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Introduction

The theoretical classification and sharp experimental distinction of different phases of matter is one of
the most important fundamental aspects of condensed matter physics. The first systematic approach
was provided by Landau’s theory of phase transitions [1] where different phases are characterized
according to the symmetries that are broken at the phase transition. Many phase transitions fit well
into Landau’s paradigm including liquid-solid transitions, structural phase transitions, paramagnet-
ferromagnet transitions and superconductivity. Similarly, quantum phase transitions, which occur at
zero temperature by varying a non-thermal parameter, can be characterized by the symmetry changes
of the ground state of the system. Landau’s approach was challenged by the discovery of the quantum
Hall effect in 1980 [2]. The observation of changes in the quantized value of the Hall conductance upon
variation of the magnetic field signals the presence of quantum phase transitions, although no additional
symmetries are broken. The seminal work of Thouless, Kohmoto, Nightingale, and den Nijs [3] clarified
that the distinction between quantum Hall phases with different values of the Hall conductance is not
a matter of symmetry but a matter of topology.
During the last years, it has been understood that the “topological order” of the quantum Hall

effect is just an example of many different systems that can be classified topologically, which spurred
enormous theoretical and experimental research interests in condensed matter physics [4–7]. Consider
a many-body system which in its noninteracting limit can be described by a filled Fermi sea. Generally
speaking, two phases with a gap in the vicinity of the Fermi level are topologically distinct with respect
to a given set of symmetries if there is no continuous deformation between the two that keeps the
gap intact and respects the symmetries. A state that is topologically distinct from the vacuum is
referred to as topologically nontrivial and characterized by gapless modes localized at its boundary.
In case of the quantum Hall effect, these edge channels can be intuitively seen as the cyclotron orbits
of electrons bouncing off the edge of the system. A crucial property of the edge modes of topological
phases of matter is their protection against Anderson localization [8] by disorder that respects the set
of symmetries defining the nontrivial topology. Since disorder breaks all lattice symmetries, one usually
focuses on more general symmetries such as time-reversal symmetry (TRS), i.e., the invariance under
the reversal of the time direction, for defining topological states of matter [9, 10]. The gap around
the Fermi level, which is a crucial ingredient of the definition of topological states of matter, occurs in
the simplest case between the valence and conduction in a band insulator. In this sense, the advent
of topology in condensed matter physics has revolutionized one of its longstanding cornerstones, the
band theory of solids [11]. While the topological classification of noninteracting states of matter is fully
understood theoretically [9, 10], the study of the stability of the classification towards interactions as
well as the emergence of exotic topological phases that only occur due to the presence of significant
correlations is an active area of current research [5, 7]. An example of the latter is provided by the
fractional quantum Hall effect [12, 13].
As a second step, after having established a definition of different phases of matter, one has to analyze

transitions between distinct phases with the ultimate goal of gaining detailed microscopic understanding
of the mechanism driving the transition. What are the dominant interactions for the phase transition
to occur? Can the phase emerge in a perfectly pure crystal or is it crucially stabilized by the presence of
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Introduction

disorder? These questions are in general very difficult to answer since they pose significant challenges
both on the theoretical and experimental side.
A theorist has to face the problem that a microscopic calculation is required that focuses on the set

of relevant degrees of freedom of the system and its crucial mutual interactions while being solvable
in a controlled way at the same time. A famous example of an instability that has long been lacking
a microscopic understanding is provided by superconductivity. Although phenomenological theories
[14, 15] had been developed since the discovery of this phenomenon in 1911 [16], it took until 1957
that a successful microscopic theory, the Bardeen-Cooper-Schrieffer (BCS) theory, had been developed
[17, 18]. Within BCS theory, the superconducting instability is driven by the attractive electron-electron
interaction resulting from the coupling to phonons.
On the experimental side, approaches have to be developed that allow for testing different possible

theories in order to pinpoint the microscopic mechanism of instabilities. For instance, in case of the BCS
mechanism of superconductivity, the measurement of the isotope effect on the superconducting transi-
tion temperature [19, 20] has convincingly demonstrated the crucial relevance of the electron-phonon
coupling for the superconducting instability. The properties of the superconducting states observed in
heavy-fermion systems [21–23] and later in other material classes such as the cuprates [24] disagreed
with predictions of BCS theory and, hence, indicated that also other “unconventional” mechanisms can
lead to superconducting phase transitions [25, 26]. In case of the cuprates, two celebrated phase sensitive
experiments, the corner-junction [27] and tricrystal-magnetometry [28] experiment, have convincingly
demonstrated after many years of intense research [29] that the superconducting state also breaks ro-
tational symmetries (d-wave superconductivity) in additional to the broken global U(1) phase rotation
symmetry of BCS theory. This strongly supports a predominantly electronic pairing mechanism where
spin-fluctuations provide the pairing glue for superconductivity [30–32].

This thesis will be concerned with all three different aspects of phase transitions outlined above –
symmetry, topology and mechanism – as well as with their mutual interplay. We will to a large extent
focus on superconducting transitions in noncentrosymmetric materials, i.e., systems without a center
of inversion. In combination with atomic spin-orbit coupling (SOC), this lifts the spin-degeneracy of
the Fermi surfaces which is the well-known Dresselhaus-Rashba effect [33, 34] and has crucial energetic
consequences for the phase competition in the system. We will both study concrete physical systems
of current interest and present general arguments and calculations that are only based on generic
properties of the system such as symmetries and Fermi-surface topologies. As will be seen repeatedly
in this thesis, the three central aspects of phase transitions mentioned above are particularly strongly
related in case of noncentrosymmetric superconductors.
Firstly, in analogy to the connection between the symmetry of the paring state and the mechanism

driving the instability, which has been proven to be a useful detective tool for the cuprates [27, 28],
we will show that there is also a very direct correspondence between the mechanism and the topology
of superconductivity. In addition to its importance from a pure theoretical point of view, this cor-
respondence might also be used in experiment in order to determine the microscopic mechanism of
a superconducting state. Investigation of topological properties of the condensate, i.e., the presence
of gapless edge modes, yields information on whether it mainly arises from electron-phonon or from
Coulomb interactions. A physical system where this approach might be relevant is given by the elec-
tron liquid that forms [35] at the interface between the two insulating perovskite oxides LaAlO3 (LAO)
and SrTiO3 (STO). The complex reconstruction mechanism and the rich electronic behavior in this
system has triggered enormous research efforts in recent years [36–38]. It represents a prime exam-
ple of a superconducting system [39, 40] with strongly spin-orbit-split Fermi surfaces [41–43]. The two
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candidate superconducting states, that are predicted in this work for an electron-phonon- and Coulomb-
interaction-dominated pairing mechanism, have the same point symmetry but differ in their topology.
The unknown mechanism of superconductivity might thus be detected via topological signatures.
Secondly, we will see that the point symmetries of the normal state in combination with the energetic

constraints resulting from the spin splitting of the Fermi surfaces have strong general implications for the
possible pairing states, in particular, concerning the time-reversal properties of the condensate. This is
important as the determination of the superconducting order parameter is typically a very complicated
and long-standing endeavor. For instance, it required many years of theoretical and experimental work
for the experimental proof [27, 28] of d-wave pairing in the cuprates [29]. From this point of view,
general selection rules for possible pairing states in noncentrosymmetric systems might be very helpful
in order to pinpoint the microscopic order parameter in the numerous different systems belonging to
this broad class of superconducting materials [38, 44–46].
The behavior under time-reversal is a pivotal property of a superconductor. It crucially influences its

thermal and electromagnetic response since, e.g., only a superconducting condensate with broken TRS
can exhibit the polar Kerr effect (PKE) [47–49]. In addition, inhomogeneities lead to the formation
of local moments [50, 51] and an exotic thermoelectric effect has been proposed to occur in TRS-
breaking condensates [52]. As there are only a few superconductors with strong indications of broken
TRS, most notably Sr2RuO4 [47, 51, 53], UPt3 [48, 54], URu2Si2 [49] as well as LaNiC2 [55] and
Re6Zr [56], the general conditions for TRS-breaking Cooper instabilities discussed in this thesis might
prove useful as design principles in the search for exotic superconducting states with broken TRS.
Furthermore, as mentioned above, the topological classification of states of matter is determined by
the presence or absence of TRS. Consequently, our constraints on the time-reversal properties of the
superconductor formulated in terms of the point group of the normal state also reveal a connection
between the spatial symmetries of the normal state and the topological classification of the possible
resulting superconducting instabilities.
Taken together, the correspondence between the crystal symmetries of the normal state and the

topological classification of the superconductor as well as between the mechanism and the topology of
superconductivity can also be used as guiding principles in the search for materials hosting topologically
nontrivial superconductors. Finding candidate materials for the realization of nontrivial topologies is
important both from a fundamental physics point of view as well as for potential future applications.
The fundamental scientific interest directly follows from the properties outlined above. Topological

states of matter do not fall into Landau’s paradigm with a locally defined order parameter, they realize
a holographic principle in the sense that the presence of edge modes is determined by bulk properties,
known as the bulk-boundary correspondence, and the edge modes are robust against Anderson localiza-
tion [8]. Additionally, in case of topological superconductors, the edge modes satisfy a reality constraint
and thus represent a condensed matter realization [6] of Majorana’s vision [57] of a particle that is its
own antiparticle. Isolated “Majorana modes” that emerge, e.g., in vortices of two-dimensional (2D)
topological superconductors, can be shown to obey exotic non-Abelian statistics which means that the
outcome of a sequence of particle interchanges depends on the order in which they are carried out [58].
The latter property is also at the heart of the central long-term application of topological supercon-
ductors – topological quantum computing [59]. The basic idea of topological quantum computing is to
store information in qubits formed out of spatially separated Majorana modes rendering them inher-
ently protected against local perturbations which avoids decoherence at the “hardware level”. Quantum
computations are performed by adiabatically winding Majorana modes around each other.
While several materials hosting both 2D as well as three-dimensional (3D) topological band insulator

phases have been identified experimentally (see Refs. [4, 5] and references therein), the main experi-
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Introduction

mental progress in case of topological superconductors has been achieved in “extrinsic” superconductors
[60, 61], where superconductivity is not an inherent property of the material but externally induced via
the proximity effect. Not only from a material science point of view but also because of its potential
merits in applications, “intrinsic” topological superconductors are of great interest, i.e., systems where
both superconductivity as well as the nontrivial topology arise spontaneously by virtue of the internal
dynamics of the material. Especially in the search for “intrinsic” topological superconductors, general
guiding principles are needed that are not based on model calculations but only depend on very few
and experimentally accessible properties of the material such as the symmetries and the Fermi-surface
topologies in the normal state. In this context, it is furthermore important to analyze whether topo-
logically nontrivial condensates are stable against the inevitable presence of disorder in the material
or whether disorder might even be intentionally used in order to stabilize a topological phase. These
issues will be addressed in the work at hand.

More specifically, the following analysis is presented in the remainder of the thesis: After two in-
troductory chapters (Chaps. 1 and 2) that provide more details and background information on the
aspects mentioned above, we start in Chap. 3 with a discussion of interaction effects in topological
band insulators. As outlined in the beginning, the impact of interactions both concerning the stability
of a topological phase as well as its potential to induce new phases without noninteracting analogue
represent important questions of current research. As a result of the excellent controllability, cold-atom
experiments [62, 63] might shed light on the open questions of the field of strongly interacting topo-
logical insulators. For this reason, we propose in Chap. 3 a cold-atom setup to simulate various 2D
and 3D topological insulator phases and discuss how a transition to a topological Mott insulator (TMI)
[64] can be induced by interactions. Similarly to the fractional quantum Hall effect [12, 13] mentioned
above, a TMI only occurs in the presence of interactions. It is a spin-liquid-like phase where the charge
degrees of freedom are frozen in a Mott state, while the electron spin is characterized by a topologically
nontrivial band structure. Phase diagrams are calculated within slave-rotor mean-field theory [65–67].
In Chap. 4, we study general selection rules for possible superconducting instabilities in 2D and 3D

systems with nondegenerate Fermi surfaces that result from the combination of the point symmetries
of the hight-temperature phase and energetic arguments based on the spin-orbit splitting Eso of the
Fermi surfaces. The selection rules are valid as long as the superconducting gap at zero temperature
is smaller than Eso. In particular, the constraints on the possibility of spontaneous TRS breaking are
discussed. The general results are applied to several different materials. Interesting consequences arise
for thin layers of compounds, such as Sr2RuO4 [47, 51, 53], UPt3 [48, 54] and URu2Si2 [49], that harbor
TRS-breaking superconductivity in their 3D bulk. Note that thin films of Sr2RuO4 and UPt3 have been
fabricated and shown to be superconducting [68, 69]. We will see that the superconducting state of thin
layers of Sr2RuO4 is a promising candidate for time-reversal symmetric topological superconductivity.
In addition, we illustrate how the selection rules can be employed to gain information about the order
parameter of 2D systems with no 3D counterpart and serve as a design principle in the search for TRS-
breaking superconductivity mainly using the different orientations of the LAO/STO heterostructures
as examples.
The LAO/STO heterostructures are also the central topic of Chap. 5. While the general selection

rules in combination with experiments [70] fully determines the symmetry properties of the condensate,
the topology of the superconductor remains unresolved. For this purpose, we perform a microscopic
calculation focusing on the most frequently studied (001)-oriented interface. We derive an interacting
effective low-energy model of the system and analyze the phase competition using a renormalization
group (RG) approach. In addition to competing density wave instabilities with interesting spatial
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textures, we identify two distinct candidate pairing states and establish a one-to-one correspondence
between the mechanism of superconductivity and its topology for the heterostructure. We discuss
how this might be used in order to pinpoint both the superconducting order parameter as well as the
unknown microscopic mechanism of superconductivity.
Chap. 6 will be devoted to extending the correspondence between the mechanism and topology

derived for LAO/STO heterostructures to more general noncentrosymmetric systems. The analysis
is mainly based on exact relations following from the symmetries of the normal state, most notably
TRS, and independent of many microscopic details such as the number and character of relevant
orbitals. As opposed to the previous chapters, the topological classification is performed on the level
of Green’s functions and an Eliashberg-theory [71, 72] approach is used such that the results for the
electron-phonon coupling are also valid in the strong coupling regime. The findings of this chapter also
complement the discussion of TRS in Chap. 4 by relating the behavior of the resulting condensate under
time-reversal to the mechanism driving the instability. Furthermore, we formulate guiding principles
for the search of “intrinsic” topological superconductors in noncentrosymmetric systems.
Finally, Chap. 7 is concerned with generalizing different aspects of superconductivity discussed in

the previous chapters to weakly disordered systems. Here, “weakly” means that the mean-free path l is
much larger than the inverse Fermi momentum kF and that localization [8] can be neglected. Firstly,
we study the sensitivity of different superconducting states against nonmagnetic as well as magnetic
impurities. After a general analysis yielding an algebraic criterion for the protection of the mean-
field transition temperature against disorder, we study specific superconductors, in particular, the two
candidate pairing states of LAO/STO heterostructures deduced in Chap. 5. Secondly, we discuss how
magnetic disorder can be used to stabilize time-reversal invariant topological superconductivity.
For convenience of the reader a list of acronyms and a summary of the notation as well as conventions

used in this thesis is given on page 215f. and pages 217–220, respectively.
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1 Chapter 1

Fundamentals:
Spontaneous symmetry breaking

The title of the thesis contains the three key words “mechanism”, “symmetry” and “topology”. We will,
not only for historical but also for pedagogical reasons, focus on the first two aspects in this chapter
while the last one will be the topic of Chap. 2.
The purpose of this chapter is threefold: Firstly, the general concept of spontaneous symmetry break-

ing and possible mechanisms thereof, i.e., microscopic physical processes leading to it, are discussed.
Secondly, the notation and conventions that will also be used later on are introduced. Finally, we also
provide a short introduction to several different materials that are of interest for this thesis. Naturally,
all of our discussions will be far from complete but rather adjusted to the work presented in the thesis.
For readers interested in more details we refer to the literature in the corresponding sections.
More specifically, we begin in Sec. 1.1 with a general discussion of spontaneous symmetry breaking

on the level of a phenomenological free energy expansion. As we are mainly interested in superconduc-
tivity in this work, the notation used refers to superconductors, however, the discussion also applies,
mutatis mutandis, to other, e.g. magnetic, transitions. We then present (see Sec. 1.1.2) how the su-
perconducting instability can be understood microscopically and introduce the notion of conventional
and unconventional pairing. Sec. 1.2 will be devoted to the implications of fluctuations. In Sec. 1.3
we focus on the peculiarities of superconducting systems with broken inversion symmetry and discuss
several materials. Finally, in Sec. 1.4, a brief introduction into impurity scattering, again with a focus
on symmetries and superconductivity, is provided.

1.1 Free energy expansion

A very efficient phenomenological way to understand the spontaneous symmetry breaking occurring at
phase transitions proceeds by expanding the free energy of the system in terms of the order parameter
of the phase transition. This approach goes back to L. D. Landau who originally applied it in the
early 1930’s [73] in order to explain the phenomenon of superconductivity which at that time was still
lacking a microscopic theoretical explanation. Although he had chosen the wrong order parameter for
describing the superconducting state [74], this work paved the way for the development of the celebrated
Landau theory of phase transitions [1] in 1937, which was later successfully applied to superconductivity
[15]. The latter became known as the Ginzburg-Landau theory of superconductivity after the duo that
developed it.
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1 Fundamentals: Spontaneous symmetry breaking

Figure 1.1: Free energy expansion. In (a), the high-temperature (blue) and low-temperature
(green) phase of the free energy (1.1) is shown. Goldstone modes, discussed in
Sec. 1.2, are indicated in red. The behavior of the free energy in case of a first order
phase transition is illustrated in (b).

Landau’s free energy expansion is based on two assumptions: (i) The phase transition is second
order, i.e., the order parameter, which is, by design, finite in the “ordered” low-temperature and zero
in the “disordered” high-temperature phase, varies continuously at the transition. (ii) The free energy
F is an analytic function of the order parameter near the origin. This allows to expand F in order to
describe the behavior of the system near the transition temperature Tc.
Ginzburg and Landau [15] postulated that the superconducting order parameter is a complex number

which we will denote by ∆ ∈ C. While its modulus squared measures the density of superconducting
electrons, the time- and space-independent part of its phase is in case of an isolated superconductor
of no physical significance. This means that the free energy should be invariant under the global U(1)
phase rotation ∆ → ∆eiϕ, ϕ ∈ R. First focusing on homogeneous superconductivity, this forces the
expansion of F with respect to ∆ and ∆∗ to be of the form

F(∆,∆∗) = F(0) + a(T )|∆|2 +
b

2
|∆|4 +O(|∆|6). (1.1)

Here a and b are expansion coefficients that are a priori unknown, which distinguishes the phenomeno-
logical Ginzburg-Landau approach from microscopic theories that can make predictions in terms of
microscopic parameters (see Sec. 1.1.2). We will assume that b > 0 to ensure stability for ∆→∞ and
that b does not significantly vary with temperature. For a(T ) > 0 the minimum of F occurs at ∆ = 0
which defines the normal phase. If a(T ) < 0, the free energy will assume minimal values for any ∆
with |∆| =

√
|a(T )|/b 6= 0 as can be seen in Fig. 1.1(a). In the ground state of the system, ∆ will have

some fixed phase which we can chose such that ∆ ∈ R without loss of generality. This means that the
free energy F or, more fundamentally, the Hamiltonian of the system has some symmetry which is not
shared by its ground state. This is known as spontaneous symmetry breaking. In the present case, the
system spontaneously breaks global U(1) phase rotation symmetry at the transition. In Sec. 1.1.1, we
will discuss more complicated symmetry groups. Before we do this, a few general remarks about free
energy expansions are in order.
Firstly, as already mentioned in the historical introduction above, the same procedure can also be

used to describe other types of phase transitions such as structural or magnetic phase transitions [1, 75].
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1.1 Free energy expansion

E.g., in case of a ferromagnet, the order parameter would be the magnetization m = (m1, . . . ,mdm).
In the isotropic case, F does not depend upon the direction of m. This SO(dm) rotation symmetry
will be broken below the ordering temperature (down to a residual SO(dm − 1) symmetry). The case
dm = 2, i.e., an XY-magnet, is special as SO(2) and U(1) are isomorphic (denoted by SO(2) ∼= U(1)
in the following) which means that (in the absence of external fields) the mathematical description
of symmetry breaking is identical in these two systems. The real and imaginary part of ∆ can be
associated with the two components m1 and m2 as indicated in Fig. 1.1(a).
Secondly, from the discussion above it is clear that a(T ) has to change sign at the transition tem-

perature Tc. Assuming that a(T ) is also analytic around Tc, one can expand a(T ) ∼ α(T − Tc) in the
vicinity of Tc which leads to the prediction that the order parameter behaves according to ∆ ∝

√
Tc − T

slightly below Tc. Inserting this back into the free energy expression (1.1) and differentiating twice with
respect to T one finds that the heat capacity has a jump1 at Tc which agrees with experiment [76].
In addition, free energy expansions also allow for studying inhomogeneous superconductors. In this

case, the order parameter becomes spatially dependent ∆ → ∆(x) and, focusing on leading order
gradients of ∆, an additional term ∝ (∇∆∗) ·∇∆ is added to the free energy (1.1) to penalize spatial
variations of ∆(x). The coupling to magnetic fields is described by means of minimal substitution. As
these aspects are not central to the thesis at hand, we refer to the literature (see, e.g., the textbook
[77]) for a detailed discussion and just mention that these two modifications add two length scales to
the free energy expansion (1.1): The superconducting coherence length ξ which is the length scale for
the variation of ∆ and the penetration depth λ determining how deep an external magnetic field can
enter the superconductor.
Note that although free energy expansions are tailor-made to analyzing second order phase transitions

they can be used to describe weak first order phase transitions as well: If a > 0, b < 0 and we have
added a term c|∆|6 in Eq. (1.1) with c > 0 to ensure stability, the position of the minimum of F jumps
from ∆ = 0 to a finite ∆ 6= 0 upon increasing the magnitude of b through some critical value b∗ as
illustrated in Fig. 1.1(b). However, note that we cannot conclude that a first order phase transition
takes place without knowing all coefficients of the expansion as higher order terms can always push
minima at ∆ 6= 0 to positive values. Furthermore, in order to exclude a first order phase transition we
even have to resum the power series to obtain a representation of F that is valid for arbitrary ∆ as the
order parameter could in principle jump to an arbitrarily large value beyond the radius of convergence
of the free energy expansion. We will come back to this aspect in Sec. 4.3.1.
Notwithstanding these difficulties associated with first order phase transitions, the free energy ex-

pansion is very useful for analyzing the general symmetry breaking taking place at second order phase
transitions and conveniently reveals its connection to group theory. This will be the focus of the next
subsection.

1.1.1 Multicomponent order parameter

We now consider a system with a density matrix that is invariant under symmetries forming the group G
for temperatures T slightly above the critical temperature Tc of the transition we are interested in. For
concreteness we will entirely focus on superconducting transitions here. At Tc, some of these symmetries
are spontaneously broken such that the density matrix is only invariant under the subgroup H < G.
Since both the result itself as well as the required group theoretical methods and notation will be used
1Since this is a purely thermodynamic statement it holds irrespective of the order parameter chosen. This is why it was
already predicted in Landau’s original work [73] where the equilibrium current j was used as order parameter instead
of ∆. Note that j ∝

√
Tc − T disagrees with experiment.
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1 Fundamentals: Spontaneous symmetry breaking

repeatedly throughout the thesis, we will next discuss how the possible order parameters in case of the
transition being continuous can be related to the symmetry group G of the high temperature phase.
This relation which is originally due to Landau [1] has been extensively used to gain information about
the superconducting phase transition in many different systems such as superfluid 3He, heavy-fermion
as well as cuprate superconductors and others [50, 78–84].

Order parameter. Following the current understanding of the microscopic theory of superconductiv-
ity (see Sec. 1.1.2), the superconducting order parameter is a (complex-valued) fermionic two-particle
wavefunction ∆αβ(k), which means that it transforms in the same way as the bilinear ψkαψ−kβ of
fermionic spinors ψkα. Here k denotes crystal momentum and α, β refer to all additional electronic de-
grees of freedom within the unit cell of the system which are relevant for describing superconductivity.
This might include the spin2 degree of freedom of the electrons, the relevant orbitals of the different
atoms in the unit cell and, in case of systems with reduced dimension, additional subbands resulting
from the confinement along one or two spatial directions.
Since ∆αβ(k) is a fermionic two-particle wavefunction, it must be totally antisymmetric under ex-

change of the particles and, hence, satisfy the antisymmetry constraint

∆αβ(k) = −∆βα(−k). (1.2)

As anticipated by the notation used for the order parameter, we will assume that the total momentum
of the two electrons vanishes which means in terms of symmetries that no translational symmetries are
broken at the phase transition. This is a very natural assumption since superconducting transitions at
which translation symmetry is spontaneously broken are quite rare as will become clear in Sec. 1.1.2.
Furthermore, we will mainly focus on translation-symmetry-preserving superconducting states in the
remainder of the thesis such that it is convenient to use the notation already in this section which will
be best suited for describing this situation.3

Symmetry constraints. The symmetry group has the form G = G0 ⊗U(1), where U(1) is the group
of global phase rotations, ∆αβ(k)→ ∆αβ(k)eiϕ, already encountered in context of Eq. (1.1) and G0 the
group of symmetry operations in spin and real space. As we do not consider spontaneous translation
symmetry breaking, it is sufficient to restrict ourselves to the symmetry operations that leave at least
a single lattice point invariant. Note that the normal state of many superconducting systems also
has TRS, i.e., is invariant under the inversion of the time-direction. The mathematics of this type of
symmetry is quite different from the symmetries of G0 as it is described by an antiunitary operator4.
For this reason, the discussion of the implications of TRS will be postponed to Sec. 4.1.
Denoting the spinor and coordinate representation5 of g ∈ G0 by RΨ(g) and Rv(g), respectively, and

recalling that ∆(k) transforms as ψkψ
T
−k, the transformation behavior of the order parameter is given

2Note that, although the electrons in crystals are always spin-1/2 particles, the effective low-energy theory in the presence
of strong Zeeman splittings might involve spinless fermions (see Sec. 4.7).

3We note that, for the current purpose, allowing for spontaneous breaking of translation symmetries is straightforward:
The analysis of general space group symmetry breaking would most closely parallel the present discussion when using
∆xx′ as order parameter where x and x′ are multi-indices combining both the Bravais lattice index as well as all
relevant electronic degrees of freedom within the unit cell.

4An operator O is said to be antiunitary if and only if it is antilinear, i.e., cO = Oc∗ for any c ∈ C, and satisfies
OO† = O†O = 1.

5A representation of a group G is a group homomorphism from G to the general linear group, i.e., a map ρ assigning
every g ∈ G a nonsingular square matrix ρ(g) such that ρ(g1)ρ(g2) = ρ(g1g2) ∀g1, g2 ∈ G.
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1.1 Free energy expansion

by
∆(k)

g−→ RΨ(g)∆(R−1
v (g)k)RTΨ(g). (1.3)

To analyze the consequences of the invariance of the free energy F under Eq. (1.3), it is very convenient
[1] to expand the order parameter in terms of (matrix-valued) basis functions χnµ transforming under
the irreducible representations (IRs) of G0,

∆(k) =
∑
n

dn∑
µ=1

ηnµχ
n
µ(k), ηnµ ∈ C. (1.4)

Here n labels the different IRs with dimension dn and {χnµ(k), µ = 1, . . . dn} are the associated partner
functions, i.e.

RΨ(g)χnµ(R−1
v (g)k)RTΨ(g) =

(
Rnχ(g)

)
µν
χnν (k), (1.5)

where Rnχ(g) cannot be brought into the same block-diagonal form for all g ∈ G0, which is the defining
property for the representation Rnχ(g) to be irreducible. In Eq. (1.5) and in the remainder of the
thesis, we use the convention that, unless stated otherwise, indices appearing twice are assumed to be
summed over. It is well-known from group theory that Rnχ(g) can be taken to be unitary without loss
of generality and that the expansion in Eq. (1.4) is always possible [85].
Most importantly, Eq. (1.4) allows us to represent the transformation of ∆(k) in terms of the expan-

sion coefficients {ηnµ},
ηnµ

g−→ ηnν

(
Rnχ(g)

)
νµ
. (1.6)

Similarly, we can regard the free energy as a function F(ηnµ , (η
n
µ)∗) of the complex variables {ηnµ} (and

their complex conjugates) instead of being a functional in ∆αβ(k). Invariance under G then forces

F
(
ηnµ , (η

n
µ)∗
)

= F
(
ηnµe

iϕ, (ηnµ)∗e−iϕ
)
, ∀ϕ ∈ R. (1.7a)

F
(
ηnµ , (η

n
µ)∗
)

= F
(
ηnν

(
Rnχ(g)

)
νµ
, (ηnν )∗

(
Rnχ(g)

)∗
νµ

)
, ∀g ∈ G0, (1.7b)

Assuming again that (i) the transition is of second order and that (ii) the free energy is an analytic
function in {ηnµ} (and their complex conjugate), we can expand the free energy to describe the phase
transition in the vicinity of Tc. Due to Eq. (1.7a), the leading contribution reads

F
(
ηnµ , (η

n
µ)∗
)

= F(0, 0) +
∑
n,n′

dn∑
µ=1

dn′∑
µ′=1

(
ηnµ

)∗
Mnn′

µµ′(T ) ηn
′
µ′ +O

(
|η|4
)
. (1.8)

To satisfy Eq. (1.7b), it must hold

Mnn′ =
(
Rnχ(g)

)∗
Mnn′

(
Rn′χ (g)

)T
(1.9)

for all IRs n, n′ and all group elements g. Summing this equation over all g ∈ G0 and applying the
“grand orthogonalilty theorem” of group theory, [85]∑

g∈G0

(
Rnχ(g)

)∗
µν

(
Rn′χ (g)

)
µ′ν′

=
|G0|
dn

δn,n′δµ,µ′δν,ν′ , (1.10)
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1 Fundamentals: Spontaneous symmetry breaking

where |G0| is the order of G0, one finds thatM must have the formMnn′
µµ′(T ) = δµµ′δnn′an(T ). Conse-

quently, the expansion (1.8) simply becomes

F
(
ηnµ , (η

n
µ)∗
)

= F(0, 0) +
∑
n

dn∑
µ=1

an(T )
∣∣∣ηnµ∣∣∣2 +O

(
|η|4
)
, (1.11)

which constitutes the generalization of Eq. (1.1) to multiple components (∆ → {ηnµ}). For T > Tc, in
the normal phase, all an must be positive for the free energy being minimal at ηnµ = 0. At Tc, one of
the prefactors, say an0(T ), changes sign such that the minimum occurs at ηnµ = 0 for all n 6= n0 and
ηn0
µ 6= 0. This leads to the well-known [1] result that, for a second order phase transition, the order
parameter must transform according to one of the IRs of the symmetry group G0 of the high-temperature
phase.
Note that it could in principle happen that two (or more) of the coefficients an(T ) change sign at

the same temperature. This, however, would constitute an “accidental degeneracy” in the sense that
the simultaneous change of sign is not imposed by any symmetry and, hence, can be removed by
small changes in the system that do not affect its symmetry. In other words, it requires fine-tuning of
parameters, e.g., pressure or doping etc., to make the transition temperatures of the competing phases
degenerate. Unless stated otherwise, we will therefore neglect accidental degeneracies in the following.
If the IR with the highest Tc, again denoted by n0, is one-dimensional, dn0 = 1, the transformation

behavior of the order parameter under G0 is completely determined. Of course, the detailed form of
the associated basis function χn0

1 (k) depends on microscopic details of the system and, thus, cannot be
inferred from pure symmetry arguments. However, if dn0 > 1, we have to determine the orientation of
the vector (ηn0

1 , . . . , ηn0
dn0

). It follows from higher order terms in the expansion of the free energy which
are again constructed by taking into account the symmetry constraints (1.7): To begin with the quartic
term, its general form as allowed by the U(1)-symmetry (1.7a) reads

F
(
ηnµ , (η

n
µ)∗
)

= F(0, 0) +

dn0∑
µ=1

an0(T )
∣∣∣ηn0
µ

∣∣∣2 +

dn0∑
µ1,µ2,µ3,µ4=1

bµ1µ2µ3µ4

(
ηn0
µ1

)∗ (
ηn0
µ2

)∗
ηn0
µ3
ηn0
µ4

+O
(
|η|6
)

(1.12)
upon setting ηnµ = 0 for n 6= n0. In order to find the most general form of the tensor b from a group
theoretical point of view, we just have to search for all trivial representations contained in

(n0)∗ ⊗ (n0)∗ ⊗ n0 ⊗ n0, (1.13)

where (n0)∗ denotes the complex conjugate representation of n0. Minimizing the free energy then yields
the allowed vectors (ηn0

1 , . . . , ηn0
dn0

). If physically distinct states are still degenerate, one has to proceed
by analyzing higher orders in the expansion. In Chap. 4.3.2, this method of determining the possible
order parameter vectors is illustrated for the case of the two-dimensional IR E of the group C4v. We
finally mention that it is also possible to construct the order parameter vectors from purely group-
theoretical considerations (see [83] and references therein): For many symmetry groups, the possible
residual groups H must be maximal subgroups of G, i.e., there is no phase with more symmetries than
H apart from the normal state.

Symmetry group. We will next discuss basic aspects concerning the symmetry group G0. One central
question to be asked when analyzing the possible superconducting instabilities in a system is whether
SOC is relevant for describing the transition or not [50, 78, 83, 84]. SOC describes the coupling of the
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1.1 Free energy expansion

motion of the electron to its spin degree of freedom. Intuitively, this can be understood by recalling
from classical electrodynamics [86] that an electric field E = −∇V (V is the electric potential) becomes
a magnetic field in the rest frame of a moving electron which, in turn, couples to the magnetic moment
associated with the electron’s spin. It is a relativistic effect which is described by the Dirac equation.
Expanding the latter up to order (v/c)2, where c is the speed of light and v the velocity scale of
electronic motion, one finds (among other terms) the microscopic SOC Hamiltonian [87]

hSO =
e

4m2
ec

2
p(σ ×∇V ). (1.14)

Here me, e and p denote the electron mass, charge and momentum, respectively. Furthermore, σ =
(σ1, σ2, σ3) are Pauli matrices describing the spin of the electron. We refer to the literature (see, e.g.,
the textbook [87]) for an introduction to the plethora of effects of SOC in solid state systems. For the
general purpose of the present discussion, we are only interested the impact of SOC on the symmetry
group G0.
If SOC can be neglecting for describing the superconducting transition, there are no terms in the

Hamiltonian that couple the spin and real-space degrees of freedom of the electrons. This means that
spin and real space coordinates can be transformed independently and the group G0 assumes the form6

G0 = SO(3)× Gc, (1.15)

where SO(3) represents spin rotations and Gc is the group of crystal symmetries. As already mentioned
above, although Gc should in general be taken to be the full space group, we will neglect translation
symmetry breaking such that we can focus on the point group7 Gp of the system and set Gc = Gp. It is
clear that this crucially reduces the complexity as the 230 possible space groups of 3D systems decay
into only 32 different point groups [85]. In case of G0 given by Eq. (1.15), its IRs can be labeled by
the composite index n = (nc, ns) where nc and ns denote all IRs of Gc and SO(3), respectively. As the
superconducting order parameter ∆αβ(k) is a wavefunction of two electrons (see Sec. 1.1.2) which are
spin-1/2 particles, only the one-dimensional singlet, ns = s, and the three-dimensional triplet, nt = t,
representations of SO(3) have to be considered. The order parameter must transform according to one
of the IRs of G0 and we can thus conclude that, in the absence of SOC, only either singlet,

∆(k) =

dnc∑
µc=1

η(nc,s)
µc χ(nc)

µc (k)iσ2, (1.16a)

or triplet,

∆(k) =

dnc∑
µc=1

∑
µs=1,2,3

η
(nc,t)
(µc,µs)

χ(nc)
µc (k)σµsiσ2, (1.16b)

superconductivity is possible at a single superconducting phase transition. In Eq. (1.16), χ(nc)
µc denote

basis functions with respect to all degrees of freedom other than spin transforming under the IR nc of
Gc (in the sense of Eq. (1.5)). Furthermore, we have already used that iσ2 and σiσ2 represent possible
choices for the partner functions of the singlet and triplet representation of SO(3), respectively.
6Spin rotation symmetry can also be broken by magnetic fields. We will come back to this in Sec. 4.7 but not consider
it here.

7Any space group operation g can be decomposed in an operation r that leaves at least one point invariant and a
translation t which we write as g = [r|t]. The set of all [r|0] with [r|t] belonging to the space group is called the point
group Gp of the system. Note that, in general, Gp does not have to be a subgroup of the space group.
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1 Fundamentals: Spontaneous symmetry breaking

The situation changes completely when SOC is relevant for the phase transition: As can be seen
in Eq. (1.14), the spin and spatial degrees of freedom cannot be transformed independently anymore
such that the symmetry group is reduced from Eq. (1.15) to G0 = Gc. Now the representation RΨ(g)
of g ∈ G0 has to be understood as a simultaneous operation both on the spatial degrees of freedom
(crystal momentum, orbitals, ...) and on the spin of the electrons. In other words, the generator of
rotation is given by the sum of orbital angular momentum and spin. As spin and spatial coordinates
are entangled in the presence of SOC, the distinction between pure singlet and triplet order parameters
as in Eq. (1.16) is in general not possible any more.
To proceed further with the discussion of spin-orbit-coupled systems, let us next assume that, for

the purpose of describing superconductivity, it is sufficient to regard the order parameter ∆(k) as a
matrix in spin-space only. This is less restrictive than it might seem, since it does not necessarily imply
that there is, e.g., only one relevant orbital in the system. The reason is that one can introduce a
pseudospin basis, represented by the Pauli matrices sj , j = 0, 1, 2, 3, that behaves effectively like a the
microscopic spin. The details of this pseudospin approach, which is frequently used in the literature
(see, e.g., Refs. [88, 89]), is described in Appendix A.1. To connect to the discussion presented above,
it is very convenient to expand the 2× 2 matrix ∆ in terms of Pauli matrices according to

∆(k) =
(

∆S
k + dk · s

)
is2. (1.17)

Here ∆S
k ∈ C and dk ∈ C3 are the singlet component and triplet vector of the order parameter

corresponding to Eqs. (1.16a) and (1.16b), respectively. Due to the fermionic antisymmetry constraint
(1.2), ∆S

k and dk have to be symmetric and antisymmetric functions of k,

∆S
k = ∆S

−k dk = −d−k. (1.18)

This has important consequences for systems where the high-temperature phase is invariant under
spatial inversion I. In these so-called centrosymmetric systems, it holds I ∈ G0 which commutes with
all operations of the symmetry group G0 such that all IRs can be classified into “gerade” (even parity),
Rχ(I) = 1, and “ungerade” (odd parity), Rχ(I) = −1 (see Appendix A.2). Recalling that the spin is
invariant under I (it is a pseudovector), Eq. (1.18) forces the pairing state to be a pure singlet (dk = 0)
or a pure triplet (∆S

k = 0) in case of a gerade or ungerade IR, respectively. Taken together, we have seen
that both significant SOC as well as the absence of inversion symmetry in the normal state (I /∈ G0)
are required to allow for the mixing of singlet and triplet pairing at a single superconducting phase
transition [84, 90]. In Chap. 6.2.4, we will show that, under certain circumstances, one can still group
all possible superconducting states into two basic classes in direct analogy to the singlet and triplet
states of centrosymmetric systems. Systems with I /∈ G0, which are called noncentrosymmetric, are in
particular focus of the thesis at hand and will therefore be discussed in more detail in Sec. 1.3.
Finally, we mention that, if we take G0 = Gc in a spin-orbit-coupled system with Gc being the group

of symmetry operations in real space, the matrices RΨ(g) transforming the wavefunctions will not form
a representation. The reason is that, e.g., RΨ(C2C2) = −1 for half-integer spin particles, where C2

denotes a rotation by π around some given axis, although C2C2 = E (E is the identity element of
the group). This subtlety can be circumvented by replacing Gc by its double group8 G′c. However, as
8The basic construction of a double group consists of first introducing an additional element E which will have the
same representation on spatial coordinates as E but changes the sign of spinors. The set of all g ∈ G and associated
elements g := Eg forms the double group G′. The name comes from the fact that |G′| = 2|G|. Upon choosing proper
multiplication laws, RΨ(g), g ∈ G′, will then indeed form a representation. For an introduction to double groups and
their IRs we refer to Ref. [91].
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1.1 Free energy expansion

we will be mainly interested in the transformation properties of the superconducting order parameter,
this difference is of no relevance: As can be seen in Eq. (1.3), the representation of g on the order
parameter involves the product of two RΨ(g) such that ∆ will always transform under the single-group
representations. Physically, this is due to the fact that ∆ is a two-particle wavefunction with integer
spin. Therefore, we will in the remainder of the thesis not distinguish between Gc and G′c always keeping
in mind that spin-wavefunctions transform under the double group G′c. For the same reason, we have
used SO(3) in Eq. (1.15) instead of SU(2), which covers SO(3) twice (SO(3) = SU(2)/Z2).

1.1.2 Microscopic mechanism of superconductivity

Although the Ginzburg-Landau approach [15] and the earlier phenomenological theory of Heinz and
Fritz London [14] yield the correct physical behavior, no understanding about the microscopic origin of
superconductivity is provided. Despite being of considerable interest for many theorists [74] ever since
the discovery of superconductivity in 1911 [16], it took until 1957 that a consistent microscopic theory
of superconductivity was eventually formulated [17, 18] which became known as the BCS theory after
its three developers – Bardeen, Cooper and Schrieffer.
One of the central theoretical groundworks for the BCS theory was provided by Cooper who showed

[92] that a Fermi surface is unstable towards the formation of bound states consisting of two electrons
with opposite spin, ↑ and ↓, and crystal momentum, k and −k, now known as Cooper pairs, in the
presence of an attractive interaction in the vicinity of the Fermi energy. It is a weak-coupling instability
in the sense that it already occurs at an infinitesimal strength of the attraction. Physically, this is due
to the fact that if a state (k, ↑) is on the Fermi surface the same will hold for (−k, ↓) as long as the
normal state is time-reversal symmetric [93], i.e., in the absence of (external or internal) magnetic fields.
The many-body formulation of the Cooper instability is provided by the BCS theory [17, 18]. A

pedagogical introduction to this subject can be found in any textbook on theoretical condensed matter
physics, e.g., in Refs. [77, 94]. We just mention that it is a mean-field theory where the attractive
interaction is decoupled in the particle-particle channel leading to the celebrated BCS Hamiltonian

ĤBCS =
∑
k, σ

εkĉ
†
kσ ĉkσ +

∑
k

(
∆ ĉ†k↑ĉ

†
−k↓ + H.c.

)
. (1.19)

Here εk denotes the normal state dispersion and ĉ†kσ (ĉkσ) is the creation (annihilation) operator
of electrons with momentum k and spin σ. From Eq. (1.19), the Ginzburg-Landau expansion (1.1)
with explicit expressions for the coefficients can be regained as has first been shown by L. P. Gorkov
[95]. In Appendix C.2 we will perform such a calculation explicitly. This establishes that the order
parameter in the Ginzburg-Landau expansion should be seen as a two-electron wavefunction. In the
BCS Hamiltonian (1.19) the order parameter is just a single complex number ∆ as it is restricted to
singlet pairing. In the general case (see also Sec. 4.1.1) with singlet, triplet, several orbitals etc. the
order parameter ∆αβ(k) introduced in Sec. 1.1.1 is to be identified with 〈ĉ−kβ ĉkα〉 immediately leading
to the antisymmetry constraint (1.2) and transformation behavior (1.3).
The possibility of attractive interactions between electrons with energies close to the Fermi surface

as a consequence of the electron-phonon coupling goes back to Fröhlich [96]. Intuitively, the electronic
attraction results from the much larger time scales of ionic motion (∝ ω−1

D ) as compared to those of
electrons (∝ E−1

F ) with ωD and EF denoting the Debye and Fermi energy, respectively. When an
electron polarizes the lattice locally, this polarization can still attract other electrons after the first
electron has left which leads to an attractive effective force between the electrons. It has later been

9



1 Fundamentals: Spontaneous symmetry breaking

shown [97] that this effect is in the vicinity of the Fermi surface not generically overcompensated by the
Coulomb repulsion as one might naively expect. This is most easily understood in an RG calculation
[98, 99] yielding that repulsive interactions with bare dimensionless coupling constant µ∗0 are at energies
of the order of ωD reduced to

µ∗ =
µ∗0

1 + µ∗0 ln(EF /ωD)
. (1.20)

As EF /ωD is typically large and not strongly material dependent, it holds µ∗ ' 0.1 for many materials
[98, 100]. This is the reason why the Coulomb interaction can in many cases be neglected for under-
standing the superconducting properties. A direct experimental demonstration of the importance of
the electron-phonon coupling for the emergence of superconductivity is provided by the isotope effect
on Tc, i.e., its change upon substituting atoms of the superconductor by different isotopes [19, 20].

Unconventional mechanism. The discovery of superconductivity in heavy-fermion systems, first
in CeCu2Si2 [21] and soon in others such as UBe13 [22] and UPt3 [23], indicated that the electron-
phonon/BCS mechanism outlined above does not always apply: Firstly, the tendency of these mate-
rials towards magnetism contradicted the fact that BCS superconductors are suppressed by magnetic
scattering [101]. Furthermore, the observed scaling ∝ T 3 of the specific heat in UBe13 [102] disagreed
with the exponential behavior ∝ exp(−∆/T ) predicted from BCS theory which was the first indica-
tion of nodes on the Fermi surface and the nontrivial transformation behavior of the order parameter
[50]. Other material classes showing “unconventional” superconductivity with strong deviations from
BCS behavior [25, 26], the organic [103], the cuprate [24] and, most recently, the iron-based [104]
superconductors, have been discovered.
There is no generally accepted definition of unconventional. Some authors [50] just refer to uncon-

ventional pairing if and only if the order parameter breaks point symmetries which, however, leads to
the conclusion that orthorhombic cuprates [29] or iron-based superconductors [26] are conventional. In
this thesis we will use the term conventional in the context of a superconducting mechanism to refer to
systems where the same pairing state arises when hypothetically switching off the Coulomb interaction.
Otherwise the superconductor will be referred to as unconventional.
Due to the plethora of different physical systems showing unconventional superconducting behavior,

which are typically also strongly correlated, there is not the single theory of unconventional supercon-
ductivity. One broadly applicable effective low-energy approach is provided by the spin-fermion model
[30–32] which will be discussed in Chap. 6.2.1.

Translation symmetry breaking. As already mentioned in Sec. 1.1.1, we have so far been making
the assumption in this section that the translational symmetries are the same above and below the
superconducting transition as we have been focusing on Cooper pairs with zero total momentum or,
equivalently, a spatially homogeneous order parameter. It has first been pointed out independently by
P. Fulde and R. A. Ferrell [105] and A. Larkin and Y. Ovchinnikov [106] that spatially inhomogeneous
superconducting states are excepted at low temperatures for sufficiently large magnetic fields H >
Hc. The occurrence of these so-called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states is most easily
understood by focusing on spin-singlet pairing in systems with spin-rotation symmetry (at H = 0)
and neglecting orbital-pair breaking9 (imagine, e.g, a 2D system with an in-plane magnetic field):
The Zeeman splitting associated with H breaks the degeneracy of the states (k, ↑) and (−k, ↓) which
is important for the Cooper instability as discussed above. For H > Hc, it becomes energetically
9The orbital effect leads in type-II superconductors to the emergence of the Abrikosov vortex phase and is thus detri-
mental to FFLO states [107].
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1.2 Impact of fluctuations

favorable to form Cooper pairs out of states on different Fermi surfaces and, hence, with non-vanishing
center-of-mass momentum.
This discussion shows that translation-symmetry-breaking superconducting states are expected to

occur only in the presence of magnetic fields or, more generally, if TRS is broken in the normal state.
This expectation is confirmed by various calculations that also take into account the possibility of SOC
[108–112]. Candidate materials for the realization of this exotic state of matter are heavy-fermion
superconductors, in particular, CeCoIn5, and layered organic superconductors [107, 113].
As this thesis will be mainly concerned with systems with TRS in the normal state, we will, for most

of the time, neglect the possibility of FFLO states in the following.

1.2 Impact of fluctuations

The existence of a nontrivial minimum (∆0 6= 0) of the free energy functional or, equivalently of the
mean-field equations is a necessary condition for a phase transition to occur, however, it is in general
not sufficient. The reason is that thermal or quantum fluctuations, if sufficiently strong, can destabilize
the phase which can be analyzed formally by expanding the action10 S[∆] in small deviations δ∆ from
its stationary point ∆0. Furthermore, fluctuations can also change the properties of the phase transition
such as its order and critical exponents. Fortunately, there exist general criteria formulated in terms
of the symmetry breaking at the phase transition and the dimensionality of the system to estimate the
importance of fluctuations which will be discussed in this section.
The key players in fluctuations physics are the massless modes associated with the breaking of a

continuous symmetry which are known as Nambu-Goldstone modes in honor of the authors of the
two seminal papers [116, 117]. The existence of these modes is readily understood by considering
δ∆ =

∑
a φaTa∆0, where Ta, a = 1, ...,dimc(G), are the generators of the continuous subgroup (Lie

group) of the symmetry group G of the high-temperature phase. By design, the dimc(H) generators
of H satisfy Ta∆0 = 0, whereas all remaining NNG = dimc(G)− dimc(H) generators necessarily define
massless Nambu-Goldstone modes [116–118]. The low-energy action of the system is thus of the form

SNG =

NNG∑
a=1

∫
ddx cia (∂iφa)

2 (1.21)

with cia being unknown real constants. Here the d-dimensional vector x and similarly the associated
derivatives ∂i refer to spatial coordinates in case of thermal fluctuations while comprising both space
and time for describing quantum fluctuations.
In case, e.g., of a superconductor where the global U(1) symmetry is fully broken in the sense that

there is no residual continuous symmetry, one Nambu-Goldstone mode is expected which corresponds
to long-wavelength phase rotations as indicated by the red arrow in Fig. 1.1(a). For the isotropic dm-
dimensional ferromagnet, O(dm) is broken down to O(dm − 1) leading to dm − 1 Nambu-Goldstone
modes (magnons).
From this perspective one might wonder how spontaneous symmetry breaking can occur at all given

that all configurations of the Goldstone manifold should enter the partition function with equal weight.
To see this consider, e.g., a ferromagnet. Physically, there might be some small imperfection in the
10For an introduction to field-integrals we refer the reader to the literature. E.g., a discussion of field-integral methods

with strong focus on application to modern condensed matter theory can be found in the textbook of Altland and
Simons [114], whereas technical aspects are covered in Ref. [115].

11



1 Fundamentals: Spontaneous symmetry breaking

system or in its environment that leads to a preferred direction for the magnetization. Since a macro-
scopic number of degrees of freedom order at the phase transition, the probability of tunneling to one
of the degenerate states is vanishingly small. Theoretically, this is implemented by adding a symmetry-
breaking term ∝ η (e.g. a magnetic field in case of the ferromagnet) to the Hamiltonian. The phase
transition can then be described by first taking the thermodynamic limit before setting η → 0 [114, 115].
Whether the fluctuations associated with the Goldstone modes in Eq. (1.21) allow for long-range

order crucially depends on d. The Mermin-Wagner-Hohenberg theorem [119–121] states that compact
continuous symmetries cannot be broken for d ≤ 2. A simple and insightful, albeit by far not rigorous,
derivation proceeds [114] by first assuming long range order and then calculating fluctuation corrections
to the expectation value of the order parameter governed by the low-energy action (1.21). These cor-
rections are proportional to the integral

∫
q ddq/q2 of the Goldstone propagator 1/q2 which is divergent

in the infra-red for d ≤ 2 illustrating the dominant role played by fluctuations in low-dimensions. A
more careful treatment shows that the expectation value of the order parameter vanishes for d ≤ 2
[119–121].
From this follows that no proper long-range superconducting order can occur at finite temperatures

in a 2D system. However, one can still have a superconducting phase transition between a disordered
high-temperature phase with exponential superconducting correlations and a low-temperature state
with quasi-long-range order defined by algebraically decaying (∼ 1/|x|α, α > 0) correlations. As every
Gaussian theory, i.e., of the form of Eq. (1.21), will yield algebraic decay [114] the question arises about
the mechanism driving the phase transition.
The answer was provided by Berezinskii, Kosterlitz and Thouless [122, 123]. The key aspect is that

the symmetry group U(1) of phase rotations allows for topological excitations in 2D that are proliferated
at high-temperatures and lead to the transition to a phase with exponential correlations. This effect
cannot be captured in the Gaussian approximation (as in Eq. (1.21)) where the nontrivial geometry of
the symmetry group is neglected. In other words, we have to restore the periodicity of the action under
a shift of the superconducting phases by 2π. The simplest model satisfying these requirements is given
by the XY-model,

SXY = −J
∑
〈ij〉

cos(ϕi − ϕj), (1.22)

where
∑
〈ij〉 denotes the sum over nearest neighbors and ϕi are the local phase degrees of freedom.

This model has, in addition to spin-wave excitations around the ordered state already captured on the
Gaussian level, also vortex excitations where the phase winds around n ∈ N times upon traversing a
closed path around the vortex core. Vortices are topological in the sense that they cannot be contin-
uously “unwinded” on the enclosing path which is also directly related to the discrete nature of the
topological charge n. In the next chapter we will discuss the importance of topology for condensed
matter physics from a different physical point of view.
The existence of a phase transition can be easily understood thermodynamically [123]: The energy

of an isolated vortex in a system of linear size L is given by11 πJn2 ln(L/a). It scales logarithmically
exactly as the associated change of entropy ∼ 2T ln(L/a). Consequently, for T > TBKT ' πJ/2 the
free energy is reduced by producing isolated vortices. This indicates the existence of a finite transition
temperature TBKT separating a low-temperature “gas” of tightly-bound vortex-antivortex pairs from a
high-temperature “plasma” of unbound vortices. A convenient more rigorous formulation of this so-
called Berezinskii-Kosterlitz-Thouless (BKT) transition, that also takes into account the logarithmic
vortex-vortex interaction, is provided by the RG approach of Ref. [124].
11We ignore the non-universal contribution from the vortex core here as it does not grow with L.
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1.3 Noncentrosymmetric superconductors

In a superconductor the situation is more complicated since it is, as opposed to, e.g., superfluid Helium
[78], charged and, hence, couples to the electromagnetic field. By virtue of the Higgs mechanism, the
electromagnetic gauge field becomes a massive vector field in the superconductor leading to the peculiar
electromagnetic response of a superconductor including the Meissner effect [125]. The coupling to the
electromagnetic field also directly affects the vortex-vortex interaction in a 2D superconducting film:
Due to stray fields, the interaction is only logarithmic for separations r � ΛP with ΛP = 2λ2

L/D
denoting the Pearl length [126] where λL is the London penetration depth and D the film thickness. At
large distances, r � ΛP , the vortex-interaction decays algebraically ∝ 1/r such that a BKT transition
is expected to be observable only for samples of linear size L < ΛP . However, more recently, it has
been shown that the interaction is also not logarithmic in small samples on an insulating substrate but
rather exponential due to boundary effects at the sample edges [127].
Finally, we note that, also in 3D, the coupling to the fluctuating electromagnetic field affects the

phase transition. As has been shown in Ref. [128], integrating out the electromagnetic field produces a
non-analytic term ∝ |∆|3 in the Ginzburg-Landau expansion that will render the transition first order
for a type-I superconductor12. This effect is, however, numerically very small and, hence, extremely
difficult to resolve experimentally in a superconductor [128].

1.3 Noncentrosymmetric superconductors

In Sec. 1.1.1, we have seen from pure symmetry considerations that, in the presence of SOC [84], point
groups without a center of inversion, i.e. noncentrosymmetric point groups, play a special role in the
context of superconductivity as they lead to the mixing of singlet and triplet pairing [90]. E.g., the
admixture of a triplet component to a singlet state is not only of purely theoretical interest but also has
direct consequences for the physical properties of the superconductor as it renders the spin susceptibility
anisotropic and finite at T = 0 which is directly measurable via Knight shift experiments [90]. In this
section, we provide an overview of noncentrosymmetric superconductors that is tailor made for the
studies presented in the subsequent chapters of this thesis and, hence, very selective. For a broader
introduction to the rich field, we refer to the literature [38, 44–46].
The presence or absence of a center of inversion also has crucial consequences for the band structure

in the normal state: Consider an eigenstate at some crystal momentum k with spin polarization s.
Applying inversion (I) transforms k to −k but leaves the s invariant as it is an axial vector like orbital
angular momentum [93]. Subsequent application of time-reversal (Θ), sends −k back to k but inverts
the direction of s as required for any angular momentum such that this state and the state we started
with are linearly independent. If both I and Θ are symmetries, there must be (at least) two spin-
degenerate states for any crystal momentum. This degeneracy can be removed either by breaking TRS,
e.g., by applying a magnetic field, or by breaking inversion symmetry. We will focus here on the latter
possibility and just mention that we will come back to the former in Chap. 4.7.1.
In the simplest case of just a single band εk that is spin-degenerate in the presence of inversion and

TRS, the spin-splitting can be described by the Hamiltonian

hAk = gk · σ, g∗k = gk, g−k = −gk (1.23)

where σ = (σ1, σ2, σ3) denote Pauli matrices describing spin. The two properties of gk, which will be
referred to as spin-orbit vector in the following, result form Hermiticity and TRS of the Hamiltonian,
12The reason is that fluctuations of ∆ can be neglected in a type-I superconductor while this is not the case for type-II

superconductivity. It has been shown [129] that this makes the transition second order again in the latter case.
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1 Fundamentals: Spontaneous symmetry breaking

Figure 1.2: Experimental realizations of 2D systems. (Quasi-)2D conducting systems (yel-
low) can be realized (a) at interfaces between two different materials A 6= B, (b) in
a thin layer on a substrate or at the surface of a bulk material and (c) in a thin film
in a symmetric environment (A might be vacuum). Only in the latter case, inversion
symmetry can be preserved.

respectively. The second property of gk also means that hAk is odd under I and thus breaks I maximally.
Adding hAk to the centrosymmetric part σ0εk of the Hamiltonian yields the spectrum εk ± |gk|. The
splitting of the bands, known as the Dresselhaus-Rashba effect [33, 34], is thus given by the magnitude
of the spin-orbit vector. The most frequently encountered form is the Rashba spin-orbit coupling
where gk = α(− sin k2, sin k1, 0)T . To deduce the structure of the spin-orbit vector, again the point
symmetries of the system can give useful constraints [87]. It can, alternatively, also be explicitly
calculated by starting from a multi-band model with microscopic SOC and hopping matrix elements
that are only allowed in the absence of inversion symmetry. Integrating out [130] all bands except for
those in the vicinity of the Fermi surface yields an effective low-energy Hamiltonian explicitly containing
the Dresselhaus-Rashba effect. In Chap. 5.1.1, both the symmetry as well as the microscopic approach
will be applied to a multi-orbital system.
Concerning the material realization of noncentrosymmetric superconductors or electron liquids in

general, one can distinguish the following four different cases:

1. 3D systems with noncentrosymmetric crystal structures.

2. Conducting interfaces between two different materials A and B as shown in Fig. 1.2(a).

3. Atomically thin conducting films either in an asymmetric environment, e.g., on an insulating
substrate only on one side as shown in Fig. 1.2(b), or in a symmetric environment, see Fig. 1.2(c),
but with a noncentrosymmetric crystal structure in the thin layer itself.

4. Locally any surface of a bulk material (see Fig. 1.2(b)).

To begin with 1., we first note that 21 out of the 32 possible point groups of 3D crystalline systems are
noncentrosymmetric.13 A famous example is the noncentrosymmetric heavy-fermion superconductor
CePt3Si discovered in 2004 [131]. The upper critical field reported in Ref. [131] represents a milestone
for noncentrosymmetric superconductivity as it showed the presence of triplet pairing in this system – in
contrast to common belief [132] at that time that the broken inversion symmetry acts as pair breaking
13For a discussion of all point groups in 3D and 2D systems with respect to the aspects relevant for this thesis, we refer

to Appendix A.3.
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1.3 Noncentrosymmetric superconductors

for triplet states. It was subsequently clarified theoretically that triplet pairing is indeed possible in
noncentrosymmetric systems [133]. Today several different noncentrosymmetric superconductors in
strongly as well as weakly coupled systems have been found and analyzed. We refer to the literature
for a systematic introduction to this broad field [44, 45] and just mention two noncentrosymmetric
superconductors that have attracted recent attention: Both in LaNiC2 [55] as well as in Re6Zr [56]
muon spectroscopy has provided convincing evidence for broken TRS in the superconducting state. As
we will see repeatedly throughout this thesis, spontaneous TRS breaking at a superconducting phase
transition represents an exciting and exotic phenomenon.
The superconductors of the type 2. and 3. in the list presented above are (quasi-)2D, i.e., only one (a

few) subband(s) resulting from the quantum-well confinement along the z direction is (are) relevant for
describing superconductivity. Unless stated otherwise, we will for simplicity not distinguish between
2D and quasi-2D in the following. Only thin films can have point-symmetry operations relating z to
−z and, hence, allow for the largest number of possible point groups among the 2D systems.
Finally, 4. represents a special case as it refers to both 2D as well as 3D superconductors: It includes

2D superconductivity arising, as originally suggested by Ginzburg [134], in a surface band of a material
that is insulating in its bulk or at the surface layers of a metallic system due to modified interactions
at the surface (e.g., due to surface phonons). An interesting but controversial [46] example is provided
by the possible observation [135] of superconductivity at Na-doped surfaces of WO3. In addition,
at surfaces of any 3D bulk superconductor inversion symmetry is locally broken. As we will discuss
in Chap. 4.8, this can force the local suppression of the bulk superconducting order parameter and
might even lead to the emergence of a competing superconducting phase at the surface with different
symmetries.
From our present considerations it becomes clear that the noncentrosymmetric point groups are par-

ticularly relevant for 2D systems as inversion symmetry is automatically broken in the experimental
realization of 2D electron liquids at heterostructures, in atomic sheets on a substrate and at surfaces.
Only for thin sheets in a symmetric environment (see Fig. 1.2(c)), which is, e.g., the case for suspended
graphene [136], inversion symmetry can be preserved. Naturally, whether the broken inversion symme-
try significantly affects superconductivity (or any other aspect for that matter) crucially depends on
the material considered and the property of interest.
In the following, we will discuss a few examples of 2D superconductors that are realized at interfaces

of heterostructures and in thin films. For a broader overview we refer to Ref. [46].

1.3.1 Interfaces between oxides

Besides the study of superconductivity in various heterostructures consisting of copper oxide materials
[137, 138], in particular the observation of superconductivity in 2007 [39] at the interface between the
two insulating perovskite oxides LAO and STO has sparked considerable interest of researchers in the
last years [36–38]. This resulted not only from the complex reconstruction mechanism [139, 140] that
leads to the paradox situation of metallic behavior when bringing band insulators in contact but also
from the novel properties of this system that are interesting both from a fundamental physics point of
view as well as for potential applications.
The formation of a conducting sheet [35] at the interface between LAO and STO beautifully shows

that heterostructures can be designed in order to make charge configurations possible that are unavail-
able in the bulk. In the absence of vacancies and charge transfer, the oxygen is in a −2 state which,
together with the +2 charge of Sr, leads to a Ti4+ configuration. This means that the two 3d2 and 4s2

states of Ti are empty explaining the insulating behavior of undoped bulk STO. Furthermore, it implies
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1 Fundamentals: Spontaneous symmetry breaking

that STO consists of neutral layers as can be seen in Fig. 1.3(a) while LAO is built from alternatingly
charged layers as a consequence of the 3+ state of Al. Recalling from electrostatics [86] that surface
charges lead to a jump in the electric potential, this polar discontinuity produces a voltage built-up as
illustrated in the left panel of Fig. 1.3(b) that diverges with the thickness of the LAO crystal. This is
known as the “polar catastrophe”. It can be circumvented by transferring half an electron per unit cell
to the interface (right panel in Fig. 1.3(b)) corresponding to electron-doping into the Ti 3d shell and,
hence, leading to metallic behavior in the interface [139, 140].
On the one hand, this picture is consistent with local charge measurements [139] and the existence

of a critical thickness (four unit cells) of the LAO layer for conductivity [141]. On the other hand, the
observation of a metallic interface also in the (110)-oriented interface and even in case of amorphous
LAO [142] where there is no polar discontinuity shows that other mechanisms must be at work. Indeed,
more recent experiments [143] show that oxygen vacancies are the dominant source of mobile carriers
in the amorphous interface and also contribute to conductivity in the crystalline (001) interface.
The superconducting transition with critical temperature Tc ' 100− 200mK (depending on sample)

has been shown to be consistent with the expected behavior of a BKT transition [39] including the
current voltage relation V ∝ I3 at the transition and the scaling of resistance with temperature. The
2D character of superconductivity is further confirmed by the estimated upper limit of the thickness
of the superconducting layer (10 nm) being much shorter than the superconducting coherence length
ξ ' 100 nm.
The superconducting properties, such as its transition temperature and superfluid density, can be

tuned via the electrostatic field effect [144, 145]. Most importantly, this allows for a gate-tuned quantum
phase transition between an insulator and a superconducting state [144]. Another property of the
system that can be tuned via gating is the strength of the Dresselhaus-Rashba effect outlined above.
In addition to its gate-dependence, magnetotransport studies [41, 42] have revealed that the associated
spin-splitting is also a very strong effect: It is of the order of 10meV and, hence, much larger than the
maximal superconducting gap (' 0.04meV) and even comparable to the Fermi energy (EF ' 20meV).
More recently, tunnel spectroscopy measurements [70] have been performed that indicate the absence

of nodes on the Fermi surface. Furthermore, the transport transition temperature Tc does not follow
the gap opening temperature Tgap in the tunnel spectra. This “pseudogap” behavior in the density
of states bears strong resemblance to the cuprate superconductors, however, on very different energy
scales and carrier concentrations as can be seen in Fig. 1.3(c).
A property of the heterostructure that might be important for future applications is that the electron

gas can be pattered spatially with unit cell resolution: Making use of the critical thickness of four unit
cells for conductivity, a profile in the LAO thickness realized via microlithography determines the spatial
structure of the buried electron gas [146]. Furthermore, it has been shown that at an interface with
three unit cells of LAO, i.e., slightly below the critical thickness, conducting behavior can be reversibly
switched on and off via gating [141]. In Ref. [147], this has been exploited to write and erase conducting
textures with voltage-biased atomic fore microscope tips.
Another interesting aspect is the observation of magnetism at the interface [148] although both

LAO as well as STO are nonmagnetic in the bulk. Magnetism was later shown to even coexist with
superconductivity in the same sample [149, 150]. Scanning superconducting quantum interference
devise (SQUID) magnetometry [149] revealed a spatially inhomogeneous magnetic landscape consisting
of magnetic patches of the size of a few micrometer in a uniform paramagnetic background. Surprisingly,
the susceptometry data showed no spatial correlation between superconductivity and magnetism. Both
intrinsic, interaction-induced, mechanisms have been suggested [111, 151, 152] for magnetism as well
as oxygen vacancies are discussed as the dominant origin of the magnetic ordering [153–155].
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1.3 Noncentrosymmetric superconductors

Figure 1.3: Oxide heterostructures. In (a), the crystal structure of the LAO/STO heterostruc-
ture is illustrated (Reprinted by permission from Macmillan Publishers Ltd: Nature
[35], copyright 2004). The corresponding (idealized) charge distribution ρ(z) and re-
sulting electric potential φ(z) before (left) and after (right) transferring half an elec-
tron per unit cell (uc) to the interface are shown in (b). In (c) the superconducting
phase diagram (Reprinted by permission from Macmillan Publishers Ltd: Nature [70],
copyright 2013) of the LAO/STO system (red) is compared with that of the cuprates
(blue). Part (d) illustrates the crystal structure of the two alternative orientations of
the heterostructures.

Finally, the physics at LAO/STO heterostructures was broadened further by the demonstration that
not only for (001)-oriented interfaces but also for the (110) and (111) orientations, conducting behavior
with mobilities similar to those of the (001) interface can be obtained [142, 156]. As can be seen in the
schematic illustration in Fig. 1.3(d) of the crystal structure, these additional orientations have point
groups C2v and C3v differing from that of the (001) interface (C4v). As will be discussed in Chap. 4.6.3,
this has crucial consequences for the properties of possible superconducting phases. The (110) and
(111) interfaces are far less studied, although gate-tunable strong spin-orbit splitting [43] as well as 2D
superconductivity [40] have already been demonstrated for the (110)-oriented interface.
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1 Fundamentals: Spontaneous symmetry breaking

In particular concerning superconductivity, there are many open questions [37, 38]: How can the
superconducting state coexist with magnetism in the same sample? What is the superconducting
order parameter? Is a conventional or an unconventional mechanism responsible for the emergence
of superconductivity? Is unconventional superconductivity possible given the inevitable presence of
impurities such as oxygen vacancies (cf. Sec. 1.4.2)? Are there crucial differences to be expected for
the different orientations of the interface? In the remainder of the thesis, in Chaps. 4.6.3, 5, 6.3.1 and
7.3, we will come back to these questions from different perspectives.

1.3.2 Thin films

Here we will discuss four different physical systems: We begin with single-layer FeSe on STO which has
been successfully grown for the first time very recently [157] yielding surprisingly large superconducting
transition temperatures [158, 159]. Then we will turn our attention to two materials, Sr2RuO4 and
UPt3, that are mainly known for their exotic superconducting bulk properties [160–164], in particular,
spontaneous TRS-breaking in the superconducting state [47–49, 51, 53, 54], but have also been shown
to harbor superconductivity in the thin film limit [68, 69]. Although the choice of the latter two
materials seems to be surprising, we will see in Chap. 4.6 that the broken TRS in the bulk phase leads
to interesting consequences for superconductivity in the thin layer system. For the very same reason,
we also briefly discuss URu2Si2 [165].

Single-layer FeSe. In 2012, scanning tunneling microscope (STM) measurements [157] have revealed
an anomalously large superconducting gap in one unit cell of FeSe epitaxially grown on (001) STO.
Being nearly an order of magnitude larger than its value in bulk FeSe, this triggered enormous research
interest as it promised the possibility of very large transport transition temperatures [158, 159].
This expectation was soon underpinned by ARPES studies [167, 168] observing the opening of a

particle-hole symmetric gap around the Fermi surface at temperatures between 55 K and 70 K. How-
ever, at that time, ex situ transport measurements only showed zero resistance at significantly lower
temperatures [157]. Recently, in situ transport measurements have been carried out indicating a su-
perconducting transition above 100 K [169] which is remarkable as this transition temperature would
not only be more than 10 times larger than its bulk value of 9.4 K [170] but also by far break the record
of 56 K for all known bulk iron-based superconductors [171]. One has to note, however, that these
measurements are still considered to be controversial and thus need further confirmation [158, 159].
From the crystal structure shown in Fig. 1.4(a) it is easily seen that the point group of the system

is C4v. Note that inversion symmetry is automatically broken due to the STO substrate rendering the
space group symmorphic as opposed to the nonsymmorphic14 symmetry group of bulk FeSe and other
iron-based superconductors [172].
Another interesting property of single-layer FeSe is that there are no hole pockets surrounding the Γ-

point, a characteristic feature of iron-based superconductors, as can be clearly seen in the ARPES data
shown in Fig. 1.4(b) [167]. There are only electron pockets around the M point. Although not visible
in the data, these consist of four singly degenerate Fermi surfaces – two, associated with the “folding”
of the Brillouin zone [167, 173], times two, due to the spin splitting resulting from the broken inversion
symmetry [174]. The absence of hole pockets implies that the FeSe layer is effectively electron doped,

14A space group is called symmorphic if an origin can be chosen such that it contains its point group as a subgroup.
Otherwise, a space group is nonsymmorphic [85]. This can occur in the presence of fractal translations. In bulk FeSe,
there is a glide-plane symmetry involving a fractal translation that is broken due to the substrate in the single-layer
system.
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1.3 Noncentrosymmetric superconductors

Figure 1.4: Single-layer FeSe. Part (a) is a ball-and-stick model of the crystal structure of FeSe
on STO. Reprinted figure with permission from Liu, Lu, and Xiang, PRB 85, 235123
(2012) [166]. Copyright 2012 by the American Physical Society. In (b), ARPES data
of Ref. [167] on Fermi surfaces in the “folded” Brillouin zone, i.e., associated with a
real space unit cell containing two Fe atoms, have been reprinted. As discussed in the
main text, there are four singly degenerate Fermi surfaces enclosing the M point. (c)
Gap of two different samples (pink and blue) as a function of the polar angle ϑ with
respect to the M point (Part (b) and (c) are reprinted by permission from Macmillan
Publishers Ltd: Nat. Commun. [167], copyright 2016).

which is commonly attributed to oxygen vacancies in the STO substrate but not yet fully understood
[158, 159]. Remarkably, the Fermi surface topology is different already for two and more unit cells of
FeSe: Both electron and hole pockets are present [175] and superconductivity disappears which remains
a puzzle at present time [159].

Furthermore, it has been controversial [159] whether the large gap seen by STM and ARPES is en-
tirely due to superconductivity and not a consequence of some magnetic order. Although first principle
calculation have indicated magnetic ordering [176], ARPES experiments [177] show that the supercon-
ductivity is rather associated with the suppression of spin-density wave (SDW) order, which is present
in thin films of FeSe, but seems to be absent in the single-layer system. Very recently [178] the absence
of magnetic order has been demonstrated via muon spin rotation/relaxation measurements.

The superconducting behavior in single-layer FeSe leaves many more open questions [158, 159]. The
central issue concerns the unknown mechanism leading to the tremendously enhanced superconducting
transition temperature. First indications come from the clear observation of replica bands [175] most
likely resulting from the shaking off of bosonic excitations which have been interpreted [159, 175] as
oxygen optical phonons of STO. Another important question concerns the form of the order parameter.
Here the main hint comes from ARPES experiments that clearly indicate the absence of nodes on the
Fermi surfaces as can be seen in Fig. 1.4(c).

In Chaps. 4.6.3 and 6.3.2, we will come back to these two questions with a particular focus on the
broken inversion symmetry in the normal state as well as on the time-reversal properties, the spatial
symmetries and the topology of the superconductor.
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Sr2RuO4. The next material we will discuss is Sr2RuO4 which has been the focus of immense research
interest (see Refs. [160–162] and references therein) since the discovery of superconductivity (Tc ' 1.5 K)
in its bulk state in 1994 [179]. Although the main focus of this thesis is on thin layers of this material,
let us first briefly discuss the aspects of the normal and superconducting state in bulk Sr2RuO4 which
will be helpful when analyzing the possible pairing states in the thin layer limit.
Sr2RuO4 has, exactly as the cuprates, a centrosymmetric layered perovskite structure as shown in

Fig. 1.5(a). As opposed to most systems with this structure, no structural phase transitions occur
down to 100mK that could reduce the point group D4h [160]. The relevant low-energy degrees of
freedom are the t2g orbitals, 4dxy, 4dxz and 4dyz, of the Ru atom [180]. Very soon after the discovery
of superconductivity, the observation of quantum oscillations [181] illustrating the high purity of the
samples revealed that the low-temperature metallic phase of Sr2RuO4 is a well-behaved Fermi liquid.
As expected from the layered crystal structure, the electronic dispersion is quasi 2D in the sense that
the Fermi surfaces only very weakly depend on the momentum along the c direction [181, 182].
Today, there is very strong experimental evidence for odd-parity triplet pairing as was originally

conjectured in Ref. [183, 184]: This includes the absence of a change in the spin susceptibility at the
superconducting transition measured via Knight shift [185] and spin-polarized neutron scattering [186],
phase-sensitive SQUID measurements [187] as well as the study of magnetic field modulation of the
critical current in Josephson junctions [53].
The most promising candidate pairing state is a chiral p-wave state characterized by a triplet vector

dk = (k1 ± ik2)e3 in accordance with many experiments [47, 51, 53, 188, 189]. Most importantly
for the work at hand, this state breaks the TRS (see Chap. 4.1 for detailed discussion of TRS in the
context of superconductivity) of the normal state. While this will not lead to a finite magnetization in
a homogeneous sample, surfaces and defects can induce local magnetic moments [50] the appearance
of which at the superconducting transition has been observed in muon spin relaxation studies [51].
Furthermore, the existence of several domain structures (k1 ± ik2, k2 ± ik1) has been detected in
Josephson junction experiments [53]. The most direct experimental evidence of the broken TRS is
provided by the observation [47] of the PKE below Tc, i.e., the rotation of the polarization direction
of the reflected light. It can be shown that the PKE does not exist in a time-reversal symmetric state
[47] and, hence, constitutes a decisive tool for analyzing TRS breaking.
Another exciting consequence of the chiral order parameter is the presence of edge currents of topo-

logical origin [190] (see also Chap. 2.2.2). However, the associated magnetic moments have not yet
been seen in experiment despite enormous efforts [191, 192].
Furthermore, there is no consensus on which bands are most relevant for understanding supercon-

ductivity: As originally conjectured based on specific heat measurements [193], the rather isotropic γ
band derived from the 4dxy orbitals, which is close to a Van Hove singularity, has been widely expected
to play the central role for the superconducting instability [194, 195]. The comparatively weak [196]
pair hopping to the remaining Fermi surfaces only induces a small gap on the latter. More recently, it
has been suggested in Ref. [197] that the quasi-one-dimensional (1D) α and β bands (due to the 4dxz
and 4dyz orbitals) are more important. A very recent work [198], treating all bands on equal footing
found that the superconducting gap is rather of the same order on all bands.
As already mentioned, we are mainly interested in the physics of thin layers of Sr2RuO4 deposited on

substrate which will break inversion symmetry and reduce the point group (at least) to C4v. Studying
the impact of the reduced dimensionality and the broken inversion symmetry on superconductivity is
interesting on its own right and might, on top of that, also give important insights concerning the
unresolved aspects of its bulk behavior outlined above. The experimental realization of thin layers of
Sr2RuO4 is still in its infancy as defects and impurities in most cases lead to large values of the residual
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Figure 1.5: Selective properties of three TRS-breaking bulk superconductors. (a) Crystal
structure of Sr2RuO4 in comparison with that of a cuprate superconductor (Reprinted
by permission from Macmillan Publishers Ltd: Nature [179], copyright 1994). (b)
Crystal structure of UPt3 (From Schemm et al., Science 345, 6193 (2014) [48].
Reprinted with permission from AAAS.). (c) Schematic magnetic field B/temperature
T phase diagram of UPt3 based on data of Ref. [201]. (d) Phase diagram of URu2Si2
as a function of pressure P and temperature T (Reprinted from Ref. [202], copyright
2009 by IOP Publishing Ltd).

resistivity suppressing the emergence of superconductivity [199, 200]. In Ref. [68], however, the success-
ful growth of a superconducting thin film has been reported. Using (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 as
substrate, a c axis-oriented epitaxial film has been grown by means of pulsed laser deposition (PLD).
The resulting thin film (thickness ' 96 nm) showed a high residual resistivity ratio (> 80) and su-
perconductivity with onset temperature of ' 0.9K, i.e., comparable to the Tc of bulk Sr2RuO4. In
Chap. 4.6.1, we will analyze the possible pairing states in thin layers of Sr2RuO4 with broken inversion
symmetry on theoretical grounds.

UPt3. Ever since the discovery [23] of superconductivity in the heavy-fermion compound UPt3, it was
expected to have an unconventional origin. Still today there are many controversies concerning both
its superconducting as well as normal state properties [163, 164]. We will proceed analogously to our
discussion of Sr2RuO4 and first summarize the most important aspects of bulk UPt3. At the end we
will comment on thin films of this material which will be investigated further in Chap. 4.6.2.
The crystal structure of UPt3, shown in Fig. 1.5(b), consists of U atoms forming a closed-packed

hexagonal structure with Pt in the middle of the planar bonds. The associated point groups is D6h

[163]. Qualitatively, the normal state is a Fermi liquid but with much higher effective mass which is
directly visible, e.g., in the specific heat [23]. The band structure results from the strong hybridization
between the 5f and 5d orbitals of U and Pt. There are five bands with strong f character crossing the
Fermi level leading to a richly structured Fermi surface [163, 203].
One of the most stimulating aspects of UPt3 is the presence of three distinct superconducting phases

as can be seen in the schematic magnetic field-temperature phase diagram shown in Fig. 1.5(c) which
was originally resolved by specific heat [204, 205] and later mapped out, e.g., by ultrasonic velocity
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measurements [201]. This clearly bares resemblance to the (temperature-pressure-field) phase diagram
of 3He that also contains three phases [78]. We will here focus on zero magnetic field, i.e., on the A
and B phase with transition temperatures TAc ' 550mK and TBc ' 480mK, respectively [163].
Although still controversial (see Ref. [163, 164] and references therein), the most widely accepted

candidate order parameter structure is dk = (δ1(k2
1 − k2

2)k3 + 2iδ2k1k2k3)e3, i.e., a triplet state trans-
forming under E2u of the point group D6h. In the A phase, only one of the prefactors is finite while at
TBc the other one sets in breaking TRS. Note that there are also triplet components perpendicular to
e3 transforming under the same IR such that, from a pure symmetry point of view, the triplet vector
does not have to fully polarized along the z direction.
There are several experimental observations in favor of the triplet state outlined above: Firstly, the

broken TRS has been demonstrated by muon spin relaxation [54] and PKE [48] experiments. The
anisotropy of the thermal conductivity [206] and phase sensitive Josephson interferometry experiments
[207] point towards the E2u representation. The main indication for the triplet vector being polarized
along the z direction is provided by the anisotropy of the upper critical field [208].
Another important aspect of superconductivity in UPt3 is that it coexists with antiferromagnetic

order: As was first noticed by muon spin relaxation experiments [209] and mapped out by neutron
scattering [210], at TN ' 5K antiferromagnetic order with very small magnetic moments of order
of ' 0.01µB per U atom (µB denotes the Bohr magneton) sets in. Despite extensive studies its
origin has still remained a puzzle [163]. A direct experimental indication of the correlation between
superconductivity and antiferromagnetism was provided by the combination of specific heat [211] and
neutron scattering [212] measurements under hydrostatic pressure: It is found that the difference
TAc − TBc is proportional to the square of the magnetic moment both vanishing at ' 3 − 4 kbar. This
is very naturally understood [213, 214] by a superconducting order parameter transforming under a
two-dimensional IR with the antiferromagnetic order acting as a weak symmetry-breaking perturbation
slightly breaking the point symmetry down to D2h.
Also in case of UPt3, thin films have been successfully grown: As reported in Ref. [69], UPt3 has been

sputter deposited on various different substrates using several different orientations. Superconducting
behavior has been found on (111) STO, however, with significantly reduced transition temperature ('
130mK) as compared to the bulk. In Chap. 4.6.2, we will see how energetic arguments can dramatically
reduce the possible superconducting order parameters in the thin layer superconductor.

URu2Si2. Finally, let us introduce URu2Si2 [165, 215] as a second example of a heavy-fermion su-
perconductor [216–218]. Although, in this case, no successful thin layer experiment has been reported
to the best of our knowledge, we will see in Chap. 4.6.2 that there are strong general theoretical con-
straints on the superconducting order parameter in the quasi-2D limit. We will therefore give a brief
introduction to this material here.
The mystery about URu2Si2 began with the observation [216–218] of two phase transitions: A

superconducting transition at Tc ' 1.5K and a transition at Th ' 17.5K into what is now commonly
referred to as “hidden order” phase [165, 215]. The small magnetic moments (' 0.03µB per U atom)
[219] appearing below Th clearly cannot account for the amount of entropy change [216–218] at the
transition. As indicated by its name, the order parameter of the “hidden order” phase turned out to
be elusive to any of the condensed matter probing tools such as neutrons, X-rays and muons. Despite
enormous efforts [165], it has not yet been fully resolved today although promising progress has been
made very recently [215].
At Th most of the mobile carriers disappear [220] leading to a semimetallic phase out of which

superconductivity emerges: As can be seen in the temperature-pressure phase diagram shown in
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Fig. 1.5(d), the superconducting state is fully embedded in the hidden order phase (the same holds
in the temperature-magnetic field diagram as well [165]) both being suppressed at T = 0 at the on-
set of antiferromagnetism. This shows that, as opposed to other heavy-fermion superconductors such
as UPt3 discussed above, superconductivity cannot coexist with antiferromagnetism and indicates its
close relation to the hidden order phase. Therefore, analyzing superconductivity is important for a full
understanding of the hidden order phase.
At present time, the superconducting phase is believed to be the chiral d-wave state ∆S

k = (k1+ik2)k3,
i.e., a spin-singlet superconducting order parameter transforming under Eg of D4h and breaking TRS.
The latter property has again been convincingly demonstrated by the PKE [49]. Strong support of the
order parameter structure comes from thermal transport measurement in magnetic fields [202, 221–223].
In Chap. 4.6.2, the impact of inversion symmetry breaking in a quasi-2D layer of this material will

be analyzed.

1.4 Impact of disorder

So far, our theoretical considerations of phase transitions were crucially based on the crystal symmetries
of the system. Given that any realistic crystal structure will inevitably have imperfections, it is an
important question to ask how this can be taken into account in a way that only depends on a minimal
number of parameters and whether there are implications for the properties of the impurities resulting
from the crystalline symmetries of the idealized clean system.
The remainder of this section should be read as a tailor-made introduction to the basic concepts

required for and the notation used in our analysis of disorder effects in superconductors of Chap. 7. For
a pedagogical introduction to impurity effects in condensed-matter systems in general, we refer to the
textbooks [94, 114, 224]. A broader discussion of disorder in superconducting systems can be found in
the review articles [225–227].

1.4.1 How to describe disorder

Assuming that all relevant time scales are much smaller than the time it takes for the local distortion
of the system to equilibrate, we can describe disorder as a static (“quenched”) additional contribution
Ĥdis to the Hamiltonian. Focusing for simplicity on quadratic terms, we can write

Ĥdis =

∫
x,x′

ĉ†α(x)Wαα′(x,x
′)ĉα′(x

′), W ∗α′α(x′,x) = Wαα′(x,x
′), (1.24)

where ĉ†α(x) creates a fermionic quasiparticle in state α at space point x (either discrete on a lattice
or in a continuum description). To obtain a description that only depends on a few characteristic
parameters, a statistical description is applied where W is treated as a random field that will be
averaged over to calculate physical quantities. This can be done as long as the physical quantity of
interest is self-averaging which is expected to be the case when the phase coherence length is much
smaller than the system size. The disorder ensemble can either be described as a set of identical local
perturbations at random positions [94, 224] or W can be taken as a random matrix field distributed
according to some probability measure p[W ] [114]. We will focus on the latter choice as it is most easily
implemented in the field-integral approach and allows for a convenient discussion of point symmetries
(see below). For simplicity taking W to be Gaussian distributed, the entire information of p[W ] is
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contained in the correlator

Γα1α′1,α2α′2
(x1,x

′
1,x2,x

′
2) := 〈Wα1α′1

(x1,x
′
1)Wα2α′2

(x2,x
′
2)〉

dis
(1.25)

where 〈. . .〉dis denotes the disorder average. When performing the disorder average in the calculation
of physical quantities, one encounters the technical problem that also the normalization of the path
integral depends on the disorder configuration. One way to circumvent this problem is provided by the
replica approach [228] which is based on the identity ln(Z) = limR→0(ZR − 1)/R where Z denotes the
partition function. Physically, ZR can be seen as the partition function of R identical copies of the
original system which can be conveniently described by adding an additional replica index r = 1, . . . , R
to the Grassmann analogues crα, crα of ĉα, ĉ

†
α in Eq. (1.24). At the end of the calculation of physical

quantities, the limit R→ 0 has to be taken. Averaging over disorder leads to the effective four-fermion
interaction with action [114]

SR = −1

2

R∑
r,r′=1

∫
τ,τ ′

∫
x1,x′1,x2,x′2

crα1
(x1, τ)crα′1

(x′1, τ)cr
′
α2

(x2, τ
′)cr

′

α′2
(x′2, τ

′)Γα1α′1,α2α′2
(x1,x

′
1,x2,x

′
2),

(1.26)

where τ denotes imaginary time. This shows that the correlator introduced in Eq. (1.25) plays the role
of the bare vertex function in the replica approach. For completeness, we note that the impurity vertex
in the disorder-averaging technique of Refs. [94, 224] is proportional to the concentration of impurities
and the modulus squared of the single impurity potential.

Crystal symmetries. Although any given disorder realization will generally break all symmetries of
the system, on average the symmetries of the clean system must be restored. E.g., a spin-magnetic
impurity might locally break the fourfold rotation symmetry of a tetragonal crystal, however, it will be
oriented along the two equivalent crystal axes with equal probability. Mathematically, it means that
the disorder correlator (1.25) must be invariant under the full symmetry group of the idealized clean
system. To be more specific and for future reference, let us focus on spatially local and δ-correlated
disorder such that the correlator assumes the simpler form

〈Wα1α′1
(x1,x

′
1)Wα2α′2

(x2,x
′
2)〉

dis
= δ(x1 − x′1)δ(x2 − x′2)δ(x1 − x2)Γα1α′1,α2α′2

(x). (1.27)

In order to restore (lattice) translation symmetry on average, it must hold Γα1α′1,α2α′2
(x) = Γα1α′1,α2α′2

making the distribution and, hence, the disorder-induced effective electron-electron interaction (1.26)
homogeneous. Demanding that all point symmetries g ∈ Gp be satisfied on average is equivalent to

Γα1α′1,α2α′2
=
(
RΨ(g)

)
α1α̃1

(
RΨ(g)

)
α2α̃2

Γα̃1α̃′1,α̃2α̃′2

(
R†Ψ(g)

)
α̃′2α

′
2

(
R†Ψ(g)

)
α̃′1α

′
1

, (1.28)

where (exactly as in Sec. 1.1.1) RΨ(g) denotes the wavefunction representation of g. In Chap. 7.3.1,
the most general symmetry-allowed form of Γ will be discussed for a system with C4v point group and
spin as well as two distinct orbital degrees of freedom.

Perturbation around the good metal. Within replica theory, the analysis of disorder effects
becomes tantamount to studying an interacting problem with the highly τ -nonlocal interaction in
Eq. (1.26). As usual, the exact treatment of this interaction is generally beyond reach and a small
parameter has to be identified in order to organize a resummation of diagrams. To this end, let us
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Figure 1.6: SCBA. (a) Diagrammatic representation of the impurity vertex in Eq. (1.26). The
two second order contributions to the self-energy that are finite in the replica limit
R → 0 are shown in (b) and (c). Solid lines with arrows represent bare quasiparticle
propagators.

consider the quasiparticle self-energy as a test quantity. Using a dashed line to represent the disorder
vertex Γ as shown in Fig. 1.6(a), there are two second order diagrams that do not vanish in the replica
limit R → 0 which are given in Fig. 1.6(b) and (c). Anticipating that the Green’s function will only
assume sizable values in a shell of thickness ∝ 1/l around the Fermi surface, where l denotes the
mean-free path, it readily follows (see, e.g., Ref. [114]) from phase space constraints that the second
diagram in Fig. 1.6(c) will be suppressed by a relative factor of 1/(kF l). Here kF denotes the Fermi
momentum. More generally, only taking the asymptotically leading contributions in the weak-disorder
limit kF l� 1 is equivalent to only keeping the diagrams without crossed impurity which is also known
as the self-consistent Born approximation (SCBA).

1.4.2 Disorder in superconductors and the Anderson theorem

As the main focus of this thesis is on the phase competition in superconducting systems, let us close
this section with a brief discussion of the influence of impurity scattering on the transition temperature
Tc of superconductors as a measure for the stability of the condensate against the presence of disorder
in the system.
Only a few years after the formulation of the BCS theory (see Sec. 1.1.2) it has been realized [229–

231] that the transition temperature of a BCS superconductor, i.e., an s-wave, spin-singlet pairing
state, is only very weakly affected by the presence of nonmagnetic impurities which became known as
the Anderson theorem. The physical reason [229] is that nonmagnetic impurities preserve the TRS of
the normal state. Although crystal momentum is not a good quantum number for a given disorder
realization, a state and its time-reversed partner are still guaranteed to be degenerate and can hence
form Cooper pairs. As long as the density of states remains unaffected by disorder, Tc stays constant.
A more precise formulation has been provided by Abrikosov and Gorkov [230, 231]: Summing up the
leading diagrams in the weak disorder limit kF l� 1 (see Sec. 1.4.1 above), one can show that Tc is not
affected by nonmagnetic disorder.
As expected from Anderson’s argument, the behavior changes completely in case of magnetic impuri-

ties. As has been first demonstrated in Ref. [101], the transition temperature of a BCS superconductor
is suppressed already in the limit kF l � 1 and vanishes when the mean-free path l becomes of the
order of the superconducting coherence length ξ.
Note that the Anderson theorem does not take into account Anderson localization [8] and its interplay

with Coulomb interaction [226, 232]. As is intuitively clear, localization is a natural opponent of
superconductivity and can lead to superconductor-insulator transitions in 2D systems. In the remainder
of this thesis, in particular in Chap. 7, we will assume that localization effects can be neglected. This
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1 Fundamentals: Spontaneous symmetry breaking

corresponds to the limit of sufficiently large localization lengths [227, 233]

Rl � (Tc ρF )−
1
d , (1.29)

where d is the dimensionality of the system and ρF the density of states at the Fermi level. In 3D,
kF l� 1 already ensures the absence of localization.
Various studies [160, 225, 234–240] of the stability of unconventional superconductors have revealed

that already nonmagnetic impurities act as pair breaking in these systems – similarly to magnetic
disorder in BCS superconductors. For this reason, it has become common wisdom that unconventional
superconductivity is only possible in comparatively clean systems. By the same token, analyzing the
sensitivity of Tc to nonmagnetic disorder can be used to gain information about the pairing mechanism
in superconductors (see, e.g., Ref. [241]). In Chap. 7, we will examine critically the validity of the latter
two statements with a particular focus on LAO/STO heterostructures.

26



2 Chapter 2

Fundamentals:
Topological states of matter

In addition to classifying phases in terms of symmetries, which has been the central topic of the
preceding chapter, topology can be used to discriminate between different states of matter, as we will
see here.
In the first section, an introduction to the topological classification of phases on the mean-field

level is provided and the physical consequences of the associated topological invariants are discussed.
In Sec. 2.2, an overview of the physical systems and models relevant for this thesis is given. A brief
description of the fascinating properties of the isolated zero-energy modes bound to defects in topological
superconductors can be found in Sec. 2.3. Finally, Sec. 2.4 is concerned with the extension of the
topological classification to interacting systems.

2.1 Definition of topological insulators and superconductors

A topologically nontrivial state of matter of a given symmetry class is, within the conventions used in
this thesis, a gapped fermionic system which cannot be adiabatically deformed into the vacuum. In this
context, “adiabatically” means continuously (in Hamiltonian space) without closing the gap or breaking
the symmetries characterizing the corresponding symmetry class. In the language of topology [242], the
adiabatic deformation corresponds to a homotopy and a state being topologically nontrivial is equivalent
to saying that it is not homotopic to the vacuum. In general, the gap of the system can have several
different physical origins. It can, e.g, arise in a band insulator, i.e., as the gap between occupied valence
and unoccupied conduction bands, in a superconductor by a Cooper instability (see Chap. 1.1.2), as a
spinon gap in a Mott insulator (Sec. 2.4.2) or as a consequence of localization (see, e.g., Refs. [243, 244]).
In this thesis we will be exclusively concerned with the former three possibilities which will be referred
to as topological insulator, topological superconductor and topological Mott insulator in the following.
The nontrivial topology leads to the emergence of gapless edge modes localized at the boundary of

the system to a topologically trivial phase such as the vacuum. A hallmark of these edge modes is the
protection against disorder that respects the symmetries of the associated symmetry class [9, 10] which
is intuitively understood by regarding a given disorder configuration as an adiabatic deformation of
the Hamiltonian that might change the detailed wavefunction of the edge modes but, according to the
definition of the nontrivial topology of the bulk system, not their presence.
In the remainder of this section, we will define more precisely what topologically nontrivial means,
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2 Fundamentals: Topological states of matter

discuss the relation to edge modes and illustrate the general statements with the help of a simple
working example.

2.1.1 Antiunitary symmetries and Cartan-Altland-Zirnbauer symmetry classes

From the introduction given above, we see that symmetries are key to define topological phases. It is
well-known [93] that all physical symmetries are represented either by unitary or antiunitary operators
(see footnote 4 on p. 4). To reduce the number of cases to consider, one can take advantage of the fact
that unitary symmetries allow for block diagonalization of the Hamiltonian [85]. Each irreducible block
without any unitary symmetries can then be classified separately1 according to the presence or absence
of antiunitary symmetries. The latter which cannot be removed by block diagonalization and are for
this reason also referred to as “extremely generic symmetries” [247] include of TRS and particle-hole
symmetry (PHS).
A Hamiltonian Ĥ is said have TRS if it commutes with an antiunitary operator Θ̂,

[Ĥ, Θ̂] = 0 ⇔ T̂ ĤT T̂ † = Ĥ, (2.1)

where we have, in the second equality, taken advantage of the fact that Ĥ is Hermitian and that any
antiunitary operator can always be written as the product of complex conjugation, K in the following,
and a unitary operator T̂ [93]. For a more physical discussion of TRS we refer to Chap. 4.1.
Similarly, PHS means that the Hamiltonian anticommutes with an antiunitary operator Ξ̂, i.e.,

{Ĥ, Ξ̂} = 0 ⇔ ĈĤT Ĉ† = −Ĥ (2.2)

where Ξ̂ = ĈK has been inserted to obtain the second, equivalent, relation.
Since any of Θ̂ and Ξ̂ can either be present, squaring to +1 or −1 [93], or absent, this yields 3×3 = 9

distinct possibilities. For all but one of these cases, the behavior of the Hamiltonian under the combined
(unitary) operation Π̂ := Θ̂Ξ̂, is determined. The sole exception is the absence of both TRS and PHS
in which case, the Hamiltonian can either satisfy the chiral symmetry relation

{Ĥ, Π̂} = 0 (2.3)

or not. Taken together, this yields 10 different possibilities which are referred to as Cartan-Altland-
Zirnbauer symmetry classes. Altland and Zirnbauer [248, 249], extending the classic work of Wigner
and Dyson on random matrix theory [250], have established these symmetry classes together with the
one-to-one correspondence2 to the 10 symmetric spaces classified by Cartan [251].
These classes, using Cartan’s notation, together with the associated symmetries are summarized in

the first four columns if Table 2.1. Here 0 denotes the absence of the symmetry, ±1 the square of
the operator in case of TRS and PHS and 1 the presence of a chiral symmetry. The fact that this
exhausts all possibilities is most easily seen by noting that the presence of a second TRS, PHS or chiral
symmetry is tantamount to having a unitary symmetry which can be removed by block diagonalization
as discussed above.
1We will not discuss the more recent development of “topological crystalline insulators” where also crystal symmetries
are taken into account [245, 246].

2For every symmetry class, the associated time-evolution operator exp(−iĤt) belongs to a different symmetric space.
The same symmetric spaces also occur (though in different order) as target manifolds of diffusive non-linear sigma
models and as classifying spaces discussed in Sec. 2.1.2 below. A pedagogical discussion can be found, e.g., in Ref. [247].
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2.1 Definition of topological insulators and superconductors

2.1.2 Mean-field definition of topological indices

There are several different approaches to characterize the topology of Hamiltonians belonging to one
of the 10 symmetry classes outlined above. Among others, this includes (1) analyzing whether the
associated non-linear sigma model manifold allows for the presence of a topological term which is
physically based on the requirement of having edge states that are protected from Anderson localization
[9, 10]. (2) Topological band theory, i.e., studying the topology of the mapping from the Brillouin zone
or a sphere to a clean, noninteracting mean-field Hamiltonian [9, 247, 252–255] and (3) topological field
theory of electromagnetic gauge fields [5, 256]. As it will be most important for the work at hand,
we focus on (2) here and will briefly comment on (3) in Sec. 2.4 when discussing topological aspects
beyond the noninteracting level.
To introduce topological band theory, let us consider a general mean-field Hamiltonian Hk, k ∈M,

of a d-dimensional system which is a matrix with respect to all relevant microscopic degrees of freedom
(spin, orbitals etc.) and, in case of a Bogoliubov-de Gennes (BdG) Hamiltonian of a superconductor,
also with respect to particle-hole space. It depends on k which is, in case of a lattice, the crystal
momentum vector and, hence, belongs to the Brillouin zone, i.e., a d-dimensional torus, M ∼= Td.
In case of a continuum theory, k is just Fourier-conjugate to the real space coordinates and, after
compactification3, can be taken to belong to the d-dimensional sphere,M∼= Sd. The TRS , PHS and
chiral symmetry introduced in the previous subsection on a more general (and basis-independent) level
now assume the form

ΘH−kΘ† = Hk, ΞH−kΞ† = −Hk, ΠHkΠ† = −Hk. (2.4)

According to our definition stated at the beginning of the section, the topology of the system does
not change under adiabatic deformation of the Hamiltonian, so we can equally well just study the
“flat-band Hamiltonian” [9]

Qk =
∑
s

sign(Eks) |Ψks〉 〈Ψks| , (2.5)

where |Ψks〉 denote the eigenstates of Hk with corresponding eigenvalues Eks. For every k ∈ M, Qk
can be diagonalized by a unitary transformation, Qk = UkΛU †k with Λ = diag(1m,−1n), where n (m)
denotes the number of occupied (empty) bands. Noting the U(n) and U(m) “gauge freedom” among
the empty and filled bands, we see that Qk defines the mapping

Q :M −→ Gm,n+m(C) =
U(n+m)

U(n)×U(m)
. (2.6)

If there are no additional symmetries, i.e., we consider a system of class A, the set of different topo-
logical phases corresponds to the set of homotopically distinct maps (2.6) which is the d-th homotopy
group πd(Gm,n+m(C)). For example, it holds4 [9] π2(Gm,n+m(C)) = Z and π3(Gm,n+m(C)) = {E}
which means that the 2D system is characterized by an integer-valued topological index5 ν

Z
while no

topologically nontrivial phase is possible in 3D. As the homotopy group πd refers to Sd as base mani-
fold, this only exhausts the possible topological invariants in the continuum theory. On the lattice the
3Compactification means that we associate |k| → ∞ with a single point which is physically motivated by the fact that
h(k) is only a low-energy theory such that it can be taken to be constant at large momenta.

4All homotopy groups listed in the following and in Table 2.1 have to be understood in the sense that the size (here the
value of n and m) has to be taken sufficiently large such that the homotopy groups have “stabilized” (to their value
at n,m→∞). E.g., although π3(G1,2(C)) = Z it holds π3(Gm,n+m(C)) = {E} for n, m sufficiently large [9].

5It plays the role of the dimensionless Hall conductivity in the quantum Hall [2] effect, see Sec. 2.2.1.

29



2 Fundamentals: Topological states of matter

different geometry of M = Td allows for additional indices [247, 257], the so-called weak topological
indices to be discussed below in Sec. 2.1.4.
In all other symmetry classes there are additional symmetries that constrain Qk which might either

force the mapping to be generically trivial, i.e., prohibit the presence of a topological phase, or by
constraining the possible adiabatic deformations render configurations topological that would be ho-
motopic to the trivial insulator without any symmetries. If there is a chiral symmetry, the Hamiltonian
and, hence, also its associated flat-band version Qk can be brought in block off-diagonal form [9]

Qk =

(
0 qk
q†k 0

)
(2.7)

with qkq
†
k = 1n with 2n denoting the number of bands. Consequently, the chiral symmetry has

changed the target manifold to U(n). Without any additional antiunitary symmetries (class AIII) the
different different topological phases correspond to πd(U(n)). From πd(U(n)) = {E} for d even and
πd(U(n)) = Z for d odd [9], we have, in combination with our discussion of class A, already understood
the alternating pattern of the presence of a Z invariant and no topological insulator (denoted by 0) in
the first two rows of Table 2.1.
In all other classes, there are additional antiunitary symmetries that relate Qk and Q−k which can

effectively change the topology ofM by “orbifolding”, i.e., identifying k and −k. E.g., the antiunitary
symmetries in the two classes BDI and DIII, both of which have a chiral symmetry, lead to q∗k = q−k
and qTk = −q−k in Eq. (2.7), respectively [9]. At this point, the classification of mean-field Hamiltonians
in arbitrary d and for arbitrary symmetry classes has become a mathematically well-defined problem
that can be elegantly solved using the K-theory approach of Ref. [257]. We will not discuss this method
and just refer to the review [7] for an introduction. The result can be found in Table 2.1 which shows
that, in addition to the Z topological invariants, there are also Z2 = {−1, 1} (which forms a group with
respect to multiplication) invariants ν

Z2
. This means that systems can only be either trivial ν

Z2
= 1

or topological ν
Z2

= −1 and all topological phases are homotopically equivalent.
In the following we will discuss how the topological invariants can be calculated for a given model Hk

which will, as a byproduct, also provide us with understanding of some additional entries in Table 2.1.
To motivate and illustrate the expressions for the invariants, let us first introduce an explicit model
that will also guide our intuition for the subsequent considerations.

1D toy model. To present a simple, yet nontrivial, example we take a two-band model in 1D and
expand the Hamiltonian in Pauli matrices τµ according to hk =

∑3
µ=0 gµ(k)τµ. Assume that this model

belongs to class BDI and, hence, obeys a TRS and PHS with Θ2 = 1 and Ξ2 = 1. Taking, e.g., Θ = K
and Ξ = τ1K the Hamiltonian must have the form

hk = g2(k)τ2 + g3(k)τ3, g2(k) = −g2(−k), g3(k) = g3(−k). (2.8)

A concrete model with this structure is provided by the Kitaev chain [258] which describes spinless
fermions on a 1D lattice with p-wave superconducting pairing. Using ĉj and ĉ

†
j to denote the fermionic

annihilation and creation operator on site j, the Hamiltonian reads

Ĥ = −1

2

N−1∑
j=1

(
tĉ†j ĉj+1 −∆ĉj ĉj+1 + H.c.

)
− µ

N∑
j=1

ĉ†j ĉj , (2.9)
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2.1 Definition of topological insulators and superconductors

Table 2.1: Periodic table of topological states of matter. The notation for symmetries and in-
variants is explained in the main text. The parent states of the dimensional reduction
procedure are indicated in bold type. The entire table is periodic as a function of d with
periodicity 8 (“Bott periodicity” [7]).

Cartan Θ Ξ Π d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI +1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI +1 +1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 +1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 +1 1 Z2 Z2 Z 0 0 0 Z 0

AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0

CI +1 −1 1 0 0 Z 0 Z2 Z2 Z 0

where the real constants t, ∆ and µ are the hopping amplitude, superconducting pairing strength and
chemical potential, respectively. Although this model looks quite artificial, we will see in Sec. 2.2.2
that it can be effectively realized in a condensed matter setup. Let us first study the system on a
ring, i.e., with periodic boundary conditions, and in the limit N → ∞. Transforming to momentum
space, j → k ∈ M ∼= S1, and introducing Nambu spinors Ψ̂†k = (ĉ†k, ĉ−k) the Hamiltonian can be
cast in quadratic form Ĥ =

∑
k Ψ̂†khkΨ̂k. The BdG Hamiltonian hk has the form of Eq. (2.8) with

g2(k) = ∆ sin(k) and g3(k) = −t cos(k)− µ which proves that the system belongs to class BDI.
In the basis where the chiral symmetry operator Π = ΘΞ = τ1 is diagonal, any hk in Eq. (2.8)

and its flat-band Hamiltonian Qk become off-diagonal as in Eq. (2.7) and qk = −eiθ(k) where eiθ(k) =
(g3(k)+ ig2(k))/Ek+ with Ek± = ±

√
g2

3(k) + g2
2(k) denoting the spectrum of hk. We now see explicitly

that q∗k = q−k as anticipated above.
In this simple model, qk = −eiθ(k) just defines a mapping S1 → S1 which can be classified by an

integer since π1(S1) = Z. This integer is a winding number ν
Z
measuring the number of times θ(k)

winds around upon k traversing the Brillouin zone once. Algebraically, the winding number can be
written as

ν
Z

=
1

2π

∫ π

−π
dθ(k) =

1

2πi

∫ π

−π
dk q−1∂kq. (2.10)

In case of the Kitaev model, the winding number is either 0 or ±1 depending on whether |µ| > t or
|µ| < t as can be seen in Fig. 2.1(a) and (b), respectively. As is directly clear geometrically, the winding
number cannot be modified upon adiabatic deformations of the Hamiltonian. Only when the gap closes
such that Ek+ = 0 for some k, the phase θ(k) is not well defined at this point allowing for a change
in ν

Z
. Consequently, ν

Z
is a topological index. Furthermore, it holds ν

Z
= 0 for t = ∆ = 0 which

identifies ν
Z

= 0 and ν
Z
6= 0 as topologically trivial and nontrivial, respectively.

Generalization. Having established the form (2.10) of the winding number, the generalization to
systems with more than two orbitals, where qk is a matrix, proceeds naturally by taking the trace
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2 Fundamentals: Topological states of matter

of the integrand [247]. More generally, the winding number associated with the nontrivial homotopy
groups π2N+1(U(n)) = Z, N ∈ N, of U(n) relevant for systems with chiral symmetry as discussed
above, is given by [247]

ν2N+1 =
(−1)NN !

(2N + 1)!

(
1

2πi

)N+1∫
M

d2N+1k w2N+1[q], wd[q] = εµ1...µdtr
[
(q−1∂kµ1

q) · · · (q−1∂kµd q)
]
,

(2.11)
where εµ1...µd denotes the d-dimensional totally antisymmetric tensor. Eq. (2.11) can be seen as the
antisymmetrized and properly normalized generalization of Eq. (2.10).
Whether this invariant is forced to be zero by additional antiunitary symmetries depends on the

dimensionality d = 2N + 1 and on the symmetry class. E.g., the constraint qTk = −q−k in class DIII
leads to the symmetry w2N+1[qk] = (−1)N+1w2N+1[q−k] of the winding density [247]. Consequently,
Eq. (2.11) can have nonzero values only for odd N , i.e., for d = 3, 7, . . . in accordance with Table 2.1.
Note that this does not automatically imply that there are no topologically nontrivial DIII states possi-
ble in other dimensions since antiunitary symmetries can also protect the deformation into the vaccum
state. Indeed, inspection of Table 2.1 shows that Z2 invariants exist in d = 1, 2. A very convenient
way to understand this and to derive expressions for the invariants proceeds by a Kaluza-Klein-like
[259, 260] dimensional reduction approach as has first been suggested in this context in Ref. [256].
The Z2 phases can then be understood as lower-dimensional symmetry-protected descendants of the
parent Z states (indicated in bold type in Table 2.1) in the same symmetry class. In Sec. 2.2.3, we will
illustrate this procedure for class DIII.
For an extension of our current analysis to all symmetry classes we refer to Ref. [247] and continue

with discussing the physics at the boundary between topologically distinct phases.

2.1.3 Bulk boundary correspondence

We start again with the Kitaev chain model (2.9) which we now study with open boundary conditions,
i.e., surrounded by vacuum. This can be done very conveniently [258] by decomposing every fermionic
operator into its hermitian and antihermitian part, ĉj = (γ̂2j−1 + iγ̂2j)/

√
2 where γ̂j satisfy

γ̂†j = γ̂j , {γ̂j , γ̂j′} = δjj′ (2.12)

to preserve the fermionic commutation relations. Eq. (2.9) then becomes

Ĥ =
i

2

N−1∑
j=1

(
(t−∆)γ̂2j γ̂2j+1 − (t+ ∆)γ̂2j−1γ̂2j+2

)
− µ

N∑
j=1

(
1

2
+ iγ̂2j−1γ̂2j

)
. (2.13)

Let us now consider two isolated parameter configurations. Firstly, for ∆ = t = 0 and µ < 0, which
belongs to the topologically trivial phase according to our discussion above (see Fig. 2.1(a)), we see that
only γ̂j associated with the same original fermionic operator are coupled as illustrated in Fig. 2.1(c).
The system has a unique ground state given by the vaccum of the ĉj operators.
Secondly, for the topological configuration ∆ = −t and µ = 0 with a nontrivial winding as in

Fig. 2.1(b), only operators γ̂j belonging to neighboring sites are coupled in Eq. (2.13) as shown in
Fig. 2.1(d). Most importantly, the outermost operators γ̂1 and γ̂2N do not enter the Hamiltonian.
They describe localized zero energy modes and satisfy the reality constraint and commutation relations
in Eq. (2.12) which are the defining properties of Majorana bound states (MBSs). The name refers to
E. Majorana who showed in 1937 that the Dirac equation also allows for real solutions [57] and, hence,

32



2.1 Definition of topological insulators and superconductors

Figure 2.1: Kitaev chain. Depending on the parameters of the Hamiltonian, the vector
(g2(k), g3(k)) is characterized by a trivial (a) or a nontrivial (b) winding number.
As explained in the main text, this leads, respectively, to the absence (c) or presence
(d) of MBSs (shown in red) at the ends of the wire.

for free fermionic particles that are their own antiparticles. The presence of these modes leads to a
twofold degeneracy of the ground state of the system which is most easily seen by combining γ̂1 and
γ̂2N into an ordinary complex fermion â = (γ̂1 + iγ̂2N )/

√
2 which can be occupied without changing the

total energy. It is crucial that, as opposed to our original decomposition of the fermion operators ĉj to
arrive at Eq. (2.12), the two constituents of â are spatially separated making â are thermodynamically
nonlocal object. This has fascinating consequences as will be discussed in Sec. 2.3. For other parameter
configurations within the topological phase (|µ| < t, ∆ 6= 0) the MBSs will generically not be localized
at a single site but rather decay exponentially [258] into to the bulk. For finite distances between
different MBSs this leads to an exponentially small energetic splitting.6

The presence of zero-energy modes at the interface between two topologically distinct phases not
only holds for the Kitaev model but is a general phenomenon known as bulk-boundary correspondence
[4, 262]. Whether the edge modes are real Majorana modes or complex, i.e., of Dirac type, depends on
whether the symmetry class has a PHS (naturally occurring in the BdG formalism of superconductivity)
or not (e.g., in a topological insulator, see Sec. 2.2.1).
The bulk-boundary correspondence can be intuitively understood in the limit where the length-

scales of the bulk system (e.g., the Fermi wavelength) are much smaller than the length scales on which
the parameters X = X(x⊥) of the Hamiltonian vary along the coordinate x⊥ perpendicular to the
boundary to describe the interface between the topologically distinct phases. Then the variation of X
across the boundary can be understood as a continuous deformation of the associated bulk Hamiltonian
hk[X(x⊥)]. By definition, the gap of hk[X(x⊥)] must close at the configuration X(0) at the interface
x⊥ = 0 which corresponds to the presence of localized zero energy modes. In case of a symmetry

6Typically, the decay length of the wavefunctions will be of order of the superconducting coherence length ξ and, hence,
the splitting will be proportional to ∝ exp(−L/ξ) where L is the distance between the MBSs (see, e.g., Ref. [261] for
a demonstration of the overlap-induced splitting in a more complicated model).
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2 Fundamentals: Topological states of matter

class with PHS (see Eq. (2.2)), the positive energy (E > 0) eigenstates ψE can be related to those
with negative energy via ψ−E = ΞψE . If there is a single isolated zero-energy mode ψ0, it must hold
Ξψ0 = ψ0 which is the defining property of a MBS.
The validity of the bulk-boundary correspondence can be checked either by explicit calculation of the

edge modes in a given model7 or by proving the associated “index theorems” (see, e.g., Refs. [263–267]).

2.1.4 Weak invariants

As already mentioned above, the torus Td, which is the base manifold M of the mapping defined by
Qk for a d-dimensional system with lattice translation symmetry, generally allows for more topological
indices than determined by the d-th homotopy group πd which refers to Sd as base manifold. Additional
invariants are possible if one of the lower dimensional homotopy groups πd−1, πd−2, ... π1 are nontrivial
[247, 257]. By design these additional invariants are only defined if the system is translation invariant
which shows that the associated topological features such as edge states are not protected against local
perturbations that preserve the “extremely generic symmetries” of the symmetry class. For this reason
they are referred to as weak invariants as opposed to the strong invariants associated with πd which
are still well-defined if translation symmetry is absent (M = Sd) and lead to boundary modes that are
protected against disorder [9, 10].
Generally, weak indices of “codimension” k can be seen as strong invariants defined in d−k dimensional

submanifolds ofTd and, hence, their existence is directly read off from Table 2.1 [247]. We will illustrate
this for two examples that will be important later.

3D topological insulators. Let us start with a 3D model of class AII, i.e., with TRS and Θ2 = −1,
which is usually referred to as 3D topological insulator (see Sec. 2.2.1 below). From Table 2.1, we
see that there is a Z2 strong invariant, denoted by ν0 in the following, and weak Z2 invariants of
codimension 1. The latter can be defined as the 2D strong invariants νj , j = 1, 2, 3, of symmetry class
AII of the Hamiltonian restricted to the time-reversal invariant planes kj = π with νj = 0 (νj = 1)
referring to trivial (topological). Taken together, an insulating 3D system of class AII is on the lattice
classified by the four Z2 invariants (ν0; ν1, ν2, ν3) [253–255]. The weak topological insulator (WTI) is
characterized by ν = (ν1, ν2, ν3) 6= 0 and ν0 = 0 while it holds ν0 = 1 for a strong topological insulator
(STI). Intuitively, the WTI can be thought of as a stack of weakly coupled nontrivial 2D AII insulators
where (ν1, ν2, ν3) are the Miller indices of the orientation of the layers.
At the edge of the system, say perpendicular to the z direction, e.g., ν1 = 1 implies the presence of

an odd number of time-reversed partners (also known as Kramers partners) of edge modes crossing the
Fermi level at k1 = π. In Chap. 3 we will see this explicitly.
Another, more surprising, consequence of nonzero weak invariants ν 6= 0 is the emergence of 1D

counter-propagating Kramers partners of zero-energy modes at dislocation lines given that ν · b is odd
[268]. Here b denotes the Burgers vector of the dislocation in the basis of the primitive vectors of the
lattice. The presence of these modes bound to the 1D defect can be understood from a generalized form
of the bulk boundary correspondence outlined above [247, 269]: An r dimensional topological defect of
a given symmetry class is capable of binding zero modes if there is a nontrivial invariant in Table 2.1
of the same symmetry class in d = r + 1 dimensions. For the boundary of a system it holds r = d− 1
which reduces to the case discussed in Sec. 2.1.3. For the dislocation line we have r = 1 and, hence,

7We refer to the textbook [262] for the analysis of edge modes in many different models of topological insulators and
superconductors.
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the presence or absence of modes is determined by the (d = 2) Z2 index in class AII which corresponds
to the weak indices of a 3D topological insulator.

Time-reversal invariant superconductors. As an example with weak invariants in 2D, let us
consider a class DIII system which will later be relevant realized as a time-reversal symmetric super-
conductor (see also Sec. 2.2.3). As can be read off from Table 2.1, this system is in 2D characterized
by a strong Z2 invariant ν

Z2
and two weak invariants ν = (ν1, ν2) that are defined as 1D strong DIII

invariants in the time-reversal invariant lines kj = π [247, 270]. Similarly as above, Kramers pairs of
isolated MBSs occur at dislocations with Burgers vector b if ν · b is odd [247, 269, 270].

2.2 Experimental realization of topological phases and further models

The purpose of this section is to provide a brief overview of different physical realizations of topological
states of matter that will help the reader understand the context of the models and systems we will
encounter in the subsequent chapters. For a more complete discussion we refer to the textbook [262],
the review articles [4, 6] and the references of the different subsections below.

2.2.1 Topological insulators

The first solid-state example of a topological state of matter in the sense introduced above is given
by the quantum Hall effect discovered in 1980 [2]. The quantum Hall effects occurs when electrons
are confined to 2D and subjected to a strong magnetic field perpendicular to the plane of the system.
It is characterized by plateaus in the Hall conductivity σxy at quantized values σxy = ν

Z
e2/h with

ν
Z
∈ Z. Using linear response theory, it has been shown [3] that ν

Z
is given by a topological invariant

(first Chern number) of the bands below the chemical potential, which naturally explains the robust
quantization of σxy. This invariant, often referred to as TKNN invariant after the authors of Ref. [3],
mathematically classifies the mapping in Eq. (2.6) (for d = 2) and corresponds to the Z invariant of
class A in 2D (see Table 2.1). The bulk-boundary correspondence guarantees the presence of ν

Z
chiral

edge modes at the boundary of the system8 which can be, in the context of the quantum Hall effect,
understood as skipping cyclotron orbits [4].
In 2005, C. Kane and G. Mele pointed out, initially considering graphene as an example [271, 272],

that the quantum Hall effect has a natural time-reversal symmetric analogue which is known as the
quantum spin Hall (QSH) effect. Most intuitively, it can be seen as two time-reversed copies of the
quantum Hall effect and is, thus, characterized by a vanishing charge Hall conductance but has a
quantized spin Hall conductance defined as the difference of the Hall conductance of the two time-
reversed blocks of the Hamiltonian. As can be seen in Table 2.1 (class AII, d = 2), the system is classified
by a Z2 index ν distinguishing between the topologically trivial (ν = 0) state and the topological QSH
(ν = 1) phase which are characterized by an even and odd number of Kramers partners of edge modes,
respectively. The QSH state has been predicted [252] to occur in HgTe quantum wells and subsequently
discovered experimentally in these systems [273].
For future reference, let us briefly discuss the model introduced in Ref. [252] for describing the

topological phase transition in HgTe quantum wells, which became known as the Bernevig-Hughes-
Zhang (BHZ) model in honor of the authors of the seminal paper. Using symmetry arguments, they

8More precisely, ν
Z
only determines the difference in the number of left and right movers [4].
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2 Fundamentals: Topological states of matter

deduced the effective low-energy Hamiltonian of the system

hk =

(
h0(k) 0

0 h∗0(−k)

)
, h0(k) =

3∑
µ=0

gµ(k)τµ, g = (g1, g2, g3) = (Ak1, Ak2,m) +O(k2),

(2.14)

valid in the vicinity of the Γ point. The different components in Eq. (2.14) refer to different quantum
well eigenstates which are not of importance for the present discussion. The relation between the upper
and lower 2× 2 block results from TRS. Note that g0(k) has not been specified in Eq. (2.14) as it does
not enter the expression for the topological invariant. BHZ argued that the topological invariant ν
changes, i.e., that a topological phase transition occurs, when the mass m changes sign. This can be
understood geometrically by considering the winding of the normalized vector g/|g| on the Brillouin
zone similarly to our discussion of the Kitaev model in Fig. 2.1(a) and (b).
In 2007, the topological classification of insulators has been extended to 3D in Refs. [253–255]. As

we have already discussed in Sec. 2.1.4, a 3D topological insulator of class AII is characterized by four
Z2 invariants (ν0; ν1, ν2, ν3) where ν0 is the strong and νj , j = 1, 2, 3, are the weak invariants. Since
then, several materials have been experimentally identified as 3D topological insulators (see Ref. [4]
and references therein).

2.2.2 TRS-breaking topological superconductors

In Sec. 2.1.2 we have already introduced the Kitaev chain model as a minimal model of a topological
superconductor. Given that electrons carry spin and that there only very few p-wave superconductors,
it is not obvious how it can be realized experimentally. As a consequence of the enormous interest
in topological superconductivity and the related MBSs, several proposal have been published recently
(see [6] and references therein). In one of the most promising proposals [274, 275], a semiconducting
nanowire with strong SOC and a large g-factor, such as InSb or InAs, is brought into a magnetic
field that breaks physical spin-1/2 TRS9 effectively rendering the system spinless at low-energies. The
proximity to an s-wave superconductor induces superconductivity in the wire which is transformed in
p-wave pairing by virtue of the SOC. A transition between topologically trivial and nontrivial can be
induced, e.g., by changing the magnetic field.
Promising experimental progress has been recently achieved along these lines [60] and in related

setups [61] where zero bias peaks in spectroscopic measurements indicate the presence of MBSs.
The prototype model of a TRS-breaking 2D topological superconductor is the spinless chiral p-wave

superconductor with Hamiltonian [6, 262]

Ĥ =

∫
dx

ĉ†(−∇2

2m
− µ

)
ĉ−

(
∆

2
ĉ†(∂x1 + i∂x2)ĉ† + h.c.

) , (2.15)

where we used a continuum description. It belongs to class D and is, hence, characterized by a Z
invariant ν

Z
(see Table 2.1) which can, similarly as in case of the Kitaev model, be seen as the number

of times the unit vector associated with its 2×2 BdG Hamiltonian covers Sd=2 [6, 262]. For the explicit
form of the model given in Eq. (2.15), one finds ν

Z
= 0 for µ < 0 and ν

Z
= 1 for µ > 0 corresponding to

9There is an emergent TRS with Θ2 = 1 as long as we consider a single-channel wire [276]. In Chap. 4.7.1, we will see
how this also naturally emerges in a 2D system in the presence of a strong (in-plane) magnetic field.

36



2.2 Experimental realization of topological phases and further models

the trivial and topological phase, respectively. The topological phase is characterized by the presence
of gapless chiral Majorana modes [190, 262]. In addition, isolated zero-energy MBSs are localized in
vortices with odd winding number n [277], i.e., spatially dependent order parameter configurations
∆(r, ϕ) = |∆|(r)einϕ, n ∈ Z, with r, ϕ denoting polar coordinates with respect to the center (vortex
core) of the defect where the order parameter vanishes.
As already discussed in Chap. 1.3.2, the bulk superconducting phase of Sr2RuO4 is believed to be

a chiral p-wave state. However, the finite current associated with the resulting chiral modes localized
at the boundary of the system [190] seems to be absent in experiment [191, 192]. The observation of
MBSs at vortex cores is more complicated as Sr2RuO4 is a spinfull system, i.e., effectively consists of
two copies of Eq. (2.15). Therefore, a vortex binds a pair of MBSs that will eventually hybridize and
move to finite energies10. For this reason one should rather investigate half-quantum vortices which
can be shown to be equivalent to an n = 1 vortex for only one of the spin-components [58] and, hence,
binding just a single Majorana zero mode. Many more systems have been proposed to effectively realize
a chiral p-wave state (see Ref. [6] and references therein).

2.2.3 Time-reversal invariant topological superconductors

Instead of taking two copies of Eq. (2.15) with the same chirality, one can combine two time-reversed
copies of Eq. (2.15) which defines the simplest model of a time-reversal symmetric or helical topological
superconductor [262, 278, 279]. This theoretical construction obviously closely parallels the construction
of the QSH effect from the quantum Hall system discussed in Sec. 2.2.1. Time-reversal symmetric
superconductors belong to class DIII and are characterized by a Z invariant ν

Z
in 3D and a Z2 invariant

ν
Z2

in 2D and 1D as can be read off in Table 2.1. The hallmark of the topological phase (ν
Z
6= 0,

ν
Z2

= −1) is the presence of Kramers partners of Majorana modes at the boundary of the system to a
trivial phase (ν

Z
= 0, ν

Z2
= 1).

Simplified mean-field invariants. Being frequently used in the subsequent chapters, we next discuss
the simplified expressions for these topological invariants derived in Ref. [280] and, as a byproduct,
illustrate the method of dimensional reduction [256].
As we have argued in Sec. 2.1.2, the Z topological invariant of a 3D DIII system is given by Eq. (2.11)

(with N = 1) where qk is the off-diagonal component of the flat-band Hamiltonian in Eq. (2.7). Using
the eigenstates {|ψks〉} of the normal state mean-field Hamiltonian hk with corresponding energies εks
as basis, one can write [280]

qk ∼
∑
s

eiθs(k) |ψks〉 〈ψks| , eiθs(k) =
εks + i∆̃s(k)

|εks + i∆̃s(k)|
, ∆̃s(k) ≡ 〈ψks|∆(k)T †|ψks〉 , (2.16)

where T is the unitary part of the (normal state) time-reversal operator, i.e., normal state TRS is
equivalent to Th∗−kT

† = hk, and all matrix elements of the superconducting order parameter ∆(k)
between different Fermi surfaces have been neglected. This is always justified in a system with singly
degenerate Fermi surfaces (see Chap. 1.3) in the vicinity of Tc where ∆(k) is small. The denominator
in the middle expression in Eq. (2.16) simply stems from the deformation of the BdG Hamiltonian into
a flat-band model.

10Note that a vortex is a defect of dimension r = 0 and is, hence, characterized by a Z2 index in class D (see Table 2.1
and Refs. [247, 267, 269]).
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2 Fundamentals: Topological states of matter

Using this in Eq. (2.11) and assuming a fully gapped superconductor, one can show that

ν
Z

=
1

2

∑
s

sign
(

∆̃s(ks)
)
C1s, (2.17)

where the summation involves all disconnected Fermi surfaces and ks is an arbitrary point on Fermi
surface s. Furthermore, C1s is its first Chern number,

C1s :=
i

2π

∫
s

dωjj
′
(
〈∂kj′ψks|∂kjψks〉 − (j ↔ j′)

)
, (2.18)

where dωjj
′ are the surface element two forms [280]. The dependence of ν

Z
on the sign of ∆̃s math-

ematically results from the fact that it determines the direction of rotation of the phase θs(k) upon
passing through the Fermi surface.
The analogous expressions for the Z2 invariant in 2D readily follow from Eq. (2.17) by dimensional

reduction [256]: The very same fact, π2(U(n)) = {E}, that does not allow for a winding number in
chiral systems in even dimensions, also guarantees the existence of a continuous interpolation qk,u from
a trivial configuration 1n = qk,0 to the off-diagonal block of the flat-band Hamiltonian qk = qk,π we
want to analyze. Properly extending the map to u ∈ [−π, π] to satisfy TRS, qk,u can be regarded as
a fictitious 3D system with momentum (k, u) of class DIII and invariant given by Eq. (2.17). Due to
the freedom in choosing the extension qk,u, the invariant of the 2D system is only related to the parity
ν
Z2

= (−1)νZ of the fictitious 3D invariant [256]. We thus get

ν
Z2

= (−1)νZ =
∏
s

[
i sign

(
∆̃s(ks)

)]C1s

=
∏
s

[
sign

(
∆̃s(ks)

)]ms
, (2.19)

where, in the last equality, use has been made of
∑

sC1s = 0 and (−1)C1s = (−1)ms with ms denoting
the number of time-reversal invariant momenta (TRIM) enclosed by Fermi surface s [280]. TRIM are
defined as the discrete set of points in Brillouin zone with k ≡ −k. E.g., in 2D, there four nonequivalent
TRIM, (0, 0), (π, 0), (0, π) and (π, π).
Upon further reducing to 1D, one again finds Eq. (2.19) with ms → 1 [280] as one might have

expected given that every Fermi “surface” encloses the Γ-point in a 1D system.

Candidate systems. An example of a topological superfluid of class DIII is provided by the Balian-
Werthamer [234] state (dk ∝ k in Eq. (1.17)) that is believed to be realized in the B phase of 3He [78].
The corresponding topological invariant ν

Z
= 1 is readily evaluated using Eq. (2.17) as demonstrated

in Ref. [280]. Recently, convincing experimental evidence for Majorana edge modes in superfluid 3He
has been reported [281].
However, there are no conclusive signatures of time-reversal symmetric topological superconductivity

[246] so far. In Refs. [282, 283] it has been shown that, in a centrosymmetric system, odd parity states
are good candidates for the realization of nontrivial DIII topology. However, the established p-wave
superconductors, Sr2RuO4 and UPt3, break TRS (see Chap. 1.3.1). One of most promising candidates
[282] for topological odd parity pairing is the doped topological insulator CuxBi2Se3 that becomes
superconducting below ' 4K [284]. Experiments probing the topological signatures in this system are
still controversial [246].
In this thesis, we will use different approaches to study topological properties in various noncen-

trosymmetric systems. As we will see, the broken inversion symmetry strongly restricts the possibilities
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2.3 Majorana fermions and quantum computation

of breaking TRS and, hence, the superconductor will quite naturally belong to class DIII. To calculate
the associated topological invariants, the simplified expressions, Eqs. (2.17) and (2.19), will be very
useful.

2.2.4 Cold atoms

In recent years, topological states of matter have also spurred considerable research interests in the cold-
atom community [285–290]. Cold atoms [62, 63] offer an experimental platform for simulating complex
many-body systems. System parameters can be tuned over wide ranges, such as the interaction strength
via the phenomenon of Feshbach resonance, and various detection methods, that are not possible in the
solid-state context, have been successfully applied. Naturally, an exhaustive introduction to this broad
field of research is beyond the scope of this subsection. We refer instead to the review articles [62, 63]
and briefly discuss the experimental realization of artificial gauge potentials [291] which represents an
important cornerstone for the implementation of nontrivial topology in cold-atom systems.
As we have seen above, magnetic fields and SOC are crucial building blocks of topologically nontrivial

states of matter. In case of neutral atoms, these effects have to be implemented in form of artificial gauge
potentials [291]. This can be achieved by designing a state-dependent lattice where different internal
states of the atom are spatially shifted. In the simplest case, one uses two sufficiently long-lived states
of the atom and tunes the laser creating the lattice potential to the “anti-magic” wavelength where
the polarizabilities of the two states are identical in magnitude but opposite in sign. Consequently,
the lattice potential is shifted by half a lattice constant between the two internal states. While direct
tunneling between different sites is suppressed by choosing the lattice constant sufficiently large, laser-
assisted tunneling is induced by applying an additional laser that is resonant with the transition between
the two internal states. Due to the spatial variation of the phase of the additional laser beam, it imprints
different phases on the hopping matrix elements between different nearest neighbors. This can be used
to emulate the Peierls phase associated with a magnetic field. Incorporating more internal states, it
can also give rise to non-Abelian gauge potentials that mimic SOC.
In Chap. 3, we will introduce and discuss in detail a model which contains non-Abelian Peierls phases

that can be realized in cold atoms and give rise to various 2D and 3D topological phases.

2.3 Majorana fermions and quantum computation

As the analysis presented in this thesis is to a large extent concerned with topological properties of
superconductors, we will briefly discuss one of the most fascinating aspects of MBSs, the non-Abelian
statistics they obey, and their related potential application in quantum computation. For a more in
depth discussion we refer to the review [59]. This section is mainly based on the Diploma thesis [292].

2.3.1 Non-Abelian statistics

One of the most important cornerstones of many-body quantum mechanics is the underlying quantum
statistics, i.e. how the wavefunction transforms when particles are interchanged. In 3D, there are
only two possibilities: The many-body wavefunction has to be symmetric or antisymmetric under
transposition of any two particles for a system of identical bosons or fermions, respectively. The
fundamental restriction is a consequence of the fact that winding one particle around another in 3D
is topologically equivalent to not performing any operation. The wavefunction must transform under
a representation of the symmetric group. However, when a 2D system is considered windings are
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2 Fundamentals: Topological states of matter

Figure 2.2: Non-Abelian statistics. (a) Clockwise interchange of two vortices. Graphical rep-
resentation of (b) the generator Ti and (c) the defining property in Eq. (2.24).

obviously nontrivial operations such that the underlying group, the braid group to be defined below, is
not finite any more which leads to a much richer spectrum of possible quantum statistics [59]. Particles
with statistics other than bosonic or fermionic are called anyons.
The emergence of anyonic statistics and its application for quantum computing will first be dis-

cussed in the conceptually simplest case of a chiral p-wave superconductor with Hamiltonian as given
in Eq. (2.15). At the end of the section, we comment on the modifications in case of time-reversal
symmetric superconductors.
Suppose that 2M vortices (each with winding number n = 1 for simplicity) located at positions Rj ,

j = 1, 2, . . . , 2M have been prepared. As already mentioned in Sec. 2.2.2, each vortex hosts a single
Majorana zero mode provided that all vortices are sufficiently separated. Therefore, the local order
parameter “seen” by a MBS localized at vortex j is approximately

∆(x) ' |∆(x)| exp(ϕj(x) + Ωj), ϕj(x) = arg(x−Rj), Ωj =
2M∑
k 6=j

arg(Rj −Rk), (2.20)

i.e. a single vortex with a constant phase shift determined by the positions of all other vortices.
To derive the behavior of the many-body wavefunction under transposition of MBSs, we follow

D. A. Ivanov [58] and analyze the transformation of the Majorana operators γ̂j . The localized Majorana
wavefunction for a single vortex is found as the zero energy eigenstate of the BdG Hamiltonian of
Eq. (2.15) with a vortex profile order parameter. According to Eq. (2.20), the presence of other vortices
effectively generates a constant phase shift. Using the Nambu spinor Ψ̂ = (ĉ, ĉ†)T the transformation
behavior of an eigenstate reads

ψ = (u, v)T → (ueiΩ/2, ve−iΩ/2)T for ∆(x)→ ∆(x)eiΩ. (2.21)

The global phase has been chosen such that the pseudo reality constraint Ξφγj = φγj with Ξ = τ1K
of the Majorana solutions is preserved. This ensures that the second quantized operators γ̂j satisfy
Eq. (2.12), i.e. their defining property as Majorana operators. Furthermore, this convention makes all
non-Abelian parts of the Berry phase vanish [293, 294] such that any nontrivial evolution under cyclic
adiabatic manipulation of vortex positions is due to the explicit monodromy of the BdG wavefunction
in Eq. (2.21).
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2.3 Majorana fermions and quantum computation

To illustrate the consequences assume that two neighbouring vortices i and i + 1 are clockwise
interchanged without encircling another one as shown in Fig. 2.2(a). To have a single-valued super-
conducting phase, one needs to introduce branch cuts (black dashed lines). As can be seen from the
figure, one of the vortices (here vortex i + 1) crosses the branch cut. The corresponding jump by 2π
in the superconducting phase generates an additional minus sign in γ̂i according to Eq. (2.21). For all
other vortices j 6= i, i+ 1 the process is only seen as a trivial – back and forth – phase fluctuation and
hence has no net effect on the corresponding quasiparticle operators. In summary, we have found that
the vortex transposition denoted by Ti leads to

Ti :


γ̂i −→ γ̂i+1,

γ̂i+1 −→ −γ̂i,
γ̂j −→ γ̂j , ∀ j 6= i, i+ 1.

(2.22)

It is straight-forward to check that the transposition operations satisfy the defining relations

TiTj = TjTi, |i− j| > 1, (2.23)
TiTjTi = TjTiTj , |i− j| = 1. (2.24)

of the generators of the braid group B2M – replacing the more familiar symmetric group of quantum
statistics in (3 + 1) dimensions. The braid group can be visualized by strands wrapping around each
other. An element of B2M is defined as the equivalence class of configurations of these strands which
can be smoothly deformed into one another. As an example, the elementary braiding operation Ti is
shown in Fig. 2.2(b). Obviously, the group is non-Abelian since TiTi+1 6= Ti+1Ti. However, braiding
operations which do not involve a common strand commute as expressed by Eq. (2.23). The nontrivial
defining relation (2.24) is illustrated in Fig. 2.2(c).
To derive the quantum statistics we need to find the representation ρ̂ of the braid group on the set of

degenerate ground states. This is provided by ρ̂(Ti) = exp(πγ̂i+1γ̂i/2) since ρ̂(Ti)γ̂j [ρ̂(Ti)]
−1 = Ti(γ̂j).

It reveals the much more complicated structure of vortex statistics compared to that of 3D bosons and
fermions. Most remarkably, the operators ρ̂(Ti) and ρ̂(Ti+1) do not commute. This means that the
outcome of a sequence of transpositions depends in general on the order of the operations, i.e. vortices
in a chiral p-wave superconductor obey non-Abelian statistics.

2.3.2 Topological quantum computation

In ordinary computers information is stored in a finite number of bits which can only be prepared in
one of two states usually denoted by 0 and 1. The basic idea of quantum computing [295] is to use the
laws of quantum mechanics for information processing. The fundamental building blocks of a quantum
computer are called qubits and constitute two-level systems. A classical computer with N bits can only
be in 2N different configurations, whereas the state of its quantum mechanical analogue is generally any
linear combination of all 2N basis states and hence described by 2N − 1 complex numbers. Therefore,
quantum entanglement provides enormous capacity compared to classical setups.
A quantum computation can be viewed as a sequence of unitary transformations on the system’s

Hilbert space. These transformations are called quantum gates and realized by switching on certain
terms in the Hamiltonian, e.g. by applying a magnetic field. Unfortunately, at present the realiza-
tion of quantum computers highly suffers from decoherence due to unintended interactions with the
environment. Finite precision in the realization of quantum gates gives rise to additional errors.
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These two problems can be circumvented at the “hardware level” using the concept of topological
quantum computation [59]. Consider a system exhibiting quasiparticles with non-Abelian statistics
such as the vortices of the chiral p-wave superconductor. The ground state manifold is chosen as the
computational space, i.e. the state of the computer is given by the set of occupation numbers of the
M complex fermions that can be constructed out of the 2M MBSs present in the system. Since the
vortices can in principle be brought arbitrarily far away from each other, the information is encoded in
a highly non-local way. Consequently, the system is immune to local perturbations.
To perform a proper quantum computation, gate operations are applied by adiabatically winding

vortices around each other. Fortunately, the outcome of a braiding process only depends on the topology
of the trajectories and not on their precise shape and dynamics as long as adiabaticity is sufficiently
satisfied [292, 296–300]. Therefore, systematic gate errors are fundamentally avoided. Finally, the
outcome of the computation has to be measured. This can be done, for example, by bringing vortices
together. Depending on the occupation of the fermion associated with the two MBSs, a finite energy
quasiparticle may or may not be left behind after the fusion process.
In addition to the plethora of open questions concerning the practical implementation of these ma-

nipulations, there are also fundamental limitations to topological quantum computations: Firstly, the
lower limit on the time scales on which braiding operations can be performed resulting from the adia-
baticity requirement have been analyzed [292, 296–300] and estimated to be comparable to the lower
bound associated with single-electron tunneling [301]. The parameter window within which reliable
topological quantum computations can be performed might thus be quite small.
Secondly, topological quantum computing using MBSs is not universal, i.e. braiding operations alone

are not sufficient to realize any unitary gate transformation. In particular a (π/8) phase gate is missing
as is straightforwardly shown using the representation ρ̂(Ti) derived above. Apart from more elaborate
schemes where the topology of the system is changed [59], this gate has to be implemented by a non-
topological operation. The most evident way is to bring the MBSs close together such that the resulting
energy splitting generates the required phase shift [302]. More elaborate schemes have been suggested
to realize the required phase gate (see, e.g., [299, 303]).
In case of a helical superconductor (see Sec. 2.2.3), the situation is more complicated: In a time-

reversal symmetric vortex, there is always a Kramers pair of MBSs [262, 266, 269, 278, 279] such that
the statistics of the entire vortex becomes Abelian [278] and the vortex braiding cannot be used to
perform topological quantum computations as outline above [262]. At least in the idealized case where
the superconductor can be seen as two time-reversed copies of the chiral p-wave superconductor, a
TRS-breaking vortex, where just one of the copies experiences a winding of the superconducting phase,
hosts an isolated MBS. These vortices have non-Abelian statistics exactly as in case of a chiral p-wave
superconductor [269, 278] and might thus be employed for topological quantum computation.

2.4 Beyond mean-field

The classification of topological phases presented in Sec. 2.1.2 was limited to the noninteracting case.
Naturally, the question arises whether the notion of topological phases is still meaningful in the presence
of interactions. By means of case studies, it has been shown that the classification stated in Table 2.1
is not stable against arbitrary interactions: In Ref. [304], an adiabatic deformation of an interacting
1D model of class BDI has been used to proof that the Z classification (winding number) discussed in
Sec. 2.1.2 is reduced to Z8.
Note that our previous definition of topological invariants in terms of mean-field Hamiltonians does
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not even allow for four-fermion terms of infinitesimal strength and, hence, an adiabatic extension to
interacting systems constitutes a first important step. This will be the topic of Sec. 2.4.1. In this
context, “adiabatic extension” means that the gapped ground state of the many-body system is singly
degenerate and can be continuously deformed into a noninteracting system without closing the gap
[5, 7, 305]. In Sec. 2.4.2, we will discuss an example of an interacting topological state of matter, the
topological Mott insulator proposed by D. Pesin and L. Balents [64].

2.4.1 Adiabatic interactions and topological Hamiltonian approach

As one might have expected, the mean-field Hamiltonian will be replaced by the full Green’s function
G(k), with k ≡ (iω,k) comprising both Matsubara frequency11 ω and (crystal) momentum k, to define
a mapping that can be classified topologically. Topological invariants expressed in terms of Green’s
function naturally occur as coefficients in topological field theories [256] which represent an alternative
way to define topological states of matter. Topological field theories describe the low-energy response
of a topological system to external perturbations such as the electromagnetic potential Aµ [5]. E.g., in
even spatial dimensions d one can show by integrating out noninteracting fermions coupled to a U(1)
gauge field Aµ that the perturbative expansion in Aµ contains a Chern-Simons term with prefactor
[256, 306]

ν[G] = Cn

∫
dd+1k εµ1...µd+1

tr
[
(G∂kµ1

G−1) . . . (G∂kµd+1
G−1)

]
, (2.25)

where Cn denotes a normalization constant. Leaving the discussion of the physical consequences of
topological terms in the electromagnetic response to [5, 256, 262], we just mention that Eq. (2.25)
defines a topological invariant associated with the map from d + 1 dimensional frequency momentum
space to the space of non-singular Green’s functions in analogy to the winding number in Eq. (2.11).
It can be shown that Eq. (2.25) still determines the electromagnetic response and, hence, constitutes
a physically meaningful topological invariant in the presence of arbitrarily strong interactions as longs
as the adiabaticity constraint discussed above is satisfied [305]. In addition to the 1D counterexample
[304] mentioned above, adiabaticity is also not fulfilled, e.g., in the fractional quantum Hall states where
interactions induce a gap in a hugely degenerate partially populated Landau level [12, 13].
Similar expressions in terms of Green’s functions for classes with chiral symmetry [307] have been

obtained and the symmetry protected descendants have been analyzed by means of dimensional reduc-
tion [256]. On the mean-field level, it holds G−1(k) = iω −Hk and this approach reduces [5, 256, 307]
to topological band theory discussed in Sec. 2.1.2. However, the Green’s function method also con-
tains effects beyond mean field [307, 308]: As directly follows from the symmetry of Eq. (2.25) under
G↔ G−1, the topological invariant can not only change due to gap closing, i.e., poles of G, but also as a
consequence of zeros of the Green’s function resulting from poles in the ω-dependence of the self-energy
Σ(iω,k). The latter cannot be captured in a static mean-field description.
We mention that, in addition to the requirement of adiabaticity, the Green’s function approach does

also not take into account the potentially significantly enhanced role of interactions at the edge of the
system. The protecting symmetries might be broken at the surface of the system thereby destroying
the validity of the bulk boundary correspondence (see Sec. 2.1.3) in the presence of interactions.
The fact that the Green’s function approach requires a frequency integration as in Eq. (2.25) to be

performed, makes the evaluation of topological invariants more cumbersome and less intuitive than the
mean-field approach of topological band theory. As has been shown in Refs. [309, 310], this drawback

11The entire discussion will be limited to T = 0, where Matsubara frequencies become continuous variables.
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can be circumvented by constructing an effective noninteracting problem with the same topological
invariants. The crucial step is to introduce an adiabatic deformation

Gλ(iω,k) = (1− λ)G(iω,k) + λ
[
iω +G−1(0,k)

]−1
, λ ∈ [0, 1], (2.26)

of the full Green’s function G(k) = Gλ=0(k) into an effective mean-field Green’s function Gλ=1(k)
which does not change the value of topological invariants such as that of Eq. (2.25) as it does not
incorporate singularities or gap closings [309, 310]. Due to the equivalence to topological band theory
in the noninteracting limit [5, 256, 307], the evaluation of Green’s function invariants is thus tantamount
to calculating the invariant of the fictitious mean-field Hamiltonian

Ht
k := −G−1(iω = 0,k), (2.27)

also known as topological Hamiltonian [311], using the procedure of Sec. 2.1.2.
The counterintuitive result that the entire information about the topology of the full Green’s function

is contained in its ω = 0 component can be qualitatively understood from the point of view of the bulk
boundary correspondence [311]: The quasiparticle energies (and lifetimes) are obtained by solving for
ω such that G−1(ω) has an eigenvalue zero. The boundary modes, if present, are at zero energy and,
hence, their existence is fully determined by G−1(ω = 0). While Ht

k cannot be used to reliably calculate
the spectrum of the system at finite energies, it can exactly determine whether the boundary of the
system hosts zero modes or not.

2.4.2 Topological Mott insulator

An example of a topological phase that results from the interplay of topological band structures and
significant electronic correlations is provided by the TMI12 proposed by D. Pesin and L. Balents [64]. It
is a spin-liquid state [313] in which the electron is effectively separated in its charge and spin degree of
freedom. The charges undergo a Mott transition, i.e., are localized by sufficiently large electron-electron
interaction, while the spin degrees of freedom of the electrons, the so-called spinons, are deconfined. The
band structure of the spinon excitations can be classified topologically exactly as discussed in Chap. 2.1
on the noninteracting level. By definition, a TMI has a spinon Hamiltonian with a nontrivial topological
invariant and, hence, is characterized by the presence of spin-only edge modes at the boundary to a
topologically trivial phase such as the vacuum. If the dimensionality and symmetry class of the system
allows also for weak invariants (see Sec. 2.1.4), one can further distinguish between strong topological
Mott insulator (STMI) and weak topological Mott insulator (WTMI) phases. Note that although the
spinon band structure can be classified using the methods of noninteracting topological phases, the
TMI does not have a noninteracting analogue due to its fractionalized nature.
In Chap. 3.2.2 and Appendix B.2, we will introduce an approach, the slave-rotor mean-field theory

[65–67], that conveniently allows for the description of TMI phases [64, 314]. This will place the
phenomenological discussion of this subsection on quantitative grounds. While, in 2D, fluctuations are
detrimental to the stability of a TMI found at the mean-field level, it is known to be stable in 3D
[64, 314–316].
A TMI phase has been originally proposed to occur in Ir-based pyrochlore materials [64], but has not

yet been experimentally observed. In the next chapter (see in particular Chap. 3.2), we will present a
way how 3D STMI and WTMI phases can be controllably realized in a cold-atom setup.
12Note that the definition of TMI we use in this thesis (discussed here and in Chap. 3) crucially differs from the notion of

TMI of Raghu et al. [312]. The definition of TMI of Ref. [312] refers to a topological insulator phase that is reached
by spontaneous symmetry breaking.
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3 Chapter 3

Dimensional crossover and topological
Mott insulators in cold atoms

Before focusing on solid-state materials in the subsequent chapters, let us start with cold-atom systems
which, from a condensed matter perspective, offer the following two possibilities: Firstly, cold atoms
allow for simulating solid-state problems in a highly controllable way and, secondly, provide the oppor-
tunity to realize exotic phases that have not been found in condensed-matter systems so far [62, 63].
In this chapter, we will take advantage of both of these achievements of cold atoms and, on top of
that, illustrate the basic concepts of topological invariants, the bulk-boundary correspondence and the
interplay of topology and interactions discussed in the previous chapter.
In the first part, Sec. 3.1, of this chapter, we will present a minimal and experimentally feasible

model of a time-reversal invariant topological insulator (class AII [249, 251]) that effectively represents
a 3D generalization of an experimental cold-atom setup [285, 286, 288] for the study of 2D topological
phases. By varying a single hopping parameter in the Hamiltonian, it allows to simulate the dimensional
crossover from 2D QSH and topologically trivial insulating phases to 3D WTI, STI and trivial phases
(see Chap. 2.1.4). The phase diagram contains a single point where all distinct phases meet.
In the second part, Sec. 3.2, we study the impact of interactions within slave-rotor theory [65–67].

While conventional on-site Hubbard terms will not lead to TMI phases (see Chap. 2.4.2), we show
how the Hubbard interaction can be effectively modified in cold-atom experiments in order to make
the realization of both WTMI and STMI states possible. The setup we propose thus allows for the
controlled experimental analysis of these exotic spin-liquid-like phases which have not yet been seen in
solid-state systems.
This chapter is based on Ref. [317].

3.1 Dimensional crossover from 2D to 3D topological phases

The starting point of our analysis is the “time-reversal invariant Hofstadter model” on the square lattice
defined by the Hamiltonian [285–288]

Ĥ2D = −
∑
j

(
t ĉ†j+exe

2πiγσ1 ĉj + t ĉ†j+eye
2πiαjxσ3 ĉj + H.c.

)
+ λ

∑
j

(−1)jx ĉ†j ĉj , (3.1)

where ĉj = (ĉj↑, ĉj↓) are two-component fermionic creation operators referring to lattice site j. Below
we discuss both the 2D and 3D case corresponding to j ∈ Z2 and j ∈ Z3, respectively. The parameter
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3 Dimensional crossover and topological Mott insulators in cold atoms

α describes the flux per plaquette of an artificial magnetic field perpendicular to the xy plane, which
due to the Pauli matrix σ3 points in opposite directions for opposite spins. It can thus be seen as two
time-reversed copies of the original Hofstadter problem [318]. For γ = 0, the two spin-orientations ↑
and ↓ are decoupled while these components are mixed by the hopping term along the x direction as
long as 2γ /∈ Z. The λ term describes a staggering of the optical lattice potential along the x direction.
All three terms can be experimentally implemented in cold-atom systems [285, 286, 288]. Note that the
internal on-site degrees of freedom ↑ and ↓ are not realized as physical spin eigenstates of electrons but
rather as suitably chosen states of the atoms used in the cold-atom experiment (see also Chap. 2.2.4).
Due to the preserved spin-1/2 TRS, the model belongs to the symmetry class AII [249, 251] (see also

Chap. 2.1.1). In 2D, its phase diagram hosts topological QSH and topologically trivial normal insulator
(NI) states as well as (semi)-metallic phases [285, 287]. As we have discussed in Chap. 2.2.1, the QSH
phase is characterized by an odd number of helical edge states per edge, while the NI features an even
number (including zero). The topological Z2 invariant ν (see Table 2.1) distinguishes between QSH
(ν = 1) and NI (ν = 0) phase [271, 272]. We will focus on half filling and fixed values of α = 1/6 and
γ = 1/4, as the phase diagram as a function of the staggered potential λ already contains both gapped
phases as well as semi-metallic points. As shown in Fig. 3.1(a) the 2D system is a QSH insulator for
|λ| < λc = 21/3t and becomes normal insulating for |λ| > λc [285, 287]. The system is semi-metallic
at λ = 0 hosting two doubly degenerate Dirac cones and at λ = λc with one doubly degenerate Dirac
cone.
We are interested in studying the dimensional crossover from 2D to 3D by continuously turning on a

hopping parameter tz in the third direction that couples the different 2D layers. The simplest interlayer
coupling term that makes STI phases possible is of the form

Ĥz = −tz
∑
j

(
ĉ†j+eze

2πiαjxσ2 ĉj + H.c.
)
. (3.2)

It contains a synthetic gauge field that represents an artificial magnetic field along the y direction,
which points in opposite directions for spins aligned parallel and anti-parallel to the y axis. Such a
term can be most easily implemented in an all optical realization of the lattice potential [286, 288].
Note that Eq. (3.2) respects TRS and, hence, the resulting 3D Hamiltonian Ĥ2D + Ĥz still belongs to
class AII. As we have seen in Chap. 2.1.4, the system is characterized by four Z2 invariants – the three
weak invariants νj , j = 1, 2, 3, and the strong invariant ν0, which will be calculated below.
We emphasize that the dimensional crossover we investigate here is slightly different from what one

would normally consider in the solid state context: In the latter case, the crossover would be realized
by increasing the thickness of the material in the z direction, while we consider a geometrically fully
3D system (j ∈ Z3) where the coupling tz in Eq. (3.2) is continuously turned on. This is more realistic
in cold-atom systems and, in addition, also eliminates the spurious oscillations of topological invariants
that occur when varying the thickness in the third direction [319].

3.1.1 Effective four band model

As we have to deal with a 12-band model in 3D, some intuitive understanding is desirable. For this
reason, we derive an effective theory valid in the vicinity of the point (tz, λ) = (0, λc) in the phase
diagram of Fig. 3.1(a), where all the distinct phases meet: QSH and NI (for tz = 0 and j ∈ Z2) as well
as STI, WTI, and NI (when tz > 0 and j ∈ Z3). The doubly degenerate Dirac cone at this multi-critical
point is formed out of four bands, the other eight bands are well-separated from the Fermi level.
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3.1 Dimensional crossover from 2D to 3D topological phases

Figure 3.1: Phase diagram and spectra of the noninteracting model. (a) 2D-3D crossover
phase diagram as a function of layer coupling tz and staggered lattice potential λ. (b)
Bulk gap as a function of tz and λ. (c) Surface state spectrum (blue) of the isotropic
3D system tz = t, λ = λc at the x = 0 surface as a function of momenta k2 and k3.
Bulk states are shown as gray dots. We use open (periodic) boundary conditions along
the x (y, z) direction. (d-e) One-dimensional cuts of the spectrum for fixed values of
k3. Gapless edge states localized at the x = 0 (x = L) edge are shown in blue (red)
yielding z0 = 1 and zπ = 0 and thus ν0 = z0 + zπ = 1.
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3 Dimensional crossover and topological Mott insulators in cold atoms

Neglecting corrections quadratic in tz/t, (λ−λc)/t, and k1, k2, quasi-degenerate perturbation theory
[87] yields the effective four-band Hamiltonian

heffi,j(k) = 〈ψ0i|hk|ψ0j〉 , i, j = 1, . . . , 4, (3.3)

where hk denotes the full 12-component Bloch-Hamiltonian associated with the terms in Eqs. (3.1) and
(3.2), |ψ0j〉 are the four zero-energy eigenfunctions of hk=0 at the multi-critical point. Retaining only
the relevant terms linear in k1 and k2, Eq. (3.3) assumes the form

heff(k) =

(
h0(k) −ic τ1tz sin(k3)

ic τ1tz sin(k3) h∗0(−k)

)
, (3.4a)

where the upper left 2× 2 block is given by

h0(k) = gi(k)τi, g(k) =
(
−at k2, bt k1,m(k3)

)
(3.4b)

with mass m(k3) = d [(λc/t+ λ2
c/t

2)tz cos(k3)− δλ] and δλ = λ− λc. The Pauli matrices τi act within
the 2× 2 blocks in Eq. (3.4a) and a, b, c, d are positive constants. For convenience, we have chosen the
basis functions such that the time-reversal operator is given by is2K, where the Pauli matrices si act
between the different 2× 2 blocks and K denotes complex conjugation. The relation between the lower
and the upper diagonal blocks in Eq. (3.4a) can thus be seen as a consequence of TRS. In addition,
this convention directly reveals the connection of the 2D system (tz = 0) to the BHZ model [252], the
paradigmatic model of a QSH state introduced in Chap. 2.2.1. We see that Eq. (3.4) with tz = 0 is of
the form of Eq. (2.14) which directly allows us to identify δλ = 0 as the boundary between QSH and
NI phases. As the regime δλ > 0 is adiabatically connected to the topologically trivial limit λ → ∞,
the effective model reproduces the 2D phase diagram.
To continue with the 3D system, let us first emphasize that the effective Hamiltonian (3.4) is valid

for the entire range −π < k3 ≤ π, since tz (and not k3) has been taken as expansion parameter. As
discussed in Chap. 2.1.4, the four Z2 invariants νj , with j = 0, 1, 2, 3, are defined by invariants of 2D
cuts of the 3D Brillouin zone [253–255]. To determine the strong invariant ν0 ≡ (z0 + zπ)mod 2, we
need to calculate the Z2 invariants z0 and zπ associated with the time-reversal invariant planes k3 = 0
and k3 = π. As Eq. (3.4) again assumes the form of the BHZ model for fixed k3 = 0 and k3 = π, we
can directly conclude that the two QSH invariants z0 and zπ differ when m(0)m(π) < 0. Therefore,
the system is in the STI phase if and only if

|δλ| < (λc/t+ λ2
c/t

2)tz ' 2.85 tz. (3.5)

Note that, despite the fact that the mass m(k3) has to vanish somewhere between k3 = 0 and k3 = π,
the Hamiltonian is still fully gapped. This is a consequence of the block-off-diagonal terms in Eq. (3.4a)
that are finite for k3 6= 0, π. Interestingly, for λ = λc, this model allows for a transition into an STI, a
phase that has no 2D analog, already for infinitesimal coupling tz.
Being adiabatically connected to tz = 0, the other two phases (|δλ| > 2.85 tz) can be easily identified

from the knowledge about the 2D system. For δλ > 2.85 tz, we find an NI, whereas, in case of
δλ < −2.85 tz, the system resides in a WTI phase characterized by (ν0; ν1, ν2, ν3) = (0; 0, 0, 1) [253–
255].
Finally, the effective Hamiltonian also allows understanding why a spin- and position-independent

hopping term along the z direction cannot result in an STI phase. Such a term would simply lead
to a contribution proportional to the identity matrix in the 12-band Bloch-Hamiltonian hk and thus
to a term 14×4f(k3) in the effective low-energy theory (3.3). Consequently, g in Eq. (3.4b) would be
independent of k3 and hence z0 = zπ, excluding the appearance of an STI.
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3.1.2 Numerical validation

We verified our analysis of the effective model by numerically computing the Z2 invariant in all insulating
phases of the full 12-band model using the approach of Ref. [320]. The corresponding phase diagram
is illustrated in Fig. 3.1(a) and is in perfect agreement with our previous discussion. The 2D gapped
QSH (NI) phase turns into a WTI (NI), but most importantly the STI phase emerges from the 2D
quantum critical point. This is the only possibility for an STI to appear at infinitesimal coupling tz as
this phase is not adiabatically connected to the NI and QSH.
The bulk gap, which closes at the phase transitions, is shown in Fig. 3.1(b). It reaches its maximal

value of the order of t for isotropic hopping. Computing the spectrum with open (periodic) boundary
conditions along the x (y, z) direction, we clearly observe in Fig. 3.1(c) (shown for tz = t) a single
gapless Dirac-like surface state (in blue) localized at the x = 0 surface, which crosses the bulk gap
(bulk bands in gray). The Dirac point is located inside the bulk bands (which is not unusual). The
surface Fermi circle encloses an odd number of TRIM reflecting the non-trivial strong invariant ν0 = 1.
1D cuts of the spectrum for k3 = 0 and k3 = π are shown in Fig. 3.1(d) and (e), respectively. We see
explicitly that m(0) and m(π) have opposite signs since the parity of the number of Kramers partners
of surface states on a given boundary changes from odd (QSH) to even (NI) when k3 is tuned from
k3 = 0 to k3 = π.

3.2 Interaction effects and topological Mott phases

In the second part of this chapter, we will include interactions and study whether the model introduced
above can be tuned into a TMI phase. As discussed in more detail in Chap. 2.4.2, a TMI is characterized
by a fractionalization into an internal and a number degree of freedom. In the TMI phase the atoms
are localized, but their internal degree of freedom remains deconfined and inherits the nontrivial band
topology of the original fermions.
So far, in explicit calculations, mainly the consequences of Hubbard on-site interactions

ĤU = U
∑
j

n̂j↑n̂j↓, n̂jσ = ĉ†jσ ĉjσ, (3.6)

have been investigated in order to address interaction effects in topological band structures [64, 314,
321]. While this is very natural for solid state systems, the achievement of ultracold quantum gases
and optical lattices allows considering interactions which cannot be realized in real materials. In the
present context, this is essential since the interaction (3.6) does not lead to the sought after TMI phase
within slave-rotor theory. The reason will become clear in Sec. 3.2.2 below.

3.2.1 Twisting the Hubbard interaction

As illustrated in Fig. 3.2(a), the key idea for effectively realizing an exotic interaction term is to encode
the spin degree of freedom σ =↑, ↓ spatially and use the internal atomic hyperfine states to represent
the even/odd site information along x: µ = + for jx = 2n and µ = − for jx = 2n + 1 with integer n.
We denote the fermionic operators of the new lattice by d̂jµ.
As one can readily understand from Fig. 3.2(a), a local Hubbard interaction realized on the new
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3 Dimensional crossover and topological Mott insulators in cold atoms

Figure 3.2: Twisting the Hubbard interaction. Part (a) shows the relabeling of the spin σ and
spatial even/odd site degree of freedom µ. To obtain an identical Hamiltonian Ĥ2D+Ĥz

one must realize different hopping elements between nearest and next-nearest neighbor
sites as illustrated in (b) for the x direction. The required hoppings along the y and z
direction are described in detail in Appendix B.1.

lattice, Ĥ ′U = U
∑
j n̂

d
j+n̂

d
j−, where n̂

d
jµ = d̂†jµd̂jµ, reads, at half filling, as

Ĥ ′U =
U

2

∑
j,σ=↑,↓

(n̂2jxjyjzσ + n̂(2jx+1)jyjzσ − 1)2 (3.7)

in terms of the occupation numbers of the original ĉjσ fermions. Consequently, Ĥ ′U does not couple
↑-spin and ↓-spin on a given site but instead pairs of neighboring sites having the same spin orientation;
the Hubbard term is twisted. As shown below, it will generate TMI phases [64] if we keep the same
noninteracting Hamiltonian Ĥ2D+Ĥz as before. To achieve this, one needs to experimentally implement
different laser induced hopping elements for the d̂jµ fermions as illustrated in Fig. 3.2(b) for the x
direction. Only nearest neighbor and next-nearest neighbor terms along the three spatial directions are
required.

3.2.2 Interacting phase diagram within slave-rotor mean-field theory

We approach the TMI using slave-rotor theory [65–67] which starts by writing the fermion operator
d̂jµ as a product of number and internal degree of freedom according to

d̂jµ = eiθj ŝjµ. (3.8)

Here, θj denote phases conjugate to the total particle number (of d̂jµ fermions) on site j and ŝjµ is a
spinon fermion operator that carries the internal index. The system is then described by two coupled
mean-field Hamiltonians: a quantum XY rotor model, which captures the number degrees of freedom,
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and a renormalized noninteracting spinon Hamiltonian. As the strength of the quantum fluctuations in
the rotor model is determined by the interaction U , the rotor undergoes a transition from a ferro- to a
paramagnetic state as U is increased beyond a critical value Uc. This transition corresponds to the Mott
transition. The spinons, on the other hand, are characterized by a band structure with renormalized
parameters (set by the correlations between the rotors), that can be topologically nontrivial and carry
gapless surface excitations. This means that the topological classification has again been effectively
reduced to the analysis of noninteracting mean-field Hamiltonians despite the presence of strong inter-
actions that lead to fractionalized excitations. The slave-rotor saddle-point equations can be shown to
be controlled in a large-N limit [65]. In the following, we focus on the 3D limit of the system where the
spin-liquid phases found on the mean-field level are known to be stable against fluctuations [64]. We
leave the technical aspects of the slave-rotor approach to Appendix B.2 and proceed with the results
and physical implications of the calculation.
We find that the interaction only renormalizes the hopping elements t, tz but leaves λ unchanged.

Physically, this is due to the fact that H ′U is, at half filling, not sensitive to an imbalance between µ = +
and µ = −. This is the reason why the Hubbard interaction had to be twisted: The usual on-site term
in Eq. (3.6) would penalize the staggered density patterns induced by the λ term in Eq. (3.1). We have
shown that this renormalizes λ to zero at the Mott transition within slave-rotor theory rendering the
spinon spectrum gapless and, hence, excludes the possibility of a TMI state.
On top of renormalizing t and tz, the twisted interaction (3.7) induces slight spatial anisotropies

between the hopping elements as well as inhomogeneities in the six-atom unit cell. In Fig. 3.3(a) we
show the interacting phase diagram as a function of U/t and tz/t in the region of the dimensional
crossover for λ/t = 0.25. The hoppings of the d̂jµ fermions on the new lattice have been chosen such
that their Bloch Hamiltonian is unitarily equivalent to the Bloch Hamiltonian of the ĉjσ fermions and,
consequently, the U = 0 line reproduces a cut of the phase diagram in Fig. 3.1(a). The noninteracting
phases remain stable for small interactions U/t . 2, but the anisotropies lead to the emergence of a
correlated semi-metallic phase at intermediate U/t ' 2, where interactions induce a formation of Dirac
cones.
Stronger interactions drive the system across a quantum phase transition to various Mott phases at

a critical interaction strength Uc. In the Mott state, the fermionic degrees of freedom are fractionalized
with charge (or number) and internal hyperfine degrees of freedom being split. While the number
degrees of freedom are localized, the internal hyperfine degrees of freedom are deconfined. The resulting
spinon band structure can remain topological across the Mott transition, which defines the sought after
STMI and WTMI phases. The dashed lines in Fig. 3.3(a) are only a guide for the eye indicating that
the different Mott phases persist for U & Uc. At even larger interaction strength magnetically ordered
phases are likely to emerge (not shown). Note that the various complex hopping terms lead to a rather
frustrated spin exchange and we expect the onset of magnetism for U � Uc.
In Fig. 3.3(b) we present the interacting phase diagram at the critical interaction strength Uc as a

function of λ/t and tz/t to show that WTMI and STMI occupy a large part of it. These phases exhibit
a bulk gap of the order of 10% of the renormalized bandwidth (see Fig. 3.3(c)). Due to the topological
nature of the spinon band structure, they feature gapless spinon surface states shown in Fig. 3.3(d)
and (e) which is the defining property of the TMI phases.
Note that time-reversal is in our proposal a nonlocal operation interchanging sites with even and odd

jx in the new basis of d̂jµ fermions defining the experimental lattice. Clearly, this is a consequence
of the fact that the transformation ĉjσ → d̂j′µ depicted in Fig. 3.2 is nonlocal. However, on the scale
of the system size, time-reversal and the mapping to the new lattice can be regarded as quasi-local
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3 Dimensional crossover and topological Mott insulators in cold atoms

Figure 3.3: Properties of the interacting system according to slave-rotor theory. (a)
Interacting phase diagram as a function of interaction U and hopping tz for fixed
λ/t = 0.25. Upon increasing U the phases found at U = 0 remain mostly intact with
renormalized parameters. For tz/t ' 0.4 an extended correlated semi-metallic (SM)
phase appears at U/t ' 2. At a critical value Uc/t (green line) the system enters a
Mott insulating state with WTMI and STMI as well as gapless Mott insulator (GMI)
phases. The GMI phase exhibits a semi-metallic spinon spectrum. Dashed lines are a
guide to the eye showing that Mott phases persist for U > Uc. (b) Interacting phase
diagram (with NMI referring to a Mott phase with trivially gapped spinon structure)
and (c) bulk gap at Uc as a function of staggering λ and hopping tz. The STMI phase
occupies a large part of the phase diagram and features a significant bulk gap. (d-e)
1D cut through the spinon band structure in the STMI phase for the isotropic system
tz = t and λ/t = 0.15. We use open (periodic) boundary conditions along the x (y, z)
direction. Bulk states are shown in yellow, gapless spinon edge states at the x = 0
(x = L) edge are shown in blue (red).
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operations and, in particular, do not interchange surface states at distinct surfaces. Thus any quasi-
local perturbation of the d̂j′µ fermions is also quasi-local in the basis of ĉjσ and the surface states in
the new lattice localized on a given boundary form a time-reversal symmetric electronic system. This
shows that the protection [9, 10] of the surface states against localization by time-reversal symmetric
disorder also holds in the present case.

3.2.3 Detection

Finally, let us also briefly discuss how the TMI phases are reflected in observable quantities. The atoms
are frozen in a Mott insulating state which can be detected via standard time-of-flight measurements.
The most straightforward way to detect the spinon surface states is to measure the spin-dependent
spectral function. Alternatively, one might consider transport or thermodynamic quantities [322, 323].
In contrast to noninteracting topological insulators, the TMIs do not exhibit a finite “charge” (or
number) response at low frequencies due to the Mott gap. The gapless spinon surface states, however,
carry entropy resulting in a thermal conductivity that is linear in temperature [64] and a heat capacity
that scales as T ln(1/T ) [324]. Distinguishing between WTMI and STMI is possible as they feature a
different number of surface states. The specific heat and thermal conductivity will thus be quantitatively
different in the two phases.

3.3 Summary of Chapter 3

In summary, we have proposed a minimal model given by the Hamiltonian Ĥ2D+Ĥz defined in Eqs. (3.1)
and (3.2) with the following properties: All of its terms can be implemented in cold-atom experiments
[285, 286, 288] and it allows for simulating the dimensional crossover within class AII [249, 251] from
topologically trivial (NI) and nontrivial (QSH) 2D insulating phases to WTI, STI and trivial phases in
3D. The crossover is tuned by varying the hopping strength tz in the z direction and summarized in
the phase diagram given in Fig. 3.1(a). In accordance with our discussion in Chap. 2.1.4, turning on
tz adiabatically in the QSH phase can only lead to a WTI. However, right at the transition in the 2D
limit between the QSH and the trivial phase, the model enters the STI phase already at infinitesimal tz.
We have seen how the topological invariants are conveniently calculated by comparison of the effective
low-energy model (3.4) of the system, which is valid in the vicinity of the point in Fig. 3.1(a) where all
different phases meet, with the BHZ Hamiltonian introduced in Chap. 2.2.1.
The impact of electronic repulsion on the model in the 3D limit has been studied within slave-rotor

mean-field theory [65–67]. We have discussed why the most widely studied local Hubbard interaction
(3.6) cannot lead to a TMI phase within our model. Instead, an interaction term involving nearest
neighbors as given by Eq. (3.7) has to be considered. We have shown how an interaction of this form
can be effectively realized as summarized graphically in Fig. 3.2. As can be seen in the phase diagram
in Fig. 3.3(a) and (b), this term yields both WTMI and STMI as well as trivial (NMI) and gapless Mott
phases (GMI). The central property of nontrivial Mott insulating states, the emergence of spin-only
edge modes, can be used to detect this exotic state of matter (see Sec. 3.2.3).
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4 Chapter 4

Selection rules for pairing states in
noncentrosymmetric superconductors

In Chap. 1.3 we have seen that determining the detailed microscopic structure of the order parameter
of a superconductor is in general a very nontrivial task. In many systems, such as Sr2RuO4, UPt3
and URu2Si2, it took several years of intense theoretical and experiment work to collect convincing
evidence for a single candidate pairing state, while controversies still remain [160–165]. In the case of
superconductivity, e.g., in oxide heterostructures and FeSe on STO, which has a much shorter history
[39, 40, 157], no prime candidate state has been established yet [37, 38, 159]. To pinpoint the order
parameter structure, group theoretical methods have turned out to be very useful [50, 78–84] which
is a consequence of the fact [1] that, at a second order phase transition, the order parameter has to
transform under one of the IRs of the symmetry group of the high-temperature phase (see Chap. 1.1.1).
In this chapter, we will combine these symmetry-based constraints on pairing states with energetic

arguments valid for systems with singly-degenerate Fermi surfaces. The latter property naturally holds
in the presence of strong SOC and broken inversion symmetry. While the absence of a center of
inversion constitutes a special case for 3D systems, it is rather the typical situation in the experimental
realization of 2D systems as mentioned in Chap. 1.3. The selection rules we will derive yield strong
additional constraints on possible pairing states, in particular, for spontaneous TRS breaking at a
single superconducting phase transition. They are general in the sense that they are formulated only
in terms of the point symmetry and time-reversal properties of the high-temperature phase and hold
in the absence of additional translation symmetry breaking as long as the splitting Eso of the Fermi
surfaces is larger than the superconducting energy scales.
These selection rules can be used to gain information about the time-reversal properties of a super-

conductor with unknown microscopic order parameter and, in addition, be read as a design principle
in the experimental search for superconductors that spontaneously break TRS. The presence or ab-
sence of TRS is a crucial property of a superconductor because it not only determines its topological
classification (see Chap. 2.1) but also its thermal and electromagnetic response: Broken TRS in a su-
perconductor leads, e.g., to the formation of magnetic moments at inhomogeneities [50, 51], to a small
but measurable [47–49] rotation of the polarization direction of reflected light (PKE) and has recently
been predicted to induce an unconventional giant thermoelectric effect [52].
This chapter is organized as follows: In Sec. 4.1, we will discuss in detail what TRS means and

requires to be broken in the context of superconductivity. The weak-pairing description, which is
central for the analysis of this chapter, will be introduced in Sec. 4.2. These first two sections are

55



4 Selection rules for pairing states in noncentrosymmetric superconductors

mainly intended to introduce the notation and to deduce the basic properties that will then be used
to derive selection rules for pairing states in the remainder of the chapter. In Sec. 4.3, higher order
terms of the Ginzburg-Landau expansion are analyzed with respect to the mean-field order of the
phase transition and TRS breaking in multidimensional or complex IRs. Sec. 4.4 will be devoted to
the particularly restrictive constraints for 2D systems, for simplicity focusing on the physically most
relevant case of spinfull, as opposed to spin-polarized, fermions. The discussion of the latter will be
postponed to Sec. 4.7. In Sec. 4.5, we will analyze under which physical conditions the weak-pairing
description and, hence, the selection rules can be used. The results will be applied to several different
materials in Sec. 4.6. Finally, in Sec. 4.8, we will discuss the consequences of our analysis for surfaces
of 3D materials.
This chapter is based on unpublished work [325, 326]. The discussion of oxide heterostructures is

partially also presented in Ref. [38].

4.1 TRS in superconductors

In Chap. 2.1.1, we have introduced TRS on a very formal level: A Hamiltonian Ĥ is said to be time-
reversal symmetric if it commutes with an anitunitary operator Θ̂. More physically, this means that the
microscopic dynamics of the system is invariant under the reflection of the time-direction in the following
sense: If the system is initially prepared in the state |Ψi〉, it will evolve into |Ψf 〉 = exp (−i∆tĤ) |Ψi〉
during time ∆t. The “backward evolution” from Θ̂ |Ψf 〉 to Θ̂ |Ψi〉 is now governed by the time-reversed
Hamiltonian Ĥθ = Θ̂ĤΘ̂†, i.e.,

Θ̂ |Ψi〉 = exp (−i∆tĤθ)Θ̂ |Ψf 〉 . (4.1)

In case of TRS it holds Ĥθ = Ĥ and the backward evolution is generated by the exact same Hamiltonian.
Note that the Hamiltonian Ĥ can both be seen as a single-particle, mean-field, Hamiltonian (as, e.g.,
in Chap. 2.1.2) as well as the full many-body Fock-space Hamiltonian.
As we will discuss in this section, TRS plays a special role in superconductivity: Firstly, the Cooper

pairs (see Chap. 1.1.2) are built from time-reversed partners of states (so-called Kramers partners) such
that the presence of TRS in the high-temperature phase is crucial for the superconducting instability
itself. Secondly, the U(1) gauge symmetry leads to strong requirements for spontaneous TRS-breaking
[81]. In Sec. 4.1.1, we will mainly introduce the notation used in this chapter and then (see Sec. 4.1.2)
analyze what TRS breaking requires in the context of a general superconducting multicomponent
Ginzburg-Landau expansion that only takes into account the symmetries of the high-temperature phase.

4.1.1 The general mean-field Hamiltonian

In this chapter, we will analyze the general superconducting mean-field Hamiltonian

ĤMF =
∑
k

ĉ†kα
(
hk
)
αβ
ĉkβ +

1

2

∑
k

(
ĉ†kα∆αβ(k)ĉ†−kβ + H.c.

)
(4.2)

where ĉ†kα and ĉkα describe the creation and annihilation of quasiparticles in a state characterized by
the quantum numbers (k, α), respectively. Here k is the d-dimensional crystal momentum and the
indices α, β = 1, 2, . . . N represent all relevant microscopic degrees of freedom, e.g., spin, orbitals and,
in case of a 2D system, also subbands. The normal state properties are described by hk which contains
the entire information on the band structure and Bloch wavefunctions. To conveniently distinguish
between first and second quantized operators we will use hats to denote the latter.
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4.1 TRS in superconductors

Eq. (4.2) is a generalized form of the original BCS Hamiltonian introduced in Sec. 1.1.2 which allows
for all possible two-particle pairing states that do not break translation symmetry. The order parameter
matrix ∆ is exactly the same as in the general Ginzburg-Landau expansion of Sec. 1.1.1.
Using the fermionic anticommutation relations in Eq. (4.2), it follows that

∆(k) = −∆T (−k) (4.3)

recovering the antisymmetry constraint (1.2).
Furthermore, the transformation of the order parameter under operations g of the symmetry group
G0 of the high temperature phase follows from the representation on the field operators

ĉ†kα
g−→ ĉ†Rv(g)kβ

(
RΨ(g)

)
βα

(4.4)

whereRΨ(g) andRv(g) are the spinor and vector representation of g. As already discussed in Sec. 1.1.1,
G0 will either be equal to the point group Gp or SO(3)×Gp with SO(3) describing spin-rotations depend-
ing on whether independent spin-rotation symmetry is broken or preserved in the normal state. Due to
the assumed form of the mean-field Hamiltonian (4.2) the translation symmetries will be unaltered in
the superconducting phase such that we do not have to investigate the full space group of the system.
By design, the high-temperature Hamiltonian h is invariant under all g ∈ G0 and, hence,

RΨ(g)hR−1
v (g)kR

†
Ψ(g) = hk (4.5)

as follows from applying Eq. (4.4) to the first term in the mean-field Hamiltonian (4.2). Similarly, we
get the transformation behavior of the order parameter,

∆(k)
g−→ RΨ(g)∆(R−1

v (g)k)RTΨ(g), (4.6)

in accordance with Eq. (1.3).
In the following, time-reversal will be represented by the antiunitary operators Θ̂ and Θ in Fock and

single-particle space, respectively. We define the action of Θ̂ via

Θ̂ĉ†kαΘ̂† = ĉ†−kβTβα, T †T = 1, (4.7)

such that demanding that the first term in Eq. (4.2) commutes with Θ̂ is equivalent to

Θh−kΘ† = hk (4.8)

with Θ = TK where K denotes complex conjugation. For the sake of generality we will not further
specify T . It will only be important that

Θ2 = (−1)2S
1, (4.9)

where S = 0 and S = 1/2 for spinless and spinfull electrons. The connection (4.9) between the spin S
(holds for all S ∈ N/2) and the square of the time-reversal operator readily follows by demanding that
Θ inverts the direction of the spin [93]. Although our main interest is on spinfull fermions, S = 1/2,
we will also discuss the spinless case (S = 0). The latter is relevant when fermionic TRS is broken but
the effective low-energy theory has an emergent TRS with Θ2 = 1. This occurs quite generically in the
presence of strong Zeeman splittings as we will see in Sec. 4.7.1.
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4 Selection rules for pairing states in noncentrosymmetric superconductors

Applying Eq. (4.7) in the pairing term of the mean-field Hamiltonian (4.2) shows that the order
parameter transforms as

∆k −→ T∆∗−kT
T (4.10)

under time-reversal.
The key step in multicomponent Ginzburg-Landau expansions as discussed in Sec. 1.1.1 is the ex-

pansion of the order parameter

∆(k) =
∑
n

dn∑
µ=1

ηnµχ
n
µ(k), ηnµ ∈ C, (4.11)

in terms of the basis functions {χnµ} transforming under the different IRs n of G0 as defined in Eq. (1.5).
This allows to represent all unitary symmetries in terms of the expansion coefficients {ηnµ}. However,
in case of time-reversal we face the problem that the unitary symmetries of G0 do not determine the
behavior of the basis functions under Eq. (4.10). In the next subsection we will analyze how the TRS
of the high-temperature phase makes it possible to express Eq. (4.10) solely in terms of the expansion
coefficients {ηnµ}.

4.1.2 Consequences for the basis functions

To study the implications of the TRS of the high-temperature phase on the basis functions {χnµ}, it is
very convenient to introduce {χ̃nµ(k)} via

χnµ(k) = χ̃nµ(k)T. (4.12)

Since the unitary part of the time-reversal operator appears explicitly, this notation will also turn out
to be very useful when studying the superconductor in the eigenbasis of the normal state Hamiltonian
hk in the subsequent sections of this chapter.
To proceed, we take advantage of the fact that time-reversal is not a spatial symmetry and must,

hence, commute with all operations of the symmetry group G0,

[Θ,RΨ(g)] = 0 ∀g ∈ G0. (4.13)

To illustrate this statement, consider, e.g., rotations which are generated by the angular momentum
operators J . Depending on the system, J can be just spin or orbital angular momentum or the sum
of both. In all cases, it holds {Θ,J} = 0 by construction and, hence, RΨ = exp(−iα · J) with α
describing the axis and angle of rotation commutes with Θ.
Using Eq. (4.13), it readily follows that the new basis functions {χ̃nµ(k)} transform according to

RΨ(g)χ̃nµ(R−1
v (g)k)R†Ψ(g) =

(
Rnχ(g)

)
µν
χ̃nν (k) (4.14)

which is more convenient as the behavior (1.5) of {χnµ} as it transforms like a sesquilinear form such as
hk in Eq. (4.5).
Since the point groups of crystalline systems allow for both real and complex IRs [91], we have to

discuss both cases here. We denote the complex conjugate representation of n by n̄ which is defined by

Rn̄χ(g) =
(
Rnχ(g)

)∗
. (4.15)
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4.1 TRS in superconductors

Note that if n is an IR, the same also holds for n̄ as is easily shown. If n = n̄, the representation is
said to be real.
The central statement of this subsection is that the TRS of the high-temperature phase implies that

the basis functions χ̃nµ(k) = χnµ(k)T † can always be chosen so as to satisfy(
χ̃nµ(k)

)†
= χ̃n̄µ(k). (4.16)

In particular, for a real representation (n = n̄) the basis functions are Hermitian. In Ref. [81], this
statement has been shown for the special case of real IRs and just a single pseudospin degree of freedom.
In Appendix C.1 we present a generalized proof that works also when n 6= n̄ and for an arbitrary
number N of relevant microscopic degrees of freedom within the unit cell. It is additionally shown
that Eq. (4.16) still holds when the normal state is antiferromagnetically ordered or more generally
in the case of SDW order. It even applies in the presence of magnetic impurities as long as TRS is
restored on average (no net magnetic moment), the system is self-averaging (see Chap. 1.4) and the
superconducting order parameter can be assumed to be homogeneous.
Before discussing the consequences of Eq. (4.16) for the representation of TRS on the expansion

coefficients {ηnµ}, we give a simple, though less general, argument for why Eq. (4.16) holds. For this
purpose, consider the quartic interaction term in the Cooper channel

ĤC
int = −

∑
n,n′

∑
µ,µ′

Cnn
′

µµ′

∑
k

ĉ†kχ̃
n
µ(k)T

(
ĉ†−k

)T∑
k′

ĉT−k′
(
χ̃n
′
µ′(k

′)T
)†
ĉ
k′

 (4.17)

expanded in terms of the basis functions {χnµ}. Demanding that Ĥint be invariant under Eq. (4.4) for all
g ∈ G0 and using the grand orthogonalilty theorem (1.10), it follows that C, exactly asM in Eq. (1.8),
must be fully diagonal, Cnn′µµ′ = δnn′δµµ′gn.
Focusing on time-reversal symmetric normal state Hamiltonians the interaction has to satisfy ĤC

int =
Θ̂ĤC

intΘ̂
† which is equivalent to invariance of Eq. (4.17) under replacing all basis functions χ̃nµ by their

Hermitian conjugate (χ̃nµ)†. As directly follows from Eq. (4.14), (χ̃nµ)† transforms exactly as χ̃n̄µ, such
that TRS requires

χ̃nµ(k) = eiζ
n
µ

(
χ̃n̄µ(k)

)†
, gn = gn̄. (4.18)

As the phase factors eiζ
n
µ do not play any role, we can set them to 1 leading to Eq. (4.16).

Real representation. Let us first discuss real representations where the constraints on the coupling
constants in Eq. (4.18) are trivial and the basis functions are Hermitian. Applying Eq. (4.10) in the
expansion (4.11) of the order parameter then shows that time-reversal simply amounts to replacing

ηnµ −→ (−1)2S+1
(
ηnµ

)∗
, (4.19)

where we have used the antisymmetry property (4.3). Note that the additional minus sign in case of
spinless fermions is of no significance as it can be removed by a U(1) gauge transformation1. For the
very same reason, a global phase of all {ηnµ} can always be absorbed leading to the well-known [81] result
that a superconducting order parameter can only break TRS if it transforms under a multidimensional
representation.
1We could have chosen eiζ

n
µ = (−1)2S+1 in Eq. (4.18) to remove the additional factor in Eq. (4.19).
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4 Selection rules for pairing states in noncentrosymmetric superconductors

Complex representation. In case of a complex IR, time-reversal is tantamount to replacing all
ηnµ by (ηn̄µ)∗. This forces the prefactors an(T ) and an̄(T ) in the Ginzburg-Landau expansion (1.11)
to be identical which embodies the degeneracy of coupling constants in Eq. (4.18). Therefore, when
analyzing the possible superconducting phases associated with a complex representation n one always
has to consider its conjugate partner n as well. In fact, it is very convenient to think of this pair as a
reducible real representation of dimension 2dn. To make this more explicit, let us write

∆k = · · ·+
dn∑
µ=1

(
ηnµχ̃

n
µ(k) + ηnµχ̃

n
µ (k)

)
T + · · · = · · ·+

2dn∑
µ=1

ηñµχ̃
ñ
µ(k)T + . . . , (4.20)

where we have introduced basis functions (µ = 1, . . . , dn)

χ̃ñµ(k) =
1√
2

(
χ̃nµ(k) + χ̃nµ(k)

)
, χ̃ñµ+dn(k) =

1√
2 i

(
χ̃nµ(k)− χ̃nµ(k)

)
(4.21)

which are obviously Hermitian due to Eq. (4.16) and

ηñµ =
1√
2

(
ηnµ + ηnµ

)
, ηñµ+dn =

i√
2

(
ηnµ − ηnµ

)
. (4.22)

Since {ηnµ , ηnµ} ↔ {ηñµ} just defines a unitary transformation, the quadratic contribution to the free
energy preserves its diagonal form (1.11). Due to Hermiticity of the basis functions, time-reversal has
the same representation as in Eq. (4.19) with n replaced by ñ. Also all symmetry operations g ∈ G0

are represented by real matrices in the new basis as is straightforwardly shown.
Taken together, we have seen that the order parameter must necessarily transform either under a

real multidimensional or a complex IR to obtain a TRS-breaking condensate. In the remainder of this
chapter, we will supplement these purely symmetry-based considerations with energetic arguments for
systems with singly-degenerate Fermi surfaces in order to gain refined criteria for the time-reversal
properties of the possible superconducting states.

4.2 Weak-pairing limit

In order to apply energetic arguments, the most natural basis is not provided by the microscopic degrees
of freedom, like spin, orbitals etc., as referred to by the Greek indices α, β in Eq. (4.2), but rather
by the eigenstates ψks of the high-temperature Hamiltonian hk satisfying hkψks = εksψks. For this
reason, we introduce new field operators according to

ĉkα =
∑
s

(
ψks
)
α
f̂ks, ĉ†kα =

∑
s

f̂ †ks
(
ψ∗ks
)
α
. (4.23)

If we used all N eigenstates at every k, this would just constitute an exact unitary transformation. We
will, however, apply the following low-energy approach: Only the bands leading to Fermi surfaces are
taken into account and we will focus on states with energies εks close to the Fermi level with associated
energetic cutoff denoted by Λ, i.e., |εks| < Λ. We use the freedom in labeling the states such that the
set {k|εks = 0} of crystal momenta, which will be referred to as Fermi surface s, is connected. In this
way, the description of topological properties follows most easily as the meaning of the label s used
here and in the expression for the topological invariants of Sec. 2.2.3 coincides. Furthermore, the nodal
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4.2 Weak-pairing limit

Figure 4.1: Parameterization and energetics of Fermi surfaces. In (a), the basic notation
which is used in this chapter to label the Fermi surfaces is illustrated for the special
case of a 2D system. The angle Ω will be used to refer to a single state on a given
Fermi surface in Sec. 4.3 below. A 1D cut of the spectrum along the red dashed line is
shown schematically in (b) together with the inter-Fermi-surface matrix element D12

coupling single particle states separated energetically by Eso.

structure of the superconductor can be compactly expressed (see below). In addition, we introduce
the notation that the Kramers partner of the state (s,k) is denoted by (sK,k). Taken together, these
conventions imply that a Fermi surface s and its Kramers partner sK can both be identical or distinct:
In the example shown in Fig. 4.1(a), it holds s = sK for s = 1, 2, while s = 3 = 4K.
In the remainder of this chapter, we will focus on systems with singly-degenerate Fermi surfaces. As

discussed in Chap. 1.3, this requires both the presence of SOC and broken inversion symmetry if spin-
1/2 TRS is preserved, i.e., if Eq. (4.8) with Θ2 = −1 holds. We emphasize that our analysis also allows
for the situation that fermionic TRS is broken but an effective spin-0 TRS emerges (see Sec. 4.7.1).
In that case Θ in Eq. (4.8) satisfies Θ2 = +1 and the Fermi surfaces can also be nondegenerate for
centrosymmetric point groups. In both cases, independent spin-rotation symmetry is broken such that
G0 is equal to the point group of the system.
The absence of degeneracy allows for uniquely relating wavefunctions of the low-energy theory ac-

cording to

ψks = eiϕ
s
kΘψ−ksK , (4.24)

where ϕsk ∈ R are phases that depend on the phases of the eigenstates ψks. The importance of these
phases for properly describing the noncentrosymmetric superconductors has first been emphasized in
Ref. [327]. The reason is that, for S = 1/2, they cannot be set to 1 and, hence, removed from the
theory by adjusting the phases of the eigenstates. This follows from the property

eiϕ
sK
−k = (−1)2Seiϕ

s
k (4.25)

which is enforced by Θ2 = (−1)2S . In more physical terms, the minus sign on the right-hand side
of Eq. (4.25) in the case of S = 1/2 just expresses the fact that, despite being singly degenerate, the
bands of the normal state Hamiltonian are formed by spin-1/2 particles. This is an essential physical
property of the system which must be reflected in its theoretical description.
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4 Selection rules for pairing states in noncentrosymmetric superconductors

Applying Eq. (4.23) to the general mean-field Hamiltonian (4.2), the latter can be restated as

ĤMF =
∑
k

f̂ †ksεksf̂ks +
1

2

∑
k

(
f̂ †ksDss′(k)e−iϕ

s′
k f̂ †−ks′K

+ H.c.
)
, (4.26)

where we have introduced the matrix elements

Dss′(k) = 〈ψks|∆(k)T †|ψks′〉 (4.27)

of the order parameter with respect to the wavefunctions of the high-temperature Hamiltonian and taken
advantage of the relation (4.24) to write D as a scalar product. To cast the ĤMF in quadratic form,
ĤMF = 1

2

∑
k Ψ̂†kh

BdG
k Ψ̂k, we introduce the Nambu spinor Ψks = (fks, f

†
−ksKe

−iϕsk)T . The associated
BdG Hamiltonian reads (

hBdGk

)
ss′

=

(
εksδs,s′ Dss′(k)
D∗s′s(k) −εksδs,s′

)
. (4.28)

We now consider the weak-pairing limit, where matrix elements of the order parameter between states
at different Fermi surfaces, such as D12 in Fig. 4.1(b), can be neglected. Formally, this corresponds to
replacing

Dss′(k) −→ δs,s′∆̃s(k). (4.29)

Note that this only refers to the order parameter and not to the interaction driving the superconducting
instability. Fermi-surface-off-diagonal matrix elements of the latter are even required to ensure the
superconducting order parameter to be unique. The reason is that, otherwise, changing the relative
phase of ∆̃s between different s would be a symmetry of the free energy. In more physical terms,
Eq. (4.29) means that anomalous averages are made of the same quantum numbers as the normal
state.
Applying Eq. (4.29) in the BdG Hamiltonian (4.28) immediately yields the excitation spectrum

Eks =

√
ε2ks +

∣∣∣∆̃ks

∣∣∣2 (4.30)

in the weak-pairing limit. Recalling that the Fermi surfaces have been defined to be connected, we see
that the Fermi surface s of the superconductor is fully gapped if and only if ∆̃ks 6= 0 for all k on s.
Note that this criterion for the presence or absence of a node is much simpler than its analogue in case
of doubly-degenerate Fermi surfaces [50].
As can be seen in Fig. 4.1(b), the Fermi-surface-off-diagonal matrix elements, Dss′ with s 6= s′, couple

states which are energetically separated. Denoting the associated energy scale by Eso, it is natural to
expect the weak-pairing limit (4.29) to be applicable as long as Eso is much larger than the energy
scales of superconductivity. As we will see explicitly in Sec. 4.5, using the weak-pairing limit to derive
selection rules for pairing states merely requires Eso to be larger than the gap at T = 0 or, equivalently,
larger than Tc (times some prefactor of order 1).
For the moment, let us assume that Eq. (4.29) is applicable and analyze the consequences for the

possible superconducting states. As a first step we reconsider the fermionic antisymmetry constraint
(4.3) and then investigate the representation of the elements of the symmetry group G0 and TRS in
the weak-pairing limit.
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4.2 Weak-pairing limit

4.2.1 Fermi-Dirac statistics

The relation analogous to Eq. (4.3) formulated in the eigenbasis of the high-temperature Hamiltonian is
most easily found by shifting (s, s′,k)→ (sK, s

′
K,−k) in the summation in the second term in Eq. (4.26)

and using the property (4.25) of the phase factors. One finds

Dss′(k) = (−1)2S+1Ds′KsK
(−k)ei(ϕ

s′
k −ϕ

s
k), (4.31)

which can, alternatively, also be obtained by using Eq. (4.3) in the definition (4.27) of D. Most
importantly, in the weak-pairing limit (4.29) the phase factors cancel and Eq. (4.31) becomes

∆̃s(k) = (−1)2S+1∆̃sK(−k), (4.32)

i.e., the order parameter has to be necessarily even (odd) under (s,k)→ (sK,−k) for spinfull, S = 1/2,
(spinless, S = 0) fermions.
This shows that Fermi-Dirac statistics is much more restrictive in the weak-pairing limit as com-

pared to the situation of doubly-degenerate Fermi surfaces: In the latter case, where we can still use2

the description (4.26) of the mean-field Hamiltonian in the eigenbasis of hk, there are 3 independent
functions, D11(k), D22(k) and D12(k), per Fermi surface doublet. The main difference is that D12(k),
which is in general by no means less important than the diagonal terms of D as our distinction between
the outer and inner Fermi surface is artificial, is not restricted at all by the fermionic anticommutation
relations as opposed to the Fermi surface diagonal terms.
Although (the S = 1/2 case of) the property (4.32) of the diagonal matrix elements of the order

parameter had already been known for more than 10 years [327], to the best of our knowledge, its
strong implications for the possible pairing states of 2D systems, to be discussed in Sec. 4.4 below, had
not been pointed out until recently [325].

4.2.2 Symmetry properties in the weak pairing description

Let us next discuss the transformation behavior of ∆̃s(k) under the action of symmetry operations of
the high-temperature phase.

Unitary symmetries. For the description of the unitary symmetries g ∈ G0 it is most convenient to
apply the expansion (4.11) in order to obtain the representation

∆̃s(k) ≡ 〈ψks|∆(k)T †|ψks〉 =
∑
n

dn∑
µ=1

ηnµϕ
n
µ(k, s), ηnµ ∈ C, (4.33)

where the new basis functions ϕnµ(k) are defined by

ϕnµ(k, s) := 〈ψks|χ̃nµ(k)|ψks〉 . (4.34)

Comparing Eqs. (4.11) and (4.33) shows that the weak-pairing approximation (4.29) allowed us to

reduce the complexity of the description: While {χnµ(k)} are matrix fields satisfying
(
χnµ(k)

)T
=

−χnµ(−k) due to Fermi-Dirac statistics and
(
χ̃nµ(k)

)†
= χ̃n̄µ(k) as a consequence of the TRS of the

2Can be formally seen by artificially introducing an infinitesimal amount of spin-orbit splitting that makes it possible
to identify two singly-degenerate Fermi surfaces but does not affect any physical property of the system.

63



4 Selection rules for pairing states in noncentrosymmetric superconductors

high-temperature phase, the new basis {ϕnµ(k, s)} just consists of scalar functions for each Fermi surface
with the corresponding properties

ϕnµ(k, s) = (−1)2S+1ϕnµ(−k, sK), ϕnµ(k, s) =
(
ϕn̄µ(k, s)

)∗
, (4.35)

respectively.
To investigate how the basis functions {ϕnµ(k, s)} transform, recall that the Fermi surfaces are as-

sumed to be non-degenerate and, hence, it must hold

ψks = eiρ
s
k(g)R†Ψ(g)ψRv(g)kRs(g)s (4.36)

as a consequence of Eq. (4.5). Here ρsk(g) ∈ R are some irrelevant phases and Rs(g) denotes the
representation of g on the Fermi surface index s which depends on the Fermi surface topology. Using
Eq. (4.36), one readily finds from the definition (4.34) that the basis functions {ϕnµ(k, s)} transform
under the same, s-independent, IRs as the matrix fields {χnµ(k)}, i.e.,

ϕnµ(Rv(g)−1k,Rs(g)−1s) =
(
Rnχ(g)

)
µν
ϕnν (k, s). (4.37)

This means that, once we have found the IR n0 under which the order parameter ∆(k) transforms,
together with the associated orientation of the vector (ηn0

1 , . . . ηn0
dn0

), we also know the symmetry prop-
erties of the order parameter

∆̃s(k) =

dn0∑
µ=1

ηn0
µ ϕ

n0
µ (k, s) (4.38)

as it transforms exactly the same way.

Time-reversal. Finally, let us discuss the representation of TRS on in the eigenbasis of the normal
state Hamiltonian. Applying the time-reversal transformation (4.10) in the definition (4.27) of D, one
finds that the order parameter matrix behaves as

D(k) −→ (−1)2S+1D†(k) (4.39)

under time-reversal, where we have taken advantage of Eqs. (4.3) and (4.9). As the additional prefactor
(−1)2S+1 can always be absorbed by properly adjusting the global phase of the order parameter, time-
reversal amounts to Hermitian conjugation of D.
In particular, it implies that, in the weak-pairing limit, the superconducting state preserves TRS

if ∆̃s(k) can be chosen to be real. Alternatively, this could have been obtained from Eq. (4.19) and
recalling that the basis functions {ϕnν (k, s)} are real valued. From the expression (4.30) of the spectrum
of the superconducting state we see that a time-reversal symmetric superconductor will have a nodal
point on the Fermi surface s if ∆̃ks changes sign on s.

4.3 Ginzburg-Landau expansion in noncentrosymmetric systems

After introducing the notation and analyzing the symmetry properties in the previous two sections,
we have now set the stage for the derivation of selection rules for possible pairing states in the weak-
pairing limit. As already mentioned in the introduction of this chapter, the constraints we will deduce
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4.3 Ginzburg-Landau expansion in noncentrosymmetric systems

result from the synergy of symmetry as well as energetic considerations, which will be referred to as
symergetics in the following, since the interplay of the symmetry group G0 and the weak-pairing limit
are key in the derivation.
Postponing the analysis of the competition between superconducting order parameters transforming

under different IRs of G0 to the subsequent sections, we will for the moment focus on one given IR
n0. Then it is sufficient to restrict the interaction (4.17) in the Cooper channel to n = n0 and, hence,
analyze the interacting Hamiltonian

Ĥn0 =
∑
k

ĉ†khkĉk − gn0

∑
µ

∑
k

ĉ†kχ̃
n0
µ (k)T

(
ĉ†−k

)T∑
k′

ĉT−k′
(
χ̃n0
µ (k′)T

)†
ĉ
k′

 , (4.40)

where gn0 > 0 is assumed to have a positive transition temperature Tc. As shown in Appendix C.2.1,
the full Ginzburg-Landau expansion can be very compactly written as

F(ηn0
µ ) = F(0) +

1

gn0

dn0∑
µ=1

|ηn0
µ |2 +

∞∑
l=1

22l−1

l
(−1)l

∑
s

〈∣∣∣∣dn0∑
µ=1

ηn0
µ ϕ

n0
µ (Ω, s)

∣∣∣∣2l
〉
s

Il(Λ, T ), (4.41)

where we have introduced the manifestly positive integrals/Matsubara sums

Il(Λ, T ) := ρF

∫ Λ

−Λ
dε T

∑
ωn

1

(ω2
n + ε2)l

> 0, ωn = πT (2n+ 1), n ∈ Z, (4.42)

with ρF denoting the total density of states at the Fermi level. Furthermore, 〈. . .〉s denotes the average
over Fermi surface s formally defined by

〈F (Ω)〉s := ρ−1
F

∫
s

dΩ ρs(Ω)F (Ω) (4.43)

for any function F that only depends on the position Ω on the Fermi surface and, within the cutoff Λ,
not on the coordinate perpendicular to it. Note that, in 2D, Ω can be seen, e.g., as the polar angle
parameterizing the two central Fermi surfaces illustrated in Fig. 4.1(a) while, in 3D, Ω comprises two
angles. For the general purpose of the considerations here, no explicit parameterization will have to
be specified. We will only take advantage of the fact that the angle-resolved density of states ρs(Ω) –
defined via the separation of the summation over the low-energy degrees of freedom in the vicinity of
Fermi surface s, ∑

k

s;Λ
. . . ∼

∫
s

dΩ ρs(Ω)

∫ Λ

−Λ
dε . . . , (4.44)

into an integration over Ω and energy ε – is always positive, ρs(Ω) > 0.
To obtain Eq. (4.41), we have made the common assumption that the basis functions ϕn0

µ do not
depend on energy (ϕn0

µ (k, s) → ϕn0
µ (Ω, s)). Formally, this can be seen as the zeroth order term in an

expansion in ε. This terms is expected to be dominant as long as the quasiparticle picture holds since
all corrections have weight zero at the Fermi surface (ε = 0).
In the remainder of this section, we will analyze the implications of Eq. (4.41) concerning both the

allowed order parameter vectors of real multidimensional and complex one-dimensional representations
as well as the order of the phase transition on the mean-field level.
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4 Selection rules for pairing states in noncentrosymmetric superconductors

Figure 4.2: Higher order terms in the Ginzburg-Landau expansion. The different rep-
resentations of the dimensionless function f≥4(x) determining the terms in the free
energy of fourth and higher order with respect to the order parameter are shown: Power
series representation, convergent for x < π2/4 as indicated by the black dashed line,
shown in blue (keeping terms up to 300th order in x) and its analytical continuation
(4.47) as solid green line.

4.3.1 Order of the phase transition

To see whether the Ginzburg-Landau expansion (4.41) allows for a first-order mean-field transition we
have to analyze the terms of fourth and higher orders in the superconducting order parameter,

F≥4(ηn0
µ ) =

∞∑
l=2

22l−1

l
(−1)l

∑
s

〈∣∣∣∣dn0∑
µ=1

ηn0
µ ϕ

n0
µ (Ω, s)

∣∣∣∣2l
〉
s

Il(Λ, T ). (4.45)

The transition can only be of first order if F≥4(ηn0
µ ) becomes negative for some value of ηn0

µ .
Setting Λ→∞ in the integrals Il(Λ, T ), one straightforwardly finds

F≥4(ηn0
µ ) = T 2

∑
s

∫
s

dΩ ρs(Ω) f≥4

∣∣∣∣dn0∑
µ=1

ηn0
µ ϕ

n0
µ (Ω, s)

∣∣∣∣2/T 2

 , (4.46)

where f≥4 has a power series representation of the form f≥4(x) =
∑∞

l=2(−1)lclx
l with the coefficients

cl given in Appendix C.3. It is easy to show analytically and can also be inferred from the plot in
Fig. 4.2 that, at least within the radius of convergence π2/4 of the power series, f≥4(x) is positive. Due
to ρs(Ω) > 0, we conclude that F≥4(ηn0

µ ) > 0 and, hence, no first order transition is possible as long as

|
∑dn0

µ=1 η
n0
µ ϕ

n0
µ (Ω, s)|/T < π/2.

To go beyond the radius of convergence we have to resum the power series: As show in Appendix C.3
one finds by means of analytic continuation the alternative series representation

f≥4(x) =

∞∑
n=0

[
4x

2n+ 1
+ 2π

(
π(2n+ 1)−

√
4x+ π2(2n+ 1)2

)]
, (4.47)
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which converges for any x ∈ R+. It also allows to identify the branch cut of the root at x < −π2/4
as the mathematical reason for the radius of convergence of the power series being π2/4. As can be
seen from the plot of Eq. (4.47) in Fig. 4.2, the analytic continuation of the power series is a positive
function. Positivity can also be shown for finite Λ (see Appendix C.3).
Assuming that the exact free energy is an analytic function in |

∑dn0
µ=1 η

n0
µ ϕ

n0
µ (Ω, s)|2, this proofs

that the superconducting phase transition is, on the mean-field level, always continuous in the weak-
pairing limit. Note that this holds not only when temperature is varied to drive the phase transition
but actually for any parameter such as pressure or doping concentration as long as the TRS of the
normal phase is preserved. This is very similar to the situation in centrosymmetric superconductors
with intraband pairing where the thermal phase transition is continuous and only the transition in a
magnetic field is of first order (for a type-I superconductor) as is commonly known [328]. However, it
has recently been shown that, in case of interband pairing, the thermal transition can also become first
order [329].
Naturally, fluctuations will eventually change the situation: As discussed in Chap. 1.2, in 2D already

the Goldstone modes will make the transition of BKT type [122–124]. Furthermore, one has to take
into account the fact that the superconductor is a condensed state of charged particles which inevitably
couple to the electromagnetic field. E.g, in 3D, this will render the transition weakly first order in a
type-I superconductor [128].
However, despite these fluctuation corrections that eventually change the character of the phase

transition, the result of this subsection tells us that we can safely neglect the possibility of a first order
transition and, hence, focus on the first few orders in the Ginzburg-Landau expansion for deriving
general selection rules for pairing states in the following. We emphasize that it is perfectly legitimate
to deduce the latter on the mean-field level: As we have seen in Sec. 1.2, as a first step, before analyzing
fluctuations, one has to determine the form and, in particular, the symmetry properties, of the order
parameter which is the central theme of the analysis of this chapter. Including fluctuations will modify
the behavior of physical quantities in the vicinity of the phase transition which is, however, beyond the
scope of the present discussion.

4.3.2 Possible order parameter vectors

Let us next analyze the consequences of the constrained form (4.41) of the Ginzburg-Landau expansion
for the possible order parameter vectors (ηn0

1 , . . . ηn0
dn0

). Naturally, only real multidimensional and
complex IRs are of interest here. As already mentioned above, since our analysis is performed in the
weak-pairing limit which requires the Fermi surfaces to be singly degenerate, we can set the symmetry
group G0 equal to the point group of the system without loss of generality.

Case study C4v. For pedagogical reasons we will first focus on G0 = C4v, which will be our working
example for the entire chapter, and then generalize the result to all possible point groups of 2D and
3D crystalline systems (see Appendix A.3 for an overview).
From the character table given in Table 4.1, we see that C4v only has one IR of interest for the

current discussion: The real two-dimensional IR E where the two components η1 and η2 transform as
x and y under all symmetry operations.
Using the approach outlined in Chap. 1.1.1, the most general Ginzburg-Landau expansion up to

fourth order in ηµ is easily constructed: As a first step, one decomposes the quadratic forms ηµAµµ′ηµ′
into IRs leading to E⊗E = A1⊕A2⊕B1⊕B2. This, in turn, shows that a fourth order term contains
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Table 4.1: Character table of C4v.

E 2C4 C2 2σv 2σd Basis functions

A1 1 1 1 1 1 x2 + y2

A2 1 1 1 −1 −1 xy(x2 − y2)

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy

E 2 0 −2 0 0 (x, y)

the trivial representation four times corresponding to the four invariant terms∣∣∣η2
1 + η2

2

∣∣∣2 , ∣∣η1η2

∣∣2 , ∣∣iη1η2 − iη2η1

∣∣2 , ∣∣∣η2
1 − η2

2

∣∣∣2 . (4.48)

As the third one is identically zero, there are three independent coupling constants in the fourth order
contribution to the Ginzburg-Landau expansion. Following the notation of Ref. [79], we thus have

F(η1, η2) = F(0) + aE(T )
(∣∣η1

∣∣2 +
∣∣η2

∣∣2)+ β1

(∣∣η1

∣∣2 +
∣∣η2

∣∣2)2

+ β2

∣∣∣η2
1 + η2

2

∣∣∣2 + β3

(∣∣η1

∣∣4 +
∣∣η2

∣∣4)+O
(
|η|6
)
.

(4.49)

It is straightforward to minimize this expression (see, e.g., Ref. [79]) with respect to (η1, η2). Except
for accidental degeneracies and assuming a second order phase transition, this shows that only three
distinct order parameter configurations,

(η1, η2) = (1, 0), (η1, η2) = (1, 1), (η1, η2) = (1, i), (4.50)

are possible. The associated phase diagram that shows the dependence on the phenomenological pa-
rameters βj is given in Fig. 4.3.
Noting that only the third state in Eq. (4.50) is not invariant under time-reversal (4.19), we conclude

that TRS breaking is possible at a phase transition to a superconducting state transforming under E,
but it does not have to occur. As Eq. (4.49) is the most general free energy as allowed by symmetry, this
is as good as it gets if we only take into account the symmetry group G0 of the system. To proceed, we
now also apply energetic arguments: Assuming that the splitting Eso of the Fermi surfaces is sufficiently
large for the weak-pairing limit (4.29) to be applicable, we can use the expression in Eq. (4.41) for the
free energy. Expanding the latter up to fourth order in ηµ must yield an expression of the form of
Eq. (4.49). As we will see in the following, this expansion will, on top of that, also yield constraints on
the coefficients βj that crucially affect the possible order parameter vectors (η1, η2).
To this end, let us consider the fourth order term

F4(η1, η2) = 4
∑
s

〈∣∣∣∣ 2∑
µ=1

ηµϕ
E
µ (Ω, s)

∣∣∣∣4
〉
s

I2(Λ, T ), (4.51)
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Figure 4.3: Phase diagram for order parameter transforming under E of C4v. It follows
from minimizing the free energy (4.49). For concreteness, β1 > 0 has been assumed.
Unstable means that higher order terms in the free energy have to be taken into account
to get a minimum at finite ηEµ . In the weak-pairing limit only configurations on the
thick part of the green line are possible leaving (1, i) as the only allowed configuration.

of Eq. (4.41). We expand the absolute value making use of ϕEµ (k, s) ∈ R and the linearity of 〈. . .〉s to
obtain

F4(η1, η2) =4I2(Λ, T )

[
α1|η1|4 + α2|η2|4 + 4β|η1|2|η2|2 + β

(
η2

1η
∗
2

2 + η∗1
2η2

2

)
+ 2

(
γ12|η1|2 + γ21|η2|2

) (
η1η
∗
2 + η∗1η2

)]
,

(4.52)

where we have defined

αµ :=
∑
s

〈(
ϕEµ (Ω, s)

)4
〉
s

, β :=
∑
s

〈(
ϕE1 (Ω, s)ϕE2 (Ω, s)

)2
〉
s

(4.53a)

as well as
γµµ′ :=

∑
s

〈(
ϕEµ (Ω, s)

)3
ϕEµ′(Ω, s)

〉
s

. (4.53b)

These coefficients must satisfy certain relations that result from the symmetries of the system. As the
point group C4v is generated by the reflection σxz at the xz plane and the fourfold rotation Cz4 along
the z axis it is sufficient to focus on these two symmetry operations which are represented by

σxz : (η1, η2) −→ (η1,−η2), (4.54a)
Cz4 : (η1, η2) −→ (η2,−η1) (4.54b)

on the order parameter vector (η1, η2). Demanding invariance of the free energy contribution (4.52)
under Eqs. (4.54a) and (4.54b) leads to γ12 = γ21 = 0 and α1 = α2 ≡ α, respectively. It is readily seen
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that, as required, Eq. (4.52) then assumes the form of Eq. (4.49) with

β1 = 8βI2(Λ, T ) = 2β2 > 0, β3 = 4(α− 3β)I2(Λ, T ). (4.55)

The first relation fixes the ratio β2/β1 = 1/2 such that only the configurations on the green line in
Fig. 4.3 are possible which already excludes the order parameter configuration (η1, η2) = (1, 1).
Furthermore, as ρs(Ω) > 0, we know that

∑
s

〈[(
ϕE1 (Ω, s)

)2
−
(
ϕE2 (Ω, s)

)2
]2
〉
s

≥ 0 ⇔ α ≥ β. (4.56)

Using this in Eq. (4.55), one finds β3/β1 ≥ −1 such that only coupling constants on the thick part of
the green line can be realized. We have thus shown that the resulting superconducting state must break
TRS when transforming under the two-dimensional representation E of C4v. We emphasize that this
has been obtained only taking into account the symmetry C4v of the system and making the energetic
assumption that the weak-pairing approximation can be applied. Further microscopic details such as
the number of relevant orbitals, Fermi surface structure, coupling constants etc. are irrelevant.

General proof by contradiction. In order to generalize these considerations to all possible point
groups of crystalline systems, it is much more convenient and insightful to investigate the problem from
a more general point of view instead of approaching the laborious task of performing the very same
analysis for all possible multidimensional or complex IRs that are relevant for 2D and 3D systems.
For this purpose, let us consider a general real representation n0 of arbitrary dimension dn0 > 1.

It might be either an IR of the symmetry group G0 of the system or the real reducible representation
constructed from a complex IR of G0 as discussed in Sec. 4.1.2. In both cases, the basis functions {ϕn0

µ }
can be chosen to be real (see Eq. (4.21)). We assume that the symmetries of the system guarantee that
the free energy is invariant under

ηµ →

−ηµ, µ = µ0

ηµ, µ 6= µ0

(4.57)

for all µ0 ∈ {1, 2, . . . , dn0}, i.e., the free energy must be even in all coefficients separately, and that

αµ =
∑
s

〈(
ϕn0
µ (Ω, s)

)4
〉
s

≡ α (4.58)

for all µ = 1, 2, . . . dn0 . E.g., for the IR E of C4v, these two properties are satisfied which directly
follows from Eq. (4.54) as we have seen above.
The order parameter vector (η1, η2, . . . , ηdn0

) associated with the representation n0 is determined by
minimizing the free energy F(ηµ) which, taking into account only the terms up to fourth order in ηµ,
reads as

F(η) = F(0) + a(T )λ2 + 4I2(Λ, T )β(z)λ4 +O(λ6), β(z) =
∑
s

〈∣∣∣∣dn0∑
µ=1

zµϕ
n0
µ (Ω, s)

∣∣∣∣4
〉
s

> 0, (4.59)

where we have used the convenient parameterization

ηµ = λzµ, λ ∈ R+, zµ ∈ C :
∑
µ

|zµ|2 = 1. (4.60)
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Minimizing with respect to λ, one finds, infinitesimally below the phase transition, where a(T ) < 0
with infinitesimal modulus, the nontrivial minimum at

λ = λ0 =

√
−a(T )

8I2(Λ, T )β(z)
(4.61)

with value

F(λ0z) = F(0)− a2(T )

16I2(Λ, T )β(z)
+O(λ6). (4.62)

Therefore, minimizing the Ginzburg-Landau expansion up to fourth order is tantamount to minimizing
β(z) on the (2dn0 − 1)-dimensional hypersphere z†z = 1.
Note that, it is not always possible to determine the order parameter uniquely from the fourth order

expansion since the set Z of unit vectors z minimizing β(z) might contain physically inequivalent
states that are degenerate in fourth order3. This degeneracy will be removed by including higher-order
terms in the Ginzburg-Landau expansion. Recalling that first order transitions have been ruled out in
Sec. 4.3.1, focusing on the expansion up to fourth order, however, already rigorously excludes all states
with z /∈ Z as candidate pairing states. In the following we use this to show that a purely real order
parameter vector cannot be realized in systems with free energy expansion (4.41).
We apply a proof by contradiction assuming that there is a purely real xµ ∈ R with x ∈ Z. Now

choose µ0 such that xµ0 6= 0 and consider

zξ = (x1, . . . , e
iξxµ0 , . . . , xdn0

), (4.63)

where we introduced relative complexity between coefficient µ0 and all others parameterized by ξ ∈ R.
It holds

β(zξ) =
∑
s

〈∣∣∣∣xµ0e
iξϕn0

µ0
(Ω, s) +

∑
µ6=µ0

xµϕ
n0
µ (Ω, s)

∣∣∣∣4
〉
s

(4.64)

∼ β(x)− 2ξ2
∑
s

〈
xµ0ϕ

n0
µ0

(Ω, s)

(∑
µ6=µ0

xµϕ
n0
µ (Ω, s)

)(∑
µ

xµϕ
n0
µ (Ω, s)

)2
〉
s

(4.65)

for ξ � 1 taking advantage of the reality of the basis functions. Due to the symmetry (4.57), all terms
containing an odd power of any of the xµ must vanish and we can write

β(zξ) ∼ β(x)− C(x)ξ2, C(x) = 4
∑
µ6=µ0

x2
µ0
x2
µ

∑
s

〈(
ϕn0
µ0

(Ω, s)ϕn0
µ (Ω, s)

)2
〉
s

. (4.66)

Recalling the positivity of the angle-resolved density of states ρs(Ω), we have∑
s

〈(
ϕn0
µ0

(Ω, s)ϕn0
µ (Ω, s)

)2
〉
s

≥ 0, (4.67)

where equality only holds if one of the basis functions vanishes identically, ϕn0
µ = 0 or ϕn0

µ0
= 0. Due

to assumption (4.58) this can only be the case when all basis functions vanish. Although this sounds
like a physically irrelevant, purely mathematical comment at first glance, the exact vanishing of the
3E.g., this is the case for the two-dimensional IR of the cubic group O [79].
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basis functions can be enforced by symmetry in 2D systems as will be important in Sec. 4.4. For the
present discussion, we have to assume that ϕn0

µ 6= 0 as, otherwise, the superconducting order cannot
occur within the weak-pairing approximation since Eq. (4.41) then becomes

F(ηµ) = F(0) +
1

gn0

dn0∑
µ=1

|ηµ|2 (4.68)

which is minimized by ηµ = 0. Without loss of generality, we can thus take Eq. (4.67) to be valid with
≥ replaced by >.
Then, C(x) > 0 for all x 6= eµ0

4. Consequently, Eq. (4.66) implies that ∃ ξ : β(zξ) < β(x) and,
hence, contradicts our assumption that β can be minimized by a real vector, unless x is fully polarized
along one axes (x = eµ0).
To rule out that β assumes its minimal value at x = eµ0 , we define

z′ξ =
1√

1 + ξ2

(
eµ0 + iξeµ1

)
(4.69)

with some µ1 6= µ0 and consider

β(z′ξ) =
1

(1 + ξ2)2

∑
s

〈∣∣∣∣ϕn0
µ0

(Ω, s) + iξϕn0
µ1

(Ω, s)

∣∣∣∣4
〉
s

(4.70)

∼ β(eµ0)− 2ξ2

∑
s

〈(
ϕn0
µ0

(Ω, s)
)4
〉
s

−
∑
s

〈(
ϕn0
µ0

(Ω, s)ϕn0
µ1

(Ω, s)
)2
〉
s

 (4.71)

The term in brackets is positive which readily follows from

∑
s

〈[(
ϕn0
µ0

(Ω, s)
)2
−
(
ϕn0
µ1

(Ω, s)
)2
]2
〉
s

> 0 (4.72)

in combination with assumption (4.58). Here and similarly in the Eq. (4.56), equality is excluded since
this would only be the case if

ϕn0
µ0

(Ω, s) = ±ϕn0
µ1

(Ω, s), (4.73)

i.e., if the basis functions were linearly dependent. This in turn would imply that∫
s

dΩ
(
ϕn0
µ0

(Ω, s)
)2

= ±
∫
s

dΩϕn0
µ0

(Ω, s)ϕn0
µ1

(Ω, s) = 0 (4.74)

forcing ϕn0
µ0

= 0 which is ruled out as discussed above. The last equality in Eq. (4.74) follows from the
orthogonality of basis functions transforming as different components of an IR or, more generally, from∫

s
dΩϕnµ(Ω, s)ϕn

′
µ′(Ω, s) ∝ δn,n′δµ,µ′ (4.75)

which directly follows from the grand orthogonality theorem (1.10).
4The reason for this is clear: If all xµ vanish except for one (by design xµ0), the phase factor in Eq. (4.64) cancels out
as required by gauge symmetry.
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4.3 Ginzburg-Landau expansion in noncentrosymmetric systems

Having established the strict positivity of the term in brackets in Eq. (4.71), we see that we can
always find a configuration with lower value of β than that of x = eµ0 . Taken together, β(z) does not
assume its minimal value at a purely real z. Physically, this means that the resulting superconductor
necessarily breaks TRS.
With this general proof at hand, we only have to show that the symmetries require invariance of the

free energy under (4.57) and lead to Eq. (4.58) to proof that only relatively complex, i.e., TRS-breaking,
order parameter vectors are possible for a given point group.
As shown in Appendix C.4, these prerequisites are indeed fulfilled for all multidimensional real IRs

of all possible point groups of 2D and 3D crystalline systems. For the real representations constructed
from the complex IRs of the crystalline point groups, the situation is different which is a consequence of
the symmetries being less restrictive since n0 is reducible in this case: For the one-dimensional complex
IRs of C4

∼= S4 and of C4h, we still have α1 = α2 ≡ α, however, the invariance under Eq. (4.57) is not
enforced by symmetry any more.
This implies that γ12 = −γ21 ≡ γ is generally nonzero in the fourth order term (4.52) in the free

energy expansion and has crucial consequences since C(x) in Eq. (4.66) is not guaranteed to be positive
any more,

C(x) = 4x2
1x

2
2β + 2γ

(
x3

1x2 − x1x
3
2

)
= β f1(φ, γ/β), (4.76)

where we have, in the second equality, inserted the parameterization (x1, x2) = (cos(φ), sin(φ)) and
introduced the function

f1(φ, g1) = sin(2φ)
(
sin(2φ) + g1 cos(2φ)

)
(4.77)

for later reference. For any g1 ∈ R \ {0} there is a φ ∈ R such that the function becomes negative.
Consequently, our former proof by contradiction does not apply in its current form.
To generalize it, for the specific case of dn0 = 2, we consider

zξ = U(ξ)x (4.78)

instead of Eq. (4.63) with unitary U(ξ) to ensure z†ξzξ = 1. Due to gauge invariance it is sufficient to
consider U(ξ) ∈ SU(2) which we parameterize according to

U(ξ) = ei
ξ·τ
2 , ξ ∈ R3, (4.79)

with τ denoting Pauli matrices. Taking ξ = ξe3 corresponds to Eq. (4.63) with dn0 = 2 which rules out
all real-valued states with f1(φ, γ/β) > 0 as discussed above. To obtain a second constraint, consider
ξ = ξe1 which yields

β(zξe1) ∼ β(x)− C̃(x)ξ2, C̃(x) =
1

2
(x2

1 − x2
2)2(α− β) + 2γx1x2

(
x2

1 − x2
2

)
. (4.80)

Again inserting (x1, x2) = (cos(φ), sin(φ)), we find

C̃(x) =
α− β

2
f2

(
φ, 2γ/(α− β)

)
, f2(φ, g2) = cos(2φ)

(
cos(2φ) + g2 sin(2φ)

)
. (4.81)

As α > β (see Eq. (4.72)), this excludes all real-valued states with f2(φ, 2γ/(α − β)) > 0. Exactly as
in case of f1, there are, for any nonzero real g2, φ ∈ R such that f2(φ, g2) < 0.
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4 Selection rules for pairing states in noncentrosymmetric superconductors

However, we can actually exclude all real states with one out of f1(φ, γ/β) and f2(φ, 2γ/(α − β))
positive. It is straightforward to show that there is φ ∈ R with f1(φ, g1), f2(φ, g2) ≤ 0 only if g1g2 ≥ 1.
Therefore, we can exclude all real states unless

γ

β

2γ

α− β
≥ 1 ⇔ γ2 ≥ 1

2
β(α− β). (4.82)

To proof that this can never be satisfied, we first note that

〈ϕµ|ϕµ′〉 := ρ−1
F

∑
s

∫
s

dΩ ρs(Ω)ϕ∗µ(Ω, s)ϕµ′(Ω, s) (4.83)

defines an inner product since ρs(Ω) > 0 and, hence, satisfies the Cauchy-Schwarz inequality

| 〈ϕµ|ϕµ′〉 |2 ≤ 〈ϕµ|ϕµ〉 · 〈ϕµ′ |ϕµ′〉 . (4.84)

This, together with α1 = α2 and γ1 = −γ2, can be used to conclude that

γ2 =
1

4

(
γ1 − γ2

)2
=

1

4

∣∣∣〈ϕ1ϕ2|ϕ2
1 − ϕ2

2〉
∣∣∣2 ≤ 1

4
〈ϕ1ϕ2|ϕ1ϕ2〉 · 〈ϕ2

1 − ϕ2
2|ϕ2

1 − ϕ2
2〉 =

1

2
β(α− β). (4.85)

Equality is only possible when ϕ1ϕ2 and ϕ2
1 − ϕ2

2 are linearly dependent which is in principle possible
(both transform under B of C4 ' S4) but requires fine tuning. Consequently, Eq. (4.82) cannot be
satisfied such that the free energy cannot be minimized by a purely real order parameter vector and
the state must break TRS.
Taken together, we have shown in this subsection that, for any 2D and 3D crystalline system both

with spin-0 or spin-1/2 TRS in the normal state, a superconductor with an order parameter transforming
under a complex or multidimensional IR must necessarily break TRS if the weak-pairing approximation
applies.
The experimental observation of a splitting of the transition into two upon reducing the point sym-

metry in such a way that the components of the multidimensional representation transform under
different IRs of the reduced symmetry group (see, e.g., Refs. [213, 214]) indicates that the order pa-
rameter transforms under a multidimensional IR. If the weak-pairing limit applies, the observation of
a splitting will strongly indicate that TRS is broken. This shows how the statement derived above can
be used as a tool to determine the TRS properties of a superconductor.

Importance of symmetries. Before closing, we want to emphasize that despite the generality of our
proofs by contradiction, point symmetries are essential ingredients. To see this, consider

β(z) =
∑
s

〈∣∣∣∣dn0∑
µ=1

zµϕ
n0
µ (Ω, s)

∣∣∣∣4
〉
s

≡ ρ−1
F

∑
s

∫
s

dΩ ρs(Ω)

∣∣∣∣dn0∑
µ=1

zµϕ
n0
µ (Ω, s)

∣∣∣∣4 (4.86)

determining the fourth-order term of the Ginzburg-Landau expansion according to Eq. (4.59). If it
was possible to proof that its minimum (subject to z†z = 1) cannot occur at a purely real z without
further symmetry requirements, it would also hold for the trial density of states ρs(Ω) = ρ0δs,s0δ(Ω−Ω0).
Inserting this in Eq. (4.86) and, for simplicity, focusing on dn0 = 2, we get

β(z) = ρ0

∣∣∣z1ϕ
n0
1 (Ω0, s0) + z2ϕ

n0
2 (Ω0, s0)

∣∣∣2 , (4.87)

which is clearly minimized by a real-valued z with z1/z2 = −ϕn0
2 (Ω0, s0)/ϕn0

1 (Ω0, s0).
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4.4 Further consequences for 2D systems

In this section, we will focus on 2D systems and discuss the constraints for possible pairing states
coming from the fermionic anticommutation relations (4.32) in the weak-pairing limit. For simplicity
of the presentation, let us for the moment restrict the analysis to the physically more relevant case of
spinfull fermions (S = 1/2) and postpone the discussion of S = 0 to Sec. 4.7. Since Θ2 = −1, we will
now have to focus on noncentrosymmetric systems in order to have singly-degenerate Fermi surfaces as
required for the weak-pairing limit to be applicable. Note, however, that inversion symmetry is quite
naturally broken in the practical realization of 2D superconductors as we have discussed in Chap. 1.3.
Even more importantly for the present purpose, 2D is also special concerning the Fermi-Dirac con-

straint (4.32), which forces ∆̃s(k) to be even under (s,k) → (sK,−k), since the latter transformation
can be realized as a twofold rotation Cz2 perpendicular to the plane of the system (the xy plane in the
following). If Cz2 is element of the point group Gp of the system, all IRs of Gp will be either even or odd
under this rotation (see Appendix A.2). In this case, the Fermi-Dirac constraint (4.32) forces all basis
functions ϕn(k, s) transforming under an IR that is odd under Cz2 to vanish identically, i.e.,

Rnχ(Cz2 ) = −1dn ⇒ ϕnµ(k, s) = 0, (4.88)

which directly follows from combining Eqs. (4.35) and (4.37). It means that a superconducting state
transforming under an IR with Rnχ(Cz2 ) = −1 is not possible in the weak-pairing limit. In Sec. 4.5.1,
we will analyze in detail under which energetic conditions the weak-pairing limit can be used in order
to exclude these pairing states.
Let us illustrate Eq. (4.88) in a minimal example: Consider a single-orbital system with normal state

Hamiltonian

hk =
k2

2me
σ0 + gk · σ (4.89)

with Pauli matrices σj describing the spin of the electrons andme the effective mass. Suppose the model
has Cz2 as well as TRS leading to (gk1, gk2, gk3) = (−g−k1,−g−k2, g−k3) and gk = −g−k which implies
g3 = 0. The associated eigenstates are then given by ψks = (1, pse

iαgk)T /
√

2, where p1 = −p2 = 1
and αgk denotes the angle of gk relative to the g1 axis. We decompose the superconducting order
parameter into singlet and triplet, ∆(k) =

(
∆S
k + dk · σ

)
iσ2, and demand it to be odd under Cz2

which is equivalent to iσ3∆(−k)iσ3 = −∆(k) (see Eq. (4.6)). As ∆S
k = ∆S

−k and dk = −d−k this
forces the order parameter to be a pure triplet state with the d vector aligned along the z axis. It then
directly follows that the matrix elements

ψ†ks∆kψ
∗
−ks′ = −1

2
dk3

(
ps − ps′

)
e−iα

g
k (4.90)

of the order parameter with respect to the eigenfunctions of hk vanish for s = s′ as expected from our
general symmetry discussion. We mention that the vanishing (4.88) of basis functions has very recently
also been pointed out in Ref. [330].
Before proceeding with the discussion of the consequences of these “symergetic” constraints on the

possibility of TRS breaking at a superconducting phase transition (Sec. 4.4.1) and on the orientation of
the triplet vector (Sec. 4.4.2), we want to clarify the meaning of 2D in this section: Clearly, the system
does not have to be strictly 2D and the presence of a finite number of subbands – formally included in
the Greek indices α, β in Eq. (4.2) – is possible as long as the energetic splitting between the different
Fermi surfaces is sufficiently large for the weak-pairing approximation to be applicable. Our notion
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4 Selection rules for pairing states in noncentrosymmetric superconductors

of 2D does, however, not include highly anisotropic 3D materials consisting of weakly coupled stacked
conducting sheets.

4.4.1 Design principle for spontaneous TRS-breaking superconductivity

Let us begin our discussion of TRS by first reexamining our working example of C4v and then generalize
our observation to all possible noncentrosymmetric point groups of 2D systems.

Case study C4v. From the character table of C4v in Table 4.1, we see that this point group only
allows for real IRs. Consequently, TRS can only be broken in the two-dimensional IR E. However, the
basis functions of E are forced to be odd under Cz2 and, hence, must vanish according to Eq. (4.90).
Consequently, a superconducting state transforming under E, i.e., transforming as any of the three pos-
sible configurations x, x+y and x+ iy (see Eq. (4.50)), can be excluded. In particular, no spontaneous
TRS breaking can occur at a single superconducting phase transition in the weak-pairing limit.
This shows that our considerations of the higher-order terms in the Ginzburg-Landau expansion in

Sec. 4.3.2 for a system with C4v symmetry are irrelevant in 2D as the combination of point-symmetry
and Fermi-Dirac constraints do not allow for finite pairing in the E representation to begin with. Note
that the latter does not hold for 3D systems where (s,k)→ (sK,−k) cannot be realized as a rotation
and, hence, order parameters transforming under E are not excluded but necessarily have to break
TRS as shown in Sec. 4.3.2.

Arbitrary point group. It is straightforward to generalize this analysis to all possible point groups
of 2D systems embedded in 3D space which are summarized in Appendix A.3. As mentioned above,
we can restrict the discussion to the noncentrosymmetric point groups as the absence of a center of
inversion is required for the Fermi surfaces to be nondegenerate. As a first step, we note that TRS
breaking is also not possible for C4 which only has one-dimensional IRs and its complex IRs are all odd
under Cz2 . The very same must hold for the isomorphic groups D4, D2d and S4. For all other groups
containing only a twofold (such as C2v) or without any (like, e.g., for C1) rotation symmetry along the z
axis, all IRs are real and one-dimensional excluding TRS-breaking superconductivity. For the remaining
possible point groups, all of which contain a threefold rotation, one cannot exclude spontaneous TRS
breaking on the general level of the present discussion.
Taken together, this leads to the following necessary condition or design principle for spontaneous

TRS breaking at a single superconducting phase transition in any crystalline 2D system where the
pairing approximation applies [325, 326]: The superconducting condensate can only break TRS if a
threefold rotation symmetry is element of the point group of the high-temperature phase.
As we will see in Sec. 4.6, this result can be used both to gain information about the time-reversal

properties of superconducting states that have been found experimentally but not yet fully microscop-
ically identified and as a design principle in the search for TRS-breaking superconductors.

4.4.2 Orientation of the triplet vector

Let us next discuss the consequences of the exclusion of IRs that are odd under Cz2 for the spin-structure
of the possible order parameters.

Multiple orbitals. For the sake of generality, we will consider the general situation where the order
parameter ∆(k) is a matrix not only in spin, but also in orbital and/or subband space. Then the decom-
position into spin singlet (antisymmetric spin wavefunction) and triplet (symmetric spin wavefunction)
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takes the more general form

∆(k) = ∆S
k T +

3∑
j=1

Dj
k σjT, (4.91)

where, as opposed to Eq. (1.17), ∆S
k and Dj

k are generally matrices in orbital and/or subband space.
The correct spin-symmetry of the singlet and triplet terms follows from T T = −T and (σT )T =
−Tσ∗ = σT , respectively.
In the following it will be convenient to choose a real orbital/subband basis such that the repre-

sentation of time-reversal TK becomes trivial (∝ 1o) in orbital space, T = iσ2 ⊗ 1o. Within these
conventions, the Fermi-Dirac constraint (4.3) leads to(

∆S
−k

)T
= ∆S

k

(
Dj
−k

)T
= −Dj

k. (4.92)

Focusing on point groups Gp that contain a twofold rotation Cz2 , the superconducting order pa-
rameter must be even under this rotation in the weak-pairing limit as discussed above. Splitting the
representation RΨ(Cz2 ) of Cz2 into its spin RΨs(C

z
2 ) and orbital/layer part RΨo(C

z
2 ), it follows

RΨo(C
z
2 )∆S

−kR
†
Ψo

(Cz2 ) = ∆S
k , RΨo(C

z
2 )D1,2

−kR
†
Ψo

(Cz2 ) = −D1,2
k , RΨo(C

z
2 )D3

−kR
†
Ψo

(Cz2 ) = D3
k.
(4.93)

These conditions can be simplified by considering the symmetries of the unit cell Hamiltonian huc: It is
invariant under Gp and, neglecting accidental degeneracies, all of its eigenspaces are spanned by basis
functions of an IR of Gp. Any IR5 will be either even or odd under Cz2 (see, again, Appendix A.2) such
that

RΨo = diag
(
c1, c2, . . . , cN/2

)
, cj ∈ {+1,−1}. (4.94)

using an eigenbasis of huc. E.g., in LAO/STO heterostructures (see Sec. 1.3.1), the states at the Fermi
surface result from the Ti 3dxy (transforms under B2 of C4v) and 3dxz, 3dyz (transforming under E of
C4v) orbitals. In this basis, we have RΨo = diag(1,−1,−1).
If the splitting between the different degenerate subspaces is sufficiently large, we can neglect

subspace-off-diagonal pairing matrix elements and Eq. (4.93) becomes(
∆S
k

)T
= ∆S

k ,
(
D1,2
k

)T
= D1,2

k ,
(
D3
k

)T
= −D3

k, (4.95)

where we have already taken into account Eq. (4.92). It shows that the z component D3
k of the triplet

vector must have vanishing intraorbital matrix elements. This means that, as far as physical properties
are concerned that are only sensitive to the orbital-diagonal components of the order parameter, the
superconductor will behave as if its triplet vector was aligned in the xy plane. Due to the energetic
separation between the different orbitals (except for high-symmetry points) it might in many cases be
legitimate to neglect the interorbital pairing yielding D3

k = 0.
If this assumption indeed holds, we conclude that [326] in any noncentrosymmetric 2D system with

a two-fold rotation symmetry perpendicular to the plane as an element of the point group of the high-
temperature phase, the triplet vector has to be aligned within the plane of the system as long as the
weak-pairing limit applies.
5Strictly speaking, huc we use to construct the basis is only the spin-independent part of the full unit cell Hamiltonian,
i.e., without any SOC effects. This is important as we otherwise had to consider the IRs of the double group G′p.
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4 Selection rules for pairing states in noncentrosymmetric superconductors

Pseudospin basis. If a system has inversion (I) and TRS (Θ), one can always, despite the en-
tanglement of orbital and spin degrees of freedom in the presence of SOC, introduce a k-space-local
pseudospin basis [88, 89] {|−,k〉 , |+,k〉} on the doubly-degenerate Fermi surfaces that has exactly
the same transformation behavior as the physical spin-up and spin-down under these two symmetry
operations (see Appendix A.1 for a constructive proof of this statement), RΨ(I) |τ,k〉 = |τ,−k〉 and
Θ |τ,k〉 = τ |−τ,−k〉 with τ = ±.
Within the pseudospin basis, the restrictions on the triplet vector discussed above assume a more

generally valid form. To see this, one has to split the normal state Hamiltonian into a centrosymmetric
and noncentrosymmetric part. Diagonalizing the former yields doubly-degenerate eigenvalues (band
index j in the following) and allows for introducing a pseudospin basis as discussed above. Denoting
the field operators in this basis by âkτj , τ = ±, the pairing term of the general mean-field Hamiltonian
(4.2) assumes the form

Ĥ∆
MF =

1

2

∑
k

â†kτj

(
∆̃k

)
τj,τ ′j′

â†−kτ ′j′ + H.c.. (4.96)

If the energetic separation between the different pairs of spin-orbit-split bands is sufficiently large, we
can neglect all terms with j 6= j′ in the order parameter, and then expand the diagonal contributions
in terms of pseudospin singlet and triplet (associated Pauli matrices denoted by si, i = 0, 1, 2, 3),(

∆̃k

)
τj,τ ′j′

= δjj′

(
∆̃
S(j)
k is2 + d̃

(j)

k · s is2

)
ττ ′

. (4.97)

For every j, it looks like a problem with only spin-1/2 degrees of freedom despite the presence of several
orbitals. Since the pseudospin also has the same transformation behavior under Cz2 , we immediately
find that, irrespective of the potentially strong mixing of different orbitals on the Fermi surfaces due
to SOC, the pseudospin triplet vector has to be aligned parallel to the plane of the system if Cz2 ∈ Gp.
We emphasize, however, that as far as physical properties are concerned, it is the microscopic spin-

basis that is relevant in general since the coupling to external perturbations (such as magnetic field
or the nuclear angular momentum) is defined with respect to the physical spin and orbital degrees of
freedom.

4.5 Beyond weak-pairing

Before applying these general results derived in the weak-pairing limit to several materials in the
next section, we will first analyze in more quantitative terms under which physical conditions the
weak-pairing approximation is applicable. For this purpose, we have to study the energetics of non-
centrosymmetric superconductors also taking into account the matrix elements Dss′(k) of the order
parameter with respect to different Fermi surfaces s 6= s′.

4.5.1 Necessary condition for purely off-diagonal pairing

Let us first consider the most favorable scenario for a superconducting phase with vanishing intra-
Fermi-surface matrix elements Dss(k) = 0: Assume that the effective electron-electron interaction is,
at low energies, dominated by the Cooper channel in Eq. (4.40) associated with an IR n0 of the point
group Gp of a 2D system that is odd under Cz2 ∈ Gp. All other interaction channels and, hence, all
competing instabilities are assumed to be negligible. The inclusion of the latter lead to even weaker
criteria for the applicability of the weak-pairing limit as we will see in Sec. 4.5.2 below.
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To analyze the superconducting instability, we perform a mean-field decoupling of the interaction
term in Eq. (4.40) leading to

ĤMF
int = −gn0

dn0∑
µ=1

∑
k

(
ηn0
µ ĉ
†
kχ̃

n0
µ (k)T

(
ĉ†−k

)T
+ H.c.

)
+ gn0

dn0∑
µ=1

∣∣∣ηn0
µ

∣∣∣2 . (4.98)

As follows from the central symmetry argument of Sec. 4.4, the mean-field pairing term will become
fully Fermi surface off diagonal after transforming into the eigenbasis of the normal state Hamiltonian
hk. Such a superconducting state can only be realized in a system if its zero temperature condensation
energy (see Appendix C.5)

Ec(∆0) =
1

2

∑
s

∑
k

(∣∣Eks(∆0)
∣∣− ∣∣εks∣∣)− ∆2

0

gn0

(4.99)

is positive. In Eq. (4.99), Eks denotes the excitation spectrum of the superconducting mean-field
Hamiltonian and using ∆0 := gn0

√∑
µ |η

n0
µ |2 to describe the dependence on the superconducting order

parameter indicates that we are not interested in the detailed structure of the complex order parameter
vector (ηn0

1 , . . . , ηn0
dn0

) but rather only in its magnitude.
To keep the discussion as simple as possible, let us assume that at a given crystal momentum k only

two different bands have to be taken into account which means that bands come energetically close (on
the energy scales of the superconductor) only in pairs. The near degeneracy of more bands typically
only occurs at high-symmetry points of the Brillouin zone. Besides, it is not expected that the inclusion
of more than two bands essentially changes the physics under discussion.
In Appendix C.5, an upper bound Emax

c (∆0) on the condensation energy (4.99) is derived. The
main step in this calculation consists of replacing the matrix element |D12(k)|/∆0 by its maximum
value m on the Fermi surface. Physically, this corresponds to the situation of “optimal basis functions”
with |D12(k)| being constant except for negligibly small regions where it has to vanish as dictated by
symmetry. Mathematically, this replacement enhances the value of the condensation energy Ec(∆0) at
given ∆0. Evaluating the sum in Eq. (4.99) as an integral, which we cut off energetically at Λ, shows
that the condensation energy can only be positive when the spin-orbit splitting Eso of the Fermi surface
satisfies [325]

Eso <
2Λ

sinh(1/λ)
, (4.100)

where the dimensionless coupling constant is defined by λ = 4ρFm
2g with ρF denoting the density of

states at the Fermi level.
Physically, Eq. (4.100) means that, in the weak-coupling limit, λ � 1, superconductivity can only

emerge when the spin-orbit splitting is exponentially small. Put differently, in any system with Eso
comparable to the energetic range of the attractive interaction (e.g., the Debye energy in case of a con-
ventional mechanism), superconductivity with Dss = 0 must be a genuine strong coupling phenomenon.
The physical reason is that, as can be seen in Fig. 4.1(b), the superconducting order parameter only
couples states with single-particle energies differing by Eso. This cuts off the Cooper logarithm that
usually makes superconductivity a weak-coupling phenomenon.
Finally, one also finds that ∆0m > Eso/4 at the positive maximum of Emax

c (∆0) indicating that the
weak-pairing limit and its selection rules for pairing states derived above can be used as long as the
superconducting gap at T = 0 is smaller than the spin-orbit splitting of the Fermi surfaces.
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4.5.2 Limit of weak inversion-symmetry breaking

Above we have focused on the situation that the superconducting phase with vanishing intra-Fermi-
surface matrix elements has no competing instabilities by assuming that all other interaction channels
are negligible. This yielded a generally valid sufficient condition for the applicability of the weak-
pairing limit to rule out this type of pairing states. Here we will analyze the complementary limit
where there are other superconducting instabilities with slightly smaller transition temperatures which
will be relevant for our discussion of Sr2RuO4 in Sec. 4.6.1 below. We will see that, in this case, already
in the limit of weak spin-orbit splitting, Eso � Tc, the pairing state with Dss(k) = 0 are suppressed.
To this end, we have to take into account several terms transforming under different IRs n in the

Cooper channel of the interaction and thus start from the interacting Hamiltonian

Ĥ =
∑
k

ĉ†khkĉk −
∑
n

gn
∑
µ

∑
k

ĉ†kχ̃
n
µ(k)T

(
ĉ†−k

)T∑
k′

ĉT−k′
(
χ̃nµ′(k

′)T
)†
ĉ
k′

 . (4.101)

Let us compare the superconducting state transforming under the IR n = n1 which is odd under Cz2 ∈ Gp
with any of the others transforming under n = n2. Denoting the associated transition temperatures in
the absence of spin-orbit splitting, Eso = 0, by Tn1

c,0 and Tn2
c,0 , respectively, we assume that Tn1

c,0 > Tn2
c,0

with Tn1
c,0 − T

n2
c,0 � Tn1

c,0 . Furthermore, exactly as in Sec. 4.5.1, we simplify the situation by assuming
that at every k only two different bands, separated by Eso(k), have to be taken into account which we
label by j = 1, 2 in the entire Brillouin zone. As shown in Appendix C.2.2, the critical value 〈E2

so〉
c of

the Fermi surface average of E2
so(k) for a transition to the state transforming under n2 is given by

√
〈E2

so〉
c ∼ 4π√

7ζ(3)

√
Con2

+ Cdn2

Cdn2

Tn1
c,0

√
Tn1
c,0 − T

n2
c,0

Tn1
c,0

(4.102)

as (Tn1
c,0 − T

n2
c,0)/Tn1

c,0 → 0. Here

Cdn :=
∑
j=1,2

〈|mjj(Ω, n)|2〉 , Con := 2 〈|m12(Ω, n)|2〉 (4.103)

are Fermi surface averages6 of the order parameter matrix elements

|mjj′(k, n)| :=
∣∣∣∣∑
µ

η̂nµ 〈ψkj |χ̃nµ(k)|ψkj′〉
∣∣∣∣ (4.104)

with normalized η̂nµ := ηnµ/
√∑

µ |η
n0
µ |2. By construction, it holds Cdn1

= 0.
Eq. (4.102) shows that a pairing state with vanishing Fermi-surface-diagonal matrix elements will be

suppressed at a value of the spin-orbit splitting Eso that is, by a factor scaling as ∝
√

(Tn1
c,0 − T

n2
c,0)/Tn1

c,0 ,
smaller than its transition temperature Tn1

c,0 for Eso = 0. Consequently, in a system such as Sr2RuO4

where several superconducting states transforming under different IRs are known to be nearly degen-
erate (see Sec. 4.6.1), the weak-pairing limit can be applied even for Eso � Tc.
To gain intuition for the prefactors in Eq. (4.102), let us calculate the matrix elements mjj′(k, n2)

explicitly for the single-orbital model in Eq. (4.89) with TRS and Cz2 ∈ Gp. If the competing state
6Defined in direct analogy to Eq. (4.43). Due to the limit Eso � Tc we consider here, the density of states can be
assumed to be identical on the spin-orbit-split Fermi surfaces such that the average does not depend on j.
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transforming under n2 has purely singlet pairing, one will find that mjj′(k, n2) ∝ δjj′ independent of
gk and, hence, Con2

= 0. Then the prefactor in Eq. (4.102) becomes minimal which is just a consequence
of the fact that the transition temperature of the singlet state is not affected at all by the energetic
splitting Eso = 0 as it only couples Kramers partners with the same energy. This is different in case of
triplet pairing,

∑
µ η̂

n2
µ χ̃

n
µ(k) = σ · dk, where the matrix elements are given by

|mjj(k, n2)| = |ĝk · dk|, |m12(k, n2)| =
∣∣∣(ĝk × dk + dk

)
3

∣∣∣ , (4.105)

where we have introduced the normalized spin-orbit vector ĝk := gk/|gk|.
We first note that, in accordance with Sec. 4.4.2, the diagonal matrix elements vanish if the triplet

vector is aligned along the z direction with the entire weight of the superconducting order parameter
appearing in |m12(k, n2)| = |dkz|.
For an order parameter transforming under a representation that is even under Cz2 , the triplet vector

is fully aligned within the plane of the system and, hence, |m12(k, n)| = |ĝ(k) × dk|. This form of
the off-diagonal matrix elements, which basically describe the “pair-breaking” effect of the spin-orbit
splitting, shows that increasing Eso favors states with dk parallel to gk (dk � gk). We emphasize
that this does not necessarily imply that the leading instability satisfies this property as the interaction
might favor a pairing state where dk is not parallel to gk in the entire Brillouin zone. In Ref. [133],
it has been shown that in the special case where the interaction kernel is spin-independent, we indeed
get dk � gk for finite Eso.

4.6 Application to materials

Having derived various general selection rules for superconducting instabilities and their time-reversal
properties, let us next apply these findings to several physical systems.

4.6.1 Consequences for Sr2RuO4

We start the discussion with the following gedankenexperiment: Consider a 3D superconductor with
strong SOC that breaks TRS in its bulk and imagine putting it on a substrate and gradually reducing its
thickness d normal to the substrate as illustrated in Fig. 4.4. If the point group Gp of the resulting thin
film, which must be necessarily noncentrosymmetric by the presence of the substrate, does not allow for
a threefold rotation symmetry, our analysis of Sec. 4.4 indicates that there are only two possibilities:
At some point during the reduction of d, superconductivity either disappears entirely or a transition
into a TRS-preserving superconducting phase occurs. If, in addition, Cz2 ∈ Gp we also know that the
triplet vector will eventually be aligned in the plane of the thin layer system.
A natural candidate material for transforming this gedankenexperiment into a real experiment is

provided by the layered perovskite Sr2RuO4: As discussed in more detail in Sec. 1.3.2, in bulk Sr2RuO4,
there is a phase transition at Tc ' 1.5 K from a Fermi-liquid phase [181] into a superconductor [179] that
is most likely a chiral p-wave state with triplet vector dk ∝ (k1+ik2)e3 that breaks TRS [47, 51, 53, 185–
189]. SOC is expected to be strong for Ru (Z = 44) which provides the mobile carriers that become
superconducting. Together with the small transition temperature, this leads to the expectation that
the weak-pairing description should be applicable in the thin-film limit. On top of that there are strong
both theoretical [183, 195] as well as experimental [331, 332] indications that the chiral p-wave state is
nearly degenerate with the four triplet states transforming under the ungerade one-dimensional IRs of
its point group D4h. This near degeneracy is naturally understood by noting that it is exact in case of
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4 Selection rules for pairing states in noncentrosymmetric superconductors

Figure 4.4: Gedankenexperiment. Taking a TRS-breaking superconductor (left) on a substrate
and reducing its thickness d (right) will force the condensate to either disappear or
transform into a time-reversal symmetric state (if Cz3 /∈ Gp) with triplet vector dk
constrained to the plane of the system (if Cz2 ∈ Gp).

independent spin-rotation symmetry and, hence, only broken by the presence of SOC [183]. The relative
difference of the transition temperatures ∆Tc/Tc has been estimated [195] to be smaller than 0.01 such
that the weak-pairing description is expected to apply already for Eso being smaller than Tc as can be
seen from Eq. (4.102). Furthermore, thin films of Sr2RuO4 have already been realized experimentally
and shown to be superconducting [68]. Assuming that there are no additional distortions of the crystal
structure due to the substrate, the point group D4h of the bulk will be reduced to C4v at the interface.
We thus conclude that TRS must be restored and the triplet vector must rotate to be aligned in-plane
in the thin-film limit.
This is fully consistent with the analysis of Refs. [333, 334] on the impact of the Dresselhaus-Rashba

effect on the superconducting instabilities in Sr2RuO4 where the transition to a time-reversal symmetric
state with in-plane d vector has been predicted by microscopic calculations focusing on the γ band.
The symergetic arguments of this chapter show that this transition occurs irrespective of which band
is relevant for describing superconductivity and independent of any further assumptions about the
microscopic theory such as the structure of the interaction of the system.

Pairing states in thin layer. Let us next take a closer look at the possible order parameters in thin
layer Sr2RuO4. In Table 4.2, the allowed pairing states are listed according to the IRs of C4v. Due
to SOC and the absence of inversion symmetry, singlet and triplet will automatically mix. However,
the triplet component is expected to be much larger than singlet as the triplet interaction channel
is dominant in bulk Sr2RuO4. Although the relevant low-energy degrees of freedom of Sr2RuO4 are
derived from three different orbitals, the Ru 4dxy, 4dxz and 4dyz states, we have assumed that the order
parameter is trivial (∝ 1o) in orbital space in Table 4.2 to avoid lengthy expressions.
In accordance with Sec. 4.4, the Fermi-surface-diagonal matrix elements ∆̃s(k) of the order parameter

vanish for the two-dimensional IR E and all energetically allowed triplet vectors are aligned in the
plane of the system. We emphasize that the former statement also holds when order parameters
with arbitrary orbital structure are taken into account, while the latter holds as long as only orbital
diagonal components are relevant. Note that diagonal in orbital space is less restrictive than trivial in
orbital space. This distinction might be particularly relevant for Sr2RuO4, where an order parameter
that is diagonal but not trivial with respect to the different orbitals has been suggested [197] for
bulk Sr2RuO4. From a pure symmetry point of view, the presence of several orbitals transforming
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Table 4.2: Singlet (∆S
k) and triplet (dk·σ) components as well as weak-pairing description (∆̃s(k))

of the possible superconducting phases of a system with C4v point group assuming trivial
behavior in orbital space. Here X and Y denote continuous, real-valued, momentum-
dependent functions transforming as sin(k1) and sin(k2) under C4v.

Gr. th. Pairing TRS ∆S
k dk · σ ∆̃s(k)

A1 s-wave y 1, X2 + Y 2 Y σ1 −Xσ2 1, X2 + Y 2

A2 g-wave y XY (X2 − Y 2) Xσ1 + Y σ2 XY (X2 − Y 2)

B1 dx2−y2 y X2 − Y 2 Y σ1 +Xσ2 X2 − Y 2

B2 dxy y XY Xσ1 − Y σ2 XY

E(1, 0) e(1,0) y 0 σ3Y 0

E(1, 1) e(1,1) y 0 σ3(Y −X) 0

E(1, i) e(1,i) n 0 σ3(X + iY ) 0

nontrivially enriches the structure of the allowed pairing states within a given representation: Using
the basis {4dxy, 4dxz, 4dyz}, the matrix diag(0, 1,−1) transforms under B1 of C4v. Therefore, e.g., the
order parameter diag(0, 1,−1)(Y σ1 +Xσ2), that is diagonal in orbital space, transforms under A1 but
is not included in Table 4.2. Similarly, there is actually one additional orbital-diagonal term in the
singlet and triplet channel for every representation (except for the singlet component in case of E) in
Table 4.2.

Topological properties. Our symergetic arguments strongly imply that the superconducting state of
the thin layer of Sr2RuO4 preserves TRS and, hence, belongs to class DIII (see Chap. 2.1). In 2D, its
topological properties are classified by a Z2 invariant ν

Z2
that is, within the weak-pairing limit, given

by Eq. (2.19),

ν
Z2

=
∏
s

[
sign

(
∆̃s(ks)

)]ms
, (4.106)

which we have reprinted for convenience of the reader [280]. In Eq. (4.106), ms denotes the number of
TRIM enclosed by Fermi surface s.
To analyze the topology of the four possible pairing states transforming under the one-dimensional

IRs of C4v, we assume that the Fermi surfaces of the thin layer are the same as in the bulk except for
the splitting of the degeneracy induced by the inversion-symmetry-breaking terms. More specifically,
using the orbital basis {4dxy, 4dxz, 4dyz} and σj to describe spin, the centrosymmetric part of the
noninteracting Hamiltonian is taken to be

hSk =

εxy(k)− µ− δεxy 0 0
0 εxz(k)− µ tη sin(k1) sin(k2)
0 tη sin(k1) sin(k2) εyz(k)− µ

+
λ

2
L · σ (4.107)

with εxy(k) = −2t3
(
cos(k1) + cos(k2)

)
− 4t4 cos(k1) cos(k2), εxz(k) = −2t1 cos(k1) − 2t2 cos(k2) and

εyz(k) = −2t2 cos(k1)− 2t1 cos(k2) as is commonly used to describe the Fermi-liquid of bulk Sr2RuO4
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4 Selection rules for pairing states in noncentrosymmetric superconductors

[198, 335, 336]. In Eq. (4.107), tη describes the mixing of the 4dxz and 4dyz orbitals caused by next-
nearest neighbor hopping and δεxy incorporates the energetic offset between the dxy (B2 of C4v)
and dxz/dyz (E of C4v) orbitals at the Γ point. Furthermore, λ is the atomic SOC strength and
L = (L1, L2, L3) the vector of angular momentum operators projected onto the three d orbitals which
can be expressed in terms of Gell-Mann matrices [337] as L1 = λ2, L2 = −λ5, L3 = λ7 (see also
Appendix D.1.2).
As opposed to the bulk, inversion symmetry is broken in the thin layer due to the presence of the

substrate deforming the atomic orbitals and making additional hopping processes possible. One can
show (cf. Appendix D.1.2) that this leads to the additional contribution

hAk = δ
(
L1 sin(k2)− L2 sin(k1)

)
(4.108)

to the Hamiltonian which can be described by a single parameter δ as dictated by the residual C4v

symmetry. The Fermi surfaces and the spectrum along high-symmetry lines of the full Bloch Hamilto-
nian hk = hSk + hAk are shown in Fig. 4.5(a) and (b), respectively. The values of the parameters of hSk
are given in the caption and have been determined in Ref. [198] for bulk Sr2RuO4 by comparison with
experiment [160, 181]. The strength δ of the inversion-symmetry breaking is very hard to estimate and
is also expected to depend on many details of the sample, in particular, on the substrate used and the
thickness of the film. Here we take a rather large value of δ = 0.45t1 in order to make the spin-orbit
splitting clearly visible in the spectra. Note, however, that the following discussion is independent of
the value of δ as long as the topology of the Fermi surfaces with respect to the TRIM of the Brillouin
zone (green dots in Fig. 4.5(a)) is the same as in bulk Sr2RuO4, i.e., as long as δ < 0.47t1.
As the topological invariant ν

Z2
in Eq. (4.106) is only well defined when the superconducting state

has a fully established gap, we will first focus on the pairing states without any nodes in the weak-
pairing limit. Due to Eq. (4.37), ∆̃s(k) transforms as a scalar. Recalling Eq. (4.30) and the Fermi
surface structure in Fig. 4.5(a), we conclude that only the state transforming under A1 (the e(1,i) state
is disfavored energetically) will be nodeless7.
Using the general parameterization (4.91) of the superconducting order parameter in terms of singlet

and triplet, the crucial diagonal matrix elements of the order parameter become

∆̃s(k) = 〈ψks|∆S
kσ0|ψks〉+

3∑
j=1

〈ψks|Dj
kσj |ψks〉 , (4.109)

where ∆S
k and Dj

k are matrices in orbital space only. It is reasonable to assume (see also the more
detailed discussion in Chap. 6.2.3) that the spin-orbit splitting of the Fermi surfaces is smaller than
the scale on which the spin-texture gk of the Rashba-Dresselhaus effect and the orbital polarization of
the wavefunctions change. In this limit, the singlet term (first term in Eq. (4.109)) is identical on the
spin-orbit split Fermi surfaces, whereas the triplet contribution (second term) has identical magnitude
but opposite sign.
From the expression (4.106) of the topological Z2 invariant, we can directly conclude that the su-

perconductor is topologically trivial (nontrivial) if singlet (triplet) dominates. As already mentioned
above, since triplet dominates in the bulk, it is natural to assume that this also holds for the thin layer.
Naively, for a surface, e.g., along the x axis, we expect a single Kramers pair of Majorana modes at
k1 = π and two pairs at k1 = 0. This follows from calculating the DIII topological invariant of the
fictitious 1D systems at fixed k1 = 0, π for all bands separately which is most easily done by noting that
7Naturally, there can always be accidental nodes which we will not consider here.
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Figure 4.5: Bulk and edge bands of Sr2RuO4. Fermi surfaces (a) and spectrum (b) along
high-symmetry lines shown in green in part (a) following from the bulk Hamilto-
nian defined in the main text. TRIM are indicated as green dots in (a). In (c)-
(f), the low-energy part of the spectra of the superconducting phases with triplet
vector 0.2t1(sin k2,− sin k1, 0), 0.08t1(sin k2, sin k1, 0), 0.12t1(sin k1,− sin k2, 0) and
0.08t1(sin k1, sin k2, 0) are shown transforming under A1, B1, B2 and A2, respectively.
Here we have used periodic along the x and open boundary conditions along the y axis
(175 sites). The spectrum of the infinite bulk system is indicated in light blue. In all
plots of the figure we have taken t2 = 0.1t1, t3 = 0.8t1, t4 = 0.3t1, tη = −0.04t1,
λ = 0.2t1, µ = t1 and δεxy = 0.1t1 [198] as well as δ = 0.45t1.
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4 Selection rules for pairing states in noncentrosymmetric superconductors

Eq. (4.106) also holds in the 1D case where ms = 1. Note, however, that the two pairs of Majorana
modes at k1 = 0 will in general be gapped out since already infinitesimal couplings of the β and γ
bands that preserve TRS and PHS lead to a finite gap. Indeed, this is what we obtain by numeri-
cally diagonalizing the superconducting mean-field Hamiltonian: Using periodic along the x and open
boundary conditions along the y direction, we observe a Kramers pair of MBSs at k1 = π and two
additional subgap sates that are slightly gapped out8 at k1 = 0 in the spectrum shown in Fig. 4.5(c).
In the plot, we have assumed that the order parameter is trivial in orbital space as in Table 4.2 which
seems to be a natural approximation given that the recent RG calculation of Ref. [198] indicates that
the superconducting gap has approximately the same size on all three bands. We emphasize that, apart
from the plot, our discussion of the topological invariant ν

Z2
is not based on this assumption.

From this reasoning, we also directly conclude that the system is characterized by the weak topological
indices (1, 1) introduced in Chap. 2.1.4. Consequently, a Kramers doublet of MBSs must occur at any
dislocation characterized by a Burgers vector b = (b1, b2) (expressed in the basis of primitive vectors)
with b1 + b2 odd [247, 269, 270].
Let us next discuss the remaining possible pairing states transforming under A2, B1 and B2. As

already mentioned above, in all three cases, there are necessarily nodes in the strict weak-pairing limit.
The triplet order parameter transforming underB1 constitutes a special case: There are no (symmetry-

imposed) nodes at k1 = π (or k2 = π). Therefore, the DIII invariant of the fictitious 1D problem given
by restricting the Hamiltonian on k = (π, k2), 0 < k2 ≤ π, is well defined and easily shown to be non-
trivial with the help of Eq. (4.106). This means that, say for a surface along the x axis, there should
still be a Kramers pair of MBSs at k1 = π despite the presence of low-energy excitations at k1 6= π.
This is confirmed by the numerically determined spectrum shown in Fig. 4.5(d). The edge modes are
topologically protected in the sense that they cannot be gapped out by continuous deformations of the
quadratic Hamiltonian that do not move the nodal points all the way to k1 = π or close the gap, neither
break TRS/PHS nor the translation symmetry along the x axis. In particular, the latter restriction
to k1-preserving perturbations is a limitation as compared to the usual notion of fully gapped (strong)
topological phases (see Chap. 2.1) as it means that already nonmagnetic disorder can destroy the edge
modes – very much like in case of gapped weak topological phases. Note, however, that due to sign
changes between the spin-orbit-split Fermi surfaces the triplet state itself is already prone to nonmag-
netic disorder (see Ref. [160] and Chaps. 1.4 and 7) and, hence, very clean samples are anyway required
to stabilize the superconducting condensate. As Sr2RuO4 can be prepared in remarkably clean form
[160], the lack of protection of the MBSs against time-reversal symmetric scatterers might be irrelevant
in experiment.
It is worth noting that the spin-orbit splitting of the Fermi surfaces is extremely small at the high-

symmetry lines k2 = 0, π (and, by symmetry, also at k1 = 0, π) as can be easily seen in Fig. 4.5(a)
and (b). This can be understood from the symmetry point of view: Consider, e.g., the splitting of the
β and γ bands along the Γ-X-line. Since the low-energy states in the vicinity of the high-symmetry
line are mainly due to the xy (γ band) and xz (β band) orbitals, the splitting is expected to arise
predominantly from the hybridization of these orbitals. The associated matrix element must, however,
transform as Y and, hence, vanishes at the Γ-X-line. The small splitting is due to the coupling to
the energetically distant yz orbital. This has important consequences for the B2 pairing state which
has its nodes at exactly these high-symmetry lines in the weak-pairing description: There are values of
the order parameter which are still smaller than the typical splitting of the Fermi surfaces (such that

8This gap survives in the limit of the system being infinitely large in the y direction as opposed to the gap of the
Majorana modes at k1 = π that just results from the finite overlap of the edge modes at opposite edges.
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Eq. (4.106) can be safely used) but comparable to or larger than the splitting at these high-symmetry
points of the Fermi surface rendering the superconductor fully gapped. As long as triplet dominates,
the state must be topologically nontrivial with MBSs at the boundary to a trivial phase as illustrated
in Fig. 4.5(e).
For the very same reason, also the A2 state has no nodes along k1 = 0 and k2 = 0 and, hence, harbors

MBSs which are protected in the same sense as those of the B1 state (see Fig. 4.5(f)).
Taken together, we have seen that for all four pairing states that are allowed by our symergetic

selection rules, MBSs as signatures of nontrivial DIII topology are expected to occur at the boundary
to a trivial phase. This makes thin films of Sr2RuO4 a promising physical system for the observation
of Majorana physics. Due to the restored TRS in the thin layer, these edge modes always come in
Kramers pairs and thus will not produce any current or magnetic field as opposed to the chiral p-wave
state discussed for bulk Sr2RuO4.

4.6.2 Other TRS-breaking superconductors

As illustrated by the general gedankenexperiment outlined above, our symergetic constraints are par-
ticularly interesting for thin layers of superconductors that break TRS in their bulk. For this reason, we
next discuss further examples of materials, URu2Si2 and UPt3, which are strongly believed to harbor
a superconducting state that is not invariant under time-reversal [48, 49, 54].

URu2Si2. We begin with URu2Si2 (see Chap. 1.3.2 for an introduction) as it is, from a pure symergetic
point of view, very similar to Sr2RuO4: It has the same bulk point group, D4h, [165] which will be
lowered to C4v in a thin layer on a substrate (again assuming no additional distortions). Note that
there are reports of rotational symmetry breaking at the hidden order transition [338], however, this
does not seem to have any observable impact on superconductivity9 and will thus be neglected here.
The tiny magnetic moments (' 0.03µB per U atom) which are present in the hidden order phase [219]
are today known to have an extrinsic origin (defects, stress) and not to coexist with superconductivity
[165, 339]. It is therefore natural to expect them to be irrelevant for understanding the superconducting
instability. Above the superconducting transition, the system can hence be approximated to be time-
reversal symmetric. Furthermore, the small transition temperature Tc ' 1.5K [216–218] and the strong
SOC following from the large Z = 92 of U indicate that the weak-pairing limit seems to be applicable in
the thin layer limit. Therefore, Table 4.2 and the symergetic constraints discussed for Sr2RuO4 apply
for URu2Si2 as well.
In the bulk, most likely a chiral d-wave state ∆S

k = (k1 + ik2)k3 transforming under Eg of D4h

is realized [49, 202, 221–223]. Without any symergetic arguments, it is clear that this state cannot
survive the thin-film limit due its k3 dependence. From a pure symmetry point of view, the most
natural [340] pairing state in the quasi-2D limit would be e(1,i) transforming under the representation
E subduced10 from Eg of D4h. In the present case, this is the TRS-breaking triplet order parameter
with dk = (k1 + ik2)e3, which, however, is suppressed in the weak-pairing limit due to being odd under
Cz2 (see Sec. 4.4).
Exactly as in case of Sr2RuO4, we know that the superconducting state of the thin layer can only

transform under one of four 1D IRs of C4v with order parameter structures as summarized in Table 4.2.

9For example, no splitting of the features in the specific heat measurement of Ref. [222] can be seen.
10Consider a group G and a proper subgroup H. Restricting an IR ρ of G to elements of H defines a representation of H

which is called the representation subduced from ρ. For our purposes, the subgroup just lacks the inversion operation
as generator as compared to G such that all subduced representations are automatically irreducible.
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Table 4.3: Character table of C6v.

E 2C6 2C3 C2 3σv 3σd Basis functions

A1 1 1 1 1 1 1 x2 + y2

A2 1 1 1 1 −1 −1 xy(3x2 − y2)(3y2 − x2)

B1 1 −1 1 −1 1 −1 x(3y2 − x2)

B2 1 −1 1 −1 −1 1 y(3x2 − y2)

E1 2 1 −1 −2 0 0 (x, y)

E2 2 −1 −1 2 0 0 (x2 − y2, 2xy)

TRS must be restored and the triplet vector must necessarily be oriented parallel to the plane of the
system. Note that the generality of our symergetic arguments is particularly important for URu2Si2
where the microscopic details of the hidden order phase are still under debate [165, 215] rendering
explicit calculations of the superconducting instability very difficult.

UPt3. The heavy-fermion superconductor [23] UPt3 will be our third example of a material where the
breaking of TRS in its bulk superconducting state has been demonstrated experimentally [48, 54]. As
discussed in more detail in Chap. 1.3.2, the order parameter is widely believed [48, 54, 206–208, 211–214]
to be a triplet state with a d vector of the form dk = (δ1(k2

1−k2
2)k3+2iδ2k1k2k3)ez, i.e., mainly polarized

along the z direction and transforming under the two-dimensional IR E2u of its bulk point group D6h.
The small magnetic moments (of order 0.01µB per U atom) associated with the antiferromagnetic order
[209, 210] are commonly regarded as a small perturbation for superconductivity [213, 214]. Therefore,
we will first ignore them in the following and then later comment on the implications in case they
are also present in the quasi-2D limit. The combination of SOC being very strong [163], as expected
from the large proton numbers of Pt (Z = 78) and U (Z = 92), and the small transition temperatures
(Tc ' 0.5 K [23]) in this system makes it an ideal candidate for the application of a weak-pairing
description to understand the superconducting properties in thin films on a substrate. Similarly to
Sr2RuO4, thin films of UPt3 have indeed been fabricated and also shown to host superconductivity
[69].
Assuming that no further structural distortions take place in the thin layer system, the point group

will be reduced to C6v. As it contains a twofold rotation Cz2 perpendicular to the plane of the system,
the triplet vector must rotate to be aligned parallel to the 2D layer according to Sec. 4.4.2. However,
the presence of the threefold rotation symmetry Cz3 still allows for TRS to be broken. Note that the
restriction on the d vector will in general only hold if the order parameter is diagonal in band space
which is a very common [163, 207, 208, 214] assumption in the literature on UPt3. Due to the complex
structure of the Fermi surfaces [163, 203] arising from a hybridization of the U 5f and Pt 5d electrons
it does not seem to be a priori clear whether this assumption holds. An analysis of the triplet vector
in superconducting thin layers of UPt3 might hence give insights into the orbital structure of the order
parameter in the bulk system.
Let us now take a closer look at the possible pairing states of the thin-film limit: From the character

table of C6v given in Table 4.3, we see that there are in total 6 IRs out of which 3 can be discarded in the
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Table 4.4: Summary of the superconducting phases of a system with C6v symmetry, such as UPt3,
that are allowed by the symergetic selection rules. As in Table 4.2, X, Y are basis
functions transforming as sin(k1) and sin(k2) under the point group.

Gr. th. Pairing TRS ∆S
k dk · σ

A1 s-wave y 1, X2 + Y 2 Xσ2 − Y σ1

A2 i-wave y XY (3X2 − Y 2)(3Y 2 −X2) Xσ1 + Y σ2

E2(1, i) e2(1,i) n (X + iY )2 σ1(Y − iX) + σ2(X + iY )

weak-pairing limit as they are odd under Cz2 . Recalling the result of Sec. 4.3.2, we know that the order
parameter must necessarily break TRS when transforming under a two-dimensional IR. Consequently,
the order parameter vector configurations (ηE2

1 , ηE2
2 ) = (1, 0) and (ηE2

1 , ηE2
2 ) = (0, 1) are also ruled

out. Consequently, out of the 10 order parameters that are possible by symmetry, only 3 remain as
a consequence of the energetic selection rules derived in this chapter. In Table 4.4, these remaining
options are summarized where we have again assumed the order parameter to be trivial in orbital space
just to keep the expressions as simple as possible. The TRS-breaking state e2(1,i) corresponds to the
order parameter believed to be realized in bulk UPt3 as E2 is the representation subduced from E2u of
D6h. Note, however, that only the in-plane components of the triplet vector can be finite in the quasi-
2D system which are empirically known to be negligibly small in the bulk superconductor [208]. This
indicates that the pairing interactions leading to finite in-plane triplet vectors in the E2u representation
are very inefficient and, hence, it is not clear at all whether the e2(1,i) state is also realized in the thin
film.
Finally, let us discuss the impact of the potential presence of antiferromagnetic order [209, 210]. If,

similar to the bulk, there is a small amount of antiferromagnetism (M 6= 0) that just slightly breaks the
sixfold rotation symmetry down to a twofold rotation symmetry (C6v reduced to C2v), we can regard
M as a weak symmetry-breaking field [213, 214]: In case of A1 being favored in the limit M = 0,
the presence of antiferromagnetism does not split the transition, but only leads to a small admixing
of X2 − Y 2 and Xσ2 + Y σ1. Similarly, for A2, there will be no splitting of the transition but small
additional XY and Xσ1 − Y σ2 contributions. Only in case of the two-dimensional representation, the
transition will be split into two. As time-reversal symmetric order parameter vector configurations
are not possible for a two-dimensional IR in the weak-pairing limit, the observation of a splitting in
experiment directly implies the breaking of TRS.

4.6.3 Superconductors with unknown microscopic structure

Finally, let us illustrate, using oxide heterostructures (see Chap. 1.3.1) and single-layer FeSe on STO
(see Chap. 1.3.2) as examples, that our symergetic arguments can also be used to gain information
about the time-reversal properties of superconductors that have not been microscopically identified
[36–38, 158, 159] and to streamline the search for new superconductors that spontaneously break the
TRS of the normal state.

Oxide heterostructures. We begin our discussion with LAO/STO heterostructures that can be
grown [35, 142, 156] along three different orientations, [001], [110] and [111] with respective point
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4 Selection rules for pairing states in noncentrosymmetric superconductors

Table 4.5: Pairing states of the (110) interface organized according to the IRs of its point group
C2v. Only A1 and A2 are possible in the weak-pairing limit.

Gr. th. Pairing TRS ∆̃s(k) # Nodes/FS

A1 s-wave y 1; X2
1 ; X2

2 0

A2 dxy y X1X2 4

B1 px y 0 ungapped

B2 py y 0 ungapped

groups C4v, C3v and C2v. As has already been discussed in Chap. 1.3.1, superconductivity has so
far only been observed [39, 40] in the former two orientations while there is no experimental report on
superconductivity for the less studied (111) interface. At present date, neither the mechanism leading to
superconductivity nor the detailed structure of its order parameter has been unambiguously identified.
In the following we will discuss the implications of the symergetic selection rules derived in this chapter
on the possible pairing states in these systems based on Ref. [325]. Parts of this discussion have also
been summarized in Ref. [38].
Firstly, note that the oxide heterostructures constitute prime examples for the applicability of the

weak-pairing description: The gap at optimal doping (' 0.04meV) is known to be much smaller than
the spin splitting Eso ' 10meV of the Fermi surfaces which is even comparable to the Fermi energy
(EF ' 20meV) [41].
From our analysis of Sec. 4.4, we can directly conclude that the pairing states of the (001) and

(110) interfaces must be necessarily time-reversal symmetric due to the absence of a threefold rotation
symmetry while only the point group of the (111)-terminated heterostructure allows for spontaneous
TRS breaking at the superconducting phase transition. This motivates a closer experimental inspection
of the low-temperature behavior in the (111) system as it offers the possibility of an exotic TRS-
breaking superconducting state. Furthermore, because of the absence of a twofold rotation symmetry
perpendicular to the interface, it is also the only 2D system we have discussed so far in this chapter
that allows for an (orbital diagonal) out-of-plane component of the triplet vector.
Let us now take a closer look at the possible pairing states for the three different orientations: For the

(001) termination, again Table 4.2 holds. As all Fermi surfaces of the system enclose the Γ point [341–
343] and experiment indicates a fully established gap [70], only the s-wave state remains as a candidate
order parameter (see Eq. (4.30)). We emphasize that this only fully determines the symmetry of the
pairing state, i.e., the (absence of) sign changes of the order parameter ∆̃s(k) on all Fermi surfaces,
but not the topological DIII invariant ν

Z2
in Eq. (4.106) or, put differently, the sign changes of ∆̃s(k)

between different Fermi surfaces. The invariant depends on the relative sign of the basis functions ϕnµ
on the different Fermi surfaces and thus has to be determined in an explicit microscopic calculation
which will be the topic of the next chapter. We will see that ν

Z2
, albeit insensitive to symmetries, will

be intimately related to the mechanism of superconductivity.
The possible pairing states of the (110) interface are summarized in Table 4.5 for simplicity only

showing the weak-pairing order parameter ∆̃s(k). Here, X1(k) and X2(k) are scalar basis functions
transforming as the momenta along the [1̄10] and [001] direction, respectively (see also Fig. 1.3(d), left
panels). As the point group C2v only allows for one-dimensional IRs, TRS breaking is already forbidden
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4.6 Application to materials

Table 4.6: Superconducting phases of the (111) interface as allowed by the point group C3v of the
normal state. The two TRS-preserving states transforming under E are not possible in
the weak-pairing limit as shown in Sec. 4.3.2.

Gr. th. Pairing TRS ∆̃s(k) # Nodes/FS

A1 s-wave y 1; X2
1 +X2

2 0

A2 f -wave y X1X2(3X2
1 −X2

2 )(3X2
2 −X2

1 ) 12

E(1, 0) e(1,0) y X1X2 4

E(
√

3, 1) e(
√

3,1) y 2
√

3X1X2 + (X2
1 −X2

2 ) 4

E(1, i) e(1,i) n 2X1X2 + i(X2
1 −X2

2 ) 0

just as a consequence of the presence of SOC, i.e., also in case of doubly-degenerate Fermi surfaces.
Out of the four states as allowed by symmetry, two are fully ungapped in the weak-pairing limit due
to being odd under Cz2 and are, hence, energetically suppressed.
Finally, the pairing states of the (111)-oriented LAO/STO heterostructure can be found in Table 4.6,

where X1(k) (X2(k)) transforms as the crystal momentum along the [1̄10] ([1̄1̄2]) direction (see also
Fig. 1.3(d), right panels). In accordance with the design principle of Sec. 4.4.1, there is a state, e(1,i),
that breaks TRS which, in this case, is even fully gapped in the weak-pairing limit. Note that since
the point group C3v does not contain Cz2 , none of the IRs can be generally excluded. Only the two
time-reversal symmetric symmetry-allowed states e(1,0) and e(

√
3,1) are ruled out as a consequence of

our analysis of higher-order terms of the Ginzburg-Landau expansion in Sec. 4.3.2.
Note that the leading basis function X1(3X2

2 − X2
1 ) in case of A2 happens to be odd under Cz2 .

Consequently, it cannot open up a gap in the weak-pairing limit. As C3v does not contain an operation
with (X1, X2) → (−X1,−X2), the basis function of a given representation can have distinct parity.
The leading contribution to ∆̃s(k) then reads X1X2(3X2

1 −X2
2 )(3X2

2 −X2
1 ) yielding 12 instead of 6 as

the minimal number of nodes per Fermi surface.
Before closing, we will make the following two comments. Firstly, in our discussion of oxide het-

erostructures we have been tacitly assuming that the normal state can be approximated to be time-
reversal symmetric which, at first sight, seems to contradict the observation of magnetic order [148–150]
in these systems (see also Chap. 1.3.1). The crucial point is that superconductivity is mostly associated
with the itinerant bands derived from the 3dxz and 3dyz orbitals [344, 345] while magnetism is predom-
inantly due to the 3dxy states that are closest to the interface and localized [111, 151, 152, 346, 347].
Within this physical picture that will be discussed in more detail in Chap. 5.1.1, the magnetic order
can only affect the validity of our discussion if the resulting effective Zeeman splitting EZ in the super-
conducting bands is comparable to or larger than the spin-orbit splitting Eso on the Fermi surface. The
opposite limit EZ � Eso seems to be realized as a consequence of the small orbital admixture of 3dxy
in the bands relevant for superconductivity [111]. This picture is further confirmed by the experimen-
tal observation [149] that there is no significant spatial correlation between the isolated ferromagnetic
patches and the superconducting order parameter.
Secondly, the entire analysis of this chapter is based on the assumption (see Eq. (4.2)) that there

is no translational symmetry breaking at the superconducting phase transition. This seems to be
critical as Refs. [108, 110–112] point towards the possibility an FFLO-like state that is stabilized by
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4 Selection rules for pairing states in noncentrosymmetric superconductors

the combination of strong SOC and the exchange coupling to ferromagnetic moments. However, the
aforementioned absence of correlation between magnetism and superconductivity [149], irrespective of
the value of EZ , is inconsistent with this expectation. In addition, we will see in the microscopic
calculation of Chap. 5 that FFLO states only occur as subleading instabilities and for very exotic
interaction parameters.

Single-layer FeSe. Although inversion symmetry is automatically broken by the asymmetric presence
of the substrate, it is a priori not clear whether the weak-pairing description and all the subsequent
constraints derived in this chapter are applicable to FeSe on STO due to its large transition temperature
and gap [157]. If we assume that it does, exactly the same restrictions as in case of (001) oxide
interfaces will apply because the two systems share the same point group (C4v). The order parameter
must transform under one of the one-dimensional IRs of C4v (cf. Table 4.2) with triplet vector parallel
to the layer and preserve TRS. In combination with experiment [167] showing a fully established
gap on the Fermi surfaces enclosing the M point (see Fig. 1.4(c)), only the s-wave state remains
as a possible pairing state in the weak-pairing limit. Note that, as discussed in Chap. 1.3.2, recent
experiments [177, 178] clearly indicate the absence of magnetic order in the single-layer system such
that the assumption of a time-reversal symmetric normal phase is justified.
As already mentioned above in the context of the (001) oxide interface, this does not fully deter-

mine the corresponding DIII invariant: Recalling from Fig. 1.4(b) and the corresponding discussion
in Chap. 1.3.2 that there are two pairs of spin-orbit-split Fermi surfaces around the M point, three
possibilities remain: The pairing field can have the same sign on all four electron pockets, the signs
can be pairwise identical or only differ on one Fermi surface. Only the latter type of pairing state is
topologically nontrivial as readily follows from Eq. (4.106). In Chap. 6.3.2 we will see that, under very
general assumptions, the topological order parameter cannot be realized if superconductivity arises
from the coupling to collective particle-hole modes, such as SDW fluctuations, or phonons.

4.7 Spinless fermions

For completeness, we will finally extend the analysis of Sec. 4.4 to spinless fermions, i.e., to S = 0 in
Eq. (4.9). Following the discussion presented in the supplementary material of Ref. [325], we will first
discuss how this situation can occur and then analyze the symergetic constraints on the possible pairing
states for S = 0.

4.7.1 Strong magnetic fields

To see how an emergent spin-0 TRS can be realized in a broad class of solid state systems, let us
consider spin-1/2 fermions which do not experience any SOC and are described by a Hamiltonian with
physical TRS represented by the operator Θ1/2 = iσ2 ⊗ 1oK. Here 1o is the unit matrix in orbital
space and σj refers to the spin. Due to the absence of SOC, the Hamiltonian has the form σ0⊗hok and
the full symmetry group is given by G0 = SO(3)× Gp. Applying an in-plane magnetic field, say along
the x direction, leads to an additional Zeeman term. The resulting Hamiltonian

hk = σ0 ⊗ hok + σ1 ⊗ 1oEZ (4.110)

now only has GB = SO(2)× Gp symmetry. The physical spin-1/2 TRS Θ1/2 is broken, however, it still
holds

Θ̃h−kΘ̃† = hk, Θ̃ = σ0 ⊗ 1oK. (4.111)
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4.8 Consequences for surfaces

For the analysis of the symmetry properties of the superconducting order parameter, it is essential that
the representation RΨ of the point group can be chosen to commute with Θ̃ (see Eq. (4.13)). More
physically, it means that the associated generators, i.e. the angular momenta of the theory, have to
anticommute with its time-reversal operator Θ̃.
For the SO(2) part of GB this is not the case as Θ̃ does not anticommute with σ1. Let us thus assume

that the Zeeman energy EZ is larger than the bandwidth of hok. Then, we can project onto one of the
two Zeeman-split multiplets to obtain an effective low-energy theory. Without loss of generality, let us
choose the multiplet that is energetically lower. The effective Hamiltonian then reads

heffk = hok − 1o|EZ |, (4.112)

which now only has the point symmetry group Gp. All point symmetry operations in the effective theory
are generated by the orbital angular momentum l satisfying {Θ, l} = 0 with Θ = 1oK. It is therefore
always possible to choose the representation RΨeff of the symmetry group in the effective theory to
commute with Θ.
We have thus seen that in a 2D electronic system without SOC subject to strong magnetic fields,

the effective low-energy model naturally has an emergent TRS with Θ2 = 1. We will now discuss the
symergetic restrictions on possible pairing states within such a theory.

4.7.2 Selection rules for spinless systems

As compared to the situation of spinfull electrons (S = 1/2), there are two crucial differences: Firstly,
the Fermi-Dirac constraint (4.32) forces the weak-pairing order parameter to be odd under (s,k) →
(sK,−k),

∆̃s(k) = −∆̃sK(−k). (4.113)

Secondly, Θ2 = 1 also allows for singly-degenerate Fermi surfaces in case of centrosymmetric point
groups.
This already shows that, in the presence of inversion symmetry, Eq. (4.113) is particularly restrictive

as it rules out all even IRs irrespective of the dimensionality of the system. To derive a design principle
for spontaneous TRS breaking in 2D systems similar to that of Sec. 4.4.1, let us again first consider
the point group C4v. From its character table given in Table 4.1 we conclude that Eq. (4.113) forbids
all IRs except for the multidimensional IR E. Recalling our analysis of higher-order terms of the
Ginzburg-Landau expansion in Sec. 4.3.2, this implies that the spin-0 TRS must necessarily be broken
at the superconducting phase transition in a 2D system with C4v symmetry.
Systematically studying all possible point groups (see Appendix A.3), one finds the following sufficient

condition for spontaneous TRS-breaking superconductivity in the weak-pairing limit [325, 326]: If the
point group of the high-temperature phase of a 2D system contains a fourfold proper or improper rotation
symmetry, spin-0 TRS will be automatically broken in the superconducting state.

4.8 Consequences for surfaces

At the surface of a crystal, inversion symmetry is locally broken. For this reason one might expect that
our analysis, at least qualitatively, is also relevant for the behavior at the boundaries of a system. This
will be discussed in more detail in this subsection.
The consequences are most easily and universally analyzed for systems that consist of weakly coupled

quasi-2D layers. If the surface of interest is parallel to the planes, the superconducting texture near the
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4 Selection rules for pairing states in noncentrosymmetric superconductors

surface can be found by considering every layer as a separate quasi-2D system with inversion-symmetry-
breaking terms increasing with decreasing distance to the surface. Therefore, the local behavior of the
condensate should bear strong similarities to that of the superconductor in our gedankenexperiment
introduced in Sec. 4.6.1 where the thickness d of the material is replaced by the distance to the surface.
Once these noncentrosymmetric perturbations become sufficiently large, a bulk state which is odd under
a twofold rotation perpendicular to the surface must be suppressed and a competing superconducting
state can emerge near the surface. According to our analysis of Sec. 4.5, the critical value of the
associated splitting Eso strongly depends on the coupling constants and energetics of the competing
instabilities but should, in general, be smaller than Tc. If the residual point group at the surface contains
no threefold rotation symmetry, TRS must be restored locally and the presence of a Cz2 symmetry will
force the d vector to be aligned parallel to the surface. Note that adding small couplings between the
layers, which are inevitably present in any material, will just spatially smear out the otherwise sharp
transition between the bulk and surface superconducting phases.

Out of the materials we have discussed so far in this chapter, Sr2RuO4 represents an example of a
system that consists of weakly-coupled quasi-2D layers (see Chap. 1.3.2) such that the present discussion
can be applied. At its (001) surface, the point symmetry is reduced to C4v which, according to the
arguments presented above, forces the d vector to rotate to be parallel to the surface and TRS to be
restored. In this system we expect the surface effect to be particularly important as the chiral p-wave
state of the bulk is nearly degenerate [183, 195, 331, 332] with the triplet states transforming under
the four ungerade one-dimensional IRs of D4h. Therefore, one expects that already a small amount of
inversion-symmetry breaking induces a transition to a TRS-preserving state, most likely with dominant
triplet pairing. Note that this behavior of superconductivity at the surface of Sr2RuO4 has already
been pointed out in Refs. [333, 334] on the basis of an explicit calculation in a single-band model for
an isolated quasi-2D layer. It would be interesting to analyze whether the presence of a time-reversal
symmetric superconducting layer near the surface of Sr2RuO4 could account for the absence of magnetic
signals in experiments [191, 192] that are expected as a consequence of the chiral pairing state in the
bulk [190].

In the general case of a material, where the coupling between layers perpendicular to the surface
is not small, the discussion is more complicated. In particular, the bulk pairing state can depend
on the momentum component k⊥ perpendicular to the surface. Fortunately, the boundary conditions
at specularly reflecting surfaces, derived originally by Ambegaokar et al. [348] (see also Ref. [50]),
state that exactly these components will be suppressed at the surface. Our symergetic arguments are
complementary and indicate that, among the remaining states, those that are odd under a twofold
rotation perpendicular to the surface will be energetically disfavored locally. Whether this leads to
a significant reduction of the bulk order parameter near the surface and the local emergence of a
competing instability crucially depends on the microscopic details of the system considered.

The combination of the boundary conditions at specularly reflecting surfaces and our symergetic
constraints imply that many superconducting bulk states, in particular those breaking TRS, are ex-
pected to be suppressed in the vicinity of surfaces. When a subleading bulk instability takes over
locally, investigation of surface superconductivity might be used to gain information about the phase
competition in the bulk.
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4.9 Summary of Chapter 4

To summarize, we have considered general constraints on possible pairing states in systems with singly-
degenerate Fermi surfaces that result from the combination of symmetry and energetic arguments.
These selection rules hold under the following assumptions:

1. The superconducting state is reached by a single phase transition from the normal phase which is
time-reversal symmetric. This TRS can both be of the usual spin-1/2 type, i.e., Θ2 = −1, or an
effective TRS with Θ2 = 1. The latter situation can arise, e.g., in the presence of strong Zeeman
splittings that strips off the spin degree of freedom from the electrons (see Sec. 4.7.1).

2. No translation symmetry breaking, as known from FFLO [105, 106] pairing states, occurs at the
superconducting phase transitions. Group theoretically this means that we can restrict ourselves
to the IRs of the point group Gp as opposed to those of the full space group and, in more physical
terms, the electrons forming Cooper pairs have zero total momentum. This assumption is not
very restrictive as translation-symmetry-breaking superconducting states represent rather exotic
phenomena that are mainly expected when TRS is broken (see Chap. 1.1.2).

3. Finally, the spin-orbit splitting Eso of the Fermi surfaces is sufficiently large for the weak-pairing
description, formally defined by Eq. (4.29), to be applicable for determining the leading super-
conducting instability. In Sec. 4.5, we have seen that this is satisfied if Eso is larger than the zero
temperature gap or the transition temperature of superconductivity (times some number of order
1). The presence of other competing instabilities can significantly reduce the critical value of Eso
for the applicability of the weak-pairing description.

We have first shown (see Sec. 4.3.1) by resumming the full Ginzburg-Landau expansion that the super-
conducting transition must be continuous on the mean-field level. Although fluctuations will eventually
change the behavior of the order parameter in the vicinity of the transition [122, 123, 126–128] (see
also Chap. 1.2), this allowed us to use a finite order Ginzburg-Landau expansion to derive the possible
pairing states. From this we have seen in Sec. 4.3.2 that, as a consequence of the reduced number of
degrees of freedom in the weak-pairing description and the symmetry constraints of Gp, a supercon-
ducting order parameter transforming under a multidimensional or complex IR of Gp will automatically
break TRS. This means that the IR being multidimensional or complex is not only a necessary but also
a sufficient condition for spontaneous TRS breaking. In this sense, the broken inversion symmetry fa-
cilitates the formation of a TRS-breaking superconductor in 3D. Maybe other 3D noncentrosymmetric
superconductors with broken TRS will join LaNiC2 [55] and Re6Zr [56] soon.
The prerequisites for TRS-breaking Cooper instabilities are much more restrictive in 2D. Here, the

Fermi-Dirac constraint (4.32) of the weak-pairing order parameter ∆̃s(k) has crucial consequences
for the allowed IRs since inversion of the 2D momentum can be realized as a twofold rotation Cz2
perpendicular to the plane of the system. For spinfull fermions, Θ2 = −1, it has been shown in Sec. 4.4
that a threefold rotation symmetry as element of the high-temperature point group Gp is a necessary
condition for TRS-breaking Cooper instabilities. Furthermore, if Cz2 ∈ Gp, the triplet vector has to be
aligned parallel to the plane of the system as long as interband matrix elements of the order parameter
are negligible.
Similarly, we have seen in Sec. 4.7.2 that a TRS with Θ2 = 1 will automatically be broken at a

superconducting phase transition in a system with Gp containing a fourfold proper or improper rotation
symmetry.
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The strength of these statements is related to the fact that they only depend on very few and
experimentally accessible properties of the system – the high-temperature time-reversal and point
symmetries as well as the energetic separation of the Fermi surfaces. E.g., RG corrections of the
coupling constants will not affect the results as the symmetries are not changed during the RG flow.
Finally, we have illustrated the predictive power of these general statements using several different

materials, Sr2RuO4, UPt3, URu2Si2, oxide heterostructures as well as FeSe on STO, as examples (see
Sec. 4.6). Most importantly, we concluded that the pairing state of thin layers of Sr2RuO4 [68] must
be, as opposed to its bulk behavior, necessarily TRS preserving as well as characterized by an in-plane
triplet vector. By analyzing all remaining possible pairing states, we have seen that the thin layer
system represents a promising platform for the observation of MBSs. Note that due to the preserved
TRS, these edge modes must always come in counter-propagating pairs. As a consequence of the layered
structure of Sr2RuO4, the rotation of the d vector as well as the restoration of TRS should also occur
at a (001) surface of the crystal (see Sec. 4.8).
In thin layers of UPt3 [69], TRS breaking cannot be excluded resulting from the presence of a threefold

rotation symmetry. Nonetheless, the selection rules turned out to be highly restrictive reducing the 10
symmetry-allowed pairing states down to the 3 remaining candidates summarized in Table 4.4.
Among the three different orientations of oxide interfaces [35, 142, 156], only the (111)-terminated

heterostructure allows for spontaneous TRS-breaking superconductivity. This motivates a more thor-
ough experimental study of the low-temperature physics of this interface or, more generally, of any
quasi-2D system with a threefold rotation symmetry in the search for exotic low-dimensional supercon-
ducting states that break TRS.
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Instabilities in oxide heterostructures

In the previous chapter, we have seen that very general energetic arguments valid for systems with
large spin-orbit splitting of the Fermi surfaces can be used to gain information about the symmetry
properties of the possible superconducting instabilities. E.g., in case of LAO/STO heterostructures,
we could determine the relative phase of the superconducting order parameter on symmetry-related
parts of the Fermi surface. However, this approach is neither sufficient to fully identify the microscopic
pairing state, in particular its topological properties, nor does it in any way provide information on the
microscopic driving force of superconductivity. To address the latter two issues, an explicit microscopic
calculation is required that takes into account, e.g., the character of the relevant orbitals, the geometry
of the Fermi surfaces of the system and the interaction terms leading to the superconducting instability.
In this chapter, we will perform such a microscopic calculation specifically for oxide heterostructures

analyzing the phase competition between both superconducting and density wave instabilities. As the
mechanism of superconductivity is still unknown (see [36–38] and Chap. 1.3.1), we take into account
all symmetry-allowed interactions within our effective low-energy description. We find two candidate
pairing states which have the same symmetry properties but differ in their topology. Assuming a con-
ventional, i.e., electron-phonon-dominated, mechanism we obtain a topologically trivial superconductor
whereas unconventional pairing, characterized by a microscopically repulsive interaction, leads to the
topological state. While symmetry breaking at the superconducting phase transition has proven to be
a powerful tool to provide evidence for an electronic pairing mechanism in cuprate superconductors
[27, 28], the one-to-one correspondence between the mechanism and the topology of superconductiv-
ity derived in this chapter for LAO/STO heterostructures might be used to pinpoint the microscopic
origin of superconductivity in the latter system. The observation of topological signatures, most no-
tably, the emergence of Majorana modes at the edge of the system, would strongly point towards an
unconventional pairing mechanism.
For simplicity, we will entirely focus on the most frequently studied (001)-oriented interface. The

extension of the central results to the second orientation where superconductivity has been observed
[40] will be discussed in the next chapter (see, in particular, Chap. 6.3.1).
This chapter consists of two parts: In the first part, Sec. 5.1, we will motivate in detail the effective

interacting low-energy theory tailor-made to understand superconductivity and its competitors in (001)
LAO/STO heterostructures. The derivation of the leading and subleading instabilities in this model,
the analysis of the properties of the resulting phases and the discussion of experimental approaches to
deduce the nature of the superconducting state can be found in Sec. 5.2.
This chapter is based on Ref. [349]. The results have been reviewed more recently in Ref. [38].
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5.1 Model of the 2D electron liquid

The first step to gain theoretical understanding of the phase transitions in a system, is to find a
minimal yet physically sensible model, i.e, a model that captures the essential physical features but
does not depend on irrelevant microscopic details. Deriving such a model for (001) oriented oxide
heterostructures with the main, but not exclusive, goal of describing superconductivity will be the
topic of this section.
As discussed in Chap. 1.3.1, conductivity is induced in LAO/STO heterostructures by populating

the Ti 3d shell. The relevant low-energy degrees of freedom are the states of the t2g manifold, i.e., the
3dxy, 3dxz and 3dyz orbitals while the eg states lie energetically higher [341–343]. As opposed to bulk
STO, the bottom of the 3dxy band is lower in energy than that of the band derived from the other two
orbitals [343, 350]. The interface states of 3dxy character are widely believed to be mainly localized and
relevant for the observed magnetism [111, 151, 152, 346, 347]. This also naturally explains the highly
reduced concentration of transport carriers [344] compared to the expectation of half an electron per
unit cell from the polar catastrophe mechanism (see Chap. 1.3.1) or seen in local charge measurements
[139]. Furthermore, it strongly indicates that the bands associated with the 3dxz and 3dyz orbitals are
most likely the main host of superconductivity. This expectation is confirmed by carrier-concentration-
dependent experiments [344, 345] demonstrating that the sweet spot of superconductivity is associated
with the chemical potential entering the bands with 3dxz and 3dyz character.
For this reason, we will assume that it is sufficient to focus on these two orbitals to understand

superconductivity and, in Sec. 5.1.1, derive the associated noninteracting Hamiltonian in the vicinity
of the Γ-point. In this chapter, we will not take into account any coupling of the 3dxz and 3dyz states to
magnetic moments that could possibly develop in the 3dxy states. Irrespective of whether magnetism
has an intrinsic [111, 151, 152] or an extrinsic [153–155] origin, the experimental observation [149] that
there is no significant spatial correlation between superconductivity and magnetism clearly shows that
the former does not have to be taken into account to understand the latter. The physical reason for
this decoupling could be the spatial separation between the corresponding quantum well states as the
3dxy bands are closer to the interface than the other bands [342] in combination with the small mixing
of the 3dxy and the 3dxz/3dyz orbitals [111].
Independent of the aforementioned magnetic textures with length scales [149] much larger than the

superconducting coherence length ξ [39], one might wonder whether the strong tendency of the system
towards the formation of magnetic moments could render also initially nonmagnetic impurities, such
as oxygen vacancies, magnetic on atomic length scales by local spontaneous symmetry breaking. The
impact of magnetic impurities on the stability of superconductivity in oxide heterostructures thus
constitutes a very important aspect which will be postponed to Chap. 7.3.

5.1.1 Noninteracting two-orbital model

Using ĉkα with α referring to the four combinations of the spin orientations and the two orbitals
{3dxz, 3dyz} to describe the annihilation of an electron of crystal momentum k in state α, the nonin-
teracting two-orbital Hamiltonian can be written as

Ĥ0 =
∑
k

ĉ†kα
(
hk
)
αβ
ĉkβ, hk = hmk + hsok , (5.1)

where h has been split into two contributions hm and hso which are trivial and nontrivial in spin
space, respectively. As shown in Appendix D.1.1, the most general form of hm up to second order in
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5.1 Model of the 2D electron liquid

momentum that is consistent with the TRS and the C4v symmetry of the system reads

hmk =

 k2
1

2ml
+

k2
2

2mh
− µ ηk1k2

ηk1k2
k2

1
2mh

+
k2

2
2ml
− µ

⊗ σ0, (5.2)

where σ0 is the unit matrix in orbital space and the upper (lower) component correspond of the matrix to
the 3dxz (3dyz) orbital. Physically, the distinct massesml andmh result from the different overlap of the
orbitals along the coordinate axes. The mass anisotropy is known to be very strong, mh/ml ' 15− 30
[341], which will play an important role in our analysis of instabilities below. Furthermore, η is an
orbital mixing term caused by second-nearest neighbor hopping.
The spin-rotation symmetry is broken by hso which contains the combined effect of SOC and broken

inversion symmetry and, up to linear order in momentum, must be of the form

hsok =
1

2
λτ2σ3 + α0τ0

(
k1σ2 − k2σ1

)
+ α1τ1

(
k1σ1 − k2σ2

)
+ α3τ3

(
k1σ2 + k2σ1

)
, (5.3)

where λ, αj are a priori unknown constants and τj (σj) represent Pauli matrices in orbital (spin)
space. The first term is centrosymmetric and just corresponds to the atomic SOC of the 3dxz and
3dyz orbitals. The other three terms are odd under inversion and describe the Dresselhaus-Rashba
effect [33, 34] introduced in Chap. 1.3. We see that the combination of two different orbitals allows,
in addition to the usual Rashba term (∝ τ0), also for two terms with Dresselhaus spin-momentum
structure that transform nontrivially in orbital space (∝ τ1, τ3).
To reduce the number of unknown parameters, let us derive Eq. (5.3) from the three-orbital model

that also takes into account the 3dxy states. Using the orbital basis {3dxy, 3dxz, 3dyz}, the spin-
independent part of the Hamiltonian reads

h̃mk =


k2

2mxy
− µ− δεxy −iδk2 −iδk1

iδk2
k2

1
2m̃l

+
k2

2
2m̃h
− µ η̃k1k2

iδk1 η̃k1k2
k2

1
2m̃h

+
k2

2
2m̃l
− µ

⊗ σ0, (5.4)

which is the most general symmetry-allowed expression up to second order in momentum (see Ap-
pendix D.1.2). The lower right 2 × 2 block contains the same terms as in Eq. (5.2) although with
unrenormalized parameters. By symmetry, the 3dxy band has an isotropic mass (mxy) but is shifted
energetically to lower energies (δεxy > 0) as already mentioned above. The effect of the broken inversion
symmetry is captured in the terms ∝ δ (already encountered in the context of Sr2RuO4 in Eq. (4.108))
which can only be finite in vicinity of the interface. In the tight-binding language, one can think of δ
as the matrix element

δ ' aE0 〈dxy,Ri|z|dxz,Ri + ae2〉 , (5.5)

where E0 is the strength of the electric field resulting from the asymmetry under z → −z, a denotes the
lattice constant and |dl,Ri〉 refers to the Wannier wavefunctions of orbital character l ∈ {xy, xz, yz}
localized at Bravais lattice point Ri.
Furthermore, we include the atomic SOC term h̃sok = L·σ where L = (L1, L2, L3) is the vector of 3×3

matrices of angular-momentum operators (see Appendix D.1.2) projected onto the subspace spanned
by the three orbitals {3dxy, 3dxz, 3dyz}. Its form follows from Eq. (1.14) upon assuming V = V (|x|)
with approximately constant derivative.
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5 Instabilities in oxide heterostructures

Using the method of Ref. [130], we integrate out the 3dxy orbital which is possible as a consequence
of the energetic separation from the other two orbitals in the part of the Brillouin zone that will be of
interest for our analysis of instabilities. We recover hm (with renormalized parameters) and hso with
the simple relation α0 = −α1 = −α3 between the Rashba-Dresselhaus coefficients. Furthermore, the
latter can be expressed as 1

2δλ/E0 where E0 is the energetic splitting between the 3dxy and 3dxz/3dyz
bands showing that both the broken inversion symmetry as well as the atomic SOC are required for
the Dresselhaus-Rashba effect.
As δ and E0 are expected to crucially depend on the microscopic details at the interface, we take α0 =

10meVÅ estimated from magnetotransport data [41]. Using λ = 20meV,mh/ml = 30,ml = 0.7me with
me denoting the free electron mass and η = 0.28m−1

e as has been deduced from Refs. [41, 341, 344, 350],
the two-orbital Hamiltonian hk yields the spectrum shown in Fig. 5.1(a). We see that the inversion
antisymmetric Dresselhaus-Rashba terms render the Fermi surfaces nondegenerate and that the atomic
SOC pushes two of the four bands to higher energies. As already discussed above, superconductivity
is known to be associated [344, 345] with the Fermi energy entering the bottom of the 3dxz and 3dyz
bands. For this reason we will focus on electron concentrations where the chemical potential lies below
the upper two bands shown in gray in Fig. 5.1(a) which can thus be neglected1 in the following. The
form of the Fermi surfaces associated with the other two bands, along with the spin (arrows) and orbital
(color code) polarization of the eigenstates, is shown in Fig. 5.1(b) and (c). It agrees well with the
ARPES data on the buried LAO/STO interface electron liquid [343] and on the surface states of STO
[341, 342]. In the regions, highlighted in green in Fig. 5.1(b) and (c), where the Fermi surfaces are
nearly straight lines, the wavefunctions are characterized by strong orbital polarizations of either 3dxz
or 3dyz character and a spin-orientation largely aligned parallel to one of the coordinate axis. This
crucially enhances the stability of superconductivity against disorder as we will see in Chap. 7.3.

5.1.2 Interacting effective low-energy theory

As far as the energetics of instabilities is concerned, the most important aspect is the strong nesting in
the nearly straight regions of the Fermi surface. It is a consequence of the mass anisotropy and becomes
exact in the hypothetical limit mh/ml → ∞. This observation makes it possible to use a simplified
low-energy description, where only the degrees of freedom in the vicinity of these nested regions of the
Fermi surface are taken into account. We see that there are four symmetry-related nested subspaces
consisting of four patches each. Let us first focus on one of the subspaces, e.g., the four red patches in
Fig. 5.1(a), and discuss the impact of scattering between different nested subspaces later.

Patch approximation. Exactly as in Chap. 4, it will be most convenient to perform the calculation
in the eigenbasis of the noninteracting Hamiltonian (5.1). We thus introduce new fermionic operators
f̂ks via ĉkα =

∑
s

(
ψks
)
α
f̂ks with ψks denoting an eigenstate of hk with corresponding energy εks. It

will be convenient to label the four patches within one of the nested subspaces by σ = ± referring to
sign of k1 and s = 1, 2 where s = 1 (s = 2) represents the outer (inner) Fermi surface. Within a given
patch, the single-particle states will be labeled by k⊥ and k‖ which are defined relative to the center of
the patch in the direction perpendicular and parallel to the Fermi surface, respectively (see Fig. 5.1(a)).
Upon passing to a field-integral description [114, 115] and linearizing the spectrum around the Fermi
energy, εks ∼ σvsk⊥, the noninteracting part of the low-energy theory is described by

S0 =

∫ Λ⊥,Λ‖

k
f̄k(σ,s)

(
−iωn + σvsk⊥

)
fk(σ,s), (5.6)

1As the splitting λ is much larger than the superconducting gap [70, 350], this is a natural assumption.
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5.1 Model of the 2D electron liquid

Figure 5.1: Spectrum and the wave functions of two-orbital model. In (a), the spectrum
of the Hamiltonian hk defined in Eqs. (5.1)-(5.3) is shown using the parameters stated
in the main text. In the effective low-energy approach we use, the analysis is restricted
to the nested subspaces (highlighted in red and blue). The orbital weight (color) and
orientation of the spin (red arrows) are illustrated in (b) and (c) for the outer and
inner Fermi surface, respectively. Note that, as a consequence of TRS and Cz2 rotation
symmetry, the spin has to lie in the xy plane. In the green regions of the Fermi surface,
the wavefunctions are nearly constant and strongly polarized with respect to both its
spin and orbital degree of freedom.
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5 Instabilities in oxide heterostructures

where the Grassmann fields f and f̄ correspond to the quasiparticle operators f̂ and f̂ † introduced above
and Matsubara frequency ωn and momentum (k⊥, k‖) is comprised in one variable k ≡ (ωn, k⊥, k‖).
Furthermore, we use ∫ Λ⊥,Λ‖

k
· · · = T

∑
ωn

∫ Λ‖

−Λ‖

dk‖

2π

∫ Λ⊥

−Λ⊥

dk⊥
2π

. . . , (5.7)

for notational convenience where Λ⊥ and Λ‖ are momentum cutoffs perpendicular and tangential to
the Fermi surface. Although the finite curvature of the Fermi surface is neglected in Eq. (5.6), it will
later enter the stage in form of a cutoff of the RG as will be discussed in Sec. 5.2.
For the analysis of this chapter, it will be very convenient to fix the phase convention of the eigenstates

ψks and consequently of the fields fk(σ,s). Instead of explicitly solving for the wavefunctions, we will,
similarly to the construction of the pseudspin basis in Appendix A.1, take advantage of symmetries of
the system. Exploiting the presence of a two-fold rotation symmetry Cz2 perpendicular to the plane,
we can construct the eigenstate with k1 < 0 from those with k1 > 0 via

ψ−ks := R†Ψ(Cz2 )ψks, k1 > 0, RΨ(Cz2 ) = iτ0σ3, (5.8)

where the explicit form of the representation RΨ(Cz2 ) of Cz2 refers to the basis used in Eq. (5.3). To fix
the phase of the states with k1 > 0, we use that the Hamiltonian is also invariant under time-reversal
with Θ = iσ2K where K denotes complex conjugation. Consecutive application of Θ and RΨ(Cz2 ) leads
to a k-local symmetry of the Hamiltonian that makes it always possible to adjust the phase such that

ψks = τ0σ1ψ
∗
ks, k1 > 0. (5.9)

In the following, we will impose the constraints in Eqs. (5.8) and (5.9), which fix the phases of the
eigenstates (except for a trivial global minus sign) and, hence, also define the transformation behavior
of the Grassmann fields under the symmetry operations.

Including interactions. To allow for an unbiased analysis of instabilities within the low-energy
theory, we take into account all k-independent quartic interaction terms that respect the point group
and TRS of the system. Introducing the multi-index notation τ ≡ (σ, s), we parameterize the interaction
according to

Sint =

∫ Λ⊥,Λ‖

k1,k2,k3,k4

f̄k4τ4 f̄k3τ3fk2τ2fk1τ1 W̃τ4τ3
τ2τ1 δ(k1 + k2 − k3 − k4), (5.10)

where δ(. . . ) is the delta function with respect to
∫ Λ⊥,Λ‖
k defined in Eq. (5.6). It will turn out that the

dimensionless parameterization W =
2Λ‖
π2v1
W̃ is most convenient as the results will not depend on the

longitudinal cutoff Λ‖ of the patches and the RG equations will assume a very compact form.
As it requires fine-tuning of the filling, we will not consider the possibility of Umklapp processes such

that only two basic types of combinations of σj are possible: Firstly, there is forward scattering, where
all four fermions in Eq. (5.10) have the same index σ which must be of the form

W(σ,s4)(σ,s3)
(σ,s2)(σ,s1) ≡ V

s4s3
s2s1 (σ) = g0(σ)

[
δs4,s1δs3,s2 − δs4,s2δs3,s1

]
, (5.11)

due to Fermi-Dirac statistics. Secondly, the scattering of a pair of quasiparticles with σ1 6= σ2 into a
pair of electrons with σ3 6= σ4, which we refer to as backscattering, will be parameterized according to

W(−,s4)(+,s3)
(+,s2)(−,s1) ≡W

s4s3
s2s1 =

3∑
j,j′=0

gjj′
(
τj

)
s4s1

(
τj′
)
s3s2

. (5.12)
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5.1 Model of the 2D electron liquid

Figure 5.2: Diagrammatic representation of the scattering processes. The combination of
twofold rotation, TRS and momentum conservation only allows for four independent
backscattering processes (a-d) and one forward scattering term (e). Solid and dashed
lines refer to the outer and inner Fermi surface and ± indicates the sign of k1 in the
four nested patches highlighted in red in Fig. 5.1(a).

Here τj are Pauli matrices acting the abstract, k-nonlocal isospin space of patches with identical σ.
The number of coupling constants is reduced by the constraints of TRS and the Cz2 rotation symmetry.

To begin with the latter, it directly follows from the phase conventions defined above that fk(±,s) →
∓fk′(∓,s) with k′ = (ω,−k⊥,−k‖) under Cz2 . Applying this to Eq. (5.10), implies V (+) = V (−) and
W s4s3
s2s1 = W s3s4

s1s2 or, equivalently, g0(+) = g0(−) ≡ g0 and gT = g. Note that all other symmetry
operations of C4v act between different nested subspaces and, hence, do not have to be considered when
analyzing a single subspace. These symmetries fully determine the interaction terms within the other
nested subspaces. Similarly, TRS can be shown to imply gss′ = 0 if either s = 2 and s′ 6= 2 or s′ = 2 and
s 6= 2. Together, these constraints reduce the number 18 of possible coupling constants (2 in Eq. (5.11)
and 16 in Eq. (5.12)) to only 8.
As already discussed in Chaps. 1.3.1 and 4.6.3, the spin-orbit splitting Eso of the Fermi surfaces is

a very strong effect in LAO/STO heterostructures which even constitutes a significant fraction of the
Fermi energy [41, 42] as is also visible in Fig. 5.1(a). For this reason, it seems very plausible that the
energetic cutoff (' vsΛ⊥) of the low-energy theory we use to deduce the instabilities can be chosen
to smaller than Eso or, stated differently, that the patches in Fig. 5.1 do not overlap. Here we will
focus on this scenario and just refer to Ref. [349] where also the opposite limit Eso � vsΛ⊥ has been
discussed. When the patches do not overlap, momentum conservation rules out further terms. As is
straightforwardly shown, it forces g10 = g31 = 0 and g22 = −g11 such that only five independent coupling
constants remain. The notation we are currently using for the interaction terms is mathematically very
convenient but physically less insightful. Therefore, we represent the five distinct scattering processes
diagrammatically in Fig. 5.2 expressed with respect to the four different patches. We see that there
are two generally different intraband Coulomb terms, U1 and U2, an interband Coulomb interaction U ′,
pair hopping J as well as forward scattering V .

103



5 Instabilities in oxide heterostructures

Figure 5.3: Diagrammatics of Wilson RG and flow diagram for our model. The three
diagrams of one-loop RG, the “tadpole” (a), the “ZS” (b) and the “BCS” diagram (c),
are shown. The resulting flow (5.17) for our low-energy model in the simplified case
of identical Fermi velocities is illustrated in (d). The red and blue shaded regions
correspond to microscopically repulsive and attractive interactions, respectively.

5.2 Instabilities of the system

Having derived an effective interacting low-energy theory, which is defined by the action S = S0 +Sint,
we are now in a position to analyze the instabilities of the system. For this purpose, we apply the well-
established procedure, e.g., also used in Refs. [351, 352], of first deriving the RG flow of the coupling
constants and identifying the instability associated with the divergence of a certain interaction channel
via mean-field theory.

5.2.1 RG flow diagram and leading instability

In the Wilson RG approach, as discussed in detail for fermions with a finite Fermi surface in Ref. [99],
“fast” modes with momenta Λ⊥e

−∆l < k⊥ < Λ⊥, ∆l > 0, are integrated out yielding, after properly
rescaling k and the field variables, an effective action with renormalized parameters. The noninteracting
quadratic part S0 of the action simply splits into the contributions from the “fast” and “slow” modes,
whereas the interaction leads to nontrivial terms in the effective action that can in general only be
treated perturbatively.
The corresponding one-loop contributions are shown diagrammatically in Fig. 5.3(a)-(c). The tadpole

diagram, Fig. 5.3(a), represents the impact of the interactions on the bands of the system. Here and in
the following, we will neglect this contribution to the RG flow, since, by definition, we assume that all
possible interaction effects on the chemical potential and on the Dresselhaus-Rashba effect have already
been effectively accounted for by S0 [99].
The other two diagrams, Fig. 5.3(b) and (c), which are usually referred to as “ZS” and “BCS”,

respectively, lead to the corrections

∆ZSW̃τ4τ3
τ2τ1 = −4

(
W̃τ4τ ′
τ2τ W̃

ττ3
τ ′τ1
− W̃τ3τ ′

τ2τ W̃
ττ4
τ ′τ1

)∫ Λ⊥,Λ‖

k
G>τ (k + k1 − k3)G>τ ′(k) (5.13)
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and

∆BCSW̃τ4τ3
τ2τ1 = 2W̃τ4τ3

ττ ′ W̃
ττ ′
τ2τ1

∫ Λ⊥,Λ‖

k
G>τ (k)G>τ ′(k1 + k2 − k) (5.14)

of the interaction tensor W̃ in Eq. (5.10). In Eqs. (5.13) and (5.14), G>(σ,s)(k) = (iω−σvsk⊥)−1θ∆l
k⊥

is the
bare Green’s function associated with the fast modes of S0 where θ∆l

k⊥
= 1 as long as Λ⊥e

−∆l < k⊥ < Λ⊥
and θ∆l

k⊥
= 0 otherwise.

Evaluating the shell integrals asymptotically in the limit ∆l→ 0 allows for reformulating the change
of coupling constants in form of differential equations, the so called RG flow equations. Using the
parameterization introduced above, one finds

dW(σ,s4)(σ,s3)
(σ,s2)(σ,s1)

dl
≡

dV s4s3
s2s1 (σ)

dl
= 0 (5.15)

i.e., the forward scattering terms are not renormalized at all at one loop order. This is different for the
backscattering processes where the diagrams in Fig. 5.3(b) and (c) yield nontrivial contributions. The
associated flow equations can be conveniently stated in the matrix form

dW s4s3
s2s1

dl
=
∑
s,s′

1

xs + xs′

(
W s4s′
s2s W

ss3
s′s1
−W s4s3

s′s W ss′
s2s1

)
, xs := vs/v1, (5.16)

where the contributions of the first and second term emanate from the ZS and BCS diagram, respec-
tively.
We see that the flow equations (5.16) depend on the ratio v2/v1 of the Fermi velocities. Let us

first focus on the simplest scenario where both Fermi velocities are identical, xs = 1, which represents
are good approximation as can be checked explicitly using the band structure shown in Fig. 5.1(a),
and postpone the discussion of the general case v1 6= v2 to Sec. 5.2.4. The RG equations assume the
particularly simple form

dg11

dl
= −2g11g33,

dg33

dl
= −2g2

11,
dg00

dl
=

dg30

dl
=

dg0

dl
= 0 (5.17)

in the limit v1 = v2, where we have inserted the parameterization of Eq. (5.12). Consequently, only two
out of the five allowed coupling constants flow with associated flow diagram presented in Fig. 5.3(d).
We observe that there are three different regions: For any set of bare coupling constants in region
(I), the couplings flow to the line of fixed points g∗11 = 0, g∗33 > 0 and, most importantly, do not
diverge. This means that the system does not develop a weak-coupling instability for these interaction
parameters and is thus expected to reside in the metallic phase. This is different in region (II) and (III)
where the running coupling constants diverge and asymptotically approach a ratio of g33/g11 = −1
and g33/g11 = +1, respectively. In terms of the interaction processes shown in Fig. 5.2, these two
strong-coupling fixed points correspond to −U1 ∼ −U2 ∼ U ′ ∼ ±J/2 � |V | with U ′ > 0 where the
upper + sign refers to region (II) and the lower − sign to (III).
In order to deduce the nature of the instabilities at these two strong-coupling fixed points, we follow

Refs. [351, 352] and determine the order parameter with the highest transition temperature. For the sake
of generality, we consider all possible particle-particle, ∆

SC
ττ ′ , as well as particle-hole order parameters,

∆DW
ττ ′ , which are formally defined as the expectation values

∆
SC
ττ ′ =

∫ Λ⊥,Λ‖

k
〈f̄kτ f̄−kτ ′〉 , ∆DW

ττ ′ =

∫ Λ⊥,Λ‖

k
〈f̄kτfkτ ′〉 , (5.18)
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within the nested subspace. Note that this parameterization also includes translation-symmetry-
breaking superconducting states, i.e., of FFLO type, where the Cooper pairs have finite center of
mass momentum (see Chap. 1.1.2).
As shown in Appendix D.2, one finds that the leading instability at both strong-coupling fixed

points is of superconducting type where the order parameter only couples time-reversed states, i.e.,
∆

SC
(σ,s)(σ′,s′) = 0 if σ = σ′ or s 6= s′. This affirms our assumption in Chap. 4.6.3 that no translation

symmetry breaking takes place at the superconducting phase transition in oxide heterostructures. More
specifically, we find ∆

SC
(+,j)(−,j) = (−1)j∆0 and ∆

SC
(+,j)(−,j) = ∆0 at the fixed point of region (II) and

(III) which will be referred to as s+− and s++ superconductivity, respectively.

5.2.2 Candidate pairing states

In this subsection, we will analyze further properties as well as possible microscopic origins of these
two superconducting states and discuss how they can be distinguished experimentally.

Microscopic mechanism. We begin with the microscopic origin of the interactions leading to the
superconducting instabilities described by the RG in Fig. 5.3(d). Let us first neglect any electron-
phonon coupling and only take into account the repulsive Coulomb interaction. Using the microscopic
basis with l referring to the Ti 3dxz and 3dyz orbitals as well as ↑, ↓ labeling spin-orientations, we
consider an intra- and interorbital Hubbard interaction U and U ′ as well as the Hund’s coupling JH
and the pair exchange J ′ described by the Hamiltonian

Ĥint = U
∑
i,l

n̂il↑n̂il↓ +
1

2
U ′
∑
i,l 6=l′

n̂iln̂il′ −
1

2
JH

∑
i,l 6=l′

(
n̂il↑n̂il′↑ + n̂il↓n̂il′↓

)
+ J ′

∑
i,l 6=l′

ĉ†il↑ĉ
†
il↓ĉil′↓ĉil′↑ + JH

∑
l 6=l′

ĉ†il↑ĉ
†
il′↓ĉil↓ĉil′↑.

(5.19)

Here i refers to the Bravais lattice site Ri and n̂il↑ = ĉ†il↑ĉil↑, n̂il↓ = ĉ†il↓ĉil↓ as well as n̂il = n̂il↑ + n̂il↓
have been used for notational convenience. When writing the coupling constants in Eq. (5.19) as
matrix elements of the Coulomb interaction kernel decaying as 1/r with r denoting the distance of the
interacting particles, one finds JH = J ′ ≡ J and U = U ′ + 2J as long as the atomic wavefunctions
have approximately the angular dependence of the spherical harmonics. According to first principle
calculations [353] for Ti in transition metals, it typically holds J /U ' 1/8. Projection the interaction
(5.19) onto the effective low-energy theory with the phase conventions in Eqs. (5.8) and (5.9) yields

g00 ' g11 ' g33 > 0, |g00| � |g30|. (5.20)

We emphasize that Eq. (5.20) is remarkably stable against detuning the interaction parameters away
from the three approximate relations between them mentioned above. It means that the bare couplings
of the RG flow reside in the red region in Fig. 5.3(d) and, hence, implies that the s+− superconductor
is an unconventional superconductor (see Chap. 1.1.2) driven by the particle-hole fluctuations that
eventually change the sign of g33 making the Cooper instability possible. No microscopically attractive
interaction induced by the electron-phonon coupling is required to stabilize the s+− state.
Correspondingly, if we only focus on the interaction induced by the electron-phonon coupling2 and

neglect Coulomb repulsion, the bare interaction will be attractive and the flow will start in the blue
2See also Chap. 6.1.1 for a detailed discussion of electron-phonon-induced electron-electron interaction in noncentrosym-
metric systems.
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region of Fig. 5.3(d) which identifies the s++ state as a conventional superconductor. Naturally, resid-
ual Coulomb repulsion and electron-phonon coupling are simultaneously present in the real system.
Conventional (unconventional) pairing then refers to electron-phonon-induced attraction (Coulomb re-
pulsion) being dominant and only slightly renormalized by the residual Coulomb repulsion (the electron-
phonon-based electron-electron interaction) such that the flow still starts in region (III) (in region (II))
of Fig. 5.3(d) leading to the s++ (s+−) pairing state.
Recently, inelastic tunneling spectroscopy measurements [354] have revealed clear evidence for electron-

phonon coupling in LAO/STO heterostructures. Since a quantitative determination of the electron-
phonon coupling constant is not possible with this approach and the shift of the phonon frequencies
induced by changing the oxygen isotope did not lead to an observable shift of the critical tempera-
ture of superconductivity, this does not exclude the electronic pairing scenario. A detailed theoretical
analysis [355] of the competition between the electron-phonon coupling and the screened Coulomb in-
teraction indicates that the effective interaction might indeed be repulsive. This is a consequence of
the comparatively weak screening of the Coulomb interaction due to the low carrier concentrations in
the system.

Symmetry and topology. To connect to our discussion of symmetry and topology of superconduc-
tivity in the previous chapters, let us consider the mean-field Hamiltonian

Ĥ = Ĥ0 +
∑
s=1,2

∑
k∈Ss

(
f̂ †ksm̃ssf̂

†
−ks + H.c.

)
+ . . . . (5.21)

associated with the two candidate pairing states. Here Ss denotes the patch in the vicinity of ks in
Fig. 5.1(a) and the ellipsis stands for the mean-field terms in the remainder of the Brillouin zone. As
readily follows from performing a mean-field decoupling of the interaction terms in Eq. (5.10), we have
m̃ = 4(γ0τ0+γ3τ3)∆∗0 with γ0 = g00+2g11+g33, γ3 = 2g30 for the s++ and γ0 = 2g30, γ3 = g00−2g11+g33

for the s+− state.
Comparison of Eqs. (4.26) and (5.21) shows that Dss(ks) ≡ ∆̃s(ks) = m̃sse

iϕsks . Since eiϕ
s
ks =

i sign(k1) as readily follows from the phase conventions in Eqs. (5.8) and (5.9), we can choose the
global phase of ∆0 such that ∆̃s(ks) is real. Recalling Chap. 4.2.2, this means that the superconductor
does not break TRS within one of the strongly nested subspaces. Although this confirms our more gen-
erally valid “symergetic” arguments of Chap. 4.6.3, it is just a consequence of the fact that the effective
point group of the model we are considering is C2 ≡ {E,Cz2} which only has real one-dimensional IRs
and, hence, does not allow for spontaneous TRS breaking at a single superconducting phase transition
(see Chap. 4.1.2). The relative phase of the order parameter ∆̃s(k) between the four different nested
subspaces is determined by the value of the (nonsingular) coupling constants that describe scattering
events between different subspaces. Instead of taking into account these interactions in a microscopic
calculation, we can resort to our analysis of Chap. 4.6.3 where it has been shown that the supercon-
ducting state cannot break TRS as a consequence of the strong spin-orbit splitting of the Fermi surfaces
and the point group C4v. Consequently, there is just a single IR, A1 with ∆̃s(k) having no sign changes
on a given Fermi surface, that is consistent with experiments [70] indicating the absence of nodes of
the superconducting gap.
While the “symergetic” arguments of the previous chapter have uniquely determined the behavior

of ∆̃s(k) within all Fermi surfaces, the microscopic calculation presented here yields the relative sign
sign(γ0 + γ3) sign(γ0 − γ3) between the two Fermi surfaces and relates it to the mechanism of super-
conductivity: For conventional pairing (region (III) in Fig. 5.3(d)), where the RG flow leads to the
asymptotic behavior g11 ∼ g33 → −∞ while g00, g30 stay finite, we have |γ0| � |γ3|, i.e., there is no
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5 Instabilities in oxide heterostructures

Figure 5.4: Adiabatic connection to BCS superconductor. The value of the pairing field
at the inner (blue) and outer (orange) Fermi surface is shown for the standard BCS
superconductor as well as for the s++ and s+− states of oxide heterostructures. The
topologically trivial BCS superconductor is adiabatically connected to the s++ phase,
whereas a TRS-preserving continuous deformation into the s+− state requires closing
the gap at some point along the path.

sign change between the Fermi surfaces. For the unconventional state (region (II) in Fig. 5.3(d)) we
find |γ3| � |γ0| and, hence, opposite signs of ∆̃s(k) on the two Fermi surfaces.
As introduced in Chap. 2.2.3, a 2D superconductor with TRS is characterized by a Z2 topological

invariant that can be conveniently evaluated via Eq. (2.19). As both Fermi surfaces s = 1, 2 enclose a
single TRIM, it simply holds

ν
Z2

=
∏
s=1,2

sign
(

∆̃s(ks)
)

= sign(γ0 + γ3) sign(γ0 − γ3), (5.22)

i.e., the topological invariant is determined by the relative sign on the two Fermi surfaces. This reveals
a one-to-one correspondence between the mechanism and topology of superconductivity: While the
conventional, i.e., mainly electron-phonon-induced, s++ superconductor is topologically trivial (ν

Z2
= 1

in Eq. (5.22)), the unconventional s+− state which results from the Coulomb repulsion is topologically
nontrivial (ν

Z2
= −1).

As it constitutes a central aspect of this chapter, let us gain intuitive understanding for the rela-
tion between the relative sign of ∆̃s(ks) on the two Fermi surfaces and the topological invariant ν

Z2

expressed in Eq. (5.22). For this purpose, we compare the s++ and s+− states with the standard
BCS superconductor, i.e., an isotropic system with spin-degenerate Fermi surfaces and singlet s-wave
pairing. As illustrated in Fig. 5.4, this phase can be continuously deformed into the s++ pairing state
of the (001) oxide heterostructure without closing the gap3 by turning on perturbations that break
inversion and continuous rotation symmetry. For this reason, the s++ state is, exactly as the BCS
3To understand this more formally, add an infinitesimal amount of (TRS-preserving) spin-orbit splitting to the BCS
state. As the BCS order parameter only couples Kramers partners, only its Fermi-surface-diagonal matrix elements,
s = s′ in Eq. (4.27), are finite. Since ∆(k)T † = σ0∆0, it follows ∆̃s(k) = ∆0 independent of s.
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5.2 Instabilities of the system

superconductor, topologically trivial. Note that the relative phase of the order parameter between the
two Fermi surfaces cannot be continuously varied as this would break TRS. Consequently, the contin-
uous TRS-preserving deformation of the BCS superconductor into the s+− state must involve a gap
closing at least on one of the Fermi surfaces, where, as follows from Eq. (5.22), a topological phase
transition occurs.
We emphasize the difference of the topological s+− state to recent theoretical work [356–358] that has

pointed out the possibility of topological superconductivity in LAO/STO heterostructures stabilized
by the interplay of magnetism and superconductivity. In that scenario, the spin-1/2 TRS is necessarily
broken while the s+− state proposed here is time-reversal symmetric.

Detection. The one-to-one correspondence between the mechanism and the topology of superconduc-
tivity derived above provides a tool to probe the unknown microscopic pairing mechanism in LAO/STO
heterostructures: The observation of topological features of the superconducting state necessarily im-
plies that the pairing mechanism must be unconventional. Conversely, the absence of topological
signatures indicates that the electron-phonon coupling is the key driving force of superconductivity.
The hallmark of a 2D topological class-DIII superconductor is the presence of gapless counter-

propagating Kramers partners of 1D Majorana modes localized on a length scale of the order of the
superconducting coherence length (ξ ' 100 nm [39]) at the boundary of the system to a trivial insulat-
ing phase [6, 262]. For studying MBSs in LAO/STO heterostructures it might be very useful that, as
discussed in Chap. 1.3.1, boundaries between superconducting and insulating phases can be precisely
engineered either by reducing the thickness of the LAO crystal locally [146] or via voltage-biased atomic
force microscope tips [147]. We emphasize that the s+− state, that emerges in case of a microscopically
repulsive interaction in the heterostructure, is an “intrinsic” topological superconductor where both the
pairing, the nontrivial topology and the MBSs result from the internal dynamics of the material. This
has to be contrasted with “extrinsic” realizations of MBSs (e.g., the nanowire system [274, 275] discussed
in Chap. 2.2.2) where superconductivity is induced via the proximity effect in a normal conductor and,
potentially, external fields are applied.
The presence of MBSs localized at boundaries to trivial phases can be tested experimentally via

tunneling spectroscopy where MBSs are expected to lead to conductance peaks at zero bias [60, 61].
Experiments of this type seem to be feasible as successful tunneling measurements of the supercon-
ducting bulk properties in LAO/STO heterostructures have been reported [70]. Naturally, electric
transport measurements cannot be used to probe the presence of edge modes. However, the Majo-
rana modes can carry heat current flowing along the edge of the system which is known as “thermal
quantum Hall effect” [359, 360] in obvious terminological analogy to the electronic quantum Hall effect
discussed in Chap. 2.2.1. The expected thermal conductance is given by cG0 with G0 = π2k2

BT/(3h)
denoting the thermal conductance quantum and c = 1/2 for a single noninteracting Majorana channel
at the edge [360]. Although, interactions will generally modify the value of c as has been demon-
strated in Ref. [361], thermal transport measurements can give important hints on the presence or
absence of MBSs and, in turn, on the mechanism of superconductivity in LAO/STO heterostructures.
In addition, the experimental analysis of Josephson junctions between the superconducting state in
the heterostructure and a topologically trivial s-wave superconductor can be used to probe topological
properties: As has been shown in Ref. [362], the presence of the Kramers pair of MBSs is expected to
lead to a π-periodic current-phase relation and a half-period Fraunhofer effect. Furthermore, applying
an in-plane Zeeman field, that gappes out the MBSs, will restore the ordinary Josephson effect. Given
that Josephson junctions/SQUID devices have been successfully realized in superconducting LAO/STO
heterostructures very recently [363], Josephson junction experiments designed to probe the topology of
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5 Instabilities in oxide heterostructures

the superconducting state do not seem to be beyond reach in the near future.

5.2.3 Competing instabilities

We have seen in Sec. 5.2.1 that superconductivity will eventually be favored at the strong-coupling fixed
points. By successfully reducing the characteristic momentum or energy scale during the Wilson RG
flow, our theory becomes more and more sensitive to low-energy details of the system such as the finite
curvature of the Fermi surfaces. For any ml/mh 6= 0, the nesting is not perfect which will eventually
force our RG to be cut off. If the flow stops before any subset of the coupling constants diverges, other
competing phases will be possible as illustrated in Fig. 5.5(a) for repulsive (upper panel) and attractive
(lower panel) bare interactions. If this is the case, all coupling constants can be of the same order in
the mean-field equations (see Appendix D.2.1) such that the phase diagram of competing phases also
depends on the couplings that do not flow. As can be seen in Fig. 5.5(b) and (c) showing the states
competing with s+− and s++, respectively, one charge-density wave (CDW) instability (CDW 12),
three distinct SDW phases (SDW 11, SDW 22, SDW 12) can emerge or the leading superconducting
state dominates also for ml/mh 6= 0. Here we use the notation that the superscripts of CDW ss′ and
SDW ss′ refer to the expectation values ∆DW

(−,s)(+,s′) (and ∆DW
(−,s′)(+,s) if s 6= s′) that are finite. The states

SDW 12 and CDW 12 differ in the relative phase between ∆DW
(−,1)(+,2) and ∆DW

(−,2)(+,1) making the former
and the latter state odd and even under time-reversal, respectively.
From Fig. 5.5(b) and (c) we see that the topological s+− superconductor competes with time-reversal

odd SDW phases, while the main competitor of the topologically trivial s++ superconductor is the time-
reversal symmetric CDW 12 state. Consequently, the experimental observation of a competing SDW or
CDW phase residing in the Ti 3dxz and 3dyz orbitals might give additional hints on the microscopic
origin of the superconducting state. In Chap. 6.2, we will see that there is a very general connection
between the topology of the superconducting state and the time-reversal properties of the competing
particle-hole instability.
Let us next discuss the spatial textures of the CDW and SDW phases which follow from the structure

of the respective density wave order parameter ∆DW
ττ ′ and the wavefunctions of the single-particle states

on the Fermi surfaces graphically represented in Fig. 5.1(b) and (c). To begin with CDW 12, one finds
that the local charge density has the form

ρ(x) ∝ cos
(
Q12 · x

)
+ . . . , (5.23)

where Q12 = k1 + k2 is the associated nesting vector. The first contribution stems solely from the
nested subspace shown in red in Fig. 5.1(a) and the ellipsis stands for the terms emanating from
the remaining three subspaces. Exactly as in case of superconductivity, also the relative sign of the
density wave order parameter between the four different nested subspaces cannot be inferred from the
current calculation without taking into account additional interactions mediating between the different
subspaces. For concreteness, we will assume that also the density wave order parameters do not
break any point symmetries although the generalization to arbitrary IRs is straightforward. This fully
determines the contributions from the remaining three subspaces in Eq. (5.23) and leads to the charge
profile in Fig. 5.6(a) as is explained in more detail in Appendix D.3. Note that the periodicity crucially
depends on the ratio of the two components of the nesting vector Q12.
The spatial structure of the SDW states SDW 12 and SDW 11, SDW 22 can be calculated in a similar

way yielding the textures shown in Fig. 5.6(b) and (c), respectively. To arrive at this result, we have
taken the spins to be aligned parallel/antiparallel to the y axis within the red regions of Fig. 5.1(a) which
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5.2 Instabilities of the system

Figure 5.5: Phase diagrams of competing instabilities. Schematic phase diagrams for finite
mass anisotropies ml/mh 6= 0 are shown in (a) using the same color code as in
Fig. 5.3(d). The phases competing with the s+− and s++ superconductors are shown
in (b) and (c) for different bare coupling constants. The notation of the phases is
explained in the main text.

constitutes a good approximation as can be seen in Fig. 5.1(b) and (c). Within this approximation, the
spin expectation value lies in the plane of the system in case of the spin density phase SDW 12. The two-
dimensional vector field is a lattice of vortices both with positive and negative winding numbers. Note
that the orbital-diagonal matrix elements of the angular momentum operator vanishes (see Eq. (D.4))
such that the orbital polarization in the nested patches of the Fermi surfaces implies that the main
contribution to the magnetic moments associated with the SDW phases comes from the electronic
spin. In the other two SDW phases, SDW 11 and SDW 22, the spin is not confined to the plane and
rotates in 3D space. One finds a rich spin-texture consisting of isolated Skyrmions and Antiskyrmions
as well as closely bound Skyrmion-Antiskyrmion pairs, one of which is shown in Fig. 5.6(d). The
existence of a Skyrmion lattice phase is natural since these Skyrmions are known to occur as solutions
of Ginzburg-Landau equations for systems with spin-orbit interaction [364, 365].

5.2.4 Different Fermi velocities

As already mentioned in Sec. 5.2.1, we have also performed the analysis presented above for the situation
of different Fermi velocities v1 6= v2. The RG equations following from Eq. (5.16) are more complicated
in this case with all four backscattering coupling constants, g00, g30, g11 and g33, flowing under RG.
We leave a more detailed discussion of the instabilities to Appendix D.4 where the explicit form of the
RG equations can be found (see Eq. (D.18)) and just state the main results.
A projection of the (four-dimensional) RG flow onto the g11g33 plane is shown in Fig. 5.7. In this

way, the similarity to the flow in Fig. 5.3(d) is most apparent. In particular, one can still identify the
three regions (I), (II) and (III). As before, none of the couplings diverges in region (I) and, hence, there
is no weak-coupling instability. The strong-coupling fixed points of region (II) and (III) are, as in case
of v1 = v2, associated with a superconducting instability with mean-field Hamiltonian of the form of
Eq. (5.21) where m̃ss have opposite (s+− state) and equal sign (s++ state) on the two Fermi surfaces,
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5 Instabilities in oxide heterostructures

Figure 5.6: Spatial texture of the different density wave phases. In (a), the charge density
pattern of CDW 12 is shown. In case of SDW 12, where the nesting vector is again
given by Q12 = k1 +k2, the spin S lies approximately in the plane of the system (the
xy plane). As shown in (b) using red arrows to indicate the direction of the spin,
one finds a lattice of vortices. In case of SDW 11, the nesting vector is 2k1 and we
observe a lattice of Skyrmions and Antiskyrmions as illustrated in (c), where the red
arrows indicate the direction of the xy components of the spin and the black lines
are the zeros of its z component S3. Part (d) illustrates one of the emerging closely
bound Skyrmion-Antiskyrmion pairs. The texture of SDW 22 with nesting vector 2k2

is identical to SDW 11 upon replacing S3 → −S3. In all plots, a nesting vector of the
form (2, 0.48)Q has been assumed.
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Figure 5.7: Flow for different velocities. Projection of the flow onto the g11g33 plane for
v2/v1 = 0.4 and the bare values g00 = 1 and g30 = 0.1. Gray dashed lines are the
separatrices of the flow in Fig. 5.3(d).

respectively. As a repulsive Coulomb (an attractive electron-phonon-induced) interaction corresponds to
initial coupling constants in the red (blue) region, we again find that the unconventional superconductor
is topologically nontrivial while the conventional superconductor is trivial. This generalizes the one-to-
one correspondence between the mechanism and the topology of superconductivity established above
to the case v1 6= v2.
Note that translation-symmetry-breaking superconducting instabilities do not emerge as leading in-

stabilities. An FFLO state only occurs as a competing phase and, in addition, only for bare coupling
constants far away from the expected approximate relation (5.20). This confirms once again our as-
sumption in Chap. 4.6.3 that the superconducting condensate of LAO/STO heterostructures preserves
the lattice translation symmetry.

5.3 Summary of Chapter 5

In this chapter, we have studied the possible interaction-induced instabilities in (001)-oriented LAO/STO
heterostructures from a microscopic point of view.
We have derived an effective model for the Ti 3dxz and 3dyz states which are expected to be most

relevant for superconductivity [344, 345]. The simultaneous presence of magnetic moments in oxide
heterostructures is understood as a phenomenon associated with the Ti 3dxy states [111, 151, 152, 346,
347] that are both spatially as well as energetically separated from the relevant part of the 3dxz/3dyz
bands [342, 343]. This might explain the independence of magnetism and superconductivity seen in
experiment [149].
The spectrum and wavefunctions of the effective two-orbital model are summarized in Fig. 5.1. As

superconductivity is associated with the chemical potential entering the bottom of the 3dxz/3dyz bands,
we focused on the situation of just two singly degenerate Fermi surfaces surrounding the Γ point. The
splitting of the bands and the spin textures are a consequence of the Rashba-Dresselhaus effect while
the strong nesting in the highlighted patches of the Fermi surface results from the mass anisotropy
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mh/ml � 1 of the orbitals [341–343].
Focusing on the degrees of freedom within the nested patches but, apart from that, taking into account

all symmetry-allowed interaction terms, we have analyzed the phase competition using an RG approach.
Independent of the value of the Fermi velocities, two strong-coupling fixed points can be identified which
correspond to two superconducting instabilities: An s++ state where the sign of the mean-field order
parameter is identical on the two spin-orbit-split Fermi surfaces and an s+− phase where the sign
is opposite. By considering a microscopically repulsive Coulomb and an attractive electron-phonon-
induced interaction separately we find the corresponding bare couplings of the RG flow which allowed
us to identify the s+− and s++ states as unconventional and conventional superconductors, respectively.
We have seen how the microscopic analysis of this chapter and the general energetic argument of

Chap. 4 complement one another. While the latter excludes spontaneous TRS breaking at the super-
conducting phase transition and thus, in conjunction with experiment [70], forces the relative phase of
the order parameter on a given Fermi surface to be trivial, only the former yields information about
the relative sign between the two Fermi surfaces and relates it to the mechanism of superconductivity.
Using the expression for the associated topological invariant of class DIII discussed in Chap. 2.2.3, we
have shown that the conventional s++ and the unconventional s+− state are topologically trivial and
nontrivial, respectively. This one-to-one correspondence between the mechanism driving the supercon-
ducting instability and the topology of the resulting condensate might be useful to probe the unknown
superconducting mechanism in oxide heterostructures. In particular, the observation of MBSs at the
edge of the system, which on its own would constitute a fascinating result, would on top of that also
be a strong indication for an unconventional pairing mechanism in LAO/STO heterostructures. The
presence of Majorana modes can be probed via tunneling spectroscopy [60, 61], thermal conductivity
[359–361] or Josephson junction [362] measurements.
In addition, the competing particle-hole instabilities show very interesting spatial textures as can be

seen in Fig. 5.6. As a consequence of the spin structure of the wavefunctions on the Fermi surfaces
induced by the Dresselhaus-Rashba effect, the competing SDW phases are periodic arrangements of
topological defects either of vortex or Skyrmion type. As the s++ state mainly competes with a CDW
instability while the s+− phase competes solely with SDW instabilities, the experimental study of
competing particle-hole phases could also shed light on the microscopic mechanism of superconductivity.
In the next chapter, we will see that there is a very general connection between the topology of the
superconducting state and the time-reversal properties of the competing particle-hole phase.
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6 Chapter 6

Correspondence between mechanism and
topology in noncentrosymmetric systems

In the preceding chapter, it has been shown for a model of the 2D electron liquid at (001) oxide
heterostructures that there is a one-to-one correspondence between the mechanism driving the super-
conducting phase transition and the topology of the resulting condensate: In case of a conventional
mechanism, i.e., superconductivity based on electron-phonon coupling alone, the condensate is topo-
logically trivial, whereas the unconventional pairing state, induced by the repulsive electron-electron
interaction, turned out to be a topological superconductor. In this chapter, we analyze to which extent
this one-to-one correspondence can be generalized to arbitrary noncentrosymmetric superconducting
systems (see Chap. 1.3).
On top of that, the following considerations will also provide general guiding principles for the search

of “intrinsic” topological superconductors, i.e., systems where both superconductivity as well as its
nontrivial topology arise due to spontaneous symmetry breaking. These guiding principles are general
in the sense that they are not based on explicit model studies and only depend on very few properties of
the system such as symmetries and Fermi surface topologies of the normal conducting high-temperature
phase which are also directly accessible experimentally (e.g., via photoemission experiments).
Furthermore, this chapter will also connect to and complement the analysis of Chap. 4: While

conditions for spontaneous TRS breaking at superconducting phase transitions have been formulated
in Chap. 4 in terms of the point symmetries of the normal state, we will here relate the time-reversal
properties of the condensate to the mechanism driving the instability.
For this purpose, we will focus, exactly as in Chaps. 4 and 5, on noncentrosymmetric systems where

the spin-orbit splitting Eso of the Fermi surfaces is larger than the transition temperature Tc of su-
perconductivity such that the weak-pairing approximation (see Chap. 4.2) is applicable. Our results
are mainly based on exact relations following from the symmetries, most importantly the TRS, of the
high-temperature phase. As opposed to the previous two chapters, we will study the superconducting
instability and analyze the topological properties of the resulting state beyond the mean-field approxi-
mation by calculating the Nambu Green’s function self-consistently via Eliashberg theory [71, 72, 366]
and applying the topological Hamiltonian approach (cf. Chap. 2.4.1). Throughout the chapter, we
consider only clean systems and postpone the inclusion of disorder effects to Chap. 7.
The present chapter is organized in three parts: In the first part, Sec. 6.1, we analyze the time-reversal

properties and the topology of electron-phonon-interaction-induced superconductors and also present a
brief introduction to Eliashberg theory. Secondly, in Sec. 6.2, these considerations will be generalized
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to unconventional pairing which we describe using an effective low-energy approach in the spirit of the
spin-fermion model [30–32]. Finally, in the third part (Sec. 6.3), our results will be illustrated using
oxide heterostructures and single-layer FeSe on STO as examples.
The analysis presented in this chapter has been published in Ref. [367].

6.1 Superconductivity due to electron-phonon coupling

In the first part of this chapter, we will focus on superconducting phases in noncentrosymmetric systems
resulting from a purely conventional mechanism, i.e., induced by the electron-phonon coupling alone.
It will be shown that all possible pairing states will be fully gapped, neither break any point group
symmetry nor TRS and be necessarily topologically trivial. The proof provided holds on a very general
level as no details about the microscopic model (number of relevant orbitals, bandstructure etc.) will
have to be specified. It will only be assumed that the normal phase is time-reversal symmetric, the
system is sufficiently clean for disorder effects to be negligible and that the spin-orbit splitting is
sufficiently large for the weak-pairing approximation (see Chap. 4.2) to be applicable.
More specifically, let us consider fermions described by the general noninteracting Hamiltonian

Ĥ0 =
∑
k

ĉ†kα
(
hk
)
αβ
ĉkβ, (6.1)

where, exactly as in Chap. 4.1, k denotes d-dimensional crystal momentum and the indices α, β =
1, 2, . . . N represent all relevant microscopic degrees of freedom, e.g., spin, orbitals and potentially sub-
bands. The creation (annihilation) of quasiparticles is described by the operator ĉ† (ĉ). As already
mentioned above, the only symmetry we assume in this section is TRS. Mathematically, this means
that the normal state Hamiltonian in Eq. (6.1) has to satisfy Θh−kΘ† = hk with single-particle repre-
sentation Θ = TK of the time-reversal operator where K denotes complex conjugation and T is unitary.
As opposed to Chap. 4, we will for concreteness entirely focus on spin-1/2 fermions here such that N
will be even and Θ2 = −1 leading to T T = −T .
The electron-phonon coupling giving rise to superconductivity is taken to be of the general form

Ĥel-ph =
∑
k,k′,l

ĉ†kαg
(l)
αβ(k,k′)ĉ

k′β

(
b̂†
k′−kl + b̂

k−k′l

)
. (6.2)

For now, further interaction channels are assumed to be irrelevant. At the end of Sec. 6.1.3, we will
comment on the impact of residual Coulomb repulsion on our results. In Eq. (6.2), b̂†ql and b̂ql are
the creation and annihilation operators of phonons of branch l. The coupling Ĥel-ph can be seen as
a generalized (relativistic) version of the well-known Fröhlich Hamiltonian [368] where the associated
coupling matrix g(l) can, by virtue of spin-orbit interaction, couple states of different spin and might,
on top of that, have nontrivial structure, e.g., in orbital or subband space. It will not be explicitly
specified here – only the constraints resulting from Hermiticity and TRS will be taken into account.
The former implies

g
(l)
αβ(k,k′) =

(
g

(l)
βα(k′,k)

)∗
. (6.3)

To analyze the consequences of the latter, first note that

Θ̂b̂
(†)
ql Θ̂† = b̂

(†)
−ql (6.4)
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since the deformation of the lattice Q̂q ∼ b̂†−q + b̂q and the conjugate momentum P̂q ∼ i(b̂†q − b̂−q)
must be even, Θ̂Q̂qΘ̂

† = Q̂−q, and odd, Θ̂P̂qΘ̂
† = −P̂−q, under time-reversal, respectively. Using this

in Eq. (6.2), one immediately finds that TRS demands

g(l)(k,k′) = T
(
g(l)(−k,−k′)

)∗
T †. (6.5)

Finally, the Hamiltonian of the phonons reads

Ĥph =
∑
q,l

b̂†qlb̂qlωql, (6.6)

where the phonon dispersion ωql satisfies ωql > 0 and ωql = ω−ql due to stability of the crystal and
TRS, respectively.

6.1.1 Effective electron-electron interaction

Restating the Hamiltonian Ĥ0 + Ĥph + Ĥel-ph of the system in the action description [114, 115] and
integrating out the phonon degrees of freedom yields the effective electron-electron interaction

Seff
int = −

∑
l

∫
k1,k2,q

ωql
Ω2
n + ω2

ql

g
(l)
αβ(k1 + q,k1)g

(l)
α′β′(k2 − q,k2) c̄k1+qαc̄k2−qα′ck2β′ck1β. (6.7)

Here c̄α and cα are the Grassmann analogues corresponding to the fermionic creation and annihilation
operators ĉ†α and ĉα. As before, we use k ≡ (iωn,k), q ≡ (iΩn, q) with

∫
k comprising both momentum

(k, q) and Matsubara (ωn = πT (2n+ 1), Ωn = 2πTn, n ∈ Z) summation.
For describing superconducting instabilities, it is very convenient to work in the eigenbasis of the

noninteracting part hk of the high-temperature Hamiltonian. We thus write

ckα =
∑
s

(
ψks
)
α
fks, c̄kα =

∑
s

f̄ks
(
ψ∗ks
)
α

(6.8)

where ψks denote the eigenstates of hk, i.e. hkψks = εksψks. Eq. (6.8) just constitutes the field-integral
analogue of the transformation (4.23). In this chapter, we apply exactly the same low-energy approach
as in Chap. 4: For given k, the summation over s in Eq. (6.8) will restricted such that only bands leading
to Fermi surfaces and states with energies εks in the vicinity of the chemical potential (−Λ < εks < Λ)
are taken into account. For phonons, the cutoff Λ is determined by the Debye frequency ωD which
sets the scale for the possible energy transfer in electron-phonon induced electron-electron scattering.
Furthermore, the states will be labeled in such a way that any Fermi surface s, formally defined as the
set of Fermi momenta {k|εks = 0}, is connected (see Fig. 6.1(a)).
Inserting the transformation (6.8) into Eq. (6.7) yields

Seff
int =

∫
k1,k2,q

V s1s2
s3s4 (k1, k2, q) f̄k1+qs1 f̄k2−qs2fk2s3fk1s4 (6.9)

with coupling tensor

V s1s2
s3s4 (k1, k2, q) = −

∑
l

ωql
Ω2
n + ω2

ql

G(l)
s1s4(k1 + q,k1)G(l)

s2s3(k2 − q,k2) (6.10)
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

where we have introduced the fermion boson coupling

G
(l)
ss′(k,k

′) = ψ†ks g
(l)(k,k′)ψ

k′s′
(6.11)

in the eigenbasis representation. The Hermiticity constraint (6.3) now becomes

G
(l)
ss′(k,k

′) =

[
G

(l)
s′s(k

′,k)

]∗
. (6.12)

In this chapter we will focus on noncentrosymmetric systems, where the combination of SOC and
hopping processes between orbitals that are only allowed in the absence of inversion symmetry will
generically lift the spin-degeneracy of the Fermi surfaces (see also Chap. 1.3). As already discussed in
detail in Chap. 4.2, the TRS of the normal phase then allows to uniquely express the wavefunction of
the low-energy state at k in terms of the wavefunction at momentum −k: Recalling the notation that
sK denotes the Fermi surface consisting of the Kramers partners of the momenta of s (cf. Fig. 6.1(a)),
we have

ψks = eiϕ
s
kΘψ−ksK (6.13)

with time-reversal phases ϕsk ∈ R that are determined by how the phases of the eigenstates ψks are
chosen. Although already introduced in Chap. 4.2, we have restated the relation (6.13) here for the
convenience of the reader as it will be used repeatedly in the following analysis. Note that we will focus
on Θ2 = −1 such that the phases satisfy

eiϕ
sK
−k = −eiϕsk . (6.14)

Using Eqs. (6.5) and (6.13), i.e. the consequences of TRS for the electron-phonon coupling and the
wavefunctions of the normal state Hamiltonian, it is straightforward to show that

G
(l)
ss′(k,k

′) = ei(ϕ
s′
k′−ϕ

s
k)

(
G

(l)
sKs
′
K

(−k,−k′)
)∗

. (6.15)

This is a central relation for our analysis as it can be used to rewrite the Cooper channel of the
interaction (6.9), i.e., the scattering process of a Kramers pair {s, k; sK,−k} of quasiparticles into
another Kramers pair {s′, k′; s′K,−k′} as depicted in Fig. 6.2(a). Eq. (6.15) readily yields for this type
of scattering event

V
s′s′K
sKs (k,−k, k′ − k) = ei(ϕ

s
k−ϕ

s′
k′ )Vs′s(k′; k) (6.16)

where

Vs′s(k′; k) = −
∑
l

ωk′−kl
(ωn′ − ωn)2 + ω2

k′−kl

∣∣∣∣G(l)
s′s(k

′,k)

∣∣∣∣2 < 0. (6.17)

The very same matrix elements also govern the forward scattering processes shown in Fig. 6.2(b) with
amplitude Fs′s(k′; k) := V s′s

s′s (k, k′, k′−k): Using the Hermiticity (6.3) of the electron-phonon interaction
one finds F = V.
Consequently, the combination of TRS and the fact that the Fermi surfaces are singly degenerate

highly constraints the Cooper channel of the interaction. As stated in Eq. (6.16), it can be written
as the product of the time-reversal phases defined in Eq. (6.13) and the forward scattering matrix
Vs′s(k′; k) which only has negative entries. We emphasize that this is a very general result since no
additional model specific assumptions other than TRS and singly-degenerate Fermi surfaces (such as
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6.1 Superconductivity due to electron-phonon coupling

Figure 6.1: Parameterization of Fermi surfaces and fixed points of symmetries. In (a),
the notation used in this chapter is illustrated using a 2D example with C4v symmetry.
Fermi surfaces (blue) are chosen to be connected and the Kramers partner of (s,Ω)
is denoted by (sK,ΩK). The four distinct TRIM are indicated as green dots and the
fixed points (red) of the mirror operation σd (red dashed line) are shown. Part (b)
illustrates the fixed point manifolds on the Fermi surface of a 3D system associated
with a rotation symmetry C4 (green dots) and a mirror operation (red line).

number/character of relevant orbitals or dimensionality of the system) have been taken into account.
In the next subsection, we will analyze the consequences for the resulting possible superconducting
instabilities using Eliashberg theory [71, 72].
Before proceeding, a few remarks are in order: Naturally, the Cooper scattering amplitude (6.16) is

a complex number that depends on the phases of the eigenstates ψks whereas the forward scattering
amplitude V is independent of the phases as it always involves a wavefunction and its complex conjugate
in pairs (cf. Fig. 6.2(b)). Despite the gauge dependence of the Cooper scattering amplitude, the time-
reversal and topological properties of the resulting superconducting state are, of course, independent
of the time-reversal phases ϕsk as we will see explicitly below.
Strictly speaking, the inequality sign in Eq. (6.17) has to be understood as smaller than zero except

for configurations {s,k; s′,k′} where V is forced to vanish by symmetry. The Fermi momenta k where
symmetries can impose zeros of V form a manifold that has dimension d − 2 or smaller. To see this,
first note that these zeros can only arise from zeros of G. The latter transforms according to

G
(l)
ss′(k,k

′) = ei(ρ
s′
k′ (g)−ρ

s
k(g))G

(l)
Rs(g)sRs(g)s′(Rv(g)k,Rv(g)k′) (6.18)

under a symmetry operation g of the point group Gp, where ρsk(g) defined in Eq. (4.36) depend on the
relative phases of the eigenstates ψks at different k. For general k, it holds Rv(g)k 6= k such that
Eq. (6.18) just relates G at different momenta. Zeros can thus only be imposed by symmetry at Fermi
momenta kj with Rv(g)kj = kj for some g ∈ Gp. It is easily seen that the set of these “fixed points”
forms a manifold with dimension smaller than the dimensionality (d − 1) of the Fermi surfaces of the
system. Consider, e.g., the 2D system shown in Fig. 6.1(a) with C4v symmetry. In the generic case (no
Fermi surfaces going through high-symmetry points), only mirror planes, e.g., σd shown as red dashed
line, have fixed points (red dots) which are just isolated points in the Brillouin zone. We note in passing
that G(l)

sjsj′ (kj ,kj′) is forced to vanish if the eigenvalues of ψkjsj and ψkj′sj′ with respect to the mirror
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

operator are not complex conjugate to one another. In 3D, rotation and mirror symmetries can lead to
fixed point manifolds of dimension zero (green dots) and one (red line), respectively, as illustrated in
Fig. 6.1(b). Because of the reduced dimensionality, these zeros of V will not affect the superconducting
properties as they will have measure zero in the continuum limit of the summation over the states on
the Fermi surface. We will come back to this point below in more rigorous terms.
Finally, let us list three properties

Vs′s(k′; k) = Vss′(k; k′), (6.19a)
Vs′s(k′; k) = Vs′KsK(−k′;−k), (6.19b)

Vs′s
(
iωn′ ,k

′; iωn,k
)

= Vs′s
(
−iωn′ ,k′;−iωn,k

)
, (6.19c)

which are readily read off from Eq. (6.17) and will be taken into account in the following1.

6.1.2 Eliashberg theory in the weak-pairing limit

In this subsection, we will first provide a streamlined introduction to Eliashberg theory which focuses
on the aspects relevant to the present analysis. For a broader discussion, in particular concerning
its success in describing many different superconducting materials, we refer to textbooks (see, e.g.,
Ref. [368]) and the review article [369].

Eliashberg theory. Soon after the formulation of BCS theory, significant discrepancies between its
predictions (e.g., ratio of zero temperature gap and transition temperature, critical field) and experiment
have been observed for superconductors with strong electron-phonon coupling such as lead or mercury
(see Ref. [370] and references therein). Around 1960, G. M. Eliashberg generalized [71, 72] the BCS
theory beyond the weak-coupling limit based on the previous pioneering work of A. B. Migdal [366] on
the electron-phonon coupling.
The aim of Eliashberg theory consists of calculating the Green’s function in the superconducting

phase self-consistently. Being the central building block of many body theory, the Green’s function
can then be used to calculate physical observables and, as we will discuss in detail below, analyze the
symmetry and topological properties of the condensate. From BCS theory it is clear that we need to
calculate the full Nambu Green’s function with both the normal ( ↔ 〈ĉ†ĉ〉) as well as anomalous
( ↔ 〈ĉĉ〉, 〈ĉ†ĉ†〉) components in order to describe superconductivity.
Let us take a look, e.g., at the self-consistency equation of the anomalous propagator the first terms of

which are represented diagrammatically in Fig. 6.2(c). There is an infinite number of missing diagrams
with three and more phonon lines. It is hopelessly difficult to sum up all diagrams and solve the exact
self-consistency equations such that some diagrammatic selection principle is required. The latter is
provided by Migdal’s theorem [366] which states that all vertex corrections of the electron-phonon
coupling with n phonon lines are suppressed by a factor (m/M)n/2 where m and M denote the mass
of the electrons and the ions, respectively. Involving the adiabaticity ratio m/M of ionic motion as
compared to electrons, it is the diagrammatic manifestation of the reasoning behind the celebrated Born-
Oppenheimer approximation [371]. In the present context, it allows us to expand the self-consistency
equations in terms of λ

√
m/M instead of the dimensionless interaction parameter λ = ρFV of the BCS

approach, where ρF denotes the density of states at the Fermi surface. Consequently, in Fig. 6.2(c), all

1Eq. (6.19b) is also enforced in the action description of the Cooper channel just by the fact that the Grassmann fields
f , f̄ anticommute and, hence, physically due to Fermi-Dirac statistics.
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6.1 Superconductivity due to electron-phonon coupling

Figure 6.2: Diagrammatics of Eliashberg theory. To calculate the superconducting proper-
ties only the Cooper (a) and forward scattering channel (b) of the electron-electron
interaction are required. In part (c), the first few diagrams of the self-consistency
equation for the anomalous Green’s function are shown. All diagrams except for the
first two contain vertex corrections and are thus suppressed by the smallness of the
ratio m/M [366]. To understand this, we compare diagrams without and with vertex
corrections in (d) that are of the same order in the coupling constant. In the latter
case, the available phase space is reduced as compared to the former case as illustrated
geometrically. In (e), the self-consistency equations for the normal and anomalous
Green’s functions within Eliashberg approximation are represented diagrammatically.
Here the labels k, s take into account the weak-pairing approximation (6.21).
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

diagrams with two or more phonon lines contain vertex corrections and are thus suppressed by a factor
of λ

√
m/M as compared to the first two diagrams.

Instead of reproducing the details of the analysis of Migdal [366], we present an intuitive argument
that strongly resembles the motivation of the SCBA well-known from the analysis of impurity scattering
(see Chap. 1.4.1) and shows that the factor

√
m/M results from phase-space restrictions due to the

mismatch of the typical phonon (ωD) and electron (EF ) energies: Let us compare the first two diagrams
in Fig. 6.2(d) which are of the same order in the electron-phonon coupling. Focusing for simplicity on
a quadratic spectrum, setting the incoming momentum k on the Fermi surface and recalling that the
maximal energy transfer due to electron-phonon scattering is set by the Debye frequency ωD, we see
that, in case of the first diagram, both internal momenta k1 and k2 are free to run independently
over the shell kF − ∆k < |kj | < kF + ∆k. Here ∆k ∝ ωD/vF is the maximal momentum transfer
due to phonons with vF and kF denoting the Fermi velocity and momentum, respectively. As for the
second diagram, which contains a vertex correction, the momenta have to be additionally fine-tuned
such that also k3 = k + k2 − k1 belongs to a shell around the Fermi surface with thickness 2∆k. It
is easy to see that exactly the same applies for the analogous diagram containing an anomalous vertex
correction. Consequently, for fixed k2, this constrains k1 to be part of the green intersection area
of the two shells shown in Fig. 6.2(d). This implies that, for d > 1, the two diagrams with vertex
corrections are suppressed by a phase space factor of ∆k/kF relative to the first diagram in Fig. 6.2(d).
As ∆k/kF ∝ ωD/EF ∝

√
m/M , we recover Migdal’s result [366].

Typically
√
m/M ' 10−2 and, hence, neglecting all diagrams with vertex corrections, as is done in

Eliashberg theory [71, 72], is still expected to be valid in the strong-coupling regime λ ' 1 and, indeed,
successfully describes many superconductors with strong electron-phonon coupling [369]. The resulting
self-consistency equations both for the normal as well as for the anomalous propagator are represented
diagrammatically in Fig. 6.2(e). In the following, we will study these self-consistency equations for
noncentrosymmetric superconductors in order to gain information about the symmetry and topological
properties of possible superconducting states.

Weak-pairing limit. As anticipated by the notation introduced in Sec. 6.1.1, it will be most conve-
nient to perform this analysis in the eigenbasis of the normal state Hamiltonian hk. We thus introduce
the Nambu Green’s function as

Gss′(iωn,k) := − 1

β

 〈fksf̄ks′〉 〈fksf−ks′K〉

〈f̄−ksK f̄ks′〉 〈f̄−ksKf−ks′K〉

 . (6.20)

According to this ansatz, all Cooper pairs carry zero total momentum excluding the formation of
translation-symmetry breaking superconductivity, e.g., FFLO [105, 106] states.
In addition, we assume that, for determining the superconducting properties, the Green’s function

can be approximated to be diagonal in Fermi-surface space,

Gss′(iωn,k) = δs,s′Gs(iωn,k), (6.21)

which is the Green’s function description of the weak-pairing approximation introduced in Chap. 4.2 on
the mean-field level. As already discussed in detail in Chaps. 4.2 and 4.5, this approximation is valid as
long as the transition temperature Tc is smaller than the energetic splitting Eso of the Fermi surfaces.
In short, the reason is that the matrix elements of the Green’s function (6.20) with s 6= s′ couple
single-particle states with energies differing by Eso. Loosely speaking, in the calculation of the leading
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6.1 Superconductivity due to electron-phonon coupling

superconducting instability this will cut off the Cooper logarithms associated with these processes unless
the integrals are first cut off by temperature. Therefore, the weak-pairing approximation is expected
to be applicable for determining the superconducting properties as long as Eso & Tc.
On the level of the Eliashberg equations, the weak-pairing approximation means that the incoming

and outgoing Fermi-surface index s is identical as already indicated in Fig. 6.2(e). Consequently, only
the forward, Fig. 6.2(a), and the Cooper, Fig. 6.2(b), scattering amplitudes of the phonon-mediated
interaction enter. We thus see how the presence of a strong spin splitting of the Fermi surfaces leads to
more universal behavior as compared to centrosymmetric systems where additional index combinations
{sj} of the electron-electron interaction (6.9) would be relevant in the self-consistency equations.
To write down the Eliashberg equations in algebraic form, we parameterize the Green’s function

according to

G−1
s (k) = iωnZs(k)τ0 − ε̃s(k)τ3 −

 0 Φs(k)

Φs(k) 0

 (6.22)

with quasiparticle weight Zs(k), ε̃s(k) = εks + δεs(k), where δεs(k) is the band renormalization, and
anomalous self-energies Φs(k) and Φs(iωn,k) = Φ∗s(−iωn,k). These quantities, which uniquely deter-
mine G, follow from the self-consistency equations

Zs(k) = 1 +
2

iωn

∑
s′

∫
k′
Vss′(k; k′)

iωn′Zs′(k
′)

Ds′(k′)
, (6.23a)

Φ̃s(k) = 2
∑
s′

∫
k′
Vss′(k; k′)

Φ̃s′(k
′)

Ds′(k′)
, (6.23b)

δεs(k) = −2
∑
s′

∫
k′
Vss′(k; k′)

ε̃s′(k
′)

Ds′(k′)
, (6.23c)

where we have introduced

Ds(k) =
[
iωnZs(k)

]2 − [ε̃ 2
s (k) + Φs(k)Φs(k)

]
(6.24)

for notational convenience. Here Eqs. (6.19a) and (6.19b) have been taken into account to write the
expressions in more compact form. The additional factor of 2 on the right-hand sides of Eq. (6.23) (as
compared to the more frequently encountered form of the Eliashberg equations for spinfull fermions)
arises since, in the band basis, the theory looks as if we were considering spinless particles making more
contractions of the interaction vertex possible. The time-reversal phases ϕsk of the Cooper amplitude
in Eq. (6.16) that have been absorbed by defining Φ̃s(k) := Φs(k)eiϕ

s
k are reminiscent of the fact that

we are considering not truly spinless particles, but spin-1/2 particles with singly-degenerate bands.
Here, we will focus on the vicinity of the critical temperature of the superconducting transition and,

hence, linearize the Eliashberg equations (6.23) in Φ. To proceed further, let us rewrite the momentum
summation as an angular integration over the Fermi surfaces and an energy integration (momentum
perpendicular to the Fermi surface) subject to an energetic cutoff Λ (of order of ωD). More explicitly,
we replace ∑

s

∫
k
· · · → β−1

∑
ωn

∑
s

∫ Λ

−Λ
dε

∫
s

dΩ ρs(Ω) . . . , (6.25)
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

where ρs(Ω) > 0 denotes the angle-resolved density of states that is taken to be independent of ε. The
dimensionality of

∫
s dΩ is set by the dimensionality of the Fermi surface s. For the general purposes of

this analysis, we do not have to specify any parameterization, we will, as illustrated in Fig. 6.1, only
apply the convention that the Kramers partner of the state (s,Ω) is given by (sK,ΩK).
In addition, we take the interaction V, δε and Φ̃ as well as the quasiparticle residue Z to be only

weakly dependent on the momentum perpendicular to the Fermi surface and set

Vss′(iωn,k; iωn′ ,k
′) ' Vss′(iωn,Ω; iωn′ ,Ω

′),

Φ̃s(iωn,k) ' Φ̃s(iωn,Ω)
(6.26)

and similarly for δε and Z. This is justified as the dependence of V on the momentum perpendicular
to the Fermi surface is determined by the momentum dependence of the phononic spectrum ωql. It is,
hence, by a factor of vs/vF , where vs denotes the sound velocity, slower than the dependence of the
quasiparticle spectrum ε. From Eq. (6.23), we see that the same then automatically holds for Z, Φ̃ and
δε. As vs/vF ∝ ωD/EF ∝

√
m/M , Eq. (6.26) is valid in the adiabatic limit m/M � 1.

With these approximations, the Eliashberg equations (6.23) become (for Λ→∞)

Zs(iωn,Ω) = 1− 2

2n+ 1

∑
n′

∑
s′

∫
s′

dΩ′ρs′(Ω
′)Vss′(iωn,Ω; iωn′ ,Ω

′) sign(2n′ + 1), (6.27a)

δs(iωn,Ω) =
∑
n′

∑
s′

∫
s′

dΩ′vss′(iωn,Ω; iωn′ ,Ω
′)δs′(iωn′ ,Ω

′), (6.27b)

δεs(k) = 0, (6.27c)

i.e., there is no Fermi velocity correction. In Eq. (6.27), the normalized anomalous self-energy

δs(iωn,Ω) := Θs,n(Ω) Φ̃s(iωn,Ω) (6.28)

with2

Θs,n(Ω) =

√
ρs(Ω)√

|2n+ 1|
√
|Zs(iωn,Ω)|

(6.29)

has been introduced in order to render the kernel

vss′(iωn,Ω; iωn′ ,Ω
′) := −2Θs,n(Ω)Vss′(iωn,Ω; iωn′ ,Ω

′)Θs′,n′(Ω
′) (6.30)

of the gap equation (6.27b) symmetric.
For completeness, we mention that Eq. (6.27b) assumes the form of the linearized BCS mean-field

equations upon linearizing in V (tantamount to replacing Z → 1) and neglecting the frequency depen-
dence of V which then automatically renders Φ̃ independent of frequency. The weak-pairing BCS order
parameter ∆̃, the central object in the analysis of Chap. 4.2, is then given by

∆̃s(k) = Φ̃s(iωn,k) (6.31)

and the Cooper logarithm comes from the remaining frequency summation.

2In the expression for Θs,n(Ω), we have, for simplicity, already taken into account that Z is real. In general, |Zs(iωn,Ω)|
has to be replaced by Zs(iωn,Ω) sign(Re(Zs(iωn,Ω))) such that δ and v will only be generically real if Z ∈ R.
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6.1 Superconductivity due to electron-phonon coupling

6.1.3 Symmetry and topology of the resulting condensate

We will next discuss the general implications of the linearized Eliashberg equations (6.27) for the unitary
as well as antiunitary symmetries of the condensate and then analyze its topological properties.
As a first step, note that, after linearizing in Φ̃, Eq. (6.27a) explicitly determines Zs(iωn,Ω), i.e., it

follows without solving a self-consistency equation. We directly see that Zs(iωn,Ω) ∈ R. In addition, it
holds Zs(k) = ZsK(−k) which is a consequence of its definition but can, alternatively, be explicitly seen
in Eq. (6.27a) using Eq. (6.19b). Together with Zs(iωn,Ω) = Z∗s (−iωn,Ω) following from Eq. (6.19c),
we can summarize

Zs(iωn,Ω) = Zs(−iωn,Ω) = ZsK(iωn,ΩK) ∈ R. (6.32)

The properties of the superconducting order parameter follow from the second Eliashberg equation
(6.27b). As opposed to mean-field theory, the temperature dependence of Eq. (6.27b) is more compli-
cated and hidden in the kernel v defined in Eq. (6.30). However, it can be shown (see Appendix E.2)
that the leading superconducting instability is, as in the mean-field case, determined by the largest
eigenvalue of the (symmetric and real) matrix v while the order parameter δs(iωn,Ω) belongs to the
corresponding eigenspace.
Recalling Eq. (6.17), the kernel v only has positive elements (except for the fixed-point manifolds of

symmetry operations), such that the Perron-Frobenius theorem [372–374] can be used. It states that
the largest eigenvalue of a square matrix with strictly positive entries is positive and nondegenerate with
associated eigenvector that can be chosen to have purely positive components as well. More generally,
it holds for any irreducible3 nonnegative matrix and, thus, still applies if we take into account the
isolated zeros of v that can be imposed by symmetry (see Fig. 6.1). Therefore, the leading instability
is characterized by δs(iωn,Ω) > 0 and, hence, Φ̃s(iωn,Ω) > 0, i.e., the superconductor is fully gapped
with the sign of the gap being the same on all Fermi surfaces. Also as a function of Matsubara
frequency, the anomalous self-energy does not change sign. Due to the absence of any sign change,
the superconducting state cannot break any point-group symmetry and must, therefore, transform
under the trivial representation of the point group. Recalling that the weak-pairing mean-field order
parameter ∆̃s(k) transforms as a superposition of scalar basis functions of an irreducible representation
(see Eq. (4.38)), this statement follows intuitively in case of one-dimensional representations. For a
general proof, we refer to Appendix E.3.
Since vss′(iωn,Ω; iωn′ ,Ω

′) is invariant under a simultaneous sign change of ωn and ωn′ , which follows
from and Eqs. (6.19c) and (6.32), we know that δs(−iωn,Ω) is also a solution of Eq. (6.27b). Due
to the absence of degeneracies, we conclude that δs(iωn,Ω) = ±δs(−iωn,Ω), i.e., we obtain either an
even- or an odd-frequency pairing state. As δs(iωn,Ω) > 0 odd-frequency pairing can be excluded. In
combination with Φ̃sK(−k) = Φ̃s(k) following from Fermi-Dirac statistics and the property (6.14) of
the time-reversal phases, one has

Φ̃s(iωn,Ω) = Φ̃s(−iωn,Ω) = Φ̃sK(iωn,ΩK) > 0. (6.33)

Antiunitary symmetries. Let us now use the results of the previous analysis, Eqs. (6.32) and (6.33),

3A matrix M is reducible if there is a permutation matrix P such that PMPT =

(
X Y

0 Z

)
, with X and Z both being

square. Otherwise M is said to be irreducible. As is well-known from graph theory, a matrix is irreducible if and only
if its adjacency graph is strongly connected [374]. From this it readily follows that V is irreducible: As is clear by
inspection of Fig. 6.1, we can reach any (fixed) point from any other (fixed) point via an intermediate generic point
on the Fermi surface.
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

to investigate the antiunitary symmetries of the condensate. As we do not want to restrict ourselves to
the mean-field level here, we have to discuss these symmetries on the level of Green’s functions.
To begin with PHS, it holds (we refer to Appendix E.1.2 for more details on the derivation of this

and Eq. (6.35) below)
ΞGsK(iωn,−k)Ξ−1 = −Gs(iωn,k), Ξ = τ1K, (6.34)

which is just a consequence of the inherent redundancy of the Nambu Green’s function in Eq. (6.20).
Therefore, the condensate satisfies this symmetry by design.
TRS is a much more interesting physical property of a superconductor in the sense that it can be

spontaneously broken at the phase transition. Despite being relatively rare, there are several sys-
tems with strong experimental indications [47–49, 51, 53–56] of TRS-breaking superconductivity as we
have seen in Chap. 1.3. Extending our mean-field analysis of TRS in the weak-pairing description in
Chap. 4.2 to the level of Green’s functions, the TRS constraint now reads

Θ̃ksGsK(−k)Θ̃−1
ks = Gs(k), Θ̃ks = τ3e

−iϕskτ3K, (6.35)

when transformed into the eigenbasis according to Eq. (6.8). The phases ϕsk enter because of the relation
(6.13) between the wavefunctions of Kramers partners. Note that the expression for the time-reversal
operator stated above yields Θ̃2

ks = 1 which, at first sight, seems to disagree with Gs being a Green’s
function of spin-1/2 fermions. This can be reconciled by noting that the full time-reversal operator
Θ̃ksI that also includes the inversion I of momentum4 indeed satisfies (Θ̃ksI)2 = Θ̃ksΘ̃−ksK = −1 as
a consequence of Eq. (6.14). Note that this subtlety usually does not play any role as the time-reversal
operator in momentum space in many cases (e.g. in the microscopic basis as in Eq. (4.7)) does not
depend on momentum. It shows once again that the property (6.14) of the phases ϕsk carries the
information that the nondegenerate bands of the system microscopically arise from spin-1/2 fermions.
In order to compare our Green’s function approach with the mean-field description used in Chap. 4,

which will be particularly useful when discussing the topological properties below, let us consider the
generic superconducting mean-field Hamiltonian

ĤMF =
∑
k

ĉ†khkĉk +
1

2

∑
k

(
ĉ†k∆(k)

(
ĉ†−k

)T
+ H.c.

)
. (6.36)

Performing the transformation into the band basis according to Eq. (4.23), we get, within the weak-

pairing approximation, ĤMF = 1
2

∑
k Ψ̂†ksh

BdG
ks Ψ̂ks with Nambu spinor Ψ̂†ks =

(
f̂ †ks f̂−ksK

)
and BdG

Hamiltonian

hBdGks =

 εks ∆̃s(k)e−iϕ
s
k

∆̃∗s(k)eiϕ
s
k −εks

 . (6.37)

Here, exactly as in Eq. (6.31), ∆̃s(k) = 〈ψks|∆(k)T †|ψks〉 are the Fermi-surface-diagonal matrix ele-
ments of the order parameter which are directly related to the topology of the superconductor as we
have seen in Chap. 2.2.3.
Demanding that Eq. (6.36) be time-reversal symmetric, Θ̂ĤMFΘ̂−1 = ĤMF with Θ̂ as defined in

Eq. (4.7), one finds that TRS is equivalent to ∆̃s(k) ∈ R (cf. Eq. (4.39)). Comparison with Eq. (6.37)

4Formally defined by
(
Iy
)
ks

= y−ksK when acting on a function yks.
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6.1 Superconductivity due to electron-phonon coupling

shows that TRS on the level of the BdG Hamiltonian reads Θ̃ksh
BdG
−ksKΘ̃−1

ks = hBdGks which is just a
special case of Eq. (6.35) restricted to the mean-field level where

Gs(iωn,k) =
(
iωn − hBdGks

)−1
. (6.38)

The relation (6.38) between the mean-field Green’s function G and the weak-pairing representation of
the general multiband mean-field Hamiltonian (6.36) will be relevant below when discussing topological
properties of the superconducting phase beyond mean-field.
It is straightforward to check that Eq. (6.35) is satisfied as a consequence of Zs(k) and Φ̃s(k) being real

valued and invariant under in (s, k)→ (sK,−k) (cf. Eqs. (6.32) and (6.33)) together with εks = ε−ksK
resulting from the TRS of the high-temperature phase. Therefore, no spontaneous TRS breaking is
possible in the weak-pairing limit if superconductivity is due to electron-phonon coupling.

Topological properties. The analysis above shows that the resulting system is invariant both under
charge conjugation Ξ with Ξ2 = 1 as well as under time-reversal Θ̃ksI satisfying (Θ̃ksI)2 = −1 and,
thus, belongs to class DIII [249, 251]. As we have seen in Chap. 2.1.2, the superconductor is classified
by a Z2 in 1D and 2D and by a Z topological invariant in 3D. To calculate these invariants, we will
use the topological Hamiltonian approach (see Chap. 2.4.1 for an introduction to this method): For
a system with a finite gap, the topological properties of the many-body system described by the full
Green’s function G are calculated from the effective mean-field Green’s function

Gts(iωn,k) =
(
iωn − htks

)−1
(6.39)

where the “topological Hamiltonian” is given by

htks := −G−1
s (iω = 0,k). (6.40)

For the calculation of the topological invariant, we have to go to zero temperature. In Eq. (6.40), and
similarly in the following expressions, iω = 0 has to be understood as the limit T → 0 of the function
evaluated at the Matsubara frequency ω0 = π/β (or equally well ω−1 = −π/β). For this purpose, we
assume that no additional topological phase transition occurs in the temperature range between the
onset of superconductivity and T = 0. In more mathematical terms, it means that, upon lowering T
to zero, the structure of the solution of the (nonlinear) Eliashberg equations does not change in a way
that affects the topological invariant. This is a quite natural assumption and, on top of that, can be
directly verified experimentally as a topological phase transition requires an additional closing of the
gap between Tc and T = 0. If it holds, the topological properties of the superconducting phase can be
inferred from the solution of the linear Eliashberg equations (6.27).
Due to Φ̃s(0,Ω) > 0, the superconductor is fully gapped and the Green’s function Gs(iω,k) must be an

analytic function of ω in a finite domain containing the imaginary axis. Consequently, iωZs(iω,k)
∣∣
iω=0

=
0 as iωZs(iω,k) is an odd function of ω (cf. Eq. (6.32)). Therefore, the topological Hamiltonian becomes

htks =

 εks Φ̃s(iω = 0,k)e−iϕ
s
k

Φ̃s(iω = 0,k)eiϕ
s
k −εks

 , (6.41)

which is manifestly Hermitian. Furthermore, it is readily checked to be particle-hole and time-reversal
symmetric with Ξ and Θ̃ks as given in Eqs. (6.34) and (6.35).
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

The resulting topological properties are most easily inferred by reading the approximation of the gen-
eral mean-field Hamiltonian in Eq. (6.36) to the weak-pairing description (6.37) in reverse: Comparison
of Gt in Eq. (6.39) and Eq. (6.38) shows that htks can be seen as the weak-pairing approximation of
some mean-field Hamiltonian of the form of Eq. (6.36) with the property

∆̃s(k) ≡ 〈ψks|∆(k)T †|ψks〉 = Φ̃s(iω = 0,k). (6.42)

We emphasize that, although Eq. (6.42) looks deceptively similar to the BCS approximation (6.31), the
topological Hamiltonian approach we use is equivalent [309, 310] to the expressions for the topological
invariants involving frequency integrals of the full Green’s functions probing all frequencies ωn of the
self-energy.
Recalling Chap. 2.2.3, the topological class-DIII invariant of a mean-field Hamiltonian of the form

of Eq. (6.36) is, within the weak-pairing limit, determined by the sign of the order-parameter matrix
elements ∆̃s(k) on the different Fermi surfaces of the system. More explicitly, in the 3D case, it holds

ν
Z

=
1

2

∑
s

sign
(

∆̃s(ks)
)
C1s, (6.43)

where ks is an arbitrary point on and C1s denotes the first Chern number (2.18) of Fermi surface s
[280]. Due to Eqs. (6.33) and (6.42), we find

ν
Z

=
1

2

∑
s

C1s = 0, (6.44)

i.e., a topologically trivial superconductor. In the second equality of Eq. (6.44), we have used that the
total Chern number of all Fermi surfaces vanishes [280].
In lower dimensions, the expression (6.43) for the topological invariant assumes the form

ν
Z2

=
∏
s

[
sign

(
∆̃s(ks)

)]ms
(6.45)

as readily follows by means of dimensional reduction [280]. In Eq. (6.45), ms denotes the number of
TRIM (green dots in Fig. 6.1(a)) enclosed by Fermi surface s in case of a 2D system, whereasms = 1 for
a 1D superconductor. Again, we find, in both dimensions, a trivial superconductor (ν

Z2
= 1) resulting

from sign(∆̃s(ks)) = 1.
Taken together, superconductivity in noncentrosymmetric systems that arises due to electron-phonon

coupling alone can neither break TRS nor any point symmetry of the system and must necessar-
ily be topologically trivial. This has been derived under very general assumptions: The inversion-
symmetry breaking is assumed to be sufficiently strong for the weak-pairing approximation to be valid
(Eso & Tc). We have used the Eliashberg approach which is controlled in the limit of adiabatic ionic
motion (m/M � 1) and, in principle, allows for arbitrarily strong interactions V. Also the analysis of
topological invariants is performed beyond the mean-field level. Thus, also interaction effects without
static mean-field counterpart are captured (see Chap. 2.4). This is important as dynamical fluctuations
can indeed change the topological properties of the system as has been demonstrated, e.g., in Ref. [308].

Remarks. Note that these conclusions are not altered when electronic renormalization effects of the
phononic dispersion are taken into account since ωql in Eq. (6.6) can already be regarded as the fully
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6.2 Unconventional mechanism

renormalized spectrum. In Sec. 6.2 below, we will show, using exact relations derived from the spectral
representation, that the same holds even if frequency-dependent corrections to the phonon propagator
are considered.
Furthermore, it is instructive to compare this result valid for noncentrosymmetric systems with the

situation where inversion symmetry is preserved. In this case, all Fermi surfaces are doubly degenerate
and the superconducting state can only be either singlet or triplet. In Ref. [282], it has been shown that
in 2D and, for simplicity, focusing on a single Fermi surface enclosing the Γ point, any fully gapped,
time-reversal symmetric odd parity state will be topological. In our case, there are two main differences:
Firstly, the absence of inversion symmetry generally mixes singlet and triplet components. Secondly,
for a Fermi surface around the Γ point, breaking point symmetries necessarily implies the presence
of nodes. This is most easily seen by noting that the absence of TRS breaking forces ∆̃s to be real

such that the spectrum ±
√
ε2ks + ∆̃2

s(k) of the BdG Hamiltonian (6.37) must have nodes when ∆̃s(k)
changes sign on the Fermi surface. This is in stark contrast to centrosymmetric systems where the gap
at momentum k is given by |dk| for a time-reversal symmetric triplet state [50] and, hence, is fully
gapped unless the d vector (cf. Eq. (1.17) for its definition) vanishes on the Fermi surface.
An important question that arises is how a superconductor that is predominantly induced by electron-

phonon coupling can end up being topological.
Firstly, one very natural mechanism that can lead to topologically nontrivial properties is finite

residual Coulomb repulsion. As discussed in Chap. 1.1.2, RG corrections at energies between the Fermi
energy and the Debye frequency make it small in the sense that its dimensionless coupling constant,
the Coulomb pseudopotential µ∗, is typically of order 0.1 [97–100]. Nonetheless, it can induce to
sign changes of the gap function as has been demonstrated, e.g., in Refs. [375–377]. In particular,
it is expected that these sign changes occur between different Fermi surfaces if the electron-phonon
interaction has the following favorable structure: Again focusing for simplicity on a model with two
singly-degenerate Fermi surfaces enclosing the Γ point, the topologically trivial superconducting state
with ∆̃s having the same sign on both Fermi surfaces (s++) will be (nearly) degenerate with the
nontrivial s+− state (sign changes between the two Fermi surfaces) if the interband Cooper scattering
is negligibly small. In this case, already a small residual repulsion can favor the topological s+− state.
The analogous discussion in centrosymmetric superconductors can be found in Ref. [89], where it is
shown using mean-field theory that a topological [282] odd-parity state can be induced by residual
repulsions in an otherwise trivial electron-phonon superconductor.
Secondly, one might ask whether disorder can induce a transition from an electron-phonon driven

trivial superconductor to a topologically nontrivial state. In Chap. 7.2, we will show that this is indeed
possible in case of magnetic scattering. Although TRS is locally broken for a given disorder realization,
the edge modes of the resulting topological superconductor of class DIII can still be protected due to
unitary symmetries.

6.2 Unconventional mechanism

In the second part of the chapter, we will extend the analysis to superconductors of unconventional
origin, i.e., systems where superconductivity is not based on electron-phonon interaction but arises from
a purely electronic mechanism. In Sec. 6.2.1, we will first introduce the effective low-energy approach
we use for describing unconventional pairing and then study the resulting superconducting properties
using Eliashberg theory (Sec. 6.2.2). An approximate symmetry expected to be valid as long as the
spin-orbit splitting Eso is much smaller than the bandwidth Λt will be derived in Sec. 6.2.3 leading to
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

Figure 6.3: Energy scales and bosonic propagator. Part (a) illustrates the energy scales of
the effective low-energy approach we use for describing unconventional pairing. In (b)
and (c), we show the self-energy corrections of the bosonic propagator due to normal
conducting electrons and the superconducting order parameter, respectively. Note that
the latter type of corrections are at least of quadratic order in the anomalous self-
energy Φ.

strong constraints on the possible pairing states (see Sec. 6.2.4). Sec. 6.2.5 is devoted to the analysis
of more general models of unconventional pairing.

6.2.1 Effective fluctuation approach

Not only the electron-phonon coupling but also the Coulomb interaction can give rise to superconduc-
tivity. As we have seen in the explicit microscopic calculation of Chap. 5, instead of discussing the
bare Coulomb interaction, i.e., defined on the energy scale of the bandwidth Λt, we should rather think
in terms of the renormalized low-energy effective interaction for understanding the properties of the
dominant instabilities in the system. Naturally, the associated RG corrections strongly depend on the
microscopic details of the system such as the Fermi surface geometry. Therefore, this “microscopic”
approach is definitely not suitable for the general purposes of this chapter. Instead, we will employ the
following effective low-energy approach which is widely used for describing the properties of unconven-
tional superconductors (see, e.g., Refs. [31, 32] for a detailed introduction): As mentioned, we are not
interested in the behavior of the system at high energies (of the order of Λt), and, hence, focus only
on the physics for energies smaller than some cutoff Λ < Λt. As shown schematically in Fig. 6.3(a),
it is assumed that processes at energies between Λ and Λt drive the system close to some instability
that we describe by the collective real (φ̂†qj = φ̂−qj) bosonic mode φ̂qj , j = 1, 2, . . . , NB. In case of
the cuprates, these bosons embody the spin fluctuations associated with the closeness to antiferromag-
netism [31, 32], whereas in case of the unconventional pairing state of LAO/STO heterostructures the
competing instability is the incommensurate SDW12 of Chap. 5.2.3. Although these bosons describe
the collective fluctuations of the electrons, treating them as separate degrees of freedom just constitutes
a very efficient way to separate the energy scales.
For simplicity, we will first assume that the associated order parameter is either even (t = +) or odd
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6.2 Unconventional mechanism

(t = −) under time-reversal, which means mathematically

Θ̂φ̂qjΘ̂
† = t φ̂−qj . (6.46)

The proximity to, e.g., (real) CDW or SDW order correspond to time-reversal even (TRE), t = +1, or
time-reversal odd (TRO), t = −1, fluctuations, respectively.
Furthermore, we assume that the interaction processes at energies larger than Λ neither destroy the

Fermi-liquid behavior of the fermions nor lead to TRS breaking. Consequently, the noninteracting part
of the fermionic Hamiltonian is still of the form of Eq. (6.1) with Θ̂Ĥ0Θ̂† = Ĥ0. Assuming well-defined
quasiparticles is a quite natural assumption as only processes above Λ have effectively been taken into
account in the model. Note that this does not mean that the system is necessarily a Fermi liquid at all
energy scales as infrared singularities can lead to non-Fermi liquid behavior within the effective model
[31]. The fermions are coupled to the bosons via

Ĥint =
∑
k,q

ĉ†k+qαλ
(j)
αβ ĉkβ φ̂qj (6.47)

and all other residual electron-electron interactions as well as the electron-phonon coupling will be
neglected, since, by assumption, the channel described by the collective mode φ̂qj is dominant. In
Eq. (6.47), the matrices {λ(j)} have to be Hermitian and satisfy

Θλ(j)Θ† = t λ(j) (6.48)

resulting from φ̂ being real and Eq. (6.46), respectively. In case of a model with only a single orbital
where α just refers to the spin of the electrons, one could have {λ(j)} = {σ0}, NB = 1, in case of t = +
and {λ(j)} = {σ1, σ2, σ3}, NB = 3, for t = −. Here σj , j = 0, 1, 2, 3, denote the Pauli matrices in spin
space. For simplicity of the presentation of the results, the discussion of more complex fermion-boson
couplings will be postponed to Sec. 6.2.5.

Order parameter susceptibility. The dynamics of the bosons will be described by the action

Scol =
1

2

∫
q
φqj

(
χ−1

0 (iΩn, q)
)
jj′
φ−qj′ , (6.49)

where φ is the field variable corresponding to the operator φ̂ and χ0(iΩn, q) is the bare susceptibility
with respect to the order parameter of the competing particle-hole instability the system is close to.
The full susceptibility χ(iΩn, q), renormalized by particle-hole fluctuations as shown in Fig. 6.3(b), is
more important since it is experimentally accessible, e.g., via neutron scattering or nuclear magnetic
resonance (NMR) relaxation rate measurements [31], and because it will enter the superconducting
self-consistency equations discussed in Sec. 6.2.2 below.
Using the spectral representation, it is shown in Appendix E.1.1 that χ has to satisfy (the same holds

for χ0) the exact relations

χ(iΩn, q) = χT (−iΩn,−q), (6.50a)

χ(iΩn, q) = χ†(−iΩn, q), (6.50b)
χ(iΩn, q) = χ(−iΩn, q). (6.50c)
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

The first identity is just a consequence of χ being a correlator of twice the same operator φ̂ evaluated
at q and −q, whereas the second line is based on Hermiticity, φ̂†qj = φ̂−qj . Finally, the third relation
follows from TRS of the system.
Being Hermitian, χ(iΩn, q) has real eigenvalues all of which have to be positive as required by

stability: By assumption, the competing instability will not occur and, hence, the bosons have to have
a finite mass.

Effective electron-electron interaction. In the following, we will proceed in a manner very similar
to the analysis of the electron-phonon coupling in Sec. 6.1.1: Writing the entire model in the field
integral representation and integrating out the bosons leads to an effective electron-electron interaction
of the form of Eq. (6.9) with

V s1s2
s3s4 (k1, k2, q) = −1

2
ΛT
s2s3(k2 − q,k2)χ(q)Λs1s4(k1 + q,k1), (6.51)

where we have introduced the NB-component vector of matrix elements

Λss′(k,k
′) = ψ†ksλψk′s′ (6.52)

in analogy to G in Eq. (6.11). Note that we use χ instead of the bare χ0 such that the interaction
vertex in Eq. (6.51) is already fully renormalized by particle-hole fluctuations. Due to Eqs. (6.13) and
(6.48), TRS of the system implies

Λss′(k,k
′) = t ei(ϕ

s′
k′−ϕ

s
k)
(
ΛsKs

′
K

(−k,−k′)
)∗
, (6.53)

which constitutes the obvious generalization of Eq. (6.15) including not only TRE (such as phonons)
but also TRO fluctuations.
We have seen in Sec. 6.1.2 that, in the weak-pairing approximation, the superconducting properties

are fully determined by the Cooper and the forward scattering channel shown in Fig. 6.2(a) and (b). As
before, we still find that these two interaction channels are determined by the same matrix elements,

V
s′s′K
sKs (k,−k, k′ − k) = t ei(ϕ

s
k−ϕ

s′
k′ )Vs′s(k′; k), (6.54a)

Fs′s(k′, k) = Vs′s(k′; k) (6.54b)

with
Vs′s(k′; k) = −1

2
Λ†s′s(k

′,k)χ(k′ − k)Λs′s(k
′,k). (6.55)

To show this, TRS (6.53) and Hermiticity, λ† = λ, have been taken advantage of.
Recalling that stability forces χ(q) to be positive definite, we conclude that Vs′s < 0. We see that

the forward scattering amplitude F is, exactly as in case of phonons, negative for all states on the
Fermi surfaces, whereas the global sign of the Cooper channel is reversed in case of TRO fluctuations
as compared to phonons (or TRE electronic fluctuations).

6.2.2 Predictions of Eliashberg theory

Let us next analyze the consequences for the possible superconducting phases. As before, we apply
Eliashberg theory that is frequently used for studying superconductivity caused by collective bosonic
modes other than phonons (see, e.g., Ref. [378] and references therein). As in this case, m/M � 1
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6.2 Unconventional mechanism

will not hold in general, one expects this approach only to be applicable in the weak-coupling regime.
However, in the limit of large numbers of fermion flavors (NF ), neglecting vertex corrections is also
justified in the strong-coupling case: In Ref. [378], it has been shown that vertex corrections are
suppressed by a factor 1/NF and approach a finite value5 in the strong coupling limit λ→∞ at fixed
finite NF . While there are complications with this large-NF theory in 2D [379], some efforts have been
made to develop controlled approaches for this case as well [380].
Using Hermiticity of λ, Eqs. (6.53) and (6.50c), it is straightforward to check that the three properties

(6.19) of the vertex function V are still satisfied. Consequently, the linearized Eliashberg equations are
again of the form of Eq. (6.27) with Vs′s(k′; k) now given by Eq. (6.55) and an additional prefactor
of t on the right-hand side of the gap equation (6.27b), i.e., v is replaced by tv. Note that the
renormalized propagator χ is taken into account which, diagrammatically, corresponds to replacing the
bare bosonic line in Fig. 6.2(e) by the full line (see Fig. 6.3(b)). We emphasize that, for the linearized
Eliashberg equations, there are no anomalous propagators entering the full bosonic line: Any term in
the bosonic self-energy involving the anomalous self-energy Φ, such as the one shown in Fig. 6.3(c), is
at least of quadratic order in Φ and, hence, does not contribute. Therefore, we can safely use the TRS
constraint (6.50c) near the transition without a priori knowledge about the time-reversal properties of
the superconducting condensate.
Repeating the arguments presented in Sec. 6.1.3, we directly conclude that Eq. (6.32) is still valid.

The kernel tv of the gap equation is symmetric (cf. Eq. (6.19a)), real and, hence, diagonalizable. As
shown in Appendix E.2.2, the leading superconducting instability is again determined by its largest
eigenvalue.
To begin with TRE fluctuations, t = +, the kernel has, exactly as V in Eq. (6.55), only positive

components, such that the Perron-Frobenius theorem can be applied6. It follows that the resulting
superconducting order parameter satisfies δ > 0 and, thus, preserves TRS and has no sign changes,
neither on a given Fermi surface nor between different Fermi surfaces. It must transform under the
trivial representation of the point group. Again Eq. (6.33) is satisfied and, according to our analysis
of Sec. 6.1.3, the associated state is topologically trivial – exactly as in the case of electron-phonon
coupling.
For TRO fluctuations, we have t = − such that δ now belongs to the eigenspace of v with the smallest

eigenvalue. This has two crucial consequences. Firstly, we cannot generically exclude spontaneous
TRS breaking since it is no longer guaranteed that this eigenspace is one-dimensional. Although all
eigenvectors of the real matrix v can always be chosen to be real valued, the superconducting order
parameter can be a complex superposition of the degenerate eigenvectors which makes TRS breaking
possible. Note that, apart from accidental degeneracies which we will neglect here, these degeneracies
can be enforced by symmetry if the point group of the system allows for multidimensional or complex
irreducible representations as we have discussed in detail in Chap. 4.1. Secondly, the eigenvectors with
minimal eigenvalue can have many sign changes which, depending on the form of the Fermi surfaces,
can break any point symmetry of the system and lead to nodal points.
To proceed, we will assume that the resulting superconducting state preserves TRS and, thus, belongs

to class DIII. This is not very restrictive, in particular for 2D: In Chap. 4, we have shown that spon-
taneous TRS breaking can only occur at a single superconducting phase transition in the weak-pairing
limit if there is a threefold rotation symmetry perpendicular to the plane of the 2D system. Further-
5The reason is that the full bosonic propagator (see Fig. 6.3(b)) entering the vertex correction depends on λ. In the
limit λ→∞, this cancels the prefactor λ of the vertex correction.

6Exactly as before, there can be symmetry-imposed zeros which, for the very same reasoning as in case of phonons, do
not affect our results.
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

more, as we want to discuss topological properties of superconductors, we will focus on fully gapped
systems, where the sign changes take place between different Fermi surfaces. Being fully gapped, we can
apply the weak-pairing expressions in Eqs. (6.43) and (6.45) for the DIII invariant to the topological
Hamiltonian (6.41).
To derive necessary conditions for the emergence of nontrivial topological invariants, we will next

discuss an approximate symmetry that is expected to be applicable to many noncentrosymmetric sys-
tems. It will give rise to an asymptotic symmetry of the gap equation (6.27b) and, in turn, constrain
the possible superconducting order parameters and associated topological properties.

6.2.3 Asymptotic symmetry

To deduce this approximate symmetry which relates the wavefunctions at different spin-orbit split
Fermi surfaces and discuss the limit where it becomes exact, let us split the quadratic Hamiltonian
(6.1) of the fermions according to

hk = hSk + hAk (6.56)

with a term hS that is symmetric and a term hA that is antisymmetric under inversion. We first
diagonalize the centrosymmetric part of the Hamiltonian. The corresponding eigenvalues εSkj , j =

1, 2, ..., N , must be doubly degenerate due to the combination of inversion and TRS. Note that hS in
general also includes SOC, which entangles the spin and orbital degrees of freedom of the electrons.
Nonetheless, as is easily seen by construction (see Appendix A.1), one can still introduce a k-space-local
pseudospin basis {|k, j, σ〉} which has the same transformation properties under TRS and inversion as
the physical spin. Denoting the Pauli matrices in this basis by si, i = 0, 1, 2, 3, we have

〈k, j, σ|hAk |k, j′, σ′〉 = δj,j′ g
(j)
k · sσσ′ , (6.57)

where g(j)
k = −g(j)

−k and no term ∝ s0 can be present as dictated by TRS and hA being odd under
inversion. In Eq. (6.57), we have neglected all matrix elements between different j which is justified as
long as the energetic separation between the different bands εSkj is much larger than |g|. A finite g can
only arise if inversion symmetry is broken. It will lift the degeneracy of the bands εSkj as is illustrated
by the 2D example shown in Fig. 6.4, where N = 2, εSk = −t(cos k1 + cos k2) − µ and the standard
Rashba spin-orbit coupling, gk = α(− sin k2, sin k1, 0)T , have been assumed: The doubly degenerate
Fermi surface (dashed black line) associated with εS is split into two (solid green lines).
Due to the decomposition of hk in Eq. (6.56), its eigenstates ψks satisfying

g
(j)
k · s ψks = ν

∣∣∣g(j)
k

∣∣∣ψks, ν = ±, (6.58)

and eigenvalues εks = εSkj + ν|g(j)
k | can now be labeled by the composite index s = (j, ν). If g(j)

k varies
slowly on the separation |g|/vF of the Fermi surfaces s = (j, ν) and sR ≡ (j,−ν), we can approximate
g

(j)
k ' g(j)(Ω) and, hence, ψks ' ψΩs in Eq. (6.58). As ΘsΘ† = −s, we obtain the asymptotic

symmetry
ψΩs ∼ eiγ

s
ΩΘψΩsR (6.59)

that becomes exact in the limit g(j) → 0. Here γsΩ are phase factors that depend on the choice of the
eigenstates. Note that this relation is structurally similar to that based on TRS in Eq. (6.13): Both
are k-nonlocal antiunitary symmetries. TRS connects a state at k and its Kramers partner at −k,
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6.2 Unconventional mechanism

Figure 6.4: Approximate symmetry between Rashba partners. The Fermi surfaces (green
lines) and pseudospin orientation (red arrows) of the Rashba model defined in the
main text are shown (using α = 0.25t, µ = −0.4t). The black dashed line is the doubly
degenerate Fermi surface for α → 0. In agreement with Eq. (6.59), the pseudospin
orientation is approximately antiparallel on the two Fermi surfaces for states with the
same polar angle Ω.

whereas Eq. (6.59) relates wavefunctions of necessarily different Fermi surfaces – the state (s,Ω) and
its “Rashba partner” (sR,Ω).
Physically, Eq. (6.59) means that, for given Ω, the pseudospin orientation of the wavefunctions on the

“Rashba pair” of Fermi surfaces {s, sR} is antiparallel. As can be seen in Fig. 6.4, where Ω is chosen to
be the polar angle of k, Eq. (6.59) represents a very good approximation even for the moderately large
value of the spin-orbit coupling used in the plot. Naturally, the validity of Eq. (6.59) for discussing
superconducting properties crucially depends on the bandstructure of the system. Typically, one expects
gk to vary on momentum scales of order of the size the Brillouin zone, i.e., Eq. (6.59) to be valid for
Eso � Λt.
In the following, we will assume that Eq. (6.59) holds and analyze its consequences. Firstly, taking

advantage of the aforementioned similarity to TRS, we obtain

Λss′(Ω,Ω
′) = t ei(γ

s′
Ω′−γ

s
Ω)
(
ΛsRs

′
R

(Ω,Ω′)
)∗
. (6.60)

As a second step, this, together with Eq. (6.50), allows for rewriting the central interaction matrix
element (6.55) as follows

Vs′s(iωn′ ,Ω′; iωn,Ω) = −1

2
Λ†
s′RsR

(Ω′,Ω)χ(iωn′ − iωn,k − k′)Λs′RsR
(Ω′,Ω) (6.61)

already using the approximation and notation introduced in Eq. (6.26). The right-hand side of this
equation only equals Vs′RsR(iωn′ ,Ω

′; iωn,Ω) and leads to the symmetry

Vs′s(iωn′ ,Ω′; iωn,Ω) = Vs′RsR(iωn′ ,Ω
′; iωn,Ω) (6.62)
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

under two assumptions: Firstly, similar to g, the susceptibility χ(iΩn, q) must be slowly varying in q
on the scale |g|/vF . This is a very natural assumption as the description in terms of a collective mode
will only be sensible if there are long-wavelength fluctuations. Secondly, and much more importantly,
χ(iΩn, q) must be an even function of momentum q. We see from Eq. (6.50) that TRS alone does not
determine the behavior under (Ωn, q) → (Ωn,−q) such that further information about the system is
required. For this purpose, let us assume that there is a symmetry relating the fermionic momenta k
and −k, i.e., the full Hamiltonian of the system commutes with the unitary operator Ŝ defined via

Ŝ ĉ†kαŜ
† = ĉ†−kβSβα, S†S = 1. (6.63)

In a 2D system this symmetry can be realized as a two-fold rotation Cz2 perpendicular to the plane of the
system. As we have already used in Chap. 4.4, Cz2 commutes with all other symmetry operations such
that the irreducible representations of the point group must be either even or odd under this operation
(see Appendix A.2 for the proof of this statement) and the same holds for the order parameter of the
competing particle-hole instability. This means that

Ŝφ̂qjŜ† = ±φ̂−qj (6.64)

leading to the required relation
χ(iΩn, q) = χ(iΩn,−q) (6.65)

as shown in Appendix E.1.1. One might expect that, even in the absence of a two-fold rotation symmetry
or in a 3D system, Eq. (6.65) still constitutes a valid approximation for Eso � Λt: Although the
superconducting instability, arising from infrared singularities, is essentially influenced by the splitting
|g| of the Fermi surfaces due to the broken inversion symmetry, the susceptibility χ might not. As
the tendency of the system towards the competing instability mainly results from processes at energies
comparable to Λt (cf. Fig. 6.3(a)), the inversion-symmetry-breaking terms are expected to be negligible
in the limit Eso � Λt for the calculation of χ. In that sense, Eq. (6.63) is realized as an approximate
inversion symmetry again yielding Eq. (6.65).

6.2.4 Consequences for the possible pairing states

Let us now deduce the implications of the resulting asymptotic property (6.62) of the interaction matrix.
Due to ρs ∼ ρsR in the limit Eso � Λt, we have Zs ∼ ZsR as can be seen directly from Eq. (6.27a).
Therefore, the kernel v of the gap equation (6.27b) has the same symmetry as V in Eq. (6.62). We
conclude that the anomalous self-energy of any resulting superconducting state must be of the form

Φ̃s(iωn,Ω) = p Φ̃sR(iωn,Ω) (6.66)

with either p = + or p = − for all s, ωn and Ω. This is a central result of this section. It highly
constraints the possible order parameters and allows them to be grouped into two basic classes: The
relative sign of the order parameter at Rashba partners can only be either positive (p = +) or negative
(p = −) for all Rashba pairs. In the following, the corresponding pairing states will be denoted by
“Rashba even” and “Rashba odd”, respectively.
This classification of possible pairing states can be seen as the analogue of the well-known decom-

position into even (singlet) and odd (triplet) parity states in centrosymmetric systems discussed in
Chap. 1.1.1. This connection becomes even more explicit by noting that, upon continuously turning
on a spin-orbit term (g(j)

k · σ) in a centrosymmetric Hamiltonian, a singlet state (∆(k) = ∆S
kiσ2) will
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6.2 Unconventional mechanism

Figure 6.5: Basic nesting configurations for two Rashba pairs. In (a), we expect χ to be
peaked at momenta connecting states within the two Rashba pairs leading to Rashba
odd pairing. The resulting state will nonetheless be topologically trivial as the number
of TRIM enclosed by Rashba pairs is even. In case of (b), a Rashba even state is
expected.

turn into a Rashba even state ∆̃s(k) = ∆S
k . This just constitutes a generalization of the adiabatic

deformation of the BCS state (∆S
k = const.) into the s++ superconductor illustrated in Fig. 5.4. Sim-

ilarly, turning on a spin-orbit term in a triplet superconductor (∆(k) = dk · σiσ2) and neglecting
the Fermi surface off-diagonal matrix elements of the order parameter will yield a Rashba odd state
(∆̃(j,ν)(k) = νdk · g

(j)
k ).

Naturally, Eq. (6.66) has also crucial consequences for the possible topological properties of the
superconductor. To discuss this, we will, as already mentioned above, have to assume in the following
that the superconducting state is fully gapped and time-reversal symmetric.
Let us first focus on the 2D case where the topological invariant is determined by Eq. (6.45) with

∆̃s(k) = Φ̃s(0,k). In the limit we consider, the Rashba splitting |g|/vF is much smaller than the size
of the Brillouin zone and we can assume m(j,ν) = m(j,−ν) ≡ mj . It follows that any Rashba even state
will be topologically trivial and, in case of Rashba odd pairing, the invariant is given by

ν
Z2

=
N∏
j=1

(−1)mj = (−1)
∑
j mj . (6.67)

The same also holds in 1D, where mj = 1. Consequently, the total number of TRIM enclosed by
Rashba pairs of Fermi surfaces must be necessarily odd for the interaction-induced superconductor to
be topological.
To continue with 3D, we first note that the Fermi surface Chern numbers of Rashba partners must

be equal in magnitude but opposite in sign, C1(j,+) = −C1(j,−) ≡ C1j , which is just a manifestation of
the fact that the spin-orientation of the eigenstates winds in opposite directions on Rashba partners
(cf. Fig. 6.4) as dictated by Eq. (6.59). We refer to Appendix E.4 for an analytic proof of this statement.
From Eq. (6.43) we then immediately see that any Rashba even state must again be trivial. For Rashba
odd pairing, we get

ν
Z

=
∑
j

C1j sign
(

Φ̃(j,+)(0,Ω)
)
. (6.68)
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

Note that the right-hand side does not depend on Ω as the sign of the order parameter of a fully gapped
superconductor cannot change on a given Fermi surface.
Irrespective of the dimensionality of the system, we have seen that Rashba odd pairing is required

to make topologically nontrivial superconductivity possible. We expect this to be realized when the
strongest nesting occurs between Rashba partners such that χ is dominated by momenta connecting
the Rashba-split Fermi surfaces. An example for N = 4 is shown in Fig. 6.5(a) where a Rashba odd
state is expected. On the other hand, if different Rashba pairs are most strongly nested, as in case of
the Fermi surfaces of Fig. 6.5(b), a topologically trivial Rashba even state will arise.
More specifically, we can conclude that for just a single Rashba pair, N = 2, only Rashba odd pairing

is possible. This simply follows from the fact that, in case of TRO fluctuations, the interaction is fully
repulsive in the Cooper channel such that the superconducting state must have at least one sign change.
Focusing on fully gapped superconductors (and neglecting sign changes as a function of frequency), this
sign change must occur between the two Fermi surfaces. Irrespective of the dimensionality of the system,
the superconductor will be automatically topological if the number of TRIM enclosed by the Rashba
pair is odd. In 1D and 2D, this is directly seen from Eq. (6.67), whereas, for the 3D case, the relation
(−1)C1j = (−1)mj [280] implying C1j 6= 0 for odd mj has to be taken into account in Eq. (6.68).

6.2.5 More general fermion-boson couplings

Finally, let us generalize the previous analysis by considering more general forms of the fermion-boson
coupling (6.47).

Momentum-dependent complex order parameter. To allow for the most general particle-hole
order parameter we now investigate the coupling Hamiltonian

Ĥint =
∑
k,q

ĉ†k+qαm
(j)
αβ(k + q,k)ĉkβ ϕ̂qj + H.c., (6.69)

where ϕ̂qj areN ′B-component complex bosons (ϕ̂†qj 6= ϕ̂−qj) andm(j)(k+q,k) are potentially momentum-
dependent, generally non-Hermitian matrices. The momentum dependence is essential, e.g., when dis-
cussing current fluctuations, where m(k + q,k) ∝ (k + q/2)σ0 with σj being Pauli matrices in spin
space. The generalization to non-Hermitian order parameters is relevant, e.g., in case of imaginary
SDW (m(j) = iσj) or imaginary CDW (m = iσ0), which are discussed as competing instabilities in
iron-based superconductors [351, 381, 382].
By decomposing both ϕ̂qj and the fermion bilinear into their Hermitian and Antihermitian parts,

one can reduce Eq. (6.69) to the coupling to real bosons φ̂qj with NB = 2N ′B components:

Ĥint =
∑
k,q

ĉ†k+qαM
(j)
αβ (k + q,k)ĉkβ φ̂qj , (6.70)

where (M (j)(k,k′))† = M (j)(k′,k). Let us for the moment again focus on either TRE or TRO fluctua-
tions forcing TM∗(−k,−k′)T † = tM(k,k′). Below we will comment on the situation of having both
components at the same time.
Repeating the analysis presented above, one readily finds that Z must still satisfy all three properties

in Eq. (6.32). In case of TRE fluctuations, spontaneous TRS breaking cannot occur with the resulting
superconducting state being necessarily topologically trivial.
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6.2 Unconventional mechanism

To derive the property (6.66) which is central for our analysis of superconductivity induced by
TRO fluctuations, Eq. (6.60) with Λss′(k,k

′) = ψ†ksM(k,k′)ψ
k′s′

must hold. Due to the additional
momentum dependence of the order parameter, this is only the case (with t replaced by rt in Eq. (6.60))
if M(k,k′) changes little on the separation |g|/vF of Rashba partners and if

M(k,k′) = rM(−k,−k′), r = ±1. (6.71)

Note that Eq. (6.71) is satisfied by all examples discussed above. However, it can be violated when,
e.g., current fluctuations and SDW fluctuations are simultaneously relevant.
Again assuming the presence of the unitary symmetry introduced in Eqs. (6.63) and (6.64), all

constraints on the topological properties discussed in Sec. 6.2.4 also hold for momentum dependent,
complex order parameters with coupling (6.69) as long as Eq. (6.71) is satisfied.

Frequency-dependent fermion-boson vertex. So far we have assumed that the fermion-boson
interaction can be described by a Hamiltonian in the low-energy theory. If this interaction obtains sig-
nificant frequency-dependent renormalization corrections resulting from processes at energies between
Λt and Λ (see Fig. 6.3(a)), an action description,

Sint =

∫
k,q
c̄k+qαΓ

(j)
αβ(k + q; k)ckβ φqj , (6.72)

is required. Here Γ(j) is the generally momentum- and frequency-dependent vertex function. Similar
to our treatment of χ, the vertex will not be explicitly specified in the following. We will only take into
account the exact relations resulting from TRS and Hermiticity (see Appendix E.1.3). To begin with
the former symmetry, it holds

Γ
(j)
αβ(k; k′) = t Tαα′

[
Γ

(j)
α′β′(−k;−k′)

]∗
T †β′β, (6.73)

which reduces to Eq. (6.48) for the coupling (6.47). The full effective electron-electron vertex is the
same as in Eq. (6.51) with Λs,s′(k,k

′) replaced by the renormalized ΛΓ
ss′(k; k′) = ψ†ksΓ(k; k′)ψ

k′s′
which

now becomes frequency dependent. Due to the constraint (6.73), ΛΓ satisfies the analogue of Eq. (6.53)
such that we find the same structure as in Eq. (6.54a) with V being positive: As before, the interaction
in the Cooper channel is either fully attractive or fully repulsive depending on whether the system is
coupled to TRE or TRO fluctuations.
To analyze the forward-scattering channel defined in Fig. 6.2(b), we need to take into account the

Hermiticity relation

Γ
(j)
αβ(iωn,k; iωn′ ,k

′) =

[
Γ

(j)
βα(−iωn′ ,k′;−iωn,k)

]∗
, (6.74)

which reduces to λ† = λ for the coupling (6.47). One can show that, despite the sign change of
the frequencies on the right-hand side of Eq. (6.74), the resulting quasiparticle weight Z still satis-
fies Eq. (6.32). Furthermore, we find that, again, no TRS breaking is possible and δ > 0 for TRE
fluctuations.
To discuss the case of t = −, we have to take into account the implications for the vertex function

resulting from the asymptotic symmetry introduced in Sec. 6.2.3. In Appendix E.1.3 it is shown that,
as long as Eq. (6.71) is satisfied for the bare fermion-boson vertex, this imposes the constraint

ΛΓ
ss′(iωn,Ω; iωn′ ,Ω

′) = r t ei(γ
s′
Ω′−γ

s
Ω)
[
ΛΓ
sRs
′
R

(−iωn,Ω;−iωn′ ,Ω′)
]∗

(6.75)
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6 Correspondence between mechanism and topology in noncentrosymmetric systems

on the fully renormalized vertex function, which constitutes the obvious generalization of relation (6.60).
Using the constraints resulting from the invariance of the system under Ŝ defined in Eqs. (6.63) and

(6.64) on the bosonic propagator, Eq. (6.65), as well as on the vertex function,

ΛΓ
ss′(iωn,Ω; iωn′ ,Ω

′) = ±ΛΓ
sKs
′
K

(iωn,ΩK; iωn′ ,Ω
′
K), (6.76)

we recover the Rashba symmetry (6.62) of the Cooper channel. Similarly, one can show that Zs = ZsR
still holds. Consequently, the possible superconducting states can again be classified into Rashba even
and Rashba odd according to Eq. (6.66). Assuming a finite gap and a TRS-preserving order parameter,
we find exactly the same conclusions concerning the topology of the superconducting state as before.
We emphasize that starting with the generic vertex function in Eq. (6.72) and imposing exact symme-

try constraints is not tantamount to solving the exact self-consistency equations of the Nambu Green’s
function beyond the Eliashberg approach. It is clear that, e.g., the last two diagrams in Fig. 6.2(c)
containing anomalous vertex corrections cannot be captured with this approach.

General time-reversal properties. Finally, let us discuss the situation when the dominant fluctua-
tions are neither fully TRE nor TRO, i.e., if the bosons coupling to the fermions according to Eq. (6.70)
satisfy

Θ̂φ̂qjΘ̂
† = tj φ̂−qj (6.77)

with tj = + and tj = − for the TRE and TRO components of the fluctuations, respectively.
From the analysis presented above, it is clear that the interaction cannot be generally repulsive or

attractive in the Cooper channel. The constraint (6.50c) now assumes the generalized form

χjj′(iΩn, q) = tjtj′ χjj′(−iΩn, q), (6.78)

such that χ(q) is not Hermitian anymore. However, as long as we assume that all components M (j) in
the bare coupling (6.70) satisfy Eq. (6.71), the properties (6.73) and (6.75) with t replaced by tj are
still valid and it can be shown that Eq. (6.62) as well as Zs = ZsR hold. Consequently, the possible
superconducting order parameters must obey Eq. (6.66) leading to the same conclusions as discussed
in Sec. 6.2.4 as far as fully gapped, time-reversal symmetric superconducting phases are concerned.

6.3 Application to materials

In this section, we will apply the general results obtained above to two different physical systems, oxide
heterostructures and single-layer FeSe on STO, where superconductivity has been observed experimen-
tally [39, 40, 157] but not yet fully microscopically identified [36–38, 158, 159]. The purpose of this
discussion is twofold: Firstly, it will illustrate the predictive power of the criteria derived in this chapter
and, secondly, connect to and complement the symergetic arguments of Chap. 4 and the microscopic
calculation of Chap. 5.

6.3.1 Oxide heterostructures

Let us begin with LAO/STO heterostructures which represent our prime example of systems where
the weak-pairing approximation can be applied. As already discussed in Chap. 4.6.3, this is due to
the combination of the small transition temperature [39, 40] of superconductivity and strong spin-orbit
splitting [41–43] of the Fermi surfaces.
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(001) orientation. In Chap. 5.1, we have derived a model for describing superconductivity in (001)-
terminated LAO/STO heterostructures which takes into account the Ti 3dxz and 3dyz orbitals. From
the resulting spectrum shown in Fig. 5.1(a), it can be seen that for the chemical potential being close
to the bottom of the bands there are only two singly-degenerate Fermi surfaces. As the sweet spot of
superconductivity is associated [344, 345] with the chemical potential entering the 3dxz and 3dyz bands,
the RG calculation presented in Chap. 5 has been performed in this regime. We have shown that a
microscopically repulsive interaction will drive the system close to a SDW instability with competing
superconducting s+− state (∆̃ has opposite sign on the two Fermi surfaces) which is topologically non-
trivial. If the electron-phonon coupling is dominant, the superconducting state will be the topologically
trivial s++ state without sign changes – neither on a given nor between different Fermi surfaces.
All of these results of the explicit calculation are consistent with the analysis of this chapter which, on

top of that, generalizes the absence of nontrivial topology in case of phonons beyond the weak-coupling
limit since we have been using Eliashberg theory in this chapter. Furthermore, it is now also clear
that the time-reversal properties of the competing SDW (t = −1) are key to induce a topologically
nontrivial superconductor.
In addition, we know that when the energetically higher Rashba pair of bands (shown in gray in

Fig. 5.1(a)) is populated, which can be induced via gate tuning [41, 42, 144, 145], the system neces-
sarily becomes topologically trivial. This follows from the fact that the point group (C4v) does not
contain a threefold rotation symmetry such that the condensate must be time-reversal symmetric (see
Chap. 4.4.1) but has a twofold rotation Cz2 perpendicular to the plane. Consequently, all prerequisites
for applying Eq. (6.67) are satisfied which implies ν

Z2
= (−1)2 = 1 (trivial). Note that although one

might naively expect two pairs of counter-propagating Majorana modes at the boundary in this case,
these modes can be gapped away [262] from the Fermi energy by surface perturbations mixing the two
Rashba pairs of bands but breaking neither PHS nor TRS.

(110) orientation. Our general considerations in this chapter also readily allow for conclusions about
the second orientation of the interface [142, 156] where superconductivity has been observed [40]. The
point group of the (110) interface is C2v and, hence, exactly as in case of the (001) termination, the
prerequisites of Eq. (6.67) are fulfilled. Consequently, without taking into account further microscopic
details, we know that if the chemical potential is gate tuned [43] to the lowest Rashba pair of bands,
which again arises from the 3dxz/3dyz orbitals [383], we will have exactly the same correspondence be-
tween the mechanism and the topology of superconductivity as in the (001) interface: While phonons
alone lead to a topologically trivial superconductor, TRO fluctuations will induce a superconducting
state that, when fully gapped, must be topological. In this sense, also the (110) interface is a promising
system for the realization of topological time-reversal symmetric superconductors. Naturally, the con-
densate will necessarily become trivial when the second lowest Rashba pair of bands [383] is populated.

6.3.2 Single-layer FeSe

As a second example, we will analyze the implications on single-layer FeSe on (001) STO. As we have
discussed in Chap. 1.3.2, this is a fascinating system with many open questions [158, 159] and a re-
markably high superconducting transition temperature much larger than the transition temperature of
bulk FeSe [157]. Although the presence of the substrate manifestly breaks inversion symmetry, it is
less obvious in this system whether the weak-pairing approximation can be applied as a consequence
of the larger transition temperature. We will proceed as in Chap. 4.6.3: Although not a priori justi-
fiable, we assume that the weak-pairing limit is indeed appropriate for deducing the superconducting

141



6 Correspondence between mechanism and topology in noncentrosymmetric systems

order parameter and discuss its consequences. Recalling that the point group is C4v, we can, for the
very same reason as in case of (001) oxide heterostructures, apply Eq. (6.67) and, hence, know that,
irrespective of the unknown pairing mechanism, the condensate will be topologically trivial. The lat-
ter statement follows from the presence of two Rashba pairs of Fermi surfaces around the M point
(Fig. 1.4(b) and its discussion in the main text in Chap. 1.3.2) leading to

∑
jmj = 2 in Eq. (6.67).

In the language of Chap. 4.6.3, the single topological order parameter configuration, with only one of
the Fermi surfaces having a different sign, is neither Rashba even nor odd and, hence, inconsistent
with the consequences of the Rashba symmetry (6.62). Note that this result does not contradict the
recent proposal [173] of topological superconductivity in this system since the analysis of Ref. [173]
has been performed in the opposite limit where inversion-symmetry breaking can be fully neglected for
describing superconductivity.

6.4 Summary of Chapter 6

In summary, we have studied the connection between the mechanism leading to a superconducting
phase and the time-reversal as well as the topological properties thereof. We have focused on noncen-
trosymmetric systems which can be described in the weak-pairing approximation justified as long as
Eso & Tc and defined by Eq. (6.21) on the level of Green’s functions.
Firstly, our results complement the conditions for spontaneous TRS-breaking superconductivity of

Chap. 4.4.1: We have shown that, irrespective of the point symmetries of the system, spontaneous
TRS breaking can be ruled out for superconductivity resulting from electron-phonon coupling or from
particle-hole fluctuations of an order parameter that is even under time-reversal (t = + in Eq. (6.48)).
Only when TRO particle-hole fluctuations (t = −) are relevant for the superconducting phase transition,
TRS breaking can occur. In that case, we are left with the general condition of Chap. 4.4.1, formulated
in terms of the point group of the system, to gain information about the time-reversal properties of the
condensate without detailed microscopic information about the system.
Secondly, we have generalized the correspondence between the mechanism and the topology of su-

perconductivity of Chap. 5 beyond the level of explicit model studies and the weak-coupling limit:
A proof has been provided that superconductivity arising from electron-phonon coupling alone will

generically be fully gapped, neither break any point symmetry of the system nor be topologically
nontrivial. This implies that one can generally use topological signatures to gain information about
the microscopic pairing mechanism of superconductivity: The observation of topologically nontrivial
properties, most importantly, the presence of MBSs at the edge of the sample, indicates that the
mechanism cannot be conventional which means that other interaction channels have to be taken into
account for understanding superconductivity. We have shown that exactly the same conclusions hold
if superconductivity is induced by TRE particle-hole fluctuations. Note that the results of this chapter
have been derived in the clean limit and, hence, only apply as long as disorder effects can be neglected
for deducing the leading superconducting instability. In the next chapter, we will see that much of
this carries over to the weakly disordered case due to Anderson’s theorem [229–231] and its extensions
[235–240]. Nonetheless, it will be shown (see Chap. 7.2) that magnetic disorder can render an electron-
phonon superconductor topological.
The behavior is completely different in case of TRO particle-hole fluctuations where the Cooper

channel of the interaction is fully repulsive within and between all different Fermi surfaces of the system.
Consequently, the superconducting order parameter naturally has sign changes such that topologically
nontrivial condensates become possible in the clean system.
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In the limit where the spin-orbit splitting is much smaller than the bandwidth, Eso � Λt, we have
derived the asymptotic symmetry (6.62) of the interaction matrix elements from which follows that all
possible superconducting order parameters can be grouped into Rashba even (p = +) and Rashba odd
(p = −) as defined in Eq. (6.66). This classification of pairing states can be seen as the analogue of the
well-known decomposition into even (singlet) and odd (triplet) order parameters in centrosymmetric
superconductors (see Chap. 1.1.2).
For discussing topological aspects of superconductivity, we have focused on fully gapped, TRS-

preserving states. It has been shown that only Rashba odd states can be topologically nontrivial which
leads to constraints on the corresponding topological invariants. E.g., we have found that, for 1D and 2D
systems, the total number of TRIM enclosed by Rashba pairs of Fermi surfaces must be necessarily odd
for the superconductor to be topologically nontrivial. Furthermore, in case of just two singly-degenerate
Fermi surfaces enclosing an odd number of TRIM, such as in case of LAO/STO heterostructures at
low filling, the resulting superconductor, if fully gapped and induced by TRO fluctuations, will be
automatically topological irrespective of the dimensionality of the system.
These necessary conditions for the emergence of nontrivial invariants, formulated in terms of Fermi

surface topologies and the time-reversal properties of competing instabilities, are directly accessible
experimentally and might, hence, serve as a guiding tool in the ongoing search for the realization
of topological superconductivity. As for the structure of the Fermi surfaces which can be directly
measured in photoemission experiments, we emphasize that one does not have to resolve the spin-orbit
splitting as the criteria only refer to Rashba pairs of Fermi surfaces. E.g., for single-layer FeSe, the
photoemission data of Ref. [167] shows that there are two Rashba pairs enclosing the M point. As long
as the weak-pairing approximation applies in this system, the condensate must thus be topologically
trivial.
According to our results, any system such as LAO/STO heterostructures that have the required Fermi

surface topology [341–343, 383, 384] with respect to the TRIM and show a strong tendency towards
magnetism [111, 148–155], which indicates the presence of sizable TRO particle-hole fluctuations, are
promising candidates for realizing topological superconducting phases.
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7 Chapter 7

Generalizations to weakly disordered
systems

In the analysis presented in the preceding chapters of this thesis, the presence of imperfections in the
crystal has been mostly neglected. As we have had a strong focus on exotic, non-BCS-like, supercon-
ducting states, a discussion of the impact of impurity scattering is crucial given that the protection of
superconductivity against disorder according to the Anderson theorem [229–231] only refers to single-
band s-wave superconductors (see Chap. 1.4.2). This chapter is concerned with supplementing various
important aspects of Chaps. 4-6 with respect to the inclusion of weak disorder. In this context, “weak”
means that the electronic states are still delocalized in the vicinity of the Fermi surface, which, as al-
ready mentioned in Chap. 1.4.2, requires kF l� 1 with kF and l denoting the Fermi wavelength and the
mean-free path, respectively. In 2D, the localization length Rl must additionally satisfy Rl � 1/

√
TcρF

where Tc is the superconducting transition temperature and ρF the density of states at the Fermi level
[227, 233].
In the first part of this chapter, Sec. 7.1, we will present an approach that allows for a compact under-

standing of the original Anderson theorem [229–231], i.e., the independence of Tc on weak nonmagnetic
disorder (see also Chap. 1.4.2), and its various extensions found for multiband superconductors (see,
e.g., [235–240]) which will be referred to as generalized Anderson theorem in the following. The gener-
alized Anderson theorem will also provide intuitive qualitative understanding of the results of explicit
calculations on impurity scattering in superconductors discussed in the remainder of the chapter.
In Sec. 7.2, we will analyze the impact of disorder on the correspondence between the mechanism and

the topology of superconductivity established for noncentrosymmetric superconductors in Chap. 6. It
will be shown explicitly that magnetic disorder can induce a transition from a conventional supercon-
ductor, that is necessarily topologically trivial in the clean limit, to a topological state that preserves
TRS. Although the impurities break TRS, we show that residual unitary symmetries at edge of the sys-
tem can still guarantee the presence of a Kramers pair of gapless counter-propagating Majorana modes.
Furthermore, the design principles for spontaneous TRS-breaking Cooper instabilities [325, 326] derived
in Chap. 4 is shown to carry over to the weakly disordered case irrespective of whether we consider
magnetic or nonmagnetic impurities.
Finally, the sensitivity of the two candidate pairing states of (001) oxide heterostructures deduced

in the microscopic calculation of Chap. 5 against both magnetic and nonmagnetic disorder will be
discussed in Sec. 7.3.
This chapter is based on three different publications [239, 240, 367] and also contains unpublished
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7 Generalizations to weakly disordered systems

results. We refer to the relevant papers in the corresponding part of the text.

7.1 Generalized Anderson theorem

By investigating the impact of a given disorder realization on the gap of a superconducting mean-field
Hamiltonian, we will derive a very general criterion for the stability of the transition temperature of a
superconducting state against disorder in Sec. 7.1.1. This criterion is consistent with various explicit
calculations on the impact of disorder on superconductors (see, e.g., Refs. [235–240] and Sec. 7.1.2).
For the particularly relevant case of singly degenerate Fermi surfaces, we will explicitly reproduce
the criterion diagrammatically in Sec. 7.1.3. A special case of this argument has been published in
Ref. [239].

7.1.1 Algebraic criterion

As in Chap. 4, we start from a general d-dimensional superconducting mean-field Hamiltonian

ĤMF =
∑
k

ĉ†kα
(
hk
)
αα′

ĉkα′ +
1

2

∑
k

(
ĉ†kα∆αα′(k)ĉ†−kα′ + H.c.

)
(7.1)

with normal state Hamiltonian hk, superconducting order parameter matrix ∆αα′(k) and fermionic
creation (annihilation) operator ĉ†kα (ĉkα) where α refers to all relevant degrees of freedom of the
electron (spin, orbital, ...). Note that the final form of the generalized Anderson theorem will not make
reference to an explicit single-particle basis and, hence, is readily applied, e.g., within the eigenbasis
of a noncentrosymmetric normal state Hamiltonian as introduced in detail in Chap. 4.2 or within the
pseudospin basis of a centrosymmetric system (see, e.g., Eq. (4.96)).
To understand the stability of a superconductor against impurities, it is very convenient to consider

a given disorder realization [229, 385] which we describe by the most general, translation-symmetry-
breaking quadratic perturbation to the Hamiltonian,

Ĥdis =
∑
k,k′

ĉ†kαWαα′(k,k
′)ĉkα′ , (7.2)

where W is only constrained by Hermiticity, W †(k,k′) = W (k′,k). As the time-reversal properties of
the disorder potential play a crucial role for superconductivity [101, 229–231], let us split W into its
TRE (td = +), also referred to as “nonmagnetic”, and TRO (td = −), “magnetic”, part according to

W = W+ +W−, W td(k,k′) = td ΘW td(−k,−k′)Θ†. (7.3)

As before, Θ = TK is the time-reversal operator with K denoting complex conjugation. Note that we
will not have to specify whether Θ2 = −1 or Θ2 = 1 and, hence, the following discussion holds both
for spinfull as well as spinless fermions.
Guided by Anderson’s original insights [229], we introducing Nambu spinors Φ̂kα = (ĉkα, Tαα′ ĉ

†
−kα′)

comprising Kramers partners. The full Hamiltonian can then be written in quadratic form ĤMF+Ĥdis =
1
2

∑
k,k′ Φ̂

†
kα

(
ȟBdG

)
kα,k′α′

Φ̂k′α′ with BdG Hamiltonian ȟBdG = ȟBdGn + ȟBdG∆ + ȟBdGW where

ȟBdGn =

ȟ 0

0 −ȟ

 , ȟBdG∆ =

 0 Ď

Ď† 0

 , ȟBdGW =

W̌+ + W̌− 0

0 −W̌+ + W̌−

 . (7.4)
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7.1 Generalized Anderson theorem

Here and in the following, the inverted hat is used to indicate that the quantities are matrices with
respect to both k and α. We have introduced (ȟ)kα,k′α′ = δk,k′(hk)αα′ and (Ď)kα,k′α′ = δk,k′(∆kT

†)αα′

and taken advantage of Eq. (7.3) as well as the TRS of the normal state Hamiltonian.
As is readily shown (a proof can be found in Appendix F.1), if{

ȟBdGn + ȟBdGW , ȟBdG∆

}
= 0 (7.5)

with {·, ·} denoting the anticommutator, the gap of the superconductor is not reduced by the presence
of disorder which indicates the stability of the condensate against disorder configurations satisfying
Eq. (7.5).
From the explicit form (7.4), it follows that the anticommutator of ȟBdGn and ȟBdG∆ vanishes if ȟ and
Ď commute, [ȟ, Ď] = 0. Using the eigenstates |ψks〉 of hk, satisfying hk |ψks〉 = εks |ψks〉, as basis, the
latter condition is equivalent to

(εks − εks′)Dss′(k) = 0, (7.6)

where Dss′(k) = 〈ψks|∆(k)T †|ψks′〉 as already introduced in Eq. (4.27). Eq. (7.6) constitutes a gener-
alized form of the weak-pairing limit where all matrix elements Dss′(k) of the superconducting order
parameter are neglected that couple single-particle states of nondegenerate bands εks 6= εks′ . In the
limit of singly degenerate bands, it reduces to Eq. (4.29).
If Eq. (7.6) holds, Eq. (7.5) will be equivalent to {ȟBdGW , ȟBdG∆ } = 0. Inserting again Eq. (7.4), we

find the very compact and general form of the generalized Anderson theorem: A superconductor with
order parameter described by Ď will be protected against disorder with TRE and TRO components
W̌+ and W̌− if [

W̌+, Ď
]

+
{
W̌−, Ď

}
= 0. (7.7)

In Eq. (7.7), the Anderson theorem assumes a purely algebraic form in the sense that it only refers to
the commutation or anticommutation relations of the different components of the disorder potential and
the superconducting order parameter without reference to a specific single-particle basis. We further
note that the normal-state Hamiltonian hk does not enter in Eq. (7.7) explicitly1, i.e., the criterion is
independent of the band structure of the high-temperature phase.

7.1.2 Special cases and applications

We will next focus on special cases of Eq. (7.7) and discuss basic consequences mainly for iron-based
superconductors and oxide heterostructures as examples of centrosymmetric and noncentrosymmetric
systems. These special cases will also allow us to compare Eq. (7.7) with the predictions of explicit
diagrammatic calculations and, hence, to benchmark the to some extent phenomenological association
“gap not reduced ⇔ mean-field Tc unaffected” made above.

Spin-degenerate Fermi surfaces. Let us begin with the most frequently encountered case of doubly-
degenerate Fermi surfaces which is relevant for any centrosymmetric system with spin-1/2 TRS (see
Chap. 1.3). The wavefunctions of band j will be denoted by |ψkjσ〉, where the label σ refers to the
spin or pseudospin (see Appendix A.1) degree of freedom depending on the absence or presence of
significant SOC, respectively. The generalized weak-pairing limit (7.6) means that all matrix elements
of ∆(k)T † between states with j 6= j′ can be neglected and is applicable as long as different bands
1Of course, it enters indirectly via Eq. (7.6) and because the normal-state Hamiltonian affects the structure of the
superconducting order parameter.
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7 Generalizations to weakly disordered systems

are energetically well separated (on the energy scales of the superconductor). We can then write
(Ď)kjσ,k′j′σ′ = δk,k′δj,j′D

(j)
σσ′(k) where (Ď)kjσ,k′j′σ′ ≡ δk,k′ 〈ψkjσ|∆(k)T †|ψkj′σ′〉 is the band basis rep-

resentation of the superconducting order parameter. In case of (pseudo)spin singlet or triplet, it holds
D

(j)
σσ′(k) = δσσ′∆

S(j)
k or D(j)

σσ′(k) = d
(j)
k · sσσ′ , respectively. Transforming the disorder configuration

to the band basis, W̌kjσ,k′j′σ′ ≡ 〈ψkjσ|W (k,k′)|ψk′j′σ′〉, and focusing for simplicity on either TRE
(td = +) or TRO (td = −) disorder, the algebraic form of the Anderson theorem (7.7) becomes∑

σ′′

D
(j)
σσ′′(k)W̌kjσ′′,k′j′σ′ = td

∑
σ′′

W̌kjσ,k′j′σ′′D
(j′)
σ′′σ′(k

′), ∀k,k′, j, j′, σ, σ′, (7.8)

where summation over repeated indices is not implied. For a triplet state, the condition (7.8) will in
general2 not be satisfied since d(j)

k must be odd under k → −k and hence, cannot be constant on
the Fermi surface3. This is the reason why triplet superconductivity is already prone to nonmagnetic
disorder which is well-known theoretically and confirmed by experiments, e.g., for Sr2RuO4 [160]. We
also see in Eq. (7.8) very directly that a triplet superconductor is sensitive to the (pseudo)spin structure
of the impurities.
This changes in case of singlet pairing, D(j)

σσ′ = δσ,σ′∆
S(j)
k , where Eq. (7.8) can be restated as (again

no summation convention)(
∆
S(j)
k − td ∆

S(j′)
k′

)
W̌kjσ,k′j′σ′ = 0, ∀k,k′, j, j′, σ, σ′. (7.9)

It shows that, as expected, the stability of a singlet state against a specific impurity configuration
does not depend on the (pseudo)spin structure of W . For a singlet state to be protected it only
matters according to Eq. (7.9) that there is no impurity scattering process (with arbitrary spin index
combinations σ, σ′) connecting states |ψkjσ〉 and |ψk′j′σ′〉 with ∆

S(j)
k 6= td ∆

S(j′)
k′

.
It implies that an s-wave superconductor with the same value of the order parameter on all Fermi

surfaces, ∆
S(j)
k = const., is protected against nonmagnetic disorder (td = +) recovering the original

Anderson theorem [229–231]. We further see that Eq. (7.9) is violated for a superconductor with
∆
S(j)
k = const. in case of magnetic scattering (td = −) leading to the well-known [101] suppression of

Tc with impurity concentration (see also Secs. 7.2.2 and 7.3).
In the presence of several bands, extensions of the Anderson theorem are possible [235–240] that

are not only of purely academic interest and can be easily read off from Eq. (7.9): Let us consider
for concreteness the simplest nontrivial case of two bands j = 1, 2 and the singlet state with ∆

S(j)
k =

(−1)j∆0 referred to as s+− in the following. This pairing state is one of the most widely discussed
candidates for the iron-based superconductors where the two bands correspond to the hole-like and
electron-like bands4 centered around the Γ and M point of the two-Fe Brillouin zone, respectively [26].
Eq. (7.9) directly implies that the s+− state is protected against nonmagnetic intraband scattering
as expected from the original Anderson theorem [229–231] while time-reversal symmetric interband
processes will suppress its critical temperature Tc. More interestingly, we see that the s+− state is
unaffected by TRO interband scattering, i.e., enjoys an analogue of the original Anderson theorem for
2except for cases where both the superconducting order parameter as well as the disorder potential have special symmetry
properties (see, e.g., Ref. [237])

3At least as long as the Fermi surface encloses TRIM.
4The presence of several hole and/or electron bands does not affect our discussion here as long as the order parameter
is approximately constant in the vicinity of the Γ and M point.
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7.1 Generalized Anderson theorem

magnetic impurities. This is fully consistent with explicit calculations considering both spin-magnetic
[238] as well as orbital-magnetic [239] impurities.
Although it seems to be quite artificial at first sight to have a scattering potential with a purely inter-

band magnetic component, it has been shown in Ref. [239] that such a situation might very naturally
arise in the iron-based superconductors due to the complex phase competition in these systems: In
model calculations, the s+− state competes with a SDW and an imaginary and, hence, TRS-breaking,
CDW phase in case of repulsive interband interactions [351, 381, 382]. In a system where superconduc-
tivity is the dominant bulk state, the competing particle-hole instabilities could nucleate in the vicinity
of initially nonmagnetic impurities [386, 387]. For instance, in case of local imaginary CDW order this
effectively corresponds to orbital magnetic impurities which can be shown [239] to lead to scattering
potentials with vanishing intraband components. Since the s+− state is protected against this type of
scatterers as we have discussed above, the discrimination [241] between s+− and its conventional coun-
terpart s++ with ∆

S(j)
k = ∆0 on the basis of the response to initially nonmagnetic impurities becomes

questionable. In particular, this might explain or, at least, yield an additional contribution to the
unexpectedly weak suppression of the superconducting Tc with increasing concentration of (initially)
nonmagnetic impurities seen in experiment [241].
We finally mention that the same algebraic approach can be used to analyze the stability of particle-

hole phases. In this way, e.g., the SDW competing [351, 381, 382] with s+− in iron-based supercon-
ductors can be shown to be protected against the imaginary CDW impurities discussed above. Note
that the sensitivity of the SDW against disorder is also relevant for superconductivity as, e.g., the
suppression of SDW order can enhance the superconducting Tc in a coexisting phase [388]. We refer to
Ref. [239] for more details.

Nondegenerate Fermi surfaces. The conditions for the existence of a generalized Anderson theorem
become even simpler for systems with singly degenerate bands. To discuss this case, we apply exactly
the same notation as in Chap. 4.2: Using the eigenstates of the normal state Hamiltonian |ψks〉 as
basis, we represent the superconducting order parameter as (Ď)ks,k′s′ ≡ δk,k′ 〈ψks|∆(k)T †|ψks′〉 =

δs,s′δk,k′∆̃s(k), where the last equality corresponds to the weak-pairing limit. Similarly, disorder is
represented by W̌ks,k′s′ ≡ 〈ψks|W (k,k′)|ψk′s′〉 and Eq. (7.7) reads(

∆̃s(k)− td ∆̃s′(k
′)
)
W̌ks,k′s′ = 0, ∀k,k′, s, s′, (7.10)

for either nonmagnetic (td = +) or magnetic scattering (td = −), where, again, no summation con-
vention is implied. Note the similarity to the condition (7.9) for singlet superconductivity in a cen-
trosymmetric system with doubly degenerate Fermi surfaces. Eq. (7.10) implies that a superconductor
is protected against all nonmagnetic (magnetic) scattering processes between states |ψks〉 and |ψk′s′〉
where ∆̃s(k) = ∆̃s′(k

′) (∆̃s(k) = −∆̃s′(k
′)).

From this criterion, we already have a qualitative understanding of the stability of the two candidate
pairing states of oxide heterostructures found in Chap. 5. For nonmagnetic scattering, the s++ super-
conductor characterized by ∆̃s(k) = ∆0 is protected as expected from the original Anderson theorem
[229–231] while the s+− state is prone to interband processes. In analogy to the discussion of the iron-
based superconductors, the s+− state is protected against magnetic interband scattering while the s++

is not. Therefore, the latter is more fragile in the presence of magnetic impurities which are expected to
be particularly important for oxide heterostructures due the strong tendency of the system towards the
formation of magnetic moments [111, 151–155]. Notwithstanding the generality of these arguments, in
order to judge whether this is a relevant aspect for superconductivity in LAO/STO heterostructures,
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7 Generalizations to weakly disordered systems

one has to study the impact of scattering on the stability of the two pairing states quantitatively which
will be the topic of Sec. 7.3.
Furthermore, Eq. (7.10) indicates that magnetic impurities, similarly to magnetic particle-hole fluc-

tuations, favor a superconducting state with sign changes between different spin-orbit-split Fermi sur-
faces, i.e., a Rashba odd state, over a Rashba even state where the signs are identical on the Fermi
surfaces (cf. Chap. 6.2). As only Rashba odd states can be topologically nontrivial, magnetic scatter-
ing is expected to be capable of inducing a transition from a trivial superconductor to a topological
superconductor within class DIII. In Sec. 7.2, we will show explicitly that this, somewhat paradoxical
expectation, is indeed true and discuss the implications for the resulting edge states.
Before, we will derive Eq. (7.10) by calculating the impact of disorder on the transition temperature

of a general superconductor in the weak-pairing limit. This derivation will also introduce the basic
conventions and assumptions of Secs. 7.2 and 7.3.

7.1.3 Diagrammatic approach

We follow Ref. [389] and calculate the disorder-averaged quadratic Ginzburg-Landau expansion in
order to analyze the consequences of impurity scattering on the superconducting phase transition. The
derivation of the general form of the kernel of the Ginzburg-Landau expansion (Eq. (7.20) below) has
been published in Ref. [367].

Disorder ensemble. In this subsection, it will be more convenient to introduce disorder in a real-space
representation

Ĥdis =

∫
x,x′

ĉ†α(x)Wαα′(x,x
′)ĉα′(x

′), W ∗α′α(x′,x) = Wαα′(x,x
′) (7.11)

with ĉ†(x) and ĉ(x) being the Fourier transforms of the microscopic creation and annihilation operators
ĉ†k and ĉk introduced in Eq. (7.1). We will make the same simplifying assumptions as in Chap. 1.4.1:
Let the system be self-averaging allowing us to treat W as a Gaussian distributed real (W † = W )
random field. We restrict the analysis to spatially local configurations, x = x′ in Eq. (7.11), with
δ-correlated and homogeneous statistics and, hence, have

〈Wα1α′1
(x1,x

′
1)Wα2α′2

(x2,x
′
2)〉

dis
= δ(x1 − x′1)δ(x2 − x′2)δ(x1 − x2)Γα1α′1,α2α′2

, (7.12)

where 〈. . .〉dis represents the disorder average. Averaging over W produces an effective four-fermion
interaction within replica theory [228] with bare vertex given by Γ (see Chap. 1.4.1).
The correlator Γ can always be expressed in terms of Hermitian basis matrices {wµ},

Γα1α′1,α2α′2
=
∑
µ,µ′

Cµµ′(wµ)α1α′1
(wµ′)α2α′2

, C = C∗ = CT , (7.13)

where the constraints on the matrix C follow from Hermiticity of W and Γ′α1α′1,α2α′2
= Γ′α2α′2,α1α′1

.
The expansion (7.13) will be very convenient when analyzing the restrictions resulting from the point
symmetries of the clean system as we will see in Secs. 7.2 and 7.3. For the general purpose of proving
Eq. (7.10) we will only consider the TRS properties of the disorder configurations. As before, we
distinguish between TRE (“nonmagnetic”) and TRO (“magnetic”) disorder which is mathematically
equivalent to restricting the expansion (7.13) to matrices satisfying

ΘwµΘ† = tdwµ (7.14)
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7.1 Generalized Anderson theorem

with td = + and td = −, respectively.

Disordered Ginzburg-Landau expansion. As we have seen in previous chapters, the analysis of
superconducting instabilities is most easily performed in the eigenbasis of the normal state Hamiltonian.
We will assume that all bands (labeled by index s) are singly degenerate and that the weak-pairing
description applies. Denoting, as before, the fermionic annihilation and creation operators in this basis
by f̂ks and f̂

†
ks, the Cooper channel of the interaction will be parameterized by

ĤC =
∑
k,k′

ei(ϕ
s
k−ϕ

s′
k′ )Vs′s(k′;k) f̂ †

k′s′
f̂ †−k′s′K

f̂−ksK
f̂ks, (7.15)

where ϕsk are the time-reversal phases of the eigenstates defined in Eq. (6.13) and sK refers to the
Kramers partner of Fermi surface s (see also Fig. 6.1(a)). Within this notation, an electron-phonon
interaction necessarily leads to V ≤ 0 as has been shown in Chap. 6.1.1.
To solve for the dominant superconducting state in the presence of disorder, the interaction (7.15)

will be treated within mean-field approximation. We introduce the order parameter

∆̃s(k) =
∑
k′,s′

〈f̂−k′s′K f̂k′s′〉 e
iϕs
′
k′Vss′(k;k′) (7.16)

such that the resulting mean-field Hamiltonian is of the form of Eq. (6.37) and the topological indices
can be inferred from Eqs. (2.17) and (2.19) as long as the condensate preserves TRS (∆̃s(k) ∈ R).
The transition temperatures of the competing superconducting states are obtained by calculating the

disorder-averaged free energy 〈F〉dis as a function of the order parameter [389]. Assuming that both
∆̃s(k) as well as the interaction matrix elements Vs′s(k′;k) only depend on the Fermi surface index s
and on the position on the Fermi surface (parameterized by Ω, see also Fig. 6.1(a)), but not on the
momentum coordinate perpendicular to the Fermi surface, one finds

〈F〉dis ∼
∑
s,s′

∫
s

dΩ

∫
s′

dΩ′ ∆̃∗s(Ω)
(
DΩs,Ω′s′(T )− V−1

Ωs,Ω′s′

)
∆̃s′(Ω

′) (7.17)

as ∆̃→ 0. Here, V−1 denotes the inverse of the interaction kernel V and the disorder averaged particle-
particle bubble DΩs,Ω′s′ is represented diagrammatically in Fig. 7.1(a) in terms of the full Green’s
function (double line) and the dressed vertex (gray triangle). As discussed in Chap. 1.4.1, in the weak-
disorder limit, where the mean-free path l is much larger than the inverse Fermi momentum 1/kF , all
diagrams with crossed impurity lines, which are suppressed by a factor (kF l)

−1, can be neglected (known
as SCBA). The self-energy and vertex correction are thus simply given by the “rainbow diagrams” and
“Cooperon ladder” as shown in Fig. 7.1(b) and (c), respectively [389].
In analogy to the Eliashberg approach of the previous chapter (see, in particular, Fig. 6.2(e)), the

impurity line, which is just given by the transformation of the correlator (7.13) into the eigenbasis of the
normal state Hamiltonian, only enters in the form of two distinct index combinations: The self-energy
is determined by forward scattering,

SFΩs,Ω′s′ := =
∑
µ,µ′

(
ψ†Ω′s′wµψΩs

)∗
Cµµ′ ψ

†
Ω′s′wµ′ψΩs, (7.18)
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7 Generalizations to weakly disordered systems

Figure 7.1: Disordered Ginzburg-Landau expansion. An exact diagrammatic representation
of the kernel D of the quadratic Ginzburg-Landau expansion is shown in (a) in terms
of the full Greens function (double line) and renormalized vertex (gray triangle). Fo-
cusing on the limit kF l � 1, the former and the latter only contain the noncrossing
diagrams shown in (b) and (c), respectively. Here the impurity line (dashed) only
enters in the combinations defined in Eqs. (7.18) and (7.19).

which is real valued due to C† = C. The vertex-correction is determined by the Cooper scattering,

SCΩs,Ω′s′ := = td e
i(ϕsΩ−ϕ

s′
Ω′ )SFΩs,Ω′s′ . (7.19)

We use the same convention as in Chap. 6 and denote the Kramers partner of state (Ω, s) by (ΩK, sK)
(see Fig. 6.1(a)). To show the relation to SF in Eq. (7.19), Eqs. (6.13) and (7.14) have been taken
into account. The connection (7.19) between the Cooper and forward disorder scattering is the replica
analogue of the relation for the electron-electron interaction in Eq. (6.54).
Summing up the diagrams in Fig. 7.1(b) and (c) using the matrix notation of Ref. [240] yields the

general result [367]

D = −T
∑
ωn

(
C(ωn)− td SS

)−1
(7.20)

with the symmetrized5 scattering vertex SSΩs,Ω′s′ = SFΩs,Ω′s′ + SFΩs,Ω′Ks′K and the diagonal matrix

CΩs,Ω′s′(iωn) =
δs,s′δΩ,Ω′

ρs(Ω)

 |ωn|
π

+
∑
s̃

∫
s̃

dΩ̃ ρs̃(Ω̃)SS
Ωs,Ω̃s̃

 . (7.21)

Note that the inverse in Eq. (7.20) refers to both s- and Ω-space and that the time-reversal phases in
Eq. (7.19) have completely canceled out as required by gauge invariance. In Eq. (7.21), ρs(Ω) denotes
the angle-resolved density of states on Fermi surface s (formally defined in Eq. (4.44)).

Proof of the generalized Anderson theorem. With the general form (7.20) of the kernel of the
disordered Ginzburg-Landau expansion at hand, we are now in a position to derive Eq. (7.10) as a
5Since SFΩs,Ω′s′ = SFΩKsK,Ω

′
Ks

′
K

both for nonmagnetic and magnetic disorder, SS is automatically symmetrized in both
indices, SSΩs,Ω′s′ = SSΩKsK,Ω′s′ = SSΩs,Ω′

Ks
′
K
.
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7.2 Topological superconductivity from phonons

sufficient condition for the protection of the superconducting state against disorder. As a first step,
we note that W̌ks,k′s′ should be replaced by ψ†Ω′s′wµψΩs in Eq. (7.10) within the disorder ensemble
description we are currently using. As follows from Eq. (7.18), this means that the constraint Eq. (7.10)
implies (again no summation convention)

∆̃s(Ω)SSΩs,Ω′s′ = td SSΩs,Ω′s′∆̃s′(Ω
′), ∀Ω,Ω′, s, s′, (7.22)

for the impurity vertex. Secondly, assuming that Eq. (7.22) holds for the superconducting state of
interest, the quadratic Ginzburg-Landau expansion becomes

〈F〉dis ∼
∑
s,s′

∫
s

dΩ

∫
s′

dΩ′ ∆̃∗s(Ω)
(
dΩs(T )δs,s′δΩ,Ω′ − V

−1
Ωs,Ω′s′

)
∆̃s′(Ω

′) (7.23a)

as is shown in Appendix F.2 with

dΩs = −T
∑
ωn

∑
s̃

∫
s̃

dΩ̃

[(
C(ωn)− SS

)−1
]
s̃Ω̃,sΩ

. (7.23b)

Note that apart from rendering the particle-particle bubble diagonal in both s and Ω, the factor td in
Eq. (7.20) distinguishing between magnetic and nonmagnetic scattering has entirely left the stage. This
means that sign changes of the order parameter will effectively cancel the factor td between SCΩs,Ω′s′ and
SFΩs,Ω′s′ in Eq. (7.19) as long as Eq. (7.22) holds. Irrespective of the value of td, the Ginzburg-Landau
expansion (7.23) looks as if we considered nonmagnetic impurities. Since D has become diagonal, all
terms involving impurity scattering in Eq. (7.23a) are not sensitive to the sign of ∆̃s(Ω) any more.
From this point of view, it is not surprising that disorder will have no impact on Eq. (7.23). Indeed,
it can be shown (see Appendix F.2) that the explicit dependence on SS in Eq. (7.23b) resulting from
the vertex corrections in Fig. 7.1(c) and the self-energy in Fig. 7.1(b) leading to the SS dependence of
C exactly cancel each other. This proves that both Tc as well as the superconducting order parameter
are unaffected by impurities as long as Eq. (7.22) holds.

7.2 Topological superconductivity from phonons

In Chap. 6.1 we have shown under very general assumptions that electron-phonon coupling alone will in
a clean system always lead to a time-reversal symmetric superconductor with trivial topological invari-
ants. Besides additional Coulomb repulsion, also magnetic disorder could according to our discussion
in Sec. 7.1.2 cause a transition into a topologically nontrivial superconducting state that will be neces-
sarily subleading in the clean limit. In this section, which is based on Ref. [367], this expectation will be
substantiated by a “proof-of-principle” model calculation (see Sec. 7.2.2) and a discussion of the impact
of magnetic disorder on the Majorana edge modes (see Sec. 7.2.3). However, before approaching the
model calculation, a few general comments on the time-reversal properties of superconducting states
in systems with magnetic impurities are in order.

7.2.1 Selection rule for TRS breaking in the presence of disorder

Since the presence of magnetic impurities breaks TRS already in the normal state, one could naively
expect that any resulting superconducting phase will automatically have a small TRS-breaking com-
ponent and, hence, cannot be classified by a DIII invariant.
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7 Generalizations to weakly disordered systems

This is, however, not the case and physically based on the fact that TRS is restored on average.
Within the analysis of this chapter, this is reflected by the fact that SF and thus the entire kernel of
the Ginzburg-Landau expansion (7.17) are both real and symmetric (see also Eq. (6.17)) such that all
its eigenvectors can be chosen to be real.
Using the symmetry constraint (1.28) on the disorder correlator, that forces the point symmetries

to be restored on average, it is straightforwardly shown that D and as a result the entire kernel of the
Ginzburg-Landau expansion (7.17) are invariant under all operations of the point group. Therefore,
the resulting superconducting order parameter must again transform under one of the IRs of the point
group of the idealized clean system (see Chap. 1.1.1). As long as the order parameter transforms under
a real one-dimensional IR, the superconducting state must be nondegenerate already on the quadratic
level of the Ginzburg-Landau expansion and, hence, ∆̃s(Ω) can always be chosen to be real, thus,
preserving TRS.
From this discussion, it additionally follows that the selection rule for spontaneous TRS breaking

[325, 326] discussed in Chap. 4.4.1 is readily generalized to the disordered case: In the absence of a
threefold rotation symmetry perpendicular to the plane of a 2D system (and focusing on spinfull systems
for simplicity), multidimensional or complex IRs are excluded by the Fermi-Dirac constraint (4.32) in
the weak-pairing limit as argued in Chap. 4.4.1. This means that, irrespective of whether we consider
magnetic or nonmagnetic disorder, the superconducting state of a 2D system must be necessarily time-
reversal symmetric if there is no threefold rotation symmetry in the clean high-temperature phase.

7.2.2 Nontrivial topology induced by disorder

To show that disorder can drive an electron-phonon superconductor, that must be necessarily trivial in
the clean limit, into a topological DIII state, let us focus for concreteness on 2D systems with C2v point
group. Note that, from the arguments presented above, it is already clear that the resulting supercon-
ducting state must be time-reversal symmetric due to the absence of a threefold rotation symmetry.
Assuming that there are no additional orbital degrees of freedom, the normal-state Hamiltonian can
be written as

hk = εkσ0 + gk · σ, (7.24)

where σj are Pauli matrices in spin space. In addition, suppose the system has two singly degenerate
Fermi surfaces enclosing only the Γ point and no other TRIM such as, e.g., in Fig. 6.4.
The basis matrices used to expand the disorder correlator in Eq. (7.13) can be chosen to be Pauli

matrices, wµ = σµ, µ = 0, 1, 2, 3. The most general disorder correlator Γ in case of nonmagnetic
disorder, i.e., with td = + in Eq. (7.14), reads in the microscopic basis as

Γα1α′1,α2α′2
= γ0(σ0)α1α′1

(σ0)α2α′2
, (7.25)

whereas, in case of magnetic (td = −) impurities, we have

Γα1α′1,α2α′2
= γ

(1)
‖ (σ1)α1α′1

(σ1)α2α′2
+ γ

(2)
‖ (σ2)α1α′1

(σ2)α2α′2
+ γ⊥(σ3)α1α′1

(σ3)α2α′2
. (7.26)

Note that all terms coupling different Pauli matrices are ruled out by the fact that the C2v point
symmetry has to be restored on average (see Chap. 1.4.1). The terms proportional to γ(1,2)

‖ and γ⊥
describe spin-magnetic impurities which are aligned in the plane and perpendicular to the plane of
the 2D system, respectively. It is straightforward to show, without further assumptions about the
structure of the spin-orbit vector gk, that SSΩs,Ω′s′ = γ0 in case of Γ given by Eq. (7.25) and SSΩs,Ω′s′ =

γ
(1)
‖ + γ

(2)
‖ + γ⊥ =: γm for the correlator in Eq. (7.26).

154



7.2 Topological superconductivity from phonons

Figure 7.2: Scattering-inducing topology. In (a), the transition temperatures of the s++

(green) and s+− (blue) superconductors are shown as a function of the magnetic scat-
tering strength γm assuming that the intraband (U) is much larger than the interband
Cooper scattering (J). Here γ++

m,c and T++
c,0 are the critical scattering rate of the s++

superconductor and its transition temperature in the absence of disorder, respectively.
The full phase diagram together with the predictions of the asymptotic expression
(7.28) for the critical scattering rate to enter the topological state (green line) are
shown in (b). Here, “no SC” denotes the suppression of both superconducting states.
In both plots, we have used ρFU = −0.4.

Due to the simple form of the scattering matrix, it is possible to perform the inversion in Eq. (7.20)
analytically (see Appendix F.3 for more details on the following analysis). To obtain a minimal phase
diagram that captures the relevant physics, let us assume that ρs(Ω) ' const. and that the interaction
matrix elements introduced in Eq. (7.15) can be parameterized as

VΩs,Ω′s′ '

(
U J

J U

)
s,s′

, (7.27)

i.e., there is an intraband Cooper scattering (U) that is the same for both bands and an interband
Cooper interaction (J) both of which are constant on the two Fermi surfaces.
By diagonalizing the associated kernel of the free energy expansion (7.17), one can deduce the transi-

tion temperatures of all possible superconducting order parameters and, hence, the dominant instability
of the system as a function of the interaction parameters U , J as well as of the disorder strength pa-
rameterized by γ0 and γm for nonmagnetic and magnetic disorder, respectively. As a consequence of
the assumptions made above, the two competing candidate instabilities are the s++ and the s+− phase
characterized by ∆̃1(Ω) = ∆̃2(Ω) = const. and ∆̃1(Ω) = −∆̃2(Ω) = const., respectively. As readily
follows from Eq. (2.19), the former is topologically trivial while the latter is nontrivial.
In case of nonmagnetic disorder, the critical temperature of the s++ state is not affected by disorder

in accordance with the original Anderson theorem [229–231]. As a consequence of the sign change
between the Fermi surfaces, the transition temperature of the competing s+− superconductor is reduced
by disorder. As s++ dominates in the clean limit in case of electron-phonon pairing where J < 0, no
transition to the topological s+− state can be induced by nonmagnetic disorder.
This is different in case of magnetic impurities: Fig. 7.2(a) shows the transition temperatures of the

s++ and s+− superconductors as a function of the total amount of magnetic disorder γm. Despite being
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7 Generalizations to weakly disordered systems

dominant in the clean limit, the s++ state is more fragile against magnetic impurities since both inter-
and intraband scattering act as pair breaking, while the s+− superconductor is only prone to the latter
type of scattering events as expected from the discussion in Sec. 7.1.2. This makes possible a finite
range of impurity concentrations where the topological s+− state is stabilized. For larger γm also the
s+− condensate is destroyed by disorder and no superconducting instability occurs at all.
The full phase diagram that shows the dependence on the ratio J/U of the interaction parameters

for a fixed (negative) value of U can be found in Fig. 7.2(b). Here, ρF :=
∑

s

∫
dΩρs(Ω) denotes the

total density of states of the system and Λ is the energetic cutoff of the electron-phonon interaction.
For completeness, we have also included positive values of J where s+− is already dominant in the
clean limit although J > 0 cannot be realized by pure electron-phonon coupling as has been shown in
Sec. 6.1.1.
Since s++ and s+− are degenerate for J = 0, the critical scattering rate ρFγ∗m for stabilizing a

topological phase must go to zero as J → 0. For small J/U , it varies linearly with J according to
[cf. green line in Fig. 7.2(b)]

ρFγ
∗
m ∼

16

π2

J

U

1

ρFU
T++
c,0 , (7.28)

where T++
c,0 is the critical temperature of the s++ state in the clean limit.

If J is sufficiently strong, the critical temperatures of both s++ and s+− will go to zero as a function
of the magnetic scattering strength γm before a transition into the s+− phase can occur. This gives
rise to a critical ratio (J/U)c for the impurity-induced topological transition. One finds (for U < 0)

(
J/U

)
c

=
1

ρF |U | ln 2

(√
(ρFU ln 2)2 + 4− 2

)
∼ ln 2

4
ρF |U |, ρF |U | � 1, (7.29)

showing that it scales linearly with U in the weak-coupling limit. Our mean-field approach predicts
(J/U)c to approach 1 in the strong-coupling limit ρF |U | � 1.
Let us finally contrast the present discussion with Ref. [390], where magnetic scattering induces

nontrivial topology with respect to a symmetry class with broken TRS: For the model considered in
Ref. [390], a Zeeman field is required [391] to stabilize a topological superconductor. Our analysis
shows that magnetic disorder can also drive the transition into a topological superconducting state
that preserves TRS (class DIII). This means that while, locally, TRS is broken due to the presence
of impurities it is restored globally in the sense that the resulting superconducting order parameter is
time-reversal symmetric and that the impurities do not give rise to a net magnetic moment.

7.2.3 Protection of bound states

One major consequence of the topologically nontrivial DIII bulk invariant is the existence of gapless
counter-propagating Kramers partners of Majorana modes at the interface of the superconductor to a
topologically trivial phase such as the vacuum (see Chap. 2.2.3). The presence of these gapless modes
is guaranteed by TRS. However, the magnetic impurities required to stabilize the bulk topology break
TRS and might hence gap out the boundary states making them unobservable in experiments.
Let us first notice that, at least theoretically, there exists a parameter range where the disorder-

induced gap in the surface spectrum is irrelevant. As can be seen in Eq. (7.28), the magnetic scattering
rate required to induce a nontrivial bulk topology can be arbitrarily small as compared to the critical
temperature and, hence, as compared to the gap of the superconductor at zero temperature. In this
limit, the impact of the magnetic impurities on the Majorana modes can be neglected.
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7.2 Topological superconductivity from phonons

Figure 7.3: Protection of MBSs. Point-symmetry protection of MBSs against magnetic impu-
rities. In (a), the geometry of a boundary (blue plane) at y = 0 of two topologically
distinct phases of a 2D system (xy plane) is shown. If both phases have point group
C2v, there will be a residual reflection symmetry (red plane). A schematic of the spec-
trum of the system with edge state dispersion shown in blue and green is presented in
(b). Part (c) shows the spectrum (upper panel) of the model defined in the main text
using open along the y and periodic boundary conditions along the x direction. Due
to the protection resulting from TRS and the reflection symmetry at the boundary, the
matrix elements (lower panel) of charge impurities (〈S0〉) and magnetic impurities
polarized along y and z (〈S2〉 and 〈S3〉) vanish at k1 = 0. Here we use the same
parameters as in Fig. 6.4, µ = −0.4t, α = 0.25t, for the normal-state Hamiltonian
and choose ∆t = 0.3t, ∆s = 0.1t for the superconducting order parameter.

Secondly, unitary symmetries can protect the Kramers pair of MBSs even if TRS is broken. E.g.,
in the case of the 2D system with point group C2v, the protection results from the residual reflection
symmetry perpendicular to an interface along one of the crystallographic axes. To show this, let us
assume that the system is located in the xy plane with a boundary to a trivial phase at y = 0 as
illustrated in Fig. 7.3(a). The presence of two distinct phases breaks all symmetries of the point group
except for the invariance under reflection σyz at the yz plane. Denoting the BdG Hamiltonian of the
bulk system by hBdGk , the spectrum and wavefunctions of the edge modes are determined by

h̃BdGk1
|±, k1〉 = E±(k1) |±, k1〉 , (7.30)

where h̃BdGk1
follows from hBdGk by replacing k2 → −i∂y and introducing some y dependency to de-

scribe the boundary between the two topologically distinct phases. As illustrated in Fig. 7.3(b), PHS,
ΞhBdGk Ξ−1 = −hBdG−k with antiunitary Ξ, and TRS of the BdG Hamiltonian lead to the constraints
E±(k1) = −E±(−k1) and E+(k1) = E−(−k1) on the edge state spectrum, respectively (see also
Chap. 2.1.1). Furthermore, PHS implies for the wavefunctions Ξ |±, k1〉 = e

iα±k1 |±,−k1〉 with some
phases α±k1

and, in particular, Ξ |±, 0〉 = eiα
±
0 |±, 0〉 resulting from continuity in k1. Denoting the spin

operators in Nambu space by Sj , j = 1, 2, 3, and noting that ΞSjΞ
−1 = −Sj , we find

〈µ, 0|Sj |µ′, 0〉 = −ei(α
µ
0−α

µ′
0 ) 〈µ′, 0|Sj |µ, 0〉 (7.31)

with µ, µ′ = ±. From this, it already follows that the diagonal (µ = µ′) matrix elements of all spin
operators Sj must vanish. To restrict the off-diagonal components (µ 6= µ′), the mirror symmetry has
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to be taken into account. Under σyz, it holds k1 → −k1 and RσyzSjR−1
σyz = pjSj with p1 = 1 and

p2 = p3 = −1 where Rσyz = exp(−iπS1) is the representation of σyz in Nambu space. It follows

〈+, 0|Sj |−, 0〉 = −pje−2iα0 〈−, 0|Sj |+, 0〉 , (7.32)

where we have used Rσyz |+, k1〉 = eiαk1 |−,−k1〉, αk1 ∈ R, in the limit k1 → 0. The additional
minus sign in Eq. (7.32) comes from R2

σyz = −1 which must hold for spin-1/2 fermions. Noting that
e2iα0 = ei(α

−
0 −α

+
0 ), which follows from [Ξ,Rσyz ] = 0, the combination of Eqs. (7.31) and (7.32) implies

that
〈µ, 0|Sj |µ′, 0〉 = 0 (7.33)

for those component with pj = −1, i.e., for j = 2, 3. This means that only impurities with finite spin
polarization perpendicular to the mirror plane can open up a gap in the surface spectrum. This result
is consistent with the numerical investigation of surface disorder in a model with C4v symmetry in
Ref. [392].
To further illustrate the protection of the MBSs resulting from the symmetries of the system, let

us investigate the standard Rashba single-band model defined by εk = −t(cos k1 + cos k2) − µ and
gk = α(− sin k2, sin k1, 0)T in Eq. (7.24) and Fermi surfaces as shown in Fig. 6.4. A natural Brillouin-
zone regularization of the weak-pairing description of the s+− superconductor is given by the mean-
field pairing term in Eq. (7.1) with pure triplet component ∆k = ∆tgk ·σiσ2/α. In the upper panel of
Fig. 7.3(c), we show the spectrum of the system with periodic boundary conditions along the x and open
boundary condition along the y axis (100 sites), where, for the sake of generality, also a small singlet
component ∆tiσ2 has been added. The edge state dispersions (doubly degenerate corresponding to the
two edges of the system) crossing the Fermi level are clearly visible. In the lower panel of Fig. 7.3(c),
the maximum of the impurity matrix elements with respect to the subgap states at given k1 is shown
for both nonmagnetic, 〈S0〉, as well as magnetic, 〈Sj〉, j = 1, 2, 3, scatterers localized at one of the
boundaries. We see that 〈S0〉 vanishes for k1 → 0 which is just a manifestation of the protection of the
edge states resulting from TRS [262]. Furthermore, also 〈S2〉 and 〈S3〉 vanish, in accordance with our
general symmetry discussion above, whereas 〈S1〉 assumes a finite value at k1 = 0.
Consequently, if the impurities are, e.g., mainly polarized perpendicular to the plane of 2D system,

γ
(1,2)
‖ = 0 in Eq. (7.26), a transition to a topological DIII superconductor can be induced by varying γ⊥

without gapping the resulting boundary modes as long as the edges are along one of the crystallographic
axes. Naturally, the same protection mechanism applies for all point groups Cnv, n = 1, 2, 3, 4, 6, as
long as the boundary is oriented perpendicular to one of the mirror planes of the bulk system.

7.3 Disorder in LAO/STO heterostructures

As one of the central results of Chap. 5, two candidate pairing states for the (001) oxide heterostruc-
tures have been established: In case of a conventional mechanism, the order parameter is identical on
the two spin-orbit-split Fermi surfaces (see Fig. 5.4), i.e., ∆̃s(k) = ∆0 denoted by s++. In contrast, an
unconventional mechanism leads to the s+− state characterized by ∆̃s(k) = (−1)s∆0 [349]. From our
discussion of the generalized Anderson theorem in Sec. 7.1, we have already obtained a qualitative un-
derstanding of the stability of these two superconducting phases against certain disorder configurations.
In this section, which is based on Ref. [240], these expectations will be confirmed and supplemented
quantitatively by an explicit microscopic analysis of the impact of impurity scattering on the two
candidate pairing states.
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7.3 Disorder in LAO/STO heterostructures

Table 7.1: Symmetry properties of the basis functions constructed from the Pauli matrices in spin
and orbital space denoted by σj and τj, respectively. Here A1, A2, B1, B2 and E denote
the IRs of C4v (see Table 4.1), whereas TRE (TRO) indicates that the matrix is even
(odd) under time-reversal.

⊗ σ0 σ1, σ2 σ3

τ0 A1/TRE E/TRO A2/TRO

τ1 B2/TRE E/TRO B1/TRO

τ2 A2/TRO E/TRE A1/TRE

τ3 B1/TRE E/TRO B2/TRO

7.3.1 Microscopic disorder configurations

Let us first discuss the possible microscopic disorder configurations by specifying the most general
disorder correlator Γ in Eq. (7.12) within the two-orbital model of the Ti 3dxz and 3dyz states introduced
in Chap. 5.1.1. Recall from Chap. 1.4.1 that, although a local defect can break any subset of the
symmetries of the system, the symmetries must be restored on average forcing the disorder correlator
to satisfy Eq. (1.28). We will represent the basis matrices {wµ} in the expansion (7.13) of Γ as the
16 possible tensor products of the Pauli matrices σj and τj , j = 0, 1, 2, 3, referring to the spin and
orbital degrees of freedom exactly as in, e.g., Eq. (5.3). Using Pauli matrices constitutes a particularly
convenient choice since these basis matrices both transform under the IRs of the point group C4v and
are either even (TRE) or odd (TRO) under time-reversal as summarized in Table 7.1.

Nonmagnetic disorder. We start with nonmagnetic impurities characterized by basis matrices sat-
isfying Eq. (7.14) with td = +. As readily follows from Table 7.1, the most general vertex reads in this
case as

Γα1α′1,α2α′2
= γIA1

(τ0σ0)α1α′1
(τ0σ0)α2α′2

+ γIIA1
(τ2σ3)α1α′1

(τ2σ3)α2α′2

+
γIIIA1

2

[
(τ0σ0)α1α′1

(τ2σ3)α2α′2
+ (τ2σ3)α1α′1

(τ0σ0)α2α′2

]
+ γB1 (τ3σ0)α1α′1

(τ3σ0)α2α′2
+ γB2 (τ1σ0)α1α′1

(τ1σ0)α2α′2

+
γE
2

[
(τ2σ1)α1α′1

(τ2σ1)α2α′2
+ (τ2σ2)α1α′1

(τ2σ2)α2α′2

]
.

(7.34)

Similarly to the Rashba-Dresselhaus effect in Eq. (5.3), we see again that the combination of both
orbital and spin degrees of freedom leads to a much richer structure of possible terms as in case of only
spin (cf. Eq. (7.25)). To gain physical insight into Eq. (7.34), let us first discuss the meaning of the
different terms and then analyze how they can emerge microscopically.
The contributions proportional to γIA1

, γB1 and γB2 correspond to spin-trivial disorder with orbital
wavefunctions of different point symmetry: The different terms transform as A1, B1 and B2 under C4v

which corresponds to s, dx2−y2 , and dxy wave. Noting that τ2 is the projection of the z-component
of the orbital angular momentum operator on the subspace spanned by the 3dxz and 3dyz orbitals
(see Appendix D.1.2), the terms with γIIA1

and γE represent (atomic) spin-orbit disorder with out-of-
plane/longitudinal and in-plane/transversal orientation of the spin, respectively. The prefactors of the

159



7 Generalizations to weakly disordered systems

Figure 7.4: Ball-and-stick model of STO. Four unit cells of the crystal structure of STO are
shown. Different positions which are referred to in the main text are indicated by
numbers.

two terms in the last line of Eq. (7.34) must be identical in order to ensure C4-rotation symmetry of
the disorder distribution. Finally, the contribution proportional to γIIIA1

describes the fact that the C4v

point group allows for an mixture of s-wave disorder and longitudinal spin-orbit disorder on the same
site.
To understand how the different terms can be realized microscopically, let us investigate the schematic

illustration of the crystal structure in Fig. 7.4. We begin with oxygen vacancies, which are discussed as
one of the primary causes of disorder in the context of LAO/STO interfaces (see, e.g., Refs. [143, 153–
155]). Assume that one oxygen at position 2, right below the central Ti at position 1, is vacant. In this
case, the defect preserves the full C4v point symmetry of the crystal such that only the first 3 terms
in Eq. (7.34) can be present. The explicit values of γIA1

, γIIA1
and γIIIA1

depend on microscopic details of
the system, however, as will be seen below in Sec. 7.3.2, only the sum of these scattering rates enters
the effective pair-breaking strength. If instead an oxygen adjacent to the central Ti, e.g., at position
3, is vacant, all point symmetries of the lattice are locally broken except for the mirror symmetry with
respect to the yz plane. This symmetry constraint rules out the contribution proportional to γB2 and
the first term in the last line of Eq. (7.34) as both τ1σ0 and τ2σ1 are odd under (x, y) → (−x, y).
Correspondingly, if we consider oxygen vacancies at position 3′, the second term in the last line of
Eq. (7.34) and again the contribution with γB2 will be forbidden. Recalling that the prefactors of the
two terms in the last line of Eq. (7.34) have to be equal by C4 rotation symmetry, we see that, as
expected, vacancies at position 3 and 3′ have to be included with equal probability to restore the full
point symmetry after averaging. In summary, single oxygen vacancies allow for all contributions in
Eq. (7.34) except for the γB2 term.
To see how the latter can occur, let us now assume that a Sr atom is vacant, e.g., at position 4 in

Fig. 7.4. Similarly as above, all point symmetries are broken save for the mirror reflection at the (110)
plane. This now renders the γB2 term possible which is even under the reflection at (110). Assuming
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that, with the same probability, a Sr atom is missing at position 4′, one restores rotation symmetry. In
this case, all terms in Eq. (7.34) are allowed except for the one proportional to γB1 . Finally, we note
that the same is true for a local oxygen double vacancy where oxygen atoms are missing at position 3
and 3′ at the same time.
We have thus provided examples of how all the terms in the most general nonmagnetic impurity

vertex (7.34) can be realized.

Magnetic disorder. To proceed with magnetic disorder, i.e., focusing on td = − in Eq. (7.14),
Table 7.1 implies that there are three independent terms in Γ corresponding to in-plane magnetic
moments,

Γ
‖
α1α′1,α2α′2

=
γIE
2

[
(τ0σ1)α1α′1

(τ0σ1)α2α′2
+ (τ0σ2)α1α′1

(τ0σ2)α2α′2

]
+
γIIE
2

[
(τ1σ1)α1α′1

(τ1σ1)α2α′2
+ (τ1σ2)α1α′1

(τ1σ2)α2α′2

]
+
γIIIE
2

[
(τ3σ1)α1α′1

(τ3σ1)α2α′2
+ (τ3σ2)α1α′1

(τ3σ2)α2α′2

]
,

(7.35a)

and five terms,

Γ⊥α1α′1,α2α′2
= γIA2

(τ0σ3)α1α′1
(τ0σ3)α2α′2

+ γB1 (τ1σ3)α1α′1
(τ1σ3)α2α′2

+ γB2 (τ3σ3)α1α′1
(τ3σ3)α2α′2

+ γIIA2
(τ2σ0)α1α′1

(τ2σ0)α2α′2

+
γIIIA2

2

[
(τ2σ0)α1α′1

(τ0σ3)α2α′2
+ (τ0σ3)α1α′1

(τ2σ0)α2α′2

]
,

(7.35b)

where the magnetic moment is oriented perpendicular to the plane.
Physically, the three terms γIE , γ

II
E and γIIIE in Γ‖ correspond to impurities with in-plane spin magne-

tization and distinct orbital symmetry (s, dxy and dx2−y2 wave). Note that no orbital-magnetic disorder
with in-plane orientation can occur in the two-orbital model as the projection of the x and y component
of the orbital angular momentum operator onto the 3dxz and 3dyz subspace vanishes identically (see
Appendix D.1.2). The analogous terms in Γ⊥ with the same orbital symmetry but spin polarization
along the z direction are proportional to γIA2

, γB1 and γB2 , respectively. Finally, γIIA2
corresponds to

purely orbital magnetism along the z direction and γIIIA2
shows that an arbitrary mixture of spin and

orbital magnetism along the z direction is allowed by symmetry.
As in the nonmagnetic case, let us discuss some examples of how the terms in Eq. (7.35) can emerge

microscopically. One can imagine that a Ti atom locally orders magnetically due to the proximity of
the system to a competing magnetic instability [349] similarly to the discussion of imaginary CDW
impurities in the context of iron-based superconductor in Sec. 7.1.2. Numerical calculations indicate
[153, 155] that magnetic moments on Ti atoms can be induced by the presence of oxygen vacancies.
Alternatively, we may think of Ti being replaced by a different magnetic atom. In all cases, the form
of the resulting impurity potential crucially depends on the orbitals that host the magnetic moment
and whether it is orbital or spin magnetism. Thus, in general, all terms in Eq. (7.35) are feasible. To
be more specific, recalling that the observed magnetism at the interface is mainly due to the 3dxy band
[111, 151, 152, 346, 347], one may expect that, most likely, the spin degree of freedom of the Ti 3dxy
orbital orders locally. In that case, the impurity vertex would be described by the terms proportional
γIIE and γB1 as the associated orbital structure, τ1, transforms as xy under C4v.
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7 Generalizations to weakly disordered systems

If, instead, a magnetic moment develops at a site that does not lie at a high symmetry point with
respect to the Ti atoms, the symmetry constraints will be less restrictive. Assuming, e.g., a spin-
magnetic moment along the z axis with s-wave orbital symmetry (i.e. τ0σ3) at the oxygen site 3 (3′)
in Fig. 7.4, the disorder potential is only restricted to be odd both under time-reversal and mirror
reflection symmetry with respect to the yz plane (xz plane). The reduction of symmetry constraints
simply follows from the fact that, irrespective of the symmetries of the local impurity, the presence of a
perturbation at 3 (3′) already breaks all symmetries except for time-reversal and one mirror reflection.
Under these two remaining symmetry operations, the resulting impurity potential in the effective model
for the conducting Ti orbitals must have the same behavior as τ0σ3 (in both cases being odd). From
these criteria one finds that only the term proportional to γB1 can be excluded in Eq. (7.35).

7.3.2 Impact of disorder on transition temperatures

After having discussed the plethora of possible microscopic scattering processes, let us proceed by inves-
tigating the impact on the transition temperature of both the conventional s++ and the unconventional
s+− pairing state in oxide heterostructures.
For this purpose, we use the same low-energy approach as in Chap. 5.1.2 and only keep the fermionic

modes belonging to the 16 nested patches of the Fermi surfaces highlighted in green and red in
Fig. 7.5(a) as dynamical degrees of freedom (see also Fig. 5.1). The disorder correlator Γ given by
Eqs. (7.34) and (7.35) in the microscopic basis for nonmagnetic and magnetic disorder, respectively,
is transformed into the patch basis. To obtain results that only depend on the most relevant set of
parameters, the wavefunctions are assumed to be constant within each patch and taken to have a spin
orientation along one of the coordinate axis and to be either of 3dxz or 3dyz character. This constitutes
a very good approximation as can be seen in Fig. 5.1(b) and (c). Apart from these assumptions, all
possible impurity scattering processes between the patches are taken into account such that SF and
SS in Eqs. (7.18) and (7.19) effectively become 16 × 16 matrices. To describe the superconducting
instability, we focus on the pair hopping interaction in Fig. 5.2(d) or, put differently, set V12 = V21 = J
and Vss = 0 in Eq. (7.15). Furthermore, the density of states is taken to be the same on both Fermi
surfaces. Similarly to Sec. 7.2.2, the superconducting phase competition can be analyzed in the pres-
ence of disorder by summing up the diagrams in Fig. 7.2. In the following, we just discuss the main
results and refer to Ref. [240] for the details of the calculation.

Universality. Despite the complicated structure of the disorder correlator in Eqs. (7.34) and (7.35), the
impurity distribution enters in the Ginzburg-Landau expansion only in form of the combined scattering
rate

γ0 = γIA1
+ γIIA1

+ γB1 + γB2 + γE (7.36a)

for nonmagnetic disorder and

γm = γIE + γIIE + γIIIE + γIA2
+ γIIA2

+ γB1 + γB2 (7.36b)

in case of magnetic scattering. We see that all couplings in Eqs. (7.34) and (7.35) enter just as a sum
except for the mixing terms γIIIA1

and γIIIA2
which do not enter at all. This means that the impact of

disorder on superconductivity does not depend on the relative weight and on the symmetry-allowed
mixing of the different scattering processes describe above and, hence, becomes widely independent of
the microscopic details of the impurities considered. This “universality” of the impact of disorder is
a consequence of our approximation of perfectly polarized wavefunctions in the nested patches of the
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7.3 Disorder in LAO/STO heterostructures

Figure 7.5: Patches and suppression of Tc. The 16 patches of the Fermi surfaces of the two-
orbital model derived in Chap. 5.1.1 are illustrated schematically in (a) together with
their orbital (shading) and spin (arrows) polarization. The blue arrows indicate the
allowed scattering processes associated with γI

A1
in Eq. (7.34) for an electron in the

red patch. Part (b) and (c) show the suppression of the critical temperature Tc as
a function of the nonmagnetic (γ0) and magnetic (γm) scattering rate as calculated
in Ref. [240]. Tc,0 and γc,0 are the critical temperature of the clean system and the
critical reference scattering strength defined in the main text.

Fermi surface. In particular, the fact that γIIIA1
in Eq. (7.34) does not enter is very easily seen from

Eqs. (7.18) and (7.19) and the schematic illustration of the wavefunction polarization in Fig. 7.5(a):
As the two scattered fermions either both switch or both keep their orbital character, either τ0σ0 or
τ2σ3 yields zero in SF and SS .

Nonmagnetic disorder. In case of nonmagnetic scattering, we find the behavior summarized in
Fig. 7.5(b): The transition temperature of the s++ state, realized for attractive interactions (J < 0),
is not affected by disorder as expected from the original Anderson theorem [229–231]. Due to the
sign change of the order parameter between the Fermi surfaces, the s+− superconductor (J < 0) is
suppressed by disorder with the critical temperature Tc decaying according to Tc/Tc,0 = f(γ0/γc) with
increasing disorder strength γ0 defined in Eq. (7.36a). Here Tc,0 is the critical temperature in the
absence of disorder and f the functional dependence originally found by Abrikosov-Gorkov [101] for a
BCS superconductor under the influence of spin-magnetic disorder normalized according to f(0) = 1
and f(1) = 0. Most importantly, the critical scattering rate γc is four times larger than the critical
scattering rate γc,0 of a reference model where the patch wavefunctions are assumed to allow for electrons
to scatter between all patches (without breaking TRS). In more physical terms, it corresponds to a model
with the same band structure but without both spin and orbital degrees of freedom. The enhancement
of the critical scattering rate by a factor of four can be readily understood by reexamination of the
patch wavefunctions illustrated in Fig. 7.5(a). Assuming, for simplicity, s-wave impurities without spin
structure described by the first term in Eq. (7.34), we see that an electron, e.g., in the red patch in
Fig. 7.5(a), cannot scatter into a state belonging to the perpendicular lobes of the Fermi surface as a
consequence of the orbital polarization. In addition, within the same lobe, only half of the possible
patches can be reached as indicated by the arrows which results from the spin orientation of the
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7 Generalizations to weakly disordered systems

wavefunctions on the Fermi surfaces. This mechanism of protection against impurity scattering can in
principle even rule out all pair-breaking scattering processes in a system as has been shown in Ref. [237].

Magnetic disorder. In full agreement with our discussion in Sec. 7.1.2 and Sec. 7.2.2, we find that
both superconducting states are suppressed by disorder in case of magnetic impurities with s++ being
prone to both intra- and interband scattering while the s+− state is protected again interband processes.
The explicit calculation of this section shows that this enhances the stability of s+− by a factor of two
compared to the s++ state as can be seen in Fig. 7.5(c). Note that this result does not depend on
the relative weight of the different scattering channels in Eq. (7.35) since only their sum enters γm in
Eq. (7.36b). The critical temperatures again follow the Abrikosov-Gorkov law [101].
Due to the aforementioned important role of magnetic disorder in oxide heterostructures [143, 153–

155], the unconventional s+− state cannot be ruled out by the presence of disorder, e.g., resulting from
oxygen vacancies at the interface. If, indeed, magnetic scattering is the dominant source of disorder in
the superconducting samples, the s+− state will even be more stable and, hence, constitutes a more
likely candidate than its conventional counterpart s++.

7.4 Summary of Chapter 7

In this chapter, we have complemented our analysis of superconducting instabilities in Chaps. 4–6 with
respect to the impact of weak disorder, i.e., disorder that does not cause localization in the vicinity of
the Fermi surface (requires kF l� 1 and Rl � 1/

√
TcρF [227]).

From the criterion that the superconducting gap is not reduced by a given disorder realization, we
have derived the compact form (7.7) of the generalized Anderson theorem. It states that a supercon-
ducting phase is protected against disorder if its order parameter ∆T † commutes with the TRE and
anticommutes with the TRO component of the disorder potential. This condition is consistent with
several explicit calculations [235–240].
As an example of a multiband system with doubly degenerate Fermi surfaces, we have discussed

the iron-based superconductors [26]. Most interestingly, Eq. (7.7) implies that the unconventional
s+− state is protected against magnetic interband scattering which is confirmed by the calculations
of Refs. [238, 239]. Magnetic impurities of purely interband character might be realized in iron-based
superconductors by nucleation [386, 387] of a particle-hole instability competing [351, 381, 382] with
s+− in the vicinity of the a initially nonmagnetic defect [239]. As the conventional s++ state is prone to
the resulting magnetic scatterers, this puts the connection [241] between the stability against seemingly
nonmagnetic impurities and conventional pairing in question.
For the case of singly degenerate Fermi surfaces, which is particularly relevant for this thesis, we

have also provided a diagrammatic proof of Eq. (7.7). In addition, we have shown that the necessary
condition or “design principle” for TRS-breaking superconductivity in 2D systems [325, 326] discussed
in Chap. 4.4.1 also holds in the presence of both nonmagnetic and magnetic impurities.
Furthermore, it has been shown by way of an explicit 2D example that magnetic disorder can drive

a phase transition from a topologically trivial superconductor with TRS, e.g., resulting from electron-
phonon coupling (see Chap. 6.1), to a time-reversal symmetric topological phase. It leads to the at
first sight counterintuitive conclusion that magnetic impurities can stabilize a topological phase that
is based on TRS (class DIII, see Chap. 2.1). The resulting MBSs are still necessarily gapless as long
as the edge of the system is oriented perpendicular to one of the mirror planes of the point group of
the bulk and the magnetic moments of the impurities are oriented perpendicular to the plane of the
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system.
Finally, we have studied the stability against disorder of the two candidate pairing states of LAO/STO

heterostructures – the conventional, topologically trivial s++ and the unconventional, nontrivial s+−

superconductor deduced microscopically in Ref. [349] (see Chap. 5). Within the two-orbital model of
the Ti 3dxz and 3dyz states discussed in Chap. 5.1.1, there are various possible microscopic scatter-
ing channels as can be seen in the impurity vertices (7.34) and (7.35) for nonmagnetic and magnetic
disorder, respectively. However, the different coupling constants just enter in form of the combined
scattering rates (7.36) as a consequence of the strong orbital and spin polarization of the wavefunctions
in the relevant parts of the Fermi surfaces (see Fig. 7.5(a)). The impact of nonmagnetic and magnetic
scattering on the transition temperatures calculated in Ref. [240] is summarized in Fig. 7.5(b) and (c),
respectively. Most importantly, it is found that the critical scattering rate of the unconventional s+−

superconductor is enhanced by a factor of four due to the orbital and spin polarization of the states
at the Fermi surface. Furthermore, it is by a factor of two more stable against magnetic disorder than
its conventional counterpart s++ resulting from its protection against magnetic interband scattering.
Similarly to the discussion of TRS breaking at initially nonmagnetic impurities in iron-based super-
conductors [239], competing magnetic phases can occur at, e.g., oxygen vacancies due to the strong
tendency of the system towards magnetism as has been shown numerically [153, 155]. From this it fol-
lows that, despite the inevitable presence of disorder at the interface, the unconventional topologically
nontrivial s+− phase remains a potential candidate pairing state.
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Conclusion

In this thesis we have analyzed interaction- and disorder-induced phase transitions with a particular
emphasis on the relation between the changes of symmetry as well as of topology and the mechanism
responsible for the instability of the system. In this chapter, we will summarize the main results and
briefly discuss related further research projects.

Chap. 3 was concerned with the “simulation” of topological insulator phases in cold-atom systems
with the long-term goal of studying the impact of strong electronic repulsion on topological band struc-
tures and the experimental realization of exotic interacting topological phases such as the TMI (see
Sec. 2.4.2). As a first step, we presented a noninteracting minimal model that can be implemented
in cold-atom experiments [285, 286, 288] and allows realizing 2D time-reversal symmetric topological
phases (QSH and trivially insulating) as well as its 3D analogues, the STI, the WTI and topologically
trivial states. The crossover between 2D and 3D can be conveniently controlled by varying a single
parameter in the Hamiltonian. In the second step, we have analyzed the impact of electron-electron
interactions within slave-rotor theory [65–67] in the 3D limit of the system. As local Hubbard inter-
actions turned out to lead to Mott phases with a gapless spinon spectrum, we had to study nonlocal
interactions in order to find TMI states. We have discussed how these interactions can be realized
experimentally. The main idea is to encode the pseudospin degree of freedom spatially. The resulting
phase diagram (see Fig. 3.3(a) and (b)) contains both strong and weak TMI phases.
The central topic of Chap. 4 has been the derivation of general selection rules for superconducting

instabilities in 2D and 3D systems with nondegenerate Fermi surfaces. The results are general in the
sense that they only rely on the symmetries and the energetic splitting Eso of the Fermi surfaces of
the high-temperature phase. The selection rules are valid as long as (1) the superconducting state is
reached by a single phase transition from a time-reversal symmetric normal state, (2) no spontaneous
translation symmetry breaking takes place at the superconducting phase transition and (3) the splitting
Eso is larger than the zero-temperature gap or, equivalently, the transition temperature (times a factor
of order 1).
The main results are the following: An order parameter transforming under a multidimensional or

complex IR (see Chap. 1.1.1) of the point group of the high-temperature phase must necessarily break
TRS. Consequently, if (1)–(3) are valid, the IR of the order parameter being multidimensional or com-
plex is not only a necessary [81] but also a sufficient condition for TRS breaking. While this result
indicates that the splitting of the Fermi surfaces enhances the tendency of the system towards the
formation of a TRS-breaking condensate, there are additional strong restrictions on spontaneous TRS
breaking for the special case of 2D systems. Geometrically, these constraints follow from the fact that
inversion can be realized as a rotation in a 2D system. We have shown that the presence of a threefold
rotation symmetry in the normal state is a necessary condition for spontaneous TRS breaking at a
superconducting transition. It shows that TRS-breaking superconductivity is a particularly rare phe-
nomenon in 2D given that inversion symmetry is very naturally broken in the experimental realization
of 2D systems (see Chap. 1.3). At the same time, the result can be read as a “design principle” in the
search for exotic 2D pairing states with broken TRS. Furthermore, we have seen that the triplet vector
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will be necessarily aligned parallel to the plane of the 2D system, if the point group of the normal state
contains a twofold rotation perpendicular to the plane.
We have illustrated these general results taking five different materials, Sr2RuO4, UPt3, URu2Si2,

LAO/STO heterostructures as well as FeSe on STO, as examples (see Chap. 1.3 for an introduction).
Most notably, the results discussed above imply that TRS, which is broken [47, 51, 53] in the bulk
superconducting state of Sr2RuO4, must be restored and its triplet vector, oriented along the [001]
direction in the bulk [47, 51, 53, 188, 189], must rotate to lie in the (001) plane for a thin layer [68] of
this material grown along the [001] direction. It has been argued that the same is expected to hold in
the vicinity of (001) surfaces of Sr2RuO4. We have investigated all remaining possible pairing states
of thin layers of Sr2RuO4 and concluded that it represents a promising system for the observation of
Majorana modes. Note that the presence of TRS forces them to come in counter-propagating Kramers
pairs. While the point group of thin layers of UPt3 [69] contains a threefold rotation symmetry and,
hence, TRS-breaking superconductivity cannot be excluded, we have shown how the selection rules can
be used in order to reduce the number of 10 symmetry-allowed pairing states to only 3 energetically
favorable candidates (see Table 4.4).
In case of LAO/STO heterostructures, which display conducting behavior [35, 142, 156] for the

three different orientations (001), (110), and (111), the selection rules stated above directly imply that
only in the latter orientation TRS-breaking superconductivity is possible. This motivates a closer
experimental inspection of the less-studied (111) interface for which superconducting behavior has not
yet been reported. In conjunction with the experimental observation [70] of the absence of nodes on
the Fermi surfaces, we could fully determine the symmetry properties of the order parameter of the
(001) interface, i.e., its relative phase on a given Fermi surface.
However, the selection rules neither yield information on the relative sign of the order parameter

between the different Fermi surfaces nor on the mechanism driving the superconducting instability.
For this purpose, we have performed a microscopic calculation for the (001) LAO/STO heterostructure
which has been presented in Chap. 5. As a first step, an effective low-energy model for the electron
liquid, that is motivated by various experimental observations (see Sec. 5.1), has been derived. In order
to provide an unbiased analysis, all symmetry-allowed interaction processes are taken into account
and the phase competition between all possible superconducting and density-wave instabilities of the
effective model is analyzed using a Wilson-RG calculation. We find two possible pairing states as
summarized in Fig. 5.4. In case of dominant electron-phonon coupling, i.e., a conventional mechanism,
the s++ superconductor, where the order parameter has the same sign on the two spin-orbit-split Fermi
surfaces, is realized. This phase has been shown to be topologically trivial. Assuming an unconventional
mechanism, where the microscopically repulsive electron-electron interaction dominates, the s+− state
is the leading instability. The s+− superconductor is characterized by a sign change between the two
Fermi surfaces and is topologically nontrivial. This establishes a one-to-one correspondence between
the mechanism and the topology of superconductivity in LAO/STO heterostructures. Experimental
signatures (see Chap. 5.2.2) of Majorana modes, e.g., at the edge of the system, would represent an
important result on its own. On top of that, it would also give direct hints on the unknown mechanism
of superconductivity in this system.
In addition, we have seen that the competing density wave instabilities show very interesting spatial

textures including vortex as well as Skyrmion lattices (see Fig. 5.6).
In Chap. 6, we have generalized the connection between the mechanism and topology of superconduc-

tivity found for LAO/STO heterostructures by investigating an arbitrary noncentrosymmetric system
where the assumptions (1)–(3) defined above apply. The instabilities have been derived using Eliash-
berg theory [71, 72] and the topological classification has been performed using the full Green’s function
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which includes effects beyond the mean-field level (see Chap. 2.4.1). The main findings are the follow-
ing. In case of a conventional pairing mechanism, i.e., superconductivity induced by electron-phonon
coupling alone, the resulting superconducting state will generally be fully gapped, neither break any
point group symmetry nor TRS and be topologically trivial. Consequently, the observation of topolog-
ical signatures as well as spontaneous TRS breaking directly implies that the pairing mechanism must
be unconventional. To describe unconventional pairing, we used the effective fluctuation approach of
Refs. [31, 32] where the superconducting instability is driven by particle-hole fluctuations of a compet-
ing density-wave instability (see Chap. 6.2.1). We have shown that the time-reversal and topological
properties of the resulting superconductor are crucially determined by the behavior of the order pa-
rameter of the competing instability under time-reversal. For an order parameter that is even under
time-reversal, i.e., nonmagnetic such as a (real) CDW, exactly the same holds as in case of electron-
phonon-induced pairing. Only for a competing instability with a magnetic (time-reversal-odd) order
parameter, e.g., a (real) SDW, spontaneous point symmetry and TRS breaking as well as nontrivial
topologies are possible.
To deduce guiding principles for the search of topologically nontrivial superconductors, we have

derived an asymptotic symmetry of the Eliashberg equations that holds as long as the spin-orbit
splitting is much smaller than the bandwidth. It follows that all superconducting order parameters
can be classified into “Rashba even” and “Rashba odd” states in analogy to the classification into
even and odd states of centrosymmetric systems (see Chap. 6.2.4 for a definition). It has been shown
that only “Rashba odd” states can be topologically nontrivial which imposes necessary conditions for
the emergence of nontrivial invariants. For instance, a 2D superconductor can only be topologically
nontrivial if the total number of points in the Brillouin zone satisfying k = −k enclosed by spin-orbit-
split pairs of bands is odd. This criterion is readily accessible experimentally (e.g., via ARPES), in
particular, since the spin-splitting does not have to be resolved.
We have illustrated the consequences of these general statements for LAO/STO heterostructures

as well as for FeSe on STO. It confirms and complements the results of the calculation for the (001)
oxide heterostructure presented in Chap. 5. For instance, it naturally explains why the topologically
trivial (nontrivial) s++ (s+−) superconductor mainly competes with a CDW (SDW) instability (see
Fig. 5.5). Furthermore, also the (110)-oriented interface satisfies the necessary requirements for topo-
logical superconductivity and, hence, constitutes an interesting candidate system for the investigation
of Majorana physics. The Fermi surface topology of FeSe (see Fig. 1.4(b)) represents an example where
the necessary conditions for topological superconductivity are not satisfied.
The last chapter of the thesis, Chap. 7, was concerned with complementing the discussion of Chaps. 4–

6 with respect to the inclusion of weak disorder, i.e., disorder that does not lead to localization [8]. We
have first deduced a general condition for the independence of the mean-field transition temperature of a
superconducting state on the presence of weak disorder. This “generalized Anderson theorem” [235–240]
assumes a purely algebraic form (see Eq. (7.7)) and holds both for singly and doubly degenerate Fermi
surfaces. It states that a superconducting phase is protected if its order parameter commutes with the
nonmagnetic and anticommutes with the magnetic component of the disorder configuration. Special
cases have been discussed, compared with explicit calculations [237–240] and shown to be relevant, e.g.,
to the iron-based superconductors [238, 239] and to LAO/STO heterostructures.
For the latter system, a detailed analysis of the possible microscopic impurity-scattering channels

that are allowed by symmetry has been presented. We have studied quantitatively the sensitivity of
the two candidate pairing states s++ and s+− derived in Chap. 5 to both nonmagnetic and magnetic
disorder. Most importantly, the critical scattering rates of both pairing states is crucially enhanced
due to the spin and orbital polarizations of the wavefunctions on the Fermi surfaces. Furthermore,

169



Conclusion

the unconventional s+− state is by a factor of two more stable than the s++ superconductor against
magnetic disorder. Since even initially nonmagnetic impurities such as oxygen vacancies have been
shown [153, 155] to induce local magnetic moments by spontaneous symmetry breaking, magnetic
scattering is expected to be particularly relevant in oxide interfaces. It implies that the unconventional
s+− state cannot be ruled out due to the inevitable presence of disorder in the heterostructure.
In addition, we have shown that magnetic disorder can induce a transition from a time-reversal

symmetric trivial superconductor, that, e.g., emerges due to electron-phonon coupling, to a topologically
nontrivial, TRS-preserving superconducting condensate. Remarkably, the resulting Majorana edge
modes can still be protected by the presence of additional crystal symmetries (see Fig. 7.3). This leads
to the interesting conclusion that intentional magnetic doping can be used to stabilize time-reversal
symmetric topological superconducting phases with gapless boundary modes.

Naturally, many aspects presented in this thesis deserve further investigations. Firstly, one of the
central assumptions of our general analysis of superconducting instabilities in Chaps. 4, 6 and 7 has
been that no additional translational symmetries are spontaneously broken at the phase transition.
This was justified by the fact that many calculations [108–112] show that this is only to be expected to
occur in the presence of a magnetic field. Nonetheless, it is interesting to ask whether one can derive
general conditions for the exclusion of these types of states, at least in case of nondegenerate Fermi
surfaces. Secondly, a detailed microscopic calculation of instabilities in thin layers of Sr2RuO4 should
be performed which, similarly to the calculation in Ref. [198], takes into account all three bands but,
on top of that, also the Dresselhaus-Rashba effect [333, 334]. This calculation could decide which out
of the four remaining pairing states illustrated in Fig. 4.5(c)–(f) is expected to occur. Concerning the
LAO/STO heterostructures, it would be interesting to perform a numerical RG calculation that does
not restrict the theory to the nested regions of the Fermi surface. In addition, a detailed derivation of
an effective low-energy model and a subsequent analysis of instabilities similarly to our discussion in
Chap. 5 is required for the other two possible orientations of the interface.
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In conclusion, we have seen in this thesis that the three central aspects of phase transitions out-
lined in the introduction – mechanism, topology and symmetry – are inherently related, in particular,
in noncentrosymmetric superconductors. As summarized schematically in the figure, the analysis of
Chap. 4 showed that the crystal symmetries in combination with the energetic splitting of the Fermi
surfaces have crucial implications for the time-reversal properties and, hence, for the topological classi-
fication of possible superconducting instabilities in the system. Furthermore, a proof has been provided
in Chap. 6 that both electron-phonon coupling as well as fluctuations of a nonmagnetic density-wave
order parameter will lead to a pairing state that preserves all point symmetries of the system. This
relates the symmetry and mechanism of superconductivity. Finally, we have seen several times that
there is also an inherent relation between the mechanism and the topology of superconductivity. While
the microscopic analysis specifically for LAO/STO heterostructures presented in Chap. 5 revealed a
one-to-one correspondence between these two aspects of superconductivity, the generalizations dis-
cussed in Chap. 6 and Chap. 7 showed that the presence of either magnetic particle-hole fluctuations
or magnetic impurities is a necessary prerequisite for stabilizing a time-reversal invariant topological
superconductor.
On top of the relevance from a fundamental scientific point of view, we have seen that these obser-

vations can both be used to pinpoint unknown order parameters as well as the pairing mechanism of
superconductors and might serve as guiding principles in the search for exotic TRS-breaking states and
topologically nontrivial superconductors.
On a more general level, the work presented in this thesis accomplishes the following main achieve-

ments. Conceptually, this thesis has shown that exact relations following from symmetries and general
energetic arguments can be combined in order to derive physically relevant constraints on possible
phase transitions beyond the level of explicit model studies. Examples are the design principle for
spontaneous TRS breaking, the necessary conditions for topological superconductivity and the general
form of the Anderson theorem. The crucial merits of this approach are tied to the fact that its results
only depend on very generic properties of the system (such as symmetries) and hold irrespective of,
e.g., the number and character of relevant orbitals or the detailed structure of the interaction vertices.
This directly reveals the universality of the associated properties of materials. Furthermore, it also
allows applying these results to many different systems without detailed knowledge about the dom-
inant microscopic degrees of freedom. For instance, we did not have to take sides in the discussion
[194–198] about which band is most relevant for superconductivity in Sr2RuO4 in order to deduce the
behavior of the order parameter in the thin-layer limit. However, universality naturally comes at a
price: The predictive power of our general arguments for a given system is limited compared to specific
model studies as we have seen several times in this thesis. For this reason, we have also performed
supplementary microscopic calculations in order to pinpoint the form of the order parameter, study
the phase competition and analyze the quantitative impact of disorder. Taken together, this thesis
shows that the combination of universal guiding principles based on general aspects of a system and
explicit microscopic model studies constitutes an efficient way towards the experimental realization and
theoretical understanding of exotic new states of matter.
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Notation and conventions

The following list summarizes the conventions used throughout the thesis:

1. We set ~ = kB = 1 where ~ and kB denote the reduced Planck and Boltzmann constant.

2. Unless stated otherwise, indices appearing twice are assumed to be summed over (Einstein sum-
mation convention).

3. The compact notation k ≡ (iωn,k) and q ≡ (iΩn, q) for fermionic and bosonic momenta is used.
The symbol

∫
k comprises both momentum and Matsubara summation,∫

k
· · · = T

∑
ωn

∑
k

. . . ,

and similarly in the bosonic case.

4. In order to distinguish between operators acting in Fock and single-particle space, the former
have hats whereas the latter not (see, e.g., ĉkα and hk in Eq. (4.2)).

5. The Grassmann variable corresponding to a fermionic operator has the same symbol without the
hat, e.g., ckα is the Grassmann analogue ĉkα. The same holds for bosons (φqj represents φ̂qj in
the field integral description).

6. Pauli matrices are defined as usual,

σ0 = τ0 = s0 =

(
1 0

0 1

)
, σ1 = τ1 = s1 =

(
0 1

1 0

)
,

σ2 = τ2 = s2 =

(
0 −i

i 0

)
, σ3 = τ3 = s3 =

(
1 0

0 −1

)
,

but three different symbols are used in order to emphasize whether it refers to the microscopic spin
of the electron (σj), a general abstract isospin (τj) or pseudospin (sj) in the sense of Appendix A.1.

7. The commutator [·, ·] and anticommutator {·, ·} are defined as

[A,B] := AB −BA, {A,B} := AB +BA

for two operators A and B.

8. In all symmetry arguments presented in this thesis, we neglect the possibility of accidental de-
generacies as they require fine-tuning.
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Notation and conventions

9. Throughout the thesis we define Fermi surfaces as connected sets of momenta and assume that
all Fermi surfaces have dimension d− 1 in case of a d-dimensional system.

10. A “Rashba pair” of Fermi surfaces is defined as a pair of nondegenerate Fermi surfaces that
merge into one doubly degenerate Fermi surface upon hypothetically switching off all terms in
the Hamiltonian that break inversion-symmetry.

11. Although different conventions exist in the literature, we will use the term “conventional” in
the context of superconductivity to refer to superconductors that arise mainly due to electron-
phonon interactions in the sense that (the symmetry, topology and nodal structure of) the order
parameter would be unchanged when hypothetically switching off all other microscopic interaction
channels in the material. All other superconductors are referred to as “unconventional”. Note that,
according to this definition, an unconventional superconductor does not have to break symmetries
(as, e.g., the s+− state of Chap. 5).

We next present the basic notation of this thesis:

e elementary charge

µB Bohr magneton

d dimensionality of the system

k, q crystal momenta

x real space coordinate (Fourier conjugate to k, q)

εks spectrum of band s, eigenvalue of the noninteracting Bloch-Hamiltonian hk
ψks Bloch wavefunctions, i.e., hkψks = εksψks

ϕsk time-reversal phases defined in Eq. (4.24)

Ω set of angular variables parameterizing the Fermi surfaces

ρs(Ω) angle-resolved density of states on Fermi surface s

EF Fermi energy

ρF total density of states of the system ρF :=
∑

s

∫
s dΩρs(Ω)

vF Fermi velocity

kF Fermi momentum

Eso spin-orbit splitting

Λt bandwidth

ωql phonon spectrum of branch l

ωD Debye frequency, i.e., scale for upper bound of ωql
β inverse of temperature (T ), β := 1/T

Tc transition temperature
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ωn fermionic Matsubara frequencies, ωn = πT (2n+ 1), n ∈ Z

Ωn bosonic Matsubara frequencies, ωn = 2πTn, n ∈ Z

ĉkα (ĉ†kα) electronic annihilation (creation) operator in microscopic basis; α refers to all relevant
microscopic degrees of freedom (spin, orbitals, ...)

f̂ks (f̂
†
ks) electronic annihilation (creation) operator in band basis (Fermi surface s, see

Fig. 4.1)

d̂jµ (d̂†jµ) fermionic annihilation (creation) operator for the new lattice introduced in Chap. 3

ŝjµ (ŝ†jµ) spinon annihilation (creation) operator introduced in Eq. (3.8)

b̂ql (b̂
†
ql) creation (annihilation) operator of phonons of branch l

φ̂qj Hermitian (φ̂†qj = φ̂−qj) collective bosonic mode (j = 1, 2, ..., NB)

Gp point group of the system

∝ proportional to

Tτ time-ordering operator in imaginary time τ

∆S
k singlet component of superconducting order parameter defined in Eq. (1.17)

dk triplet vector (see Eq. (1.17))

∆(k) microscopic superconducting order parameter (see Eq. (4.2))

Dss′(k) order parameter in basis of normal state Hamiltonian (see Eq. (4.27))

∆̃s(k) its diagonal elements, ∆̃s(k) := Dss(k)

gk spin-orbit vector

F free energy of the system

∼ asymptotic to

O(x) Landau symbol

∇ Nabla operator ∇ = (∂x, ∂y, . . . )
T

A Vector potential (maybe remove again)

ξ superconducting coherence length

λ penetration depth

Rl localization length

l mean-free path

I inversion operator

O(N) orthogonal group

U(N) unitary group

SO(N) special orthogonal group

SU(N) special unitary group
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Notation and conventions

E identity element of a group
∼= isomorphic

Td d-dimensional torus

Sd d-dimensional hypersphere

πd d-th homotopy group

1 unity matrix

tr . . . trace of a matrix

diag(a1, a2, . . . ) diagonal matrix with a1, a2 etc. on its diagonals

δi,j Kronecker delta

δ(x) (multidimensional) delta function

sign(x) sign function, sign(x) = 1 for x > 0, sign(x) = −1 for x < 0

ej unit vector, (ej)i = δi,j

(hkl), [hkl] Miller indices describing planes and directions

ζ(s) =
∑∞

n=1 n
−s Riemann zeta function

ψ(x) digamma function

γ Euler-Mascheroni constant (γ ' 0.577)(
n

k

)
binomial coefficient

c.c. complex conjugate

H.c. Hermitian conjugate
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A Appendix A

Basic calculations and results

In this first appendix, we present additional basic discussions that will be useful several times in this
thesis.

A.1 Pseudospin basis

Here we provide a proof by construction that it is always possible to find a pseudospin basis {|−,k〉 , |+,k〉}
of the Hamiltonian hk in the presence of inversion symmetry (I) and spin-1/2 TRS (Θ with Θ2 = −1),

RΨ(I)hkR†Ψ(I) = h−k, (A.1a)

ΘhkΘ† = h−k, (A.1b)

that transforms under these operations exactly in the same way as the physical spin. Mathematically,
this means that

RΨ(I) |±,k〉 = |±,−k〉 , (A.2a)
Θ |±,k〉 = ± |∓,−k〉 . (A.2b)

Take an arbitrary, but fixed k and choose an eigenstate |k〉 of the Hamiltonian, hk |k〉 = εk |k〉,
belonging to the low-energy subspace of interest. We set |+,k〉 := |k〉 and define

|+,−k〉 := RΨ(I) |+,k〉 , (A.3a)
|−,−k〉 := Θ |+,k〉 , (A.3b)
|−,k〉 := RΨ(I) |−,−k〉 . (A.3c)

It is now only left to show, that these states indeed form a basis of eigenstates that have the correct
transformation behavior.
Firstly, they are indeed eigenstates, hsk |±, sk〉 = εk |±, sk〉, s = ±, as readily follows from the

symmetries (A.1) of the Hamiltonian.
Secondly, in order to form a complete basis of the 2D low-energy Hilbert space, |+, sk〉 and |−, sk〉

have to be linearly independent both for s = + and s = −. To show this, consider

〈−,k|+,k〉 (A.3c)
= 〈−,−k|R†Ψ(I)|+,k〉 (A.3b)

= −〈−,−k|R†Ψ(I)Θ|−,−k〉 = 〈−,−k|R†Ψ(I)Θ|−,−k〉 = 0,
(A.4)
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A Basic calculations and results

where we have used [Θ,RΨ(I)] = 0 as well as Θ = −Θ† and RΨ(I) = R†Ψ(I) following from Θ2 = −1
and R2

Ψ(I) = 1. Similarly, one can show that 〈−,−k|+,−k〉 = 0 which completes the proof of
completeness of the set {|−, sk〉 , |+, sk〉} with respect to the low-energy theory.
Thirdly, we have to show that the required transformation behavior (A.2) holds. Eqs. (A.2a) and

(A.2b) with + hold by design due to Eqs. (A.3a) and (A.3b). Multiplying Eq. (A.3c) byR†Ψ(I) = RΨ(I)
reproduces Eq. (A.2a) with −. Similarly, Eq. (A.2b) with − can be readily shown.
This completes the proof of the existence of the pseudospin basis and its explicit construction recipe

(A.3). We finally mention without presenting a proof that |k〉 can always be chosen such that the
pseudospin basis constructed according to Eq. (A.3) also transforms as spin-up and spin-down under a
twofold rotation Cz2 if the latter belongs to the point group of the system.

A.2 Consequences of a two-fold rotation and inversion for IRs

Here it is shown that a two-fold rotation Cz2 perpendicular to the plane of a 2D system, exactly as
inversion I for any centrosymmetric point group, forces all IRs and, hence, all possible order parameters
to be either even or odd under under this operation. This appendix is particularly important for the
analysis of Chaps. 4 and 6 and has, in its main part, been published in Ref. [367].
As a first step, we have to show that I and Cz2 commutes with all symmetry operations of the point

group Gp. In case of inversion this is trivial as its coordinate representation is simply given by −1d,
where d is the dimensionality of the system. To study Cz2 , we first have to notice that, by design, all
symmetry operations of a 2D system cannot mix in-plane (x, y) and out-of-plane (z) coordinates such
that the coordinate representation of any g ∈ Gp must have the form

M(g) =


m(g)

0

0

0 0 c(g)

 (A.5)

in the basis {x, y, z}, where m(g) is a real 2× 2 matrix and c(g) ∈ R. Obviously, M(g) commutes with
M(Cz2 ) = diag(−1,−1, 1) and, hence, [Cz2 , g] = 0.
Therefore, it holds for any representation ρ

[ρ(Cz2 ), ρ(h)] = 0 ∀g ∈ Gp. (A.6)

If ρ is irreducible, Schur’s lemma [85] implies ρ(Cz2 ) = C1dρ with C ∈ C. Due to (Cz2 )2 = E, where E
is the identity operation, we have C ∈ {+1,−1}.
Assuming a second order phase transition, the competing order parameter must transform under one

of the IRs of the point group and, hence, can only be either even or odd under I if I ∈ Gp (under Cz2 if
d = 2 and Cz2 ∈ Gp). We emphasize that this generally only holds for bosonic order parameters such as
the superconducting order parameter (〈ĉ†ĉ†〉) and particle-hole order parameters (〈ĉ†ĉ〉) where we do
not have to consider the IRs of the double group associated with Gp (see the discussion at the end of
Chap. 1.1.1).

A.3 Overview: Point groups of 2D and 3D crystalline systems

Here we summarize the possible point groups of 2D and 3D systems together with the properties of
their IRs that are important for this thesis. In particular in Chap. 4, extensive use will be made of the
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A.3 Point groups of 2D and 3D crystalline systems

information presented in this appendix. For a full listing of all IRs we refer to Ref. [91].
We focus entirely on crystalline systems, i.e., on systems with a Bravais lattice, which crucially limits

the possible rotation symmetries to be only two-, three-, four- or sixfold [85]. In 3D, this leads to 32
point groups as summarized below:

1. Nonaxial groups: C1 = {E}, Ci = {E, I}, Cs = {E, σh}, where I and σh denote inversion and
reflection at a plane. All are Abelian and there are only real 1D IRs. Only Ci is centrosymmetric.

2. Cyclic groups: Cn, n = 2, 3, 4, 6. Generated by n-fold rotation Cn. All are Abelian and, hence,
only have 1D IRs. Except for C2 all have complex IRs. All are noncentrosymmetric.

3. Reflection groups: Cnh, n = 2, 3, 4, 6. Characterized by n-fold rotation Cn and mirror plane (σh)
normal to the rotation axis. Again all are Abelian and only have 1D IRs. Only C2h has entirely
real IRs. Only C3h

∼= C6 is noncentrosymmetric.

4. Pyramidal groups: Cnv, n = 2, 3, 4, 6. Generated by n-fold rotation Cn and a mirror plane (σv)
containing the rotation axis. Except for C2v all are non-Abelian and have real IRs of dimension
one and two. C2v only has real 1D IRs. All are noncentrosymmetric.

5. Improper rotation groups: Sn ∼= Cn, n = 4, 6. Generated by n-fold improper rotation Sn (rotation
followed by reflection at plane normal to axis). Both are Abelian and only have 1D IRs. Both
have complex IRs. Only S4 is noncentrosymmetric.

6. Dihedral groups: Dn, n = 2, 3, 4, 6. Generated by n-fold rotation Cn and a perpendicular twofold
rotation C ′2. As Dn

∼= Cnv, the IRs have the same properties as that of Cnv above. All are
noncentrosymmetric.

7. Prismatic groups: Dnh, n = 2, 3, 4, 6. Characterized by n-fold rotation Cn, n twofold rotations
normal to Cn and a mirror plane (σh) containing the twofold rotations. All only have real IRs.
Except for the Abelian memberD2h all also have 2D IRs. OnlyD3h

∼= C6v is noncentrosymmetric.

8. Antiprismatic groups: D2d
∼= C4v and D3d

∼= C6v. Generated by a 2n-fold improper rotation axis
S2n and a perpendicular twofold rotation C ′2. Only D2d is noncentrosymmetric.

9. Cubic groups: T , Td, Th, O and Oh. T is generated by one of its threefold and one of its twofold
rotation axes. Td is generated by one of its fourfold improper and one of its threefold proper
rotation axes. O is generated by two distinct fourfold rotation axes. The generation of the
remaining two centrosymmetric point groups follow from Th = T × Ci and Oh = O × Ci. None
of these groups is Abelian. The analysis of IRs is simplified by noting that Td ∼= O. All have
multidimensional real IRs while only T and Th also have complex IRs.

2D systems should in general be thought of as being embedded in 3D-space: While crystal momenta
k become two-component in-plane (xy-plane) vectors, there is no generic reason to neglect the z-
component of the spin or orbital angular momentum operator.
By design, one has to focus on symmetry groups that do not mix in-plane and out-of-plane momenta.

This rules out the five cubic point groups such that only 27 of the 32 crystal classes are of interest for
describing 2D systems. As already mentioned in Chap. 1.3, it makes sense to distinguish between:
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1. Interfaces/surfaces/thin layers on substrate: No symmetry operation relating z and −z is possible
since the conducting system is embedded in an asymmetric environment as shown in Fig. 1.2(a)
and (b). This restricts the possible point groups to Cn, Cnv, n = 1, 2, 3, 4, 6 (all of which are
necessarily non-centrosymmetric).

2. 2D sheets in symmetric environment: As illustrated in Fig. 1.2(c), the conducting sheet can have
a symmetric environment with A either being vacuum or some dielectric substrate. In this case,
the system can have point symmetries relating z and −z. Consequently, the following additional
point groups have to be considered:

a) Non-centrosymmetric: Cs, C3h, S4, Dn, n = 1, 2, 3, 4, 6, D3h, D2d

b) Centrosymmetric: Ci, Cnh, S6, Dnh, D3d with n = 2, 4, 6

To retain the expected number (27) of allowed point groups, we note that, in 3D, Cs ≡ C1v and
D1 ≡ C2. In 2D, this identification does not hold when forcing the principal axes to be perpendicular
to the plane and, hence, the list above contains 29 point groups.
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B Appendix B

Cold-atom realization of topological Mott
insulators

This appendix provides additional information on Chap. 3 of the main text. More specifically, we
first discuss in more detail how the nonlocal Hubbard interaction (3.7) can be effectively realized (see
Sec. B.1) and then present the slave-rotor approach we use to deduce the interacting phase diagrams
in Fig. 3.3 (see Sec. B.2). Exactly as Chap. 3, this appendix is based on Ref. [317].

B.1 Twisting the Hubbard interaction

In the following we present more details about how the nonlocal interaction term

Ĥ ′U =
U

2

∑
j,σ=↑,↓

(n̂2jxjyjzσ + n̂(2jx+1)jyjzσ − 1)2, n̂jσ = ĉ†jσ ĉjσ, (B.1)

can be implemented in a cold-atom setup. The procedure we propose is based on interchanging degrees
of freedom: As illustrated in Fig. B.1, the spin degree of freedom σ of the original fermions ĉjσ will be
encoded by the evenness and oddness of jx of the new fermions d̂jµ, whereas the parity (−1)jx of jx in
the original basis is represented by the internal on-site degree of freedom µ = ± of the new fermions.
By construction, the nonlocal interaction term in Eq. (B.1) assumes the form of the usual Hubbard
on-site interaction in terms of the transformed fermions d̂jµ. Keeping the noninteracting part of the
theory Ĥ2D + Ĥz fixed, the full Hamiltonian reads in the new basis as

Ĥ = −
∑
j,j′

∑
µ,µ′

(
d̂†jµAµµ′(j, j

′)d̂
j′µ′

+ H.c.
)

+ λ
∑
j

∑
µ,µ′

d̂†jµ (σ3)µµ′ d̂jµ′ +
U

2

∑
j

(∑
µ

d̂†jµd̂jµ − 1

)2

,

(B.2)

where Aµµ′(j, j′) are the transformed hopping amplitudes of Ĥ2D + Ĥz as illustrated in Fig. B.1 for all
three spatial directions. Redistributing the original spin degree of freedom in the way we propose, the
system only contains nearest and next-nearest neighbor hopping elements. It is very important to note
that, although the staggered hopping now has the form of a Zeeman term, Eq. (B.2) is mathematically
equivalent to Ĥ2D + Ĥz + Ĥ ′U and, consequently, respects TRS.
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B Cold-atom realization of topological Mott insulators

Figure B.1: Transformation to the new lattice and required hopping matrix elements
along the three spatial directions. Panels (a), (b) and (c) show the hopping
elements along the x, y, and z directions, respectively. The upper part of the respective
panels refers to the hopping elements of the ĉjσ fermions in the Hamiltonian Ĥ2D+Ĥz

defined in Eqs. (3.1) and (3.2) of the main text. The lower part of the panels shows
the required hopping elements of the d̂jµ fermions that have to be implemented in
order to obtain the identical Hamiltonian in terms of the ĉjσ fermions if the spin σ
is encoded spatially (as even and odd sites) and the site parity along x, µ = ±, as the
internal hyperfine degree of the freedom.

B.2 Slave rotor theory

To derive the interacting phase diagrams reported in the main part of the paper, we apply slave-rotor
theory [65–67] to the Hamiltonian Ĥ2D + Ĥz + Ĥ ′U restated in the new basis (d̂jµ fermions) where the
interaction is an on-site Hubbard term. As already mentioned in the main text, one introduces phases
θj conjugate to the total number of fermions on one site of the lattice and auxiliary fermionic operators
ŝjµ via

d̂jµ = eiθj ŝjµ, d̂†jµ = e−iθj ŝ†jµ. (B.3)

To restrict the theory to the physical part of the Hilbert space, we have to impose the constraint

L̂j +
∑
µ=±

ŝ†jµŝjµ = 1̂, L̂j := −i∂θj . (B.4)
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B.2 Slave rotor theory

This condition will be treated on average and accounted for by introducing Lagrange multipliers hj .
Passing to a path-integral description, the associated action is given by

SSR =

∫ β

0
dτ

 1

2U

∑
j

(
∂τθj − ihj

)2
+
∑
j

s̄jµ

(
∂τ − hj

)
sjµ

−
∑
j,j′

(
s̄jµAµµ′(j, j′)ei(θj′−θj)sj′µ′ + G.c.

)
+ λ

∑
j

s̄jµ (σ3)µµ′ sjµ′

,
(B.5)

where sjµ, s̄jµ denote Grassmann variables and Aµµ′(j, j′) represent the hopping matrix elements in
the new lattice (see Sec. B.1).
We use the sigma-model description of Ref. [65], where the phase degrees of freedom are represented

by complex bosonic fields
Xj(τ) := eiθj(τ) (B.6)

with the nonlinear constraint
|Xj(τ)|2 = 1. (B.7)

The latter will be ensured on average via additonal Lagrange multipliers ρj . Applying a mean-field
approximation to the hopping terms in Eq. (B.5), we arrive at the bosonic and fermionic actions

SX =

∫ β

0
dτ

∑
j

X∗j (τ)

(
1

2U

←−
∂τ
−→
∂τ + ρj

)
Xj(τ)−

∑
j,j′

(
X∗j (τ)Q(j, j′)Xj′(τ) + c.c.

) (B.8)

and

Ss =

∫ β

0
dτ

∑
j

s̄j(τ)
(
∂τ + λσ3

)
sj(τ)−

∑
j,j′

(
s̄jµ(τ)Z(j, j′)Aµµ′(j, j′)sj′µ′(τ) + G.c.

), (B.9)

where G.c. stands for Grassmann conjugate, i.e., Hermitian conjugate in the associated Hamiltonian
description. These actions are coupled via the self-consistency equations

Q(j, j′) =
∑
µ,µ′

〈s̄jµ(τ)Aµµ′(j, j′)sj′µ′(τ)〉 , (B.10a)

Z(j, j′) = 〈X∗j (τ)Xj′(τ)〉 . (B.10b)

Here we have already taken into account that, at half filling, the constraint (B.4) is satisfied on average
by choosing hj = 0. Note that only three of the Lagrange multipliers ρj , e.g. ρ0,0,0, ρ2,0,0 and ρ4,0,0,
are independent which is due to the combination of translation symmetry and time-reversal invariance.
For any given U one has to solve the set of equations (B.10) and find the correct Lagrange multipliers

ρ0,0,0, ρ2,0,0, ρ4,0,0 yielding the renormalization factors Z(j, j′) of the auxiliary fermions sjµ. The band
structure resulting from Eq. (B.9) can again be classified exactly as for noninteracting fermions leading
to the variety of different correlated topologically trivial and nontrivial phases discussed in the main
part. The transition into the Mott phase, where the local number degree of freedom is frozen out, occurs
when the gap of the bosons in Eq. (B.8) closes. This point marks the transition from a ferromagnetic
to a paramagnetic state of the rotors Xj . Even in the paramagnetic state there exist short range
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B Cold-atom realization of topological Mott insulators

correlations between the rotors which implies that the renormalization factors Z(j, j′) are nonzero. A
topologically nontrivial spinon band structure while having paramagnetic rotors defines the weak and
strong topological Mott insulator phases.
To obtain the phase diagram in Fig. 3.3(b), we have calculated the renormalization factors (B.10b)

right at the Mott transition (U = Uc) and determined the topological invariant of the auxiliary fermions
sjµ using the numerical approach of Ref. [320]. The phase boundaries for 0 < U < Uc, shown in
Fig. 3.3(a) in the main text, have been obtained via linear interpolation of the renormalization factors,

Z(j, j′)
∣∣∣
U

= 1 +

(
Z(j, j′)

∣∣∣
Uc
− 1

)
U/Uc. (B.11)
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C Appendix C

Combining symmetry and energetic
arguments

In this appendix, which is based on Refs. [325, 326], we present supplementary material to Chap. 4.

C.1 Time-reversal constraint on basis functions

In this section we proof the property Eq. (4.16) of the basis functions {χnµ} used to express the super-
conducting order parameter according to

∆(k) =
∑
n

dn∑
µ=1

ηnµχ̃
n
µ(k)T. (C.1)

The arguments presented generalize the proof of Ref. [81] to allow for complex IRs as well as for the
presence of SDW and magnetic impurities where TRS is only restored on average.
As a first step we generalize the parameterization (C.1) we have been using so far to

∆(k) =
∑
n

dn∑
µ=1

ηnµΞnµ(k;hn1 , h
n
2 )T, Ξnµ(k;hn1 , h

n
2 ) = hn1 χ̃

n
µ(k) + hn2

(
χ̃n̄µ(k)

)†
, ηnµ , h

n
1 , h

n
2 ∈ C,

(C.2)

where χ̃nµ(k) satisfies Eq. (4.14) and the same holds for
(
χ̃n̄µ(k)

)†
. Consequently, irrespective of h1 and

h2, the transformation behavior of Ξnµ(k;hn1 , h
n
2 ) and χ̃nµ(k) is identical for all g ∈ G0. Eq. (C.2) reduces

to Eq. (C.1) for (h1, h2) = (1, 0) and, hence, can describe any order parameter possible. Finally, note
that the generalized parameterization (C.2) also automatically satisfies the Fermi-Dirac constraint (4.3)
if this holds for Eq. (C.1) which can be straightforwardly shown.
To study time-reversal symmetry, let us rewrite our parameterization according to

∆(k) =
∑
n

dn∑
µ=1

ηnµ

hn1 + hn2
2

(
χ̃nµ(k) +

(
χ̃n̄µ(k)

)†)
+
hn1 − hn2

2i
i

(
χ̃nµ(k)−

(
χ̃n̄µ(k)

)†)T (C.3)

≡
∑
n

dn∑
µ=1

ηnµΞ̃nµ(k;Hn
1 , H

n
2 )T (C.4)
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with Hn
1 = 1

2(hn1 + hn2 ) and Hn
2 = 1

2i(h
n
1 − hn2 ). Note that it holds(

Ξ̃nµ(k;Hn
1 , H

n
2 )
)†

= Ξ̃n̄µ(k; (Hn
1 )∗, (Hn

2 )∗) (C.5)

by construction.
Repeating the expansion of the free energy described in Chap. 1.1.1 for arbitrary Hn

1 and Hn
2 yields

(cf. Eq. (1.11))

F
(
ηnµ , (η

n
µ)∗
)

= F(0, 0) +
∑
n

dn∑
µ=1

an(T,M ;Hn
1 , H

n
2 )
∣∣∣ηnµ∣∣∣2 +O

(
|η|4
)
. (C.6)

For the sake of generality, we will also discuss the potential presence of SDW order, such as antifer-
romagnetism, described by the order parameter vector M in Eq. (C.6). Assuming that the SDW can
be approximated to be commensurate1, there is a translation by the Bravais lattice vector R0 under
which M goes to −M .
With our ansatz (C.1) we assume that superconductivity is invariant under all translation operations

of the lattice. Therefore, translation by R0 is represented by

(ηµ, H
n
1 , H

n
2 ,M) −→ (ηµ, H

n
1 , H

n
2 ,−M) (C.7)

on the order parameters. Invariance of the free energy thus leads to

an(T,M ;Hn
1 , H

n
2 ) = an(T,−M ;Hn

1 , H
n
2 ). (C.8)

Let us next discuss invariance under time-reversal: Recalling Eq. (4.10) and taking into account Fermi
Dirac statistics (4.3), we have

∆(k) −→ T∆(−k)∗T T = (−1)2S+1 T∆†(k)T = (−1)2S+1
∑
n

dn∑
µ=1

(
ηnµ

)∗ (
Ξ̃nµ(k;Hn

1 , H
n
2 )
)†
T, (C.9)

or, put differently, (
ηnµ , Ξ̃

n
µ(k;Hn

1 , H
n
2 )
)
−→

(
(−1)2S+1(ηnµ)∗, Ξ̃n̄µ(k; (Hn

1 )∗, (Hn
2 )∗)

)
(C.10)

using Eq. (C.5). Alternatively, this can be represented by

(ηnµ , H
n
1 , H

n
2 ) −→

(
(−1)2S+1(ηn̄µ)∗, (H n̄

1 )∗, (H n̄
2 )∗
)
, (C.11)

which constraints the Ginzburg Landau expansion in Eq. (C.6):

an(T,M ;Hn
1 , H

n
2 ) = an̄(T,−M ; (Hn

1 )∗, (Hn
2 )∗). (C.12)

Noting that the free energy should be invariant under

(Hn
1 , H

n
2 ) −→ eiϕ(Hn

1 , H
n
2 ), ϕ ∈ R, (C.13)

1In the present context this simply means that |R0| must be much smaller than the linear system size.
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and
(ηnµ , H

n
1 , H

n
2 ) −→ (ηnµ/λ, λH

n
1 , λH

n
2 ), λ ∈ R+, (C.14)

implies that

an(T,M ;Hn
1 , H

n
2 ) =

2∑
j,j′=1

C
(n)
jj′ (T,M)(Hn

j )∗Hn
j′ . (C.15)

Reality of the free energy, F [ηnµ ] ∈ R, and the combination of the translation, Eq. (C.8), and the TRS,
Eq. (C.12), constraints lead to (

C(n)(T,M)
)†

= C(n)(T,M), (C.16a)(
C(n̄)(T,M)

)T
= C(n)(T,M), (C.16b)

respectively. Since the matrices C(n) are Hermitian, they can be diagonalized and have real eigenvalues
{λ(n)

< , λ
(n)
> } chosen such that λ(n)

< < λ
(n)
> with associated eigenvectors v(n)

< and v(n)
> . To minimize the

free energy, we set H = v
(n)
< and the free energy assumes the form

F
(
ηnµ , (η

n
µ)∗
)

= F(0, 0) +
∑
n

λ
(n)
< (T,M)

dn∑
µ=1

∣∣∣ηnµ∣∣∣2 +O
(
|η|4
)
. (C.17)

Eq. (C.16) implies
(
C(n)(T,M)

)∗
= C(n̄)(T,M) such that λ(n)

< = λ
(n̄)
< and we can choose (v

(n)
< )∗ =

v
(n̄)
< without loss of generality. Recalling Eq. (C.5), the latter directly implies that χ̃nµ = Ξ̃nµ with
Hn = v

(n)
< , as enforced by minimizing the free energy, satisfy Eq. (4.16).

Finally, let us extend this result to the presence of magnetic impurities. For a given disorder realiza-
tion, the free energy is again of the form (C.6) whereM has to be understood as a thermodynamically
large vector encoding the magnetic moments in all unit cells of the system. Assuming that the system
is self-averaging, the superconducting properties can be calculated from the averaged free energy

F
(
ηnµ , (η

n
µ)∗
)

= F(0, 0) +
∑
n

dn∑
µ=1

〈an(T,M ;Hn
1 , H

n
2 )〉dis

∣∣∣ηnµ∣∣∣2 +O
(
|η|4
)
, (C.18)

〈an(T,M ;Hn
1 , H

n
2 )〉dis ≡

∫
dM p(M) an(T,M ;Hn

1 , H
n
2 ), (C.19)

where p(M) is the probability distribution of magnetic moments and
∫

dM denotes the integration
over all microscopic disorder realizations. Naturally, Eq. (C.12) still holds. This, together with p(M) =
p(−M), which is required for TRS to be restored on average, implies

〈an(T,M ;Hn
1 , H

n
2 )〉dis = 〈an̄(T,M ; (Hn

1 )∗, (Hn
2 )∗)〉dis . (C.20)

This directly implies that Eq. (C.16) has to hold after averaging over disorder and, following the same
logic as above, proves Eq. (4.16).

C.2 Ginzburg-Landau expansion from microscopic theory

In this appendix, the Ginzburg-Landau expansion is calculated up to infinite order in the weak-coupling
limit (Sec. C.2.1) and up to quadratic order also taking into account Fermi-surface-off-diagonal matrix
elements (Sec. C.2.2).

231



C Combining symmetry and energetic arguments

C.2.1 In the weak-pairing limit

To derive the Ginzburg-Landau expansion (4.41), we will first restate the interacting Hamiltonian (4.40)
in the action description [114, 115]:

S =

∫
k
c̄k
(
−iωn + hk

)
ck − Tgn0

dn0∑
µ=1

[∫
k
c̄kχ

n0
µ (k)c̄T−k

][∫
k′
cT−k′

(
χn0
µ (k′)

)†
ck′

]
, (C.21)

where c and c̄ are the Grassmann analogues of the microscopic creation and annihilation operators ĉ and
ĉ†. As usual, k ≡ (ωn,k) and

∫
k · · · = T

∑
ωn

∑
k . . . comprises both momentum, k, and (fermionic)

Matsubara frequency, ωn = πT (2n+ 1), summation.
To proceed, we perform a Hubbard-Stratonovich transformation2: Introducing the complex bosonic

fields ηn0
µ , ηn0

µ , the interaction can be decoupled with corresponding action

SHS =

∫
k
c̄k
(
−iωn + h(k)

)
ck +

∑
µ

(
ηn0
µ

∫
k
cT−k

(
χn0
µ (k)

)†
ck +

∫
k
c̄kχ

n0
µ (k)c̄T−kη

n0
µ +

1

gn0T
ηn0
µ η

n0
µ

)
.

(C.22)
In direct analogy to Eq. (4.23) we transform into the eigenbasis of the normal state Hamiltonian hk

by introducing the new field operators f and f̄ with

ckα =
∑
s

(
ψks
)
α
fks, c̄kα =

∑
s

f̄ks
(
ψ∗ks
)
α
. (C.23)

In the weak-pairing limit (4.29), the action can then be restated as

SHS = −1

2

∫
k

ΨT
−ksτxG−1

ss′ (k)Ψks′ +
1

gn0T

∑
µ

ηn0
µ η

n0
µ (C.24)

with Nambu spinor Ψks = (fks, f̄−ksK)T and Nambu Green’s function

G−1
ss′ (k) = δss′

 G−1
s (k) −2m̃ss(k)

−2m̃∗ss(k) −G−1
sK

(−k)

 , G−1
s (k) = iωn − εks. (C.25)

In Eq. (C.25), we have introduced the matrix elements

m̃ss(k) :=
∑
µ

ηn0
µ ψ

†
ksχ

n0
µ (k)ψ∗−ksK =

∑
µ

ηn0
µ ϕ

n0
µ (k, α)e−iϕ

α
k = ∆̃s(k)e−iϕ

α
k (C.26)

with ∆̃s(k) as given in Eq. (4.33) restricted to the IR n0. In the second equality of Eq. (C.26), use has
been made of Eq. (4.24) and the definition (4.34) of the basis functions {ϕn0

µ } has been inserted. The
main advantage of this representation is that the entire relative complexity of different components
µ = 1, 2, . . . , dn0 entering the matrix elements m̃ is, in case of a real representation n, manifestly
contained in the coefficients ηn0

µ as ϕn0
µ (k, s) ∈ R.

2See, e.g., Ref. [114] for a pedagogical introduction to the method.
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Integrating out the fermions, we obtain the exact free energy

F(ηn0
µ ) =

1

gn0

∑
µ

|ηn0
µ |2 −

T

2
tr ln

(
G−1

)
, (C.27)

where the trace involves Matsubara, momentum, particle-hole space as well as Fermi-surface summation.
To perform an expansion in terms of the superconducting order parameter, let us split

G−1
ss′ (k) = δs,s′

(
G−1

0s (k)− Σs(k)
)

(C.28)

with

G−1
0s (k) =

G−1
s (k) 0

0 −G−1
s (−k)

 , Σs(k) =

 0 2m̃ss(k)

2m̃∗ss(k) 0

 (C.29)

and write

T

2
tr ln

(
G−1

)
=
T

2
tr ln

(
G−1

0

(
1− G0Σ

))
(C.30)

= −F(0)− T

2

∞∑
l=1

1

l
tr

((
G0Σ

)l) (C.31)

within the radius of convergence of the series. Taking into account that only even l will contribute, we
have the following still very formal Ginzburg-Landau expansion

F(ηn0
µ ) = F(0) +

1

gn0

∑
µ

|ηn0
µ |2 +

T

2

∞∑
l=1

1

2l
tr

((
G0Σ

)2l)
. (C.32)

Taking advantage of the fact that G0 and Σ are diagonal with respect to both frequency/momentum k
as well as Fermi surfaces s, the trace simply becomes

tr

((
G0Σ

)2l)
=
∑
k

∑
s

trph

[(
G0,s(k)Σs(k)

)2l
]

(C.33)

=
∑
k

∑
s

trph


 0 2Gs(k)m̃ss(k)

−2GsK(−k)m̃∗ss(k) 0


2l
 (C.34)

= (−1)l22l+1
∑
k

∑
s

(
Gs(k)GsK(−k)

)l
|m̃ss(k)|2l, (C.35)

where trph(. . . ) denotes the trace over the particle-hole degrees of freedom only. Inserting this into
Eq. (C.32), we get

F(ηn0
µ ) = F(0) +

1

gn0

∑
µ

|ηn0
µ |2 +

∞∑
l=1

(−1)l

l
22l−1T

∑
s

∑
k

(
Gs(k)GsK(−k)

)l ∣∣∣∣∑
µ

ηn0
µ ϕ

n0
µ (k, s)

∣∣∣∣2l.
(C.36)
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Note that the time-reversal phases in Eq. (C.26) have canceled out.
To simplify Eq. (C.36) further, let us rewrite the momentum sums according to

∑
s

∑
k

s;Λ
. . . ∼

∑
s

∫
s

dΩ ρs(Ω)

∫ Λ

−Λ
dε . . . , (C.37)

where we have introduced the angle-resolved and generally also Fermi-surface-dependent density of
states ρs(Ω). With this we can write

T
∑
s

∑
k

(
Gs(k)GsK(−k)

)l ∣∣∣∣∣∣
∑
µ

ηn0
µ ϕ

n0
µ (k, s)

∣∣∣∣∣∣
2l

∼ T
∑
ωn

∑
s

∫
s

dΩ ρs(Ω)

∣∣∣∣∣∣
∑
µ

ηn0
µ ϕ

n0
µ (Ω, s)

∣∣∣∣∣∣
2l ∫ Λ

−Λ
dε

1

(ω2
n + ε2)l

(C.38)

where we have assumed that, within the low-energy theory, the basis functions ϕn0
µ (k, s) only weakly

depend on the momentum coordinate perpendicular to the Fermi surface, i.e., on the single-particle
energy ε. Defining the Fermi surface average

〈F (Ω)〉s := ρ−1
F

∫
s

dΩ ρs(Ω)F (Ω), ρF :=
∑
s

∫
s

dΩ ρs(Ω), (C.39)

for any function F (Ω) as well as

Il(Λ, T ) := ρF

∫ Λ

−Λ
dε T

∑
ωn

1

(ω2
n + ε2)l

, (C.40)

we obtain the form (4.41) of the Ginzburg-Landau expansion stated in the main text.

C.2.2 For weak inversion symmetry breaking

Here we deduce an expression for the Ginzburg-Landau expansion in the complementary limit of weak
spin-orbit splitting Eso � Tc. From this, we derive the central relation (4.102) of the analysis in
Chap. 4.5.2.
Proceeding similarly to Sec. C.2.1, but keeping the Fermi-surface-off-diagonal matrix elements of the

order parameter, we obtain for the free energy

F(∆n) =
∑
n

|∆n|2
[

1

gn
− 2

∑
s,s′

∫
k
|mss′(k, n)|2Gs(k)GsK(−k)

]
+O

(
|∆n|4

)
(C.41)

associated with the Hamiltonian (4.101), where

|mss′(k, n)| := 1

∆n

∣∣∣∣∑
µ

ηnµ 〈ψks|χ̃nµ(k)|ψks′〉
∣∣∣∣, ∆n :=

√∑
µ

|ηnµ |2. (C.42)

Let us write Eq. (C.41) in a more explicit and convenient way: In the absence of inversion-symmetry
breaking, all Fermi surfaces are doubly degenerate. This degeneracy will be lifted for Eso 6= 0 such that
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C.2 Ginzburg-Landau expansion from microscopic theory

any Fermi surface will be split into two which we call a “Rashba pair” of Fermi surfaces (extensively used
in Chap. 6). As mentioned in the main text, we will assume here that the energetic separation between
different Rashba pairs is sufficiently large to neglect the coupling terms between them in Eq. (C.41).
Then we can replace ∑

s,s′

∫
k
· · · = T

∑
ωn

∑
s,s′

∑
k

s,s′;Λ
· · · → T

∑
ωn

∑
j,j′=1,2

∑
k

Λ
. . . , (C.43)

where j, j′ refer to the two members of Rashba pairs,
∑s,s′;Λ
k is the sum over momenta with |εks|, |εks′ | <

Λ, whereas
∑Λ
k just indicates the summation over all momenta in the energetic vicinity (cutoff Λ) of

the Fermi surfaces. Then Eq. (C.41) becomes

F [∆n] ∼
∑
n

|∆n|2

 1

gn
− 2T

∑
ωn

∑
j,j′=1,2

∑
k

Λ
|mjj′(k, n)|2Gj(k)Gj′(−k)

 . (C.44)

Note that the identification Gj(k)↔ Gs(k) and mjj′(k, n)↔ mss′(k, n) is unique since we assume the
sets of momenta involved in the low-energy theory of different Rashba pairs to be disjoint.
To evaluate the right-hand side of Eq. (C.44), we assume that the matrix elements |mjj(k, n)| and

Eso(k) do, within the cutoff, not significantly depend on the momentum perpendicular to the Fermi
surface (mjj(k, n) → mjj(Ω, n), Eso(k) → Eso(Ω), see Chap. 4.3 and Fig. 4.1(a) for the definition of
Ω), introduce the angle-resolved density of states ρ(Ω) via rewriting

∑
k

Λ
. . . ∼

∫
dΩ ρ(Ω)

∫ Λ

−Λ
dε . . . (C.45)

and find

F [∆n] ∼
∑
n

|∆n|2

 1

gn
− 2ρFC

d
n ln

(
2eγ

π

Λ

T

)
− 2ρFC

o
n

ln

(
2eγ

π

Λ

T

)
− 7

16π2
ζ(3)
〈E2

so〉
n
FS

T 2


 (C.46)

with γ and ζ(s) denoting the Euler-Mascheroni constant and the Riemann zeta function, the average
Fermi-surface diagonal and off-diagonal matrix elements

Cdn :=
∑
j=1,2

〈|mjj(Ω, n)|2〉 , Con := 2 〈|m12(Ω, n)|2〉 , (C.47)

where
〈|m12(Ω, n)|2〉 := ρ−1

F

∫
dΩ ρ(Ω)|m12(Ω, n)|2, (C.48)

and

〈E2
so〉n := ρ−1

F

∫
dΩ ρ(Ω)

|m12(Ω, n)|2

〈|m12(Ω, n)|2〉
E2
so(Ω). (C.49)

Writing
〈E2

so〉n = SnÊ
2
so, Sn := 〈E2

so/Ê
2
so〉n , Êso := max

k
|Eso(k)|, (C.50)
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C Combining symmetry and energetic arguments

the equation determining the transition temperature Tnc of the superconducting state transforming
under the IR n reads

1

2ρF gn
= Cdn ln

(
2eγ

π

Λ

Tnc

)
+ Con

ln

(
2eγ

π

Λ

Tnc

)
− 7

16π2
ζ(3)Sn

Ê2
so

(Tnc )2

 . (C.51)

Denoting the transition temperature in the absence of inversion-symmetry breaking by Tnc,0, we can
write more compactly

7

16π2
ζ(3)

SnC
o
n

Con + Cdn

Ê2
so

(Tnc )2
= ln

(
Tnc,0
Tnc

)
. (C.52)

Now let us consider the situation outline in the main text: For vanishing spin-orbit splitting the
leading instability transforms under a representation n = n1 that is even under a twofold rotation
perpendicular to the plane such that Cdn1

= 0 is enforced by symmetry. Furthermore, this state is nearly
degenerate with another phase transforming under a different representation n = n2, i.e., Tn1

c,0 > Tn2
c,0

with Tn1
c,0 − T

n2
c,0 � Tn1

c,0 . From Eq. (C.52), we find that the critical value Êcso of the spin-orbit splitting
strength for having Tn1 = Tn2 is given by

Êcso ∼
4π√
7ζ(3)

√
Con2

+ Cdn2

Con2
(Sn1 − Sn2) + Cdn2

Sn1

Tn1
c,0

√
Tn1
c,0 − T

n2
c,0

Tn1
c,0

(C.53)

as (Tn1
c,0 − T

n2
c,0)/Tn1

c,0 → 0. To restate this result in simpler form, let us assume Sn1 = Sn2 such that
〈E2

so〉n1
= 〈E2

so〉n2
≡ 〈E2

so〉. Its critical value 〈E2
so〉

c is then given by Eq. (4.102) of the main text.

C.3 Resummation of the Ginzburg-Landau expansion

Here we present additional information on how we come to the conclusion in Chap. 4.3.1 that a first
order mean-field transition can be ruled out in the weak-pairing limit.
In the limit Λ→∞, the integrals Il with l ≥ 2 are finite and readily evaluated

Il(∞, T ) ≡ T
∑
ωn

ρF

∫ ∞
−∞

dε
1

(ω2
n + ε2)l

= 2(2π)2−2l

(
2l − 2

l − 1

)
ρFT

2−2l(1− 21−2l)ζ(2l − 1), (C.54)

where ζ(s) is the Riemann zeta function and
(
n
k

)
the binomial coefficient. Using this in Eq. (4.45), one

finds Eq. (4.46) within the radius of convergence of the power series

f≥4(x) =
∞∑
l=2

(−1)lcl x
l, cl =

4π2−2l

l

(
2l − 2

l − 1

)
(1− 21−2l)ζ(2l − 1). (C.55)

To show positivity, we use associativity of the infinite sum (holds since the sum converges for |x| < π2/4)
allowing us to write

f≥4(x) =
c2

2
x2 +

∞∑
n=1

x2nCn(x), Cn(x) =
c2n

2
− c2n+1x+

c2n+2

2
x2. (C.56)

One readily finds
Cn(x) ≥ Cn(c2n+1/c2n+2) =

(
c2n − c2

2n+1/c2n+2

)
/2 (C.57)
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C.3 Resummation of the Ginzburg-Landau expansion

such that all Cn(x) and, hence, the entire series is positive if

c2nc2n+2 > c2
2n+1. (C.58)

It is straightforward to show that, indeed, the coefficients cl defined in Eq. (C.55) satisfy this inequality
rendering the power series positive in accordance with Fig. 4.2.
For the purpose of analytic continuation of f≥4(x) in Eq. (C.55), it is very convenient to start again

from Eq. (4.45) and rewrite the expression as

F≥4[ηn0
µ ] =

∑
s

∫
s

dΩ ρs(Ω)T

∫ Λ

−Λ
dε
∑
ωn

∞∑
l=2

22l−1

l
(−1)l


∣∣∣∑dn0

µ=1 η
n0
µ ϕ

n0
µ (Ω, s)

∣∣∣2
ω2
n + ε2

l

, (C.59)

which is allowed within the radius of convergence 1/4 of the power series, i.e., as long as∣∣∣∣∑dn0
µ=1 η

n0
µ ϕ

n0
µ (Ω, s)

∣∣∣∣2
ω2
n + ε2

< 1/4 ⇔

∣∣∣∣∑dn0
µ=1 η

n0
µ ϕ

n0
µ (Ω, s)

∣∣∣∣
T

<
π

2
. (C.60)

This means that

f≥4(x) = T−1

∫ Λ

−Λ
dε
∑
ωn

g≥4

(
xT 2

ω2
n + ε2

)
(C.61)

with

g≥4(y) =
∞∑
l=2

22l−1

l
(−1)lyl =

1

2

(
4y − ln(1 + 4y)

)
(C.62)

coincides (for Λ→∞) with the power series representation (C.55) within the radius of convergence of
the latter, i.e., for |x| < π2/4. Furthermore, Eq. (C.61) defines an analytic continuation on R+. To see
this note that the summation and integration in Eq. (C.61) converges absolutely (the same holds for
all its derivatives with respect to x) since

g≥4(y) ∼ 4y2, y → 0 (C.63)

and that g≥4(y) is analytic for Re(y) > −1/4. Due to the uniqueness of analytic continuation,
Eq. (C.61) must hold for all x ≥ 0. Since g≥4 > 0 on R+, we find that

f≥4(x) > 0 ∀x > 0. (C.64)

As opposed to the analysis using a power series representation, we here even did not have to set Λ→∞
in order to come to this conclusion.
For completeness we have also performed the energy integration in Eq. (C.61) explicitly (in the limit

Λ → ∞) yielding the compact representation (4.47) stated in the main text. Since the terms in the
sum in Eq. (4.47) behave as ∼ x2/(2π3n3) + O(n−4) for large n, the sum and all its derivatives with
respect to x exist.
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C Combining symmetry and energetic arguments

C.4 Sufficient condition for TRS-breaking superconductivity

In this section, we will show that invariance of the free energy under Eq. (4.57) and Eq. (4.58) are
satisfied for any real IR as well as for most complex IRs of the point groups of crystalline 2D and 3D
systems.
To streamline the following discussion, we first notice that it will be sufficient to analyze the non-

centrosymmetric point groups as any centrosymmetric point group Gp can be written as Gp = G̃p ×Ci,
where Ci = {E, I} and I /∈ G̃p. All IRs of Gp can then be constructed by taking an IR n of the
corresponding noncentrosymmetric point group G̃p and setting

Rn±χ (g) = Rnχ(g), Rn±χ (gI) = ±Rnχ(g), ∀g ∈ G̃p, (C.65)

where + (−) corresponds to a gerade (ungerade) IR of Gp (see also Appendix A.2). The additional
constraints coming from the symmetry transformations g /∈ G̃p therefore effectively only require the
free energy to be invariant under a simultaneous sign change of all ηµ which is just a global U(1)-gauge
transformation and, hence, do not have to be considered in the following.

C.4.1 Real multidimensional representations

In case of real IRs, the discussion of Chap. 4.3.2 is only relevant when the representation is multidi-
mensional. Investigating the list of crystalline point groups provided in Appendix A.3, we see that we
thus do not have to consider the nonaxial, cyclic, reflection and improper rotation groups as well as
C2v
∼= D2. Only Cnv ∼= Dn with n = 3, 4, 6 and the remaining noncentrosymmetric groups D3h, D2d

and T , Td, O need to be analyzed. Due to the additional isomorphisms D3h
∼= C6v, D2d

∼= C4v and
Td ∼= O it will be sufficient to focus on the point groups

C3v, C4v, C6v, T, O (C.66)

in the following.

Pyramidal groups. In case of the groups Cnv it is sufficient to focus on n = 3, 6 as C4v has already
been discussed in detail in the main text. C3v (C6v) is generated by the reflection σxz at the xz-plane
and the threefold rotation Cz3 (sixfold rotation Cz6 ) along the z-axis. To begin with the constraints
following from the reflection symmetry, we note that

σxz : (η1, η2) −→ (η1,−η2), (C.67)

for both two-dimensional IRs E1 and E2 of C6v as well as for E of C3v. Exactly as Eq. (4.54a), it forces
the free energy to be invariant under Eq. (4.57) which is already the first requirement for our general
proof presented in Chap. 4.3.2.
To approach the second requirement (4.58) we consider the second generator of C3v and C6v, the

rotation symmetries Cz3 and Cz6 represented by

RE1
χ (Cz6 ) =

1

2

 1 −
√

3
√

3 1

 , RE2
χ (Cz6 ) = REχ (Cz3 ) =

1

2

−1 −
√

3
√

3 −1

 . (C.68)
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C.4 Sufficient condition for TRS-breaking superconductivity

Demanding invariance of Eq. (4.52) (with γ12 = γ21 = 0 due to Eq. (C.67)) under Eq. (C.68) leads in
all cases to α1 = α2 as required.

Chiral tetrahedral group. To continue with the (chiral) tetrahedral group T which can be generated
by any one of its threefold rotation symmetries C3 together with one of its twofold rotation symmetries
C2. We choose the coordinate system such that the generating C3 and C2 are along ex + ey + ez and
ez, respectively. This group has one multidimensional IR, following the standard conventions denoted
by T , which is three dimensional. Its three components (η1, η2, η3) transform as (x, y, z) such that

RTχ (C3) =


0 0 1

1 0 0

0 1 0

 , RTχ (C2) = diag(1,−1,−1). (C.69)

Combining the two-fold rotation with a gauge transformation ηµ → −ηµ, we see that the free energy
must be invariant under (η1, η2, η3)→ (−η1, η2, η3). Since RTχ (C3) is a cyclic permutation matrix, the
free energy must automatically also be even in η2 and η3 which proves invariance under (4.57).
As for Eq. (4.58), we first note that, generally for any G0 and n,

αµ ≡
〈(

ϕnµ(Ω, s)
)4
〉
s

≡
∫
s

dΩ ρs(Ω)
(
ϕnµ(Ω, s)

)4
=
(
Rnχ(g)

)4

µν
αν (C.70)

as long as Rnχ(g) is a permutation. Eq. (C.70) readily follows from the transformation property (4.37)
of the basis functions and the invariance of ρs(Ω) under all symmetry operations of G0.
Using RTχ (C3) in Eq. (C.70) directly yields α1 = α2 = α3.

Chiral octahedral group. Let us continue with the chiral octahedral group O which has three
different multidimensional IRs, T1, T2 and E with dim(T1) = dim(T2) = 3 and dim(E) = 2. This
group can be generated by two distinct C4-rotation axes, which we choose to be aligned along ex and
ez (denoted by Cx4 and Cz4 ).
In case of the IR T1, the components (η1, η2, η3) transform as (x, y, z) and, hence,

RT1
χ (Cx4 ) =


1 0 0

0 0 −1

0 1 0

 , RT1
χ (Cy4 ) =


0 0 1

0 1 0

−1 0 0

 , RT1
χ (Cz4 ) =


0 −1 0

1 0 0

0 0 1

 . (C.71)

Although redundant, we have also added the representation of Cy4 for future reference. Recalling
Eq. (C.70), Cx4 and Cz4 imply α2 = α3 and α1 = α2, respectively, proofing that Eq. (4.58) holds. Since

[
−
(
RT1
χ (Cµ0

4 )
)2
]
µν

= δµ,ν

−1 µ = µ0

1 µ 6= µ0

, µ0 = x, y, z, (C.72)

invariance under Eq. (4.57) is guaranteed as a consequence of rotational and gauge invariance.
In case of the irreducible representation T2, we choose the components (η1, η2, η3) to transform as

(yz, xz, xy). It then holds RT2
χ (Cµ0

4 ) = −RT1
χ (Cµ0

4 ) as is readily verified from Eq. (C.71). We can thus
directly conclude that Eq. (4.58) and invariance under (4.57) must hold also for T2.
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C Combining symmetry and energetic arguments

Table C.1: Summary of the transformation behavior under the complex IRs of the crystalline point
groups together with the restrictions on the coupling constants in the free energy (4.52).

Point groups IR n g c(g) R̃nχ(g) Coefficients in Eq. (4.52)

C3 E C3 e
2πi
3

1
2

−1 −
√

3
√

3 −1

 α1 = α2 = 3β, γ12 = γ21 = 0

C6 ' C3h E1 C6 e
2πi
6

1
2

 1 −
√

3
√

3 1

 ”

E2 C6 −e−
2πi
6

1
2

−1 −
√

3
√

3 −1

 ”

T E C3 e
2πi
3

1
2

−1 −
√

3
√

3 −1

 ”

C2 1 σ0

C4 ' S4 E C4 i −iσy α1 = α2, γ12 = −γ21

Finally, it is only left to discuss the irreducible representation E, where the components (η1, η2)
transform as (2z2 − x2 − y2,

√
3(x2 − y2)). From this, it follows

REχ (Cz4 ) = σ3, REχ (Cx4 ) =
1

2

 −1 −
√

3

−
√

3 1

 . (C.73)

Noting that REχ (Cz4 ) = RE2
χ (σxz) and REχ (Cz4 )REχ (Cx4 ) = RE2

χ (Cz6 ) for the irreducible representation
E2 of C6v (see Eq. (C.68)), we know, without further analysis, that the requirements for the validity
general proof of the main text are also given in case of the IR E of the chiral octahedral group O.

C.4.2 Complex representations

Let us also analyze complex IRs as they offer an additional possibility to break TRS. As we have
discussed in detail seen in Chap. 4.1.2, any complex representation n should always be analyzed together
with its conjugate representation n̄ since these two are degenerate at the quadratic level of the Ginzburg-
Landau expansion due to TRS. It is very convenient to introduce a new basis, {χ̃n0

µ , χ̃
n0
µ } → {χ̃ñ0

µ },
and {ηnµ , ηnµ} → {ηñµ} as defined in Eqs. (4.21) and (4.22), such that {χ̃ñ0

µ } and {ηñµ} transform under
a real reducible representation ñ of dimension 2dn.
All complex representations of point groups of 2D and 3D crystalline systems are one-dimensional.

From the form (4.21) of the unitary transformation, we easily find that if

(ηn, ηn̄)
g−→ (c(g) ηn, c∗(g) ηn̄), |c(g)| = 1, (C.74)
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C.5 Superconductivity suppressed by spin-orbit splitting

for an arbitrary symmetry operation g ∈ Gp, the transformation behavior in the new basis is given by

(
ηñ1 , η

ñ
2

)
g−→
(
ηñ1 , η

ñ
2

)
R̃ñχ(g), R̃ñχ(g) =

Re c(g) −Im c(g)

Im c(g) Re c(g)

 . (C.75)

Recalling that, as discussed above, it is sufficient to focus on the noncentrosymmetric point groups, only
the point groups C3, C4, C6, C3h, S4 and T of the list given in Appendix A.3 have to be considered
here. The transformation matrices in Eq. (C.75) for the associated complex IRs are summarized in
Table C.1 together with the resulting constraints on the coefficients in the fourth-order term (4.52) of
the Ginzburg-Landau expansion.
We can directly read off that in all cases, except for C4 ' S4 and the associated centrosymmetric

point group C4h = C4 × Ci, the symmetries force α1 = α2 and γ1 = γ1 = 0. Consequently, the free
energy is again invariant under (4.57) and Eq. (4.58) holds. Therefore, based on the general proof by
contradiction given above, we can already conclude that the superconducting order parameter must
necessarily break TRS when transforming under one of these complex representations.

C.5 Superconductivity suppressed by spin-orbit splitting

In this appendix, we will provide more details on the analysis in Chap. 4.5.1 concerning the condensation
energy of a superconducting state with vanishing Fermi-surface-diagonal matrix elements.

C.5.1 Expression for the condensation energy

As a first step, we transform the full mean-field Hamiltonian

ĤMF =
∑
k

ĉ†kα
(
hk
)
αβ
ĉkβ + ĤMF

int (C.76)

with ĤMF
int as given in Eq. (4.98) into the eigenbasis of hk according to Eq. (4.23).

Writing the Hamiltonian in quadratic form by means of Nambu spinors, diagonalizing the resulting
BdG Hamiltonian with eigenvalues Eks(∆0) and associated Bogoliubov-quasiparticle operators α̂ks
leads to

ĤMF =
∑
s

∑
k

Eks(∆0)α̂†ksα̂ks +
1

2

∑
s

∑
k

(
εks − Eks(∆0)

)
+

∆2
0

gn0

, (C.77)

where we have already made use of the Majorana/PHS-symmetry of the Nambu spinors such that all
operators α̂ks appearing in Eq. (C.77) are independent. From this, we immediately get the T = 0
condensation energy

Ec(∆0) := EGS(0)− EGS(∆0) =
1

2

∑
s

∑
k

(
|Eks(∆0)| − |εks|

)
− ∆2

0

gn0

, (C.78)

where EGS(∆0) denotes the ground states energy at given ∆0. By design, a positive value of Ec(∆0)
for some ∆0 6= 0 is required for the superconducting state to occur.
As discussed in the main text, we focus for simplicity on the situation where, for each k, only two

bands have to be considered, i.e., the bands can be relabeled such that s only assumes the two values
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s = 1, 2 in Eq. (C.78). Recalling that all diagonal matrix elements of the order parameter vanish, one
finds

Ec(∆0) =
1

2

∑
k

(
1

2

∑
p=±

∣∣∣∣∣εk2 − εk1 + p

√(
εk1 + εk2

)2
+ 16∆2

0|m21(k)|2
∣∣∣∣∣− ∣∣εk1

∣∣− ∣∣εk2

∣∣)− ∆2
0

gn0

, (C.79)

where we have introduced mss′(k) = Dss′(k)/∆0.

C.5.2 Derivation of a general inequality

The expression (C.79) is most easily evaluated by first noting that there are only contributions for k
with m12(k) 6= 0 (k ∈ supp(m21)) and splitting the remaining k-sum intro three disjoint regions:

1. R1 :=

{
k ∈ supp(m21)

∣∣∣∣√(εk1 + εk2

)2
+ 16∆2|m21(k)|2 < Eso(k)

}
, where we have introduced

Eso(k) := εk2 − εk1 > 0,

2. R2 :=

{
k ∈ supp(m21)

∣∣∣∣|εk1 + εk2| < Eso(k) <
√(

εk1 + εk2

)2
+ 16∆2|m21(k)|2

}
and

3. R3 :=

{
k ∈ supp(m21)

∣∣∣∣Eso(k) < |εk1 + εk2|

}
.

Analyzing every region separately, replacing m21(k) → m := maxk |m21(k)|, which can be rigorously
shown to increase the value of Ec(∆0) for every ∆0, approximating Eso(k) ' Eso to be a constant on
the Fermi surface and introducing the “joint density of states” according to∑

k∈supp(m21)

f

(
εk1 + εk2

2

)
∼ ρF

∫ Λ

−Λ
dε f(ε) (C.80)

yields:

Ec(∆0) < Emax
c (∆0) =



Emax
c,∆0,Λ

(∆0), ∆̂0 > Eso/2, Λ > Eso/2

Emax
c,Eso,Λ

(∆0), ∆̂0 < Eso/2, Λ > Eso/2,

Emax
c,∆0,Eso

(∆0), ∆̂0 > Eso/2, Λ < Eso/2,

Emax
c,Eso,Eso

(∆0), ∆̂0 < Eso/2, Λ < Eso/2 <
√

Λ2 + ∆̂2
0

− ∆2
0

gn0
, otherwise,

(C.81)

where we have introduced ∆̂0 = 2m∆0,

Emax
c,Eso,Λ(∆0) =ρF

Λ

(√
Λ2 + ∆̂2

0 − Λ

)
− 1

4
Eso

(
Eso −

√
E2
so − 4∆̂2

0

)

+ ∆̂2
0 ln


2

(
Λ +

√
Λ2 + ∆̂2

0

)
Eso +

√
E2
so − 4∆̂2

0


− ∆2

0

gn0

(C.82)
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and

Emax
c,∆0,Λ(∆0) = ρF

Λ

(√
Λ2 + ∆̂2

0 − Λ

)
− 1

4
E2
so + ∆̂2

0 ln

Λ +
√

Λ2 + ∆̂2
0

∆̂0


− ∆2

0

gn0

. (C.83)

as well as

Emax
c,∆0,Eso(∆0) = Emax

c,∆0,Λ(∆0) +
ρF
2

(
Eso − 2Λ

)2
,

Emax
c,Eso,Eso(∆0) = Emax

c,Eso,Λ(∆0) +
ρF
2

(
Eso − 2Λ

)2
.

(C.84)

A careful functional analysis of Emax
c (∆0) shows that a superconductor with Dss = 0 is only possible

when
Eso < Emax

so (λ,Λ, Eso) (C.85)

with

Emax
so (λ,Λ, Eso) =

2Λ
√

e−1/λ

sinh(1/λ) , Eso < 2Λ,

Λ
tanh(1/λ) , Eso > 2Λ,

(C.86)

where λ := 4m2ρF gn0 .
In order to avoid distinguishing between Eso < 2Λ and Eso > 2Λ, one can replace Eq. (C.86) by the

weaker necessary constraint

Eso <
2Λ

sinh(1/λ)
, (C.87)

which has been stated in the main text.
Finally, if Eq. (C.85) holds, one finds that Emax

c (∆0) is maximized by

m∆0 =
Λ

2 sinh(1/λ)
> Eso/4. (C.88)
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D Appendix D

Microscopic analysis of oxide
heterostructures

This appendix contains supplementary information for Chap. 5 of the main text. Exactly as the latter,
this appendix is based on Ref. [349].

D.1 Symmetry analysis of noninteracting Hamiltonian

In the first section, we will provide more details on the noninteracting models discussed in Chap. 5.1.1.

D.1.1 Symmetry analysis for the two-band model

To see how the form of Eqs. (5.2) and (5.3) result from the constraints of TRS and the C4v point group,
we first note that the spin and orbital (basis {3dxz, 3dyz}) Pauli matrices σj and τj transform under
the IRs of C4v as summarized in Table D.1.
To begin with the spin-independent part hmk , we directly see that TRS generally only allows for terms
∝ τ0, τ1, τ3. The diagonal components of Eq. (5.2) are simply a linear combinations of τ0(k2

1+k2
2+const.)

and τ3(k2
1 − k2

2) while the off-diagonal is ηk1k2τ1.

Table D.1: Transformation behavior of the spin- (σj) and orbital (τj) Pauli matrices under C4v.

IR Leading basis functions

(σ1, σ2) E (k2,−k1)

σ3 A2 k1k2(k2
1 − k2

2)

τ0 A1 1, k2
1 + k2

2

τ1 B2 k1k2

τ2 A2 k1k2(k2
1 − k2

2)

τ3 B1 k2
1 − k2

2
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Table D.2: Transformation of different combinations of momentum and spin under C4v.

E 2C4 C2 2σv 2σd IR

k1σ1 + k2σ2 1 1 1 −1 −1 A2

k1σ1 − k2σ2 1 −1 1 −1 1 B2

k1σ2 + k2σ1 1 −1 1 1 −1 B1

k1σ2 − k2σ1 1 1 1 1 1 A1

To obtain the most general expression for hsok up to linear order in momentum, we have to take into
account combinations of τj and σj . Combining (σ1, σ2) and (ky,−kx) that transform under the same
representation yields the usual Rashba term

α0τ0(k1σ2 − k2σ1). (D.1)

To discuss the most general term, we use E ⊗ E = A1 ⊕ A2 ⊕ B1 ⊕ B2 (see Table D.2) yielding the
additional contributions

α1τ1(k1σ1 − k2σ2), α3τ3(k1σ2 + k2σ1). (D.2)

Here we have already taken into account that the term ∝ τ2(k1σ1 + k2σ2) is ruled out by TRS as τ1 is
odd under time-reversal. For the very same reason τ1 can be combined with the Pauli matrix σ3 that
transforms under the same IR to get the atomic SOC σ3τ2.

D.1.2 Three-orbital model

In this subsection, we derive the most general form of the spin-independent part h̃mk of the three-orbital
model for (001) oxide heterostructures. Since the symmetry of the involved orbitals and the point
group is identical, the following discussion also applies to the model of single layer Sr2RuO4 used in
Sec. 4.6.1.
To proceed systematically, we expand h̃mk in terms of Gell-Mann matrices [337]

h̃mk =

8∑
j=0

fj(k)λj (D.3)

using, exactly as in the main text, the basis {dxy, dxz, dyz}. Here fj(k) ∈ R due to Hermiticity and

λ0 =

√
2

3
13, λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 = L1 =


0 −i 0

i 0 0

0 0 0

 , (D.4a)

λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 = −L2 =


0 0 −i

0 0 0

i 0 0

 , (D.4b)
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D.1 Symmetry analysis of noninteracting Hamiltonian

Table D.3: Transformation behavior of the Gell-Mann matrices {λj} under C4v.

E 2C4 C2 2σv 2σd IR Leading basis functions

(l1, l2) 2 0 −2 0 0 E (k2,−k1)

l3 1 1 1 −1 −1 A2 k1k2(k2
1 − k2

2)

(λ1, λ4) 2 0 −2 0 0 E (k2, k1)

λ6 1 −1 1 −1 1 B2 k1k2(√
3λ8 − λ3

)
/2 1 −1 1 1 −1 B1 k2

1 − k2
2(√

3λ3 + λ8

)
/2 1 1 1 1 1 A1 1, k2

1 + k2
2

λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 = L3 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 , (D.4c)

where Lj , j = 1, 2, 3, denote the projections of the angular momentum operators onto the t2g manifold.
As all relevant orbitals are real, TRS forces fj(k) to be even for all real and odd for all purely

imaginary Gell-Mann matrices. As d orbitals are even under inversion, this proves that the terms in
Eq. (D.3) that are antisymmetric (symmetric) under inversion can only (cannot) involve the angular
momentum operators L1, L2 and L3.
To take into account the constraints from the C4v point group, it is convenient to find the linear

combinations of the Gell-Mann matrices that transform under the IRs of C4v. The result is summarized
in Table D.3 where also show the leading basis functions in a small k-expansion around the Γ point.
To begin with the inversion symmetry breaking odd parity terms, we see that the leading contribution

reads

δ
(
L1k2 − L2k1

)
= δ


0 −ik2 −ik1

ik2 0 0

ik1 0 0

 . (D.5)

Note that there cannot be any term of the form f7(k)L3 as time-reversal and C2 rotation symmetry
require f7(k) = −f7(−k) and f7(k) = f7(−k), respectively, which implies f7 = 0. Consequently, the
impact of the broken inversion symmetry can be described by the single parameter δ. The periodicity
of the Brillouin zone is easily restored by replacing kj → sin(kj) recovering Eq. (4.108).
To continue with the inversion symmetric terms, we first note that (λ1, λ4) cannot enter the Hamil-

tonian for the same reason: Due to the C2 rotation symmetry, we know that fj(k) = −fj(−k), j = 1, 4.
Time-reversal symmetry, on the other hand, implies fj(k) = fj(−k), j = 1, 4 such that f1 = f4 = 0.
From λ6, we get the interorbital second nearest neighbor hopping term ηkxkyλ6 as leading contri-

bution. The remaining Gell-Mann matrices, can be used to construct the splitting term between the
dxy- and dxz/dyz orbitals as well as the anisotropic masses as a linear combination of 13,

√
3λ3 + λ8

and
√

3λ8 − λ3 multiplied with the respective leading basis functions in Table D.3 (5 independent
parameters corresponding to mxy, µ, δεxy, m̃l and m̃h in Eq. (5.4)).
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D Microscopic analysis of oxide heterostructures

D.2 Identification of the nature of the instability

Here we present the basic steps on how the leading and subleading (“competing”) instabilities are derived
from the RG flow. As in Refs. [351, 352], we calculate the transition temperatures of all possible particle-
particle (superconducting) and particle-hole (density wave) order parameters introduced in Eq. (5.18)
using mean-field theory with renormalized coupling constants.
As we are only interested in the transition temperature, it suffices to consider the linearized mean-field

equations which read

∆DW
τ1τ2 ∼

∫ Λ⊥,Λ‖

k
Gτ1(k) δτ1,τ2 + 2∆DW

ττ ′ W
ττ2
τ1τ ′

∫ Λ⊥,Λ‖

k
Gτ1(k)Gτ2(k) (D.6a)

and

∆
SC
τ1τ2 ∼ 2Wττ ′

τ1τ2∆
SC
τ ′τ

∫ Λ⊥,Λ‖

k
Gτ1(k)Gτ2(k) (D.6b)

for the density wave and superconducting order parameters, respectively. Here G(σ,s)(k) = (iω −
σvsk⊥)−1 denotes the noninteracting Green’s function.
To write down the mean-field equations in more explicit form, we expand the density wave order

parameters,

∆DW
(σ,s)(σ′,s′) =

3∑
j,j′=0

cjj′
(
τ̃j

)
σσ′

(
τj′
)
ss′
, cjj′ ∈ R, (D.7a)

and the anomalous expectation values,

∆
SC
(−,s)(+,s′) =

3∑
j=0

c̃j

(
τj

)
ss′
, c̃j ∈ C, (D.7b)

in Pauli matrices. In Eq. (D.7b), we have already anticipated that the anomalous expectation values
with σ = σ′ will always be subdominant in the weak-coupling limit and taken into account the antisym-
metry of ∆

SC
ττ ′ making it sufficient to focus on (σ, σ′) = (−,+) for uniquely defining the superconducting

order parameter.

D.2.1 Identical Fermi velocities

We begin with the limit of equal Fermi velocities v1 = v2 ≡ v. As we are interested in the weak-
coupling limit where Tc � vΛ⊥, we only keep the leading terms in the mean-field equations that
asymptotically diverge as LT := log(vΛ⊥/T ). Inserting Eq. (D.7) into Eq. (D.6) yields the mean-field
equations summarized in Table D.4.
To discuss the leading instability, let us first assume that the couplings diverge before the RG flow

is cut off due to the finite curvature of the Fermi surfaces. In regime (II) of Fig. 5.3(d), the couplings
behave asymptotically as g11 ∼ −g33 → ∞, whereas g00 and g30 stay finite since they do not flow
at all. As is easily seen from Table D.4, the leading instability is, in this case, characterized by
∆

SC
(−,s),(+,s′) ∝ (τ3)ss′ (the s

+− state). Correspondingly, in regime (III), we have g11 ∼ g33 → −∞ and

hence ∆
SC
(−,s),(+,s′) ∝ (τ0)ss′ (the s

++ state).
To derive the subleading instabilities, we have investigated the flow of all mean-field equations in

Table D.4 according to Eq. (5.17) and analyzed which of the order parameters is dominant before
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D.2 Identification of the nature of the instability

Table D.4: Mean-field equations for the density wave, Eq. (D.7a), and superconducting order pa-
rameters, Eq. (D.7b), in case of identical velocities. The plus (minus) sign in the
column of Cz2 and Θ means that the corresponding order parameter is symmetric (an-
tisymmetric) under π-rotation and time-reversal, respectively.

Mean-field equations (j = 1, 2) Order parameter Cz2 Θ Phase

LT

g00 + g33 2g30

2g30 g00 + g33


cj0
cj3

 =

cj0
cj3


τ̃1τ0
τ̃1τ3

,

τ̃2τ0
τ̃2τ3

 −, + −, − SDW 11(g30 > 0)/

SDW 22(g30 < 0)

LT
(
g00 + 2g11 − g33

)
cj1 = cj1 τ̃1τ1, τ̃2τ1 −,+ −,− SDW 12

LT
(
g00 − 2g11 − g33

)
cj2 = cj2 τ̃1τ2, τ̃2τ2 −,+ +,+ CDW 12

−2LT

g00 + 2g11 + g33 2g30

2g30 g00 − 2g11 + g33


c̃0
c̃3

 =

c̃0
c̃3


τ0
τ3

 + + s++/s+−

2LT
(
g33 − g00

)
c̃j = c̃j τ1, τ2 +,− +,+ s12

superconductivity eventually wins. Since, at that point, g11 and g33 are still finite, the result also
depends on the value of the non-flowing coupling constants. The associated instabilities, that compete
with s+− and s++ superconductivity, are shown in Fig. 5.5(b) and (c) of the main text.

D.2.2 Mean-field equations for significantly different Fermi velocities

Similarly, the phase competition can be studied for different Fermi velocities. Since the two Fermi
surfaces can be relabeled, we can choose v1 > v2 without loss of generality. Again only the leading
logarithm, in this case LT = log(v1Λ⊥/T ), is kept yielding the mean-field equations presented in
Table D.5.

We see that, as a consequence of the asymmetry between the fermions from the inner and outer
Fermi surfaces, e.g. the instability s11 dominates over s22 (and similarly for SDW jj). Note that also
taking into account the subleading logarithm log(v2Λ⊥/T ), one would find a continuous transition as a
function of v2/v1 between having anomalous expectation values of equal magnitude on the two Fermi
surfaces and the situation where the anomalous expectation value is only finite on one Fermi surface.
The associated scale of the crossover depends on the cutoff of the theory as both log(v1Λ⊥/Tc) and
log(v2Λ⊥/Tc) appear in the mean-field equations. In Table D.5, this continuous crossover is not seen
as we focus on the case of “significantly” different Fermi velocities in the sense that

log(v1Λ⊥/Tc)� log(v2Λ⊥/Tc) (D.8)

such that it is sufficient to keep only the leading logarithm. Of course, for sufficiently large v1Λ⊥/Tc,
Eq. (D.8) is already satisfied for v2/v1 slightly below one.
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Table D.5: Mean-field equations for different velocities (v1 > v2). The notation is similar to
Table D.4 with LT := log(v1Λ⊥/T ).

Mean-field equations (j = 1, 2) Order parameter Cz2 Θ Phase

LT
(
g00 + 2g30 + g33

)
cj0 = cj0, cj0 = cj3

τ̃1(τ0 + τ1),

τ̃2(τ0 + τ1)
−,+ −,− SDW 11

v1LT
v1+v2

(
g00 + 2g11 − g33

)
cj1 = cj1 τ̃1τ1, τ̃2τ1 −,+ −,− SDW 12

v1LT
v1+v2

(
g00 − 2g11 − g33

)
cj2 = cj2 τ̃1τ2, τ̃2τ2 −,+ +,+ CDW 12

−2LT (g00 + 2g30 + g33)c̃0 = c̃0, c̃0 = c̃3 τ0 + τ3 + + s11

2v1LT
v1+v2

(
g33 − g00

)
c̃j = c̃j τ1, τ2 +,− +,+ s12

D.3 Textures of competing density wave instabilities

In this section, more details are given on how to obtain the density wave profiles presented in Fig. 5.6
of the main text. The charge, j = 0, and spin, j = 1, 2, 3, expectation values read

Sj(x, τ) =

∫
q
S̃j(q)ei(q·x−ωnτ), S̃j(q) =

∫
k
〈ckσjck+q〉 , (D.9a)

where τ denotes (imaginary) time, c are the four-component Grassmann analogues of the field operators
ĉ introduced in Eq. (5.1) and σj are Pauli matrices acting in spin space. Transforming to the eigenbasis
of the high-temperature Hamiltonian yields

Ŝj(q) =

∫
k
ψ†kτσjψk+qτ ′ 〈f̄kτfk+qτ ′〉 . (D.10)

We assume that the mass anisotropy is sufficiently large such that the contribution to Sj from the
strongly curved segments of the Fermi surface is negligible. Recall from Fig. 5.1(b) and (c) that the
orbital part of the wave functions is strongly polarized to either 3dxz or 3dyz in the remaining nearly
straight segments of the Fermi surface. For this reason, the orbital momentum Lj cannot contribute to
the magnetization of the sample as the matrix elements 〈3dxz|Lj |3dxz〉 and 〈3dyz|Lj |3dyz〉 vanish for
all components j = 1, 2, 3 (see Eq. (D.4)).
Let us first discuss the SDW 12 state, which is characterized by ∆DW = c τ̃1τ1 or ∆DW = c τ̃2τ1, c ∈ R.

As mentioned in the main text, we focus, for concreteness, on the latter choice as it does not break
Cz2 rotation symmetry. However, using the procedure presented in this section, it is straightforward to
derive the spatial texture when some of the point symmetries are broken spontaneously.
The contribution of the red parts in Fig. 5.1(a) is then readily found from Eq. (D.10),

Sj(x, τ) =ic eiQ
(1)
12 ·x

[
ψ†−k11σjψk22 + ψ†−k22σjψk11

]
+ c.c. + . . . , (D.11)

where we have introduced the corresponding nesting vector Q(1)
12 = k1 +k2 with ks parameterizing the

centers of the nested subspaces (see Fig. 5.1(a)). Using the phase conventions (5.8) and (5.9), one can
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D.4 Different Fermi velocities

show that S0 = 0, as required since the order parameter of SDW 12 is odd under time-reversal, and
simplify Eq. (D.11) to

S(x, τ) = 2ic eiQ
(1)
12 ·xψ†k11

(
−σ2, σ1, iσ0

)T
ψk22 + c.c. + . . . . (D.12)

From Fig. 5.1(b) and (c), it is easily seen that the wave functions are strongly spin-polarized such that
σ2ψk11 ' −ψk11 and σ2ψk22 ' ψk22. Within this approximation and, again, using Eq. (5.9), we find

S(x, τ) ∝

(
0, sin

(
Q

(1)
12 · x

)
, 0

)T
+ . . . . (D.13)

Assuming that none of the additional point symmetries are broken spontaneously, we can directly infer
the contributions of the other three nested subspaces (blue regions in Fig. 5.1(a)). Demanding that S
transform as a pseudovector under reflection at the xz-plane and under Cz2 rotation around the z-axis,
one finds

S(x, τ) ∝


sin

(
Q

(3)
12 · x

)
+ sin

(
Q

(4)
12 · x

)
sin

(
Q

(1)
12 · x

)
+ sin

(
Q

(2)
12 · x

)
0

 , (D.14)

where the reflected and rotated nesting vectors

Q
(2)
12 =

(
Q

(1)
12,x,−Q

(1)
12,y

)T
, Q

(3)
12 =

(
Q

(1)
12,y,−Q

(1)
12,x

)T
, Q

(4)
12 =

(
−Q(1)

12,y,−Q
(1)
12,x

)T
(D.15)

have been defined. Eq. (D.14) has been plotted in Fig. 5.6(b) for a specific choice of Q(1)
12 .

In the same way, one obtains

S0(x, τ) ∝
4∑
j=1

cos

(
Q

(j)
12 · x

)
(D.16)

for the CDW 12 and (s = 1, 2)

S(x, τ) ∝



sin

(
Q

(1)
ss · x

)
− sin

(
Q

(2)
ss · x

)
sin

(
Q

(4)
ss · x

)
− sin

(
Q

(3)
ss · x

)
(−1)s+1

∑
j=1,2

[
cos

(
Q

(2j−1)
ss · x

)
− cos

(
Q

(2j)
ss · x

)]


(D.17)

in case of the SDW ss phase, where Q(1)
ss = 2ks and Q

(p)
ss , p = 2, 3, 4, as defined similarly to Eq. (D.15).

D.4 Different Fermi velocities

Finally, we also discuss the phase competition for different Fermi velocities v1 6= v2. In this case all
four backscattering coupling constants flow according to the RG equations

dg00

dl
= −g2

11

(v1 − v2)2

2v2 (v1 + v2)
, (D.18a)
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dg30

dl
= −g2

11

v1 − v2

2v2
, (D.18b)

dg11

dl
= − g11

2v2 (v1 + v2)

[
g33(v2

1 + v2
2 + 6v1v2) + g00(v1 − v2)2 − 2g30

(
v2

1 − v2
2

)]
, (D.18c)

dg33

dl
= −g2

11

v2
1 + v2

2 + 6v1v2

2v2 (v1 + v2)
. (D.18d)

As required by consistency, this reduces to Eq. (5.17) in the limit v1 → v2. A projection of the flow
described by Eq. (D.18) is shown in Fig. 5.7. Since g00, g30 and g33 can only diverge if g11 diverges as
well, which readily follows from Eq. (D.18), all coupling constants stay finite in region (I).
The leading and subleading instabilities in regions (II) and (III) are obtained similarly to our dis-

cussion in Sec. D.2.1 of the v1 = v2 case: We now analyze the flow of the mean-field equations of
Sec. D.2.2, as summarized in Table D.5, under the RG determined by Eq. (D.18).
It turns out that superconductivity will still be the leading instability unless the flow is not cut off

before the backscattering coupling constants diverge. The difference, compared to the situation with
identical velocities, is that the anomalous expectation value of the resulting superconductor (s11) is
given by (v1 > v2 has been assumed without loss of generality)

∆
SC
(−,s)(+,s′) ∝ δs,1δs′,1, (D.19)

both for the conventional and for the unconventional pairing scenario. However, the resulting mean-
field theories at the associated strong-coupling fixed points are not identical since the couplings are
different.
We will next show that the superconductors even differ in their topology. Performing a mean-

field decoupling of the interaction (5.10) using Eq. (D.19) one finds γ0 = g00 + 2g11 + g33 + 2g30 and
γ3 = g00 − 2g11 + g33 + 2g30 using the parameterization m̃ = 4(γ0τ0 + γ3τ3)∆∗0 in Eq. (5.21). The
condition |γ0| < |γ3| for having a topologically nontrivial superconductor then becomes

|g00 + 2g11 + g33 + 2g30| < |g00 − 2g11 + g33 + 2g30|. (D.20)

From the flow equations (D.18) it follows that g00, g33 and g30 can only diverge to −∞, whereas
g11 →∞ in case of unconventional pairing (regime (II) in Fig. 5.7) and g11 → −∞ for the conventional
superconductor (regime (III)). Hence, we can directly see from Eq. (D.20), that, exactly as for v1 = v2,
the conventional superconductor (with m̃11m̃22 > 0, i.e., s++-like mean-field Hamiltonian) is trivial
and the unconventionally paired state (m̃11m̃22 < 0 and, hence, of s+− type) is topological.
The phase diagrams of subleading instabilities analogous to Fig. 5.5 are straightforwardly derived.

Most interestingly, the unconventional superconductor competes (among others) with the FFLO-like
s12 superconductor (see Table D.5). However, the latter can only be stabilized for g00g33 < 0 which is
far away from the expected properties (5.20) of the coupling constants.
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E Appendix E

General properties of leading
superconducting instabilities

In this appendix, we present supplementary material to Chap. 6. We will first derive various exact
relations of different many-body correlation functions following from symmetries. In Appendix E.2,
it will then be shown that, exactly as in mean-field theory, the leading superconductivity instability
is determined by the largest eigenvalue of the kernel tv of the Eliashberg equation. We finally proof
that positivity of the anomalous self-energy Φ̃ implies the absence of point-symmetry breaking (Ap-
pendix E.3) and that Chern numbers of Rashba partners have opposite sign (Appendix E.4). Exactly
as in case of Chap. 6 of the main text, also the analysis presented in this appendix has been published
in Ref. [367].

E.1 Exact relations following from the spectral representation

In this section of the appendix, properties of the bosonic propagator, the Nambu Green’s function, and
the fermion-boson vertex function, which are consequences of certain unitary or antiunitary symmetries,
are derived. These relations are most easily seen from the spectral representation (also known as
Lehmann representation) [94] of the corresponding n-point functions.

E.1.1 Identities for the order-parameter susceptibility

We begin with the bosonic propagator

χjj′(iΩn, q) :=
1

2

∫ β

0
dτeiΩnτ 〈Tτ φ̂qj′(τ)φ̂−qj(0)〉 (E.1)

as the discussion is most transparent in this case. In Eq. (E.1), Tτ denotes the time-ordering operator.
The spectral representation reads

χjj′(iΩn, q) =
1

2

∑
n1,n2

〈n1|φ̂qj′ |n2〉 〈n2|φ̂−qj |n1〉
iΩn − (En2 − En1)

I+
n1n2

, (E.2)

where {|n〉} is a basis of exact eigenstates of the full many-body Hamiltonian with respective energies
En and

Iζn1n2
:=

1

Z

(
e−βEn2 − ζ e−βEn1

)
(E.3)
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E General properties of leading superconducting instabilities

has been introduced with Z denoting the partition function. Upon relabeling n1 ↔ n2 in Eq. (E.2),
one readily finds that χjj′(q) = χj′j(−q) which is already the first property in Eq. (6.50).
Using Hermiticity, φ̂†qj = φ̂−qj , we can rewrite the spectral representation (E.2) as

χjj′(iΩn, q) =
1

2

∑
n1,n2

〈n1|φ̂qj′ |n2〉
(
〈n1|φ̂qj |n2〉

)∗
iΩn − (En2 − En1)

I+
n1n2

, (E.4)

from which χjj′(iΩn, q) = χ∗j′j(−iΩn, q), i.e., the second property (6.50b), can be read off.
To derive the constraint following from TRS, we rearrange the summation in Eq. (E.4) by replacing
|n1,2〉 → Θ̂ |n1,2〉. Noting that |n〉 and Θ̂ |n〉 have the same energy together with

〈Θ̂n1|φ̂qj |Θ̂n2〉 = 〈n1|Θ̂†φ̂qjΘ̂|n2〉
∗

= t 〈n1|φ̂−qj |n2〉
∗
, (E.5)

where we used Eq. (6.46) in the second equality, yields χ(iΩn, q) = χT (iΩn,−q). Applying Eq. (6.50a),
we arrive at the relation (6.50c) stated in the main text.
Finally, the proof of Eq. (6.65) proceeds very similarly to the discussion of TRS above: We rearrange

the sums in the spectral representation (E.4) such that |n1,2〉 is replaced by Ŝ |n1,2〉, take advantage of
the fact that the energies of |n〉 and Ŝ |n〉 are identical and then write

〈Ŝn1|φ̂qj |Ŝn2〉 = ±〈n1|φ̂−qj |n2〉 (E.6)

where Eq. (6.64) has been applied. This directly leads to Eq. (6.65).

E.1.2 Identities for the Nambu Green’s function

Let us begin with the derivation of the TRS constraint (6.35) of the Nambu Green’s function. For this
purpose, it is convenient to first work in the microscopic basis and define

Gmαβ(iωn,k) := −
∫ β

0
dτeiωnτ

 〈Tτ ĉkα(τ)ĉ†kβ(0)〉 〈Tτ ĉkα(τ)ĉ−kβ(0)〉

〈Tτ ĉ†−kα(τ)ĉ†kβ(0)〉 〈Tτ ĉ†−kα(τ)ĉ−kβ(0)〉

 . (E.7)

Consider, e.g., the upper left component with spectral representation

(
Gmαβ(k)

)
11

=
∑
n1,n2

〈n1|ĉkα|n2〉 〈n2|ĉ†kβ|n1〉
iωn − (En2 − En1)

I−n1n2
. (E.8)

Exactly as in case of the bosons, we rewrite the summation and then use

〈Θ̂n1|ĉkα|Θ̂n2〉 = Tαα′ 〈n1|ĉ−kα′ |n2〉∗ (E.9)

based on Eq. (4.7). This yields

Tαα′
(
Gmα′β′(−k)

)∗
11
T †β′β =

(
Gmαβ(k)

)
11
. (E.10)

254



E.1 Exact relations following from the spectral representation

Collecting the resulting behavior of all four components, one finds

Tαα′
(
Gmα′β′(−k)

)∗
T †β′β = Gmαβ(k), Tαβ =

Tαβ
T ∗αβ

 (E.11)

in accordance with the relations derived in Ref. [310]. Note that Eq. (E.11) holds both for T T = −T
(spin-1/2 electrons) and T T = T (spinless electrons).
To arrive at the constraint (6.35), we have to transform Eq. (E.11) into the eigenbasis of the normal

state Hamiltonian. Using Eq. (6.8) in, e.g., the upper left component of the Nambu Green’s function
yields (

Gmαβ(k)
)

11
=
(
ψks
)
α

(
Gss′(k)

)
11

(
ψ∗ks′

)
β

(E.12)

with Gss′ as defined in Eq. (6.20). Inserting this into Eq. (E.11), using the property (6.13) of the
wavefunctions and proceeding analogously for all four components, one finds that Eq. (E.11) is, within
the weak-pairing approximation (6.21), equivalent to

e−iϕ
s
kτ3τ3G∗sK(−k)τ3e

iϕskτ3 = Gs(k) (E.13)

as stated in the main text.
The derivation of the charge-conjugation symmetry (6.34) of the Green’s function proceeds in two

steps: Firstly, one can directly read off from the path integral definition (6.20) that

τ1Gss′(k)τ1 = −
(
Gs′KsK

)T
(−k), (E.14)

where T (transposition) only refers to particle-hole space. Secondly, applying the well-known relation
(see, e.g., Ref. [310])

G(iωn,k) = G†(−iωn,k), (E.15)

which can also be shown from the spectral representation (using Hermiticity, 〈n|f̂ |n′〉∗ = 〈n′|f̂ †|n〉), we
find

τ1Gss′(iωn,k)τ1 = −G∗sKs′K(iωn,−k). (E.16)

In the weak-pairing approximation, this reduces to Eq. (6.34).

E.1.3 Identities for the fermion-boson vertex

Let us now discuss exact relations of the renormalized fermion-boson vertex Γ(j) in Eq. (6.72). To this
end, we start by analyzing the associated three-point function

C
(j)
αβ (k; k′) =

∫ β

0
dτ

∫ β

0
dτ ′ei(ωn′τ

′−ωnτ) 〈Tτ ĉ†kα(τ)ĉ
k′β

(τ ′)φ̂k−k′j(0)〉 . (E.17)

Performing the standard steps to derive spectral representations [94], it is straightforwardly shown that

C
(j)
αβ (k; k′) =

∑
n1,n2,n3

(
〈n1|ĉ†kα|n2〉 〈n2|ĉk′β|n3〉 〈n3|φ̂k−k′j |n1〉 In1n2n3(ωn, ωn′)

− 〈n1|ĉk′β|n2〉 〈n2|ĉ†kα|n3〉 〈n3|φ̂k−k′j |n1〉 In1n2n3(−ωn′ ,−ωn)

)
,

(E.18)
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E General properties of leading superconducting instabilities

where we have introduced

In1n2n3(ω, ω′) =
1

Z

e−βEn3 (∆21 + iω) + e−βEn2 (∆31 + i(ω − ω′)) + e−βEn1 (∆32 − iω′)
(∆21 + iω)(∆31 + i(ω − ω′))(∆32 − iω′)

(E.19)

using the shortcut notation ∆ij := Eni − Enj .

Hermiticity. Complex conjugation of Eq. (E.18), relabeling n1 ↔ n3 and using that

I∗n1n2n3
(ω, ω′) = In1n2n3(−ω,−ω′), (E.20)

In3n2n1(ω, ω′) = In1n2n3(ω′, ω), (E.21)

one finds

C
(j)
αβ (iωn,k; iωn′ ,k

′) =

[
C

(j)
βα(−iωn′ ,k′;−iωn,k)

]∗
. (E.22)

The vertex function Γ(j) is related to C(j) according to

C
(j)
βα(k2; k1) =

(
Gmαα′(k1)

)
11

Γ
(j′)
α′β′(k1; k2)

(
Gmβ′β(k2)

)
11
χj
′j(k1 − k2). (E.23)

Inserting this in Eq. (E.22) and using χ∗(iΩ, q) = χ(iΩ,−q) (see Eq. (6.50)) as well as
(
Gmαβ(iωn,k)

)∗
11

=(
Gmβα(−iωn,k)

)
11
, which is readily shown from Eq. (E.8) (and constitutes a special case of Eq. (E.15)),

we arrive at the property (6.74) stated in the main text.

TRS. Using the same steps as in Appendix E.1.1 and E.1.2, one can analyze the consequences of TRS
in the spectral representation (E.18) yielding

C
(j)
αβ (k; k′) = t T †αα′

[
C

(j)
α′β′(−k;−k′)

]∗
Tβ′β. (E.24)

Taking into account the properties of the fermionic and bosonic propagator in Eqs. (E.10) and (6.50),
one finds the required identity (6.73).

Symmetry between Rashba partners. Finally, we show that the asymptotic symmetry introduced
in Chap. 6.2.3 leads to the constraint (6.75) for the vertex function. For this purpose, it is most
convenient to work directly in the eigenbasis of the noninteracting fermionic Hamiltonian. Denoting
the fermionic creation and annihilation operators in this basis by f̂ †Ωs and f̂Ωs (cf. Eq. (4.23)), we
introduce the antiunitary Fock operator R̂ via

R̂f̂ΩsR̂
† = eiγ

s
Ω f̂ΩsR , R̂φ̂qjR̂

† = r t φ̂qj . (E.25)

In the asymptotic limit discussed in detail in Chap. 6.2.3, the entire Hamiltonian commutes with
R̂: The quadratic fermionic Hamiltonian is invariant since the Fermi velocities of Rashba partners
are asymptotically identical. The bare fermion-boson interaction (6.70) commutes with R̂ as long as
Eq. (6.60) withΛss′(k,k

′) = ψ†ksM(k,k′)ψ
k′s′

as well as t→ rt holds (which is guaranteed by assuming
Eq. (6.71)) and the bosons vary slowly on the scale |g|/vF . Any bosonic Hamiltonian quadratic in φ̂
must be invariant if, as required already before, the symmetry defined by Eqs. (6.63) and (6.64) holds.
This readily follows from the fact that Ĉφ̂qjĈ† = ±r φ̂qj for the combined linear operator Ĉ = R̂ŜΘ̂.

256



E.2 The leading superconducting instability

Consequently, Ĉ is a symmetry of any bosonic Hamiltonian that is even in φ̂. If Ĉ, Θ̂ and Ŝ are
symmetries of the bosonic Hamiltonian, the same will hold for R̂.
The analysis of the consequences of the invariance under R̂ is completely analogous to Θ̂ as both

are antiunitary symmetries of the many-body Hamiltonian: Using the spectral representation of the
normal component of the weak-pairing Green’s function Gs,

(
Gs(iωn,Ω)

)
11

=
∑
n1,n2

〈n1|f̂Ωs|n2〉 〈n2|f̂ †Ωs|n1〉
iωn − (En2 − En1)

I−n1n2
, (E.26)

we find (
Gs(iωn,Ω)

)
11

=
(
GsR(−iωn,Ω)

)∗
11
. (E.27)

In the same way, the spectral representation of the three-point function C̃(j)
ss′ (k, k

′) in the eigenbasis of
the normal state Hamiltonian can be used to proof the consequence

C̃
(j)
ss′ (iωn,Ω; iωn′ ,Ω

′) = r t ei(γ
s
Ω−γ

s′
Ω′ )

[
C̃

(j)
sRs
′
R

(−iωn,Ω;−iωn′ ,Ω′)
]∗

(E.28)

of the symmetry under R̂. The combination of Eqs. (E.27) and (E.28) then leads to the symmetry
constraint (6.75) of the main text.
By rearranging the sums in the spectral representations such that |nj〉 is effectively replaced by
Ŝ |nj〉, one can proof Eq. (6.76) straightforwardly.

E.2 The leading superconducting instability

In this section, we show that the leading superconducting instability, i.e., the first nontrivial solution
δ 6= 0 of the Eliashberg equations when the temperature is decreased, is, in case of phonons and TRE
particle-hole fluctuations, determined by the largest eigenvalue (the so-called Perron root [374]) of
the positive matrix v defined in Eq. (6.30) and for TRO fluctuations by its eigenspace with smallest
eigenvalue. As a first step, let us formally diagonalize v,

∑
n′

∑
s′

∫
s′

dΩ′vs,s′(iωn,Ω; iωn′ ,Ω
′)ajs′(iωn′ ,Ω

′) = λj(β)ajs(iωn,Ω). (E.29)

Due to v being symmetric and real, this is always possible, all eigenvalues λj(β) ∈ R and the eigenvec-
tors {aj}j form an orthonormal basis such that Eq. (6.27b) assumes the simple form λj(β) = 1. The set
of degenerate eigenvalues that, upon lowering the temperature, first become 1 determines the critical
temperature and the order parameter δ must then be a superposition of the associated eigenvectors.
So far, this is completely analogous to mean-field theory. However, due to the more indirect way the
temperature enters in the Eliashberg equations, it is not clear whether the largest eigenvalue first be-
comes 1. E.g., a finite subset of the eigenvalues could be larger than 1 for all temperatures. In other
words, we still have to show that all eigenvalues are smaller than 1 in the limit of high temperatures
β → 0.
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E General properties of leading superconducting instabilities

E.2.1 Electron-phonon coupling

Let us first focus on the effective electron-electron interaction resulting from electron-phonon coupling.
In the high temperature limit, the interaction matrix elements (6.17) assume the form

Vss′(k; k′)
β→0−→ −δn,n′

∑
l

1

ωk−k′l

∣∣∣∣G(l)
ss′(k,k

′)

∣∣∣∣2 . (E.30)

Using this in Eq. (6.27a), the quasiparticle residue becomes

Zs(iωn,Ω)
β→0−→ 1 +

2

|2n+ 1|
∑
s′

∫
s′

dΩ′ρs′(Ω
′)fs,Ω;s′,Ω′ , (E.31)

where, for notational convenience, we have introduced

fs,Ω;s′,Ω′ =
∑
l

1

ωk−k′l

∣∣∣∣G(l)
ss′(k,k

′)

∣∣∣∣2 . (E.32)

Here, k and k′ denote the momenta associated with (s,Ω) and (s′,Ω′), respectively. The interaction
kernel then behaves asymptotically according to

vs,s′(iωn,Ω; iωn′ ,Ω
′)
β→0−→ 2δn,n′θs,n,Ω fs,Ω;s′,Ω′ θs′,n′,Ω′ (E.33)

with

θs,n,Ω =

√
ρs(Ω)√

|2n+ 1|+ 2
∑

s̃

∫
s̃ dΩ̃ ρs̃(Ω̃)fs,Ω;s̃,Ω̃

. (E.34)

We thus see that, in the high-temperature limit, the eigenvalue problem (E.29) splits into the different
sectors characterized by a given Matsubara frequency. Since the right-hand side of Eq. (E.33) decays
monotonically as a function of |2n + 1|, we know from the Perron-Frobenius theorem [372–374] that
the Perron root of limβ→0 v equals the Perron root of

ms,Ω;s′,Ω′ = lim
β→0

vs,s′(iω0,Ω; iω0,Ω
′), (E.35)

which is a matrix only with respect to s and Ω.
We will show in the following that ms,Ω;s′,Ω′ , as any matrix of the more general form

Mµµ′ =

√
ρµfµµ′

√
ρµ′(

c+
∑

µ̃ fµµ̃ρµ̃

)1/2 (
c+

∑
µ̃ fµ′µ̃ρµ̃

)1/2
(E.36)

with ρµ, fµµ′ , c ∈ R+, has a Perron root rM smaller than 1 (f does not have to symmetric for this to
be true). For this purpose, let us rewrite M = D1D2fD2D1 where the diagonal matrices are defined
according to (

D1

)
µµ′

:= δµ,µ′
1(

c+
∑

µ̃ fµµ̃ρµ̃

)1/2
, (E.37)

(
D2

)
µµ′

:= δµ,µ′
√
ρµ. (E.38)
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E.3 Absence of point-symmetry breaking

Being similar, the two matrices M̃ = D2
1fD

2
2 and M have the same spectrum and, in particular, the

same Perron root. We thus know that [374]

rM ≤ max
µ

∑
µ′

∣∣∣M̃µµ′

∣∣∣ = max
µ

∑
µ′ fµµ′ρµ′

c+
∑

µ̃ fµµ̃ρµ̃
< 1. (E.39)

Consequently, the eigenvalues of m and, hence, of limβ→0 v are all smaller than 1. Since all λj(β) are
continuous functions of β, the eigenvalue that first becomes 1 must necessarily be the largest eigenvalue
of v.

E.2.2 Unconventional mechanism

The main question in case of unconventional pairing concerns the high-temperature limit of the inter-
action matrix element V given by Eq. (6.55). To analyze this limit, we first note that χ(iΩn, q) → 0
for Ωn →∞ is very reasonable to assume since the same must hold on the real axis in the limit of large
energies. As before, the interaction becomes diagonal in Matsubara indices and the analysis is the same
as in Sec. E.2.1 above. The sole difference is that v is replaced by tv in the gap equation (6.27b) such
that the order parameter δ of the leading instability belongs to the eigenspace of the positive matrix v
with largest or smallest eigenvalue depending on whether the driving fluctuations are TRE or TRO.

E.3 Absence of point-symmetry breaking

Here, we show that the absence of sign changes of the order parameter, Φ̃s(iωn,k) > 0, implies that
the condensate does not break any point symmetry of the normal state.
As we have discussed in Chap. 1.1, the order parameter of a second order phase transition must

transform under one of the irreducible representations of the point group of the high-temperature
phase. Denoting this irreducible representation and its dimension by n0 and dn0 , respectively, it holds
for the order parameter in the weak-pairing description

Φ̃s(iωn,k) =

dn0∑
µ=1

ηµϕ
µn0

ks (iωn), (E.40)

where ϕµn0 denote scalar basis functions transforming under n0 with respect to k and s (exactly as
in Eq. (4.37) except for the additional ωn dependence). Note that Eq. (E.40) is the generalization of
Eq. (4.38) beyond mean-field.
The grand orthogonality theorem (1.10) of group theory implies that two sets of basis functions,
{|ϕµn〉} and {|ϕ̃µn〉}, satisfy 〈ϕ̃µ′n′ |ϕµn〉 ∝ δn,n′δµ,µ′ . Let us take ϕ̃ks(iωn) = 1, which transforms
under the trivial representation, and assume that n0 is a nontrivial representation. It then follows

∑
s,k

Φ̃s(iωn,k) =

dn0∑
µ=1

ηµ 〈ϕ̃(iωn)|ϕµn0(iωn)〉 = 0 (E.41)

conflicting with Φ̃s(iωn,k) > 0. The superconductor must thus transform under the trivial representa-
tion of the point group of the normal state and, hence, cannot break any point symmetry.
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E General properties of leading superconducting instabilities

E.4 Relation between Chern numbers of Rashba partners

Finally, we proof that the symmetry (6.59) forces the Fermi surface Chern numbers defined by [280]

C1s :=
i

2π

∫
s

dωjj
′
(
∂kj′ψ

†
ks∂kjψks − (j ↔ j′)

)
(E.42)

to satisfy C1s = −C1sR . In Eq. (E.42), dωjj
′ are the surface element two forms of the Fermi surface s.

Using the notation ψks ' ψΩs, we rewrite the integrand according to(
∂kj′ψ

†
Ωs

)
∂kjψΩs − (j ↔ j′)

=
(
∂kj′e

−iγsΩψTΩsRT
†
)(

∂kje
iγsΩTψ∗ΩsR

)
− (j ↔ j′)

= −
[(
∂kj′ψ

†
ΩsR

)
∂kjψΩsR

− (j ↔ j′)

]
. (E.43)

Here we have applied the symmetry (6.59) in the second line and used (∂kjψ
†)ψ = −ψ†∂kjψ in the

last line to show that all contributions involving derivatives of the phases γsΩ vanish due to the anti-
symmetrization in j and j′. Inserting this back into the integral of Eq. (E.42), we readily obtain the
required property.
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F Appendix F

Weak disorder

The aim of this appendix is to provide supplementary information for Chap. 7.

F.1 Proof of stability of superconducting gap

Here we will show that Eq. (7.5) is a sufficient condition for the superconducting gap to be stable
against the disorder configuration described by ȟBdGW . The analogous discussion for the stability of a
density wave gap has been published in Ref. [239].
As a first step, consider two Hermitian matrices A and B with real eigenvalues denoted by {λ(i)

A }
and {λ(i)

B }. If A and B anticommute, it will hold

(A+B)2 = A2 +B2 + {A,B} = A2 +B2. (F.1)

Furthermore, it implies that A2 and B2 commute and can, hence, be diagonalized simultaneously.
Denoting the eigenvalues of A+B by {λ(i)

A+B}, we have(
λ

(i)
A+B

)2
=
(
λ

(i)
A

)2
+
(
λ

(i)
B

)2
⇒

∣∣∣λ(i)
A+B

∣∣∣ ≥ ∣∣∣λ(i)
A

∣∣∣, ∣∣∣λ(i)
B

∣∣∣ (F.2)

upon properly choosing the labeling of the eigenvalues.
Choosing A = ȟBdGn + ȟBdGW and B = ȟBdG∆ , Eqs. (7.5) and (F.2) imply that the modulus of the

eigenvalues of ȟBdG = A + B is bounded from below by the modulus of the eigenvalues of B = ȟBdG∆ .
This shows that the gap is not reduced due to the presence of disorder (assuming, as usual, that the
superconducting order parameter does not depend on the coordinate perpendicular to the Fermi surface
within the low-energy theory).

F.2 Diagrammatic proof of the generalized Anderson theorem

In this appendix, additional information is presented on the diagrammatic proof of the Anderson
theorem for superconductors with singly degenerate Fermi surfaces in the normal state. As Ω and
s always occur simultaneously, we introduce the composite index τ ≡ (Ω, s) and use a discretized
description of the angular coordinate Ω. This allows us to write all expressions conveniently in matrix
form. Note that no summation convention is implied throughout this section.
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F Weak disorder

Firstly, we will derive Eq. (7.23). Using Eq. (7.20) in the Ginzburg-Landau expansion (7.17), we
have

〈F〉dis ∼
∑
τ,τ ′

∆̃∗τ

−T∑
ωn

(
C(ωn)− td SS

)−1
− V−1


ττ ′

∆̃τ ′ . (F.3)

The first term is straightforwardly rewritten using

∑
τ,τ ′

∆̃∗τ

[
C − td SS

]−1

ττ ′
∆̃τ ′ =

∑
τ,τ ′

∆̃∗τ

 ∞∑
n=0

(
td C−1SS

)n
C−1


ττ ′

∆̃τ ′ (F.4)

=
∑
τ,τ ′

 ∞∑
n=0

(
C−1SS

)n
C−1


ττ ′

∣∣∣∆̃τ ′

∣∣∣2 , (F.5)

where, in the second line, ∆̃∗τ (C−1)ττ ′ = (C−1)ττ ′∆̃
∗
τ ′ and ∆̃∗τSSττ ′ = td SSττ ′∆̃∗τ ′ , following from C being

diagonal and Eq. (7.22), have been applied iteratively. Summing the series leads directly to Eq. (7.23)
stated in the main text.
Secondly, we will show how the self-energy and vertex corrections cancel each other in Eq. (7.23b). For

this purpose, we split the clean and purely disorder-induced contributions to d by writing C(ωn)−SS =
|ωn|
π ρ−1 −M where

ρ
ττ ′

= δτ,τ ′ρτ , Mττ ′ = SSττ ′ − δτ,τ ′
1

ρτ

∑
τ̃

SSττ̃ρτ̃ . (F.6)

Note that the first and the second term in M correspond to the vertex correction and self-energy,
respectively. Using this parameterization, we can rewrite Eq. (7.23b) as

dτ = −T
∑
ωn

∑
τ̃

( |ωn|
π
ρ−1 −M

)−1

τ̃ τ

(F.7)

= −Tρτ
∑
ωn

π

|ωn|
− T

∑
ωn

∞∑
n=1

(
π

|ωn|

)n+1∑
τ̃

[(
ρM

)n]
τ̃ τ

. (F.8)

The second term in Eq. (F.8) vanishes due to the summation over τ̃ as follows from∑
τ̃

(
ρM

)
τ̃ τ

=
∑
τ̃

(
SSτ̃τ − SSττ̃

)
ρτ̃ = 0, (F.9)

where we have used that SS is symmetric. We thus have dτ = −Tρτ
∑

ωn
π
|ωn| exactly as in the clean

case.

F.3 Disorder-induced topology

Here we present more details on the calculation of the impact of disorder on the superconducting
instabilities discussed in Chap. 7.2.2. Exactly as Chap. 7.2 of the main text, this appendix is based on
Ref. [367].
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F.3 Disorder-induced topology

In the simple case SSΩs,Ω′s′ = γ which is realized in the example discussed in the main text, one can
invert C − td SS analytically. Defining ρF :=

∑
s

∫
dΩρs(Ω), Eq. (7.20) becomes

DΩs,Ω′s′ = −T
∑
ωn

ρs(Ω)
|ωn|
π + ρFγ

δs,s′δΩ,Ω′ +
tdρs′(Ω

′)γ
|ωn|
π + ρFγ(1− td)

. (F.10)

With the assumptions stated in the main text, ρs(Ω) ' const. and Eq. (7.27), we have ∆̃s(Ω) = ∆̃s

and the kernel of the free energy expansion (7.17) effectively becomes a 2 × 2 matrix. Its eigenvalues
λ++ and λ+− corresponding to the s++ (∆̃1 = ∆̃2) and s+− (∆̃1 = −∆̃2) state, the zeros of which
determine the associated transition temperatures, read

λ++ = − 1

U + J
− ρ

2
ln

(
2eγΛ

πT

)
, (F.11a)

λ+− = − 1

U − J
− ρ

2

ln

(
Λ

2πT

)
− ψ

(
1

2
+

γ

2T

) (F.11b)

for nonmagnetic (td = +1) disorder. Here ψ denotes the digamma function. We see that the transition
temperature T++

c of the s++ state is unaffected by disorder as required by the Anderson theorem
[229–231]. In contrast, the critical temperature T+−

c of the s+− phase is reduced as can be seen in
Eq. (F.11b) by noting that ψ(x) is monotonically increasing for x > 0. As long as J < 0, it holds
T+−
c < T++

c irrespective of the disorder strength.
In case of magnetic (td = −1) scattering, we have

λ++ = − 1

U + J
− ρ

2

ln

(
Λ

2πT

)
− ψ

(
1

2
+

2γ

2T

) , (F.12a)

λ+− = − 1

U − J
− ρ

2

ln

(
Λ

2πT

)
− ψ

(
1

2
+

γ

2T

) . (F.12b)

In this case, both T++
c and T+−

c are reduced by disorder. However, T++
c is more strongly affected due

to the additional factor of 2 in front of γ in Eq. (F.12a). Physically, 2γ has to be seen as the sum
of intra- and interband scattering strengths which happen to be identical in the example considered,
whereas γ in Eq. (F.12b) is just the intraband contribution.
Eqs. (7.28) and (7.29) are straightforwardly obtained by analyzing Eq. (F.12) in the associated asymp-

totic limits J/U → 0 and T → 0, respectively.
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