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Efficient time integration of the Maxwell-Klein-Gordon1

equation in the non-relativistic limit regime2

Patrick Krämer∗, Katharina Schratz3

Karlsruhe Institute of Technology, Faculty of Mathematics, Englerstr. 2 , 76131 Karlsruhe, Germany4

Abstract5

The Maxwell-Klein-Gordon equation describes the interaction of a charged particle with6

an electromagnetic field. Solving this equation in the non-relativistic limit regime, i.e.7

the speed of light c formally tending to infinity, is numerically very delicate as the so-8

lution becomes highly-oscillatory in time. In order to resolve the oscillations, standard9

numerical time integration schemes require severe time step restrictions depending on10

the large parameter c2.11

The idea to overcome this numerical challenge is to filter out the high frequencies12

explicitly by asymptotically expanding the exact solution with respect to the small pa-13

rameter c−2. This allows us to reduce the highly-oscillatory problem to its corresponding14

non-oscillatory Schrödinger-Poisson limit system. On the basis of this expansion we are15

then able to construct efficient numerical time integration schemes, which do NOT suffer16

from any c-dependent time step restriction.17

Keywords: Maxwell-Klein-Gordon, time integration, highly-oscillatory, wave equation,18

non-relativistic limit19

1. Introduction20

The Maxwell-Klein-Gordon (MKG) equation describes the motion of a charged par-
ticle in an electromagnetic field and the interactions between the field and the particle.
The MKG equation can be derived from the linear Klein-Gordon (KG) equation(

∂t

c

)2

z −∇2z + c2z = 0 (1)

by coupling the scalar field z(t, x) ∈ C to the electromagnetic field via a so-called minimal
substitution (cf. [17, 24, 25]), i.e.

∂t

c
→ ∂t

c
+ i

Φ

c
=: D0,

∇ → ∇− iA
c

=: Dα,
(2)
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where the electromagnetic field is represented by the real Maxwell potentials Φ(t, x) ∈ R21

and A(t, x) ∈ Rd.22

We replace the operators ∂t
c and ∇ in the KG equation (1) by their minimal substi-

tution (2) such that in the so-called Coulomb gauge (cf. [1]), i.e. under the constraint
divA ≡ 0, we obtain a KG equation coupled to the electromagnetic field as

(
∂t

c
+ i

Φ

c

)2

z −
(
∇− iA

c

)2

z + c2z = 0,

∂ttA− c2∆A = cP [J ] ,

−∆Φ = ρ,

(3)

for some charge density ρ(t, x) ∈ R and some current density J(t, x) ∈ Rd, where we
define

P [J ] := J −∇∆−1 divJ

the projection of J onto its divergence-free part, i.e. divP [J ] ≡ 0.23

Setting

ρ = ρ[z] := −Re
(
i
z

c

(
∂t

c
− iΦ

c

)
z
)
, J = J [z] := Re

(
iz
(
∇+ i

A
c

)
z
)
, (4)

where z solves (3), we find that ρ and J satisfy the continuity equation

∂tρ+ divJ = 0. (5)

For notational simplicity in the following we may also write ρ(t, x), J(t, x) instead of24

ρ[z(t, x)] and J [z(t, x)].25

The definition of ρ and J in (4) together with the constraint divA(t, x) ≡ 0 yields
the so-called Maxwell-Klein-Gordon equation in the Coulomb gauge

∂ttz = −c2(−∆ + c2)z + Φ2z − 2iΦ∂tz − iz∂tΦ− 2icA · ∇z − |A|2 z,
∂ttA = c2∆A + cP [J ] , J = Re

(
izDαz

)
,

−∆Φ = ρ, ρ = −c−1 Re
(
izD0z

)
,

z(0, x) = ϕ(x), D0z(0, x) =
√
−∆ + c2ψ(x),

A(0, x) = A(x), ∂tA(0, x) = cA′(x),∫
Td

ρ(0, x)dx = 0,

∫
Td

Φ(t, x)dx = 0.

(6a)

(6b)

Note that for practical implementation issues we assume periodic boundary conditions26

(p.b.c.) in space in the above model, i.e. x ∈ Td. For simplicity we also assume that the27

total charge Q(t) := (2π)−d
∫
Td ρ(t, x)dx at time t = 0 is zero, i.e. Q(0) = 0. Also due to28

the constraint divA(t, x) ≡ 0 we assume that the initial data A,A′ for A are divergence-29

free. Finally, the following assumption guarantees strongly well-prepared initial data.30

However, approximation results also hold true under weaker initial assumptions, see for31

instance [21].32

Assumption 1. The initial data ϕ,ψ,A,A′ is independent of c.33
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Remark 1. Note that the continuity equation (5) together with the initial assumption34

Q(0) = 0 implies that for all t we have
∫
Td ρ(t, x)dx =

∫
Td ρ(0, x)dx = 0.This yields the35

first condition in (6b).36

Remark 2. Up to minor changes, all the results of this paper remain valid for Dirichlet37

boundary conditions instead of periodic boundary conditions.38

Remark 3. Note that the MKG system (6) is invariant under the gauge transform
(z,Φ,A) 7→ (z′,Φ′,A′), where for a suitable choice of χ = χ(t, x) we set

Φ′ := Φ + ∂tχ, A′ := A− c∇χ, z′ := z exp(−iχ),

i.e. if (z,Φ,A) solves the MKG system (6) then also does (z′,Φ′,A′) without modification39

of the system (cf. [1, 11, 24, 25]). Henceforth, the second condition in (6b) holds40

without loss of generality: If 0 6= (2π)−d
∫
Td Φ(t, x)dx =: M(t) ∈ R, we choose χ as41

χ(t, x) = χ(t) = −(M(0) +
∫ t

0
M(τ)dτ), such that (6b) is satisfied for Φ′.42

For more physical details on the derivation of the MKG equation, on Maxwell’s po-43

tentials, gauge theory formalisms and many more related topics we refer to [1, 11, 12,44

17, 24, 25] and the references therein.45

46

Here we are interested in the so-called non-relativistic limit regime c� 1 of the MKG47

system (6). In this regime the numerical time integration becomes severely challenging48

due to the highly-oscillatory behaviour of the solution. In order to resolve these high49

oscillations standard numerical schemes require severe time step restrictions depending50

on the large parameter c2, which leads to a huge computational effort. This numerical51

challenge has lately been extensively studied for the nonlinear Klein-Gordon (KG) equa-52

tion, see [2, 3, 8, 14]. In particular it was pointed out that a Gautschi-type exponential53

integrator only allows convergence under the constraint that the time step size is of order54

O(c−2) (cf. [3]).55

In this paper we construct numerical schemes for (6) which do not suffer from any
c-dependent time step restriction. Our strategy is thereby similar to [2, 14] where the
Klein-Gordon equation is considered: In a first step we expand the exact solution into
a formal asymptotic expansion in terms of c−2 for z,Φ and in terms of c−1 for A.
This allows us to filter out the high oscillations in the solution explicitly. Therefore we
can break down the numerical task to only solving the corresponding non-oscillatory
Schrödinger-Poisson limit system. The latter can be carried out very efficiently without
imposing any CFL type condition on c nor the spatial grid size. This construction is
based on the Modulated Fourier Expansion (MFE) of the exact solution in terms of the
small parameter c−l, l ≥ 1, see for instance [10, 14], [15, Chapter XIII] and the references
therein. However, as in [14] we control the expansion by computing the coefficients of the
MFE directly and in particular exploit the results in [6, 21] on the asymptotic behaviour
of the exact solution of the MKG equation (6). More precisely, formally the following
approximations hold

z(t, x) =
1

2

(
u0(t, x) exp(ic2t) + v0(t, x) exp(−ic2t)

)
+O

(
c−2
)
,

A(t, x) = cos(c
√
−∆t)A(x) +

√
−∆

−1
sin(c

√
−∆t)A′(x) +O

(
c−1
)
,

(7)
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where u0 and v0 solve the Schrödinger-Poisson (SP) system
i∂tu0 = 1

2∆u0 + Φ0u0, u0(0) = ϕ− iψ,
i∂tv0 =

1

2
∆v0 − Φ0v0, v0(0) = ϕ− iψ,

−∆Φ0 = −1

4

(
|u0|2 − |v0|2

)
,

∫
Td

Φ0(t, x)dx = 0.

(8)

Remark 4. The L2 conservation of u0, v0 together with the choice Q(0) = 0 yields that∫
Td

|u0(t, x)|2 − |v0(t, x)|2 dx =

∫
Td

|u0(0, x)|2 − |v0(0, x)|2 dx = 0.

Here we point out that in the asymptotic expansion (7) the highly-oscillatory nature56

of the solution is only contained in the high-frequency terms exp(±ic2t) and cos(c
√
−∆t),57

sin(c
√
−∆t), respectively. In particular the SP system (8) does not depend on the large58

parameter c. Henceforth, the expansion (7) allows us to derive an efficient and fast nu-59

merical approximation without any c-dependent time step restriction: We only need to60

solve the non-oscillatory SP system numerically and multiply the numerical approxima-61

tions to the SP solution with the highly-oscillatory phases.62

After a full discretization using for instance the second-order Strang splitting scheme63

for the time discretization of the SP system (8) (see [20]) with time step size τ and a64

Fourier pseudospectral (FP) method for the space discretization with mesh size h, the65

resulting numerical schemes then approximate the exact solution of the MKG equation66

up to error terms of order O(c−2 + τ2 + hs) for z,Φ and O(c−1 + hs) for A respectively.67

The main advantage here is that we can choose τ and h independently of the large68

parameter c. The value of s depends on the smoothness of the solution. We will discuss69

the numerical scheme in more detail later on in Section 5.70

Remark 5. Under additional smoothness assumptions on the initial data we can also71

carry out the asymptotic expansion up to higher order terms in c−l. In particular, every72

term in this expansion can be easily computed numerically as the high oscillations can73

be filtered out explicitly.74

If we consider other boundary conditions, such as for example Dirichlet or Neumann75

boundary conditions it may be favorable to use a finite element (FEM) space discretiza-76

tion or a sine pseudospectral discretization method instead of the FP method. For details77

on the convergence of a FEM applied to the MKG equation in the so-called temporal78

gauge, see for instance [9] and references therein.79

For further results on the construction of efficient methods on related Klein-Gordon80

type equations in the non-relativistic limit regime we refer to [2–5, 8].81

2. A priori bounds82

We follow the strategy presented in [14, 21]: Firstly, we rewrite the MKG equation
(6) as a first order system. Therefore, for a given c we introduce the operator

〈∇〉c :=
√
−∆ + c2,
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which in Fourier space can be written as a diagonal operator (〈∇〉c)k` = δk`
√
|k|2 + c2,83

k, ` ∈ Zd, where δk` denotes the Kronecker symbol. By Taylor series expansion of84 √
1 + x

−1
we can easliy see that for all k ∈ Zd there holds |(c 〈∇〉−1

c )kk| ≤ 1, i.e. c 〈∇〉−1
c85

is uniformly bounded with respect to c. In particular, there holds
∥∥∥c 〈∇〉−1

c u
∥∥∥
s
≤ ‖u‖s,86

where ‖·‖s denotes the standard Sobolev norm corresponding to the function space87

Hs := Hs(Td,C).88

In order to rewrite the equation for z in (6) as a first order system we set

u = z − i 〈∇〉−1
c D0z, v = z − i 〈∇〉−1

c D0z, (9)

as proposed in [21]. By the definition of D0z = c−1(∂t+ iΦ)z and since Φ is real we have

that z =
1

2
(u+ v). We define the abbreviations

Nu[u, v,Φ,A] :=− i

2
(Φ + 〈∇〉−1

c Φ 〈∇〉c)u−
i

2
(Φ− 〈∇〉−1

c Φ 〈∇〉c)v

+ ic−1 〈∇〉−1
c

(
|A|2 1

2
(u+ v)

)
− 〈∇〉−1

c (A · ∇(u+ v))
(10)

and Nv[u, v,Φ,A] := Nu[v, u,−Φ,−A]. Differentiating u and v in (9) with respect to t89

we obtain the system90 
i∂tu = −c 〈∇〉c u+ iNu[u, v,Φ,A], u(0) = ϕ− iψ
i∂tv = −c 〈∇〉c v + iNv[u, v,Φ,A], v(0) = ϕ− iψ,
−∆Φ = ρ[u, v],

∂ttA = c2∆A + cP [J [u, v,A]] , A(0) = A, ∂tA(0) = cA′

(11)

where the definition of u(0), v(0) follows from the ansatz (9) together with the initial

data ϕ,ψ,A,A′ in (6). Furthermore since z =
1

2
(u+ v) we have by (6) that

ρ[u, v] = −1

4
Re
(
(u+ v)c−1 〈∇〉c (u− v)

)
,

J [u, v,A] =
1

4
Re
(
i(u+ v)∇(u+ v)− A

c
|u+ v|2

)
.

(12)

Setting Tc(t) = exp(ic 〈∇〉c t) we can formulate the mild solutions of (11) as

u(t) =Tc(t)u(0) +

∫ t

0

Tc(t− τ)Nu[u, v,Φ,A](τ)dτ,

v(t) =Tc(t)v(0) +

∫ t

0

Tc(t− τ)Nv[u, v,Φ,A](τ)dτ,

A(t) = cos(c 〈∇〉0 t)A(0) + (c 〈∇〉0)−1 sin(c 〈∇〉0 t)∂tA(0)

+ 〈∇〉−1
0

∫ t

0

sin(c 〈∇〉0 (t− τ))P [J [u, v,A](τ)] dτ,

(13)

where we define exp(ic 〈∇〉c t)w, cos(c 〈∇〉0 t)w and c−1 〈∇〉−1
0 sin(c 〈∇〉0 t)w for w ∈ Hs

in Fourier space as follows: Let ŵk = (Fw)k denote the k-th Fourier coefficient of w.

5



Then we have for all k ∈ Zd

(F [exp(ic 〈∇〉c t)w])k = exp

(
ict

√
|k|2 + c2

)
ŵk,

(F [cos(c 〈∇〉0 t)w])k = cos (c |k| t) ŵk,
(F [(c 〈∇〉0)−1 sin(c 〈∇〉0 t)w])k = t sinc(c |k| t)ŵk.

Since the Fourier transform is an isometry in Hs it follows easily, that the opera-
tors cos(c 〈∇〉0 t) and sin(c 〈∇〉0 t) are uniformly bounded with respect to c and that
exp(ic 〈∇〉c t) is an isometry in Hs, i.e. for all w ∈ Hs and for all t ∈ R we have

‖exp(ic 〈∇〉c t)w‖s = ‖w‖s , ‖cos(c 〈∇〉0 t)w‖s ≤ ‖w‖s ,
∥∥∥∥ sin(c 〈∇〉0 t)

c 〈∇〉0
w

∥∥∥∥
s

≤ t ‖w‖s .
(14)

As the nonlinearities Nu and Nv in the system (11) involve products of u, v,Φ,A we
will exploit the standard bilinear estimates in Hs: For s > d/2 we have

‖uv‖s ≤ Cs ‖u‖s ‖v‖s (15)

for some constant Cs depending only on s and d.91

In the following we assume that s > d/2. By representation in Fourier space we see
that for w ∈ Hs′ , s′ = max{s, s+m}, m ∈ Z there holds

‖〈∇〉m1 w‖
s
≤ Cs,m ‖w‖s+m . (16)

Thus, (15) and (16) yield for w ∈ Hs,Φ ∈ Hs+2∥∥∥〈∇〉−1
c (Φ 〈∇〉c w)

∥∥∥
s
≤ C1

∥∥∥〈∇〉−1
c (Φ 〈∇〉0 w)

∥∥∥
s

+ C2

∥∥∥c 〈∇〉−1
c (Φw)

∥∥∥
s

≤ C ‖Φ‖s+2 ‖w‖s ,
(17)

since (16) implies that for all w̃ ∈ Hs and c ≥ 1 we find a constant C such that∥∥∥〈∇〉−1
c w̃

∥∥∥
s
≤
∥∥∥〈∇〉−1

1 w̃
∥∥∥
s
≤ C ‖w̃‖s−1 .

After a short calculation we find that for uj , vj ,Aj ∈ Hs,Φj ∈ Hs+2, j = 1, 2 there
holds, with N = Nu and N = Nv respectively, that

‖N [u1, v1,Φ1,A1]−N [u2, v2,Φ2,A2]‖s
≤ KN (‖u1 − u2‖s + ‖v1 − v2‖s + ‖Φ1 − Φ2‖s+2 + ‖A1 −A2‖s)

and ∥∥∥〈∇〉−1
0 (J [u1, v1,A1]− J [u2, v2,A2])

∥∥∥
s

≤ KJ (‖u1 − u2‖s + ‖v1 − v2‖s + ‖A1 −A2‖s),
where the constants KN and KJ only depend on ‖uj‖s , ‖vj‖s , ‖Φj‖s+2 , ‖Aj‖s, j = 1, 2.92

Together with (14) a standard fix point argument now implies immediately local
well-posedness in Hs, s > d/2 (see for instance [13, Theorem III.7]), i.e. for initial data
u(0), v(0),A(0) ∈ Hs, ∂tA(0) ∈ Hs−1 there exists Ts > 0 and a constant Bs > 0 such
that

‖u(t)‖s + ‖v(t)‖s + ‖Φ(t)‖s+2 + ‖A(t)‖s ≤ Bs, ∀t ∈ [0, Ts]. (18)

For local and global well-posedness results on the MKG equation in other gauges, e.g. in93

Lorentz gauge, and low regularity spaces we refer to [18, 21, 26] and references therein.94
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3. Formal asymptotic expansion95

In this section we formally derive the Schrödinger-Poisson system (8) as the non-96

relativistic limit of the MKG equation (6), i.e. we formally motivate the expansion (7).97

For a detailed rigorous analysis in low regularity spaces we refer to [6, 21] and references98

therein; results on asymptotics of related systems such as the Maxwell-Dirac system can99

be found in [7, 21].100

On the c-independent finite time interval [0, T ] we now look, at first formally, for a
solution (u, v,Φ,A) of (6) in the form of a Modulated Fourier expansion (cf. [15, Chapter
XIII]), i.e. we make the ansatz

u(t, x) = U(t, θ, x) =

∞∑
n=0

c−2nUn(t, θ, x), v(t, x) = V (t, θ, x) =

∞∑
n=0

c−2nVn(t, θ, x),

Φ(t, x) = Φ̃(t, θ, x) =

∞∑
n=0

c−2nΦn(t, θ, x), A(t, x) = A(t, σ, x) =

∞∑
n=0

c−nAn(t, σ, x),

(19)
where σ = ct, θ = c2t are fast time scales which are used to seperate the high oscillations101

from the slow time dependency of the solution. Next we apply the so-called method of102

multiple scales to U , V , Φ̃ and A, where the idea is to treat the time scales t, σ and θ103

as independent variables. This allows us to derive a sequence of equations for the MFE104

coefficients Un, Vn,Φn,An, n ≥ 0 and henceforth to determine the asymptotic expansion105

(19). For more details on the method of multiple scales and perturbation theory we refer106

to [19, 22, 23].107

We start off by plugging the ansatz (19) into (11) and obtain for W = (U, V )T the
equation

∂tW + c2∂θW = ic 〈∇〉cW +

(
Nu(U, V, Φ̃,A)

Nv(U, V, Φ̃,A)

)
(20)

with initial condition

U(0, 0, x) = ϕ(x)− iψ(x), V (0, 0, x) = ϕ(x)− iψ(x) (21)

and an equation for A in terms of t and σ, i.e.

∂ttA + 2c∂σ∂tA + c2∂σσA = c2∆A + cP [J [U, V,A]] (22)

with initial condition

(A(0, 0, x), (∂t + c∂σ)A(0, 0, x)) = (A(0, x), ∂tA(0, x)).

For the potential Φ̃ we find the equation

−∆Φ̃ = −1

4
Re
(
(U + V )c−1 〈∇〉c (U − V )

)
. (23)

In the next step we expand the operators 〈∇〉c and 〈∇〉−1
c into their Taylor series

expansion. For w sufficiently smooth we have

c 〈∇〉c w = (c2 − 1

2
∆− c−2 1

8
∆2 +

∑
n≥2

αn+1c
−2n(−∆)n+1)w. (24)

7



Similarly, we find

c 〈∇〉−1
c w = (1 + c−2 1

2
∆ +

∑
n≥2

βnc
−2n(−∆)n)w. (25)

Now (24) and (25) yield for Ψ, w ∈ Hs+2

〈∇〉−1
c Ψ 〈∇〉c w = Ψw +O

(
c−2[∆,Ψ]w

)
(26)

in the sense of the Hs norm and where [A,B] := AB − BA denotes the commutator of108

the operators A and B, i.e. [∆,Ψ]w = ∆(Ψw)−Ψ(∆w).109

Since ϕ and ψ are independent of c, the ansatz (19) yields by (21) that

U0(0, 0, x) = ϕ(x)− iψ(x), Un(0, 0, x) = 0, n ≥ 1,

V0(0, 0, x) = ϕ(x)− iψ(x), Vn(0, 0, x) = 0, n ≥ 1.
(27)

Now the idea is to compare the coefficients of the left- and right-hand side of (20) with110

respect to equal powers of c by plugging the ansatz (19) and the expansions (24), (25)111

and (26) into the equation. This finally yields a sequence of partial differential equations112

at each order of c.113

At order c2 we obtain {
(∂θ − i)U0(t, θ, x) = 0,

(∂θ − i)V0(t, θ, x) = 0,

which allows solutions of the form

U0(t, θ, x) = exp(iθ)u0(t, x), V0(t, θ, x) = exp(iθ)v0(t, x) (28)

where u0, v0 will be determined in the next step.114

Plugging (28) into (23) we obtain the first term Φ0 in the expansion (19) of Φ̃ as the
solution of the Poisson equation

−∆Φ0(t, θ, x) = −∆Φ0(t, x) = −1

4

(
|u0(t, x)|2 − |v0(t, x)|2

)
. (29)

At order c0 we use (28) and obtain the equations
(∂θ − i)U1(t, θ, x) = exp(iθ)

(
−∂tu0(t, x)− i

2
∆u0(t, x)− iΦ0(t, x)u0(t, x)

)
(∂θ − i)V1(t, θ, x) = exp(iθ)

(
−∂tv0(t, x)− i

2
∆v0(t, x) + iΦ0(t, x)v0(t, x)

)
.

(30)

Since exp(iθ) lies in the kernel of the operator (∂θ−i) and since u0, v0,Φ0 are independent
of θ, we demand u0 and v0 to satisfy i∂tu0(t, x) =

1

2
∆u0(t, x) + Φ0(t, x)u0(t, x),

i∂tv0(t, x) =
1

2
∆v0(t, x)− Φ0(t, x)v0(t, x),

(31)

with initial data u0(0, x) = ϕ(x)− iψ(x), and v0(0, x) = ϕ(x)− iψ(x).115

8



As u0, v0 satisfy (31), we can proceed as above: (30) allows solutions of the form

U1(t, θ, x) = exp(iθ)u1(t, x), V1(t, θ, x) = exp(iθ)v1(t, x),

where we can determine u1 and v1 by considering the equation arising at order c−2. In116

the same way the coefficients Un, Vn, n ≥ 2 can be obtained.117

In this paper we will only treat the expansion (19) up to its first term at order c0.
Therefore, in the following we set

z0(t, x) =
1

2

(
exp(ic2t)u0(t, x) + exp(−ic2t)v0(t, x)

)
. (32)

Then, by the above procedure we know that at least formally the approximation

‖z(t, x)− z0(t, x)‖s ≤ Kc−2

holds for sufficiently smooth data. In Section 4 below we will state the precise regularity118

assumptions and give the ideas of the convergence proof. For a rigorous analysis we refer119

to [6, 21] and references therein.120

Next we repeat the same procedure with equation (22) for the MFE coefficients of
A. As A is a real vector field we look for real coefficients An, n ≥ 0. At order c2 we
find the homogeneous equation

(∂σσ −∆)A0(t, σ, x) = 0, (33)

which allows solutions of the form

A0(t, σ, x) = cos(σ
√
−∆)a0(t, x) +

√
−∆

−1
sin(σ

√
−∆)b0(t, x) (34)

with some a0, b0 that will be determined in the next step.121

The equation arising from the comparison of the terms at order c1 reads

(∂σσ −∆)A1 = −2∂σ∂tA0 +
1

4
P
[
Re
(
i(U0 + V0)∇(U0 + V0)

)]
.

As the term

∂σ∂tA0(t, σ, x) = − sin(σ
√
−∆)

√
−∆∂ta0(t, x) + cos(σ

√
−∆)∂tb0(t, x)

lies in the kernel of the operator (∂σσ − ∆) we demand by the same argumentation
as before that ∂σ∂tA0(t, σ, x) = 0. This in particular implies that ∂ta0(t, x) = 0 and
∂tb0(t, x) = 0. Hence ∂tA0(t, σ, x) ≡ 0 and we find

A0(t, σ, x) = A0(σ, x) and a0(t, x) = a0(x), b0(t, x) = b0(x).

At σ = 0 we find a0(x) = A0(0, x) and by differentiation of A0 with respect to σ we
obtain b0(x) = ∂σA(0, x). The data A0(0, x) and ∂σA(0, x) are again determined via
comparison of coefficients: the initial data of A in (6) are given as

A(0, x) = A(x), ∂tA(0, x) = cA′(x),

9



where A,A′ do not depend on c. Hence, the formal asymptotic expansion

A(t = 0, x) = A0(σ = 0, x) +
∑
n≥1

c−nAn(t = 0, σ = 0, x)

yields that
a0(x) = A0(0, x) = A(x). (35)

Since

cA′(x) = ∂tA(0, x) ' (∂t + c∂σ)A(0, 0, x) = c∂σA0(0, x) +
∑
n≥1

c−n(∂t + c∂σ)An(0, 0, x)

we choose
b0(x) = ∂σA0(0, x) = A′(x). (36)

Finally by (34),(35) and (36) we obtain the first term of the expansion as

A0(t, x) = cos(ct
√
−∆)A(x) + (c

√
−∆)−1 sin(ct

√
−∆)cA′(t, x). (37)

We remark that at this point we can explicitly evaluate the first term A0(t, x) of the122

MFE of A for all t ∈ [0, T ].123

Collecting the results in (29), (31) and (37) yields the non-relativistic limit Schrödinger-
Poisson system as in [21], i.e.

i∂t

(
u0

v0

)
=

1

2
∆

(
u0

v0

)
+ Φ0

(
u0

−v0

)
,

(
u0(0)
v0(0)

)
=

(
ϕ− iψ
ϕ− iψ

)
,

−∆Φ0 = −1

4

(
|u0|2 − |v0|2

)
,

∫
Td

Φ0(t, x)dx = 0.

A0(t, x) = cos(ct
√
−∆)A(x) + (c

√
−∆)−1 sin(ct

√
−∆)cA′(x).

(38)

The numerical advantage of the above approximation lies in the fact that compared to124

the challenging highly-oscillatory MKG system (6), the SP system (38) can be solved125

very efficiently (for example by applying a Strang splitting method, see [20]), without126

imposing any CFL type condition on c nor the spatial discretization parameter h. Details127

will be given in Section 5 below.128

4. Error bounds129

In the following, let (u, v,A,Φ) denote the solution of the first order MKG system130

(11) and let (u0, v0,Φ0,A0) denote the solution of the corresponding limit system (8)131

with initial data ϕ,ψ,A,A′, where the limit vector potential A0 is given by (37).132

The following Theorem states rigorous error bounds on the asymptotic approxima-133

tions z0, Φ0 and A0 towards z,Φ and A, where z0 is defined in (32). For a detailed134

analysis and bounds in low regularity spaces we refer to [6, 21]. Here, we will only135

outline the ideas of the proof.136

10



Theorem 1 (cf. [6, 21]). Let s > d/2 and let ϕ,ψ ∈ Hs+4, A ∈ Hs+1, A′ ∈ Hs. Then
there exists a T > 0 such that for all t ∈ [0, T ] and c ≥ 1 there holds

‖z(t)− z0(t)‖s + ‖∆(Φ(t)− Φ0(t))‖s ≤ c−2(1 +KT
Φ )b(T ) exp(λ(T )))

‖A(t)−A0(t)‖s ≤ c−1(KT
A.1 + TKT

A.2),

where
b(t) = MT

0 + tMT
1 + t2MT

2 , λ(t) = MT
3 + tMT

4

with constants KT
Φ ,K

T
A.1,K

T
A.2,M

T
0 , . . . ,M

T
4 only depending on ‖ϕ‖s+4, ‖ψ‖s+4, ‖A‖s+1,

‖A′‖s as well as on

K = sup
τ∈[0,T ]

{
‖A(τ)‖s + ‖u(τ)‖s+2 + ‖v(τ)‖s+2 + ‖u0(τ)‖s+4 + ‖v0(τ)‖s+4

}
.

We outline the ideas in the proof in several steps. Note that since

z(t) =
1

2
(u(t) + v(t)) and z0(t) =

1

2
(exp(ic2t)u0(t) + exp(−ic2t)v0(t))

the triangle inequality allows us to break down the problem as follows:

‖z(t)− z0(t)‖s ≤
∥∥u(t)− exp(ic2t)u0(t)

∥∥
s

+
∥∥v(t)− exp(ic2t)v0(t)

∥∥
s

=: R(t). (39)

We start with the following proposition.137

Proposition 1 (cf. [21]). Under the assumptions of Theorem 1 for all t ∈ [0, T ] there
holds that

‖∆(Φ(t)− Φ0(t))‖s ≤ c−2KT
Φ.1 +KT

Φ.2R(t),

where KT
Φ.1,K

T
Φ.2 depend on supτ∈[0,T ]

{
‖u(τ)‖s+2 + ‖v(τ)‖s+2 + ‖u0(τ)‖s + ‖v0(τ)‖s

}
.138

Proof. The idea of the proof is to write down the representation of ∆Φ and ∆Φ0 given139

in (11) and (38). Using the expansion (25) and adding ”zeros” in terms of exp(ic2t)u0(t)140

and exp(ic2t)v0(t) yields the result.141

Proposition 2 (cf. [21]). Under the assumptions of Theorem 1 for all t ∈ [0, T ] there
holds that

‖A(t)−A0(t)‖s ≤ c−1(KT
A.1 + tKT

A.2) +MT

∫ t

0

R(τ)dτ,

where MT depends on supτ∈[0,T ]

{
‖u(τ)‖s + ‖v(τ)‖s + ‖u0(τ)‖s+1 + ‖v0(τ)‖s+1

}
and where142

the dependency of KT
A.1,K

T
A.2 on the solutions is stated in Theorem 1.143

Proof. The idea of the proof is to replace A(t) by its mild formulation given in (13).
The difference A − A0 then only involves an integral term over the current density
P [J [u, v,A]]. We introduce the limit current density as J0[u0, v0](t) = Re (iz0∇z0).
Now adding ”zeros” in terms of J0[u0, v0] gives an integral term involving the difference

‖J [u, v,A](τ)− J0[u0, v0](τ)‖s = O
(
c−1
)

+KR(τ)

for some constant K not depending on c, and another integral term involving

〈∇〉−1
0 sin(c 〈∇〉0 (t− τ))P [J0[z0](τ)] .

Integration by parts then yields the assertion.144
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The above propositions allow us to prove Theorem 1 as follows:145

Proof of Theorem 1. Note that both terms in R(t) (see (39)) can be estimated in ex-
actly the same way. Thus, we only establish a bound on

∥∥u(t)− exp(ic2t)u0(t)
∥∥
s
. The

main tool thereby is to exploit that the operators Tc(t) = exp(ic 〈∇〉c t) and T0(t) =
exp(−i 1

2∆t) are isometries in Hs. Expanding exp(i(−c 〈∇〉c + c2− 1
2∆)t) into its Taylor

series yields with the aid of (24) that∥∥Tc(t)w − T0(t) exp(ic2t)w̃
∥∥
s
≤ ‖w − w̃‖s +O

(
c−2t ‖w̃‖s+4

)
. (40)

Note that the mild solutions of (38) read

u0(t) = T0(t)u0(0)− i
∫ t

0

T0(t− τ)Φ0(τ)u0(τ)dτ,

v0(t) = T0(t)v0(0) + i

∫ t

0

T0(t− τ)Φ0(τ)v0(τ)dτ.

(41)

As u(0) = u0(0), the mild formulation of u and u0 given in (13) and (41) together with
(40) thus imply that∥∥u(t)− exp(ic2t)u0(t)

∥∥
s
≤ c−2tK ‖u0(0)‖s+4

+

∥∥∥∥∫ t

0

Tc(t− τ)Nu[u, v,Φ,A](τ) + i exp(ic2t)T0(t− τ)Φ0(τ)u0(τ)dτ

∥∥∥∥
s

,
(42)

where Nu[u, v,Φ,A] is defined in (10).146

Our aim is now to express the integral term in (42) as a term of type

O
(
c−2
)

+

∫ t

0

R(τ)dτ,

which will allow us to conclude the assertion by Gronwall’s lemma. Therefore we consider147

each term in Nu[u, v,Φ,A] seperately.148

By (25) and (26) we find after a short calculation that

‖Nu[u, v,Φ,A] + iΦu+ 〈∇〉−1
c (A · ∇(u+ v)) ‖s ≤ Kc−2,

where K = K(‖Φ‖s+2 , ‖u‖s+2 , ‖v‖s+2 , ‖A‖s). Thus, using (40) we can bound the
integral term in (42) as follows:∥∥∥∥∫ t

0

Tc(t− τ)Nu[u, v,Φ,A](τ) + i exp(ic2t)T0(t− τ)Φ0(τ)u0(τ)dτ

∥∥∥∥
s

≤Kc−2t sup
τ∈[0,t]

‖Φ0(τ)u0(τ)‖s+4 +

∫ t

0

∥∥Φ(τ)u(τ)− Φ0(τ) exp(ic2τ)u0(τ)
∥∥
s
dτ

+

∥∥∥∥∫ t

0

Tc(t− τ) 〈∇〉−1
c

(
A(τ) · ∇(u(τ) + v(τ)

)
dτ

∥∥∥∥
s

.

(43)

The latter term can be bounded up to a term of order O
(
c−2
)

+
∫ t

0
R(τ)dτ by insert-149

ing ”zeros” in terms of A0(τ), exp(ic2τ)u0(τ) and exp(ic2τ)v0(τ) and then applying150

integration by parts with respect to τ and applying Proposition 2.151
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Furthermore we can estimate
∥∥Φ(τ)u(τ)− Φ0(τ) exp(ic2τ)u0(τ)

∥∥
s

as∥∥Φu− Φ0 exp(ic2τ)u0

∥∥
s
≤ C(‖Φ− Φ0‖s ‖u‖s + ‖Φ0‖s

∥∥u− exp(ic2τ)u0

∥∥
s
)

such that by Proposition 1 we find that∥∥Φu− Φ0 exp(ic2τ)u0

∥∥
s
≤ c−2C1 + C2R(τ),

where the constants C1 and C2 depend on the same data as the constants in the assertion152

of Proposition 1.153

Plugging the above bounds into (42) yields that

R(t) ≤ c−2(MT
0 +MT

1 t+MT
2 t

2) + (MT
3 + tMT

4 )

∫ t

0

R(τ)dτ

which by Gronwall’s Lemma implies the desired bound

R(t) ≤ c−2b(T ) exp(λ(T )), ∀t ∈ [0, T ]. (44)

The results on Φ0(t) and A0(t) follow the line of argumentation by using (44) in the154

results of Proposition 1 and Proposition 2.155

5. Construction of numerical schemes156

In this section we construct an efficient and robust numerical scheme for the highly-157

oscillatory MKG equation (6) in the non-relativistic limit regime, i.e. for c� 1. In order158

to overcome any c-dependent time step restriction we exploit the limit approximation159

(38) derived in Section 3.160

5.1. The numerical scheme and its error161

We consider the MKG equation (6) in the Coulomb gauge in the non-relativistic limit
regime c� 1

∂ttz = −c2 〈∇〉2c z + Φ2z − 2iΦ∂tz − iz∂tΦ− 2icA∇z − |A|2 z,
∂ttA = c2∆A + cP [J ] , J = Re

(
izDαz

)
,

−∆Φ = ρ, ρ = −c−1 Re
(
izD0z

)
,

z(0, x) = ϕ(x), D0z(0, x) =
√
−∆ + c2ψ(x),

A(0, x) = A(x), ∂tA(0, x) = cA′(x),∫
Td

ρ(0, x)dx = 0,

∫
Td

Φ(t, x)dx = 0

(45a)

(45b)

equipped with periodic boundary conditions, i.e. x ∈ Td = [−π, π]d. In the previous
sections we derived the corresponding SP limit system (cf. (38))

i∂t

(
u0

v0

)
=

1

2
∆

(
u0

v0

)
+ Φ0

(
u0

−v0

)
,

(
u0(0)
v0(0)

)
=

(
ϕ− iψ
ϕ− iψ

)
,

−∆Φ0 = −1

4

(
|u0|2 − |v0|2

)
,

∫
Td

Φ0(t, x)dx = 0,

A0(t, x) = cos(ct
√
−∆)A(x) + (c

√
−∆)−1 sin(ct

√
−∆)cA′(x)

(46)
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which will now allow us to derive an efficient numerical time integration scheme: Since the162

SP system (46) does not depend on the large parameter c we can solve it very efficiently;163

in particular without any c-depending time step restriction. Multiplying the numerical164

approximations of the non-oscillatory functions u0 and v0 with the high frequency terms165

exp(±ic2t) then gives a good approximation to the exact solution, see Theorem 2 below166

for the detailed description. In particular this approach allows us to overcome any c-167

dependent time step restriction.168

Time discretization: We carry out the numerical time integration of the Schrödinger-
Poisson system

i∂t

(
u0

v0

)
=

1

2
∆

(
u0

v0

)
+ Φ0

(
u0

−v0

)
,

(
u0(0)
v0(0)

)
=

(
ϕ− iψ
ϕ− iψ

)
,

−∆Φ0 = −1

4

(
|u0|2 − |v0|2

)
,

∫
Td

Φ0(t, x)dx = 0.

(47)

with an exponential Strang splitting method (cf. [20]), where we naturally split the
system into the kinetic part

i∂t

(
u0

v0

)
=

1

2
∆

(
u0

v0

)
(T)

with the exact flow ϕtT (u0(0), v0(0)) and the potential part
i∂t

(
u0

v0

)
= Φ0

(
u0

−v0

)
,

−∆Φ0 = −1

4

(
|u0|2 − |v0|2

)
,

∫
Td

Φ0(t, x)dx = 0,

(P)

with the exact flow ϕtP (u0(0), v0(0)). The Strang splitting approximation to the exact
flow ϕt(u0(0), v0(0)) = ϕtT+P (u0(0), v0(0)) of the SP system (47) at time tn = nτ, n =
0, 1, 2, . . . with time step size τ is then given by

ϕtn(u0(0), v0(0)) ≈
(
ϕ
τ/2
T ◦ ϕτP ◦ ϕτ/2T

)n
(u0(0), v0(0)). (48)

We can solve the kinetic subproblem (T) in Fourier space exactly in time. In subproblem169

(P) we can show that the modulus of u0 and v0 are constant in time, i.e. |u0(t)|2 =170

|u0(0)|2 and |v0(t)|2 = |v0(0)|2, and thence also Φ0 is constant in time, i.e. Φ0(t) = Φ0(0).171

Thus, we can also solve the potential subproblem (P) exactly in time.172

Space discretization: For the space discretization we choose a Fourier pseudospec-173

tral method with N grid points (or frequencies respectively), i.e. we choose a mesh size174

h = 2π/N and grid points xj = −π+jh, j = 0, . . . , N−1. We then denote the discretized175

spatial operators by ∆h and ∇h respectively.176

Full discretization: The fully discrete numerical scheme can then be implemented177

efficiently using the Fast Fourier transform (FFT).178

This ansatz allows us to state the following convergence result on the approximation179

of the MKG system (45) in the non-relativistic limit regime:180

Theorem 2. Consider the MKG (45) on the torus Td. Fix s′1, s
′
2, s > d/2 and let

ϕ,ψ ∈ Hs+r1(Td), A,A′ ∈ Hs+r2(Td) with r1 = max{4, s′1}, r2 = max{2, s′2}. Then
14



there exist T,C, h0, τ0 > 0 such that the following holds: Let us define the numerical
approximation of the the first-order approximation term z0(t) at time tn = nτ through

zn,h0 :=
1

2

(
un,h0 exp(ic2tn) + v0

n,h exp(−ic2tn)
)
,

where un,h0 , vn,h0 denote the numerical approximation to the solutions u0(tn), v0(tn) of the
limit system (46) obtained by the Fourier Pseudospectral Strang splitting scheme (48)

with mesh size h ≤ h0 and time step τ ≤ τ0. Furthermore let Φn,h0 denote the numerical
approximation to Φ0(tn) given through the discrete Poisson equation

−∆hΦn,h0 := −1

4

(∣∣∣un,h0

∣∣∣2 − ∣∣∣vn,h0

∣∣∣2) . (49)

Also let

An,h
0 = cos

(
ctn
√
−∆h

)
Ah +

(
c
√
−∆h

)−1

sin
(
ctn
√
−∆h

)
cA′h

denote the numerical approximation to A0(tn), where Ah, A
′
h are the evaluations of A181

and A′ on the grid points.182

Then, the following convergence towards the exact solution of the MKG equation (45)
holds for all tn ∈ [0, T ] and c ≥ 1 :∥∥∥z(tn)− zn,h0

∥∥∥
s

+
∥∥∥∆Φ(tn)−∆hΦn,h0

∥∥∥
s
≤ C

(
τ2 + hs

′
1 + c−2

)
,∥∥∥A(tn)−An,h

0

∥∥∥
s
≤ C

(
hs

′
2 + c−1

)
.

Proof. The proof follows the same ideas as the proof of [14, Theorem 3]. The triangle
inequality yields∥∥∥z(tn)− zn,h0

∥∥∥
s
≤ ‖z(tn)− z0(tn)‖s +

∥∥∥z0(tn)− zn,h0

∥∥∥
s
,∥∥∥∆Φ(tn)−∆hΦn,h0

∥∥∥
s
≤ ‖∆(Φ(tn)− Φ0(tn))‖s +

∥∥∥∆Φ0(tn)−∆hΦn,h0

∥∥∥
s
,∥∥∥A(tn)−An,h

0

∥∥∥
s
≤ ‖A(tn)−A0(tn)‖s +

∥∥∥A0(tn)−An,h
0

∥∥∥
s
.

(50)

Theorem 1 allows us to bound the first term in each of the inequalities above in order c−2
183

and c−1, respectively. Henceforth, we only need to derive bounds on the numerical errors184

of the Fourier Pseudospectral Strang splitting scheme approximating the SP system.185

Error in zn,h0 : Note that∥∥∥z0(tn)− zn,h0

∥∥∥
s
≤
∥∥∥exp(ic2t)(u0(tn)− un,h0 )

∥∥∥
s

+
∥∥exp(−ic2t)(v0(tn)− v0

n,h)
∥∥
s

≤
∥∥∥u0(tn)− un,h0

∥∥∥
s

+
∥∥∥v0(tn)− vn,h0

∥∥∥
s

≤ C(τ2 + hs
′
1).

The latter follows for sufficiently smooth solutions (i.e. if u0, v0 ∈ Hr, r = s+ s′1) by the186

convergence bound on the Strang splitting applied to the Schrödinger-Poisson system187

derived in [20].188
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Figure 1: Left: H2 error of the numerical limit approximation (zn,h
0 ,Φn,h

0 ,An,h
0 ) to the exact solution.

Right: L2 error of the numerical approximations En,h
0 , Bn,h

0 to the electromagnetic field. The reference
solution (z,Φ,A) was computed with a Gautschi-type exponential integrator with time step size τ =
2−22 ≈ 10−7. The black dashed line with slope −1 and the black solid line with slope −2 represent the
order O

(
c−1

)
and O

(
c−2

)
respectively.

Error in Φn,h0 : By (46) and (49) we obtain that∥∥∥∆Φ0(tn)−∆hΦn,h0

∥∥∥
s
≤M(

∥∥∥u0(tn)− un,h0

∥∥∥
s

+
∥∥∥v0(tn)− vn,h0

∥∥∥
s
) ≤ C(τ2 + hs

′
1).

Error in An,h
0 : As A0 is explicitly given in time we do not have any time discretiza-

tion error. Only the error by the Fourier pseudospectral method comes into play which
yields that ∥∥∥A0(tn)−An,h

0

∥∥∥
s
≤ Chs′2 ,

if the exact solution is smooth enough, i.e. if A0 ∈ H r̃, r̃ = s+ s′2.189

Collecting the results yields the assertion.190

5.2. Numerical results191

192

In this section we numerically underline the sharpness of the theoretical results derived193

in the previous sections.194

For the MKG equation (45) on the two-dimensional torus, i.e. d = 2, (x, y)T ∈ T2 =
[−π, π]2, we choose the initial data ϕ,ψ,A,A′ as

ϕ̃(x, y) = sin(y) + cos(x) + i(cos(2x) + sin(y)), ϕ = ϕ̃/ ‖ϕ̃‖L2 ,

ψ̃(x, y) = cos(x) + sin(2y) + i cos(2x) sin(y), ψ = ψ̃/ ‖ϕ̃‖L2 ,

Ã(x, y) = (∂yV1(x, y),−∂xV1(x, y))
T
, A = Ã/

∥∥∥Ã∥∥∥
L2
,

Ã′(x, y) = c (∂yV2(x, y),−∂xV2(x, y))
T
, A′ = Ã′/

∥∥∥Ã∥∥∥
L2
,

where

V1(x, y) = sin(x) cos(y) + sin(2y) + cos(x), V2(x, y) = sin(y) + cos(2x).
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It is easy to check that divA = 0 and divA′ = 0. Furthermore the initial data satisfy195

Remark 1, i.e.
∫
Td ρ(0, x)dx = 0 , where ρ(0) = −Re

(
iϕ 〈∇〉c ψ

)
. We simulate the limit196

solution on the time interval t ∈ [0, T = 1] with a time step size τ = 2−10 ≈ 10−3, and a197

spatial grid with N = 128 grid points in both dimensions and measure the maximal error198

of the limit approximation (z0,Φ0,A0) on the time interval [0, T ] in the H2 norm. A199

reference solution of the MKG equation (45) is obtained with an adapted Gautschi-type200

exponential integrator, as proposed in [16] for highly-oscillatory ODEs or in [3] for the201

nonlinear Klein-Gordon equation. Thereby a very small time step size τref satisfying202

the CFL condition τref ≤ c−2h is necessary. Fig. 1 verifies the theoretical convergence203

bounds stated in Theorem 2. We furthermore observe numerically that also the electric204

field En,h0 := −c−1∂tAn,h
0 − ∇hΦn,h0 and the magnetic field Bn,h0 := ∇h ×An,h

0 show a205

c−1 convergence towards E = −c−1∂tA−∇Φ and B = ∇×A in L2, respectively.206

6. Conclusion207

In order to derive an efficient and accurate numerical method for solving the MKG208

equation in the non-relativistic limit regime c � 1 we followed the idea of a formal209

asymptotic expansion of the exact solution (z,Φ,A) in terms of c−2 and c−1, respectively.210

This allowed us to reduce the numerical effort of solving the highly-oscillatory MKG211

system under severe time step restrictions τ = O(c−2) to solving the corresponding212

non-oscillatory Schrödinger-Poisson (SP) limit system. The latter can be carried out213

very efficiently and in particular independently of the large parameter c. We obtained a214

numerical approximation (un,h0 , vn,h0 ,Φn,h0 ) to the solution (u0, v0,Φ0) of the SP system215

at time tn = nτ by solving the SP system via an exponential Strang splitting method216

with time step τ in time together with a Fourier pseudospectral method for the space217

discretization on a grid with mesh size h. In particular τ and h do not depend on the large218

parameter c. The numerical approximations zn,h0 ,Φn,h0 ,An,h
0 then satisfy error bounds219

of order O(c−2 + τ2 + hs
′
) and O(c−1 + hs

′
) respectively. We underlined the sharpness220

of the error bound with numerical experiments. For practical implementation issues221

we assumed periodic boundary conditions. Up to minor changes all the results of this222

paper remain valid for Dirichlet boundary conditions and different spatial discretization223

schemes.224
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