu. Then, in each iteration, the coordinates are set to some
weighted average of the old coordinates and the average of the old coordinates of all
neighbors, according to the following iterative rules, where ω is a relaxation factor:

x̂(k)u =
∑

v∈N(u)

x(k−1)
v / deg(u) (13)

x(k)u = (1− ω) · x(k−1)
u + ω · x̂(k)u (14)

This leads to iterative smoothing so that the coordinates of nearby nodes assimilate.
These updates of the node coordinates are parallelized in our code. The algebraic dis-
tance is then any distance defined in terms of a norm between the two coordinate vectors.
In the following we choose the `2-norm. As described in [CS11], d can be set to a small
constant (e.g. 10) and the distances stabilize after tens of iterations of O(m) running
time each. Fig. 16 shows the main section of code for the efficient parallel computation of
α in NetworKit. Lines 6-22 and lines 10-15 provide examples of NetworKit’s graph iterator

42 functionality, implementations and use cases

pattern: G.balancedParallelForNodes executes the given function (a lambda expres-
sion) for each node, while applying dynamic scheduling of blocks of nodes to threads,
which is important for load balancing in graphs with heterogeneous degree distributions.
G.forNeighborsOf iterates over all incident edges/neighbors of a given node.

1 std::vector<double> oldLoads(loads.size());
2
3 for (index iter = 0; iter < numIters; ++iter) {
4 loads.swap(oldLoads); // store previous iteration
5
6 G.balancedParallelForNodes([&](node u) {
7 std::vector<double> val(numSystems, 0.0);
8 double weightedDeg = 0;
9 // step 1

10 G.forNeighborsOf(u, [&](node v, edgeweight weight) {
11 for (index i = 0; i < numSystems; ++i) {
12 val[i] += weight * oldLoads[v*numSystems + i];
13 }
14 weightedDeg += weight;
15 });
16
17 for (index i = 0; i < numSystems; ++i) {
18 val[i] /= weightedDeg;
19 // step 2
20 loads[u*numSystems + i] = (1 - omega) * oldLoads[u*numSystems + i] + omega * val[i];
21 }
22 });
23 }

Figure 16: Code example: Parallel computation of algebraic distances.

5.1.2 Node Centrality

Node centrality measures quantify the structural importance of a node within a network
(cf. Sec. 2.3). The simplest measure that falls under this definition, the degree of a node,
is stored by the graph data structure for constant-time access. Eigenvector centrality and
its variant PageRank [PBMW99] are implemented in NetworKit based on parallel power
iteration, whose convergence time depends on a numerical error tolerance parameter and
spectral properties of the network, but is among the fast linear-time algorithms for typ-
ical inputs. For betweenness centrality we provide the solutions discussed in Sec. 4.4.2.
Similar techniques are applied for computing closeness centrality exactly and approxi-
mately [EW04]. Our current research extends the former approach to dynamic graph
processing [BM15, BMS15]. In addition to a parallel algorithm for clustering coefficient,
NetworKit also implements a sampling approximation algorithm [SW05], whose constant
time complexity is independent of graph size. Given NetworKit’s modular architecture,
further centrality measures can be easily added.

5.1.3 Edge Centrality, Sparsification and Link Prediction

As described in Sec. 10.1 the concept of centrality can be extended to edges: Not all
edges are equally important for the structure of the network, and scores can be assigned
to edges depending on the graph structure such that they can be ranked. (This requires
the edge set to be indexed, which the graph data structure supports optionally.) Such a

5.2 network generators 43

ranking can then be used to filter edges and thereby reduce the size of data. NetworKit
includes a wide set of edge ranking methods, with a focus on sparsification techniques
meant to preserve certain properties of the network. For instance, we show that a method
that ranks edges leading to high-degree nodes (hubs) closely preserves many properties of
social networks, including diameter, degree distribution and centrality measures. Other
methods, including a family of Simmelian backbones, assign higher importance to edges
within dense regions of the graph and hence preserve or emphasize communities. This
topic is the focus of Chapters 10 and 11. While currently experimental and focused on
one application, namely structure-preserving sparsification, the design is extensible so
that general edge centrality indices can be easily implemented.

A somewhat related problem, conceptually and through common methods, is the task
of link prediction. Link prediction algorithms examine the edge structure of a graph
to derive similarity scores for unconnected pairs of nodes. Depending on the score, the
existence of a future or missing edge is inferred. NetworKit includes implementations for
a wide variety of methods from the literature [Esd15].

5.1.4 Partitioning the Network

Another class of analysis methods partitions the set of nodes into subsets depending
on the graph structure, such as connected components and communities. A network’s
connected components can be computed in linear time using breadth-first search. We
approach community detection from the perspective of modularity maximization and
engineer parallel heuristics which deliver a good tradeoff between solution quality and
running time [SM16]. The PLP algorithm implements community detection by label
propagation [RAK07], which extracts communities from a labelling of the node set. The
Louvain method for community detection [BGLL08] can be classified as a locally greedy,
bottom-up multilevel algorithm. We recommend the PLM algorithm with optional re-
finement step as the default choice for modularity-driven community detection in large
networks. For very large networks in the range of billions of edges, PLP delivers a bet-
ter time to solution, albeit with a qualitatively different solution and worse modularity.
Chapter 8 describes these methods in detail.

5.2 network generators

Generative network models aim to explain how networks form and evolve specific struc-
tural features, and generate synthetic graphs that resemble real networks in important
structural aspects. NetworKit provides a versatile collection of graph generators for this
purpose, summarized in Table 3. Chapters 12 discusses different generative models in
depth.

5.3 example use cases

In the following, we present possible workflows and use cases, highlighting the capabilities
of NetworKit as an algorithm library and an interactive data analysis tool.

44 functionality, implementations and use cases

model [and algorithm] description
Erdős-Rényi [P. 60] [[BB05]] random edges with uniform probability
planted partition / stochastic
blockmodel

dense areas with sparse connections

Barabasi-Albert [AB02] preferential attachment process resulting
in power-law degree distribution

Recursive Matrix (R-MAT)
[CZF04]

power-law degree distribution, small-
world property, self-similarity

Chung-Lu [ACL00] replicate a given degree distribution
Havel-Hakimi [Hak62] replicate a given degree distribution
Hperbolic Unit-Disk Graphs
[KPK+10] [[vLMP15]]

large networks, power-law degree distribu-
tion and high clustering

LFR [LF09a] complex networks containing communities

Table 3: Overview of network generators

5.3.1 As a Library in an Analysis Pipeline

A master’s thesis [Fli14] provides an early example of NetworKit as a component in an
application-specific data mining pipeline (Fig. 17). This pipeline performs analysis of
protein-interaction (PPI) networks. and implements a preprocessing stage in Python,
in which networks are compiled from heterogeneous data sets containing interaction
data as well as expression data about the occurrence of proteins in different cell types.
During the network analysis stage, preprocessed networks are retrieved from a database,
and NetworKit is called via the Python frontend. The C++ core has been extended to
enable more efficient analysis of tissue-specific PPI networks, by implementing in-place
filtering of the network to the subgraphs of proteins that occur in given cell types. Finally,
statistical analysis and visualization is applied to the network analysis data. The system
is close to how we envision NetworKit as a high-performance algorithmic component in a
real-world data analysis scenario, and we therefore place emphasis on the toolkit being
easily scriptable and extensible.

5.3.2 Exploratory Network Analysis with Network Profiles

Making the most of NetworKit as a library requires writing some amount of custom code
and some expertise in selecting algorithms and their parameters. This is one reason why
we also provide an interface that makes exploratory analysis of large networks easy and
fast even for non-expert users, and provides an extensive overview. The underlying mod-
ule assembles many algorithms into one program, automates analysis tasks and produces
a graphical report to be displayed in the Jupyter Notebook or exported to an HTML or
LATEXreport document. Such a network profile gives a statistical overview over the prop-
erties of the network. It consists of the following parts: First global properties such as size
and density are reported. The report then focuses on a variety of node centrality mea-
sures, showing an overview of their distributions in the network (see Fig. 18). Detailed
views for centrality measures (see Fig. 19) follow: Their distributions are plotted in his-

5.3 example use cases 45

Figure 17: PPI network analysis pipeline with NetworKit as central component

tograms and characterized with standard statistics, and network-specific measures such
as centralization and assortativity are shown. We propose that correlations between cen-
tralities are per se interesting empirical features of a network. For instance, betweenness
may or may not be positively correlated with increasing node degree. The prevalence
of low-degree, high-betweenness nodes may influence the resilience of a transport net-
work, as only few links then need to be severed in order to significantly disrupt transport
processes following shortest paths. For the purpose of studying such aspects, the report
displays a matrix of Spearman’s correlation coefficients, showing how node ranks derived
from the centrality measures correlate with each other (see Fig. 20b). Furthermore, scat-
ter plots for each combination of centrality measure are shown, suggesting the type of
correlation (see Fig. 21a). The report continues with different ways of partitioning the
network, showing histograms and pie charts for the size distributions of connected com-
ponents, modularity-based communities (see Fig. 21b) and k-shells, respectively. Absent
on purpose is a node-edge diagram of the graph, since graph drawing (apart from being
computationally expensive) is usually not the preferred method to explore large com-
plex networks. Rather, we consider networks first of all to be statistical data sets whose
properties should be determined via graph algorithms and the results summarized via
statistical graphics. The default configuration of the module is such that even networks
with hundreds of millions of edges can be characterized in minutes on a parallel worksta-
tion. Furthermore, it can be configured by the user depending on the desired choice of
analytics and level of detail, so that custom reports can be generated.
To pick an example from a scientific domain, the human connectome network con-

fiber_big maps brain regions and their anatomical connections at a relatively high res-
olution, yielding a graph with ca. 46 million edges. As the resolution of brain imaging
technology improves, connectome analysis is likely to yield ever more massive network

46 functionality, implementations and use cases

Figure 18: Overview on the distributions of node centrality measures and size distributions of
different network partitions – here: a Facebook social network

data sets, considering that the brain at the neuronal scale is a complex network on the
order of 1010 nodes and 1014 edges. On a first look, the network has properties similar to
a social network, with a skewed degree distribution and high clustering. The pattern of
correlations (Fig. 20b) differs from that of a typical friendship network (Fig. 20a), with
weaker positive correlations across the spectrum of centrality measures. As one observa-
tion to focus on, we may pick the strong negative correlation between the local clustering
coefficient on the one hand and the PageRank and betweenness centrality on the other.
High betweenness nodes are located on many shortest paths, and high PageRank results
from being connected to neighbors which are themselves highly connected. Thus, the
correlations point to the presence of structural hub nodes that connect different brain
regions which are not directly linked. Also, a look at a scatter plot generated (Fig. 21a) re-
veals more details on the correlations: We see that the local clustering coefficient steadily
falls with node degree, a majority of nodes having high clustering and low degree, a
few nodes having low clustering and high degree. Both observations are consistent with
the finding of connector hub regions situated along the midline of the brain, which are
highly connected and link otherwise separated brain modules organized around smaller
provincial hubs [SB15].

5.3 example use cases 47

Figure 19: Detailed view on the distribution of node centrality scores – here: local clustering
coefficients of the 3 billion edge web graph uk-2007

(a) – in the social network fb-Texas84 (b) – in the connectome network con-fiber_big

Figure 20: Correlation between node centrality measures –

0 1 2 3 4 5
Score ×103

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Lo
ca

l C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Degree

(a) Scatter plot of degree and local clustering co-
efficient

(b) Size distribution of modularity-based commu-
nities

Figure 21: Statistical graphics from the profile of the connectome graph con-fiber_big

48 functionality, implementations and use cases

Another aspect we can focus on is community structure. There has been extensive
research on the modular structure of brain networks, indicating that communities in the
connectivity network can be interpreted as functional modules of the brain [SB15]. The
communities found by the PLM modularity-maximizing heuristic in the con-fiber_big
graph can be interpreted accordingly. Their size distribution (Fig. 21b, in which a green
pie slice represents the size of a community) shows that a large part of the network
consists of about 30 communities of roughly equal size, in addition to a large number
of very small communities (grey). Of course, such interpretations of the network profile
contain speculation, and a thorough analysis – linking network structure to brain function
– would require the knowledge of a neuroscientist. Nonetheless, these examples illustrate
how NetworKit’s capability to quickly generate an overview of structural properties can
be used to generate hypotheses about the network data.

6
COMPARISON AND EVALUATION

A young monk, new to the temple, not only declared all his methods public but all
his instance variables as well. The head abbot grew weary of rebuking the monk
and asked the master for advice.

The next day, the master summoned the monk to take lunch with him in his
private office. The monk entered to find a sumptuous meal laid out upon the con-
ference table. The master then bade the monk to lie upon the floor. The monk did
as commanded, whereupon the master opened the monk’s robes and drew a large
knife. He pressed the naked point firmly into the monk’s chest until a ruby droplet
welled up around the blade. The monk cried out in terror and asked the master
what his intention was.

“To slit open your belly,” explained the master, “so that I may spoon the rice
and pour the tea inside. My schedule is quite full, and I find this method of feeding
guests to be extremely efficient.”

Afterward the monk required no more correction.

– from The Codeless Code

This chapter is concerned with evaluating NetworKit in comparison with competing so-
lutions for network analysis. These include existing software packages with similar target
use cases, target platforms and design choices. Aspects of the comparison include func-
tionality, user interaction, and supported platforms. For the most relevant competitors,
it is shown how NetworKit compares in a performance benchmark on typical network
analysis tasks. We also provide a performance comparison with several distributed graph
processing frameworks, to show the considerable range of networks that can be analyzed
on a single multicore machine before distributed computing solutions are required.

6.1 comparison to related software

Recent years have seen a proliferation of graph processing and network analysis software
which vary widely in terms of target platform, user interface, scalability and feature set.
We therefore locate NetworKit relative to these efforts. Although the boundaries are not
sharp, we would like to separate network analysis toolkits from general purpose graph
frameworks (e.g. Boost Graph Library and JUNG [OFWB03]), which are less focused on
data analysis workflows.
As closest in terms of architecture, functionality and target use cases, we see igraph

[CN06] and graph-tool [Pei06]. They are packaged as Python modules, provide a broad
feature set for network analysis workflows, and have active user communities. NetworkX
[HSSC08] is also a mature toolkit and the de-facto standard for the analysis of small to
medium networks in a Python environment, but not suitable for massive networks due
to its pure Python implementations. (Due to the similar interface, users of NetworkX
are likely to move easily to NetworKit for larger networks.) Like NetworKit, igraph and
graph-tool address the scalability issue by implementing core data structures and algo-
rithms in C or C++. graph-tool builds on the Boost Graph Library and parallelizes some
kernels using OpenMP. These similarities make those packages ideal candidates for an
experimental comparison with NetworKit (see Section 6.2.2).

49

http://www.boost.org/doc/libs/1_55_0/libs/graph/doc/table_of_contents.html
http://jung.sourceforge.net/
http://igraph.sourceforge.net/
http://graph-tool.skewed.de/
http://networkx.github.io/

50 comparison and evaluation

Other projects are geared towards network science but differ in important aspects
from NetworKit. Gephi [BHJ09], a GUI application for the Java platform, has a strong
focus on visual network exploration. Pajek [BM04], a proprietary GUI application for
the Windows operating system, also offers analysis capabilities similar to NetworKit, as
well as visualization features. The variant PajekXXL uses less memory and thus focuses
on large datasets.
The SNAP [LS14] network analysis package has also recently adopted the hybrid ap-

proach of C++ core and Python interface. Related efforts from the algorithm engineer-
ing community are KDT [LAB+12] (built on an algebraic, distributed parallel backend),
GraphCT [EJRB13] (focused on massive multithreading architectures such as the Cray
XMT), STINGER (a dynamic graph data structure with some analysis capabilities and a
Python interface) [EMRB12] and Ligra [SB13] (a recent shared-memory parallel library).
They offer high performance through native, parallel implementations of certain kernels.
However, to characterize a complex network in practice, we need a substantial set of
analytics which those frameworks currently do not provide.

Among solutions for large-scale graph analytics, distributed computing frameworks
(for instance GraphLab [LBG+12]) are often prominently named. However, graphs aris-
ing in many data analysis scenarios are not bigger than the billions of edges that fit
into a conventional main memory and can therefore be processed far more efficiently in
a shared-memory parallel model [SB13], which we confirm experimentally in a recent
study [KSVM15]. Distributed computing solutions become necessary for massive graph
applications (as they appear, for example, in social media services), but we argue that
shared-memory multicore machines go a long way for network science applications.

6.2 performance evaluation

This section presents an experimental evaluation of the performance of NetworKit’s al-
gorithms. Our platform is a shared-memory server with 256 GB RAM and 2x8 Intel(R)
Xeon(R) E5-2680 cores (32 threads due to hyperthreading) at 2.7 GHz.

6.2.1 Benchmark

Fig. 22 shows results of a benchmark of the most important analytics kernels in NetworKit.
The algorithms were applied to a diverse set of 15 real-world networks in the size range
from 16k to 260M edges, including web graphs, social networks, connectome data and in-
ternet topology networks (see Table 4 for a description). Kernels with quadratic running
time (like Betweenness) were restricted to the subset of the 4 smallest networks. The box
plots illustrate the range of processing rates achieved (dots are outliers). The benchmark
illustrates that a set of efficient linear-time kernels, including ConnectedComponents, the
community detectors, PageRank, CoreDecomposition and ClusteringCoefficient, scales well
to networks in the order of 108 edges. The iFub [CGH+13] algorithm demonstrates its
surprisingly good performance on complex networks, moving diameter calculation effec-
tively into the class of linear-time kernels. Fig. 23 breaks its processing rate down to the
particular instances, in decreasing order of size, illustrating that performance is often
strongly dependent on the specific structure of complex networks. Algorithms like BFS
and ConnectedComponents actually scan every edge at a rate of 107 to 108 edges per

https://gephi.org/
http://pajek.imfm.si/doku.php
http://snap.stanford.edu/snappy/index.html
http://kdt.sourceforge.net
http://trac.research.cc.gatech.edu/graphs/wiki/GraphCT
http://www.stingergraph.com/
http://www.cs.cmu.edu/~jshun/ligra.html
http://graphlab.org

6.2 performance evaluation 51

name type n m source
fb-Caltech36 social (friendship) 769 16656 [TMP12]
PGPgiantcompo social (trust) 10680 24316 Boguña et al. 2014
coAuthorsDBLP coauthorship (science) 299067 977676 [BMS+14a]
fb-Texas84 social (friendship) 36371 1590655 [TMP12]
Foursquare social (friendship) 639014 3214986 [ZL09]
Lastfm social (friendship) 1193699 4519020 [ZL09]
wiki-Talk social 2394385 4659565 [LK14]
Flickr social (friendship) 639014 55899882 [ZL09]
in-2004 web 1382908 13591473 [BCSV04]
actor-collaboration collaboration (film) 382219 15038083 [Kun13a]
eu-2005 web 862664 16138468 [BCSV04]
flickr-growth-u social (friendship) 2302925 33140017 [Kun13a]
con-fiber_big brain (connectivity) 591428 46374120 openconnecto.me
Twitter social (followership) 15395404 85331845 [ZL09]
uk-2002 web 18520486 261787258 [BCSV04]
uk-2007-05 web 105896555 3301876564 [BCSV04]

Table 4: Networks used for the evaluation

second. Betweenness calculation remains very time-consuming in spite of parallelization,
but approximate results can be obtained two orders of magnitudes faster.

6.2.2 Comparative Benchmark

NetworKit, igraph and graph-tool rely on the same hybrid architecture of C/C++ imple-
mentations with a Python interface. igraph uses non-parallel C code while graph-tool also
features parallelism. We benchmarked typical analysis kernels for the three packages in
comparison on the aforementioned parallel platform and present the measured perfor-
mance in Fig. 24. Where applicable, algorithm parameters were selected to ensure a fair
comparison. In this respect it should be mentioned that graph-tool‘s implementation of
Brandes’ betweenness algorithm does more work as it also calculates edge betweenness
scores during the run. (Anyway, performance differences in the implementation quickly
become irrelevant for a non-linear-time algorithm as the input size grows.) graph-tool
also takes a different approach to community detection, hence the comparison is between
igraph and NetworKit only. We summarize the benchmark results as follows: In our bench-
mark, NetworKit was the only framework that could consistently run the set of kernels
(excluding the quadratic-time betweenness) on the full set of networks in the timeframe
of an overnight run. For some of igraph’s and graph-tool’s implementations the test set
had to be restricted to a subset of smaller networks to make it possible to run the com-
plete benchmark overnight. NetworKit has the fastest average processing rate on all of
these typical analytics kernels. Our implementations have a slight edge over the others
for breadth-first search, connected components, clustering coefficients and betweenness.
Considering that the algorithms are very similar, this is likely due to subtle differences
and optimizations in the implementation. For PageRank, core decomposition and the

52 comparison and evaluation

102 103 104 105 106 107 108 109 1010

edges/s

EigenvectorCentrality (nk)

KatzCentrality (nk)

PageRank (nk)

ConnectedComponents (nk)

ClusteringCoefficient (nk)

Betweenness (nk)

CoreDecomposition (nk)

BFS (nk)

Diameter (nk)

CommunityDetectionLP (nk)

CommunityDetectionLM (nk)

Figure 22: Processing rates of NetworKit analytics kernels

two community detection algorithms, our parallel methods lead to a larger speed advan-
tage. The massive difference for the diameter calculation is due to our choice of the iFub
algorithm [CGH+13], which has better running time in the typical case (i.e. complex
networks with hub structure) and enables the processing of inputs that are orders of
magnitudes larger.
Another scalability factor is the memory footprint of the graph data structure. Net-

worKit provides a lean implementation in which the 260M edges of the uk-2002 web
graph occupy only 9 GB, compared with igraph (93GB) and graph-tool (14GB). After
indexing the edges, e.g. in order to compute edge centrality scores, NetworKit requires 11
GB for the graph.
A third factor that should not be ignored for real workflows is I/O. Getting a large

graph from hard disk to memory often takes far longer than the actual analysis. For our
benchmark, we chose the GML graph file format for the input files, because it is supported
by all three frameworks. We observed that the NetworKit parser is significantly faster for
these non-attributed graphs.

6.3 comparison with distributed computing frameworks

Many applications – think for example of the networks collected by online social net-
working sites – produce enormous amounts of network data that exceed the memory of
any single computer, calling for distributed solutions. For instance, Facebook applies the
Apache Giraph framework (discussed below) for the analysis of its social graph [Ave13].
A distributed system consists of a set of autonomous processors, each with their own
memory, running software that performs computations and exchanges data as messages
via a network. Distributed systems are highly scalable as computers can be added easily.
Multiple programming models for distributed parallel computing have been introduced,
some general-purpose (like MapReduce), others focus on graph processing (like Pregel).

6.3 comparison with distributed computing frameworks 53

104 105 106 107 108

edges / s

fbCaltech36
PGPgiantcompo
coAuthorsDBLP

fbTexas84
Foursquare

Lastfm
wikiTalk

Flickr
in2004

actorcollaboration
eu2005

flickrgrowthu
confiber_big

Twitter
uk2002

Figure 23: Processing rate of diameter calculation on different networks

Among the software frameworks implementing these programming models, we consider
Apache Giraph [Apa15b], Apache Giraph++ [TBC+13], GraphLab [Dat15] and Apache
Flink [Apa15a] in our study. Considering performance, the scalability and expressive-
ness enabled by such frameworks comes at the cost of overhead: A recent experimental
study [SSP+14] compares implementations of graph algorithms based on frameworks
(including GraphLab and Giraph) to ad hoc, hand-optimized code and observes a substan-
tial performance gap. A similar new study [MIM15] asserts that for typical distributed
computing frameworks often hundreds of computing nodes are needed to outperform a
single-threaded implementation for common graph algorithms on graphs of a few billion
edges, and raises the question to which extent their good scalability is due to merely
distributing their own overheads. Moreover, complex networks present certain inherent
performance challenges for distributed systems: Computation is data-driven in this case,
i.e. it is largely determined by the graph structure. This makes it difficult to exploit
opportunities for parallelism, because they depend heavily on the input. Real-world net-
works often have a skewed degree distribution, which adversely affects load balance. In
synchronous execution models, the few high-degree vertices will delay the whole system.
Performance depends also on how vertices are distributed among the processor nodes,
i.e. the graph must be partitioned as uniformly as possible to reduce communication
volume and to balance the work load – a problem whose optimal solution is NP-hard to
compute. Given these challenges, performance experiments on real-world networks are
crucial for choosing the right framework for the problem.
In the context of distributed computing systems we briefly deviate from the previously

defined terms and speak of “nodes” as the single computers making up a distributed
system, and “vertices” as the nodes of a graph, to avoid confusion.

6.3.1 Distributed Programming Models and Frameworks

What follows is a brief description of the distributed computing frameworks considered
for the experimental study. Each of them implements a specific distributed programming
model.
MapReduce is a programming model for general distributed computation [DG08], and

is often considered the de facto standard for this purpose [KSV10]. Implementations of

54 comparison and evaluation

102 103 104 105 106 107 108 109 1010 1011

edges/s

BFS

ConnectedComponents

CoreDecomposition

ClusteringCoefficient

Diameter

CommunityDetectionLP

CommunityDetectionLM

PageRank

Betweenness

al
go

rit
hm

framework
networkit
igraph
graphtool

Figure 24: Processing rates of typical analytics tasks: NetworKit in comparison with igraph and
graph-tool

the model are provided by frameworks such as Hadoop. Although MapReduce is able
to express many common graph algorithms [LD10], it has limited practicality in this
area: For instance, many graph analysis algorithms are iterative. Since the MapReduce
model does not support iteration, this can only be reproduced by scheduling several
consecutive jobs, resulting in significant overhead. Workarounds like emitting the graph
structure make MapReduce implementations harder to develop and understand. We do
not include MapReduce in the experimental study, since the models we discuss in the
following offer more intuitive ways of expressing graph algorithms.
The PACT (“Parallelization Contract”) model [BEH+10] was proposed to extendMapRe-

duce in both functionality and optimization opportunities. It can be seen as a generaliza-
tion of MapReduce that offers additional operators. When writing a PACT program, the
programmer uses an operator by defining its user function and the input data it operates
on. The PACT compiler examines the structure of the resulting operator graph and infers
optimization strategy for the execution, e.g.rearranging operators in the graph. A PACT
program therefore has a declarative style, reminiscient of the SQL language. The PACT
model is implemented by the Apache Flink framework [Apa15a], written in Java.

Vertex-centric models express programs from a vertex-perspective. These programs
are executed iteratively for each node in the graph, performing a computation updating
the node’s state based on data collected from neighboring graph nodes. The models are
tailored to graph algorithms and by incorporating nodes and edges, they include the data

6.3 comparison with distributed computing frameworks 55

0.0 0.2 0.4 0.6 0.8 1.0 1.2
edges/s 1e6

networkit

igraph

graphtool

fr
am

ew
or

k

Figure 25: I/O rates of reading a graph from a GML file: NetworKit in comparison with igraph
and graph-tool

Staudt – Complex Network Analysis on Distributed Systems 9

Overview | Programming Models & Frameworks

Distributed Computing

General-Purpose Graph-Specific

MapReduce PACT Vertex-
Centric

Graph-
Centric

Pregel GAS

Apache
Giraph

GraphLab Giraph++Hadoop Apache Flink

Figure 26: Overview and classification of distributed pro- gramming models (black) and imple-
mentations (blue) considered

dependencies of graphs in the programming model. Among vertex-centric models we can
distinguish the conceptually similar Pregel and Gather-Apply-Scatter (GAS)models. In the
Pregel model [MAB+10], an iteration consists of a vertex-centric algorithm that is exe-
cuted on each processor, followed by a communication phase for data exchange between
processors. The Pregel model is implemented by the Apache Giraph framework [Apa15b],
in Java. GAS programs are iterative and vertex-centric like Pregel programs, but decom-
pose an iteration into the gather, apply and scatter phases. Accordingly, a GAS program
is defined by a gather, apply and scatter function. The gather and scatter functions
only have read access to vertex data, which allows them to be executed concurrently
without the need for synchronization. The GAS model is implemented by the GraphLab
framework [Dat15], written in C++.
One of the reasons why vertex programs are so intuitive is that the abstraction hides

details of the distributed execution, like graph partitioning. However, this information
could be used for algorithm-specific optimizations. The graph-centric model [TBC+13]
is a lower-level abstraction which provides information on the partition structure to the
programmer: A program is no longer expressed for one vertex, but for the whole partition.
In the graph-centric model, messages need to be sent to boundary vertices only, as we can
directly update vertex states of internal vertices. This reduces the amount of messages
that are sent and processed, possibly leading to faster convergence and execution time.

56 comparison and evaluation

name n m size
twitter-l 52M 1,963M 36.16
twitter 41M 1,468M 22.35
wikipedia-links-en 27M 601M 9.48
uk-2002 18M 261M 8.26
orkut-links 3M 117M 1.65
livejournal-links-d 4.8M 68M 0.99
livejournal-links-u 5M 49M 0.67
flickr-links 1.7M 15M 0.18
flickr-edges 105k 2.3M 0.02

Table 5: Properties of the networks (with n vertices and m edges) used in the experiments. Size
denotes the size of the graph stored in edge list format in GB.

The graph-centric model is implemented by the Giraph++ [TBC+13] framework, an
extension to Apache Giraph

6.3.2 Experimental Setup

For the experimental study, we select four common and typical network analysis prob-
lems, finding connected components and communities (cf. Sec. 2.4), and the calculation
of PageRank and clustering coefficients (cf. Sec. 2.3). The former two call for a decompo-
sition of the entire network into cohesive parts, and we opt for algorithms based on label
propagation (cf. 8.2.1) which lend themselves to vertex-centric implementations. The lat-
ter two yield a ranking of vertices by structural importance, PageRank through a simple
iterative rule, clustering coefficients based on the somewhat more intricate counting of
triangles.
Real world network data sets used for the experiments, including a variety of web

graphs and networks from online social media applications, are listed in Table 5.
For the experiments a cluster of 8 nodes was used. Each system has 24GB RAM

and runs an Intel Xeon X5355 CPU with 2.66 GHz and 8 cores on two processors. The
framework versions are GraphLab 2.2, Apache Giraph 1.1.0, Apache Flink 0.6 and NetworKit
3.3. NetworKit was run on a single node of the same type.

6.3.3 Results

The following plots show measured running times for the computation of connected com-
ponents (Fig. 27), community detection (Fig. 28), PageRank (Fig. 29) and clustering
coefficients (Fig. 30). We demonstrate that this distributed setting is able to process
graphs of almost two billion edges, using standard commodity hardware. Not all frame-
works perform equally well: Generally, GraphLab shows the best performance. Apache
Giraph is less efficient in most cases, but offers an out-of-core mechanism which enables
it to handle larger data sets. It is the only framework that could process the twitter-l
graph. Giraph++ unexpectedly performs worse than the vertex-centric models. However,
it must be remembered that only an experimental version of Giraph++, based on an
outdated version of Apache Giraph, is available. Apache Flink performed worse than the
vertex-centric frameworks. Also, larger graphs could not be processed for some of the

6.3 comparison with distributed computing frameworks 57

0.85.424.434.260.16.427.926.235.27.632.423.722.910.341.524.123

1 2 4 8

2.3

55.6
127 164

769

37.5
88 115

378

25.5
60

98
218

22.8
53 68

142

1

10

100

1000

NetworKit GraphLab Giraph Giraph++ Flink

orkut-links

0.8

5.4

24.4
34.2 60.1

6.4

27.9 26.2 35.2

7.6

32.4
23.7 22.9

10.3

41.5
24.1 23

0.1

1

10

100

NetworKit GraphLab Giraph Giraph++ Flink

flickr-links

21

141
329

619 708

123
282

469 570

1

10

100

1000

NetworKit GraphLab Giraph Giraph++ Flink

uk-2002

130
249

598 677

106
204

452 550

1

10

100

1000

GraphLab Giraph Giraph++ Flink

wikipedia-links-en

134.48

185.3

0

100

200

GraphLab Giraph

twitter

0.85.424.434.260.16.427.926.235.27.632.423.722.910.341.524.123

1 2 4 8

2.3

55.6
127 164

769

37.5
88 115

378

25.5
60

98
218

22.8
53 68

142

1

10

100

1000

NetworKit GraphLab Giraph Giraph++ Flink

orkut-links

0.8

5.4

24.4
34.2 60.1

6.4

27.9 26.2 35.2

7.6

32.4
23.7 22.9

10.3

41.5
24.1 23

0.1

1

10

100

NetworKit GraphLab Giraph Giraph++ Flink

flickr-links

21

141
329

619 708

123
282

469 570

1

10

100

1000

NetworKit GraphLab Giraph Giraph++ Flink

uk-2002

130
249

598 677

106
204

452 550

1

10

100

1000

GraphLab Giraph Giraph++ Flink

wikipedia-links-en

134.48

185.3

0

100

200

GraphLab Giraph

twitter

nodes

Figure 27: Running times [in seconds] of connected components computation.

algorithms due to issues with memory. Support for asynchronous execution is essential
for the label propagation community detection algorithm, since the heuristic may not
converge for synchronous execution due to label oscillation. The single-machine software
package NetworKit outperforms the distributed frameworks in almost all scenarios. It can
handle larger graphs than the distributed frameworks on a single machine, and its execu-
tion times are often only a fraction of the other frameworks’, due to efficient native code
and lack of overhead associated with the software machinery that enables and supports
distributed computing. Consequently, the decision for a distributed computing solution
for complex network analysis should come out of the necessity of massive graph data
volumes that exhaust typical main memory capacity.

58 comparison and evaluation

24.9100.585.252.750.3

030
6090
120

1 2 4 8

0.54

1.42

1.97 2.01

2.99

0

1

2

3

4

NetworKit GraphLab

flickr-edges

159 122148.6
8880.75 65

69

347

51

1

10

100

1000

Giraph Giraph++ Flink

16.7

48
57

41

87

0

30

60

90

120

NetworKit GraphLab

livejournal-links-u

698 633
322233

1411

1

10

100

1000

10000

Giraph Giraph++ Flink

24.9

100.5

85.2

52.7 50.3

0

30

60

90

120

NetworKit GraphLab

orkut-links

1462 1318
648

179

2511

1

10

100

1000

10000

Giraph Giraph++ Flink

27.2

140

0

30

60

90

120

150

NetworKit GraphLab

uk-2002

1856

1

10

100

1000

10000

Giraph

258

0

100

200

300

GraphLab

1856

1

10

100

1000

10000

Giraph

wikipedia-links

0.85.424.434.260.16.427.926.235.27.632.423.722.910.341.524.123

1 2 4 8

2.3

55.6
127 164

769

37.5
88 115

378

25.5
60

98
218

22.8
53 68

142

1

10

100

1000

NetworKit GraphLab Giraph Giraph++ Flink

orkut-links

0.8

5.4

24.4
34.2 60.1

6.4

27.9 26.2 35.2

7.6

32.4
23.7 22.9

10.3

41.5
24.1 23

0.1

1

10

100

NetworKit GraphLab Giraph Giraph++ Flink

flickr-links

21

141
329

619 708

123
282

469 570

1

10

100

1000

NetworKit GraphLab Giraph Giraph++ Flink

uk-2002

130
249

598 677

106
204

452 550

1

10

100

1000

GraphLab Giraph Giraph++ Flink

wikipedia-links-en

134.48

185.3

0

100

200

GraphLab Giraph

twitter

nodes

Figure 28: Running times [in seconds] of community detection on 1, 2, 4 and 8 nodes. The flash
symbol indicates that a graph is too large to be processed using the given number of
computing nodes.

0.85.424.434.260.16.427.926.235.27.632.423.722.910.341.524.123

1 2 4 8

2.3

55.6
127 164

769

37.5
88 115

378

25.5
60

98
218

22.8
53 68

142

1

10

100

1000

NetworKit GraphLab Giraph Giraph++ Flink

orkut-links

0.8

5.4

24.4
34.2 60.1

6.4

27.9 26.2 35.2

7.6

32.4
23.7 22.9

10.3

41.5
24.1 23

0.1

1

10

100

NetworKit GraphLab Giraph Giraph++ Flink

flickr-links

21

141
329

619 708

123
282

469 570

1

10

100

1000

NetworKit GraphLab Giraph Giraph++ Flink

uk-2002

130
249

598 677

106
204

452 550

1

10

100

1000

GraphLab Giraph Giraph++ Flink

wikipedia-links-en

134.48

185.3

0

100

200

GraphLab Giraph

twitter

nodes

Figure 29: Running times [in seconds] of PageRank.

55

183

789

154

760

61

410

34

219

1

10

100

1000

NetworKit GraphLab Giraph

flickr-edges

1 2 4 8 nodes

Figure 30: Running times [in seconds] of the clustering coefficient computation for the
flickr-edges graph.

CONCLUS ION OF PART I I

The NetworKit project exists at the intersection of graph algorithm research and network
science. Its contributors develop and collect state-of-the-art algorithms for network anal-
ysis tasks and incorporate them into ready-to-use software. The open-source package is
under continuous development. The result is a tool suite of network analytics kernels,
network generators and utility software to explore and characterize large network data
sets on typical multicore computers. Part II detailed techniques that allow to scale to
large networks, including appropriate algorithm patterns (parallelism, heuristics, data
structures) and implementation patterns (e.g. modular design). The interface provided
by our Python module allows domain experts to focus on data analysis workflows instead
of the intricacies of programming. This is especially enabled by a new front end for ex-
plorative network analysis that generates comprehensive statistical reports on structural
features of the network. Basic programming skills are required to operate NetworKit via
its Python interface, but enables users to seamlessly integrate our toolkit into the Python
ecosystem of data analysis tools. The hybrid architecture of core algorithms and data
structures written in C++ and a Python front end, connected via the Cython tool chain,
enables us to combine the best of both worlds in terms of performance and usability.
Among similar software packages, NetworKit yields the best performance for common

analysis workflows. Our experimental study showed that NetworKit is capable of quickly
processing large-scale networks for a variety of analytics kernels in a reliable manner. This
translates into faster workflow and extended analysis capabilities in practice. We recom-
mend NetworKit for the comprehensive structural analysis of large complex networks,
as well as processing large batches of smaller networks. With fast parallel algorithms,
scalability is in practice primarily limited by the size of the shared memory: A stan-
dard multicore workstation with 256 GB RAM can therefore process up to 1010 edge
graphs. NetworKit also outperforms comparable implementations of graph algorithms in
different distributed graph processing frameworks. It can handle larger graphs than the
distributed frameworks on a single machine, and its execution times are often only a
fraction of their time. This shows how significant performance advantages can be gained
from tapping the full potential of shared-memory parallel programming for the analysis
of large volumes of network data as long as they can still be fit into main memory.
With NetworKit we followed an open development model, publishing the source code

under a minimally restrictive free software license and hosting it in a public reposi-
tory, and incorporating code from a diverse set of contributors, including department
colleagues, students and external collaborators. We also focused on product quality in
terms of availability, practicality, usability, and documentation. This approach is not very
common for software built in an academic setting, where software is frequently written
by individuals or small groups only, and takes the form of prototypes built for generating
data for publications. However, the experience of working on the NetworKit project has
highlighted the benefits of this approach. Sharing a code base with others leads to a
process of continuous peer review and is very helpful in building technical expertise. The
efficiency gains we experienced from a shared software framework within our working
groups, as well as the occasional positive feedback from users all over the world, came as

59

60 comparison and evaluation

returns of the singificant time invested into project maintenance. An open development
model also promotes good scientific practice, e.g. by facilitating reproduction of results.

Part III

C O M M U N I T Y D E T E C T I O N I N C O M P L E X N E T WO R K S

7
INTRODUCTION TO COMMUNITY DETECTION

A student had created a clever pattern in Game of Life, and proudly showed it
to Moore: "I can prove that it’s behavior is undecidable, since it is equivalent to
the Halting Problem". Moore ripped out the power cord from the computer, and
the pattern vanished. "It has halted" he said. The student was enlightened, but the
pattern was lost.

– CS koan by John Grillo

Community detection in networks is the task of dividing a network into subgraphs
which are internally densely and externally sparsely connected. Among manifold applica-
tions, community detection has been used to counteract search engine rank manipulation
[Sch07], to discover scientific communities in publication databases [SSM+12], to identify
functional groups of proteins in cancer research [JCZB06], and to organize content on so-
cial media sites [GLMY11]. This chapter discusses definitions, restrictions, formalizations,
and methodic, scalable heuristics (Chapter 8).

7.1 modularity

Extensive research on community detection in networks has given rise to a variety of def-
initions of what constitutes a good community and a variety of methods for finding such
communities, many of which are described in surveys by Schaeffer [Sch07] and Fortunato
[For10]. Among these definitions, the lowest common denominator is that a community
is an internally dense node set with sparse connections to the rest of the graph. Areas
of high edge density in a network can be treated as overlapping sets, and methods for
detecting overlapping communities exist [PDFV05], but we restrict ourselves to finding
disjoint communities, i.e. a partition (Def. 18) of the node set which uniquely assigns
a node to a community. The quality measure modularity [GN02] formalizes the notion
of a good partition into communities. For a given partition of the node set, modularity
compares its coverage (fraction of edges within communities) to an expected value based
on a random edge distribution model which preserves the degree distribution.

Definition 22 (Modularity). For a graph G = (V ,E) and disjoint communities ζ =

{C1, . . . ,Ck} of G, modularity is defined as

M(G, ζ) :=
∑
C∈ζ

|E(C)|
|E|︸ ︷︷ ︸

coverage

−
∑
C∈ζ

(
∑
v∈C deg(v))

2

(2 · |E|)2︸ ︷︷ ︸
expected coverage

(15)

�

The specific null model was chosen in order to take the degree distribution of G into
account, an important step since the node degrees of real complex networks deviate
strongly from those of a simple (Erdős–Rényi) random graph. This null model effectively
compares the coverage of the given partition on G with its coverage on a randomized

63

64 introduction to community detection

replica according to the Chung-Lu generative model (see Chapter 12). However, one
might criticize singling out the degree distribution as the only property that should to
be conserved, which opens up the possibility for other null models. Optimizing modu-
larity is NP-hard [BDG+08], but efficient heuristics will be discussed in the following.
Modularity maximization has become a standard technique for community detection for
several reasons: As a parameter-free method, modularity requires no prior knowledge
about the network and therefore facilitates exploratory analysis. Its formulation makes
it suitable for incremental maximization (as described in Chapter 8), leading to efficient
algorithms. Not the least, the measure has been well-studied and often applied to real
data – a somewhat circular but nonetheless relevant argument for its adoption.

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

2526

27
28

29

30 31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

Figure 31: Node color represents modularity-driven communities

It is worth noting the following properties and behaviors of modularity [Gör10]:

• Isolated nodes have no impact on modularity.
• A partition with maximum modularity has no cluster that consists of a single node
of degree 1. Hence such satellite nodes are always assigned to the community of
their neighbor.
• A partition with maximum modularity does not include disconnected communities.
• Nonlocal behavior: Changes to the graph may affect the community membership
of a node even though its direct neighborhood has not changed.
• Scaling behavior and resolution limit [FB07]: The size and structure of communities
in the modularity-optimal solution depend on the number of edges in G, with a bias
towards communities of unform size ≈

√
m. Consequently, scaling up the network

may result in the merger of communities without their internal or external linkage
having changed.

While we should be aware of these properties and any resulting, possibly counter-
intuitive behaviors in applications, none of them disqualify modularity in comparison
with alternative techniques. The frequently criticized resolution limit in particular can
be remedied by applying a parametrized version of the measure, termed multi-resolution
modularity [Lam10].

Definition 23 (Multi-Resolution Modularity). For a graph G = (V ,E) and disjoint
communities ζ = {C1, . . . ,Ck} of G, multi-resolution modularity is defined as

7.1 modularity 65

Mγ(G, ζ, γ) :=
∑
C∈ζ

|E(C)|
|E|︸ ︷︷ ︸

coverage

−γ·
∑
C∈ζ

(
∑
v∈C deg(v))

2

(2 · |E|)2︸ ︷︷ ︸
expected coverage

(16)

where γ is in the range [0, 2m]. �

Multiplying the expected coverage term with a parameter γ allows us to influence the
resolution, γ = 0 yielding a single community, γ = 1 being standard modularity and
γ = 2m producing singleton communities. The approach reaches its limits in networks
with a very heterogeneous community size distribution, since it is not possible to tune
resolution to simultaneously avoid a bias towards large and towards small communities,
a behavior that is conjectured to be a general problem of methods based on global
optimization [LF11].

Another point worth discussing is whether modularity can meaningfully be treated
and interpreted as a property of a given network, as occasionally seen in the literature.
Its use as a measure of network structure is problematic in multiple ways: First of all,
modularity is a function of a graph and a specific partition of the node set, and the
latter cannot be omitted. A large variety of community detection algorithms (cf. Sec.
8.1) are in use, which may be nondeterministic or may arrive at different local optima
depending on subtle implementation differences, so that reported modularity values may
be difficult to reproduce. Now if the network science community were to standardize
and agree on a single deterministic algorithm (which seems unlikely given the current
state of the art), would the reported modularity values be meaningful indicators of the
network? Does the achieved modularity allow conclusions about the “strength” or the
nature of the community structure? Certainly it is not independent from the network’s
patterns of edge density and sparsity, but interpretation and comparison is very difficult,
in part due to the above-mentioned properties. First and foremost, modularity is clearly
not independent of network size, and comparison between networks of different scale
becomes meaningless. In conclusion, it is sensible to limit the use of modularity to a tool
for comparison among partitions of a given network, not for comparison of networks.

66 introduction to community detection

103 104 105 106 107 108

m

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

m
od

ul
ar

ity

Figure 32: Erdős–Rényi random graphs do not have a significant community structure. Nonethe-
less modularity values of communities found by the PLM algorithm (see Chapter 8)
decrease with the network size, while the (lack of) community structure essentially
stays the same. Linear regression line and residuals shown.

Modularity is also geared towards the global community detection problem, assigning
each node of the network to a community, and the problem of detecting communities in
a part of the network only needs different approaches (cf. Chapter 9).

7.2 alternative approaches

In the following we focus on modularity as a measure of how well a given partition cap-
tures the community structure of a network, and an objective function for explorative
community detection. Modularity is well-tested, well-understood and forms the basis of
several scalable heuristics. The evaluation in Chapter 8 uses modularity and is limited
to a set of algorithms that implicitly or explicitly target modularity. However, this ap-
proach is not without alternatives, which should be briefly mentioned here. Recently, an
alternative quality function named surprise has been introduced [AM11]. As advantages
over modularity, the authors claim that surprise performs better in synthetic benchmarks
(see Sec. 7.3) and does not have a resolution limit to the same extent as modularity. A
more in-depth analysis of suprise is provided in the PhD thesis of Andrea Kappes, who
shows that surprise optimization is NP-hard as well, and clarifies experimentally that
suprise-driven community detection yields significantly more and smaller clusters com-
pared to modularity, and far more single nodes assigned to a community of one [Kap15].
The Infomap algorithm framework [RAB09] (http://www.mapequation.org) takes an
approach based on information-theoretic encodings of random walks (represented as se-
quences of visited nodes). Because random walks tend to get trapped within communities,
leading to redundant node sequences, the length of their encodings can be used to de-
tect communities. Infomap does not exhibit the scaling behavior and resolution limit
of modularity-maximization. Another family of methods is based on fitting a stochastic
block model to the given network, i.e. partitioning the node set into “blocks” and estimat-

http://www.mapequation.org

7.3 evaluation of community detection methods 67

ing intra- and inter-block edge probabilities so that blocks capture communities [KN11]
[DKMZ11].

7.3 evaluation of community detection methods

In addition to running time, community detection algorithms need to be evaluated with
respect to accuracy. Ideally experiments would be based on a desired partition for the
algorithm to detect, which would serve as ground truth. A suitable ground truth partition
of a network is a partition which generates internal density and external sparsity of edges.
However, this is often out of reach when dealing with real-world network data. It is true

that some of the network data sets frequently used for network algorithm engineering have
associated “ground truth communities” data that assigns the node set into subsets [LK14]
(e.g. an online social network with user-defined groups). The scare quotes are intentional:
It is a problematic assumption that a community detection method is better if it finds
these sets with higher accuracy. Given such a “ground truth”, we need to ask whether
it is exactly this partition that coincides with the pattern of edge density and sparsity
that we want to detect. No evidence for this is provided in the case of [LK14]. While
it is plausible some influence, it is unlikely that it will coincide with what modularity-
maximization yields, or any formal, graph-based definition of communities. Community
structure is a multi-factorial phenomenon in real networks, driven by multiple node
attributes and other factors, rarely reducible to a single node attribute. Hence, for the
vast majority of real-world networks, we lack a ground-truth partition that is reliable in
the context of evaluating and tuning general community detection algorithms.
Consequently, to measure the accuracy of a method for algorithm engineering purposes,

we need to rely on generative network models (which are discussed mainly in Chapter 12)
to produce synthetic graphs with patterns of edge density and sparsity in a controlled
manner. A suitable and established method used several times in this thesis (Sec. 8.4.7,
Sec. 9.5.1) is the LFR generator [LF09a]. The generator produces graphs that resem-
ble real complex networks and contain dense communities which are the more sparsely
connected the lower the mixing parameter µ. Algorithm performance is measured as the
accuracy in recognizing the ground truth communities supplied by the generator, in view
of increasing difficulty.
In applications of community detection methods, one should look for further validation

of the detected communities beyond good modularity. This might include questions on
how the solution helps to formulate hypotheses about real-world phenomena on the basis
of network data. Whether one solution is more appropriate than another may therefore
strongly depend on the domain of the network. However, this kind of domain-specific
evaluation goes beyond the scope of this thesis.

8
ENGINEER ING PARALLEL ALGORITHMS FOR COMMUNITY
DETECTION

Being snowed in together through the winter months will strain even the closest of
friendships; Yíwen and Hwídah were no exception to this rule.

Hwídah was irritated enough when her lanky roommate began dancing silently
around their quarters, swinging her arms and legs within inches of Hwídah’s nose.
But Hwídah’s patience came to an end one day when Yíwen set up an electric
guzheng in the center of the room and began playing it—or rather, began plucking
its strings inexpertly to produce a series of dissonant, tuneless, tempoless sounds.
The interlude lasted a minute, after which Yíwen sat down and scribbled on some
papers. But then she rose and repeated the performance.

After the tenth iteration, Hwídah hurled a sandal right into Yíwen’s backside,
causing the girl to yelp and turn around.

“What,” growled Hwídah, “are you doing?”
Some of Yíwen’s papers fluttered to the floor. Hwídah snatched them up. They

were printouts of quicksort implemented in different languages: C, Lisp, Perl, even
Prolog. Each was covered with musical notations in red ink.

“A thousand pardons for my rudeness,” said Yíwen. “I have been attempting to
encode certain algorithms as movements through space, or notes in the air. If the
result is not pleasing I change my encoding and try again.”

“Why?” asked Hwídah.
“To see what I will discover by doing it,” answered Yíwen. “We speak often of the

beauty or elegance of code. Perhaps, without knowing it, we have been composing
choreographies for information to dance to, and we find certain ones pleasing because
they appeal to some deeper aesthetic sense common to other forms of human art.
If so, then these arts would be connected. I seek that connection.”

Hwídah considered this.
“Thus far, the music of quicksort eludes me,” continued Yíwen with a sigh. “Per-

haps my experiment is as foolish as translating songs into code and attempting to
compile it. Perhaps the music of quicksort is best played by machines for their own
appreciation, and not ours. Shall I quit this endeavor, and spare your nerves?”

In answer, Hwídah produced two bits of cotton from her nightstand and put them
in her ears. Yíwen bowed and returned to her instrument. Thus was peace restored.

– from The Codeless Code

Despite extensive research on heuristics for community detection in networks, only few
parallel codes exist, although parallelism will be necessary to scale to the data volume
of real-world applications. This deficit in computing capability is addressed by a flexible
and extensible community detection framework with shared-memory parallelism. Within
this framework efficient parallel community detection heuristics are designed and imple-
mented: A parallel label propagation scheme (PLP); the first large-scale parallelization
of the well-known Louvain method, as well as an extension of the method adding refine-
ment; and an ensemble scheme combining the above. In extensive experiments driven by
the algorithm engineering paradigm the most successful parameters and combinations of
these algorithms are identified, and compared with state-of-the-art competitors. The pro-
cessing rate of the fastest algorithm (PLP) often reaches 50 M edges/second. The parallel
Louvain method (PLM) and its variant with refinement is recommended as both quali-

69

70 engineering parallel algorithms for community detection

tatively strong and fast. The presented methods prove highly scalable and are suitable
for massive graphs with billions of edges.

This chapter is based on joint work with Henning Meyerhenke. Michael Hamann con-
tributed additional optimizations for the PLM algorithm. Results were first presented
at International Conference on Parallel Processing 2013 in Lyon [SM13]. An extended
paper appeared in the IEEE Transactions on Parallel and Distributed Systems [SM16].
The authors thank Pratistha Bhattarai for help with the experimental study, and Michael
Hamann for optimizations to the implementation of the PLM algorithm.

8.1 state of the art

This section gives a short overview over related efforts on building high-performance com-
munity detection algorithms and implementations. Among efficient heuristics for commu-
nity detection we can distinguish between those based on community agglomeration and
those based on local node moves. Agglomerative algorithms successively merge pairs of
communities so that an improvement with respect to community quality is achieved. In
contrast, local movers search for quality gains which can be achieved by moving a node
to the community of a neighbor.

In order to clarify the state of the art, we treat the 10th DIMACS Implementation
Challenge [BMSW13] as an important benchmark. This scientific competition accepted
submissions of implementations for the community detection problem, and compared
them with regards to running time and achieved modularity on a wide set of graphs.
A globally greedy agglomerative method known as CNM [CNM04] runs in O(md logn)

for graphs with n nodes and m edges, where d is the depth of the dendrogram of merg-
ers and typically d ∼ logn. Among the few parallel implementations competing in the
DIMACS challenge, Fagginger Auer and Bisseling [FB13] submitted an agglomerative
algorithm with an implementation for both the GPU (using NVIDIA CUDA) and the
CPU (using Intel TBB). The algorithm weights all edges with the difference in modu-
larity resulting from a contraction of the edge, then computes a heavy matching M and
contracts according to M . This process continues recursively with a hierarchy of succes-
sively smaller graphs. The matching procedure can adapt to star-like structures in the
graph to avoid insufficient parallelism due to small matchings. In the challenge, the CPU
implementation competed as CLU_TBB and proved exceptionally fast. Independently,
Riedy et al. [RMEB13] developed a similar method, which follows the same principle but
does not provide the adaptation to star-like structures. An improved implementation,
labeled CEL in the following, corresponds to the description in [RB13].
Community detection by label propagation belongs to the class of local move heuris-

tics. It has originally been described by Raghavan et al. [RAK07]. Several variants of
the algorithm exist, one of them (under the name peer pressure clustering) is due to
Gilbert et al. [GRS07]. The latter use the algorithm as a prototype application within
a parallel toolbox that uses numerical algorithms for combinatorial problems. Unfortu-
nately, Gilbert et al. report running times only for a different algorithm, which solves a
very specific benchmark problem and is not applicable in our context. A variant of label
propagation by Soman and Narang [SN11] for multicore and GPU architectures exists,
which seeks to improve quality by re-weighting the graph.

A locally greedy multilevel-algorithm known as the Louvain method [BGLL08] com-
bines local node moves with a bottom-up multilevel approach. Bhowmick and Srinivasan

8.1 state of the art 71

[BS13] presented a previous parallel version of the algorithm. According to their experi-
mental results, our implementation is about four orders of magnitude faster. Noack and
Rotta [RN11] evaluate similar sequential multilevel algorithms, which combine agglom-
eration with refinement.
Ovelgönne and Geyer-Schulz [OGS13] apply the ensemble learning paradigm to com-

munity detection. They develop what they call the Core Groups Graph Clusterer scheme,
which we adapt as the Ensemble Preprocessing (EPP) algorithm. They also introduce an
iterated scheme in which the core communities are again assigned to an ensemble, creat-
ing a hierarchy of solutions/coarsened graphs until quality does not improve any more.
Within this framework, they employ Randomized Greedy (RG), a variant of the afore-
mentioned CNM algorithm. It avoids a loss in solution quality that arises from highly
unbalanced community sizes. The resulting CGGC algorithm emerged as the winner of the
Pareto part of the DIMACS challenge, which related quality to speed according to spe-
cific rules. Recently Ovelgönne [Ove13] presented a distributed implementation (based
on the big data framework Hadoop) of an ensemble preprocessing scheme using label
propagation as a base algorithm. This implementation processes a 3.3 billion edge web
graph in a few hours on a 50 machine Hadoop cluster [Ove13]. (Our OpenMP-based im-
plementation of the similar EPP algorithm requires only 4 minutes on a shared-memory
machine with 16 physical cores.)
From an algorithmic perspective, disjoint community detection is related to graph par-

titioning (GP). Although the problems are different in important aspects (unbalanced vs
balanced blocks, unknown vs known number of blocks, different objectives), algorithms
such as the Louvain method or PLMR bear conceptual resemblance to multilevel graph
partitioners. Exploiting parallelism has been studied extensively for GP. Several estab-
lished tools are discussed in recent surveys [BS11] [BMS+14b], most of them for machines
with distributed memory. Often employed techniques are parallel matchings for coarsen-
ing and parallel variants of Fiduccia-Mattheyses for local improvement. These techniques
are at best partially helpful in our scenario since vanilla matching-based coarsening is
ineffective on complex networks and distributed-memory parallelism is not necessary for
us.

Apart from the 10th DIMACS Implementation Challenge, there are several more recent
related efforts. A study on multithreaded GP by LaSalle and Karypis [LK13] explores the
design space of multithreaded GP algorithms. Their results provide interesting insights,
but are not completely transferable to our scenario. Following publication of our work,
they presented Nerstrand [LK15], a fast parallel community detection algorithm based
on modularity maximization and the multilevel paradigm, using different aggregation
schemes. They use a similar experimental setup, also based on the 10th DIMACS Imple-
mentation Challenge benchmark set, and report that Nerstrand yields modularity values
comparable to PLMR several times faster on a subset of graphs of the benchmark set.
However, they compare against an earlier version of the PLMR implementation that does
not incorporate the latest performance improvements (described in Sec. 8.2.2). Consider-
ing that they yielded a speedup of about factor 2, Nerstrand still seems to have an edge
over the current PLM implementation, though by a smaller margin. They find the PLP
implementation to be faster than Nerstrand, albeit yielding lower modularity.

We observe that most efficient disjoint community detection heuristics make use of
agglomeration or local node moves, possibly in combination with multilevel or ensemble
techniques. Both basic approaches can be adapted for parallelism, but this is currently

72 engineering parallel algorithms for community detection

the exception rather than the norm in our scenario. In this work we compare our own
algorithms with the best currently available, sequential and parallel alike.

8.2 algorithms

8.2.1 Parallel Label Propagation (PLP)

Algorithm: Community detection by label propagation, as originally introduced by Ragha-
van etal.[RAK07], extracts communities from a labelling V →N of the node set. Initially,
each node is assigned a unique label, and then multiple iterations over the node set are
performed: In each iteration, every node adopts the most frequent label in its neigh-
borhood (breaking ties arbitrarily). Densely connected groups of nodes thus agree on
a common label, and eventually a globally stable consensus is reached, which usually
corresponds to a good solution for the network. Label propagation therefore finds com-
munities in nearly linear time: Each iteration takes O(m) time, and the algorithm has
been empirically shown to reach a stable solution in only a few iterations, though not
mathematically proven to do so. The number of iterations seems to depend more on the
graph structure than the size. More theoretical analysis is done by [KPS13]. The algo-
rithm can be described as a locally greedy coverage maximizer, i.e. it tries to maximize
the fraction of edges which are placed within communities rather than across. With its
purely local update rule, it tends to get stuck in local optima of coverage which implicitly
are good solutions with respect to modularity: A label is likely to propagate through and
cover a dense community, but unlikely to spread beyond bottlenecks. The local update
rule and the absence of global variables make label propagation well-suited for a parallel
implementation.
Algorithm 1 denotes PLP, our parallel variant of label propagation. We adapt the

algorithm in a straightforward way to make it applicable to weighted graphs. Instead of
the most frequent label, the dominant label in the neighborhood is chosen, i.e. the label
l that maximizes ∑u∈N(v):ζ(u)=l ω(v,u). We continue the iteration until the number of
nodes which changed their labels falls below a threshold θ.
Implementation: We make a few modifications to the original algorithm. In the original

description [RAK07], nodes are traversed in random order. Since the cost of explicitly
randomizing the node order in parallel is not insignificant, we make this optional and
rely on some randomization through parallelism otherwise. We also observe that forgoing
randomization has a negligible effect on quality. We avoid unnecessary computation by
distinguishing between active and inactive nodes. It is unnecessary to recompute the label
weights for a node whose neighborhood labels have not changed in the previous iteration.
Nodes which already have the heaviest label become inactive (Algorithm 1, line 14), and
are only reactivated if a neighboring node is updated (line 12). We restrict iteration to
the set of active nodes. Iterations are repeated until the number of nodes updated falls
below a threshold value. The motivation for setting threshold values other than zero is
that on some graph instances, the majority of iterations are spent on updating only a
very small fraction of high-degree nodes (see Figure 33 for an example). Since preliminary
experiments have shown that time can be saved and quality is not significantly degraded
by simply omitting these iterations, we set an update threshold of θ = n · 10−5. Note
that we do not use the termination criterion specified in [OGS13] as it does not lead to

8.2 algorithms 73

Algorithm 1: PLP: Parallel Label Propagation
Input: graph G = (V ,E)
Result: communities ζ : V →N

1 parallel for v ∈ V
2 ζ(v)← id(v)

3 updated← n

4 Vactive ← V

5 while updated > θ do
6 updated← 0
7 parallel for v ∈ {u ∈ Vactive : deg(u) > 0}
8 l? ← arg maxl

{∑
u∈N(v):ζ(u)=l ω(v,u)

}
9 if ζ(v) 6= l? then

10 ζ(v)← l?

11 updated← updated+ 1
12 Vactive ← Vactive ∪N(v)

13 else
14 Vactive ← Vactive \ {v}

15 return ζ

convergence on some inputs. The original criterion is to stop when all nodes have the
label of the relative majority in their neighborhood [RAK07].
Label propagation can be parallelized easily by dividing the range of nodes among

multiple threads which operate on a common label array. This parallelization is not free
of race conditions, since by the time the neighborhood of a node u is evaluated in iter-
ation i to set ζi(u), a neighbor v might still have the previous iteration’s label ζi−1(v)

or already ζi(v). The outcome thus depends on the order of threads. However, these
race conditions are acceptable and even beneficial in an ensemble setting since they in-
troduce random variations and increase base solution diversity. This also corresponds to
asynchronous updating, which has been found to avoid oscillation of labels on bipartite
structures [RAK07]. When dealing with scale-free networks whose degree distribution
follows a power law, assigning node ranges of equal size to each thread will lead to load
imbalance as computational cost depends on the node degree. Instead of statically divid-
ing the iteration among the threads, guided scheduling (with #pragma omp parallel
for schedule(guided)) assigns node ranges of decreasing size from a queue to available
threads. This way it can help to overcome load balancing issues, since threads processing
large neighborhoods will receive fewer vertices in later phases of the dynamical assign-
ment process. This introduces some overhead, but we observed that guided scheduling
is generally superior to statically parallelized loops for algorithms iterating over graph
adjacencies with heterogeneous degree distributions.

8.2.2 Parallel Louvain Method (PLM)

Algorithm: The Louvain method for community detection was first presented by [BGLL08].
It can be classified as a locally greedy, bottom-up multilevel algorithm and uses modu-
larity as the objective function. In each pass, nodes are repeatedly moved to neighboring
communities such that the locally maximal increase in modularity is achieved, until the

74 engineering parallel algorithms for community detection

communities are stable. Algorithm 2 denotes this move phase. Then, the graph is coars-
ened according to the solution (by contracting each community into a supernode) and
the procedure continues recursively, forming communities of communities. Finally, the
communities in the coarsest graph determine those in the input graph by direct prolon-
gation.

Computation of the objective function modularity is a central part of the algorithm.
Let ω(u,C) :=

∑
{u,v}:v∈C ω(u, v) be the weight of all edges from u to nodes in community

C, and define the volume of a node and a community as vol(u) :=
∑
{u,v}:v∈N(u)ω(u, v) +

2 · ω(u,u) and vol(C) :=
∑
u∈C vol(u), respectively. Recall that the modularity of a

solution is defined as in Eq.17. (The computation of multi-resolution modularity works
analogously, see Section 7.1 for details).

mod(ζ,G) :=
∑
C∈ζ

(
ω(C)

ω(E)
− vol(C)2

4ω(E)2

)
(17)

Note that the change in modularity resulting from a node move can be calculated by
scanning only the local neighborhood of the node, because the difference in modularity
when moving node u ∈ C to community D is:

∆mod(u, C → D) =
ω(u,D \ {u})− ω(u,C \ {u})

ω(E)

+
(vol(C \ {u})− vol(D \ {u})) · vol(u)

2 · ω(E)2

(18)

We introduce a shared-memory parallelization of the Louvain method (PLM, Algorithm
3) in which node moves are evaluated and performed in parallel instead of sequentially.
This approach may work on stale data so that a monotonous modularity increase is
no longer guaranteed. Suppose that during the evaluation of a possible move of node u
other threads might have performed moves that affect the ∆mod scores of u. In some cases
this can lead to a move of u that actually decreases modularity. Still, such undesirable
decisions can also be corrected in a following iteration, which is why the solution quality
is not necessarily worse. Working only on independent sets of vertices in parallel does not
provide a solution since the sets would have to be very small, limiting parallelism and/or
leading to the undesirable effect of a very deep coarsening hierarchy. Concerns about
termination turned out to be theoretical for our set of benchmark graphs, all of which
can be successfully processed with PLM. The community size resolution produced by PLM
can be varied through a parameter γ in the range [0, 2m], 0 yielding a single community,
1 being standard modularity and 2m producing singletons. Tuning this parameter is a
possible practical remedy [Lam10] against modularity’s resolution limit.
Implementation: The main idea of (Algorithm 3) is to parallelize both the node move

phase and the coarsening phase of the Louvain method. Since the computation of the
∆mod scores is the most frequent operation, it needs to be very fast. We store and
update some interim values, which is not apparent from the high-level pseudocode in
Algorithm 3. An earlier implementation associated with each node a map in which the
edge weight to neighboring communities was stored and updated when node moves oc-
curred. A lock for each vertex v protected all read and write accesses to v’s map since
std::map is not thread-safe. Meant to avoid redundant computation, we later discov-
ered that this introduces too much overhead (map operations, locks). Recomputing the

8.2 algorithms 75

Algorithm 2: move: Local node moves for modularity gain
Input: graph G = (V ,E), communities ζ : V →N

Result: communities ζ : V →N

1 repeat
2 parallel for u ∈ V
3 δ ← maxv∈N(u) {∆mod(u, ζ(u)→ ζ(v))}
4 C ← ζ(arg maxv∈N(u) {∆mod(u, ζ(u)→ ζ(v))})
5 if δ > 0 then
6 ζ(u)← C

7 until ζ stable
8 return ζ

Algorithm 3: PLM: Parallel Louvain Method
Input: graph G = (V ,E)
Result: communities ζ : V →N

1 ζ ← ζsingleton(G)
2 ζ ← move(G, ζ)
3 if ζ changed then
4 [G′,π]← coarsen(G, ζ)
5 ζ ′ ← PLM(G′)
6 ζ ← prolong(ζ ′, G, G′, π)
7 return ζ

weight to neighbor communities each time a node is evaluated turned out to be faster.
The current implementation only stores and updates the volume of each community. An
additional optimization to the implementation eliminated the overhead associated with
using an std::map to store for each node the weights of edges leading to neighboring
communities. The mechanism was replaced by one std::vector for each of the p threads,
leading to an acceleration of a factor of 2 on average, at the cost of a memory overhead of
O(p ·n). This implementation technique saves computational cost for the construction of
the red-black tree data structure of std::map, and has been used before for the original
implementation of the Louvain method. The former version (referred to as PLM*) can
still be used optionally under tighter memory constraints.
Graph coarsening according to communities is performed in a straightforward way

such that the nodes of a community in G are aggregated to a single node in G′. An edge
between two nodes in G′ receives as weight the sum of weights of inter-community edges
in G, while self-loops receive the weight of intra-community edges. A mapping π of nodes
in the fine graph to nodes in the coarse graph is also returned. In earlier versions of PLM,
the graph coarsening phase proved to be a major sequential bottleneck. We address this
problem with a parallel coarsening scheme: Each thread first scans a portion of the edges
in G and constructs a coarse graph G′t of its own. These partial graphs are then combined
into G′ by processing each node of G′ in parallel and merging the adjacencies stored in
each G′t.

76 engineering parallel algorithms for community detection

8.2.3 Parallel Louvain Method with Refinement (PLMR)

Following up on the work by Noack and Rotta on multilevel techniques and refinement
heuristics [RN11], we extend the Louvain method by an additional move phase after
each prolongation. This makes it possible to re-evaluate node assignments in view of
the changes that happened on the next coarser level, giving additional opportunities for
modularity improvement at the cost of additional iterations over the node set in each
level of the hierarchy. We denote the method and implementation as PLMR for Parallel
Louvain Method with Refinement. We present a recursive implementation in Algorithm
4 which uses the same concepts as PLM.

Algorithm 4: PLMR: Parallel Louvain Method with Refinement
Input: graph G = (V ,E)
Result: communities ζ : V →N

1 ζ ← ζsingleton(G)
2 ζ ← move(ζ,G)
3 if ζ changed then
4 [G′,π]← coarsen(G, ζ)
5 ζ ′ ← PLMR(G′)
6 ζ ← prolong(ζ ′, G, G′, π)
7 ζ ← move(ζ,G)
8 return ζ

8.2.4 Ensemble Preprocessing (EPP)

In machine learning, ensemble learning is a strategy in which multiple base classifiers or
weak classifiers are combined to form a strong classifier. Classification in this context can
be understood as deciding whether a pair of nodes should belong to the same community.
We follow this general idea, which has been applied successfully to graph clustering before
[OGS13]. Subsequently, we describe an ensemble techniques EPP. We also briefly describe
algorithms for combining multiple base solutions.

Algorithm 5: EPP: Ensemble Preprocessing
Input: graph G = (V ,E), ensemble size b
Result: communities ζ : V →N

1 parallel for i ∈ [1, b]
2 ζi ← Basei(G)
3 ζ̄ ← combine(ζ1, . . . , ζb)
4 G′,π ← coarsen(G, ζ̄)
5 ζ ′ ← Final(G′)
6 ζ ← prolong(ζ ′,G,G′,π)
7 return ζ

In a preprocessing step, assign G to an ensemble of base algorithms. The graph is
then coarsened according to the core communities ζ̄, which represent the consensus of
the base algorithms. Coarsening reduces the problem size considerably, and implicitly
identifies the contested and the unambiguous parts of the graph. After the preprocessing

8.3 experimental setup 77

phase, the coarsened graph G′ is assigned to the final algorithm, whose result is applied
to the input graph by prolongation. Our implementation of the ensemble technique EPP
is agnostic to the base and final algorithms and can be instantiated with a variety of
such algorithms. We instantiate the scheme with PLP as a base algorithm and PLMR as
the final algorithm. Thus we achieve massive nested parallelism with several parallel PLP
instances running concurrently in the first phase, and proceed in the second phase with
the more expensive but qualitatively superior PLMR. This constitutes the EPP algorithm
(Algorithm 5). We write EPP(b, Base, Final) to indicate the size of the ensemble b and
the types of base and final algorithm.
Implementation: A consensus of b > 1 base algorithms is formed by combining the

base solutions ζi in the following way: Only if a pair of nodes is classified as belonging to
the same community in every ζi, then it is assigned to the same community in the core
communities ζ̄. Formally, for all node pairs u, v ∈ V :

∀i ∈ [1, b] ζi(u) = ζi(v) ⇐⇒ ζ̄(u) = ζ̄(v). (19)

We introduce a highly parallel combination algorithm based on hashing. With a suit-
able hash function h(ζ1(v), . . . , ζb(v)), the community identifiers of the base solutions
are mapped to a new identifier ζ̄(v) in the core communities. Except for unlikely hash
collisions, a pair of nodes will be assigned to the same community only if the criterion
above is satisfied. We use a relatively simple function called djb2 due to Bernstein,% 1

which appears sufficient for our purposes. The use of a b-way hash function is fast due
to a high degree of parallelism.

8.3 experimental setup

8.3.1 Framework and Settings

All implementations are based on NetworKit (see ii). Parallelism is achieved in the form of
loop parallelization withOpenMP, using the parallel for directive with schedule(guided)
where appropriate for improved load balancing.

For representative experiments we average quality and speed values over multiple runs
in order to compensate for fluctuations. Table 6 provides information on the multicore
platform used for all experiments.

phipute1.iti.kit.edu
compiler gcc 4.8.1
CPU 2 x 8 Cores: Intel(R) Xeon(R)

E5-2680 0 @ 2.70GHz, 32 threads
RAM 256 GB
OS SUSE 13.1-64

Table 6: Platform for experiments

1 hash functions: http://www.cse.yorku.ca/~oz/hash.html

http://www.cse.yorku.ca/~oz/hash.html

78 engineering parallel algorithms for community detection

8.3.2 Network Data Sets

We perform experiments on a variety of graphs from different categories of real-world
and synthetic data sets. Our focus is on real-world complex networks, but to add variety
some non-complex and synthetic instances are included as well. The test set includes
web graphs (uk-2002, eu-2005, in-2004, web-BerkStan), internet topology networks
(as-22july06, as-Skitter, caidaRouterLevel), social networks (soc-LiveJournal,
fb-Texas84, com-youtube, wiki-Talk, soc-pokec, com-orkut), scientific coauthor-
ship networks (coAuthorsCiteseer, coPapersDBLP), a connectome graph (con-fiber_big),
a street network (europe-osm) and synthetic graphs (G_n_pin_pout, kron_g500-...,
hyperbolic-268M). Therefore, we cover a range of graph-structural properties. Real-
world complex networks are heterogeneous data sets, which makes it impossible to pick
an ideal or generic instance from which to generalize. Our main test set is chosen such
that it can be handled by competing codes as well. It contains 20 networks from different
domains. With this test set we aim for generalizable results. Note that the achievable
modularity for a network depends on its size and inherent community structure, which
may or may not be distinctive, and varies widely among the instances. The majority of
test networks are taken from the collection compiled for the 10th DIMACS Implemen-
tation Challenge2 as well as the Stanford Large Network Dataset Collection3 and are
freely available on the web. They are undirected, unweighted graphs. Table 7 gives an
overview over graph sizes as well as some structural features: A high maximum node
degree (maxdeg) indicates possible load balancing issues. The number of connected com-
ponents (comp) points to isolated single nodes or small groups of nodes. A high average
local clustering coefficient (lcc) is an indicator for the presence of dense subgraphs. We
evaluate solution quality and running time for all of our own algorithms as well as sev-
eral relevant competitors on this set. For those algorithms that can process in reasonable
time the largest real-world graph available to us, a web graph of the .uk domain with
m ≈ 3.3 · 109, we add further experiments (see Section 8.4.8). To measure strong scaling,
we run our parallel algorithms on this web graph.

8.4 experiments and results

In this section we report on a representative subset of our experimental results for our
different parallel algorithms, as well as competing codes. Figures 43 and 44 (as well
as Figures 35 and 36) show running time and quality differences broken down by the
networks of our test set. The bars of the charts are in ascending order of graph size. We
have selected a diverse test set and show results for each network. The Pareto evaluation
(Section 8.4.2) then aims to condense this into a single performance score.

8.4.1 Parallel Label Propagation (PLP)

PLP is extremely fast and able to handle the large graphs easily. The “weak classifier”
PLP is nonetheless able to detect an inherent community structure and produce a solu-
tion with reasonable modularity values, although it cannot distinguish communities in
a Kronecker graph, which has a very weak community structure. To demonstrate strong

2 DIMACS collection: http://www.cc.gatech.edu/dimacs10/downloads.shtml
3 Stanford collection: http://snap.stanford.edu/data/index.html

http://www.cc.gatech.edu/dimacs10/downloads.shtml
http://snap.stanford.edu/data/index.html

8.4 experiments and results 79

network n m maxdeg comp lcc
as-22july06 22963 48436 2390 1 0.3493
G_n_pin_pout 100000 501198 25 6 0.0040
caidaRouterLevel 192244 609066 1071 308 0.2016
coAuthorsCiteseer 227320 814134 1372 1 0.7629
fb-Texas84 36371 1590655 6312 4 0.1985
com-youtube 1157828 2987624 28754 22939 0.1725
wiki-Talk 2394385 4659565 100029 2555 0.1991
web-BerkStan 685231 6649470 84230 677 0.6343
as-Skitter 1696415 11095298 35455 756 0.2930
in-2004 1382908 13591473 21869 134 0.7013
coPapersDBLP 540486 15245729 3299 1 0.8111
eu-2005 862664 16138468 68963 1 0.6509
soc-pokec 1632804 22301964 14854 2 0.1223
soc-LiveJournal 4847571 43369619 20334 1876 0.3667
kron_g500-simple... 1048576 44619402 131503 253380 0.2096
con-fiber_big 591428 46374120 5166 727 0.6024
europe-osm 50912018 54054660 13 1 0.0012
com-orkut 3072627 117185083 33313 187 0.1735
uk-2002 18520486 261787258 194955 38359 0.6892
hyperbolic-268M 6710886 268851810 71585 1 0.7895
uk-2007-05 105896555 3301876564 975419 756936 0.743

Table 7: Overview of networks used in experiments

scaling behavior, we apply PLP to the large uk-2007-05 web graph and increase the
number of threads from 1 to 32 (Figure 38). (Weak scaling results on PLP and PLM are
shown in Figure 48.) A speedup of about factor 8 is achieved when scaling from 1 to 32
threads. Note that we have only 16 physical cores and the step from 16 to 32 threads
implies hyperthreading, so that a lower speedup is expected. Our results indicate that
PLP can benefit from increased parallelism. Figure 34 breaks running times down by
iteration, showing that the vast majority of time is spent in the first couple of iterations.

0 20 40 60 80 100 120
100

101

102

103

104

105

106

107

108

active

updated

Figure 33: Number of active and updated labels per iteration of PLP for the web graph uk-2002.

80 engineering parallel algorithms for community detection

1 21

iteration

0

100

101

102

103

104

105

ru
n
n
in

g
 t

im
e
 [

m
s]

Figure 34: PLP running time in milliseconds per iteration for the uk-2007-05 web graph, at 32
threads.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0 200 400 600 800 1000 1200

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(a) CGGCi

Figure 35: Performance of the competitor algorithm CGGCi relative to baseline PLM.

8.4.2 Pareto Evaluation

Observed effects may vary strongly from one network to another, a sign of the hetero-
geneity of real-world complex networks. In addition to breaking down results by data
set in the following, we want to give a condensed picture of the results. For this purpose
we use the previous experimental data to compute a score for running time and solution
quality. The time score is the geometric mean of running time ratios over our test set
of networks with the running time of PLM as the baseline, while the modularity score
is the arithmetic mean of absolute modularity differences. Figure 39 shows the resulting
points. It becomes clear that all algorithms except CEL and EPP are placed on or close
to the Pareto frontier. PLP is unrivaled in terms of time to solution, but solution quality
is suboptimal. In the middle ground between label propagation and Louvain method, the
parallel CLU_TBB achieves about the same modularity but beats the ensemble approach
in terms of speed. PLM and PLMR emerge as qualitatively strong and fast candidates,
closest to the lower right corner. (Their more memory-efficient implementation PLM* is
about a factor of 2 slower.) It is also evident that our extended version PLMR can im-
prove solution quality for a small computational extra charge. We recommend both PLM
and PLMR as the default algorithms for parallel community detection in large networks.
The original sequential implementation of the Louvain method is thus no longer on the
Pareto frontier since it cannot benefit from multicore systems. RG and its ensemble com-
binations have the best modularity scores by a narrow margin, while they are by far

8.4 experiments and results 81

−0.005 0.000 0.005 0.010 0.015

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0 100 101

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(a) PLM*

Figure 36: Performance of our PLM* algorithm relative to baseline PLM.

−0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0 100 101 102

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

Figure 37: Difference in quality (left) and running time time ratio (right) of EPP(4,PLP,PLMR)
compared to a single PLP.

the most computationally expensive ones, which places them outside of the application
scenario we target.

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10

modularity score

0

1

2

4

8

16

32

64

128

256

512

ti
m

e
 s

co
re

PLM

PLM*

PLP

PLMR
CLU_TBB

RG

Louvain

EPP

CGGC
CGGCi

CEL

Figure 39: Pareto evaluation of community detection algorithms

82 engineering parallel algorithms for community detection

1 2 4 8 16 32

threads

0

100

200

300

400

500

ti
m

e
 [

s]
1 2 4 8 16 32

threads

0

2

4

6

8

10

sp
e
e
d
u
p

Figure 38: PLP strong scaling on the uk-2007-05 web graph. Left: Absolute running time. Right:
Speedup factor over sequential run.

8.4.3 Parallel Louvain Method (PLM)

For PLM we observe only small deviations in quality between single-threaded and multi-
threaded runs, supporting the argument that the algorithm is able to correct undesirable
decisions due to stale data. PLM detects communities with relatively high modularity
in the majority of networks. Even large instances are processed in no more than a few
minutes. Figure 40 shows the scaling behavior of PLM. Since both the node move phase
and the coarsening phase have been parallelized, PLM profits from increased parallelism
as well, achieving a speedup of factor 9 for 32 threads. In comparison to PLP (Figure 43b),
we observe that PLP can solve instances in only half the time required by PLM, but at a
significant loss of modularity. As discussed in Sec. 8.5, the communities detected by the
two algorithms can be markedly different. Because the Louvain method for community
detection is well-known and accepted, we choose the performance of PLM as our baseline
(Figure 43a) and present quality and running time of other algorithms relative to PLM.

1 2 4 8 16 32

threads

0
200
400
600
800

1000
1200
1400
1600

ti
m

e
 [

s]

1 2 4 8 16 32

threads

0

2

4

6

8

10

sp
e
e
d
u
p

Figure 40: PLM strong scaling on the uk-2007-05 web graph

8.4.4 Parallel Louvain Method with Refinement (PLMR)

As shown by Figure 43c, adding a refinement phase generally leads to a (sometimes
significant) improvement in modularity. This improvement is paid for by a small increase
in running time. The results indicate that our proposed extension of the original Louvain
method by a refinement phase can efficiently increase solution quality. We also evaluate
the scaling behavior of each phase of the PLMR algorithm. In Figure 41 a yellow bar

8.4 experiments and results 83

indicates the running time on the finest graph while the red bar stops at the total
running time of the phase. Time spent on the finest graph clearly dominates all running
times. Our experiments show that the move and refinement phases scale well with the
number of threads, while the coarsening phase only partially profits from parallelization.
The results on this graph are representative for the trend of the scaling behavior for the
algorithm’s phases: Figure 42 shows speedup factors for each of the phases, aggregated
over the test set of 20 graphs.

1 2 4 8 16 32

0
200
400
600
800

1000
1200
1400
1600

ti
m

e
 [

s]

1 2 4 8 16 32

0

10

20

30

40

50

ti
m

e
 [

s]

1 2 4 8 16 32

threads

0
50

100
150
200
250
300

ti
m

e
 [

s]

Figure 41: PLMR strong scaling of the move, coarsening and refinement phases (top to bottom)
on uk-2007-05

8.4.5 Ensemble Preprocessing (EPP)

Figure 37 demonstrates the effectiveness of the ensemble approach. Results were gener-
ated by an EPP instance with a 4-piece PLP ensemble and PLMR as final algorithm in
comparison to a single PLP instance. We observe that the approach of EPP pays off in
the form of improved modularity on most instances, exploiting differences in the base
solutions and spending extra time on classifying contested nodes. For larger networks,
this comes at a cost of about 5 times the running time of PLP alone. It also becomes clear
that for small networks the approach does not pay off as running time becomes domi-
nated by the overhead of the ensemble scheme. In comparison to PLM (Figure 43d), the
ensemble approach can be slightly faster on some networks, but quality is slightly worse
in most cases. We conclude that the ensemble technique EPP is effective in improving
on the quality of a single algorithm. While somewhat lower in modularity, the communi-
ties detected are similar (see Sec. 8.5) to those of the Louvain method. In practice, our
acceleration of the PLM algorithm have made the ensemble approach less relevant.

84 engineering parallel algorithms for community detection

1 2 4 8 16 32

0
2
4
6
8
10
12
14
16
18

sp
e
e
d
u
p

1 2 4 8 16 32

0
2
4
6
8
10
12
14
16
18

sp
e
e
d
u
p

1 2 4 8 16 32

threads

0
2
4
6
8
10
12
14
16
18

sp
e
e
d
u
p

Figure 42: PLMR strong scaling of the move, coarsening and refinement phases (top to bottom)
– speedup factors aggregated

8.4.6 Comparison with State-of-the-Art Competitors

In this section we present results for an experimental comparison with several relevant
competing community detection codes. These are mainly those which excelled in the
DIMACS challenge either by solution quality or time to solution: The agglomerative
algorithms CLU_TBB4 and RG, as well as CGGC and CGGCi5, ensemble algorithms based
on RG. We also include the widely used original sequential Louvain6 implementation, as
well as the agglomerative algorithm CEL. In contrast to the DIMACS challenge, we run
all codes on the same multicore machine (Tab. 6) and measure time to solution for
sequential and parallel ones alike.

louvain Although not submitted to the DIMACS competition, the original sequen-
tial implementation of the Louvain method is still relatively fast (Figure 44a). The
marginally different modularity values in comparison to PLM may be caused by subtle
differences in the implementation. For example, Louvain explicitly randomizes the order
in which nodes are visited, while we rely on implicit randomization through parallelism.
For the smallest graphs, running time values are missing because the implementation
reported a running time of zero. Louvain eventually falls behind the parallel algorithm
for large graphs, confirming that the overhead and complexity introduced by parallelism
is eventually justified when we target massive datasets.

4 CLU_TBB http://www.staff.science.uu.nl/faggi101/
5 RG etc: http://www.umiacs.umd.edu/mov/
6 Louvain https://sites.google.com/site/findcommunities/

http://www.staff.science.uu.nl/ faggi101/
http://www.umiacs.umd.edu/ mov/
https://sites.google.com/site/findcommunities/

8.4 experiments and results 85

clu_tbb and cel CLU_TBB, one of the few parallel entries in the DIMACS com-
petition, is a very fast implementation of agglomerative modularity maximization, solving
the larger instances more quickly than PLM (Figure 44b). Qualitatively however, PLM
is clearly superior on most networks. Both in terms of modularity and running time,
CLU_TBB occupies a middle ground between PLP and PLM, and is qualitatively very
similar to our ensemble algorithm EPP. CEL, as another fast parallel program, produced
consistently and significantly worse modularity than PLM, failed to produce a solution
on some graphs, and is not as fast as PLP.

rg, cggc and cggci Ovelgönne and Geyer-Schulz entered the DIMACS challenge
with an ensemble approach conceptually similar to what we have developed. Their base
algorithm is the sequential agglomerative RG, and two ensemble variants exist: CGGC
implements anensemble technique very similar to EPP, while CGGCi iterates the approach.
The RG algorithm achieves a high solution quality, surpassing PLM by a small margin on
most networks (Figure 44c). Quality is again slightly improved by the ensemble approach
CGGC and its iterated version CGGCi (Figure 44d, and 35a), with the latter surpassing any
other heuristic known to us. However, all three are very expensive in terms of computation
time, often taking orders of magnitude longer than PLM. We consider running times of
several hours for many of our networks no longer viable for the scenario we target, namely
interactive data analysis on a parallel workstation.

8.4.7 LFR Benchmark

As discussed in Sec. 7.3, the LFR benchmark [LFR08] is an established method for eval-
uating community detection algorithms: A generator produces graphs that resemble real
complex networks and contain dense communities which are the more sparsely connected
the lower the mixing parameter µ. Algorithm performance is measured as the accuracy
in recognizing the ground truth communities supplied by the generator, in view of in-
creasing difficulty (µ). In Figure 45 we plot the agreement (graph-structural Rand index,
where 1 is complete agreement) between detected and ground truth communities for our
algorithms, and show that the PLM method is able to detect the ground truth even with
strong noise (µ = 0.8), while PLP (and hence EPP) is somewhat less robust.

0.0 0.2 0.4 0.6 0.8 1.0
mixing parameter µ

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

PLMR
PLM
PLP
EPP

Figure 45: LFR benchmark (n = 105): accuracy in recognizing ground truth while increasing the
number of inter-community edges

86 engineering parallel algorithms for community detection

0.0 0.2 0.4 0.6 0.8 1.0

modularity

hyperbolic-268M
uk-2002

com-orkut
europe-osm
con-fiber_big

kron_g500-simple-logn20
soc-LiveJournal

soc-pokec
eu-2005

coPapersDBLP
in-2004

as-Skitter
web-BerkStan

wiki-Talk
com-youtube

fb-Texas84
coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0 100 101 102 103

time [s]

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(a) PLM : absolute quality and speed serve as baseline for comparison

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0.0 0.5 1.0 1.5 2.0 2.5 3.0

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(b) PLP

−0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(c) PLMR

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0 100 101 102

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(d) EPP(4, PLP, PLMR)

Figure 43: Performance of our algorithms in comparison: PLM serves as the baseline. 32 threads
used.

8.4 experiments and results 87

−0.02 −0.01 0.00 0.01 0.02 0.03 0.04 0.05

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0 10 20 30 40 50 60

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(a) Louvain

−0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
soc-LiveJournal

soc-pokec
eu-2005

coPapersDBLP
in-2004

as-Skitter
web-BerkStan

wiki-Talk
com-youtube

fb-Texas84
coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0.0 0.5 1.0 1.5 2.0 2.5

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
soc-LiveJournal

soc-pokec
eu-2005

coPapersDBLP
in-2004

as-Skitter
web-BerkStan

wiki-Talk
com-youtube

fb-Texas84
coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(b) CLU_TBB

−0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0 50 100 150 200

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(c) RG

−0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

modularity difference

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

0 100 200 300 400 500 600 700 800 900

time ratio

hyperbolic-268M
uk-2002

com-orkut
europe-osm

con-fiber_big
kron_g500-simple-logn20

soc-LiveJournal
soc-pokec

eu-2005
coPapersDBLP

in-2004
as-Skitter

web-BerkStan
wiki-Talk

com-youtube
fb-Texas84

coAuthorsCiteseer
caidaRouterLevel

G_n_pin_pout
as-22july06

(d) CGGC

Figure 44: Performance of competitors relative to baseline PLM. 32 threads used for CLU_TBB.

88 engineering parallel algorithms for community detection

0.0 0.2 0.4 0.6 0.8 1.0
mixing parameter µ

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
od

ul
ar

ity

PLMR
PLM
PLP
EPP

Figure 46: LFR benchmark (n = 105): modularity while increasing the number of inter-
community edges

8.4.8 One More Massive Network

In addition to the experiments that went into the Pareto evaluation, we run our parallel
algorithms on the web graph uk-2007-05, at about 3.3 billion edges the largest real-world
data set currently available to us. CLU_TBB fails at reading the input file. This leaves us
with five of our own parallel algorithms for Figure 47: EPP(4,PLP,PLMR) takes about 219
seconds, while PLM requires about 156 seconds to arrive at a slightly higher modularity.
As expected, PLP is by far the fastest algorithm and terminates in less than a minute. If
a certain modularity loss (here 0.02) is acceptable, PLP is also an appropriate choice for
quickly detecting communities in billion-edge networks. The processing rate for PLP is
over 53M edges/second and over 21M edges/second for PLM with respect to a complete
run of each algorithm. These rates confirm the suitability of our algorithms for analyzing
massive complex networks on a commodity shared-memory server.

0.90 0.92 0.94 0.96 0.98 1.00

modularity

EPP(4,PLP,PLMR)

PLM

PLM*

PLMR

PLP

0 100 101 102 103

time [s]

EPP(4,PLP,PLMR)

PLM

PLM*

PLMR

PLP

219 s

156 s

203 s

168 s

52 s

Figure 47: Modularity and running time at 32 threads for our parallel algorithms on the massive
web graph uk-2007-05

8.5 qualitative aspects 89

8.4.9 Weak Scaling

For weak scaling experiments, we use a series of synthetic graphs where each graph
has twice the size of its predecessor (from logm = 25 . . . 30), and double the number of
threads simultaneously from 1 to 32. The graphs were created using a generator [vLMP15]
based on a unit-disk graph model in hyperbolic geometry [KPK+10] (HUD), which pro-
duces both a power law degree distribution and distinctive dense communities. Figure 48
shows the results of weak scaling experiments for PLP and PLM. It must be noted that
perfect scaling cannot be expected due to the complex structure of the input. The results
of the respective last column have been obtained with hyperthreading, which explains
the steeper increase. Figure 49 shows results for additional weak scaling experiments on
synthetic graphs generated with the R-MAT model.

25 26 27 28 29 30

log(m)

0
2
4
6
8

10
12
14
16

ti
m

e
 [

s]

25 26 27 28 29 30

log(m)

0
5

10
15
20
25
30
35
40
45

ti
m

e
 [

s]

Figure 48: PLP (left) and PLM (right) weak scaling on the series of HUD graphs

19 20 21 22 23 24

log(n)

0

10

20

30

40

50

ti
m

e
 [

s]

19 20 21 22 23 24

log(n)

0

200

400

600

800

1000

1200

1400

ti
m

e
 [

s]

Figure 49: PLP (left) and PLM (right) weak scaling on the series of R-MAT graphs.

8.5 qualitative aspects

In this work we concentrate on achieving a good tradeoff between high modularity, a
widely accepted quality measure for community detection, and low running time. Ideally
one should also look for further validation of the detected communities beyond good
modularity. As discussed in Sec. 7.3, we do not have a reliable ground-truth partition
for real networks, and domain-specific validation of the result goes beyond the scope of
this work as we focus on parallelization aspects. Also, most sequential counterparts of
our algorithms have been validated before, see [BGLL08]. However, we give an example
to illustrate differences between our algorithms in a more qualitative way. Coarsening
the input graph according to the detected communities yields a community graph, which
we then visualize by drawing the size of nodes proportional to the size of the respective

90 engineering parallel algorithms for community detection

community. Figure 50 shows community graphs for the PGPgiantcompo graph, a social
network and web of trust resulting from signatures on PGP keys. The solutions were
produced by PLP, PLM, PLMR and EPP(4, PLP, PLMR). It is apparent that has a much
finer resolution and detects ca. 1000 small communities. This is true for most of our data
sets, but the inverse case also appears. On this network, higher modularity is associated
with coarser resolution. , and have a very similar resolution and divide the network
into ca. 100 communities. While PGPgiantcompo is admittedly a very small graph, this
example shows how community detection can help to reduce the complexity of networks
for visual representation.

Figure 50: Community graphs of the PGPgiantcompo web of trust for (top to bottom) PLP, PLM,
PLMR and EPP(4, PLP, PLMR)

8.6 conclusion

We have developed and implemented several parallel algorithms for community detection,
a common and challenging task in network analysis. Successful techniques and parameter
settings have been identified in extensive experiments on synthetic and real-world net-
works. They include three standalone parallel algorithms, all of which are placed on the
Pareto frontier with respect to running time and modularity in an experimental compar-
ison with other state-of-the-art implementations. While the label propagation algorithm
is extremely fast, its solution might not always be satisfactory for some applications. It

8.6 conclusion 91

is the first parallel variant of the established Louvain algorithm which can handle mas-
sive inputs. On our machine, it detects high-quality communities in a network with 3.3
billion edges in under 3 minutes using 32 threads. Achieving significant parallel speedups
over the frequently used sequential algorithm, it can accelerate analysis workflows now
and even further on future multicore systems. Our modification of this method adds a
refinement phase which enhances modularity for a small increase in running time.

9
DETECTING COMMUNIT IES SELECT IVELY AROUND SEED
NODES

A programmer from a very large computer company went to a software conference
and then returned to report to his manager, saying: “What sort of programmers work
for other companies? They behaved badly and were unconcerned with appearances.
There hair was long and unkempt and their clothes were wrinkled and old. They
crashed our hospitality suite and they made rude noises during my presentation.”

The manager said: “I should have never sent you to the conference. Those pro-
grammers live beyond the physical world. They consider life absurd, an accidental
coincidence. They come and go without knowing limitations. Without a care, they
live only for their programs. Why should they bother with social conventions? They
are alive within the Tao.”

– from The Tao of Programming

The task of selective community detection is concerned with finding high-quality com-
munities locally around seed nodes. Given the lack of conclusive experimental studies, we
perform a systematic comparison of different previously published as well as novel meth-
ods. In particular we evaluate their performance on large complex networks, such as social
networks. Algorithms are compared with respect to accuracy in detecting ground truth
communities, community quality measures, size of communities and running time. We im-
plement a generic greedy algorithm which subsumes several previous efforts in the field.
Experimental evaluation of multiple objective functions and optimizations shows that
the frequently proposed greedy approach is not adequate for large datasets. As a more
scalable alternative, we propose selSCAN, our adaptation of a global, density-based com-
munity detection algorithm. In a novel combination with algebraic distances on graphs,
query times can be strongly reduced through preprocessing. However, selSCAN is very
sensitive to the choice of numeric parameters, limiting its practicality. The random-walk-
based PageRankNibble emerges from the comparison as a successful and robust candidate.
This chapter is based on joint work with Yassine Marrakchi and Henning Meyerhenke.

Results were previously presented at the First International Workshop on High Perfor-
mance Big Graph Data Management, Analysis, and Mining and published as Detecting
Communities around Seed Nodes in Complex Networks in the proceedings of the IEEE
International Conference on Big Data (IEEE BigData 2014).

9.1 introduction

In this chapter we consider the problem of quickly finding high-quality communities
around given seed nodes, particularly in large complex networks. We refer to this task
as selective community detection (SCD, also called local community detection or seed set
expansion) to distinguish it from global community detection. In the global scenario, the
graph is considered as a whole and an assignment of each node to a community is sought.
In contrast, selective community detection begins with a small set of seed nodes as input
and finds appropriate communities containing them, obtained by searching the network
locally around the seed nodes. Such a targeted approach provides potential for speedup

93

94 detecting communities selectively around seed nodes

when solving the problem globally is not necessary or infeasible. Some SCD algorithms
also enable us to find query-specific communities, assuming that the best community
for seed node s1 is different from the one for a nearby seed node s2. SCD methods are
especially applicable when we lack global knowledge of the network, e.g. in scenarios
where the network structure is discovered on-the-fly. While it may seem that the differ-
ence between the global and selective scenario lies only in the amount of work performed,
we show that the methods needed are somewhat different. Given these differences, ap-
plications are as numerous as for global community detection, and include e.g. finding
functional complexes for a given protein in protein interaction networks [VTX09].
The existing literature defines the task in slightly different ways, leading to a diverse

set of SCD algorithms. We therefore begin by specifying the task as follows: Given a
graph G = (V ,E) and a set of seed nodes S ⊂ V , return an assignment of each seed
s ∈ S to a community C ⊂ V so that s is contained in C and all communities are pairwise
disjoint. Within this definition, the following aspects need clarification: We discuss in Sec.
9.3 when a subset of nodes is considered a good community. Depending on the algorithm,
the communities may overlap or coincide. Multiple seed nodes can belong to the same
community, but every community must contain at least one seed node. We do not require
the seed nodes to be structurally close to each other – the considered algorithms can
handle both related and unrelated seeds appropriately. Figure 51 illustrates this with an
example.

s1

s2

s3

Figure 51: An example of the selective community detection problem and a solution: Seed nodes
s1, s2 and s3 were provided as input and the algorithm has detected two communities
containing them.

While a variety of methods have been proposed, we observe a lack of conclusive ex-
perimental studies demonstrating their practical relevance. With our comparative study,
we aim to close this gap. We are also the first to target large complex networks in the
order of 105 to 106 of edges, requiring scalable algorithms and implementations. After a
review of previous work on the subject (Sec. 9.2), algorithmic approaches are compared
and classified. We identify one widely used approach which we call Greedy Community
Expansion (GCE, Sec. 9.4.1). With our generic implementation of GCE, we evaluate ex-
isting objective functions and optimizations. In our experimental comparison we include
a reimplementation of the random-walk based PageRank-Nibble [ACL06], representing
an important class of approaches to the problem. Furthermore, as our main algorithmic
innovation, we adapt a global algorithm to the selective scenario (Sec. 9.4.2): A modifica-
tion of the density-based SCAN algorithm yields our variant selSCAN. The algorithm is
generic with respect to a node distance measure, and we propose algebraic distances as

9.2 literature overview 95

an alternative to the original measure. The performance of algorithms is experimentally
evaluated with respect to accuracy, quality, community sizes and running time (Sec. 9.5).
Accuracy is measured as the agreement with ground truth communities on synthetic
LFR graphs, while quality is calculated with community quality measures which also
serve as objective functions for GCE. We then apply the best performing algorithms to
large real-world networks.
We deliver an experimental comparison of different classes of SCD algorithms. After

reimplementation and extensive analysis, we conclude that a widespread greedy quality
optimization method is not likely to perform fast enough on large-scale graphs. A re-
view of previously proposed objective functions narrows the choice for a viable function
down to conductance (Φ). We show that the query time can become prohibitively high
for networks with millions of edges. Especially for large networks, we propose selSCAN
as a faster alternative. In contrast to most other methods, selSCAN also has a notion
of outliers. Given an appropriate parameter choice, selSCAN is also qualitatively supe-
rior, although efficient parameter selection remains problematic. With selSCAN-AD, we
explore a combination of density-based clustering and algebraic distance, which further
reduces query time at the cost of precalculating node distances. From the comparison it
becomes clear that PageRank-Nibble performs best in terms of running time and result
quality.
For SCD we focus only on the communities that contain the seed nodes. In the following,

some shorthand terminology is used:

Definition 24 (Core, Boundary and Shell of a Community). Let E(A,B) denote the
set of edges {u, v} where u ∈ A and v ∈ B. We denote the set of internal edges of a
community as Eint(C) := E(C,C) and its external edges as Eext(C) := E(C,V \ C).
Each community C induces three sets of nodes, a core, a boundary, and a shell. The
core K of C are the nodes in C for which all neighbors are also in C: K(C) := {u ∈
C : v ∈ C ∀{u, v} ∈ E}. Boundary nodes have neighbors both inside and outside of the
community: B(C) := {u ∈ C : ∃{u, v} ∈ E : v 6∈ C}. C is surrounded by a shell of nodes
which do not belong to C but have edges to nodes in C: Ω(C) := {u 6∈ C : ∃{u, v} ∈ E :
v ∈ C}. �

9.2 literature overview

Though not nearly as extensively studied as the global scenario, SCD has been the focus
of multiple previous publications. Because experimental data demonstrating their relative
performance is scarce, we aim to clarify the state of the art and summarize and categorize
previous efforts.
Community Expansion: A common approach to SCD starts from a seed node as a

singleton community and expands the community one node at a time, selecting the
candidate which gives the maximum gain for a community quality function. We will refer
to this method as greedy community expansion. Examples of this approach are frequent
in the literature and vary in the objective function and possible pre- and postprocessing
optimizations. Clauset [Cla05], Luo et al. [LWP08], Chen et al. [CZG09] and Bagrow
[Bag08] introduce different objective functions as “local modularity” (discussed in Sec.
9.3). An efficient implementation of the first three algorithms runs in O(|C| · d · |Ω(C)|)

96 detecting communities selectively around seed nodes

where d the average degree of nodes in the community and the last runs in O(|C| · log|C|).
Given a set of seed nodes, each seed node is treated separately.
Algorithms Based on Node Similarity: Rather than optimizing community quality one

node at a time, this class of algorithms determines the similarity of candidate nodes
with a given seed and finds a community among the most similar nodes. A common
way to define this similarity is to perform a random walk from a seed, which is likely to
get trapped in dense, community-like subgraphs. Nodes are then ordered by the result-
ing probability distribution and a high-quality community is found among the highest
ranked nodes. Instances of this approach include [ST08, ACL06, VTX09]. For our exper-
imental comparison, we implemented the PageRank-Nibble algorithm [ACL06]. Treating
the community around a seed node as a graph cut, running time depends on the size of
the small side of the cut rather than the size of the input graph. The algorithm offers
theoretical guarantees with respect to the conductance of the cut.
Other Approaches: Apart from these main classes of algorithms, other approaches

have also been explored. An example is bridge-bounding [PSV+09], which starts with a
singleton community around a seed and attaches nodes from the shell as long as the edges
connecting these nodes are not bridges. Bridges are defined by globally scoring edges by
centrality (e.g. by betweenness centrality). One of the few works targeting large networks
[RBJ+11] proposes an agglomerative algorithm: Starting from a handful of seed nodes
and singleton communities, mergers are performed between communities containing a
seed node and communities adjacent to them.

9.3 measuring community quality

In the following we explain and justify our choice of measures for the quality of a seeded
community Cs. The measures we select then serve both as objective functions in GCE
and quality criteria for the evaluation. On the right side of each function we denote the
value range and whether it is maximized or minimized (e.g. [0, 1]min).

Discarding Modularity: For global community detection, modularity has proven to be
effective, despite a few drawbacks (see Section 7.1). We considered modularity in the
context of selective community detection, but decided against it: Modularity depends
strongly on the global structure of the graph via the number of edges and the global
null-model and expects a full graph partition. In the remainder we examine community
quality measures for a single community without global knowledge of the network.
Conductance: Consider a single community as a set of nodes cut from the rest of the

graph. Sparsity of the cut is a necessary criterion for a good community. One important
cut measure is conductance, the size of a cut divided by volume of the smaller section of
the graph.

Definition 25 (Conductance). For a graph G = (V ,E), the conductance Φ(C) of a
subset of nodes C is defined as

Φ(C) :=
|E(C,V \C)|

min{vol(C), vol(V \C)} (20)

=
|C|�|V |

|E(C,V \C)|
vol(C)

[0, 1] min (21)

�

9.3 measuring community quality 97

Minimizing the cut alone encourages small communities, while maximizing the volume
requires larger ones. Minimizing conductance therefore helps to identify non-trivial sub-
sets of nodes which are sparsely connected to the rest of the graph. It should be noted that
determining the minimum conductance cut in a graph is NP-hard [ŠS06]. Conductance
is regularly used for measuring community quality locally (e.g. [VTX09, AL06]).
Custom Measures for SCD: Considering that modularity is ill-suited as an objective

function for SCD, several alternatives have been proposed under the name of “local
modularity”. In spite of the name, they are not directly related to each other and should
not be considered localized variants of global modularity, since they do not rely on a null
model. We will refer to these measures by their abbreviations in the literature instead.
Clauset [Cla05] defines R as a ratio of boundary edges to community nodes and all

edges connected to boundary nodes:

Definition 26 (R-measure). Given a graph G = (V ,E) and a community C ⊂ V , the
R-measure is defined as

R(C) :=
|E(B(C),C)|
|E(B(C),V)|

[0, 1] max (22)

�

Luo et al. [LWP08] propose M , which is the ratio of intra-community edges to inter-
community edges:

Definition 27 (M -measure). Given a graph G = (V ,E) and a community C ⊂ V , the
M -measure is defined as

M(C) :=
|Eint(C)|
|Eext(C)|

[0,∞] max (23)

�

For the average internal degree in the community and the average external degree in
its boundary, we obviously want to maximize the former and minimize latter, resulting
in the L measure introduced by Chen et al. [CZG09].

Definition 28 (L-measure). Given a graph G = (V ,E) and a community C ⊂ V , the
L-measure is defined as

L(C) :=
2 · |Eint(C)|
|C|

·
(|E(B(C), Ω(C))|

|B(C)|

)−1
[0,∞] max (24)

�

Selection of Measures: Previous empirical results [Bra10, WHHF12] show thatM yields
consistently better results than optimizing R and the measure proposed by Bagrow in
terms of agreement with ground truth data. Furthermore, we show the equivalence of M
and Φ as objective functions, a relationship not observed in [LWP08].

Lemma 1. For a graph without self-loops and |C| � |V |, the following holds:

min! Φ(C) ⇐⇒ max!M(C) (25)

i.e. we maximize C exactly if we minimize Φ.

98 detecting communities selectively around seed nodes

Proof.

min! Φ(C) ⇐⇒ max! Φ(C)−1

⇐⇒ max!
(|Eext(C)|

2 · |Eint(C)|+ |Eext(C)|

)−1

⇐⇒ max!
(

1 + 2 · |Eint(C)|
|Eext(C)|

)
⇐⇒ max!M(C)

Therefore, we will evaluate Φ and L as community quality measures and use M and
L as objective functions for GCE to maximize.

9.4 algorithms

9.4.1 GCE: Greedy Community Expansion

In the existing literature on SCD, many of the proposed algorithms are variations of
one basic approach which we call greedy community expansion: A community Cs around
seed s is expanded by including the shell node which yields the highest gain ∆Q with
respect to some community quality measure Q. After each inclusion, gains are recom-
puted for all candidates. Previously proposed greedy algorithms (e.g. [Cla05, LWP08,
CZG09, WHHF12, Bag08]) vary in the objective function as well as different pre- and
post-processing steps and optimizations. Many of these variants are similar enough to be
implemented as one generic algorithm with exchangeable components. This yields GCE,
which we use to evaluate the greedy method with respect to large complex networks. GCE
has an exchangeable objective function as well as an optional optimization which we call
acceptability. It is claimed to improve quality by prioritizing certain candidate nodes
[WHHF12]. As explained in Sec. 9.3, we implement both L and M (equivalent to Φ)
as objective functions. We indicate the configuration with the following naming scheme:
For example, GCE-L optimizes L. In the following paragraphs, we give more details on
objective functions and optimizations.
Objective Functions: We can efficiently calculate the quality gain for candidate nodes

v ∈ Ω(C) in O(deg(v)) by keeping track of interim values like the number of internal and
external edges and the number of boundary nodes. Let Q′

(C) be the current community
quality and let degint(v,C) := |{u ∈ C ∪{v} : {u, v} ∈ E}| and degext(v,C) := deg(v)−
degint(v,C).

Then the gain for M and L when moving the shell node v to the community C is

∆M(v,C) = |Eint(C)|+ degint(v,C)
|Eext(C)| − degint(v,C) + degext(v,C) −M

′
(C) (26)

∆L(v,C) = ∆L1(v,C)
∆L2(v,C) −L

′
(C) (27)

where

9.4 algorithms 99

∆L1(v,C) = 2 · (|Eint(C)|+ degint(v,C))
|C|+ 1 (28)

∆L2(v,C) = |Eext(C)| − degint(v,C) + degext(v,C)
|B(C)|+ ∆|B(C)|

(29)

Each expansion step is followed by recalculation of the gains in O(|Ω(C)| · d) where d
is the average degree of shell nodes.

9.4.2 selSCAN: a Density-based Approach

As an alternative to community expansion we propose our adaptation of SCAN (Struc-
tural Clustering Algorithm for Networks) [XLJ+12], a global community detection algo-
rithm inspired by the data-clustering algorithm DBSCAN [EKSX96]. SCAN tries to trans-
fer the characteristics of DBSCAN to community detection in networks. We briefly revisit
the concepts on which SCAN is based. It operates with a similarity measure for pairs of
connected nodes—we define it equivalently in terms of node distances in order to combine
it with algebraic distances. The ε-neighborhood Nε(v) = {u ∈ N(v) : d(u, v) < ε} is the
set of close neighbors which have at most ε distance from v. A node is a core if it has
more than κ close neighbors, formally coreκ,ε(v) ⇐⇒ |Nε(v)| ≥ κ. Two nodes from the
graph are called density-connected if they are joined by a path where at least all inner
nodes are cores: A SCAN community is then a maximal set of density-connected cores
and their close neighbors. All remaining nodes are either hubs or outliers, i.e. central
nodes lying between two or more communities or peripheral nodes not belonging to any
community. Figure 52 illustrates this with a small example.

s

Cs

o1

o2

c1
c2

c3

v1

Figure 52: Example of a SCAN-community, spanned spanned by the core nodes c1, c2 and c3,
including their close neighbors v1 and the seed s. Nodes o1 and o2 are outliers.

SCAN runs in O(m) time. We continue by describing selSCAN, our adaptation of SCAN
to the SCD scenario. selSCAN receives as input a set of related or unrelated seed nodes
and returns an assignment of seed to community, but in contrast to GCE each pair of
communities is either disjoint or identical. Algorithm 6 denotes selSCAN in pseudocode.
The algorithm considers each seed in turn, but can recognize that a seed belongs to
a previously discovered community, saving time for sets of related seeds (line 1). Our
adaptation differs from the original SCAN in the following aspects: We begin with seed
nodes rather than random nodes. If a seed s is not a core, selSCAN tries to find a core in its
neighborhood (line 8). If one is found, a community is constructed around it as denoted
in Algorithm 7, which is best understood as a breadth-first search among close neighbors

100 detecting communities selectively around seed nodes

where only cores are added to the search queue. If no core is found, s is classified as an
outlier (line 14). A distinction between hubs and outliers cannot be made, because this
would require a global partition.

A downside which SCAN and selSCAN inherit from DBSCAN is that the method is
not parameter-free: The result depends on the parameters κ and ε, which need to be
estimated per network. We are aware of an algorithm [SHH+10] which has a similar
community concept as SCAN and automatically determines an ε which is favorable for
a community quality measure, but is based on a global spanning tree of the graph and
deviates too strongly from the SCD scenario.

Algorithm 6: selSCAN: Selective Structural Clustering Algorithm for Networks
Input: Graph G = (V ,E), node distances d, seed set S, parameters κ, ε
Output: η: assignment of seed s ∈ S to community Ci or outlier status ∅, default value

undefined ⊥
1 for s ∈ S : η(v) =⊥ do
2 create queue Q
3 if coreκ,ε(s) then
4 η(s)← new community C
5 enqueue(Q, s)
6 coreSearch(Q,C)
7 else
8 if ∃c ∈ Nε(s) : coreκ,ε(c) then
9 c← core with minimum distance d(s, c)
10 η(s)← new community C
11 enqueue(Q, c)
12 coreSearch(Q,C)
13 else
14 η(s)← ∅

15 return ζ

Algorithm 7: coreSearch(Q,C)
1 while Q not empty do
2 x← dequeue node from Q

3 for y ∈ Nε(x) do
4 if η(y) =⊥ then
5 η(y)← C

6 if coreκ,ε(y) then
7 enqueue(Q, y)

Node Distance Measures: selSCAN is generic with respect to a node distance measure
as defined in Sec. 2.2. The original SCAN is implemented with a node distance measure
which expresses the amount of overlap between node neighborhoods:

ND(u, v) = 1− |N(u) ∩N(v)|√
|N(u)| · |N(v)|

(30)

9.5 evaluation 101

In addition to ND, we employ algebraic distance (AD) as concept for expressing the
structural closeness of nodes. As described in Sec. 2.2, algebraic distance is a way of
measuring the connection strength between a pair of nodes which are not necessarily
neighbors [CS11], and tends to be low for pairs of nodes that are located in a common
dense subgraph. ND(u, v) can be calculated on the fly when discovering a community,
but only takes the direct neighborhoods into account. AD(u, v) requires a preprocessing
phase, but can incorporate more structural information. An efficient implementation is
described in Sec. 5.1.1. Note that AD preprocessing can also be implemented with a
distributed algorithm because it involves only computations between neighboring nodes.

9.5 evaluation

We experimentally test the performance of GCE-M, GCE-L, selSCAN and PageRankNib-
ble in terms of accuracy, quality and running time to evaluate whether they are appropri-
ate for large complex networks. In extensive experiments, a subset of which is presented
here, we used both synthetic LFR graphs and real-world social networks. Implementa-
tions are written in C++ and extending NetworKit. Experiments are performed on a
compute server with 2 x 8 Cores: Intel(R) Xeon(R) E5-2680 0 at 2.70GHz, 32 threads
and 256 GB RAM. The compiler is GCC 4.7.1 with -O3 optimization.

9.5.1 LFR Benchmark

As described in Sec. 7.3, the LFR graph generator provides reliable ground truth com-
munities to evaluate the performance of community detection methods, also applicable
in the context of selective community detection. For the evaluation, we vary the LFR
mixing parameter µ, which stands for the fraction of inter-community edges. For higher
mixing parameters, communities are less dense and their boundaries are less clearly de-
fined, increasing the difficulty of the task. Distinctive communities can be identified up
to µ = 0.5. We quantify the accuracy of an algorithm in recognizing the ground truth in
the following way: Let Cs be the detected community for seed s and Ts its ground truth
community. We use the Jaccard index J(C,T) := |C∩T |

|C∪T | to quantify their agreement. Jac-
card values closer to 1 are better, and containment of T within C is not enough, because
the Jaccard index penalizes the size of the set C \ T .

9.5.2 Parameter Studies

Both PageRankNibble and selSCAN depend on numeric parameters, the choice of which
is crucial for community detection success. For PageRankNibble, we need to set α and β:
α is the loop probability of the random walk, and smaller values tend to produce larger
communities. β is the tolerance threshold for approximation of PageRank vectors, and
smaller β leads to more accurate approximation and higher running time. For selSCAN,
the parameters to estimate are ε, the threshold distance for two neighboring nodes to be
considered close, and κ, the number of close neighbors required to be a core node. When
using algebraic distances, we need to additionally estimate the number of iterations
required for meaningful node distances, because values are increasingly smoothened with
each iteration. The distance threshold ε needs to be selected depending on the resulting

102 detecting communities selectively around seed nodes

absolute distance values. In general, parameter dependence is a disadvantage of those
methods, since community detection is usually an exploratory data analysis task and
reliable ground truth against which to tune the parameters is not available. However, the
LFR generator provides reliable ground truth, and we perform the following parameter
study: For an LFR graph, we measure which combination of two parameters yields the
best agreement with ground truth. By setting parameters this way, the algorithms are
configured to recognize community structure that it similar to that found in the LFR
benchmark graphs: Community sizes between 50 and 250 nodes are typical for actual
social networks. From the results of the parameter study it became clear that we can
fix κ at 2 and select an appropriate ε. Using the ND distance function, ground truth
communities were best recognized for ε = 0.75. For algebraic distances, we observed that
10 iterations and a distance threshold of ε = 0.01 performed best. For PageRankNibble
an approximation tolerance of 10−4 is sufficient and a loop probability α = 0.1 performs
well. We apply the same parameters to the real world networks in Section 9.5.5.

9.5.3 LFR Benchmark Results

▪
▪

▪

▪

▪

▪

▪

▪

▪▪ ▪

▪
▪

▪

◆ ◆
◆

◆
◆

◆

◆

◆
◆

◆

◆

◆ ◆ ◆

◆ !

!

!

!

!

!
!

!
!

!

!

◀ ◀ ◀◀

◀

◀ ◀ ◀ ◀

◀
▶

▶

▶

▶

▶

▶
▶

▶ ▶ ▶

▶
◀
!◆ ▪▪▪▪▪

▪▪▪▪
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

◆
◆

◆

◆

◆ ◆ ◆
!

!

!
!

!

!

!

!
!

!
!

◀

◀

◀ ◀ ◀ ◀ ◀ ◀ ◀

▶
▶

▶▶
▶

▶

▶▶

▶
◀
◆
!
▪

◆

◆ ◆ ◆ ◆ ◆ ◆ ◆
▶ ▶

▶

▶ ▶ ▶ ▶ ▶ ▶
! ! ! ! ! ! ! !▪ ▪ ▪

▪ ▪ ▪ ▪ ▪

◀ ◀ ◀ ◀ ◀ ◀ ◀ ◀

▶
◀
!
▪◆

▪ ▪ ▪

▪
▪ ▪ ▪ ▪

! ! ! ! !!

!

!

!

!

▶

▶

▶ ▶

▶

▶
▶▶ ▶

◀
◀ ◀ ◀

◀ ◀
◀

◀◆ ◆ ◆
◆ ◆

◆
◆

◆

Figure 53: LFR benchmark results: accuracy, quality, community size and running time (query
time without preprocessing)

Fig. 53 contains plots of LFR benchmark results. We let each algorithm find commu-
nities for 100 seed nodes in a 105 node LFR graph and record average accuracy, average
community quality in terms of conductance, average community size and query time
for the batch of seed nodes. Running times do not include the preprocessing phase of
selSCAN-AD, which we discuss in more detail in Sec. 9.5.5. Additional experiments show
that the results do not qualitatively change when we scale up the number of nodes in the

9.5 evaluation 103

graphs. The crucial factor is the size of the ground truth communities (here between 50
and 250 nodes) and the ratio of intra- to inter-community density controlled by the pa-
rameter µ. We increase the difficulty for algorithms by increasing µ up to 0.5. Algorithms
tend to perform worse for increasing µ, the LFR parameter influencing the amount of
inter-community edges. We consider those algorithms superior which can distinguish com-
munities even with significant noise. GCE-L terminates without discovering the ground
truth community, reflected in small community sizes. GCE variants optimizing L run
slightly faster than those using M . In terms of accuracy, M clearly outperforms L. L
leads to a low agreement with LFR ground truth. Inspecting precision and recall shows
that on average about 80% of nodes are correctly assigned by GCE-L, but Cs is only
insufficiently expanded to half the size of Ts. It seems to be a general limitation of L that
big communities are not discovered because expansion halts after few iterations. This
can be explained by the fact that the denominator Lext grows faster than the numerator
Lint during expansion. The same occurs for the non-greedy CE-L algorithm. In view of
these results, we cannot consider the L measure an appropriate objective function for our
purposes. GCE-L running times increase with µ because they are coupled to the growth
of the shell. The same is not true for the density-based selSCAN-ND algorithm, whose
running time even decreases as the size of discovered communities decreases. Qualita-
tively, selSCAN-ND performs well and behaves robustly with increasing noise between
the communities, even outperforming PageRank-Nibble. selSCAN-AD starts as one of the
fastest algorithms on the LFR graphs. It avoids the (re)computation of quality gains and
can also return a result in constant time if the seed belongs to a previously discovered
SCAN community. Query time is slightly faster than for selSCAN-ND, because node
distances are calculated as pre-processing (see Sec. 9.5.5 for discussion). It is important
to note, however, that the high accuracy of selSCAN depends on the right choice for the
parameter ε (see Sec. 9.5.2). Clearly, accuracy of selSCAN-AD peaks for the µ value on
which the parameters have been trained, and then plummets. At the same time the size
of the detected community escalates to encompass most of the network. These results in-
dicate that selSCAN performs well only for correctly selected parameters, with a narrow
margin of error. PageRank-Nibble needs parameter tuning as well, but is more robust
and convinces with very low query times and a relatively high accuracy throughout the
experiments.

9.5.4 Real-world Social Networks.

We compare the algorithms on the “Facebook 100” collection of real social networks
collected in the early days of Facebook [TMP12] (cf. Chapter 10 for more details). Table 8
contains graph sizes, an estimate of the average local clustering coefficient c, and the
exponent γ of the degree distribution power law.

9.5.5 Results for Real-World Networks

For experiments on real-world networks, we selectGCE-M,GCE-L, selSCAN-ND , selSCAN-
AD and PageRank-Nibble as candidates. The results shown in Fig. 54 are averages of com-
munity quality (Φ), community size and total running time for a seed set of 10 nodes.
Running times do not include AD preprocessing time. Because of the lack of reliable
ground truth data, we cannot test accuracy. Quality as measured by conductance must

104 detecting communities selectively around seed nodes

no name n m c γ

0 Caltech36 769 16656 0.429 4.94
1 Smith60 2970 97133 0.291 10.44
2 Johns Hopkins55 5180 186586 0.276 4.37
3 UChicago30 6591 208103 0.261 3.78
4 Carnegie49 6637 249967 0.283 5.33
5 MIT8 6440 251252 0.279 3.84
6 Princeton12 6596 293320 0.240 4.87
7 Yale4 8578 405450 0.240 4.49
8 Harvard1 15126 824617 0.225 3.13
9 Oklahoma97 17425 892528 0.233 7.40

Table 8: Overview of real-world social networks used. c: average local clustering coefficient, γ:
exponent of degree distribution power law

be considered in combination with community sizes. We observed that good values of Φ
can also be achieved for communities which encompass large parts of the graph, which
are not likely to be desired solutions.
Strikingly, query times for GCE-M and GCE-L escalate completely on these real net-

works, being orders of magnitudes larger than the query times of selSCAN-AD and
PageRank-Nibble, which are close to zero on this scale. We conjecture that this is due to
high-degree nodes leading to an extreme growth of the size of the shell to be scanned.
The resulting query times can only be called impractical. Query time for selSCAN-ND
is also very high, for similar reasons as the overlap of large neighbourhoods has to be
calculated. selSCAN-AD has potentially the fastest query times due to the precalculation
of node distances, so that actual queries amount to little more than breadth-first search.
While the preprocessing time is not insignificant, it can amortize if repeated queries on
the same network need to be performed. We observe that AD preprocessing time is linear
in the number of edges. In practice, however, both selSCAN-ND and selSCAN-AD fail
with the parameters trained on LFR graphs: selSCAN-ND produces giant communities
while selSCAN-AD recognizes only outliers. This shows how sensitive the density-based
approach is to the choice of numeric parameters, especially the distance threshold ε. Val-
ues that achieved high accuracy on the LFR set fail completely for this set of real world
social networks, although we can assume at least some similarity with respect to commu-
nity structure and graph properties. In contrast, PageRank-Nibble performs rather well
and in an expected way using the parameters estimated from LFR experiments.

9.6 conclusion

While various methods for selective community detection have been proposed, there is a
gap in the literature with respect to an experimental comparison on real-world data. We
contribute to the consolidation of the topic by reviewing several algorithms and objec-
tive functions proposed for the selective community detection problem. We highlight the
need for scalable solutions, showing that a popular greedy approach is not fast enough to
target large complex networks in the order of millions to billions of edges, which are not
uncommon today. Greedy node-by-node optimization of community quality may not be

9.6 conclusion 105

the best strategy at all, since the process can easily halt in unwanted local optima. We
propose the density-based selSCAN as an alternative approach, which can be more ac-
curate and faster especially when combined with algebraic distances. Although algebraic
distances require preprocessing, they take more structural information into account and
provide us with node distances appropriate for community detection. Calculating alge-
braic distances in a preprocessing step allows us to keep query times in the order of a few
milliseconds even for graphs with millions of edges. The density-based approach is, how-
ever, very sensitive to the choice of a numeric parameter ε, which depends on the specific
properties of a network. Solving the problem of parameter estimation without previous
knowledge would allow us to harness the strengths of the density-based approach in prac-
tice. Finally our experiments show that the PageRank-Nibble algorithm is likely to be a
practical method for selective community detection. Although the algorithm depends on
numeric parameters that have to be estimated in parameter studies, these seem to be
more robust and can be carried over to real-world networks. An efficient implementation
of the algorithm is distributed as part of NetworKit.

106 detecting communities selectively around seed nodes

!

!

!
!

!

!
! ! ! ! !

◀

◀◀
◀

◀

◀ ◀

◀

◀

◀

◀ ◀

◀

◀

▶

▶ ▶

▶

▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶

◆

◆

◆ ◆ ◆
◆

◆ ◆

◆
◆ ◆

▪

▪
▪ ▪ ▪

▪
▪ ▪ ▪ ▪ ▪

!
! ! !

! ! ! ! ! !◆
◆

◆

◆
◆

◆
◆

◆
◆ ◆

▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪

▶
▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶ ▶

◀

◀

◀
◀ ◀ ◀

◀

◀
◀

◀

! ◀ ▶ ◆ ▪

! ! ! ! ! ! ! ! ! !

◀

◀

◀

◀

◀
◀

◀

◀

◀

◀

◆

◆

◆

◆

◆

◆

◆

◆

◆
◆

▪

▪

▪

▪

▪

▪

▪
▪

▪ ▪

! ◀ ◆ ▪▶

▶ ▶ ▶ ▶

▶

▶

▶

▶ ▶ ▶

▶

▶ ▶

Figure 54: Average community quality, size and running time for real complex networks (Table
8)

CONCLUS ION OF PART I I I

Community detection, the subdivision of a network into subsets of nodes with internally
dense and externally sparse linkage, is a fundamental analysis task that reveals the
modular composition of a network. In Part III we have approached two subproblems,
detecting disjoint communities either globally, or selectively around given seed nodes.
Though they may seem initially similar, we have seen that these two problems require
different approaches in terms of formalization and algorithmic techniques.
Global disjoint community detection was formalized as the NP-hard modularity opti-

mization problem. Two efficient parallel heuristics (both based on previously published
sequential heuristics) have been engineered and experimentally evaluated: The PLM (Par-
allel Louvain Method) algorithm targets modularity explicitly, combining locally greedy
node moves with a multilevel scheme. A variant with additional local moves during the re-
finement yields a small modularity gain. The PLP (Parallel Label Propagation) algorithm
is a simple, fast and easily parallelizable method that implicitly leads to high-modularity.
The experimental comparison on a wide range of complex networks locates both algo-

rithms on the Pareto front of modularity versus running time in comparison with several
competing implementations, with PLM algorithm leading to higher modularity than PLP
at a moderate additional cost in running time. In summary the work presented resulted
in two robust, O(m)-time algorithms for modularity-driven community detection in large
networks on a shared-memory parallel computer, which show efficient scaling behavior
and are parameter-free by default. Assuming as hardware a current multicore workstation,
users of NetworKit can deploy as community detection tools for large-scale networks con-
sisting of several billion edges, and process them in no more than a few minutes. Their
workflows are therefore constrained by the main memory available to store the graph
rather than the computing time that needs to be invested, and the graph representation
in memory is already compact. Consequently, from a pragmatic perspective that is con-
cerned with building a practical tool set for network analysis on a multicore machine, the
developed methods present a satisfactory solution. Further speedups within this context
will likely yield diminishing returns in terms of the expansion of the user’s data analysis
capabilities. To process significantly larger graphs, we need to look for external mem-
ory algorithms, distributed computing solutions or graph compression schemes, which is
outside of the scope of the NetworKit framework as well as this thesis.
From this pragmatic perspective, the selective community detection problem cannot

yet be considered solved to the same extent. Since previous literature is rich in proposals
of novel algorithms and objective functions, but poor in terms of rigorous evaluation and
comparison, the state of the art was initially less clear. A significant part of the work was
concerned with clarifying the state of the art and developing standards for comparison.
Engineering efforts yielded the algorithms GCE (Greedy Community Expansion) which
unifies several previously proposed algorithms and is able to target different objective
functions, and selSCAN, an adaptation of a global, density-based community detection
scheme to the the selective community detection scenario. For practical purposes, we
would like such an algorithm to detect communities selectively in a small fraction of the
time needed for solving of the global solution. Since global methods (including those

107

108 detecting communities selectively around seed nodes

introduced in Chapter 8) are already very fast, there is a need for performance improve-
ment in the case of the selective methods. We also require an SCD algorithm not to be
dependent on complex parametrization, so that it is suitable for exploratory analysis.
In contrast, the PageRank-Nibble and selSCAN algorithms are parameter-sensitive and
required parameter studies to perform well.
Beyond the algorithmic horse race enabled by narrowing the focus to optimizing a

target function like modularity, the main open question that remains is to better specify
when a result is adequate. If two community detection methods differ both in running
time and qualitatively in their results – which one should be selected? Application-specific
feedback could perhaps lead to a better understanding of the tradeoff between running
time and result quality. The question of an optimal tradeoff is one that the algorithm
specialist cannot leave entirely to the practitioner: While the tradeoff may be to some
extent user-configurable (such as the optional refinement phase of PLMR), it is usually
at least partially fixed by certain algorithm design choices.

Part IV

E D G E C E N T R A L I T Y M E A S U R E S FO R N E T WO R K
S PA R S I F I C AT I O N

This part is on community detection

10
RATING THE CENTRAL ITY OF EDGES

One day a student came to Moon and said: “I understand how to make a better
garbage collector. We must keep a reference count of the pointers to each cons.”

Moon patiently told the student the following story:
“One day a student came to Moon and said: ‘I understand how to make a better

garbage collector...

– traditional hacker koan

This chapter examines the idea that different connections play different roles with
respect to structural properties of the network, and discusses ways to quantify their
structural importance. Several existing (Triangle Count, Jaccard Similarity, Simmelian
Backbones, Algebraic Distance) and original (Local Degree, Edge Forest Fire) methods
are described, including their efficient implementation. An experimental study is pre-
sented which focuses on forming classes of methods according to how the resulting edge
ranks correlate in a large set of social networks. In the following Chapter 11, these meth-
ods are applied and evaluated for the goal of network sparsification, also a context in
which many of these measures have been first proposed. We conceptualize sparsifica-
tion as edge rating followed by filtering. Sparsification should be considered one possible
application of rating the structural importance of edges.
This chapter and the subsequent chapter are based on joint work with Gerd Lindner,

Michael Hamann, Henning Meyerhenke and Dorothea Wagner. Gerd Lindner did impor-
tant preliminary work in the course of his Bachelor’s thesis on Complex Network Back-
bones [Lin14]. Results appeared as Structure-Preserving Sparsification of Social Networks
in the proceedings of the IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2015) [LSH+15]. An extended version has
been accepted for publication in the journal Social Network Analysis and Mining, and is
available online as a preprint [HLM+16].

10.1 centrality of edges

The core idea of the research presented here is that not all edges are equally important
with respect to properties of a network: For example, a relatively small fraction of long-
range edges typically act as shortcuts and are responsible for the small-world phenomenon
in complex networks. From a network science perspective, quantifying these differences
can yield valuable insights into the importance of relationships and the participating
nodes.
Analogously to centralities on nodes (Def. 12), we can differentiate and rank edges

by their position within the network’s structure. We refer to methods enabling such a
ranking as edge centrality measures, and the values on which a ranking is based as edge
(centrality) scores.

Definition 29 (Edge Centrality Measure). Given an undirected graph G = (V ,E), an
edge centrality measure is a function c : E → A which assigns to each edge {u, v} an

111

112 rating the centrality of edges

attribute value x ∈ A of (at least) ordinal scale of measurement. The assigned value
depends on the position of the edge within the network G as defined by a set of edges
E′ ⊆ E. �

Edge centralities can be defined analogously for directed edges, but we only consider
undirected graphs in the following. As a first example, compare the definition of node
betweenness (Def. 17) with its analog for edges:

Definition 30 (Edge Betweenness). Naming |σst| the number of shortest paths from a
node s to a node t and |σst(u)| the number of shortest paths from s to t that go through
the edge {u, v}, edge betweenness is defined as:

cb(u, v) :

 E → R≥0

{u, v} 7→ 1
n(n−1)

∑
s 6=u6=t

|σst(u,v)|
|σst|

(31)

�

10.2 edge centrality measures

This section describes a set of edge centrality measures that have been used in the context
of network sparsification, including the existing Jaccard Similarity, Simmelian Backbones
and edge ranking based on Algebraic Distances. Further we introduce Edge Forest Fire
and Local Degree as novel methods. We also present parallel implementations for all
methods, though some of them are only partial parallelizations and most parallelizations
are straightforward.

10.2.1 Random Edge (RE)

When studying different edge centrality measures, the performance of a random edge
ranking is an important baseline. As we shall see, it also performs surprisingly well in the
sparsification study in Chapter 11. The method selects edges uniformly at random from
the original set such that the desired sparsification ratio is obtained. This is equivalent to
scoring edges with values chosen uniformly at random. Naturally this needs O(m) time
and can be trivially parallelized.

10.2.2 Triangle Count

Triangles play an important role because the presence of a triangle indicates the transitiv-
ity of the relationship between the three involved nodes. A high frequency of triangles is
a major structural property of social networks. The sociological theory of Simmel [SW50]
states that “triads (sets of three actors) are fundamentally different from dyads (sets of
two actors) by way of introducing mediating effects.” In a friendship network, it is likely
for two actors with a high number of common friends to be friends as well. Several of
the following methods are based on the triangles edge score T (u, v) that denotes for an
edge {u, v} the number of triangles it belongs to. T (u, v) is sometimes referred to as the
embeddedness of an edge, and defined equivalently as the number of mutual neighbors
shared by its end nodes [BK14]. The time needed for counting the number of all triangles
is O(m · a) [OB14], where a is the graph’s arboricity [CN85].

10.2 edge centrality measures 113

Parallelization. We use a novel parallelized variant of the algorithm introduced by
[OB14]. This variant is different from the parallel variant introduced in [ST15] as they
need additional overhead in the form of sorting operations or atomic operations for storing
local counters which we avoid. Algorithm 8 contains the pseudo-code for our algorithm.
The algorithm needs a node ordering. While a smallest-first ordering that is obtained by
iteratively removing nodes of minimum degree can guarantee the theoretical running time,
simply ordering the nodes by degree is actually faster in practice as noticed by [OB14].
Therefore we use such a simple degree ordering. While N(u) denotes all neighbors of
u, N+(u) denotes the neighbors of the node that are higher in the ordering. Note that
when using a smallest-first ordering |N+(u)| is bounded by a. In contrast to [OB14] we
count each triangle three times, which does not increase the asymptotic running time. In
each iteration step of the outer loop we encounter each triangle u and the edges incident
to u exactly once. Therefore it is enough to count the triangle for the edges that are
incident to u and where u has the higher id. This avoids multiple accesses to the same
edge by several threads, we therefore do not need any locks or atomic operations. In the
same way we could also update triangle counters per node e.g. for computing clustering
coefficients without additional work and without using locks or atomic operations. Note
that node markers are thread-local.

Algorithm 8: Parallel triangle counting
1 foreach u ∈ V do in parallel
2 Mark all v ∈ N(u)
3 foreach v ∈ N(u) do
4 foreach w ∈ N+(u) do
5 if w is marked then
6 Count triangle u, v, w

7 Un-mark all v ∈ N(u)

10.2.3 (Local) Jaccard Similarity (JS, LJS)

One line of research attempts to sparsify graphs with the goal of speeding up data mining
algorithms. [SPR11] propose a local graph sparsification method with the intention of
speedup and quality improvement of community detection. It has also been adapted for
accelerating collective classification, the task of inferring the labels of all nodes in a graph
given a subset of labeled nodes [SRD13].
The method uses the Jaccard measure to quantify the overlap between node neighbor-

hoods N(u), N(v) and thereby the (Jaccard) similarity of two given nodes:

JS(u, v) = |N(u) ∩N(v)|
|N(u) ∪N(v)|

=
T (u, v)

d(u) + d(v)− T (u, v) (32)

where d(u) denotes the degree of u. Clearly JS(u, v) also serves an edge centrality
measure. The time needed for calculating the Jaccard Similarity is the time for counting
all triangles. The authors also propose a fast approximation which runs in time O(m).

For this Jaccard Similarity, [SPR11] propose the local filtering technique (explained in
detail in Sec. 11.2.1). We denote the edge scores derived thusly by LJS. The time needed

114 rating the centrality of edges

for calculating this local edge score is the time for calculating the Jaccard Similarity and
for sorting the neighbors of all nodes, which can be done in O(m log(dmax)). We process
the nodes in parallel for sorting the neighbors.
Parallelization: With our parallel triangle counting variant and pre-calculated node

degrees, the edge scores for Jaccard Similarity can be calculated in parallel. We are not
aware of any prior work that calculated the Jaccard Similarity in parallel. As shown in
Algorithm 10 in Chapter 11 also the local filtering can be parallelized. As we will show in
our experimental evaluation the achieved running times with our parallel implementation
are very good and not far from random edge filtering.

10.2.4 Simmelian Backbones (TS, QLS)

The Simmelian Backbones introduced by Nick et al. [NLCB13] aim at discriminating
between edges that are placed within dense subgraphs and those between them. The
original goal of these methods was to produce readable layouts of networks. To achieve a
“local assessment of the level of actor neighborhoods” [NLCB13], the authors propose the
following approach, which we adapt to our concept of edge scores. Given an edge centrality
measure S and a node u, they introduce the notion of a rank-ordered neighborhood as
the list of adjacent neighbors sorted by c(u, ·) in descending order. The original (Triadic)
Simmelian Backbone uses triangle counts T for c. The newer Quadrilateral Simmelian
Backbone by Nocaj et al. [NOB14] uses quadrilateral edge embeddedness, which they
define as

Q(u, v) = q(u, v)√
q(u) · q(v)

(33)

with q(u, v) being the number of quadrangles containing edge {u, v} and q(u) being the
sum of q(u, v) over all neighbors v of u. They argue that this modified version performs
even better at discriminating edges within and between dense subgraphs.
On top of the rank-ordered neighborhood graph that is induced by the ranked neigh-

borhoods of all nodes, Nick et al. introduce two filtering techniques, a parametric one
and a non-parametric one. Like Nocaj et al. we use only the non-parametric variant. By
TS, we denote the Triadic Simmelian Backbone and by QLS the Quadrilateral Simmelian
Backbone. The non-parametric variant uses the Jaccard measure similar to Local Simi-
larity but, instead of considering the whole neighborhood, they use the maximum of the
Jaccard measure of the top-k neighborhoods for all possible values of k. While the time
needed for quadrangle counting is equal to the time for triangle counting [CN85], the
overlap and Jaccard measure calculation of prefixes needs time O(m · dmax) as it needs
to be separately calculated for all edges. We use a relatively simple implementation of
the original algorithm for quadrangle counting. All neighborhoods are sorted in parallel
which takes O(m · log(dmax)) time. By using binary vectors for marking the unmatched
neighbors of both incident nodes we get O(∑{u,v}∈E d(u) + d(v)) = O(m · dmax) for
the Jaccard measure calculations which dominates the running time. We execute this
calculation in parallel for all edges.
Parallelization: Our implementation of triangular Simmelian Backbones is fully par-

allelized, we use our parallel triangle counting implementation, then we sort all neigh-
borhoods in parallel. Using this information we can compute the triangular Simmelian
Backbone scores in parallel for all edges. For the quadrilateral Simmelian Backbones, the

10.2 edge centrality measures 115

quadrangle counting step is sequential as we are not aware of an efficient, parallelized
quadrangle counting algorithm on edge level but the remaining part of the algorithm is
parallelized as in the case of triangular Simmelian Backbones.

10.2.5 Edge Forest Fire (EFF)

The original Forest Fire node sampling algorithm [LF06] is based on the idea that nodes
are “burned” during a fire that starts at a random node and may spread to the neighbors
of a burning node. Note that contrary to random walks the fire can spread to more than
one neighbor but already burned neighbors cannot be burned again. The basic intuition
is that nodes and edges that get visited more frequently than others during these walks
are more important. In order to select edges instead of nodes, we introduce a variant
of the algorithm in which we use the frequency of visits of each edge as a proxy for its
relevance.

Algorithm 9 shows the details of the algorithm we use to compute the edge score. The
fire starts at a random node which is added to a queue. The fire always continues at
the next extracted node v from the queue and spreads to neighboring unburned nodes
until either all neighbors have been burned or a random probability we draw is above a
given burning probability threshold p. The number of burned neighbors thus follows a
geometric distribution with mean p/(1− p). As the total length of all walks is hard to
estimate in advance, we cannot give a tight bound for the running time.

Algorithm 9: Edge Forest Fire
Input: targetBurnRatio ∈ R, p ∈ [0, 1)

1 edgesBurnt ← 0
2 while edgesBurnt < m· targetBurnRatio do
3 Add random node to queue
4 while queue not empty do
5 v ← node from queue
6 while true do
7 q ← random element from[0, 1)
8 if q > p or v has no un-burnt neighbors then
9 break

10 x← random un-burnt neighbor of v
11 Mark x as burnt
12 Add x to queue
13 Increase edgesBurnt
14 Increase burn counter of {v,x}

Parallelization: We use a very simple parallelization for our Edge Forest Fire algorithm.
We burn several fires in parallel with separate burn markers per thread and atomic
updates of the burn frequency. In order to avoid too frequent updates, we update the
global counter for the number of edges burned only after a fire has stopped burning
before we start the next fire.

116 rating the centrality of edges

10.2.6 Algebraic Distance (AD)

Algebraic distance [CS11] (α) is a method for quantifying the structural distance of two
nodes u and v in graphs, described in Sec. 2.2. In a straightforward way, algebraic distance
can be used to quantify the “range” of edges, with short-range edges (low α(u, v) for an
edge {u, v}) connecting nodes within the same dense subgraph, and long-range edges
(high α(u, v) for an edge {u, v}) forming bridges between separate regions of the graph.
Hence, α restricted to the set of connected node pairs is an edge score in our terms, and
can be used to filter out long- or short-range edges. We use 1− α(u, v) as edge score in
order to treat short-range edges as important. As parameters for the algebraic distance
computation, we choose 20 systems and 20 iterations.
Parallelization: Updates of node coordinates can be easily executed in parallel for all

nodes as the new values only depend on the values of the previous round. The implemen-
tation is described in detail in Sec. 5.1.1.

10.2.7 Local Degree (LD)

Inspired by the notion of hub nodes, nodes with relatively high degree, we propose a new
measure for the local importance of edges. The basic idea, developed in the context of
sparsification, is that we want to retain (and therefore rank highly) such edges that lead
from a node v to a neighbor that has high degree among all neighbors of v. For each node
v ∈ V , we want to include the edges to the top bdeg(v)αc neighbors, sorted by degree
in descending order. This idea can be mapped to an edge score: We use 1− α for the
minimum parameter α such that an edge would be contained in a sparsified graph. (For
formal details, see the definitions in Sec. 11.2.1). The goal of this approach is to keep
those edges in the sparsified graph that the edges ranked highly by this method form what
can be considered a “hub backbone” of the network, emphasizing edges leading to (local
or global) hubs. Such nodes with relatively high degree have been found to significantly
influence a complex network’s topology. This idea is examined in more detail in Sec.
10.3.1.

As only the neighbors of each node need to be sorted, this can be done inO(m log(dmax)).
Using linear-time sorting it is even possible in O(m) time. We have decided against the
linear-time variant and instead apply the sorting in parallel on all nodes.
Parallelization: The parallelization of the Local Degree score calculation is very similar

to the parallelization for local filtering (described in more detail in Ch. 11) We can handle
all nodes in parallel. For each node we can independently sort the neighbors and assign
the appropriate scores. Again we need to use atomic maximum calculation in order to
make sure that parallel updates of edge scores are handled correctly.

10.3 experimental study

Our experiments have been performed on a multicore compute server with 4 physical Intel
Core i7 cores at 3.4 GHz, 8 threads, and 32 GB of memory. For this explorative study,
we use a collection of 100 social networks representing early snapshots of Facebook, each
of which is an online friendship network for a US university or college [TMP12], most
members are students. Sizes of the Facebook networks are between 10k and 1.6 million

10.3 experimental study 117

0. 0 0. 5 1. 0 1. 5 2. 0 2. 5 3. 0 3. 5 4. 0
Number of Nodes ×104

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2

1. 4

1. 6

N
um

be
r

of
 E

dg
es

×106

Figure 55: Number of nodes and edges of the Facebook networks

edges, the number of nodes and edges is shown in Fig. 55. We use implementations
described in more detail in Sec. 11.3.

10.3.1 Understanding Local Degree Scores

The novel Local Degree edge rating method we propose merits a closer look in order to
better understand its outcome and effectiveness, particularly in light of its good perfor-
mance in the following study on sparsification (see Sec. 11.4). Starting from a very simple
local principle (“edges {u, v} incident to node u are the more important the higher the
degree of v”), what is – globally viewed – the edge structure highlighted by the measure?
Its initial motivating idea was to conjecture that networks contain a “hub backbone”, a
subgraph of connected nodes with high degree relative to their neighbors. Because hubs
connect different regions of the network, such a hub backbone would be significantly re-
sponsible for important properties of the network, such as the small-world phenomenon.
Consequently, edges connected with hub nodes are significantly more likely to be part
of shortest paths. In the following we briefly examine this idea empirically, reporting
edge rank correlation coefficients for edge betweenness (Def. 30) and Local Degree scores
in Table 9 for a small set of networks from different contexts. The correlation can vary
widely among networks of different types, but is often positive, especially for social net-
works (fb-..., PGPgiantcompo, jazz). In networks known to have similar structure,
the O(m) time Local Degree edge scoring method can serve as a very rough heuristic to
find edges with high betweenness without performing computationally expensive shortest
path calculations for all node pairs. A strong correlation of this kind contributes to the
observed behavior when applying Local Degree scores for sparsification, i.e. preserving
the network diameter and shortest-path-based relative centralities such as betweenness.
The performance of the Local Degree method is further discussed with the interpretation
of results of the sparsification study in Chapter 11.

118 rating the centrality of edges

network type Spearman’s ρ
dolphins animal social network 0.32
power power grid topology 0.14
as-22july06 internet topology 0.64
PGPgiantcompo PGP web of trust 0.64
fb-MIT8 Facebook social network 0.57
fb-Smith60 Facebook social network 0.57
fb-Caltech36 Facebook social network 0.63
jazz musicians collaborations 0.57
mouse_brain anatomical connectome 0.05
foodweb-baydry food web 0.16

Table 9: Correlation between Local Degree edge scores and edge betweenness

10.3.2 Correlations between Edge Scores

Among the edge centrality measures considered here, some are more similar to others in
the sense that they tend to produce similar edge rankings. Such similarities can be clar-
ified by studying correlations between edge scores. We calculate edge score correlations
for the set of 100 Facebook networks as follows: For each single network, edge scores are
calculated with the various scoring methods and Spearman’s rank correlation coefficient
is applied. The coefficient is then averaged over all networks and plotted in the correlation
matrix (Fig. 56). There is one column for each method, and the column Mod represents
edge scores that are 1 for intra-community edges and 0 for inter-community edges after
running a modularity-maximizing Louvain community detection algorithm. Positive cor-
relations with these scores indicate that the respective rating method assigns high scores
to edges within modularity-based communities. The column Tri simply represents the
number of triangles an edge is part of. As some of the methods are normalizations of this
score, this shows how similar the ranking still is to the original score.
Interpretation of the results is challenging: The correlations we observe reflect intrin-

sic, mathematical similarities of the rating algorithms on the one hand, but on the other
hand they are also caused by the structure of this specific set of social networks (e.g.,
it may be a characteristic of a given network that edges leading to high-degree nodes
are also embedded in many triangles). Nonetheless, we note the following observations:
There are several groups of methods. Simmelian Backbones, Jaccard Similarity and Tri-
angles are highly positively correlated, which is not unexpected as they are all based
on triangles or quadrangles and are intended to preserve dense subgraphs. Algebraic dis-
tance is still positively correlated with these methods but not as strongly even though
it is also intended to prefer dense subgraphs. An explanation for this weaker correlation
is that, while both prefer dense regions, the order of the individual edges is different.
All of the previously mentioned methods are also correlated with the Modularity value,
algebraic distance with local filtering has the highest score among all of these methods.
Our experiments on the preservation of community structure (Sec. 11.4.2) confirm this
relationship. The correlation of the Modularity value and these methods are similar to
the correlation between algebraic distance and the rest of the methods which shows again

10.3 experimental study 119

0.4

+

0.46

+

0.39

+

0.38

+

0.42

+

0.39

+

0.44

+

0.41

+

0.24

+

-0.13

-

0.026

+

-0.025

-

-0.00022 0.013

+

0.74

+

0.38

+

0.37

+

0.37

+

0.37

+

0.4

+

0.39

+

0.31

+

-0.14

-

-0.075

-

-0.087

-

0.00016 -0.0094

-

0.36

+

0.44

+

0.4

+

0.45

+

0.42

+

0.47

+

0.21

+

-0.17

-

0.046

+

-0.018

-

-0.00011 0.021

+

0.83

+

0.84

+

0.7

+

0.93

+

0.77

+

0.81

+

-0.19

-

-0.15

-

-0.18

-

0.0002 -0.03

-

0.75

+

0.83

+

0.84

+

0.92

+

0.57

+

-0.25

-

0.034

+

-0.041

-

0.00014 0.011

+

0.88

+

0.85

+

0.76

+

0.68

+

-0.13

-

-0.11

-

-0.14

-

3.2e-05 -0.017

-

0.76

+

0.84

+

0.48

+

-0.19

-

0.034

+

-0.028

-

-3.4e-05 0.015

+

0.88

+

0.71

+

-0.18

-

-0.059

-

-0.11

-

9.2e-05 -0.011

-

0.53

+

-0.19

-

0.05

+

-0.017

-

-9.5e-05 0.017

+

0.21

+

-0.51

-

-0.4

-

6.5e-05 -0.086

-

-0.4

-

-0.19

-

-0.00015 -0.041

-

0.46

+

5e-05 0.097

+

-0.00038 0.076

+

8.8e-05

MOD

AD

LAD

JS

LJS

TS

LTS

QLS

LQLS

Tri

LD

EFF

LEFF

RE

LRE 1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 56: Edge score correlations (Spearman’s ρ, average over 100 Facebook networks)

that the lower correlation values are probably due to different orderings of the individual
edges.
Our new method Local Degree is slightly negatively correlated with all these methods

but still positively correlated with the Triangles. It is also slightly negatively correlated
with the Modularity value, this is due to the method’s preference of inter-cluster edges,
which is also confirmed by our experiments below. The newly introduced Edge Forest Fire
is also negatively correlated with Local Degree and even more negatively with Triangles.
This strong negative correlation between Edge Forest Fire and triangle count can be
explained by the fact that the Edge Forest Fire can never “burn” a triangle, as nodes
cannot be visited twice. Random edge filtering is not correlated at all, which is definitely
expected.
It is interesting to see that each method is also relatively strongly correlated with its

local variant (discussed in detail in Ch. 11), apart from random edge filtering (we use
different random values as basis of the local filtering process). Even the Edge Forest Fire
method, which should also be relatively random, has a positive correlation with its local
variant. This shows that it prefers a certain kind of edge and that this preference is kept
when applying the local filtering.

120 rating the centrality of edges

Among the variants of Simmelian Backbones and Jaccard Similarity also the local
variants are more correlated to other local variants than to other non-local variants and
also not as strongly correlated to triangles. This shows that the local filtering indeed
adds another level of normalization. Also Jaccard Similarity seems to be more corre-
lated to Quadrilateral Simmelian Backbones than to the variant based on triangles even
though Jaccard Similarity is based on triangles itself. This is also interesting to see, as
Quadrilateral Simmelian Backbones are computationally more expensive than the Jac-
card Similarity.

10.3.3 Running Time

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0 1. 2 1. 4 1. 6
Number of edges ×106

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
un

ni
ng

 ti
m

e
(e

dg
e

sc
or

e
ca

lc
ul

at
io

n)
 (

s)

AD20
EFF
JS
RE

TS
QLS
LD

Figure 57: Running times of various edge scoring methods on the Facebook networks

Measured running times are shown in Fig. 57. Random Edge selection is clearly the
fastest method, closely followed by Local Degree. Jaccard Similarity is also not much
slower and scales also very well. Therefore these methods are well suited for large-scale
networks in the range of millions to billions of edges. The efficiency of the Jaccard
Similarity method shows that our parallel triangle counting implementation is indeed
very scalable. The authors also proposed inexact Jaccard coefficient calculation for a
further speedup though given our numbers it can be doubted if – given an efficient
triangle counter – this is necessary or helpful at all. Algebraic distance is a bit slower
but scales very well nevertheless. Using less systems or iterations could further speed-up
algebraic distance if speed is an issue. Both Simmelian methods are significantly slower
than the other methods, but still efficient enough for the network sizes we consider.
The visible difference between quadrilateral and triangular Simmelian Backbones can be
explained by the difference between triangle and quadrangle counting, additionally we

10.3 experimental study 121

did not parallelize the latter. While the time complexity in O-notation of Edge Forest
Fire is difficult to assess, it seems to be slightly faster than Simmelian Backbones.

11
SPARS IF ICAT ION OF SOCIAL NETWORKS

The old scribe Qi was tasked with assembling and maintaining the high-level design
document for a new system. Each developer provided the scribe with his or her
contributions, but the contributions of the head monk were returned with the subject
line "Unsatisfactory".

“What is your objection?” demanded the head monk, who was known for his
impatience. “Much of what you gave me was actual source code,” said the scribe.
“Class declarations, method bodies, long SQL queries. That is not our way.” “How
better to document the algorithms?” asked the head monk pointedly. “My way
distorts nothing.” The scribe considered this. “Very well,” he said finally. “If you
can convince the head priest of my order, I will allow it.” “Tell me where this priest
may be found,” said the head monk, fumbling in his robes for paper and ink.

“I can only tell you where I found him last, about three years ago,” said the
scribe, thumbing through his diary. “Ah! Here it is: I followed the Road of White
Nettles toward the East for two days, until I came to a stream whose banks were
swollen from a recent rain. There I turned so the wind was at my back, walking
until two salmon leaped from the waters. Crossing at the next footbridge I took the
fork that pointed straight at the moon, turned right when I came to a barefoot boy
gathering sticks and then left when the clouds blotted out the pole-star. It was the
hut with the door standing halfway open; you can’t miss it.”

The head monk required no further correction.

– from The Codeless Code

Sparsification reduces the size of networks while preserving structural properties of
interest. Various sparsifying algorithms have been proposed in different contexts. We
contribute the first systematic conceptual and experimental comparison of edge sparsi-
fication methods on a diverse set of network properties. It is shown that they can be
understood as methods for rating edges by importance and then filtering globally or
locally by these scores. We propose a local filtering step that has been introduced by
[SPR11] for one specific sparsification technique as a generally applicable and beneficial
post-processing step for preserving the connectivity of the network and most properties
we consider. We show that applying this local filtering technique improves the preserva-
tion of all kinds of properties. In addition, we propose a new sparsification method (Local
Degree) which preserves edges leading to local hub nodes. All methods are evaluated on
a set of social networks from Facebook, Google+, Twitter and LiveJournal with respect
to network properties including diameter, connected components, community structure,
multiple node centrality measures and the behavior of epidemic simulations. Experiments
with our implementations of the sparsification methods show that many network prop-
erties can be preserved down to about 20% of the original set of edges for sparse graphs
with a reasonable density. The experimental results allow us to differentiate the behavior
of different methods and show which method is suitable with respect to which property.
While our Local Degree method is best for preserving connectivity and short distances,
other local variants we introduce are best for preserving the community structure.

123

124 sparsification of social networks

11.1 introduction

11.1.1 Context

Most real-world complex networks, including social networks, are already sparse in the
sense that for n nodes the edge count m is asymptotically in O(n). Nonetheless, typical
densities lead to a computationally challenging number of edges. Here we pursue the goal
of further sparsifying such networks by retaining just a fraction of edges (sometimes called
a “backbone” of the network), while showing experimentally that important properties
of networks can be preserved in the process.
Potential applications of network sparsification are numerous. One of them is infor-

mation visualization: Even moderately sized networks turn into “hairballs” when drawn
with standard techniques, as the amount of edges is visually overwhelming. In contrast,
showing only a fraction of edges can reveal network structures to the human eye if these
edges are selected appropriately. Sparsification can also be applied as an acceleration
technique: By disregarding a large fraction of edges that are unimportant for the task,
running times of graph and network analysis algorithms can be reduced. Many other pos-
sible applications arise if we think of sparsification as lossy compression. Large networks
can be strongly reduced in size if we are only interested in certain structural aspects that
are preserved by the sparsification method.
Despite the similar terminology, our work is only weakly related to a line of research

in theoretical computer science where graph sparsification is understood as the reduction
of a dense graph (Θ(n2) edges) to a sparse (O(n) edges) or nearly-sparse graph while
provably preserving properties such as spectral properties [BSST13]. The networks of
our interest are already sparse in this sense. With the goal of reducing network data
size while keeping important properties, our research is related to a body of work that
considers sampling from networks (on which [ANK14] provides an extensive overview).
Sampling is concerned with the design of algorithms that select edges and/or nodes
from a network. Here, node and edge sampling methods must be distinguished: For node
sampling, nodes and edges from the original network are discarded, while edge sampling
preserves all nodes and reduces the number of edges only. The literature on node sampling
is extensive, while pure edge sampling and filtering techniques have not been considered
as often. A seminal paper [LF06] concludes that node sampling techniques are preferable,
but considers few edge sampling techniques. The study presented in [EHR+08] looks at
how well a sample of 5%-20% of the original network preserves certain properties, and is
mainly focused on node sampling through graph exploration. It concludes that random
walk-based node sampling works best on complex networks, but does so on the basis of
experiments on synthetic graphs only and compares only with very simple edge sampling
methods.
Only edge sampling techniques are directly comparable to our edge scoring and filtering

methods. In this work, we restrict ourselves to reducing the edge set, while keeping all
nodes of the original graph. Preserving the nodes allows us to infer properties of each
node of the original graph. This is important because in network analysis, the unit of
analysis is often the individual node, e.g. when a score for each user in an online social
network scenario shall be computed. With respect to the goal of accelerating the analysis,
many relevant graph algorithms scale with m so reducing m is more relevant.

11.2 edge sparsification 125

Another related approach is the Multiscale Backbone [SBV09], which is applicable on
weighted graphs only and is therefore not included in our study. Instead of applying a
global edge weight cutoff for edge filtering, which hides important structures at different
scales, this approach aims at preserving them at all scales.

Recently, John and Safro published a study that follows an experimental design sim-
ilar to that described in the following [JS16]. The focus is on algebraic distance-based
sparsification, experimenting with retaining long- or short-range edges, or a mix of the
two, and applying sparsification on multiple levels of a hierarchy of coarsened graphs.

11.2 edge sparsification

All edge sparsification methods we consider can be split up into two stages: (i) the
calculation of a score for each of the edges in the input graph (where the score is high
if the edge is important) and (ii) subsequent filtering according to such an edge score.
In this section we will first define this framework of scoring and filtering edges more
formally. For the following formalisms, recall the definition of an edge centrality measure
(Def. 29). Using this framework we introduce local filtering as an optionally applicable
step. We conclude this section by addressing some limits of edge sparsification.

11.2.1 Global and Local Filtering

The simplest way to filter by such an edge score is to apply a global threshold and keep all
edges whose score is equal to or above the threshold. For the comparison of the different
sparsification methods we need to be able to filter the network such that all methods keep
an equal percentage of the edges of the network. As the methods produce scores with
different ranges of values and different distributions of these values, we cannot simply
define a threshold that is the same for all methods. Also using a different threshold per
method does not solve the problem as it is possible that many edges have the same score
and there is therefore no threshold that leads to the desired ratio of kept edges. Therefore
we define global filtering not to apply a given threshold but to filter the edges such that
only a given ratio of edges remains:

Definition 31 (Global Filtering). Given a graph G = (V ,E) and an edge score c :
E → R+, a global filtering step by ratio r ∈ [0, 1] reduces the number of edges in the
sparsified graph G′ = (V ,E′) to br · |E|c edges with the highest values of c(e), i.e. E′ ⊆ E,
|E′| = br · |E|c and ∀e′ ∈ E′ ∀e ∈ E \E′ : c(e′) ≥ c(e). �

For an actual implementation of global filtering, it is enough to sort all edges by the
edge score in descending order and keep the first br · |E|c edges. In order to make sure
that in the case of edges with equal score a given order in the graph does not influence
our results, we sort edges that have an equal score in a random order by using a random
edge score as tie breaker in comparisons.
A problem with global filtering as described above is that methods that are based on

local measures like the number of quadrangles an edge is part of tend to assign different
scores in different parts of the network as some parts of the network are much denser than
other parts. Sparsification techniques like (Quadrilateral) Simmelian Backbones [NOB14]
use different kinds of normalizations of quadrangles (see previous section for details) in

126 sparsification of social networks

order to compensate for such differences. Unfortunately, these normalizations still do
not fully compensate for these differences. In Fig. 58a we visualize a Jazz musicians
collaboration network [GD03] with 15% kept edges as an example. As one can see in the
figure, many nodes are isolated or split into small components, the original structure of
the network (shown with gray edges) is not preserved.

(a) Quadrilateral Simmelian Backbone (b) Quadrilateral Simmelian
Backbone with UMST

(c) Quadrilateral Simmelian Back-
bone with local filtering

Figure 58: Drawing of the Jazz musicians collaboration network according to a variant of the
Quadrilateral Simmelian Backbone with 15% of the edges (in black). Created using
visone (http://visone.info).

Simmelian Backbones have been introduced for visualizing networks that are otherwise
hard to layout. For layouts it is important to keep the connectivity of the network as
otherwise nodes cannot be positioned relative to their neighbors. In order to preserve
the connectivity, Nocal et al. [NOB14] keep the union of all maximum spanning trees

http://visone.info

11.2 edge sparsification 127

(UMST) in addition to the original edges. In Fig. 58b we show the result when we keep
the UMST. While the network is obviously connected, much of the local structure is lost
in the areas between the dense parts – which is not surprising as we only added the union
of some trees.
Sataluri et al. [SPR11] face a similar problem, as with their sparsification technique

based on Jaccard Similarity (see below for details) they want to preserve the community
structure. They propose a different solution: Each node u keeps the top bd(u)αc edges
incident to u, ranked according to their similarity where d(u) is the degree of u and
α ∈ [0, 1]. An edge is kept when it is ranked high enough by one of the nodes that are
incident to it. This procedure ensures that at least one incident edge of each node is
retained and thus prevents completely isolated nodes.
In order to define this filtering step formally, we first introduce a formal definition of

the rank of node v in the neighborhood of node u:

Definition 32 (Neighborhood Rank). Given a graph G = (V ,E) and an edge score
c : E → R+, the neighborhood-rank rc(u, v) is the position of v in the sorted list of
neighbors of u, i.e. rc(u, v) := |{x ∈ N(u) : c({u,x}) < c({u, v})}|+ 1. �

Note that when two edges that are incident to u have the same edge score they also
have the same rank. Again, we want to be able to keep an exact ratio of edges. In order to
achieve this we transform this local rank into a score that can be used for global filtering.

Definition 33 (Local Filtering Score). Given a graph G = (V ,E) and an edge score
c : E → R+, the directed local filtering score lc : V × V → [0, 1]

lc(u, v) :=

1, if d(u) = 1

1− log(rc(u, v))/ log(d(u)), otherwise

Then lc({u, v}) := max(l(u, v), l(v,u)) is the local filtering score that belongs to c.
�

Lemma 2. Filtering locally according to an edge score c with parameter α is equivalent
to keeping all edges with lc({u, v}) ≥ 1− α.

Proof. An edge {u, v} is kept by local filtering exactly if rc(u, v) ≤ d(u)α or rc(v,u) ≤
d(v)α, as the top d(u)α (or d(v)α) edges are kept. If d(u) = 1, the only edge that is
incident to u is always kept as 1α = 1. For d(u) > 1, it holds that

rc(u, v) ≤ d(u)α

⇔ log(rc(u, v)) ≤ log(d(u)) · α

⇔ log(rc(u, v))
log(d(u)) ≤ α

⇔ 1− log(rc(u, v))
log(d(u))︸ ︷︷ ︸
=lc(u,v)

≥ 1− α

Which shows the claim, as lc({u, v} is exactly defined as the maximum of lc(u, v) and
lc(v,u), which means that global filtering by lc({u, v}) will keep the edge exactly if one
of the directions would have been kept by local filtering.

128 sparsification of social networks

In Algorithm 10 we show the parallel algorithm that we use in order to transform
edge scores for local filtering. We iterate over all nodes in parallel, sort the neighbors,
determine the rank for each neighbor and assign its score. Since the two scores of an
edge are possibly calculated at the same time, we use an atomic maximum for assigning
the final score. The total time complexity is O(m · log(dmax)), where dmax denotes the
maximum degree in G, as every list of neighbors needs to be sorted.

Algorithm 10: Transformation of global edge scores into edge scores that are equiv-
alent to local filtering
Input: Graph G = (V ,E), edge score s : E → R

Output: Edge score l : E → [0, 1]
1 l(u, v)← 0 ∀{u, v} ∈ E
2 foreach u ∈ V do in parallel
3 r ← 0 // rank
4 s← 1 // number of equal scores in a row
5 o← −∞ // old score
6 foreach v ∈ N(u) sorted by s(u, v) in descending order do
7 if s(u, v) 6= o then
8 r ← r+ s

9 s← 1
10 else
11 s← s+ 1
12 if d(u) > 1 then
13 e← 1− log(r)/ log(d(u))
14 else
15 e← 1
16 l(u, v)← atomic max of l(u, v) and e

In Fig. 58c we show the Jazz musicians collaboration network, sparsified again to 15%
of the edges with the Quadrilateral Simmelian Backbone method using local filtering.
With the local filtering step, the network is almost fully connected and local structures
are maintained, too. Additionally, as already Satuluri et al. observed when they applied
local filtering to their Jaccard Similarity, the edges are much more distributed among
the different parts of the network. This means that we can still see the local structure
of the network in many parts of the network and do not only maintain very dense but
disconnected parts. An explanation for this is that a node u has the minimum degree
d(u)α which means high-degree nodes loose more incident edges than low-degree nodes
but high-degree nodes still keep more neighbors than low-degree nodes. Therefore some
properties are kept but still the differences are smoothened in order to ensure that we
retain structure in every part of the network. In our evaluation we confirm that many
properties of the considered networks are indeed better preserved when the local filtering
step is added. Furthermore, we show that the local filtering step leads to an almost perfect
preservation of the connected components on all considered networks even though this
is not inherent in the method. This suggests that local filtering is superior to preserving
a UMST as not only connectivity but also local structures are preserved.
As one of our contributions we therefore propose to apply this local filtering step to

all sparsification methods and not only to Jaccard Similarity, where the local filtering
step has been introduced. In our evaluation we do not further consider the alternative of

11.3 implementation 129

preserving a UMST as preliminary experiments have shown that adding a UMST has no
significant advantage over the local filtering step in terms of the preservation of network
properties. With local filtering, our sparsification pipeline consists of the following stages:
(i) calculation of an edge score, (ii) conversion of the edge score into a local edge score
and (iii) global filtering. In the evaluation we prefix the abbreviations of the local variants
with “L”.

11.3 implementation

For this study, we created efficient C++ implementations of all considered sparsification
methods, and accelerated them using OpenMP parallelization. In particular, RE, LD,
LS and the Simmelian Backbone methods (with exception of the inherently sequential
triangle and quadrangle counting algorithms [CN85]) have been parallelized. We imple-
mented the algorithms in NetworKit (see Part ii). For community detection, we use the
efficient implementation of the Louvain method (PLM), described in Chapter 8. To get
consistent results, a deterministic configuration of this algorithm is used.
Gephi [BHJ09] is a graph visualization tool which we use not only for visualization

purposes but also for interactive exploration of sparsified graphs. To achieve said inter-
activity, we implemented a client for the Gephi Streaming Plugin in NetworKit. It is
designed to stream graph objects from and to Gephi utilizing the JSON format. Using
our implementation in NetworKit, a few lines of Python code suffice to sparsify a graph,
calculate various network properties, and export it to Gephi for drawing. The approach
of separating sparsification into edge score calculation and filtering allows for a high level
of interactivity by exporting edge scores from NetworKit to Gephi and dynamic filtering
within Gephi.

11.4 experimental study

Our experimental study consists of two parts. In the first part (Sec. 10.3.2) we compare
correlations between the calculated edge scores on a set of networks. In the second part
(Sec. 11.4.2) we compare how similar the sparsified networks are to the original network
by comparing certain properties of the networks.

11.4.1 Setup

The following experimental part uses the same platform and the set of 100 Facebook
social networks already described in Sec. 10.3 in the previous chapter. Unless otherwise
noted, we aggregate experimental results over this set of networks. The common origin
and the high structural similarity among the networks allows us to get meaningful ag-
gregated values. For the experiments on the preservation of properties we also use the
Twitter and Google+ networks [LM12] and the LiveJournal (com-lj) network from [YL12].
All of them are friendship networks, the Twitter and Google+ networks consist of the
combined ego networks of 973 and 132 users, respectively. In Table 10 we provide the
number of nodes and edges as well as diameter and clustering coefficient averaged over all
Facebook networks and the individual values for the three other networks. Furthermore
we provide the number of edges divided by the number of nodes, which indicates how

130 sparsification of social networks

network n m m/n δ c

Facebook 12 083 469 845 38.4 7.8 0.25
com-lj 3 997 962 34 681 189 8.7 21 0.35
gplus 107 614 12 238 285 113.7 6 0.52
twitter 81 306 1 342 296 16.5 7 0.60

Table 10: Number of nodes n, the number of edges m, m/n, the diameter δ and the average local
clustering coefficient c of the used social networks (average values for the Facebook
networks)

much redundancy there is in the network. If this number was near 1 and the network
connected, the network would be close to a tree in structure. It is not realistic to expect
that we can preserve the structure of the network if it is very sparse already. The net-
works we selected have a varying degree of redundancy but all of them are dense enough
such that if we remove 80% of the edges more edges remain than we would need for a
single tree. The characteristics of the Facebook networks are relatively similar.
It remains an open question to what extent results can be translated to other types

of complex networks, since according to experience the performance of network analysis
algorithms depends strongly on the network structure.

11.4.2 Similarity in Network Properties

Quantifying the similarity between a network and its sparsified version is an intricate
problem. Ideally, a similarity measure should meet the following requirements:

1. Ignoring trivial differences: Consider, for example, the degree distribution: One
cannot expect the distribution to remain identical after edges get removed during
sparsification. It is clear, however, that the general shape of the distribution should
remain “similar” and that high-degree nodes should remain high-degree nodes in
order to consider the degrees as preserved.

2. Intuitive and Normalized: Similarity values from a closed domain like [0, 1] allow for
aggregation and comparability. A similarity value of 1 indicates that the property
under consideration is fully preserved, whereas a value of 0 indicates that similarity
is entirely lost. In some cases we also used relative changes in the interval [−1, 1]
where 0 means unchanged as they provide a more detailed view at the changes.

3. Revealing Method Behavior : A good similarity measure will clearly expose different
behavior between sparsification methods.

4. Efficiently computable.

Following these requirements, we select measures that quantify relative changes for
important structural properties of a network (as introduced in Chapter 2). While this
collection cannot be exhaustive, we focus on common measures, including global proper-
ties like diameter, size of the largest connected component and quality of a community

11.4 experimental study 131

structure. Node degree, betweenness and PageRank are node centrality indices which rep-
resent a ranking of nodes by structural importance. Since absolute values of the centrality
scores are less interesting than the resulting rank order, we compare the rankings before
and after sparsification using Spearman’s ρ rank correlation coefficient. (This focus on
rank order is also the reason why we did not adopt the Kolmogorov-Smirnov statistic
used in [LF06], which compares distributions of absolute values.) Even though the local
clustering coefficient can be interpreted as a centrality score as well, the comparison of
ranks does not seem meaningful in this case due to the fact that it is a local score. Instead,
we analyse the deviation of the average local clustering coefficient from the original value.

In the following plots, the measures are shown on the y-axis for a given ratio of kept
edges (m′/m) on the x-axis (e.g., a ratio of 0.2 means that 20% of edges are still present).
For each value there are two rows of plots. The first contains averages over the 100
Facebook networks with error bars that indicate the standard deviation. The second row
contains the values at 20%, 50% and 80% remaining edges of the three other networks.
In each row, we show two plots: the left plot with the non-local methods and the right
plot with the methods that use local filtering.

Connected Components

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.0

0.2

0.4

0.6

0.8

1.0

|c
om

 s
pa

rs
|/|

co
m

 o
rig

|

AD20
EFF
JS

RE
TS
QLS

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.0

0.2

0.4

0.6

0.8

1.0

|c
om

 s
pa

rs
|/|

co
m

 o
rig

|

LAD20
LD
LEFF
LRE

LJS
LTS
LQLS

0.2 0.5 0.8

0.0

0.2

0.4

0.6

0.8

1.0

|c
om

 s
pa

rs
|/|

co
m

 o
rig

|

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8

0.0

0.2

0.4

0.6

0.8

1.0

|c
om

 s
pa

rs
|/|

co
m

 o
rig

|

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

Figure 60: The size of the largest component in the sparsified network divided by the size of the
largest component in the original network.

As all of our networks have, like most real-world complex networks, a giant component
that comprises most nodes we track its change by dividing the size of the largest compo-
nent in the sparsified network by the size of the largest component in the original network.
As shown in Fig. 60, out of the non-local methods Edge Forest Fire best preserves the
connected component. Random edge deletion leads to a slow decrease in the size of the

132 sparsification of social networks

(a) original (b) Random Edge (c) Edge Forest Fire

(d) Local Similarity (e) Triangular Simmelian Back-
bone

(f) Local Degree

Figure 59: Sparsification methods applied to the Jazz musicians collaboration network: 80 % of
edges removed

largest component while Simmelian Backbones, Jaccard Similarity and algebraic distance
lead to a separation very quickly. Below 20% of retained edges, the size of the largest
component on the Facebook networks drops very quickly, here the networks seem to
be decomposed into multiple smaller parts. On the other networks, this drop occurs at
different ratios of kept edges which reflects their different densities and probably also
their different structures. Local Filtering is able to maintain the connectivity. On the
Facebook networks, all methods keep the largest component almost fully connected up
to 20% of retained edges, only below that small differences are visible. The results on the
LiveJournal, Twitter and Google+ networks show that – as expected – with increasing
density it is easier to preserve the connectivity of the network. Our Local Degree method
best preserves the connected components of all networks, closely followed by the local
variant of random edge deletion and Edge Forest Fire.

11.4 experimental study 133

Diameter

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.0

0.5

1.0

1.5

2.0

D
ia

m
et

er
 q

uo
tie

nt
AD20
EFF
JS

RE
TS
QLS

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.0

0.5

1.0

1.5

2.0

D
ia

m
et

er
 q

uo
tie

nt

LAD20
LD
LEFF
LRE

LJS
LTS
LQLS

0.2 0.5 0.8
0.0

0.5

1.0

1.5

2.0

D
ia

m
et

er
 q

uo
tie

nt

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8
0.0

0.5

1.0

1.5

2.0

D
ia

m
et

er
 q

uo
tie

nt

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

(a) Original network diameter divided by network diameter

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

cc

 o
rig

in
al

 c
c

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

cc

 o
rig

in
al

 c
c

0.2 0.5 0.8

0.6

0.4

0.2

0.0

0.2

0.4

cc

 o
rig

in
al

 c
c

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8

0.6

0.4

0.2

0.0

0.2

0.4

cc

 o
rig

in
al

 c
c

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

(b) Deviation from original clustering coefficient

Figure 61: Preservation of global network properties

134 sparsification of social networks

In order to observe how the network diameter changes through sparsification, we plot
the quotient of the original network diameter and the resulting diameter, which yields
legible results since in practice the diameter is mostly increased during sparsification.
We compute the exact diameters using a variation of the ExactSumSweep algorithm
[BCH+15].
We motivate the Local Degree method with the idea that shortest paths commonly run

through hub nodes in social networks. Therefore, preserving edges leading to high-degree
nodes should preserve the small diameter. This is confirmed by our experiments (Fig.
61a). In contrast, methods that prefer edges within dense regions clearly do not preserve
the diameter. With Simmelian Backbones the diameter drops when only few edges are
left; this can be explained by the fact that Simmelian Backbones do not maintain the
connectivity and that at the end the graph is decomposed into multiple connected com-
ponents which have a smaller diameter. Algebraic distance is even more extreme in this
aspect. Local filtering leads to a slightly better preservation of the diameter when applied
to the other methods but algebraic distance remains the worst method in this regard.
Note that the LiveJournal network has a higher diameter than the other networks (see
Table 10); this might explain why the diameter is better preserved there.

Clustering Coefficient

Fig. 61b shows the deviation of the average local clustering from the value of the original
network. Both for local and non-local methods we observe three classes of methods on
the Facebook networks: methods that clearly decrease the clustering coefficient, methods
that preserve the clustering coefficient and methods that increase it.
For both Random Edge and Edge Forest Fire, which are based on randomness, the

clustering coefficient drops almost linearly with decreasing sparsification ratio. This can
also be observed on the other three networks. The additional local filtering step does not
significantly change this.
Simmelian Backbones and Jaccard Similarity keep mostly edges within dense regions,

which results in increasing clustering coefficients on all networks. Triadic Simmelian
Backbones show the weakest increase, on the Twitter network even a decrease of the
clustering coefficients. Note that with 0.52 and 0.6 the clustering coefficients are already
relatively high on the Google+ and Twitter networks, therefore the very small increase
is not surprising. Local filtering slightly weakens this effect on the Facebook networks,
on the other networks it is even reversed. Given the high clustering coefficients in the
original networks, this is not very surprising as we would need to retain very dense areas
while local filtering leads to a more balanced distribution of the edges.

From the previous results especially concerning the connected components one would
expect that algebraic distance also increases the clustering coefficients. Interestingly
though, filtering using algebraic distance leads to a slight increase of the clustering co-
efficient on the Facebook networks, constant clustering coefficients on the LiveJournal
network and even slightly decreasing clustering coefficients on the Twitter and Google+
networks. With the additional local filtering step algebraic distance almost preserves the
clustering coefficients on the Facebook networks while on the other networks it is slightly
decreased. Algebraic distance leads to random noise on the individual edge weights, there-
fore they probably lead to a more random selection of edges that also destroys more trian-
gles than the selection of Simmelian Backbones and Jaccard Similarity. Our Local Degree
method best preserves the clustering coefficient on the Facebook networks, though with

11.4 experimental study 135

some differences between the various networks in the dataset (note the error bars). On
the LiveJournal network it leads to a decrease of the clustering coefficient while on the
Twitter and Google+ networks it leads to a slight increase of the clustering coefficient.
This is probably due to the special structure of ego networks.

Our experiments therefore do not reveal a general best method for preserving cluster-
ing coefficients. If high clustering coefficients shall be created or preserved, the Jaccard
Similarity and Quadrilateral Simmelian Backbones seem to be a good choice. Algebraic
distance is good at preserving clustering coefficients with slight deviations but our Local
Degree method also works well on the considered social networks.

136 sparsification of social networks

Node Centrality Measures

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

AD20
EFF
JS

RE
TS
QLS

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

LAD20
LD
LEFF
LRE

LJS
LTS
LQLS

0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

(a) Preservation of node degree

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

(b) Preservation of betweenness centrality

Figure 62: Preservation of the ranking of node centrality measures (Spearman’s ρ rank correlation
coefficient)

11.4 experimental study 137

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
s

rh
o

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

(c) Preservation of PageRank centrality

Figure 62: (cont.) Preservation of the ranking of node centrality measures (Spearman’s ρ rank
correlation coefficient)

The exact calculation of betweenness centrality is in practice too expensive for the whole
set of networks and sparsification methods we consider. Therefore we use the approxi-
mation algorithm [GSS08] with at least 16 samples, for smaller networks also with up to
512 samples. For the calculation of the PageRank centrality we use a damping factor of
0.85 and an error tolerance of 10−9.
The similarity of the curves in Fig. 62 catches the eye immediately: For these node cen-

trality measures, the sparsification methods behave in a very similar way. This similarity
could be explained by strong correlations between node degree, PageRank and between-
ness, which have been observed before (e.g. [FBFM08]). Note that betweenness centrality
is also not exactly preserved on the original network; this is due to the approximation,
which adds additional noise.

Random edge deletion and Local Degree perform best on most networks. In accordance
with our intuition that edges leading to high-degree neighbors are important and should
be preserved, our experiments show that the Local Degree method preserves all three
considered node centralities. Nevertheless, random edge filtering with the additional local
filtering step outperforms it concerning the preservation of Betweenness Centrality. The
differences are small though and similar to those that are due to the approximation error
so they might actually be caused by the approximation method for Betweenness central-
ity that behaves differently depending on the structure of the network. On the Facebook
networks, Edge Forest Fire fails early while on the other networks it is among the best
methods. As the expected number of randomly selected incident edges via the “burning
process” of Edge Forest Fire is relatively low even for high-degree nodes, it fails at pre-
serving node degrees. Nevertheless in the non-Facebook networks it seems to preserve
enough important connections in order to preserve PageRank and betweenness centrali-

138 sparsification of social networks

ties relatively well. Methods that are focused on keeping edges within dense regions are
not as good at preserving these centralities. Adding the additional local filtering step
again leads to a better preservation of the properties but does not change the general
picture.

Community Structure

In order to understand how the community structure of the networks is maintained, we
consider for each network a fixed partition into communities that has been found by the
PLM algorithm (Section 8.2.2) on the original network. We report some properties of this
community structure for each level of sparsification. There are many ways to characterize
a community structure. We pick two properties of communities that we consider to
be crucial. Communities are commonly described to be internally dense and externally
sparse subgraphs. A natural measure is thus conductance (see Def. 25) which compares
the size of the cut of a community to the volume of the community, i.e. the sum of all
degrees (or the volume of the rest of the network if it should be larger). Low conductance
values indicate clearly separable communities. We consider the average conductance of
all communities. Furthermore we expect that communities are connected. In order to
measure this, we introduce the fraction of the nodes in a community that does not
belong to the largest connected component of the community as partition fragmentation.
We report the average fragmentation of all communities. Results are shown in Fig. 63.

11.4 experimental study 139

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
on

du
ct

an
ce

 C
ha

ng
e

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
on

du
ct

an
ce

 C
ha

ng
e

0.2 0.5 0.8
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

C
on

du
ct

an
ce

 C
ha

ng
e

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

C
on

du
ct

an
ce

 C
ha

ng
e

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

(d) Relative conductance change of a fixed partition

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

tit
io

n
F

ra
gm

en
ta

tio
n AD20

EFF
JS

RE
TS
QLS

0.0 0.2 0.4 0.6 0.8 1.0
ratio of kept edges

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

tit
io

n
F

ra
gm

en
ta

tio
n LAD20

LD
LEFF
LRE

LJS
LTS
LQLS

0.2 0.5 0.8

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

tit
io

n
F

ra
gm

en
ta

tio
n

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

0.2 0.5 0.8

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

tit
io

n
F

ra
gm

en
ta

tio
n

comlj

0.2 0.5 0.8
ratio of kept edges

twitter

0.2 0.5 0.8

gplus

(e) Average partition fragmentation

Figure 63: Preservation of community structure

We plot the relative inter-cluster conductance change in Figure 63d. A value of 0 means
that the conductance stays the same, a value of−1 indicates that the conductance became
0 (i.e. a decrease by 100%) and a value of 1 indicates that the conductance has been

140 sparsification of social networks

doubled (i.e. an increase of 100%). We can again see that there are three categories of
algorithms: the first group consisting of random edge sampling preserves the conductance
values on most networks. The second group contains only Local Degree and increases the
conductance. Edge Forest Fire has no clear behavior.

The third group consisting of Jaccard Similarity, Simmelian Backbones and algebraic
distance strongly decreases the conductance. With the additional local filtering step the
decrease in conductance is not as strong but still very significant. The keeping of inter-
community edges of the Local Degree method, which also explains why it preserves
the connectivity so well, can be explained as follows: Consider a hub node x within a
community with neighbors that are for the most part also connected to a hub node
y with higher degree than x. Due to the way Local Degree scores edges, x will lose
many of its connections within the community and may be pulled into the community
of a neighboring high-degree node z that is not part of the original community of x.
Jaccard Similarity, Simmelian Backbones and algebraic distance on the other hand focus
– by design – on intra-community edges. Random edge sampling and Edge Forest Fire
filter both types of edges almost equally distributed which is not surprising given their
random nature. Depending on the network Edge Forest Fire shows different behavior,
this indicates that these networks have a different structure.
In Figure 63e it becomes obvious that only local filtering allows methods to keep the

intra-cluster connectivity up to very sparse graphs. On the Facebook networks Simmelian
Backbones and Jaccard Similarity without local filtering are actually the worst in this
respect, they do not keep the connectivity even though they prefer intra-cluster edges as
we have seen before. On the other networks, algebraic distance is even more extreme in
this regard. Random edge sampling and Edge Forest Fire on the non-Facebook networks
are the only non-local method where a slow increase of the fragmentation can be observed,
all other methods lead to a steep increase of the fragmentation during the first 10% of
edges that are removed.

11.4.3 Epidemic Simulations

The previous experiments focused on static structural properties only. Now we briefly
turn to dynamic, emergent properties that can be observed by simulating processes on
networks. We employ the SEIR epidemic model as described in Sec. 2.6, and count nodes
of the different states (susceptible (S), exposed (E), infectious (I), removed (R)) over time.
We can ask whether sparsified versions of a network give rise to similar epidemiological
dynamics, in terms of the size and timing of a disease outbreak, and add another level of
analysis for the sparsification methods. We select fb-Texas84 (ca. 1.6 million edges) as a
representative social network and run the SEIR simulation 50 times with a latency period
of 2 time steps, an infectious period of 9 time steps, and a transmission probability of 0.1.
Figure 64a shows the aggregated epidemic curves (where the central line represents the
median and the shaded areas around it the standard deviation) for the original network.
While epidemic dynamics can depend strongly on the specific network structure, the
following observations were roughly consistent across the Facebook-type networks.

11.4 experimental study 141

0 20 40 60 80
time

0
5000

10000
15000
20000
25000
30000
35000
40000

co
un

t

1.0

S
E
I
R

(a) Epidemic curves of SEIR simulation on a Facebook social network

0 20 40 60 80
time

0
5000

10000
15000
20000
25000
30000
35000
40000

co
un

t

0.6

S
E
I
R

0 20 40 60 80
time

0
5000

10000
15000
20000
25000
30000
35000
40000

co
un

t

0.2

S
E
I
R

(b) Epidemic curves after Local Degree sparsification (ratios 0.6 and 0.2)

0 20 40 60 80
time

0
5000

10000
15000
20000
25000
30000
35000
40000

co
un

t

0.6

S
E
I
R

0 20 40 60 80
time

0
5000

10000
15000
20000
25000
30000
35000
40000

co
un

t

0.2

S
E
I
R

(c) Epidemic curves after algebraic distance sparsification (ratios 0.6 and 0.2)

Figure 64: Epidemic simulations

The Local Degree method most closely replicates the epidemic curves of the original
down to an edge ratio of 0.2, producing only a minor delay in the outbreak and slightly

142 sparsification of social networks

lower peak number of infected nodes, but an identical converged state (Fig. 64b). One
reason for this is certainly that connectedness and short paths are preserved. It may also
point to the importance of local hubs in epidemic propagation. Random edge sampling
and Forest Fire sparsification also perform well and produce a similar high fidelity. Other
methods deviate more from the original epidemic dynamics by delaying and dampening
the outbreak, with some also strongly reducing the final number of infections. For Local
Jaccard Similarity, thinning the network slows the outbreak slightly, leading to a less
sharp and high peak of infected nodes, but reproduces essentially the same epidemic
curve shapes and final state. At the other end of the spectrum, sparsification by algebraic
distance (Fig. 64c) and the Simmelian methods selectively removes bottleneck edges
between dense regions of the network. These edges are likely to be critically important
for the propagation of a disease, and hence epidemic dynamics are significantly altered
with deleting those edges.

Figure 65: Drawing of the Jazz musicians collaboration network and the Local Degree sparsified
version containing 15 % of edges. Node size proportional to degree.

CONCLUS ION OF PART IV

Part IV focused on edge sparsification of networks, i.e. reducing the number of edges
significantly while preserving essential properties of the original network. This is possible
because not all edges contribute equally to important structural features. We show how
methods that we and others have proposed can be implemented in a unified conceptual
framework of computing edge centrality scores and filtering edges locally or globally by
these scores. We hope that the conceptual framework of edge scoring and filtering as well
as our evaluation methods are steps towards a more unified perspective on a variety of
related methods that have been proposed in different contexts.
Our experimental study on networks from Facebook, Twitter and Google+ as well as

synthetic networks shows that several sparsification methods are capable of preserving a
set of relevant properties of social networks when up to 80% of edges have been removed.
Random edge deletion performs surprisingly well and retains a wide range of proper-
ties, but more targeted methods can perform even better. We propose local filtering as
a generally applicable and computationally cheap post-processing step for edge sparsifi-
cation methods that improves the preservation of almost all properties as it leads to a
more equal rate of filtering across the network. Simmelian Backbones, Jaccard Similarity
and Algebraic Distance prefer intra-cluster edges and thus do not keep global structures
but with the added local filtering step they are able to enforce and retain a community
structure as it was already shown for Jaccard Similarity. Our novel method Local De-
gree, which is based on the notion that connections to hubs are highly important for the
network’s structure, in contrast preserves shortest paths and the overall connectivity of
the network. This can be seen at the almost perfectly preserved diameter and the well-
preserved behavior of the network in epidemic simulations. Depending on the network,
the Local Degree method is also able to preserve clustering coefficients and centralities.
Our adaption of the Forest Fire sampling algorithm to edge scoring depends strongly on
the specific network’s structure. It is good at preserving connectivity, on some networks
it also preserves centralities and the diameter. Our results illuminate which methods
are suitable with respect to which properties of a network. Additionally, we take a look
at emergent properties by simulating epidemic spreading on sparsified networks in com-
parison with the original network. We conclude that our Local Degree method is best
for preserving connectivity and short distances which results in a good preservation of
the diameter of the network, some centrality measures and the behavior of epidemic
spreading.
Furthermore, we have published efficient parallelized implementations and a framework

for such methods as part of NetworKit (see Part II). While our study covers various
approaches from the literature, it is by no means exhaustive due to the vast amount of
potential sparsification techniques. With future methods in mind, we hope to contribute
a framework for their implementation and evaluation.

143

Part V

G E N E R AT I V E M O D E L S FO R R E A L I S T I C S Y N T H E T I C
N E T WO R K S

12
INTRODUCTION TO GENERATIVE NETWORK MODELS

In the days when Sussman was a novice, Minsky once came to him as he sat hacking
at the PDP-6.

"What are you doing?", asked Minsky. "I am training a randomly wired neural
net to play Tic-tac-toe", Sussman replied. "Why is the net wired randomly?", asked
Minsky. "I do not want it to have any preconceptions of how to play", Sussman said.

Minsky then shut his eyes. "Why do you close your eyes?" Sussman asked his
teacher. "So that the room will be empty." At that moment, Sussman was enlight-
ened.

– traditional hacker koan

This chapter provides a brief introduction to the topic of generative network models
with the aim of creating synthetic graphs that match important properties observed
in real complex networks. It presents relevant related work leading up to Chapter 13.
Aleksejs Sazonovs helped with initial literature research.

12.1 applications of generative network models

Generative models play a central role in the emerging field of network science. After
observing certain statistical patterns in networks, we ask whether structurally similar
graphs can be generated by following simple formal rules. With the term generative
network model, we refer to an algorithm which given some input parameters produces a
network according to a well-defined procedure.

On the one hand, software and algorithm developers want generators for synthetic
datasets which can be scaled and parametrized and produce graphs which resemble the
real application data. On the other hand, network scientists need models to increase
their understanding of network phenomena: What are the rules that guide the formation
and evolution of the complex networks we observe? If we observe common structures
in very different domains (e.g. as distinct as society and biochemistry), is it because
common abstract principles are at work? What are “typical” and “untypical” structures
that emerge?
Main use cases for generative network models include:
Obfuscation: In scenarios where the actual network data is not to be disclosed (out of

privacy concerns, commercial interest etc.), accurate replicas can be used for obfuscation.
Extrapolation and Sampling: If a generative model can be fitted to a real network and

recreate important properties, it can be used to produce realistic synthetic data sets at
different scales. Larger graphs allow for testing the scalability of algorithms or, assuming
network growth over time, simulation of the network’s future development. Likewise,
smaller replicas are useful for algorithm testing.
Compression: Graph compression is a another possible application for generative mod-

els which are able to realistically replicate the features of a given network. By storing
only the parameters of the model, significant compression can be achieved. However, the
models we consider are suitable for replicating statistical properties of the data rather
than the original graph itself.

147

148 introduction to generative network models

12.2 exemplary models

A comprehensive overview of the multitude of existing generative network models would
go far beyond the scope of this thesis, hence we refer the reader to surveys (e.g. Gold-
enberg et al. [GZFA10]) for a bird’s eye view of the topic. The selection of models that
follow is certainly to some extent arbitrary, having in common that we have encountered
the use of these models in the graph algorithms research community, and for most of
them efficient implementations in NetworKit are at hand. However, an underlying idea is
to cover both simple, fundamental models, like Erdős–Rényi random graphs, and more
complex models that come with some claim of comprehensive realism across multiple
structural properties of real networks. We also select models for which there are gen-
erative algorithms that are similar to NetworKit’s analysis algorithms in computational
efficiency, so that they are capable of producing millions of edges in a relatively short
time.
The Erdős–Rényi model ER(n, p) is a simple probabilistic model, which creates edges

among n nodes with a uniform probability of p for each of the {u, v} pairs [P. 60]. Not
intended to generate realistic networks, it has nonetheless been a very successful spark for
graph theory research, and properties of the model have been subject to much theoretical
analysis. For example, it can be shown that a graph generated by ER(n, p) is almost
certainly connected if p ≥ 2 · ln(n) · (1/n).
The degree distribution of an Erdős–Rényi graph resembles a normal distribution,

unlike the highly skewed degree distribution often found in real-world networks, where
few high-degree nodes stand vis-à-vis a large number of low-degree nodes. This motivated
the Barabasi-Albert model BA(n, k) [AB02], which implements a process in which new
nodes preferentially attach themselves to existing high-degree nodes. The model adds
nodes one by one, with k edges attached to a new node. The probability that such an
edge will attach to an existing node v is p(v) = deg(v)∑

u∈V
deg(u)

. This process has been shown
to result in a power-law degree distribution that is a common feature of real complex
networks. Other frequently found properties are not targeted, such as the closure of
triangles (clustering) or a modular composition out of dense subgraphs (communities).
Another family of generative models has the aim of replicating any given degree dis-

tribution. The Chung-Lu (CL) model [ACL00] is a random graph model which aims
to replicate a given degree distribution. Given a degree sequence, the method creates
edges between nodes with a probability of p(u, v) = deg(u)deg(v)∑

k
deg(k)

and recreates the degree
sequence in expectation.
For a given realizable degree sequence, the algorithm of Havel [Hav55] and Hakimi

[Hak62] generates a graph with exactly this degree sequence. Unlike the Chung-Lu model,
the generative process promotes the formation of closed triangles, leading to a higher
clustering coefficient. Since the Havel-Hakimi algorithm is deterministic but our focus is
on generative models that incorporate randomness, it is more appropriate to compare
with the Edge-Switching Markov Chain Generator (see e.g. [MKI+03]), which uses the
Havel-Hakimi algorithm initially but modifies the graph through random edge swaps.
This process converges in a graph that is drawn uniformly at random from all possible
graphs with the given degree sequence. Even though no theoretical bound is known for
the number of needed swaps, experiments have shown that between 10 ·m and 100 ·m
swaps should be enough in practice [MKI+03], we decided to use 10 ·m in order to not to
further increase the already large running time. While there are computationally cheaper

12.2 exemplary models 149

algorithms that try to generate a similar graph, they actually generate significantly differ-
ent graphs, see also [SHZ15] for a more in-depth discussion of these different generative
models.
While the previous models target only the degree distribution, the next group of models

are aimed at creating synthetic networks that are comprehensively realistic with respect
to several aspects.
The Recursive Matrix (RMAT) model [CZF04] was proposed to recreate various prop-

erties of complex networks, including an optional power-law degree distribution, the
small-world property and self-similarity. Design goals also include few parameters and
high generation speed. It is classified by the authors as a procedural model, i.e. event-
driven, and therefore easily enables dynamic graph generation. Three goals for the model
are singled out and emphasized: Generated graphs should a) match a given degree distri-
bution (power-law or other) b) exhibit community structure and c) have a small diameter.
RMAT operates on the initially empty adjacency matrix A of the result graph, an

n× n matrix where n is a power of two. The matrix is recursively subdivided into four
equal-sized quadrants. The quadrants are assigned the probabilities a, b, c, d which add
up to 1. Edges (i.e. 1-entries) are “dropped” into the matrix and land in one of the
quadrants according to their probabilities. Then the process continues recursively by
further subdividing the quadrant into four parts with probabilities a, b, c, d, until a 1× 1
partition is reached, which determines the location of the edge. RMAT natively generates
directed graphs, undirected graphs are generated by treating the edges as undirected and
removing duplicate edges.

Rényi.However it provably violates the power laws
above. Recent graph generators can be grouped in two
classes: degree based and procedural. Given a degree dis-
tribution (typically following a power-law), the degree-
based ones try to find a graph that matches it [2, 17], but
without giving any insights about the graph or trying
to match other criteria (like small diameter, eigenvalues
etc.).

On the other hand, procedural generators try to
find simple mechanisms to generate graphs that match
a property of the real graphs and, typically, the power
law degree distribution. This is the class that our
proposed R-MAT method belongs to. The typical
representative here is the Barabasi-Albert (BA) method
with the “preferential attachment” idea: keep adding
nodes; new nodes prefer to connect to existing nodes
with high degrees. However, this only gives power laws
of exponent 3. Many modifications and alternatives to
the basic idea have been proposed; some generators
also include the geometrical layout of nodes in their
models [1, 2, 17, 20, 6]. The BRITE graph generator
[15] uses components from several of the above models.

In general, all of the above generators fail to meet
one or more of the following goals: (a) the generator
should be procedural (b) it should be able to gener-
ate all types of graphs (directed/undirected, bipartite,
weighted) (c) it should match both power-law degree
distributions and the “unimodal” distributions observed
by Pennock et al. [20] (d) it should satisfy more crite-
ria (like diameter, eigenvalue plots), in addition to the
degree distribution.

A related field is that of relational learning [9];
however, this focuses on finding structure at a more
local level while our work focuses on the global level.
Other topics of interest involving graphs include graph
partitioning,frequent subgraph discovery,finding cycles
in graphs,and many others. These address interesting
problems, and we are investigating their use in our work.

3 Proposed Method

Several previous graph generators have been described
in Section 2, but they all fail in one aspect or another.
The goals a graph generator should achieve are that the
generated graph should:

• (g1) match the degree distributions (power laws or
not)

• (g2) exhibit a “community” structure

• (g3) have a small diameter, and match other crite-
ria

Main Idea: We provide a method which fits
both unimodal and power-law graphs using very few
parameters. Our method, called Recursive MATrix,

a

dc

From

To Nodes

Nodes

c d

b
a b
c d

Figure 1: The R-MAT model

Symbol Meaning

N Number of nodes in the real graph

2n Number of nodes in the R-MAT graph

E Number of edges in the real graph, and
in the R-MAT generated graph after
duplicate elimination

(a, b, c, d) Probabilities of an edge falling into partitions
in the R-MAT model. a + b + c + d = 1.

Table 1: Table of Symbols

or R-MAT for short, generates the graph by operating
on its adjacency matrix in a recursive manner.

3.1 Fast Algorithm to generate Directed
Graphs: The adjacency matrix A of a graph of N
nodes is an N ∗ N matrix, with entry a(i, j) = 1 if
the edge (i, j) exists, and 0 otherwise. The basic idea
behind R-MAT is to recursively subdivide the adja-
cency matrix into four equal-sized partitions, and dis-
tribute edges within these partitions with a unequal
probabilities: starting off with an empty adjacency ma-
trix, we “drop” edges into the matrix one at a time.
Each edge chooses one of the four partitions with prob-
abilities a, b, c, d respectively (see Figure 1). Of course,
a + b + c + d = 1. The chosen partition is again subdi-
vided into four smaller partitions, and the procedure is
repeated until we reach a simple cell (=1× 1 partition).
This is the cell of the adjacency matrix occupied by the
edge. The number of nodes in the R-MAT graph is set
to 2n; typically n = #log2 N$. There is a subtle point
here: we may have duplicate edges (ie., edges which fall
into the same cell in the adjacency matrix), but we only
keep one of them. To smooth out fluctuations in the de-
gree distributions, we add some noise to the (a, b, c, d)
values at each stage of the recursion and then renormal-
ize (so that a+b+c+d = 1). Table 1 shows the symbols
used in the paper.

3.2 Discussion: Meeting the Goals: Intuitively,
our technique is generating “communities” in the graph.

Figure 66: R-MAT model: Subdivision of the adjacency matrix (Source: [CZF04])

According to the authors, RMAT intuitively generates communities in the graph. Quad-
rants a and d define two groups of nodes, while b and c contain the edges between those
groups. Assuming that a, d ≥ b, c, the groups are internally dense and externally sparse,
forming communities. The recursive procedure has been claimed to generate a hierarchical
community structure by forming sub-communities. However, the generative mechanism
does not promote the formation of closed triangles, which can be considered the building
blocks of community structure.
LFR is a method often used to generate benchmark graphs for community detection

algorithms [LFR08]. The generated graphs allow a distinct community structure and
“ground truth” information about the communities each node belongs to. A mixing pa-
rameter µ determines the number of inter- and intra-community edges for a given node
u: µ · deg(u) inter-community and (1− µ) · deg(u) intra-community edges will be cre-
ated, enabling the generation of community detection test instances with varying level

150 introduction to generative network models

of difficulty (cf. Sec. 7.3). Furthermore, LFR generates a power-law distribution of node
degrees and community sizes. LFR is the basis for our new generative algorithm LFR+,
and is therefore described in detail in Sec. 13.4.

BTER [KPPS13] is a two-stage structure-driven model, which combines aspects of the
ER and CL model. It uses the standard ERmodel to form relatively dense subgraphs, thus
forming distinct communities. Afterwards, the CL model is used to add edges, allowing
to match the expected degree distribution [SKP11].
Some models use geometric methods to generate graphs. The Hyperbolic Unit-Disk

Graph model (also known as Hyperbolic Random Graph model) embeds nodes into hy-
perbolic instead of Euclidean geometry and connects them if they are within a certain
distance from each other [KPK+10]. Analysis shows that due to the properties of hyper-
bolic space the model is able to replicate some properties observed in real networks, such
as a power-law degree distribution. A new parallel implementation in NetworKit reduces
the computation cost to subquadratic time [vLMP15].
Editing models are a special class of generative models which create a synthetic network

by editing a full initial network. The resulting replica network should both preserve
structural properties of the original and introduce variety. Editing models are geared
towards scenarios where synthetic data sets similar to real datasets are required, e.g. for
anonymizing networks, generating test data for algorithm evaluation, avoid disclosure of
the actual data or generating plausible hypothetic scenarios.
MUSKETEER (Multiscale Entropic Network Generator) [GSM15] is an editing model

using a multi-level (or multi-scale) approach. Inspired by the algebraic multigrid scheme
for solving linear algebra problems, the initial graph is repeatedly coarsened and then
interpolated back to the original scale. At each level of the coarsening/refinement process,
edits to the graph are performed. Primitive edits on a coarse level, e.g. the insertion of
a node, result in larger-scale changes on the fine level, e.g. the insertion of a cluster
of nodes. Through an evaluation starting with an empirical network, it is shown that
on average structural properties such as number of nodes, number of edges, number
of components, clustering coefficient, average degree, degree assortativity, betweenness
centrality and modularity are preserved with high accuracy. The MUSKETEER model
thereby matches structural properties more closely than other models. Running time is
linear in the number of edges. An implementation is freely available [AG].

3 Performance of the Generator

We evaluate MUSKETEER in terms of both the fidelity and the variability of the replicas, using
an empirical example network from infectious disease epidemiology and two well-studied random
graph networks (see Appendix B for examples from other domains, including proteomics, energy,
and linguistics). A number of network properties are known to influence the dynamics of
infectious disease outbreaks, including the number of nodes (individuals); the degree distribution
(contacts) [39, 36]; clustering coefficient (number of triangles out of all possible triangles) [2, 49];
degree assortativity (tendency for nodes to connect to others with similar degree) [39, 41], which
we measure according to [16, 33]; node centrality [39]; average distance, and modularity as
measured by [7], which can give rise to multi-wave epidemics [21]. Many of these properties are
also highly relevant to system function and dynamics in other domains [23].

One particularly well-studied epidemiological network is based on data collected in Colorado
Springs by Potterat et al. ([44] Fig. 2A). It contains 250 individuals who were in contact in
the 1980s through sex or injection drug use. In our experiments we edited 8% of the nodes
at the finest level and 7% on the next coarsest level. The same edit rates were assigned to
the edges at those levels. Thus, crudely, the total edit rate is 30%; but it is actually higher
because the topological effect of coarse-level edits is larger than their rate might suggest, and
is approximately doubled with each level. Even at this conservative estimate of editing, over
30% of the nodes in the replicas are synthetic, and over 50% of the edges are (changes to
the nodes immediately change all incident edges). This extreme randomization is chosen only
to demonstrate the ability of the method to generate high-realism networks despite the high
editing. The network and a replica of it are shown in Figure 3. In practical applications the
appropriate edit rate should be much lower and determined by the application: the edit rate
should be high only when the input network is highly different from other networks in its class.

(a) (b)

Figure 3: Replica of an empirical sexual contact network. (a) The original contact network
estimated from [44] and (b) its replica generated by MUSKETEER. The replica has over 30%
synthetic nodes and edges, yet still visually resembles the original network.

To evaluate the performance of MUSKETEER, we generated a large number of replicas and
compared them to the original network for a variety of local and global structural properties
(Figure 4a). For most properties, the ensemble yields a median value close to the original value
and range of values that is fairly symmetric about the median. The degree distribution as a
whole is preserved with slight variation across replicas (Figure 4b)

7

Figure 67: A network used for epidemiological research (a) and its replica produced by MUSKE-
TEER (b). Source: [GSM15]

13
GENERATING SCALED REPL ICAS OF REAL -WORLD
NETWORKS

Early one morning, a programmer asked the great master: “I am ready to write
some unit tests. What code coverage should I aim for?” The great master replied:
“Don’t worry about coverage, just write some good tests.” The programmer smiled,
bowed, and left.

Later that day, a second programmer asked the same question. The great master
pointed at a pot of boiling water and said: “How many grains of rice should put in
that pot?” The programmer, looking puzzled, replied: “How can I possibly tell you?
It depends on how many people you need to feed, how hungry they are, what other
food you are serving, how much rice you have available, and so on.” “Exactly,” said
the great master. The second programmer smiled, bowed, and left.

Toward the end of the day, a third programmer came and asked the same question
about code coverage. “Eighty percent and no less!” Replied the master in a stern
voice, pounding his fist on the table. The third programmer smiled, bowed, and left.

After this last reply, a young apprentice approached the great master: “Great
master, today I overheard you answer the same question about code coverage with
three different answers. Why?” The great master stood up from his chair: “Come
get some fresh tea with me and let’s talk.”

After they filled their cups with steaming hot green tea, the great master began
to answer: “The first programmer is new and just getting started with testing. Right
now he has a lot of code and no tests. He has a long way to go; focusing on code
coverage at this time would be depressing and quite useless. He’s better off just
getting used to writing and running some tests. He can worry about coverage later.
The second programmer, on the other hand, is quite experienced both at program-
ming and testing. When I replied by asking her how many grains of rice I should
put in a pot, I helped her realize that the amount of testing necessary depends on
a number of factors, and she knows those factors better than I do – it’s her code
after all. There is no single, simple, answer, and she’s smart enough to handle the
truth and work with that.”

“I see,” said the young apprentice, “but if there is no single simple answer, then
why did you answer the third programmer ‘Eighty percent and no less’?” The great
master laughed... “The third programmer wants only simple answers – even when
there are no simple answers . . . and then does not follow them anyway.”

The young apprentice and the grizzled great master finished drinking their tea
in contemplative silence.

– a koan by Beth Anderson

In the following, we present the first extensive study on the ability of generative mod-
els to produce realistic scaled replicas of original networks. Large synthetic graphs that
match important properties of real networks are important for engineering computational
methods on networks, since large real networks can be scarce or otherwise inaccessible
in many scenarios. We fit the parameters of existing models to original networks in an
attempt to replicate their properties as closely as possible, and furthermore parametrize
the models so that they produce scaled-up replicas, containing a multiple of the originals
nodes. We introduce the LFR+ generator, a more flexible modification of the LFR model
used for community detection benchmarking, including an implementation for both mod-
els in NetworKit that is faster than the reference implementation. Most importantly, we

151

152 generating scaled replicas of real-world networks

show show that in comparison with other relevant generative models LFR+ produces
overall the most realistic replicas according to a wide range of criteria.

This chapter is based on joint work with Ilya Safro, Alexander Gutfraind, Henning
Meyerhenke and Michael Hamann, which is recent and so far unpublished.

13.1 context and contribution

When engineering algorithms, the ability to create good synthetic test data sets is a valu-
able tool to estimate effectiveness and scalability of proposed methods. In the context
of developing algorithms for complex network analysis problems, we often need to deal
with a lack of realistic large-scale graphs, since real application data is often proprietary,
sensitive, or otherwise unavailable. Realistic synthetic graphs allows us to generate exper-
imental results which are representative for what can be observed for real data. Realism
has frequently been one of the primary aspects under which generative network models
have been studied. Work by Leskovec et al. [LF07] addresses the problem of generating
a synthetic graph that matches the properties of a given large real network, going as
far as to conclude that their replicas can serve as “anonymized” (i.e. obfuscated) substi-
tutes when the real network cannot be shared. Their approach, based on the widely used
RMAT generator, is described and evaluated in Sec. 13.5.3. Other current models that
have been presented with a claim of comprehensive realism, as well as high scalability,
are the BTER model [KPPS13] and the Hyperbolic Unit Disk Graph in its most current
implementation by von Looz et al. [vLMP15]
We clarify what constitutes realism for the replica, and conceptualize it in different

ways, as matching an original graph in a set of important structural properties, and as
matching the running times of various graph algorithms (i.e., we compare the distribu-
tion of running times on sets of originals and replicas). We specifically pursue the goal
of creating realistic scaled replicas of complex networks. Starting from an initial real
network, we want to create a synthetic graph that is larger by orders of magnitude but
preserves important aspects of realism. Based on the mechanisms of the LFR generative
model, we design the LFR+ generator and a model fitting scheme and show that it is
superior in terms of realism. The resulting implementation is scalable, capable of creating
realistic scaled replicas on the scale of 108 edges in minutes.

13.2 problem definition and design goals

We envision two usage scenarios for the methods studied and developed in the following:
Given a real network O (having no nodes) that cannot be freely shared, we would like
to be able to create synthetic network R (with nr nodes) that matches the original in
essential structural properties, so that computational results obtained from processing
this network are representative for what the original network would yield. We refer to
R as a replica. We assume that whoever creates the replica has access to the original
and can pass it to a model fitting algorithm which uses it to parametrize a generative
model. Moreover, in addition to producing scale-1 replicas (where nr = no), we want to
use the generative model for extrapolation: We want to parametrize it so that it produces
a scaled replica Rx that has nr = x · n nodes, where x is called the scaling factor. The
structural properties of Rx should be such that they resemble a later growth stage of
the original (a criterion discussed in more detail in Sec. 13.2.1). This should enable users

13.2 problem definition and design goals 153

of the replica to extrapolate the behavior of their methods when the network data is
significantly scaled.
With respect to performance, we would like the generator algorithm and implementa-

tion to be efficient enough to produce large data sets (on the order of several millions
of nodes and edges) in practically short time. Furthermore, we also require the fitting
scheme to be efficient.
Why is realism important? If synthetic graphs are used for algorithmic experiments, we

need to keep in mind that the performance of graph algorithms can be highly structure-
dependent. As pointed out in [Joh02], random, synthetic instances are very useful in
experimental algorithmics, but these advantages “can be substantially dissipated if there
is no evidence that the random instance class says anything about what will happen
for real-world instances”. Generating and examining this kind of evidence is therefore a
central theme here. We consider a generative model realistic if there is high structural
similarity between the synthetic graphs produced and relevant real-world networks that
serve as input in a given application context. “Structural similarity” is understood as a
gradual and statistical concept, as discussed before in the context of sparsification (Ch.
11). We do not aim for an exact correspondence between original and replica, with the
extreme case of isomorphic graphs, since this is in general not a requirement for general-
izable experiments. In fact, producing some structural variance is a desired feature of an
effective generator. Structural similarity is quantified using a collection of measures for
characterizing network structure (cf. Chapter 2), but this includes necessarily a selection
of properties that are considered essential.

13.2.1 Scaling Behavior of Real-World Networks

What is a realistic scaled replica of a network? There are at least two subtly different lines
of attack when attempting a definition for this. We can understand realistic scaling as
either a) recreating the scaling behavior observed in real-world networks, or b) preserving
a given set of properties of the original as closely as possible, given that the number of
nodes and edges grows. An exploratory look at the scaling behavior of real-world networks
is provided in Figures 68 and 69. A set of basic structural measures is plotted against the
number of nodes n, as well as a regression line and confidence intervals (shaded area) to
emphasize the trend. Figure 68 shows the evolution of a dynamic network compiled from
the Enron email corpus, a set of corporate email communication records that became
public in the wake of the Enron accounting fraud scandal [DFC05]. For this experiment,
the raw data set was mined with a parser script to construct a network as follows: Nodes
represent email addresses and an undirected, unweighted edge is added if at least one
email has been sent. Dynamic network data is represented as a stream of graph modifier
events (add node, add edge, . . .) and we look at snapshots of the graph constructed this
way at every 105 events. What can be observed from this is a growth ofm that is linear in
n, falling density (which follows mathematically from linear edge growth), an essentially
constant small diameter of the largest connected component, a growing maximum node
degree, an increase in the skewedness of the node degree distribution as measured by the
Gini coefficient [Gin12], and a slightly falling average local clustering coefficient. Figure
69 reports these measures not for the actual temporal evolution of a single network, but
for a set of 100 Facebook social networks (already introduced in Ch. 10). They were
collected at an early stage of the Facebook online social networking service, in which

154 generating scaled replicas of real-world networks

0 1 2 3 4 5 6 7
n 1e4

0.0

0.5

1.0

1.5

2.0

2.5

m

1e5

(a) number of edges

0 1 2 3 4 5 6 7
n 1e4

0

1

2

3

4

5

6

de
ns

1e 4

(b) density

0 1 2 3 4 5 6 7
n 1e4

0

200

400

600

800

1000

1200

co
m

p

(c) number of components

0 1 2 3 4 5 6 7
n 1e4

0

2

4

6

8

10

12

14

di
a

(d) diameter

0 1 2 3 4 5 6 7
n 1e4

0
200
400
600
800

1000
1200
1400
1600

m
ax

_d
eg

(e) maximum degree

0 1 2 3 4 5 6 7
n 1e4

0.65

0.70

0.75

0.80

0.85

gi
ni

_d
eg

(f) Gini coefficient of degree
distribution

0 1 2 3 4 5 6 7
n 1e4

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

av
g_

lc
c

(g) average local clustering
coefficient

Figure 68: Scaling behavior of Enron email network. Data points and regression model shown.

networks were still separated by universities. Since these networks were formed by the
local actions of a collection of social actors which have essentially similar behavior, the
mechanism of growth by which the networks have assembled themselves is essentially
the same. These networks of different sizes can in a sense be treated as differently scaled
versions of “the” Facebook social network. The observed trends generally agree with
those of the Enron communication network.
Attempts to formulate universal scaling laws for all complex networks should be viewed

critically, since scaling behavior is a property of the system for which we apply a network
model and may vary widely. Nonetheless, the trends represented here are commonly
observed, and we use them to define desired scaling properties for the remainder of the
study as follows:

• m grows linearly with n
• the diameter remains essentially constant, preserving the “small world property”
• the shape of the degree distribution remains skewed
• the maximum node degree increases
• the number of connected components may grow, but a giant connected component
containing the majority of nodes is maintained

13.3 abandoned approach: a multiscale generator for scaled repli-
cas

We initially considered a combination of algorithmic methods used for MUSKETEER
(Multiscale Entropic Network Generator) [GSM15] as a candidate approach for the goal

13.3 abandoned approach: a multiscale generator for scaled replicas 155

0 1 2 3 4
n 1e4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

m
1e6

(a) number of edges

0 1 2 3 4
n 1e4

0

1

2

3

4

5

de
ns

1e 2

(b) density

0 1 2 3 4
n 1e4

0

5

10

15

20

25

co
m

p

(c) number of components

0 1 2 3 4
n 1e4

0

2

4

6

8

10

di
a

(d) diameter

0 1 2 3 4
n 1e4

0
1000
2000
3000
4000
5000
6000
7000
8000

m
ax

_d
eg

(e) maximum degree

0 1 2 3 4
n 1e4

0.35

0.40

0.45

0.50

0.55

0.60

gi
ni

_d
eg

(f) Gini coefficient of degree
distribution

0 1 2 3 4
n 1e4

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

av
g_

lc
c

(g) average local clustering
coefficient

Figure 69: Scaling behavior of 100 Facebook networks

of creating realistic scaled replicas. As described in Sec. 12.2, MUSKETEER implements
an editing model that coarsens a given input graph and edits it at various levels of the
coarsening hierarchy through node and edge insertions and deletions. Copying coarse
nodes, and thereby copying entire subgraphs, can be used to scale up the network. The
multiscale method’s ability to simultaneously reproduce substructures of different scales
was thought to be a promising approach for achieving realism. In fact, MUSKETEER has
been previously used to realistically replicate an original with an increase in size, albeit by
very small scaling factors (e.g. x = 2). The restricted scaling factor is not incidental: After
copying a node on a coarse level of the coarsening hierarchy and connecting it with a new
coarse edge, MUSKETEER uncoarsens this edge into a random graph. For larger scaling
factors, a large part of edges will be generated this way, causing the synthetic network to
degenerate into a random graph and losing realism. Our attempts to modify the algorithm
could not satisfactorily solve the problem of connecting a large number of coarse node
copies (i.e. copies of subgraphs of the original) in a realistic way. Moreover, considering a
large number of possibly parameter-dependent heuristics (including aggregation schemes,
e.g. by matching with edges weighted by different edge centrality measures, building of
the coarse graph hierarchy, heuristics for copying and reconnecting coarse nodes, node
and edge editing schemes etc.) would have complicated algorithm engineering, as well
as leading to a rather complex implementation which is difficult to optimize. While this
does not disprove that multiscale editing is a potentially viable approach, the unsolved
algorithmic questions and the inherent complexity of the method prompted us to abandon
it in favor of the simpler and more promising LFR+ model.
In preliminary experiments, the original MUSKETEER performed well in terms of re-

alism. However, we do not include it in the following experimental study for two reasons:
As the only editing model, MUSKETEER has an “unfair advantage” for scale-1 repli-

156 generating scaled replicas of real-world networks

cas, because with low editing rates significant amounts of the original graph are copied
directly into the replica. Secondly, the available Python implementation is significantly
slower than all other implementations in the study, and not practical for the million-edge
graphs contained in our test sets.

13.4 the lfr+ generator

We introduce LFR+, a graph generator based on the LFR generative model [LFR08], with
an efficient implementation in NetworKit. Compared to its predecessor, LFR+ allows for
better fitting to input networks and achieves increased realism, as shown in the following.
We first review the original LFR model, then describe changes to the algorithm that
yield LFR+.

13.4.1 Original LFR Model

The LFR+ generator is a modification of the LFR generator proposed by Lancichinetti,
Fortunato and Radicchi for creating benchmark graphs for testing community detec-
tion algorithms (cf. Sec. 7.3) [LFR08]. The authors originally introduced LFR as an
improvement over previous generators used for community detection benchmarks, which
employed a simple block model in which edges were created uniformly at random ac-
cording to a higher and a lower probability depending on whether the node pair belongs
to the same or different subsets of a given partition (e.g. [GN02] [GKS+12]). This fails
to generate the skewed degree distribution often encountered in real complex networks.
The “vanilla” LFR generator assumes that both the degree and the community size dis-
tributions are power laws, with their exponents γ and β being passed as parameters. The
graph structure is strongly influenced by the choice of a mixing parameter µ: Each node
shares a fraction 1− µ of its incident edges with the other nodes of its community and
a fraction µ with the other nodes of the network. The smaller µ is chosen, the fewer
inter-community edges exist and the more distinctive is the community structure.
The algorithm for the generation of the LFR model in [LFR08] differs from the one

described in [LF09b]. The latter LFR algorithm, which is also used in the implementation
provided by the authors, can be briefly summarized as follows:

1. each node u is given a degree deg(u) sampled from a power-law distribution, deter-
mined by an exponent γ as well as an average and maximum degree

2. community sizes are sampled from a power-law distribution with exponent β and
given minimum and maximum community size

3. nodes u are assigned randomly and iteratively to communities so that their internal
degree (1− µ) · deg(u) can be satisfied by the size of the community

4. the Edge-Switching Markov Chain Generator (also called fixed-degree sequence
model, see e.g. [MKI+03]) is used to generate a graph per community using the
internal degrees of the nodes and a global graph using the remaining degrees of the
nodes

5. a rewiring step switches edges of the global graph such that no additional intra-
community edges are introduced by the global graph

In our implementation we parallelize the generation of the graphs per community as
they are independent of each other.

13.5 fitting generative models to input graphs 157

13.4.2 Modification into LFR+

On a closer look, the generative mechanisms used in the LFR model allow for more
flexibility: We do not need to restrict the distribution of node degrees to power-law
distributions, but can produce arbitrary realizable degree sequences. The same is true for
community sizes. This is a relevant extension, because neither are the degree distributions
nor community size distributions encountered in real networks restricted to power-laws.
Our modification thus replaces the first three steps of the LFR generator. Instead of

generating a degree distribution, we use the degrees of the original network. For the next
steps, we detect a community structure of the original network and use this community
structure instead of a random assignment. As we keep the node ids of the original network
this also means that each community has still the nodes of the same degrees as in the
original network. Instead of using a global value of µ, we assign a separate value per node
as already mentioned as a possible extension in [LF09b].
In order to calculate the necessary sequence of µ values, we introduce the local partition

coverage λζ(u), which expresses how strongly a node is embedded into its community. A
node u has the maximum λζ(u) of 1.0 with respect to a partition ζ if it is connected only
to nodes within its own community.

Definition 34 (Local Partition Coverage). Given a graph G = (V ,E) and a partition
ζ of V , local partition coverage is defined as

λζ(u) :=
|{v ∈ N(u) : ζ(v) = ζ(u)}|

deg(u) (34)

�

To let LFR+ replicate a given network O = (V ,E) we set the sequence (µ(u))(u ∈ V)

to (1− λζ(u))u∈V .
A nice property of LFR+ is that the resulting synthetic graph, in addition to replicating

important properties with high fidelity, naturally produces random variance among the
set of replicas.

13.5 fitting generative models to input graphs

A fitting scheme is an algorithm that takes a network as input and estimates parameters
of a generative model. For this work, we test straightforward fitting schemes. We do not
claim that they are the only possible or optimal schemes. Exploring different schemes
would be relevant future work, but we restrict this study to one promising parametriza-
tion each.
Table 11 includes the model parameters we set, given an original network O = (V ,E)

with n = |V |, m = |E| and maximum degree dmax. We denote as (ai)i∈M a sequence
of elements a with indexes i from an (ordered) set M , and we note ∪kj=0(ai)i∈M the
concatenation of k sequences.
We first discuss fitting of power-law distributions, which applies to several models, and

then continue with a discussion of the parametrization of each model.

1 Or a higher value that is fitted for our minimum chosen power law exponent 1 using binary search such
that the expected average community size is the actual average community size if the expected average
community size would be too small otherwise.

158 generating scaled replicas of real-world networks

model parameters fitting fitting & scaling by x ∈N

Erdős–RényiER(n′, p) n′ = n

p = 2m
n·(n−1)

n′ = x · n
p = 2m

x·n·(n−1)

Barabasi-
Albert

BA(n′, k) n′ = n

k = bm/nc
n′ = x · n
k = bm/nc

Chung-
Lu

CL(d) d = (deg(u))u∈V d = ∪xi=1(deg(u))u∈V

Edge-
Switching
Markov
Chain

EMC(d) d = (deg(u))u∈V d = ∪xi=1(deg(u))u∈V

R-MAT RM(s, e, (a, b, c, d)) s = dlog2 ne
e = bm/nc
(a, b, c, d) = kronfit(O)

s = dlog2 x · ne
e = bm/nc
(a, b, c, d) = kronfit(O)

Hyperbolic
Unit-
Disk

HUD(n, d̄, γ) n = n

d̄ = 2 · (m/n)
γ = plfit((deg(u))u∈V)

n = x · n
d̄ = 2 · (m/n)
γ = plfit((deg(u))u∈V)

BTER BTER(d, c) d = (nd)d∈(0,...,dmax)
c = (cd)d∈(0,...,dmax)

d = (nd · x)d∈(0,...,dmax)
c = (cd)d∈(0,...,dmax)

LFR LFR(n′, γ, d̄, dmax,
β, cmin, cmax)

n′ = n

γ = plfit((deg(u))u∈V)
d̄ = 2 · (m/n)
dmax =
max((deg(u))u∈V)
ζs = {|C| |C ∈ PLM(O)}
β = plfit(ζs)
cmin = min(ζs)1
cmax = max(ζs)

n′ = x · n
γ = plfit((deg(u))u∈V)
d̄ = 2 · (m/n)
dmax = max((deg(u))u∈V)
ζs = {|C| |C ∈ PLM(O)}
β = plfit(ζs)
cmin = min(ζs)1
cmax = max(ζs)

LFR+ LFR+ (n′, ζ,µ) n′ = n

ζ = PLM(O)
µ = (1− λζ(u))u∈V

n′ = x · n
ζ = ∪xi=1PLM(O)
µ = ∪xi=1(1− λζ(u))u∈V

Table 11: Parameters set to fit a model to a given graph, and to produce a scaled-up replica

13.5.1 On Fitting Degree Power Laws

The LFR generator and the HUDG generator generate graphs with a power law degree
distribution. Therefore at least the power law exponent, and, in the case of the LFR
generator, also the average and maximum degree need to be determined such that the
degree distribution fits the real network. In Table 11, plfit refers to our custom power
law fitting scheme. There are many definitions of a fit, and in the case where the real
distribution is not a power law distribution they can also lead to very different parameters.
In general it is assumed that a power law distribution only holds starting with a minimum
degree xmin. The powerlaw module [ABP14] by default tries to find the best possible xmin
which can lead to a very high minimum degree in the case of real networks where the
degree distribution is not an exact power law distribution. While the minimum degree
can be given explicitly, in our experience this also leads to higher degrees on average
than in the real network. For the replication of a graph the average degree should be

13.5 fitting generative models to input graphs 159

kept as otherwise the graph will be much denser or sparser. At the same time, also
the minimum and the maximum degree should be kept as otherwise the structure of
the graph will be different as the presence of degree-1 nodes or very large hubs is a
fundamental property. Therefore we fit the power law exponent such that with the given
minimum and maximum degree the average degree of the real network is expected when
a degree sequence is sampled from this power law distribution. Using binary search in the
range of [−6,−1] we repeatedly calculate the expected average degree until the power
law exponent is accurate up to an error of 10−3.

13.5.2 Erdős–Rényi, Barabasi-Albert, Chung-Lu and ESMC

The Erdős–Rényi model does not provide many options for parametrization. The edge
probability p is set to produce the same edge-to-node ratio m

n as the original. Likewise,
we set the number of edges k coming with each new node in the Barabasi-Albert model
to the edge-to-node ratio. The Chung-Lu and Edge-Switching Markov Chain generators
simply receive the degree sequence of the original as input. In order to achieve scaling,
x copies of this sequence are concatenated, multiplying the number of nodes by x while
keeping the relative frequency of each degree.

13.5.3 RMAT

The RMAT model can only generate graphs with 2s nodes, where s is an integer scaling
parameter. In order to target a fixed number of nodes nr, we calculate s so that 2s > nr
and delete 2s − nr random nodes. The choice of the parameters a, b, c, d requires some
discussion.
Leskovec et al. [LF07] propose a method to “given a large, real graph [. . .], generate a

synthetic graph that matches its properties”. They opt for stochastic Kronecker graphs
as the generative method. Starting 2-by-2 stochastic initiator matrix I, Kronecker prod-
ucts are calculated so that Is is a stochastic matrix of dimension 2s that yields edge
probabilities of a graph. This is equivalent to the RMAT model as it yields the same
edge probabilities. They attempt to fit model parameters so that the likelihood that a
given original graph O was generated starting from an initiator matrix I is maximized,
and propose the kronfit gradient descent algorithm that iteratively estimates I in O(m)

time. They do not explicitly mention the case of creating a scaled replica, but it is clear
that the method is capable of producing graphs for arbitrary exponents s. We use an
implementation of kronfit which is distributed with the SNAP network analysis tool suite.
The kronfit algorithm has been employed for other applications, e.g. deriving a distance
metric to compare two networks from the estimated initiator matrices [SRK16]. However,
we focus on the claim of being able to replicate large networks in a realistic way.

The RMAT generator’s fitting method calls the external kronfit tool of the SNAP
package [LS14], which tries to fit the initiator matrix probabilities to a given input
graph. NetworKit’s RmatGenerator transparently calls SNAP’s kronfit if available and
receives the estimated parameters. As measurements presented in Fig. 70 show, the kronfit
method as implemented in SNAP is rather time-consuming relative to all other fitting
methods considered, and applying it to the multi-million edge graphs we want to target
seems impractical.

160 generating scaled replicas of real-world networks

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
m 1e5

0

500

1000

1500

2000

2500

ru
nn

in
g

tim
e

[s
]

Figure 70: Running time of 50 iterations of the kronfit algorithm in relation to the number of
edges m of the input network

The high computational cost of kronfit motivates a closer look at the claim of in-
creased realism as opposed to random guessing of the initiator matrix. Network profiles
generated by NetworKit (cf. Sec. 5.3.2) enable a quick exploratory analysis of an original
network and replicas created by RMAT, with random parameters on the one hand and
parameters generated after 50 iterations of kronfit (a value that the authors propose in
[LF07]). The original is fb-Caltech36, a small instance from the “Facebook 100” col-
lection of social networks. Fig. 71 shows an excerpt from the generated profiles. The
most obvious difference between the original and its two replicas is in the distribution
of the local clustering coefficient: While the median is around 0.4 for the original, it is
about 0.1 for the replica with random parameters and only slightly higher for the kon-
fit-generated replica. The same behavior of the generator was observed consistently on
other networks. This points to inherent restrictions of generating graphs by stochastic
Kronecker multiplication/RMAT that an elaborate parameter fitting does not overcome.
Since running kronfit on every network to be replicated is not practical, we estimate

RMAT parameters as follows: We assume that the 100 Facebook networks constitute a
class with essential structural commonalities, and run the recommended 50 iterations of
kronfit on one typical network, fb-Caltech36. The resulting initiator

Ifb−Caltech36 =

0.378802757 0.249474498
0.255098510 0.116624233

is applied to replicate all Facebook networks. For other sets of networks, the assumption

of structural similarity cannot be made, so we use a new random initiator for each
replication.

13.5.4 Hyperbolic Unit Disk

After consultation with the authors of [vLMP15], we apply the following fitting scheme
to the Hyperbolic Unit-Disk Graph generator: The generator receives three parameters,
the target number of nodes n′, the average degree d̄ computed as 2 · (m/n), and the
power law exponent γ of the degree distribution. The degree power law exponent γ is

13.5 fitting generative models to input graphs 161

(a) original: fb-Caltech36

(b) RMAT replica with random initiator matrix

Figure 71: Structure profiles for the evaluation of the kronfit scheme

162 generating scaled replicas of real-world networks

(c) RMAT replica with kronfit-generated initiator matrix

Figure 71: (cont.) Structure profiles for the evaluation of the kronfit scheme

estimated as described in Sec. 13.5.1. Note that one restriction of the HUDG generator is
that it works only with power law exponents larger than 2. If the power law fit estimates
a lower exponent for a given original network, we set it to 2.1. One should note, though,
that the HUDG does not necessarily generate a power law distribution that starts at the
minimum degree. However, using the high exponents provided by the power law module
is most probably still not the best fit. Therefore, further research is needed in order to
find a better way to fit power law exponents for replicating networks which is beyond the
scope of this work. Nevertheless the minimum exponent of 2.1 is already larger than the
exponents we calculate for most networks, so the results are most likely not fundamentally
different and also will not change the fundamental characteristics of the networks that
are generated by the HUDG so we believe our results are still representative for the
HUDG.

13.5.5 BTER

nd = |{v ∈ V : deg(v) = d}| denotes the number of nodes in G with degree d and
cd = 1

nd

∑
u∈Vd

cu denotes the average clustering coefficient for nodes of degree d. Ac-
cording to its original description, BTER receives sequences (nd)d∈(0,...,dmax) (the degree
distribution) and (cd)d∈(0,...,dmax) (the distribution of clustering coefficients per degree)
as parameters d and c and recreates them. To replicate a given network O, we sim-
ply compute these sequences for O and pass them to BTER. In order to parametrize
BTER for scaled replicas, we set d to (nd · x)d∈(0,...,dmax), i.e. we multiply the number
of nodes of each degree by the scaling factor. This leads to the target number of nodes
nr =

∑
d∈(0,...,dmax) nd · x = x · no while also preserving the general shape of the degree

13.6 implementations 163

distribution. We pass c unmodified, which keeps the distribution of clustering coefficients
constant with the scaling factor.

13.5.6 LFR and LFR+

Fitting LFR and LFR+ requires community detection. PLM refers to the modularity-
based community detection heuristic described in Chapter 8.
Given an original network O = (V ,E), we produce a scaled replica Rx with n′ = x · n

nodes as follows:

1. compute the degree sequence (deg(u))u∈V of O
2. detect communities in O with any suitable method, returning the partition ζ; we

use the PLM algorithm
3. compute the sequence (λζ(u))u∈V of local partition coverage scores with respect

to ζ
4. concatenation of x copies of ζ; for each subset in ζ, we create x− 1 new subsets

with the same size

For LFR+ we directly use this degree sequence, the community structure and the local
partition coverage scores.
As the original LFR benchmark generates power law distributions for the degree se-

quence and community size sequence, we fit the parameters of these power law distri-
butions using the distributions of the original network. For the degree, we fit the power
law exponent as described above. In theory we could provide the average and maximum
degree, too. In practice due to rounding errors the binary search of the minimum degree
that is actually performed when the average degree is provided does not work anymore
as the actual expected average degree even with a minimum degree of 1 can be higher
than the observed one. Therefore we directly provide a power law degree sequence that
is generated from the minimum and maximum degree and the calculated exponent. For
the community sizes, we also fit the power law exponent in the same way as for the
degree distribution and provide the minimum and maximum community size. As many
networks in our set of real-world networks contain a few small connected components,
the smallest communities usually only contain just 2 nodes while all other communities
are much larger. Therefore frequently our minimum power law exponent 1 is chosen as
exponent and the average community size is still too low. In these cases we also fit the
minimum community size using binary search until the expected average community size
is the real average community size.

13.6 implementations

While previous sections focused on the generative models, this section discusses aspects
of concrete implementations.

13.6.1 LFR

A reference implementation of the LFR generator by Fortunato et al. is available online
[For]. We created a custom implementation of both the original LFR and the extended

164 generating scaled replicas of real-world networks

LFR+ model in NetworKit, which is also the first parallelized implementation. Fig. 72
illustrates the speedup that we achieve with a new implementation of the LFR algo-
rithm based on NetworKit. Speed measurements were obtained on the phipute machine
previously described in this thesis, having 16 physical cores. It yields speedup factors
of 5 to 25 for the test set of 100 Facebook social networks, and the factor grows su-
perlinearly with the size of the network to be generated. Our implementation therefore
significantly reduces the time needed to generate large synthetic graphs according to the
LFR model. The running time difference can be partially traced back to implementation
differences: The LFR reference implementation relies on std::set to store and test for
graph adjacencies, while our implementation uses a simple but apparently more efficient
sequential scan on a simple array. Further, as mentioned already, the community graphs
are generated in parallell which gives an additional speedup.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
m 1e6

0

20

40

60

80

100

120

t [
s] impl.

ref.
NetworKit

(a) absolute time

104 105 106

m

0

5

10

15

20

25

30

sp
ee

du
p

(b) speedup

Figure 72: Running time measurements of NetworKit implementation of LFR versus reference
implementation [For] when replicating a set of networks with m edges

13.6.2 Other Models

For the tested generative models, NetworKit includes efficient implementations, such as
an implementation of the linear-time algorithms for the Erdös-Renyi and Barabasi-Albert
models by Batagelj and Brandes [BB05]. An exception is the BTER model, for which we
use the FEASTPACK implementation by Kolda et al. [TGK]. NetworKit implements an
adapter class that performs the model fitting and transparently calls the MATLAB-based
FEASTPACK binary. Furthermore, as already mentioned, we use the external kronfit tool
of the SNAP package [LS14]. NetworKit makes generating replicas of input networks
convenient. Each generator class implements a fit class method that receives an orig-
inal graph and a scaling factor and returns a parametrized instance of the generator.
Subsequently calling the generate method builds a graph.

13.7 evaluating the realism of replicas

In the following we evaluate the realism of (scaled) replicas in different ways.

13.7 evaluating the realism of replicas 165

13.7.1 Example Replication

We begin the evaluation of realism by replicating a small example network with each
of the models. The input graph is a social network of Bottlenose dolphins [LSB+03],
which already served as an example data set throughout this thesis. If a graph is small
enough, we can take advantage of graph drawing to inspect network structures. While
this is less exact than property measurements, it is also less reductionist. Here we use
the ForceAtlas2 layout algorithm implemented in Gephi [Jac09], as well as an additional
force attracting nodes to the center of the layout, compacting the layout and preventing
components from drifting away. Since the same layout scheme is used for all graphs, this
exposes structural differences. Fig. 73 shows a layout of the original network. Node sizes
are proportional to degree within one drawing. Consider its basic structure: The graph
is connected, with two distinct communities separated by an edge bottleneck (i.e. the
graph admits a bipartition cutting only a small bundle of edges).

Figure 73: The original dolphins social network

Figure 74 shows layouts for scale-1 replicas of the dolphins network, one for every
considered model. Figure 75 repeats this with a scaling factor of 2. We summarize ob-
servations as follows: The LFR+ replicas are the only ones commonly recognized as re-
sembling the original. BTER is able to generate a similar community structure, though
not matching the original as closely. All other replicas lose the distinctive community
structure of the original. The HUDG model creates a kind of community structure, but
the graphs have an artificially tubular shape and extreme clustering.

13.7.2 Replicating Structural Properties

In the existing literature on generative models, claims of realism are typically substan-
tiated by showing that a set of structural properties is similar for real and synthetic
networks. The large palette of properties to choose from and the question which of those
properties are essential features makes this a complex problem. An often used approach
is to describe a network by a feature vector, a set of scalar properties. These are often
maxima, minima or averages of node properties (cf. the structural profiles published by
the KONECT project [Kun13b]). This can be reductionist, since these summary values
may not give enough information about how the node properties are distributed. We
therefore demonstrate how well the different models replicate networks with two types of
plots. The first plot type shows scalar properties of the replicas, relative to those of the

166 generating scaled replicas of real-world networks

(a) Erdős–Rényi (b) Barabasi-Albert (c) Chung-Lu

(d) Edge-Switching Markov
Chain

(e) RMAT (f) Hyperbolic Unit-Disk Graph

(g) BTER (h) LFR (i) LFR+

Figure 74: Replicas of the dolphins social network according to different generative models.

13.7 evaluating the realism of replicas 167

(a) Erdős–Rényi (b) Barabasi-Albert (c) Chung-Lu

(d) Edge-Switching Markov
Chain

(e) RMAT (f) Hyperbolic Unit-Disk Graph

(g) BTER (h) LFR (i) LFR+

Figure 75: Scale-2 replicas of the dolphins social network according to different generative models.

168 generating scaled replicas of real-world networks

original. Let xo and xr denote scalar properties of the original and the replica, respectively.
The relative value xr/xo is computed for each replica. Box plots depict the distribution
of these relative values over the entire set of replicas. Scalar properties included are: the
number of edges, the number of connected components, the effective diameter (for 90%
of node pairs) of the largest connected component, and the number of communities. The
effective diameter is approximated using the ANF algorithm [PGF02]. Communities are
detected using the modularity-maximizing algorithm PLM (cf. Chapter 8). This set was
chosen so that it could be quickly computed for a large set of networks. The second
type of plot covers centrality measures, and is designed to show how the shape of the
distributions of node centrality scores of the originals compares to those of the replicas.
Each segment of the plot depicts the centrality values of all nodes of all networks in the
considered data set or the replicas of a certain algorithm. Since centrality measures from
this selection can have very different scales, all centrality scores are normalized to the
interval [0, 1].

edges components eff. diameter communities
measure

102

101

100

101

102

re
l.

va
lu

e

ErdosRenyi
BarabasiAlbert
RMAT
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR
LFR+

(a) – relative difference of scalar network properties

Degree Closeness Clustering Core Number
centrality

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

model
original
ErdosRenyi
BarabasiAlbert
RMAT
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR
LFR+

PageRank Betweenness
centrality

107

106

105

104

103

102

101

100

sc
or

e

(b) – distribution of centrality scores

Figure 76: Structure replication of Facebook networks

13.7 evaluating the realism of replicas 169

edges components eff. diameter communities
measure

103

102

101

100

101

102

103

104

105

re
l.

va
lu

e

ErdosRenyi
BarabasiAlbert
RMAT
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR+

(a) – relative difference of scalar network properties

Degree Closeness Clustering Core Number
centrality

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

model
original
ErdosRenyi
BarabasiAlbert
RMAT
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR+

PageRank Betweenness
centrality

107

106

105

104

103

102

101

100

sc
or

e

(b) – distribution of centrality scores

Figure 77: Structure replication of diverse set of networks (second half of Tab. 12)

170 generating scaled replicas of real-world networks

Describing the results on 100 Facebook networks (Fig. 76a) from left to right, we ob-
serve the following results for the measured scalar properties: All models were parametrized
to produce exactly n′ = n nodes, while some degree of freedom exists in the number of
edges. However, all generators replicate the number of edges with a narrow variance,
which is largest for RMAT. LFR+ is the only model that matches the number of com-
ponents with high accuracy, while it is lower for ER, BA, ESMC, HUDG and vanilla
LFR, and significantly higher for CL and BTER. The latter can probably be explained
by the generation of isolated nodes instead of degree-1 nodes which we have already seen
in the visualizations before. There is no extreme deviation in terms of the effective diam-
eter, but note that for small world networks, relatively small differences in the effective
diameter may indicate significant structural differences. The Barabasi-Albert and Hy-
perbolic Unit Disk models deviate the most and produce lower diameters. LFR+, which
receives a partition of the original into communities as input, replicates it closely, but all
yield different numbers of communities. The Chung-Lu and BTER generators increase
the number of communities by a factor of 10 on average which can be explained by the
larger number of connected components. Overall, LFR+ emerges with the most accurate
replicas from this experiment.
The distributions of node centralities (Fig. 76b) compare as follows: All models except

ER are capable of producing skewed degree distributions, with CL, ESMC, BTER and
LFR+ matching the original closely. Closeness is approximately matched by most models,
but BA, RMAT and HUDG deviate significantly. The original networks feature a wide
range of clustering coefficients, and only the BTER model, which receives explicitly this
distribution, matches them exactly. For HUDG, clustering is extremely artificially high
with a median close to 0.9, while LFR produces an unrealistically large variance. For
the k-core numbers, random graphs are clearly outliers. RMAT, CL, ESMC, BTER and
LFR+ match well, while the very narrow distributions of the others point to a lack of
differentiated k-core structure. Only small variations exist with respect to PageRank,
and HUDG and vanilla LFR have strong deviations in terms of betweenness centrality,
but interpretation is not straightforward in this case. In summary, extreme deviations in
centrality score distributions clearly give away the artificiality of some synthetic graphs,
such as the clustering coefficient for HUDG or the degree distribution for ER. Other
differences are more subtle, but possibly relevant. BTER replicates centralities most
accurately.

The results on a different set of networks (second half of Tab. 12) are presented in
Fig. 77. A notable difference is the extreme variance of clustering coefficients in the
original set, which LFR+ cannot replicate. Again LFR+ performs well for the majority
of properties.
Fig. 78 shows results of a repetition of the experiment with a scaling factor of 4.

All models except RMAT achieve the targeted edge factor of m′ = 4 ·m. The number
of components is unrealistically increased by RMAT and CL. For the effective diameter,
small relative differences matter: BA and HUDGmodel tend to create smaller worlds than
reality. LFR+ produces a remarkably exact match, considering that the generator does
not explicitly target the diameter. It does however target a higher number of communities,
which is desired and achieved. LFR keeps the number of communities constant on average,
while many other models produce fewer communities than the originals. The relative
differences in the distributions of centralities are qualitatively equivalent to those in Fig.
76b.

13.7 evaluating the realism of replicas 171

edges components eff. diameter communities
measure

101

100

101

102

re
l.

va
lu

e

ErdosRenyi
BarabasiAlbert
RMAT
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR
LFR+

(a) – relative difference of scalar network properties

Degree Closeness Clustering Core Number
centrality

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

model
original
ErdosRenyi
BarabasiAlbert
RMAT
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR
LFR+

PageRank Betweenness
centrality

107

106

105

104

103

102

101

100

sc
or

e

(b) – distribution of centrality scores

Figure 78: Structure replication of Facebook networks with scaling factor 4

172 generating scaled replicas of real-world networks

13.7.3 Scaling Behavior of Generators

The following experiments consider the scaling behavior of generative models. Given the
parametrization discussed before, we look at the evolution of structural features with
growing scale factor x up to x = 32. We consider basic scalar features, including the
number of edges, number of connected components, diameter of the largest connected
component, shape of the degree distribution as measured by the maximum degree and the
Gini coefficient [Gin12], average local clustering coefficient and number of communities.

0.0 0.5 1.0 1.5 2.0
n 1e4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

m

1e6

(a) number of edges

0.0 0.5 1.0 1.5 2.0
n 1e4

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

m
ax

_d
eg

1e4

(b) max. degree

0.0 0.5 1.0 1.5 2.0
n 1e4

0

1

2

3

4

5

6

gi
ni

_d
eg

1e 1

(c) Gini coefficient of degree
distribution

0.0 0.5 1.0 1.5 2.0
n 1e4

0
1
2
3
4
5
6
7
8

av
g_

lc
c

1e 1

(d) average local clustering
coefficient

0.0 0.5 1.0 1.5 2.0
n 1e4

0.5

0.0

0.5

1.0

1.5

2.0

2.5

di
a

1e1

(e) diameter

0.0 0.5 1.0 1.5 2.0
n 1e4

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
m

p

1e3

(f) number of components

0.0 0.5 1.0 1.5 2.0
n 1e4

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

co
m

m
un

iti
es

1e3

model
ErdosRenyi
BarabasiAlbert
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR+
LFR

(g) number of communities

Figure 79: Scaling behavior of the different generators on the Caltech36 network.

Figure 79 shows the results of the scaling experiments for the Caltech36 network. The
number of edges of the replicas of the Caltech36 network is increased almost linearly by
all generators to about 500 thousand edges which approximately corresponds to 32 times
the edges of the original network. Therefore all generators seem to keep the average degree
of the original network which is actually not completely realistic according to our scaling
study on the 100 Facebook networks, here we observed a slight increase of the average
degree. As the average degree or all degrees are input parameters of all of the generators
and we did not scale them. This is expected, though. It is surprising therefore that the
maximum degree strongly increases up to 10 or 15 thousand with the hyperbolic unit
disk generator and the Barbarasi-Albert generator respectively. The original maximum
degree is 248, so this is even more than 32 times the maximum degree of the original
network (which is about 8000). From scaling the study on the 100 Facebook networks we
could expect an increase, but rather in a lower range, so the degree distribution of the
Barbarasi-Albert and the hyperbolic unit disk generator are not realistic. Concerning the
Gini coefficient one can clearly see that ER does not generate a skewed degree distribution

13.7 evaluating the realism of replicas 173

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n 1e5

0.5

0.0

0.5

1.0

1.5

2.0

m

1e5

(a) number of edges

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n 1e5

0.5

0.0

0.5

1.0

1.5

2.0

2.5

m
ax

_d
eg

1e4

(b) max. degree

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n 1e5

0
1
2
3
4
5
6
7
8

gi
ni

_d
eg

1e 1

(c) Gini coefficient of de-
gree distribution

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

av
g_

lc
c

1e 1

(d) average local clustering
coefficient

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n 1e5

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

di
a

1e2

(e) diameter

0.0 0.2 0.4 0.6 0.8 1.0 1.2
n 1e5

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
m

p

1e5

(f) number of components

0.00.20.40.60.81.01.2
n 1e5

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
m

m
un

iti
es

1e5

model
ErdosRenyi
BarabasiAlbert
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR+

(g) number of communities

Figure 80: Scaling behavior of the different generators on the Colorado Springs epidemiological
contact network.

174 generating scaled replicas of real-world networks

at all. All generators that get the exact degree sequence as input keep the gini coefficient
constant, which is also relatively realistic from our scaling study.

The average local clustering coefficient of 0.43 in the original network is almost exactly
reproduced by BTER, which is not suprising as this is an input parameter. The HUDG
generator generates a very high clustering coefficient of 0.8 as already seen in the structure
replication experiments. Our new LFR+ generator is not that far off with 0.25 and a
slightly decreasing clustering coefficient, which is actually realistic as we saw in the
scaling behavior of the 100 Facebook networks. While the LFR generator can reproduce
the clustering coefficient initially, the clustering coefficient decreases down to less than 0.1
at a scaling factor of 32. The other generators fail to replicate the clustering coefficient
at all scales, they generate much lower clustering coefficients.
The original diameter of 6 is almost exactly kept by our new generator LFR+, all other

generators except BTER generate networks with slightly lower diameters while BTER
generates networks with almost twice the diameter. All generators show a slight increase
of the diameter when the networks are larger which is consistent with our scaling study
on the 100 Facebook networks.
Concerning the number of components and the number of communities one can see

again that Chung-Lu und BTER generate a large number of components which is prob-
ably due to the large number of degree-0 nodes. The original network consists of a giant
component and 3 small components, it is therefore not surprising that most generators
do not generate multiple connected components while LFR+ scales them linearly, which
is due to its parametrization. The number of communities grows similarly. The origi-
nal network is split in 11 communities, 8 of them are therefore non-trivial. We would
therefore expect 352 communities in the scaled version, but PLM finds only about 200
but actually with all other generators much less communities can be found so LFR+
seems to generate the most realistic community structure. BTER also seems to gener-
ate non-trivial communities that can be found, while there are around 7000 connected
components there are around 8000 communities founds which indicates at least 1000
non-trivial communities – which is not realistic, either.
The results on the Colorado Springs network (see 13.7.4 for explanation) in Figure

80 are similar but there are a few differences. The vanilla LFR had to be excluded
because it had extreme running times for this relatively small network, likely because
the original LFR algorithm has problems satisfying the estimated parameters for this
network with untypical community structure. The maximum degree of Barbarasi Albert
is much smaller and its Gini coefficient is also similar to other generators.
All in all the LFR+ generator is the only generator that keeps the degree distribution,

and produces a realistic clustering coefficient and a small diameter while keeping the
graph connected and preserving a moderate number of communities. All other generators
are either unable to keep the diameter or the connectivity or the number of communities.

13.7.3.1 Replicating Running Times of Graph Algorithms

Synthetic graphs are frequently used in algorithm engineering to estimate the running
time of an algorithm experimentally. A typical (but often implicit) argument is that the
synthetic graphs used are sufficiently similar to real inputs so that the reported running
times are representative for the expected running times in real-world applications. In the
following, we examine this argument experimentally: Given a set of real complex net-
works, we use the generative models to produce a corresponding set of synthetic graphs,

13.7 evaluating the realism of replicas 175

each a “replica” of a real one obtained by fitting the model (described in Sec. 13.5). Then
a variety of graph algorithms is run on both the original set and the replica sets. The set
of algorithms is selected to cover a variety of patterns of computation and data access,
each of which may interact differently with the graph structure. It consists of algorithms
for connected components (essentially breadth-first search), PageRank (via power iter-
ation), betweenness approximation (according to Geisberger et al. [GSS08], essentially
a number of breadth-first search passes), community detection (PLM, cf. Ch. 8), core
decomposition (according to [DRZ14]), triangle counting (according to [HLM+16]), and
spanning forest (essentially Kruskal’s algorithm without edge weights). Some of the al-
gorithms are executed in parallel, but running time replication results were qualitatively
very similar when running them sequentially.

If the argument above holds, then the running times on the replica set should, statis-
tically speaking, match the running times on the original set. We see that they diverge
in nontrivial ways (see Fig. 81): The gray segments of the box plots represent the distri-
bution of running times measured on a set of original networks. Ideally, the distribution
on the synthetic networks would be identical. First we take measurements on the set of
Facebook networks (Fig. 81a) and then repeat them on a set of larger networks (the first
half of Tab. 12) for higher running times with less random fluctuation (Fig. 81b) (here,
the slowest implementation, BTER, had to be excluded due to high running times of the
generator).

network type n m

con-fiber_big connectome 591428 46374120
as-22july06 internet topplogy 22963 48436
coAuthorsDBLP scientific coauthorship 299067 977676
actor-collaboration movie actor collaboration 382219 15038083
Lastfm online social network 1193699 4519020
Foursquare online social network 639014 3214986
email-Enron email communication 36691 183830
PGPgiantcompo PGP web of trust 10680 24316
as-22july06 internet topology 22963 48436
hep-th scientific coauthorship 8361 15751
dolphins animal social network 62 159
power power grid 4941 6594
cnr-2000 web graph 325557 2738969

Table 12: Additional networks used

Little variance between the models exists for connected components and spanning for-
est computation, since their running time is nearly solely based on the number of edges.
Other algorithms show how much running time can depend on network structure, espe-
cially community detection, core decomposition, triangle counting and PageRank. Con-
vergence for PageRank has been shown to depend on spectral properties of the graph. In
general, the running time measurements obtained on LFR+ match the originals closely
in most cases. Surprisingly, an exception is community detection on the Facebook net-

176 generating scaled replicas of real-world networks

works, since LFR+ explicitly replicates community sizes, but the distribution matches
again closely for the larger networks. BTER shows close matches as well.

Connected Components PageRank Betweenness (ap.) Community Detection Core Decomposition Triangle Counting Spanning Forest
algorithm

105

104

103

102

101

100

101

ru
nn

in
g

tim
e

[s
]

model
original
ErdosRenyi
BarabasiAlbert
RMAT
ChungLu
ESMC
Hyperbolic Unit Disk
BTER
LFR
LFR+

(a) – Facebook networks

Connected Components PageRank Betweenness (ap.) Community Detection Core Decomposition Triangle Counting Spanning Forest
algorithm

104

103

102

101

100

101

102

ru
nn

in
g

tim
e

[s
]

model
original
ErdosRenyi
BarabasiAlbert
RMAT
Hyperbolic Unit Disk
LFR+

(b) – mixed set of larger complex networks

Figure 81: Running time replication

13.7.4 An Additional Case Study

An epidemiological network frequently used in studies on the transmission of HIV is
based on data collected in Colorado Springs by Potterat et al. [PPPM+02]. It contains
250 individuals who were in contact in the 1980s through sex or injection drug use. Figure
82a shows a force-directed layout of the network’s graph. Characteristic for this network
is its tree-like structure and the presence of high-degree hubs with attached “satellite”
nodes of degree 1. The Colorado Springs network is an instance of network data that
cannot be shared freely due to legal restrictions, but no such restrictions apply to a
synthetic replica. A replica made by the LFR+ generator reproduces structural features
of the original with the highest accuracy among the considered models. More importantly,

13.7 evaluating the realism of replicas 177

scaled replicas retain these essential properties, including the hub-and-satellite structure.
Figure 82b shows the network replicated with a scaling factor of 2, which is remarkably
close to the original. Like several other generators, LFR+ generates additional small
connected components as an artifact. If this is undesirable, a postprocessing step could
prune the network down to its giant connected component containing a large majority of
nodes. (Interestingly, the original data set contained many singletons and isolated dyads
that were removed from the graph in a preprocessing step).

(a) original (b) scale-2 replica with LFR+

(c) 500 node sample from a scale-
200 000 replica with LFR+

Figure 82: Colorado Springs epidemiological contact network

Real epidemiological contact network data is difficult to collect, further complicated
in the case of HIV by sex and drugs being tabu subjects. This makes obtaining such a
network on the scale of an entire population impractical. In such a scenario, the ability
to create realistic large synthetic replicas of smaller real networks may be highly relevant.
As an explorative case study, we let LFR+ generate a replica of the Colorado Springs
network with 50 million nodes, which corresponds to a scaling factor of 200 000. Fig.
82c shows a sample from a 5 · 107 million node replica. This network’s structure is quite

178 generating scaled replicas of real-world networks

different from the clustered “friendship networks” of dolphins and humans (Facebook).
Remarkably, LFR+ also replicates many aspects of the original’s structure very closely,
such as a tree-like structure with hubs and attached satellites. These aspects are retained
even for huge scaling factors. This makes LFR+ a promising candidate to deliver large
data sets in cases where large amounts of real data are likely unobtainable. Further
domain-specific validation of the suitability of such replicas would be interesting.

13.8 performance

ErdosRenyi BarabasiAlbert RMAT ChungLu ESMC Hyperbolic Unit Disk BTER LFR LFR+
model

103

104

105

106

107

108

ep
s

Figure 83: Fitting and generating: processing speed measured in edges/s (size of replica graph /
total running time, measured on 100 Facebook graphs)

Fig. 83 shows how long it takes to fit the various generators an input network and
generate a replica. Processing speed given in edges per second to express absolute running
time normalized by the size of the generated network. The entire set of Facebook networks
was used to generate the measurements, so generated replicas ranged from about 15 000
to 1.5 million edges. For all models, generating the graph takes up the vast majority
of time. BTER’s MATLAB-based implementation is slowest, while the ER and HUDG
generators are the fastest (however, we need to keep in mind that the HUDG generators
running time grows superlinearly). Our implementation of LFR and LFR+ is not among
the fastest generators, but fast enough to produce millions of edges in minutes. It is not
highly optimized, so future work could focus on processing speed gains.

13.9 conclusion

We have presented a new generator LFR+ for replicating and scaling existing networks
which is based on the popular LFR benchmark but uses a more flexible parametrization
in order to capture more properties of the original network. In an extensive experimental
evaluation we have shown that it is capable of generating networks which are both similar
to the original network in terms of measures like diameter or centrality distribution and
leads to similar running times of network analysis algorithms. Using LFR+ it is possible
to realistically replicate an existing network, and to scale the synthetic version by orders
of magnitude, e.g. in order to test algorithms on larger data sets where they are not avail-
able due to restrictions like being proprietary or sensitive. Furthermore it allows to create
anonymized copies of such networks that can be distributed as they no longer contain
the original data but are still structurally similar and thus allow to conduct experiments
on them. While other generators sometimes perform better concerning certain criteria,

13.9 conclusion 179

none of the other generators is capable of approximately reproducing such a wide range
of properties and running times.
The BTER generator is especially good at reproducing clustering coefficients (which

are given as input), but it is both slower in its current implementation (provided by
the authors) and unable to keep other properties like the characteristically low diameter
while scaling the network.

The HUDG generator produced artificially extreme clustering. In defense of the general
approach we mention that the extended model of Kriokouv et al. [KPK+10] provides and
additional parameter T , yielding an adjustable clustering coefficient in practice. When
varying T between 0 and 1, the clustering coefficient obtains values between 0 and 0.8.
Implementations for this extended model are available from Aldecoa et al. [AOK15] (with
prohibitive quadratic time complexity), and a preprint from Looz et al. [vLM15] describes
an O((n3/2 +m) logn) implementation.
The RMAT generator – which was previously presented as a method for replicating

networks [LF07] – could not convince in our experiments since it does not closely and
comprehensively reproduce the properties of the original network, even if the compara-
tively expensive kronfit algorithm is applied to fit parameters. The claim that an RMAT
replica can even serve as an “anonymized” substitute for the original network needs to
be called into question.

While our generator can already convince in many aspects, it is also clear that there
is still room for improvements. Especially the clustering coefficients should be addressed
in future work. As our generator uses random subgraphs with fixed degree sequence as
building blocks, replacing them by graphs with higher clustering coefficients could be a
good approach. Using BTER for this step might be a good starting point, but is definitely
not that easy as BTER does not exactly reproduce the degree sequence. Therefore a more
sophisticated approach like a modified version of BTER or some post-processing step are
definitely needed.

CONCLUS ION OF PART V

Part V focused on generative models for realistic synthetic graphs. Related work has pro-
posed a variety of models, some of them with claims of comprehensive realism, i.e. match-
ing patterns commonly observed in real complex networks. However, defining and quanti-
fying realism is a complicated task. We explore two different approaches of quantification:
On the one hand, a replica should match a catalog of structural properties of the orig-
inal, e.g. the diameter or distributions of node centrality measures. On the other hand,
a replica should be a good substitute for the original when performing running time
measurements during algorithm engineering. We therefore evaluate whether the running
times for various graph algorithms measured on synthetic graphs are representative for
those observed on the original networks.
Beyond the goal of creating replicas of the same size, in this work we specifically target

the use case of producing a scaled replica of a given original network, which has so far
not received much attention in the literature. We considered the scaling behavior of real
networks in an explorative study to define desired scaling properties. We then propose
suitable fitting schemes which parametrize the considered models in order to generate a
scaled-up version of the input graph.
As the most promising approach for both goals, we propose the LFR+ generator, a

modification of the LFR model for community detection benchmarks. We harness the true
flexibility of LFR’s algorithmic methods to increase the realism of the replication. Our fast
implementation in NetworKit generates graphs according to the plain LFR and extended
LFR+ model and does so significantly faster than the reference implementation, also by
introducing parallelism. LFR+ improves on its predecessor LFR in terms of flexibility,
realism, and efficiency of implementation. Specifically, LFR+ is generally more realistic
than the RMAT, BTER and Hyperbolic Unit Disk Graph models, all of which have been
proposed as realistic to the point of yielding suitable substitutes of real network data. In
contrast to the kronfit algorithm for RMAT, the model fitting scheme for LFR+ is fast
and applicable to larger networks. We show that our design yields a scalable and effective
tool for replicating a given network – and possibly scale it by orders of magnitude – while
closely preserving important properties on the micro- and macro level. This yields realistic
test data for the engineering of computational methods on networks where suitable real
data is not available.

181

B IBL IOGRAPHY

You can stand on the shoulders of giants. Or a big enough pile
of dwarfs. Works either way.
– Discordian wisdom

[AB02] R. Albert and A.L. Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

[ABP14] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. powerlaw: a python package for analysis of
heavy-tailed distributions. PLoS ONE, 9(1):e85777, 2014.

[ACG+09] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg, José Marcelo Farfel, Re-
nata EL Ferretti, Renata EP Leite, Roberto Lent, Suzana Herculano-Houzel, et al. Equal
numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-
up primate brain. Journal of Comparative Neurology, 513(5):532–541, 2009.

[ACL00] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive graphs.
In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages
171–180. Acm, 2000.

[ACL06] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors.
In FOCS ’06: Proc. of the 47th Annual IEEE Symp. on Foundations of Computer Science,
pages 475–486, Los Alamitos, CA, USA, October 2006. IEEE Computer Society.

[AG] I. Safro A. Gutfraind, L.A. Meyers. Musketeer: Multiscale entropic network generator.

[AL06] R. Andersen and K. Lang. Communities from seed sets. In Proc. of the 15th Int’l Conf.
on World Wide Web, page 232. ACM, 2006.

[AM11] Rodrigo Aldecoa and Ignacio Marín. Deciphering network community structure by surprise.
PloS one, 6(9):e24195, 2011.

[ANK14] Nesreen K Ahmed, Jennifer Neville, and Ramana Kompella. Network sampling: From static
to streaming graphs. ACM Transactions on Knowledge Discovery from Data (TKDD),
8(2):7, 2014.

[AOK15] Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. Hyperbolic graph generator. arXiv
preprint arXiv:1503.05180, 2015.

[Apa15a] Apache. Website of the framework Apache Flink: https://flink.apache.org/, April 2015.

[Apa15b] Apache. Website of the framework Apache Giraph: http://giraph.apache.org/, April 2015.

[ATK+11] Tharaka Alahakoon, Rahul Tripathi, Nicolas Kourtellis, Ramanuja Simha, and Adriana
Iamnitchi. K-path centrality: A new centrality measure in social networks. In Proceedings
of the 4th Workshop on Social Network Systems, page 1. ACM, 2011.

[Ave13] Avery Ching. Scaling apache giraph to a trillion edges. https://www.facebook.
com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/
10151617006153920, 2013. [Online; accessed 30-July-2014].

[BA99] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Sci-
ence, 286(5439):509–512, 1999.

[Bag08] J.P. Bagrow. Evaluating local community methods in networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008:P05001, 2008.

183

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920
https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920

184 bibliography

[BB05] Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Phys-
ical Review E, 71(3):036113, 2005.

[BBC+11] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and
Kurt Smith. Cython: The best of both worlds. Computing in Science & Engineering,
13(2):31–39, 2011.

[BCH+15] Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A. Kosters, Andrea Marino, and
Frank W. Takes. Fast diameter and radius bfs-based computation in (weakly connected)
real-world graphs: With an application to the six degrees of separation games. Theoretical
Computer Science, 586:59 – 80, 2015. Fun with Algorithms.

[BCSV04] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler: A
scalable fully distributed web crawler. Software: Practice & Experience, 34(8):711–726,
2004.

[BDG+08] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner. On modularity clustering. IEEE Trans. Knowledge
and Data Engineering, 20(2):172–188, 2008.

[BEH+10] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel
Warneke. Nephele/pacts: A programming model and execution framework for web-scale
analytical processing. In Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC ’10, pages 119–130, New York, NY, USA, 2010. ACM.

[BFM14] Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. The probability that the hyper-
bolic random graph is connected. 2014. Preprint available at http://www.staff.science.
uu.nl/~muell001/Papers/BFM.pdf.

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, 2008.

[BHJ09] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: an open source soft-
ware for exploring and manipulating networks. In International Conference on Weblogs
and Social Media, pages 361–362, 2009.

[BK14] Lars Backstrom and Jon Kleinberg. Romantic partnerships and the dispersion of social
ties: a network analysis of relationship status on facebook. In Proceedings of the 17th ACM
conference on Computer supported cooperative work & social computing, pages 831–841.
ACM, 2014.

[BM04] Vladimir Batagelj and Andrej Mrvar. Pajek—analysis and visualization of large networks,
volume 2265 of the series Lecture Notes in Computer Science pp 477-478. Springer, 2004.

[BM15] Elisabetta Bergamini and Henning Meyerhenke. Fully-dynamic approximation of between-
ness centrality. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras,
Greece, September 14-16, 2015, Proceedings, pages 155–166, 2015.

[BMS+14a] David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea Kappes,
and Dorothea Wagner. Benchmarking for graph clustering and partitioning. In Encyclope-
dia of Social Network Analysis and Mining, pages 73–82. 2014.

[BMS+14b] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
advances in graph partitioning. arXiv preprint arXiv:1311.3144, 2014. Preprint: http:
//arxiv.org/abs/1311.3144.

[BMS15] Elisabetta Bergamini, Henning Meyerhenke, and Christian Staudt. Approximating be-
tweenness centrality in large evolving networks. In Proceedings of the Seventeenth Work-
shop on Algorithm Engineering and Experiments, ALENEX 2015, San Diego, CA, USA,
January 5, 2015, pages 133–146, 2015.

http://www.staff.science.uu.nl/~muell001/Papers/BFM.pdf
http://www.staff.science.uu.nl/~muell001/Papers/BFM.pdf
http://arxiv.org/abs/1311.3144
http://arxiv.org/abs/1311.3144

bibliography 185

[BMSW13] David A. Bader, Henning Meyerhenke, Peter Sanders, and DorotheaWagner, editors. Graph
Partitioning and Graph Clustering. Number 588 in Contemporary Mathematics. 2013.

[Bra01] U. Brandes. A faster algorithm for betweenness centrality. J. Mathematical Sociology,
25(2):163–177, 2001.

[Bra10] L. Karl Branting. Incremental detection of local community structure. In Proceedings of
the 2010 International Conference on Advances in Social Networks Analysis and Mining,
ASONAM ’10, pages 80–87, Washington, DC, USA, 2010. IEEE Computer Society.

[Bra16] Ulrik Brandes. Network positions. to appear in Methodological Innovations, 2016.

[BRMW13] Ulrik Brandes, Garry Robins, Ann McCranie, and Stanley Wasserman. What is network
science? Network Science, 1(01):1–15, 2013.

[BRV11] Paolo Boldi, Marco Rosa, and Sebastiano Vigna. HyperANF: Approximating the neigh-
bourhood function of very large graphs on a budget. In Proceedings of the 20th international
conference on World wide web, pages 625–634. ACM, 2011.

[BS09] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nature Reviews Neuroscience, 10(3):186–198, 2009.

[BS11] C.E. Bichot and P. Siarry. Graph Partitioning. ISTE. Wiley, 2011.

[BS13] Sanjukta Bhowmick and Sriram Srinivasan. A template for parallelizing the louvain method
for modularity maximization. In Dynamics On and Of Complex Networks, Volume 2, pages
111–124. Springer, 2013.

[BSST13] Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral
sparsification of graphs: theory and algorithms. communications of the ACM, 56(8):87–94,
2013.

[BY02] Yaneer Bar-Yam. General features of complex systems. Encyclopedia of Life Support
Systems (EOLSS), UNESCO, EOLSS Publishers, Oxford, UK, 2002.

[BZ11] Vladimir Batagelj and Matjaž Zaveršnik. Fast algorithms for determining (generalized)
core groups in social networks. Advances in Data Analysis and Classification, 5(2):129–
145, 2011.

[CAI03] CAIDA. Caida skitter router-level topology measurements. 2003. http://www.caida.org/
data/router-adjacencies/.

[CGH+13] Pilu Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea Marino. On
computing the diameter of real-world undirected graphs. Theoretical Computer Science,
514:84–95, 2013.

[Cla05] A. Clauset. Finding local community structure in networks. Physical Review E, 72(2):26132,
2005.

[CN85] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on
Computing, 14(1):210–223, 1985.

[CN06] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network re-
search. InterJournal, Complex Systems, 1695(5), 2006.

[CNM04] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure
in very large networks. Physical review E, 70(6):066111, 2004.

[COJT+11] Luciano da Fontoura Costa, Osvaldo N Oliveira Jr, Gonzalo Travieso, Francisco Aparecido
Rodrigues, Paulino Ribeiro Villas Boas, Lucas Antiqueira, Matheus Palhares Viana, and
Luis Enrique Correa Rocha. Analyzing and modeling real-world phenomena with complex
networks: a survey of applications. Advances in Physics, 60(3):329–412, 2011.

http://www.caida.org/data/router-adjacencies/
http://www.caida.org/data/router-adjacencies/

186 bibliography

[CS11] Jie Chen and Ilya Safro. Algebraic distance on graphs. SIAM Journal on Scientific Com-
puting, 33(6):3468–3490, 2011.

[CZF04] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model
for graph mining. Computer Science Department, page 541, 2004.

[CZG09] Jiyang Chen, Osmar Zaïane, and Randy Goebel. Local community identification in social
networks. In Proceedings of the 2009 International Conference on Advances in Social
Network Analysis and Mining, ASONAM ’09, pages 237–242. IEEE Computer Society,
2009.

[Dat15] Dato. Website of the company distributing GraphLab, April 2015.

[DFC05] Jana Diesner, Terrill L Frantz, and Kathleen M Carley. Communication networks from the
enron email corpus “it’s always about the people. enron is no different”. Computational &
Mathematical Organization Theory, 11(3):201–228, 2005.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Inference
and phase transitions in the detection of modules in sparse networks. Phys. Rev. Lett.,
107:065701, Aug 2011.

[DRZ14] Naga Shailaja Dasari, Desh Ranjan, and Mohammad Zubair. ParK: An efficient algo-
rithm for k-core decomposition on multicore processors. In Jimmy Lin, Jian Pei, Xiaohua
Hu, Wo Chang, Raghunath Nambiar, Charu Aggarwal, Nick Cercone, Vasant Honavar, Jun
Huan, Bamshad Mobasher, and Saumyadipta Pyne, editors, 2014 IEEE International Con-
ference on Big Data, Big Data 2014, Washington, DC, USA, October 27-30, 2014, pages
9–16. IEEE, 2014.

[dSPK79] Ithiel de Sola Pool and Manfred Kochen. Contacts and influence. Social networks, 1(1):5–51,
1979.

[EHR+08] Peter Ebbes, Zan Huang, Arvind Rangaswamy, Hari P Thadakamalla, and Oracle Retail
Global Business Unit. Sampling large-scale social networks: Insights from simulated net-
works. In 18th Annual Workshop on Information Technologies and Systems, Paris, France.
Citeseer, 2008.

[EJRB13] David Ediger, Karl Jiang, E Jason Riedy, and David A Bader. GraphCT: Multithreaded al-
gorithms for massive graph analysis. Parallel and Distributed Systems, IEEE Transactions
on, 24(11):2220–2229, 2013.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, volume 96, pages 226–231, 1996.

[EMRB12] D. Ediger, R. McColl, J. Riedy, and D.A. Bader. STINGER: High performance data
structure for streaming graphs. In High Performance Extreme Computing (HPEC), 2012
IEEE Conference on, pages 1–5, Sept 2012.

[Esd15] Kolja Esders. Link prediction in large-scale complex networks. Master’s thesis, Karlsruhe
Institute of Technology, http://parco.iti.kit.edu/attachments/Kolja%20Esders%20-%
20Thesis.pdf, 2015.

[EW04] David Eppstein and Joseph Wang. Fast approximation of centrality. J. Graph Algorithms
Appl., 8:39–45, 2004.

[FB07] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection. Proceed-
ings of the National Academy of Sciences, 104(1):36–41, 2007.

http://parco.iti.kit.edu/attachments/Kolja%20Esders%20-%20Thesis.pdf
http://parco.iti.kit.edu/attachments/Kolja%20Esders%20-%20Thesis.pdf

bibliography 187

[FB13] B. O. Fagginger Auer and R. H. Bisseling. Graph coarsening and clustering on the GPU. In
David A. Bader, Henning Meyerhenke, Peter Sanders, and DorotheaWagner, editors,Graph
Partitioning and Graph Clustering, number 588 in Contemporary Mathematics. 2013.

[FBFM08] Santo Fortunato, Marián Boguñá, Alessandro Flammini, and Filippo Menczer. Approxi-
mating pagerank from in-degree. In Algorithms and models for the web-graph, pages 59–71.
Springer, 2008.

[Fli14] Patrick Flick. Analysis of human tissue-specific protein-protein interaction networks. Mas-
ter’s thesis, Karlsruhe Institute of Technology, 2014.

[For] Santo Fortunato. Benchmark graphs to test community detection algorithms.

[For10] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75 – 174,
2010.

[Fre77] Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35–41, March 1977.

[Fre79] Linton C Freeman. Centrality in social networks conceptual clarification. Social networks,
1(3):215–239, 1979.

[Fre04] Linton Freeman. The development of social network analysis. A Study in the Sociology of
Science, 2004.

[GD03] Pablo M. Gleiser and Leon Danon. Community structure in jazz. Advances in Complex
Systems, 6(4):565–574, 2003.

[Gin12] Corrado Gini. Variabilità e mutabilità. Reprinted in Memorie di metodologica statistica
(Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi, 1, 1912.

[GKS+12] Robert Görke, Roland Kluge, Andrea Schumm, Christian Staudt, and Dorothea Wagner.
An efficient generator for clustered dynamic random networks. Design and Analysis of
Algorithms, pages 219–233, 2012.

[GLMY11] Ullas Gargi, Wenjun Lu, Vahab S Mirrokni, and Sangho Yoon. Large-scale community
detection on youtube for topic discovery and exploration. In International Conference on
Weblogs and Social Media, 2011.

[GN02] M. Girvan and M.E.J. Newman. Community structure in social and biological networks.
Proc. of the National Academy of Sciences, 99(12):7821, 2002.

[Gör10] Robert Görke. An Algorithmic Walk from Static to Dynamic Graph Clustering. PhD thesis,
Karlsruher Institut für Technologie, Dissertation, 2010.

[GPP12] Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs:
Degree sequence and clustering - (extended abstract). In Automata, Languages, and Pro-
gramming - 39th International Colloquium, ICALP 2012, Proceedings, Part II, pages 573–
585, 2012.

[Gra73] Mark S Granovetter. The strength of weak ties. American journal of sociology, pages
1360–1380, 1973.

[GRS07] John R Gilbert, Steve Reinhardt, and Viral B Shah. High-performance graph algorithms
from parallel sparse matrices. In Applied Parallel Computing. State of the Art in Scientific
Computing, pages 260–269. Springer, 2007.

[GSM15] Alexander Gutfraind, Ilya Safro, and Lauren Ancel Meyers. Multiscale network generation.
In 18th International Conference on Information Fusion, FUSION 2015, Washington, DC,
USA, July 6-9, 2015, pages 158–165, 2015.

[GSS08] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better approximation of between-
ness centrality. In ALENEX, pages 90–100. SIAM, 2008.

188 bibliography

[GZFA10] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, and Edoardo M Airoldi. A survey of
statistical network models. Foundations and Trends R© in Machine Learning, 2(2):129–233,
2010.

[Hak62] S Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a linear
graph. i. Journal of the Society for Industrial & Applied Mathematics, 10(3):496–506, 1962.

[Ham11] Zachary Hamaker. Electric networks and commute time. 2011.

[Hav55] Václav Havel. Poznámka o existenci konečných grafů. Časopis pro pěstování matematiky,
080(4):477–480, 1955.

[HLM+16] Michael Hamann, Gerd Lindner, Henning Meyerhenke, Christian L. Staudt, and Dorothea
Wagner. Structure-preserving sparsification methods for social networks. arxiv.org,
abs/1601.00286, 2016.

[HSSC08] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Laboratory (LANL),
2008.

[IMSCR+08] Yasser Iturria-Medina, Roberto C Sotero, Erick J Canales-Rodríguez, Yasser Alemán-
Gómez, and Lester Melie-García. Studying the human brain anatomical network via
diffusion-weighted mri and graph theory. Neuroimage, 40(3):1064–1076, 2008.

[Jac09] Mathieu Jacomy. Force-atlas graph layout algorithm. URL: http://gephi.
org/2011/forceatlas2-the-new-version-of-our-home-brew-layout, 2009.

[JCZB06] Pall F Jonsson, Tamara Cavanna, Daniel Zicha, and Paul A Bates. Cluster analysis of
networks generated through homology: automatic identification of important protein com-
munities involved in cancer metastasis. BMC Bioinformatics, 7:2, 2006.

[Joh02] David S Johnson. A theoretician’s guide to the experimental analysis of algorithms. Data
structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementa-
tion challenges, 59:215–250, 2002.

[JS16] Emmanuel John and Ilya Safro. Single-and multi-level network sparsification by algebraic
distance. arXiv preprint arXiv:1601.05527, 2016.

[JSYA+15] Mahdi Jalili, Ali Salehzadeh-Yazdi, Yazdan Asgari, Seyed Shahriar Arab, Marjan Yagh-
maie, Ardeshir Ghavamzadeh, and Kamran Alimoghaddam. Centiserver: A comprehen-
sive resource, web-based application and r package for centrality analysis. PloS one,
10(11):e0143111, 2015.

[Kap15] Andrea Kappes. Engineering Graph Clustering Algorithms. PhD thesis, Karlsruhe, Karl-
sruher Institut für Technologie (KIT), Diss., 2015, 2015.

[Kat53] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–
43, 1953.

[KM15] Marcos Kiwi and Dieter Mitsche. A bound for the diameter of random hyperbolic graphs.
preprint available at http://arxiv. org/abs/1408.2947, 2015.

[KN11] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in
networks. Phys. Rev. E, 83:016107, Jan 2011.

[KPCV14] Dániel Kondor, Márton Pósfai, István Csabai, and Gábor Vattay. Do the rich get richer?
an empirical analysis of the bitcoin transaction network. PloS one, 9(2):e86197, 2014.

[KPK+10] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82:036106, Sep
2010.

bibliography 189

[KPPS13] Tamara G Kolda, Ali Pinar, Todd Plantenga, and C Seshadhri. A scalable generative graph
model with community structure. arXiv preprint arXiv:1302.6636, 2013.

[KPS13] Kishore Kothapalli, SriramV. Pemmaraju, and Vivek Sardeshmukh. On the analysis of
a label propagation algorithm for community detection. In Davide Frey, Michel Raynal,
Saswati Sarkar, RudrapatnaK. Shyamasundar, and Prasun Sinha, editors, Distributed Com-
puting and Networking, volume 7730 of Lecture Notes in Computer Science, pages 255–269.
Springer Berlin Heidelberg, 2013.

[KR08] M.J. Keeling and P. Rohani. Modeling infectious diseases in humans and animals. Princeton
University Press, 2008.

[KSV10] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 938–948. Society for Industrial and Applied Mathematics, 2010.

[KSVM15] Jannis Koch, Christian L. Staudt, Maximilian Vogel, and Henning Meyerhenke. Complex
network analysis on distributed systems: An empirical comparison. In International Sym-
posium on Foundations and Applications of Big Data Analytics, 2015.

[Kun13a] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
international conference on World Wide Web companion, pages 1343–1350. International
World Wide Web Conferences Steering Committee, 2013.

[Kun13b] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
international conference on World Wide Web companion, pages 1343–1350. International
World Wide Web Conferences Steering Committee, 2013.

[LAB+12] Adam Lugowski, David Alber, Aydın Buluç, John R. Gilbert, Steve Reinhardt, Yun Teng,
and Andrew Waranis. A flexible open-source toolbox for scalable complex graph analysis.
In Proceedings of the Twelfth SIAM International Conference on Data Mining (SDM12),
pages 930–941, April 2012.

[Lam10] Renaud Lambiotte. Multi-scale modularity in complex networks. In Modeling and opti-
mization in mobile, ad hoc and wireless networks (WiOpt), 2010 Proceedings of the 8th
International Symposium on, pages 546–553. IEEE, 2010.

[LBG+12] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M Hellerstein. Distributed GraphLab: a framework for machine learning and data
mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[LD10] J. Lin and C. Dyer. Data-intensive Text Processing with MapReduce. G - Refer-
ence,Information and Interdisciplinary Subjects Series. Morgan & Claypool, 2010.

[LF06] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’06, pages 631–636, New York, NY, USA, 2006. ACM.

[LF07] Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using kronecker
multiplication. In Proceedings of the 24th international conference on Machine learning,
pages 497–504. ACM, 2007.

[LF09a] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Physical Review
E, 80(1):016118, 2009.

[LF09b] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E,
80(1):016118, Jul 2009.

[LF11] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in commu-
nity detection. Physical review E, 84(6):066122, 2011.

190 bibliography

[LFR08] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for test-
ing community detection algorithms. Physical Review E, 78(4):046110, 2008.

[Lin14] Gerd Lindner. Complex network backbones. Master’s thesis, Karlsruhe Institute of Tech-
nology, 2014.

[LK13] Dominique LaSalle and George Karypis. Multi-threaded graph partitioning. In Proc. 27th
IEEE Intl. Symposium on Parallel and Distributed Processing (IPDPS 2013), pages 225–
236. IEEE Computer Society, 2013.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[LK15] Dominique LaSalle and George Karypis. Multi-threaded modularity based graph clustering
using the multilevel paradigm. Journal of Parallel and Distributed Computing, 76:66–80,
2015.

[LM12] Jure Leskovec and Julian J. Mcauley. Learning to discover social circles in ego networks.
In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 539–547. Curran Associates, Inc., 2012.

[LS14] Jure Leskovec and Rok Sosič. SNAP: A general purpose network analysis and graph mining
library in C++. http://snap.stanford.edu/snap, June 2014.

[LSB+03] David Lusseau, Karsten Schneider, Oliver J Boisseau, Patti Haase, Elisabeth Slooten, and
Steve M Dawson. The bottlenose dolphin community of doubtful sound features a large
proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 54(4):396–405,
2003.

[LSH+15] Gerd Lindner, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, and Dorothea
Wagner. Structure-preserving sparsification of social networks. In Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,
ASONAM 2015, Paris, France, August 25 - 28, 2015, pages 448–454, 2015.

[LWP08] F. Luo, J.Z. Wang, and E. Promislow. Exploring local community structures in large
networks. Web Intelligence and Agent Systems, 6(4):387–400, 2008.

[MAB+10] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,
pages 135–146. ACM, 2010.

[McG12] Catherine C McGeoch. A guide to experimental algorithmics. Cambridge University Press,
2012.

[MCK12] Pádraig Mac Carron and Ralph Kenna. Universal properties of mythological networks.
EPL (Europhysics Letters), 99(2):28002, 2012.

[MIM15] Frank McSherry, Michael Isard, and Derek G Murray. Scalability! but at what cost? In
15th Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[MKI+03] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform genera-
tion of random graphs with prescribed degree sequences. eprint arXiv:cond-mat/0312028,
December 2003.

[New02] Mark EJ Newman. Assortative mixing in networks. Physical review letters, 89(20):208701,
2002.

[New10] Mark Newman. Networks: an introduction. Oxford University Press, 2010.

[NLCB13] Bobo Nick, Conrad Lee, Pádraig Cunningham, and Ulrik Brandes. Simmelian backbones:
Amplifying hidden homophily in facebook networks. In Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining, ASONAM
’13, pages 525–532, New York, NY, USA, 2013. ACM.

http://snap.stanford.edu/data
http://snap.stanford.edu/snap

bibliography 191

[NOB14] Arlind Nocaj, Mark Ortmann, and Ulrik Brandes. Untangling hairballs - from 3 to 14
degrees of separation. In Christian A. Duncan and Antonios Symvonis, editors, Graph
Drawing - 22nd International Symposium, GD 2014, Würzburg, Germany, September 24-
26, 2014, Revised Selected Papers, volume 8871 of Lecture Notes in Computer Science,
pages 101–112. Springer, 2014.

[OB14] Mark Ortmann and Ulrik Brandes. Triangle listing algorithms: Back from the diversion.
In Catherine C. McGeoch and Ulrich Meyer, editors, 2014 Proceedings of the Sixteenth
Workshop on Algorithm Engineering and Experiments, ALENEX 2014, Portland, Oregon,
USA, January 5, 2014, pages 1–8. SIAM, 2014.

[OFWB03] Joshua O’Madadhain, Danyel Fisher, Scott White, and Y Boey. The JUNG (java universal
network/graph) framework. University of California, Irvine, California, 2003.

[OGS13] Michael Ovelgönne and Andreas Geyer-Schulz. An ensemble learning strategy for graph
clustering. In David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner,
editors, Graph Partitioning and Graph Clustering, number 588 in Contemporary Mathe-
matics. 2013.

[Ove13] Michael Ovelgönne. Distributed community detection in web-scale networks. In Proc.
Advances in Social Networks Analysis and Mining (ASONAM ’13), pages 66–73, 2013.

[P. 60] A Rényi P. Erdős. On the Evolution of Random Graphs. Publication of the Mathematical
Institute of the Hungarian Academy of Sciences, 1960.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. 1999.

[PDFV05] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature, 435(7043):814–
818, 2005.

[Pei06] Tiago P. Peixoto. graph-tool, 2006. http://graph-tool.skewed.de.

[PET+14] G Petri, P Expert, F Turkheimer, R Carhart-Harris, D Nutt, PJ Hellyer, and Francesco
Vaccarino. Homological scaffolds of brain functional networks. Journal of The Royal Society
Interface, 11(101):20140873, 2014.

[PGF02] Christopher R Palmer, Phillip B Gibbons, and Christos Faloutsos. Anf: A fast and scalable
tool for data mining in massive graphs. In Proceedings of the eighth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 81–90. ACM, 2002.

[PGO13] Fernando Perez, Brian E Granger, and CPSL Obispo. An open source framework for
interactive, collaborative and reproducible scientific computing and education, 2013.

[PPPM+02] John J Potterat, L Phillips-Plummer, Stephen Q Muth, RB Rothenberg, DE Woodhouse,
TS Maldonado-Long, HP Zimmerman, and JB Muth. Risk network structure in the early
epidemic phase of hiv transmission in colorado springs. Sexually transmitted infections,
78(suppl 1):i159–i163, 2002.

[PSV+09] Symeon Papadopoulos, Andre Skusa, Athena Vakali, Yiannis Kompatsiaris, and Nadine
Wagner. Bridge bounding: A local approach for efficient community discovery in complex
networks. arXiv preprint arXiv:0902.0871, 2009.

[RAB09] Martin Rosvall, Daniel Axelsson, and Carl T Bergstrom. The map equation. The European
Physical Journal Special Topics, 178(1):13–23, 2009.

[RAK07] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm
to detect community structures in large-scale networks. Physical Review E, 76(3):036106,
2007.

[RB13] E. Jason Riedy and David A. Bader. Multithreaded community monitoring for massive
streaming graph data. In IPDPS Workshops, pages 1646–1655. IEEE, 2013.

http://graph-tool.skewed.de

192 bibliography

[RBJ+11] Jason Riedy, David A. Bader, Karl Jiang, Pushkar Pande, and Richa Sharma. Detecting
communities from given seeds in social networks. Technical Report GT-CSE-11-01, Georgia
Institute of Technology, February 2011. Expanded from submitted version.

[RK15] Matteo Riondato and Evgenios M. Kornaropoulos. Fast approximation of betweenness
centrality through sampling. Data Mining and Knowledge Discovery, pages 1–38, 2015.

[RMEB13] E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A. Bader. Parallel commu-
nity detection for massive graphs. In David A. Bader, Henning Meyerhenke, Peter Sanders,
and Dorothea Wagner, editors, Graph Partitioning and Graph Clustering, number 588 in
Contemporary Mathematics. 2013.

[RN11] Randolf Rotta and Andreas Noack. Multilevel local search algorithms for modularity clus-
tering. J. Exp. Algorithmics, 16:2.3:2.1–2.3:2.27, July 2011.

[San09] Peter Sanders. Algorithm engineering–an attempt at a definition. In Efficient Algorithms,
pages 321–340. Springer, 2009.

[SB13] Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing framework for
shared memory. In Alex Nicolau, Xiaowei Shen, Saman P. Amarasinghe, and Richard W.
Vuduc, editors, ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’13, Shenzhen, China, February 23-27, 2013, pages 135–146. ACM,
2013.

[SB15] Olaf Sporns and Richard F Betzel. Modular brain networks. Annual review of psychology,
67(1), 2015.

[SBV09] M. Ángeles Serrano, Marián Boguñá, and Alessandro Vespignani. Extracting the multiscale
backbone of complex weighted networks. Proceedings of the National Academy of Sciences,
106(16):6483–6488, 2009.

[Sch07] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

[SHH+10] Heli Sun, Jianbin Huang, Jiawei Han, Hongbo Deng, Peixiang Zhao, and Boqin Feng. gskele-
tonclu: Density-based network clustering via structure-connected tree division or agglom-
eration. In Data Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE,
2010.

[SHZ15] Wolfgang E. Schlauch, Emőke Ágnes Horvát, and Katharina A. Zweig. Different flavors of
randomness: comparing random graph models with fixed degree sequences. Social Network
Analysis and Mining, 5(1):1–14, 2015.

[SKL+10] Marcel Salathé, Maria Kazandjieva, Jung Woo Lee, Philip Levis, Marcus W Feldman, and
James H Jones. A high-resolution human contact network for infectious disease transmis-
sion. Proceedings of the National Academy of Sciences, 107(51):22020–22025, 2010.

[SKP11] C. Seshadhri, Tamara G. Kolda, and Ali Pinar. Community structure and scale-free col-
lections of Erdös-Renyi graphs. December 2011.

[SM13] Christian Staudt and Henning Meyerhenke. Engineering high-performance community
detection heuristics for massive graphs. In 42nd International Conference on Parallel
Processing, ICPP 2013, Lyon, France, October 1-4, 2013, pages 180–189, 2013.

[SM16] Christian L. Staudt and Henning Meyerhenke. Engineering parallel algorithms for com-
munity detection in massive networks. IEEE Transactions on Parallel and Distributed
Systems, 27(1):171–184, 2016.

[SN11] Jyothish Soman and Ankur Narang. Fast community detection algorithm with gpus and
multicore architectures. In Proc. 25th IEEE Intl. Parallel & Distributed Processing Sym-
posium (IPDPS), pages 568–579. IEEE, 2011.

bibliography 193

[SPR11] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for
scalable clustering. In Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’11, pages 721–732, New York, NY, USA, 2011. ACM.

[SRD13] Tanwistha Saha, Huzefa Rangwala, and Carlotta Domeniconi. Sparsification and sampling
of networks for collective classification. In Social Computing, Behavioral-Cultural Modeling
and Prediction, pages 293–302. Springer, 2013.

[SRK16] Gupta Sukrit, Puzis Rami, and Kilimnik Konstantin. Comparative network analysis using
kronfit. In Complex Networks VII, pages 363–375. Springer, 2016.

[ŠS06] Jiří Šíma and Satu Elisa Schaeffer. On the NP-completeness of some graph cluster measures.
In SOFSEM 2006: Theory and Practice of Computer Science, pages 530–537. Springer,
2006.

[SSM+12] Christian Staudt, Andrea Schumm, Henning Meyerhenke, Robert Gorke, and Dorothea
Wagner. Static and dynamic aspects of scientific collaboration networks. In Advances in
Social Networks Analysis and Mining (ASONAM), 2012 IEEE/ACM International Con-
ference on, pages 522–526. IEEE, 2012.

[SSP+14] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo
Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey. Navigat-
ing the maze of graph analytics frameworks using massive graph datasets. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD
’14, pages 979–990, New York, NY, USA, 2014. ACM.

[ST08] Daniel A Spielman and Shang-Hua Teng. A local clustering algorithm for massive
graphs and its application to nearly-linear time graph partitioning. arXiv preprint
arXiv:0809.3232, 2008.

[ST15] Julian Shun and Kanat Tangwongsan. Multicore triangle computations without tuning. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE), 2015.

[SW50] G. Simmel and K.H. Wolff. The Sociology of Georg Simmel. Free Press paperback. Free
Press, 1950.

[SW05] Thomas Schank and Dorothea Wagner. Approximating clustering coefficient and transitiv-
ity. Journal of Graph Algorithms and Applications, 9(2):265–275, 2005.

[TBC+13] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and John
McPherson. From "think like a vertex" to "think like a graph". PVLDB, 7(3):193–204,
2013.

[TGK] Sandia National Laboratories Tamara G. Kolda, Ali Pinar. Feastpack.

[TMP12] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of facebook
networks. Physica A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

[UKBM11] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of
the facebook social graph. arXiv preprint arXiv:1111.4503, 2011.

[vLM15] Moritz von Looz and Henning Meyerhenke. Querying probabilistic neighborhoods in spatial
data sets efficiently. CoRR, abs/1509.01990, 2015.

[vLMP15] Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyper-
bolic graphs in subquadratic time. In Algorithms and Computation - 26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 467–
478, 2015.

[VTX09] Konstantin Voevodski, Shang-Hua Teng, and Yu Xia. Finding local communities in protein
networks. BMC bioinformatics, 10(1):297, 2009.

194 bibliography

[WCWF03] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epidemic
spreading in real networks: An eigenvalue viewpoint. In Reliable Distributed Systems, 2003.
Proceedings. 22nd International Symposium on, pages 25–34. IEEE, 2003.

[WHHF12] Ying-Jun Wu, Han Huang, Zhi-Feng Hao, and Chen Feng. Local community detection
using link similarity. Journal of Computer Science and Technology, 27(6), 2012.

[XLJ+12] Bingying Xu, Zheng Liang, Yan Jia, Bin Zhou, and Yi Han. Local community detection
using seeds expansion. In Proceedings of the 2012 Second International Conference on
Cloud and Green Computing, CGC ’12, pages 557–562, Washington, DC, USA, 2012. IEEE
Computer Society.

[YL12] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics,
page 3. ACM, 2012.

[ZL09] R. Zafarani and H. Liu. Social computing data repository at ASU. 2009. http:
//socialcomputing.asu.edu.

http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

A P P E N D I C E S

195

PUBL ICAT IONS

in this thesis

Some of the research leading to this thesis has appeared previously in the following
publications.

Journal Articles

• Christian L. Staudt, Henning Meyerhenke: Engineering Parallel Algorithms
for Community Detection in Massive Networks – IEEE Transactions on
Parallel and Distributed Systems, January 2016

• Gerd Lindner, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, Dorothea
Wagner: Structure-Preserving Sparsification Methods for Social Networks.
– to appear in Social Network Analysis and Mining, preprint available at http:
//arxiv.org/abs/1601.00286

Conference Papers

• Christian Staudt, Henning Meyerhenke: Engineering High-Performance Com-
munity Detection Heuristics for Massive Graphs. – 2013 International Con-
ference on Parallel Processing (ICPP 2013), October 2013, Lyon, France

• Christian Staudt, Yassine Marrakchi, Henning Meyerhenke: Detecting Commu-
nities around Seed Nodes in Complex Networks. – First International Work-
shop on High Performance Big Graph Data Management, Analysis, and Mining,
co-located with the IEEE International Conference on Big Data (IEEE BigData
2014), October 2014, Washington DC, USA

• Gerd Lindner, Christian L. Staudt, Michael Hamann, Henning Meyerhenke, Dorothea
Wagner: Structure-Preserving Sparsification of Social Networks. – IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2015), August 2015, Paris; France

• Jannis Koch, Christian L. Staudt, Maximilian Vogel, Henning Meyerhenke: Com-
plex Network Analysis on Distributed Systems: An Empirical Compari-
son. – Best Paper Award at International Symposium on Foundations and Appli-
cations of Big Data Analytics (FAB 2015), August 2015, Paris, France

Journal Articles in Revision Process

• Christian L. Staudt, Aleksejs Sazonovs, Henning Meyerhenke: NetworKit: A
Tool Suite for Large-scale Complex Network Analysis. – for Network Sci-
ence, preprint available at http://arxiv.org/pdf/1403.3005v3.pdf

197

http://arxiv.org/abs/1601.00286
http://arxiv.org/abs/1601.00286
http://arxiv.org/pdf/1403.3005v3.pdf

198 bibliography

other publications

The following publications appeared during the thesis period but are not contained in
the thesis.

Journal Articles

• Robert Görke, Pascal Maillard, Andrea Schumm, Christian Staudt, Dorothea Wag-
ner: Dynamic graph clustering combining modularity and smoothness. –
ACM Journal of Experimental Algorithmics, Vol. 18, 2013

Conference Papers

• Elisabetta Bergamini, Henning Meyerhenke, Christian Staudt: Approximating
Betweenness Centrality in Large Evolving Networks. – SIAM Meeting on
Algorithm Engineering and Experimentation (ALENEX 2015), January 2015, San
Diego, USA

Informal

• Moritz von Looz, Christian L. Staudt, Henning Meyerhenke, Roman Prutkin: Fast
generation of dynamic complex networks with underlying hyperbolic
geometry. – arxiv.org abs/1501.03545, 2015

• Roland Glantz, Christian L. Staudt, Henning Meyerhenke: Correspondences be-
tween partitions. – arxiv.org/abs/1603.04788, 2016, under review for Mathemat-
ical Programming

CURRICULUM VITAE

Christian L. Staudt
Curriculum Vitae

born October 21st 1985 in Mainz

Education
2012 – 2016 Karlsruhe Institute of Technology (KIT), PhD student at the Institute of Theo-

retical Informatics/Parallel Computing Group.
– advisor: Juniorprof. Dr. Henning Meyerhenke

2005 – 2012 Karlsruhe Institute of Technology (KIT), computer science studies.
– Diplom 2012

2000 – 2004 Kolleg St. Blasien, St. Blasien.
Abitur 2004

1996 – 2000 Kurfürst-Balduin-Gymnasium, Münstermaifeld.

Related Professional Experience
2012 – 2016 Researcher, (E13), at the Institute of Theoretical Informatics/Parallel Computing

Group, KIT.

2007 – 2010 Student research assistant, at the Institute of Theoretical Informatics, research
group Algorithmics I (Prof. Dorothea Wagner), KIT.
– working with Robert Görke and Andrea Kappes

199

colophon

This document was typeset using the typographical look-and-feel classicthesis devel-
oped by André Miede. The style was inspired by Robert Bringhurst’s seminal book on
typography “The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection
of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of July 1, 2016 (classicthesis version 0.2).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

ERKLÄRUNG

Ich versichere, diese Dissertation selbstständig angefertigt, alle benutzten Hilfsmittel
vollständig angegeben, die Satzung des Karlsruher Instituts für Technologie (KIT) zur
Sicherung guter wissenschaftlicher Praxis beachtet, und kenntlich gemacht zu haben, was
aus Arbeiten anderer und eigener Veröffentlichungen unverändert oder mit Änderungen
entnommen wurde.

Karlsruhe, 2016

Christian Lorenz Staudt

	Acknowledgements
	Contents
	Summary
	Zusammenfassung
	Introduction
	1 Network Science
	1.1 Motivating Examples
	1.2 Foundations of Network Science

	2 Characterizing the Structure of Networks
	2.1 Graph Terminology
	2.2 Distances in Networks
	2.3 Centrality
	2.4 Partitioning Networks into Cohesive Parts
	2.5 Network-based Correlations
	2.6 Emergent Properties and Simulations on Networks

	3 Objectives and Methodology
	3.1 General Objectives
	3.2 Algorithm Engineering and Experimental Algorithmics
	3.3 Reproducibility

	NetworKit: A Tool Suite for the Analysis of Large Complex Networks
	4 Principles and Architecture
	4.1 Design Goals
	4.2 Architecture
	4.3 Framework Foundations
	4.4 Algorithm and Implementation Patterns
	4.4.1 Parallelism
	4.4.2 Heuristics and Approximation Algorithms
	4.4.3 Modular Design
	4.4.4 Efficient Data Structures

	4.5 Open-Source Development and Distribution

	5 Functionality, Implementations and Use Cases
	5.1 Network Analytics
	5.1.1 Distances
	5.1.2 Node Centrality
	5.1.3 Edge Centrality, Sparsification and Link Prediction
	5.1.4 Partitioning the Network

	5.2 Network Generators
	5.3 Example Use Cases
	5.3.1 As a Library in an Analysis Pipeline
	5.3.2 Exploratory Network Analysis with Network Profiles

	6 Comparison and Evaluation
	6.1 Comparison to Related Software
	6.2 Performance Evaluation
	6.2.1 Benchmark
	6.2.2 Comparative Benchmark

	6.3 Comparison with Distributed Computing Frameworks
	6.3.1 Distributed Programming Models and Frameworks
	6.3.2 Experimental Setup
	6.3.3 Results

	Conclusion of Part II

	Community Detection in Complex Networks
	7 Introduction to Community Detection
	7.1 Modularity
	7.2 Alternative Approaches
	7.3 Evaluation of Community Detection Methods

	8 Engineering Parallel Algorithms for Community Detection
	8.1 State of the Art
	8.2 Algorithms
	8.2.1 Parallel Label Propagation (PLP)
	8.2.2 Parallel Louvain Method (PLM)
	8.2.3 Parallel Louvain Method with Refinement (PLMR)
	8.2.4 Ensemble Preprocessing (EPP)

	8.3 Experimental Setup
	8.3.1 Framework and Settings
	8.3.2 Network Data Sets

	8.4 Experiments and Results
	8.4.1 Parallel Label Propagation (PLP)
	8.4.2 Pareto Evaluation
	8.4.3 Parallel Louvain Method (PLM)
	8.4.4 Parallel Louvain Method with Refinement (PLMR)
	8.4.5 Ensemble Preprocessing (EPP)
	8.4.6 Comparison with State-of-the-Art Competitors
	8.4.7 LFR Benchmark
	8.4.8 One More Massive Network
	8.4.9 Weak Scaling

	8.5 Qualitative Aspects
	8.6 Conclusion

	9 Detecting Communities Selectively Around Seed Nodes
	9.1 Introduction
	9.2 Literature Overview
	9.3 Measuring Community Quality
	9.4 Algorithms
	9.4.1 GCE: Greedy Community Expansion
	9.4.2 selSCAN: a Density-based Approach

	9.5 Evaluation
	9.5.1 LFR Benchmark
	9.5.2 Parameter Studies
	9.5.3 LFR Benchmark Results
	9.5.4 Real-world Social Networks.
	9.5.5 Results for Real-World Networks

	9.6 Conclusion

	Conclusion of Part III

	Edge Centrality Measures for Network Sparsification
	10 Rating the Centrality of Edges
	10.1 Centrality of Edges
	10.2 Edge Centrality Measures
	10.2.1 Random Edge (RE)
	10.2.2 Triangle Count
	10.2.3 (Local) Jaccard Similarity (JS, LJS)
	10.2.4 Simmelian Backbones (TS, QLS)
	10.2.5 Edge Forest Fire (EFF)
	10.2.6 Algebraic Distance (AD)
	10.2.7 Local Degree (LD)

	10.3 Experimental Study
	10.3.1 Understanding Local Degree Scores
	10.3.2 Correlations between Edge Scores
	10.3.3 Running Time

	11 Sparsification of Social Networks
	11.1 Introduction
	11.1.1 Context

	11.2 Edge Sparsification
	11.2.1 Global and Local Filtering

	11.3 Implementation
	11.4 Experimental Study
	11.4.1 Setup
	11.4.2 Similarity in Network Properties
	11.4.3 Epidemic Simulations

	Conclusion of Part IV

	Generative Models for Realistic Synthetic Networks
	12 Introduction to Generative Network Models
	12.1 Applications of Generative Network Models
	12.2 Exemplary Models

	13 Generating Scaled Replicas of Real-World Networks
	13.1 Context and Contribution
	13.2 Problem Definition and Design Goals
	13.2.1 Scaling Behavior of Real-World Networks

	13.3 Abandoned Approach: A Multiscale Generator for Scaled Replicas
	13.4 The LFR+ Generator
	13.4.1 Original LFR Model
	13.4.2 Modification into LFR+

	13.5 Fitting Generative Models to Input Graphs
	13.5.1 On Fitting Degree Power Laws
	13.5.2 Erdos–Rényi, Barabasi-Albert, Chung-Lu and ESMC
	13.5.3 RMAT
	13.5.4 Hyperbolic Unit Disk
	13.5.5 BTER
	13.5.6 LFR and LFR+

	13.6 Implementations
	13.6.1 LFR
	13.6.2 Other Models

	13.7 Evaluating the Realism of Replicas
	13.7.1 Example Replication
	13.7.2 Replicating Structural Properties
	13.7.3 Scaling Behavior of Generators
	13.7.4 An Additional Case Study

	13.8 Performance
	13.9 Conclusion

	Conclusion of Part V
	Bibliography

	Appendices
	Publications
	Curriculum Vitae

	Colophon
	Erklärung

