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Noise Characterization and Emulation for
Low-Voltage Power Line Channels between 150

kHz and 10 MHz
Bin Han, Vlad Stoica, Cornelius Kaiser, Nico Otterbach, and Klaus Dostert, Senior Member, IEEE

Abstract—Characterization and emulation of power line noise
have attracted interest since long, in both narrowband and
broadband applications. Based on existing models, this paper
presents a systematic approach to extract and parameterize each
subtype of low-voltage (LV) power line noise between 150 kHz
and 10 MHz. Based on the characterization, a FPGA-based
emulator is proposed to emulate power line noise scenarios
flexibly. A LV power line noise measuring platform is also
presented with sample measurements and their emulation.

Index Terms—Power line communications, PLC, noise charac-
terization, emulation

I. INTRODUCTION

P ower line communication (PLC), due to its unique advan-
tage of using the widely existing power line infrastructure,

has been considered as a competitive solution for communi-
cations in smart grid, and has thus raised a lot of interest in
the past decade. However, the existing power lines were not
originally designed for data transmission, but only for energy
delivery. They transmit information inferiorly due to their high
attenuation and low electromagnetic compatibilities (EMC).

Existing PLC technologies are usually divided into narrow-
band (NB) and broadband (BB). Generally, NB-PLC systems
work in the frequency band below 500 kHz, whereas BB-
PLC systems make use of the wide band above 2 MHz
[1]. Since the 1990s, many researchers have made efforts
to characterize the behaviors of power line channels in both
narrowband and broadband, especially on the low-voltage (LV)
level, including the access domain and the indoor domain
[2]–[6]. Nowadays, it is generally agreed that the power line
channels suffer from time-varying frequency-selective fading
and adverse noise scenarios [7]. Besides, both the channel
transfer function (CTF) and the noise scenario are dependent
on the load situation on the grid, which is always difficult to
estimate or predict.

This leads to a huge challenge of PLC system verification.
First of all, an accurate reproduction is impossible due to the
complicated time-varying channel conditions, if the devices
under test (DUTs) are directly tested in a real power grid. An
artificial channel reproduction is therefore required. Next, it
is also difficult to reconstruct these channel characteristics ac-
curately with conventional laboratory equipments and simple
analog circuits, thus a digital solution is needed. Furthermore,
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although off-line software implementations of channel simula-
tion can be exploited to flexibly and accurately reconstruct the
power line channel behaviors, the latencies of interfacing to
the PLC devices can be critical for the performance evaluation.
Thus, an real-time hardware setup is essential. Motivated by
this, Götz proposed an universal solution: to emulate power
line channels with a configurable channel emulator, based on
a field programmable gate array (FPGA), which was able
to emulate usual power line channels flexibly and accurately
[3]. Following this idea, different types of power line channel
emulators have been developed in the past decade, according to
different operation frequency bands of PLC systems. For BB-
PLC, Cañete et al. proposed an emulator for indoor power
line channels in the frequency range up to 30 MHz [8],
Weling et al. contributed to the multiple-input multiple-output
(MIMO) PLC channel emulation [9]–[11]. For NB-PLC, Liu
introduced a channel emulator with a detailed methodology of
PLC system evaluation [12].

Comparing to BB-PLC, NB-PLC has a longer history, and
has been more and throughly investigated. As the deployment
of long-wave radios has been world-widely vanishing since
years, the risk of interfering with radio also keeps sinking
in the narrowband field. NB-PLC bands have been licensed
widely over the world and some NB-PLC products have been
on the market for years. However, due to restricted bandwidth,
NB-PLC systems have very constrained data transmission rates
(below 500 kbit/s). BB-PLC has been investigated aiming at
higher transmission rates up to several hundred Mbit/s, but due
to its immaturity in technology and its higher risk of interfering
with primary users, its industrial applications are still limited.
The selection of a frequency band for a PLC system, therefore,
depends always on the application scenario and the local
regulations. Traditionally, every PLC system was optimized
for an a-priori defined frequency range, which was inflexible.
Aiming at applications that are able to work over extended
frequency spans with complicated and sundry scenarios, Liu
et al. developed a new PLC system, which adaptively selects
its carrier frequency between 0.15 - 10 MHz [13].

However, no existing literature can fully support complete
and flexible channel characterization and emulation in this
frequency range yet, especially when focusing on the noise
scenario. For example, the mains-synchronous time envelope
of narrowband noise is significant in NB-PLC [12], but often
ignored in BB-PLC [8]. The random play-back method of Wel-
ing et al. is appropriate for noise generation in any frequency
range [9], but depends on a huge data base and does not
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support flexible configuration of noise in a particular category.
Furthermore, different types of noise should be extracted from
the overall noise for accurate characterization and emulation,
but most current noise decomposition techniques are either
primitive or dependent on specialized hardware such as or-
thogonal frequency-division multiplexing (OFDM) systems.

In this article, we propose a systematic approach of LV
power line noise characterization and emulation between
0.15 and 10 MHz. A general description of the power line
noise and a review of the existing noise models is first
given in Section II, followed by the noise characterization in
Section III, including the noise decomposition and the noise
parameterization. Based on the parametric models, an FPGA-
based solution of noise emulation is introduced in Section IV.
In Section V, we present a power line noise measuring setup,
and show the results of characterization and emulation of a
real laboratory measurement as a verification. Finally, Section
VI closes our contribution with conclusions and an outlook.

II. LV POWER LINE NOISES: EXISTING MODELS

Power line networks are usually divided into three levels:
high voltage (HV, 110 - 380 kV), medium voltage (MV, 10
- 30 kV) and low voltage (LV, ≤ 0.4 kV) [14]. Due to its
wide distribution, easy access and low cost for signal coupling,
the LV level attracts the most interest. On this level, research
on the noise scenarios focuses mainly on the receiving side,
i.e. at power access points such as indoor power outlets and
LV transformer stations [2], [4], [15]–[18], but attempts to
characterize the noises at their sources have also been reported
[19]–[21]. In the recent years, with the arising interest in
multi-input multi-output (MIMO) PLC technology, the noise
in MIMO PLC channels was also investigated [6], [22]–[24].

A. Noise Classification and the Additive Noise Model

The power line noise at a receiver is hard to characterize
with one universal model, because noise origins are found in
numerous different sources, and can therefore exhibit quite
different behaviors. Hence, Hooijen initiated to model the NB
power line noise as a summation of four different types, which
are classified according to their spectral and time behaviors
[25]. This additive model was then extended by Zimmermann
and Dostert to broadband with five updated noise categories:
colored background noise (CBGN), narrowband noise (NBN),
periodic impulsive noise synchronous to mains (PINS), pe-
riodic impulsive noise asynchronous to mains (PINAS) and
aperiodic impulsive noise (APIN) [26]:

n(t) = nCBGN(t) +nNBN(t) +nPINS(t) +nPINAS(t) +nAPIN(t).
(1)

The main sources of these types of noise were also referred to.
CBGN originates mainly from summation of numerous noise
sources with low power. NBN is mainly caused by broadcast
radio signals, which are coupled into the power line network
through cables long enough to operate as antennas. Cortés
et al. added that electrical appliances with a transmitter or
a receiver can also cause NBN [4]. PINS and PINAS are
generated by power supplies synchronous with the mains cycle

and switching power supplies, respectively. APIN is caused by
switching transients in the network, its power spectral density
(PSD) can reach more than 50 dB above the CBGN. When
measured at an isolated power consumer, it is stated that
mainly PINS and PINAS are significant [20].

B. The CBGN Model

To characterize the colored background noise with its scale
and spectral power distribution, Zimmermann modeled it as a
filtered Gaussian white noise (WGN):

nCBGN(t) = σ · nW (t) ∗ hCBGN(t), (2)

where nCBGN(t) is the CBGN, nW(t) is a WGN with unity
power, σ is the constant standard deviation and hCBGN(t) is
a linear time-invariant (LTI) filter [27]. This model considers
the CBGN as a stationary process.

However, the CBGN has been reported in many refer-
ences to exhibit a periodic PSD [4], [28], [29], and appears
cyclostationary. Therefore, two advanced models have been
introduced: the temporal cyclostationary model [30] and the
spectrotemporal cyclostationary model [31], which can be
summarized as

nCBGN,T(t) = σ(t) · nW(t) ∗ hCBGN(t) (3)
and nCBGN,ST(t) = nW(t) ∗ hCBGN(t, τ), (4)

respectively. Here, σ(t) is a time-varying deviation and
hCBGN(t, τ) is a linear periodic time varying (LPTV) filter
which fulfills

hCBGN(t, τ) = hCBGN(t, τ − nT0) ∀n ∈ Z, (5)

where T0 is the cyclic period, normally equal to one half of the
mains period. Comparing the two models, it can be asserted
that the temporal cyclostationary model is also a special case
of the general spectrotemporal cyclostationary model, where
only the scale but not the shape of the noise PSD varies over
time.

Taking the spectrotemporal cyclostationary model, the char-
acterization of the CBGN equals to the characterization of the
LPTV filter hCBGN(t, τ), which can be expressed as a Volterra
series [12]:

hCBGN(t, τ) =h1(τ) +

+∞∑
n=2

∫ ∫
· · ·

∫
hn[t, τ1, . . . , τn−1]·

n−1∏
i=1

m(t− τi)dτ1dτ2 . . . dτn−1, (6)

where hn(t1, t2, . . . , tn) is the nth Volterra kernel and m(t) is
a periodic function of time. However, not only the estimations
of the kernels and m(t), but also synthetic implementation
of this model can be computationally complex. Therefore, in
practice, it is more appropriate to assume that hCBGN(t, τ) is
underspread for power line channels, i.e. its coherence time
is larger than its effective impulse response [8]. Under this
assumption, the LPTV filter hCBGN(t, τ) can be approximated
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with a linear switching time-varying (LSTV) filter:

hCBGN(t, τ) =


h1(t), τ ∈ [nT0, τ1 + nT0)

h2(t), τ ∈ [τ1 + nT0, τ2 + nT0)

. . .

hK(t), τ ∈ [τK−1 + nT0, T0 + nT0)

∀n ∈ Z,
(7)

where the system switches among K different LTI filters
sequentially in every period. By modifying K, the time
resolution of the characterization can be configured. The
LSTV approximation for LPTV systems was mathematically
derived by Mehr et al. [32] and has been demonstrated as
efficient in research on power line channels [8], [33]. Thus,
the characterization of the CBGN is further simplified into
the characterizations of K LTI filters and the estimations of
K switching times. Hence, we take the LSTV model in our
work for CBGN.

C. The NBN Model
The NBN can be generally modeled as a summation of

different independent harmonic interferences, as proposed in
[26]:

nNBN(t) =

NNBN∑
i=1

cNBN,i(t) =

NNBN∑
i=1

Ai(t) sin(2πfit+ φi(t)),

(8)
where NNBN is the number of independent interferences, Ai(t),
fi and φi(t) are the time envelope, the central frequency and
the phase of the ith interference cNBN,i(t), respectively. Self-
evidently, each cNBN,i can also be expressed as

cNBN,i(t) = Ai(t) sin(2π(fi + ∆fi(t))t), (9)

where fi + ∆fi is an instantaneous frequency. The frequency
offset ∆fi is normally random and always within a certain
bandwidth Bi:

|∆fi| <
Bi
2
. (10)

The bandwidths of NBNs in narrowband have been statistically
analyzed by Bausch et al., reporting an average value of
about 3 kHz [34]. For the NBNs at higher frequencies, the
bandwidths can reach up to some ten kHz [7]. In this paper,
the model (9) is taken for NBN.

Investigating the statistical behavior of NBN deeper, both
Cortés [4] and Opalko [35] pointed out that there are two
different classes of some narrowband interferences. The first
class is stationary NBN, for which the auto-covariance is time-
invariant, i.e.

CcNBN,icNBN,i(t1, t1 + ∆t) = CcNBN,icNBN,i(t2, t2 + ∆t)

∀t1, t2,∆t ∈ R. (11)

The second class is cyclostationary NBN, whose auto-
covariance is periodic:

CcNBN,icNBN,i(t, t+ ∆t)

=CcNBN,icNBN,i(t+ nTNBN, t+ nTNBN + ∆t) (12)
∀i ∈ {1, 2, . . . N}, ∀n ∈ Z, ∀t,∆t ∈ R,

where TNBN is the cyclic period. Noticing that (11) also fulfills
(12), it can be asserted that the latter one is the general case.

More accurately, Cortés et al. pointed it out in [4] that
cyclostationary NBN is synchronous with the mains. We have
verified this assertion in previous research work by showing
that TNBN equals one half of the mains period for this kind of
NBN [36]. The source of the cyclostationarity, according to
Liu, is the periodic terms in the envelopes Ai(t), which are
synchronous to the mains period [12]. Although the amplitude
of a narrowband interference is not totally deterministic but
still stochastic to a certain degree, the random fluctuation is
usually neglected and the envelope is approximately assumed
to be either constant (for stationary NBN) or a periodic
function synchronous to the mains (for cyclostationary NBN).

Considering the periodicity of a narrowband interference
sin(2π(fi + ∆fi(t))t) and its envelope Ai(t), their product
will include a set of harmonics. Thus, according to [36] the
model (9) can also be transformed into another form:

nNBN(t) =

NNBN∑
i=1

Aie
j∆φi

L∑
l=1

ci,le
j2πfi,lt, (13)

where L is the number of harmonics in each independent
interference, Ai and ∆φi are the constant scaling factor and
the phase-offset of the ith interference. ci,l and fi,l are the
coefficient and the central frequency of the lth harmonic in the
ith interference, respectively. However, due to the flexibility of
using bandwidth instead of phase in the characterization, we
still take the form (9) in this paper as the NBN model.

D. The Periodic Impulsive Noise Model

PINS and PINAS, despite their different sources and cyclic
periods, have no substantive distinction in their time behavioral
patterns. Therefore, they are also usually collectively referred
to as the periodical impulsive noise (PIN). Similar to the NBN,
the PIN at receiver is also considered as a summation of
different independent PIN components:

nPIN =

NPIN∑
i=1

cPIN,i(t), (14)

where NPIN is the amount of components. For each compo-
nent cPIN,i, the amplitude probability distibution, according
to Katayama et al., matches a Gaussian model [30]. Based
on these facts, Ohne and Katayama proposed the well-known
cyclostationary Gaussian model [30], [37]–[39], describing the
cyclostationary component in a power line noise as a Gaussian
noise with the time-varying power:

σ2
PIN,i(t, f) = σ2

PIN,i(t)ai(f), (15)

where σ2
PIN,i(t) is a periodical function, and ai(f) describes

the frequency dependency.
It has been reported in different works that the PSD of

PIN is significantly higher than the background noise in a
wide frequency range up to 100 MHz [4], [17]. This leads
to less importance of the frequency dependency ai(f) of a
PIN component, but a higher interest in σ2

PIN,i(t). To describe
this time behavior and to identify PIN components, three
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Figure 1: A PIN with two independent components.

parameters have been generally applied since long: the impulse
amplitude, the impulse width and the interarrival time between
impulses [14], [26]. In practice, it is often necessary to approx-
imate the periodical fluctuation of the PIN power with on-off-
keying [12], [40]. An example with two PIN components is
illustrated in Fig. 1, where APIN,i, tPIN,i, τPIN,i and TPIN,i are
the impulse amplitude, the arriving time, the impulse width
and the interarrival time of the component cPIN,i, respectively.
There is

σ2
PIN,i(t) ={
APIN,i : t ∈ [tPIN,i + nTPIN,i, tPIN,i + τPIN,i + nTPIN,i];

0 : otherwise,
(16)

∀n ∈ Z;

This is equivalent to the spectrotemporal cyclostationary
model (4), which was applied on PIN by Lin et al. in [41]:

cPIN,i = nW(t)⊗ hPIN,i(t), (17)
hPIN,i(t, τ) ={
APIN,iδ(t) : τ ∈ [tPIN,i + nTPIN,i, tPIN,i + τPIN,i + nTPIN,i];

0 : otherwise,
(18)

∀n ∈ Z

There are also other PIN models available, such as the
autoregressive moving-average (ARMA) model proposed by
Gianaroli et al. in [18]. Nevertheless, in comparison, the
spectrotemporal cyclostationary model (17) has only four
parameters, which are easy to obtain from measurements, and
is hence taken for PIN in our work.

E. The APIN Model

Due to the nature of its source, APIN exhibits no deter-
ministic behavior. It is a common way to describe it with the

Middleton’s Class-A model [42]–[45]:

p(nA) =

∞∑
m=0

Pm
1√

2πσ2
m

exp(− n2

2σ2
m

), (19)

Pm =
e−AAm

m!
, (20)

σ2
m = σ2m/A+ Γ

1 + Γ
= σ2

i

m

A
+ σ2

g , (21)

Γ =
σ2
g

σ2
i

, (22)

where p(nA) is the probability density function (PDF) of the
noise amplitude. A is the so-called impulsive index, i.e. the
noise becomes more impulsive when A is small and more
Gaussian when it is large. σ2, σ2

g and σ2
i are the powers of

the overall noise, the Gaussian noise and the impulsive noise,
respectively.

Another common approach of APIN is to separately de-
scribe the occurrence and the amplitude, which can be in-
cluded in a time-discrete form as

nAPIN[k] = Φ[k]nG[k], (23)

where nG is a white or colored Gaussian noise and Φ is a
random process that denotes the presence of APIN when it
takes on the value of 1, and the absence of APIN when it is 0.
One well-known model of this kind is the Bernoulli-Gaussian
model [46], [47], where Φ is a Bernoulli process. Another
widely used model of this kind is the partitioned Markov chain
model proposed by Zimmermann et al. in [26]. Defining ND+
NW states, a Markov chain is shown in Fig. 2, where ND
states are grouped in a set A and NW in another set B. At the
time t = kTs, where Ts is the sampling interval, the Markov
chain gives the output function:

Φ[k] =

{
0, z[k] ∈ A

1, z[k] ∈ B
. (24)

The probability of transitions between states can be summa-
rized with the matrix in (25), where

ui,t1 = 1− ui,i, (26)
gi,t2 = 1− gi,i. (27)

This matrix can be estimated according to the measured
statistics of APIN’s pulse width and interarrival time [26],
which are defined similarly as for PIN in Fig. 1. Introducing
the statistical knowledge of amplitude into the present model
(24), the APIN can be modeled in the discrete-time domain
as

nAPIN[k] = nAPIN(kTs) = AAPINΦ[k] · nG(kTs), (28)

where AAPIN is the amplitude.
Compared to the Middleton’s Class-A model and the

Bernoulli-Gaussian model, the partitioned Markov chain
model is more accurate, more flexible, benefits from separating
the APIN from the CBGN and quantitatively modeling the
impulse width. Hence it is taken in our work for APIN.
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Figure 2: Partitioned Markov chain to represent the APIN
events, where the two transition states have no physical
meaning but are intended to simplify the mathematical model.
ui,j and gi,j represent the probabilities of transition between
two states [26].

III. DECOMPOSITION AND PARAMETERIZATION

So far, existing power line noise models are reviewed and
for each type of PLC noise we have selected a model, which
has been validated in literature. Based on these models, a
parametric characterization of power line noise scenarios can
be realized. For a better characterizing accuracy, different
types of noise should be first decomposed from the mixed
measurement, before the parameter estimation is executed.
However, till now, most existing work about PLC noise sce-
narios only applies analytic techniques on raw measurements
and manually evaluates the results [4], [6], [26], [44]. A
variety of noise cancellation methods have been developed
for robust PLC systems [41], [45], [48], but they aim at
recovering the transmitted symbols with specific modulation
schemes and transmission methods, and cannot be used for
noise decomposition. Liu proposed several synthetic extraction
methods for different noise types to support his NB-PLC
channel emulation [12], but yet primitive. In this section, we
collectively present a complete set of methods to decompose
a mixed PLC noise into its components. All these methods
work entirely on the physical layer, depending on no mod-
ulation scheme, transmission method or coding and require
no specialized hardware, either. Afterwards, for each type of
noise, we also give the key model parameters as well as their
estimates.

A. Extraction and Parameterization of CBGN

The CBGN, due to its relatively low power and variant
behavior, is hard to be extracted first. But it can be obtained
from the residual after the extractions of other types of noise.
Therefore, here we focus on the parameterization of CBGN.

Taking the LSTV model 7, the CBGN can be described by
the following parameters:

1) the number of LTI filters (states) K,
2) K − 1 switching times τ1, . . . , τK−1,
3) K sets of coefficients H1, . . . ,HK , which are

the discrete frequency responses of the LTI filters
h1(t), . . . , hK(t).

For convenience, we set the number of LTI filters fixed as
K̂ = 10 and equally divided each cyclic (mains) period so that
τ̂i = iT0

K . When the model is in its ith state, i.e. hCBGN(t, τ) =
hi(t), according to (4) there is

NCBGN(f) = NW(f)HCBGN(f, t) = NW(f)Hi(f) (29)

Remembering that nW is of unity power, there is

|Hi(f)| =

√
SCBGN(f)

SW(f)
=

√
SCBGN(f), (30)

where SCBGN(f) and SW(f) are the PSD of nCBGN and nW,
respectively.

Hence, given an extracted CBGN which lasts M mains
periods, the fragment in each mains period can be further
evenly segmented into 10 frames, and the frequency response
of the ith LTI filter is estimated as

Ĥi[n] =
1

M

M∑
j=1

N̂CBGN,i,j [n], (31)

where M is the number of mains periods in the measurement
and N̂CBGN,i,j is the DFT of the ith CBGN frame in the jth

mains period.

B. Extraction and Parameterization of NBN

Different from the situation in wireless communication,
narrowband interferences in PLC are sometimes challenging
to detect due to their time-dependent envelopes, which reduce
the efficiency and accuracy of simple time-invariant spectral
peak detection. In a previous work of ours [36], we already
proposed a method to extract the periodic NBN components
from raw noise measurements. This so-called narrowband
regression (NBR) method showed a good performance in
verifications through real measurement tests and simulations.
To obtain the NBNs from the raw noise measurement, here we
also adopt the NBR method, which can be briefly summarized
as follows.

1) A frequency mask of 11 pins spacing from each other
by 100 Hz is shifted along the spectrum of the measured
noise, to detect the strongest narrowband interference
and its harmonics generated by the mains period mod-
ulation (the envelope).

2) A recursive least-square (RLS) estimator based on the
model (13) is used to estimate the detected NBN and its
harmonics.

3) The estimation is removed from the noise and the
residual is sent back to the detector in step 1 to find
the next independent narrowband interference. The al-
gorithm runs iteratively until it converges or no more
NBN can be detected.
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P =



u1,1 . . . 0 u1,t1 · gt1,1 . . . u1,t1 · gt1,NW
...

. . .
...

...
. . .

...
0 . . . uND,ND uND,t1 · gt1,1 . . . uND,t1 · gt1,NW

g1,t2 · g1,t2 . . . g1,t2 · ut2,ND g1,1 . . . 0
...

. . .
...

...
. . .

...
gNW ,t2 · ut2,1 . . . gNW ,t2 · ut2,ND 0 . . . gNW ,NW


, (25)

Table I: Test result of NBN central frequency estimation, in
kHz

f1 f2 f3 f4
Simulation model 302.00 470.00 54.00 84.00

Estimation 301.50 470.00 54.50 83.50

Detailed algorithm and implementation of the NBR method
are available in [36].

The NBR method extracts every independent interference
separately from the measurement, so that the parameterization
can easily follow. According to the model (9), each inde-
pendent interference cNBN,i(t) can be characterized by the
following parameters:

1) the central frequency fi,
2) the bandwidth Bi,
3) the periodical envelope Ai(t).

Here, fi and Ai(t) are already estimated through the execution
of the NBR method, while the Bi can be obtained either
through further spectral analysis of the extracted signal, or
from the a-priori knowledge of existing radio sources at its
corresponding central frequency fi, if available.

As an example we verified our method with a synthesized
noise, which includes a WGN and 4 independent narrowband
interferences with different carrier frequencies. Each interfer-
ence is amplitude-modulated with a WGN and has 9 kHz
bandwidth as normal AM radio signals. Two interferences
have constant time envelopes and the other two are further
modulated with a 100 Hz triangle envelope. The results are
shown in Table I and Fig. 3

C. Extraction and Parameterization of PIN

Also in [36] we introduced a so-called multiple cyclic
regression (MCR) method to extract PINs with known cyclic
frequencies. This method, as described in its original source
[49], is an adaptive LSTV filter array which minimizes the
least square estimation error, and hence fits the LSTV-based
PIN model (4,16) well. Here we simply exploited the same
approach to detect and extract all PINs from the nosie resid-
ual after the NBN extraction. The procedure can be briefly
summarized as follows.

1) Calculate the cyclic coherence function (CCF)
CNrNr (f, α) [50] of the noise measurement
nr = n − nNBN, from which the NBN component
has been removed. Integrate CNrNr (f, α) over f . Peaks
can be observed at the existing cyclic frequencies
α1, . . . , αNCyclic and their harmonics.
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(b) Periodic envelope for the NBNs 3 and 4.

Figure 3: The NBN envelopes estimated from the synthesized
test noise.

2) For each detected cyclic frequency αi, the MCR method
is called to cancel the corresponding cyclic component
n̂αi .

Detailed algorithm and implementation of the MCR method
can be found in [36].

Taking the model (16), to characterize a PIN component
cPIN,i, the impulse amplitude APIN,i, the impulse width τPIN,i
and the interarrival time TPIN,i are necessary. Especially, for
a PIN synchronous to the mains voltage, its relative time
offset tPIN,i to the mains period is also of interest, because
the performance of PLC devices can be synchronous to the
mains voltage [51]. It should be noticed here that the number
of cyclic frequencies detected in the extraction process NCyclic
is not the number of independent PIN components NPIN,
because several PIN components can have the same cyclic
frequency. Therefore, for each extracted cyclic component n̂αi
first we applied a variance-based thresholding on every PIN
we extracted to obtain a binary envelope:

eαi(t) =

{
1 n̂αi(t) > 5σ̂αi
0 otherwise,

(32)

where σ̂αi is the median variance of n̂αi . If multiple pulses
are observed in eαi during one cyclic period, which means
more than one PIN sources of the same cyclic frequency αi
are present, the envelope eα(t) must be further decomposed:

eαi(t) =

Nαi∑
k=1

eαi,k(t), (33)
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where Nαi is the number of continuous pulses per cyclic
period in eαi , and each eαi,k contains an individual pulse,
which corresponds to an independent PIN component. From
eαi,k, the PIN’s interarrival time TPIN can be computed as 1

αi
,

and the pulse width τPIN can be simply measured. Furthermore,
if the measurement is synchronized to the mains period, tPIN
can also be obtained. Then we estimate the amplitude of each
PIN according to the power:

Âαi,k =

∫
(n̂W(t)eα,i(t))

2dt∫
n̂2

PIN(t)dt
, (34)

where Âαi,k is the estimated amplitude of the kth PIN with
cyclic frequency αi, and nW(t) is a zero-meaned WGN with
unity variance.

An example test was executed with a synthesized noise,
which included a background WGN and two PINs syn-
chronous to the mains period. Both PINs were synthesized
with WGN and a periodic rectangular time window. The result
is shown in Table II.

D. Extraction and Parameterization of APIN

Comparing to the cyclostationary CBGN, APIN exhibits a
extremely high instant power and a strong non-stationarity.
The APIN extraction, therefore, is mathematically similar to
the artifact removal in some biomedical signal processing
subjects, where artificial peaks are also short in duration, high
in amplitude, with strong non-stationarity and usually caused
by transitions in the system such as plugging and unplugging
devices [52], [53]. So we modified the robust artifact removal
algorithm proposed in [54] to decompose the APIN.

The modified approach is implemented based on a robust
APIN detection method and a robust noise reconstruction
method, as shown in Fig. 4. First, the residual of the raw
measurement n(t) after removing the NBN n̂NBN(t) and the
PIN n̂PIN(t) is sent to the APIN detector for a brief examina-
tion. If no APIN is detected, the process will be terminated.
Otherwise, a short segment with one detected impulse will be
extracted from the input to reduce the amount of computation,
and this segment is then reconstructed to cancel the APIN.
After replacing the detected impulse with the reconstructed
noise, the result is sent back to the detector to search for the
next aperiodic impulse. This process keeps recursing until no
more APIN can be detected, so that an APIN-free residual as
well as an extracted APIN can be obtained.

The APIN detector is implemented with a deviation-based
thresholding:

Dx[n] =

{
1 |x[n]| ≥ βσx
0 otherwise,

(35)

where β is a significance factor implying the level of APIN
compared to the rest part of noise. σx is the deviation of x,
Dx[n] takes on the value of 1 when the noise sample x[n]
is contaminated by an APIN, and 0 when x[n] is APIN-
free. Considering that the strength of APIN may influence the
normal standard deviation of x, for a robustness we computed
the median absolute deviation:

σx = mediani(|x[i]−medianj(x[j])|) (36)

APIN 
detection

Segment 
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Detected?
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][ˆ][ˆ][
PINNBN

knknkn −−

+
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][ˆ kn
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Segment 
reconstruction

][ˆ][ˆ][ˆ][
APINPINNBN

knknknkn −−−

Figure 4: The proposed APIN extraction method in discrete
time domain. n[k], n̂NBN[k],n̂PIN[k] and n̂APIN[k] are the raw
measurement, the extracted NBN, the extracted PIN and the
extracted APIN, respectively.
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(b) Zoom-in. Note that the segment was selected based on the
first detected APIN sample, but also covered several other APIN
samples.

Figure 5: An example of APIN detection and segment extrac-
tion.

Due to the fact that the APIN peaks are significantly high, we
set β = 10. According to [26], only 1% among all impulses in
PLC last longer than 200 µs, so we extracted a 200 µs segment
around the strongest detected impulse sample. An example
of the APIN detection and the segment extraction is shown
in Fig. 5. As the next step, to separate the APIN from the
CBGN, we made use of its high non-stationarity. First we
deployed the empirical mode decomposition (EMD) on the
extracted segment with aperiodic impulse. The EMD, known
as part of the Hilbert-Huang-Transform (HHT), decomposes a
signal into a finite set of nearly orthogonal components, which
are described as the signal’s intrinsic mode functions (IMFs).
Comparing to other analyzing techniques such as the short-
time Fourier-Transform (STFT) or the wavelet transform, it
does not leave the time domain, depends on no base-wave
selection, and is thus highly adaptive and effective. Further
information about this algorithm can be found in its original
source [55]. Applying the EMD to an extracted segment y[k],
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Table II: Test result of PIN estimation

TPIN (ms) τPIN (µs) tPIN (µs) APIN
Estimation Ground truth Estimation Ground truth Estimation Ground truth Estimation Ground truth

cPIN,1 10 10 93.1 100 1026 1000 1 0.97
cPIN,2 10 10 221.5 230 3013 3000 0.5 0.42

we got its IMF set M i
y[k], i ∈ {1, . . . , N}, where

N∑
i=1

cyi [k] = y[k]. (37)

An example is shown in Fig. 6.
Differing from the original method proposed in [54] for

biomedical signals, here we modeled every IMF as an au-
toregressive moving average (ARMA) process instead of an
autoregressive integrated moving average (ARIMA) process,
because a power line noise does not include any long-term
trend, which cannot be presented by ARMA models but only
by ARIMA models. For each ith IMF we estimated its model
order (pi, qi) with the estimator introduced by Box et al. [56]:

p̂i = arg min
k∈N

(Ri[k] < 0.05)− 1, (38)

q̂i = arg min
k∈N

(Pi[k] < 0.05)− 1, (39)

where Ri[k] and Pi[k] are the autocorrelation function (ACF)
and partial autocorrelation function (PACF) of cyi [k]. If p̂i ≤
20, we used the robust filter cleaner introduced by Zoubir et
al. [57] to rebuild it as under the ARMA(p̂i, q̂i) model, so
that a ”cleaned” reconstruction ĉyi [k] is obtained. Otherwise,
the IMF may turn out as too high-ordered and contains only
low-frequency components, which are almost independent of
broadband impulses. In this case we directly used the original
IMF for the reconstruction, i.e. ĉyi [k] = cyi [k]. Summing all
reconstructed IMFs, we managed to reconstruct the extracted
segment, as shown in Fig. 6. Removing the reconstruction
from the extracted segment, the APIN component can be
obtained.

According to Zimmermann [26], statistics of the pulse
amplitude AAPIN, the pulse width τAPIN, the pulse distance
∆tAPIN and the arriving time tAPIN are needed for APIN
characterization. Liu has presented a transform from these
statistics to the parameters of the Markov-chain model shown
in Fig. 2 [12]. Hence we can record the amplitude, the pulse
width and the arriving time of every single extracted impulse,
so that the essential statistics can be obtained from a large-
sized measurement which lasts several hours or even days.

IV. EMULATION

As Götz [3], Liu [12] and Cañete [8] showed, based on the
estimated parameters, the noises of different classes can be
generated with an FPGA-based emulator independently, and
then summed up for a mixed noise. Here we also adopted this
idea and implemented an FPGA-based noise emulator with the
structure illustrated in Fig. 7.

According to the estimated central frequencies and band-
widths, direct digital synthesizers (DDSs) generate narrow-
band interferences based on a look-up table (LUT). The key
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6th IMF on, no ARMA estimation but the original IMF was
used for the reconstruction.
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idea of this implementation is to sample a sinusoidal curve
over one period and store the samples into a LUT. Reading
the values in the LUT with a certain clock speed, a single-
frequency signal can be synthesized. By modifying the clock
speed over time continuously, the frequency will shift over
a certain range so that a narrowband signal can be synthe-
sized. Further details can be found in [40]. These synthesized
narrowband interferers are then multiplied with their mains-
synchronous envelopes, which are stored in the FPGA, so that
the NBNs are emulated with time variance. We implemented
12 independent DDSs so that up to 12 different NBNs can be
emulated at the same time. The LUT is 12 bits wide and 4000
words deep, containing a sinusoidal waveform. Being read by
a 200 MHz clock, it supports generating central frequencies
up to 75 MHz with frequency resolution of 0.5 kHz. The
bandwidth can be configured from 0 Hz to twice the central
frequency. Each envelope is quantized with 12 bits and stored
in a 1024-word memory block so that a time resolution of
about 0.02 ms is achieved.

Making use of the estimated amplitudes, impulse widths and
interarrival times, impulse generators are deployed to generate
periodic rectangular impulse series, either synchronous or
asynchronous with the mains. These impulse series are then
multiplied with synthesized WGN to emulate the PINs. The
implementation is able to generate up to 4 independent PINs,
supporting repetition periods between 1 µs and 20 ms, impulse
widths between 1 µs and 1 ms. The amplitude quantization is
12 bits.

A state-machine module is implemented for the Markov
chain APIN model shown in Fig. 2. This module generates
aperiodic rectangular impulses according to the estimated
APIN statistics. The generated impulses are then multiplied
with synthesized WGN and subsequently quantized with 12
bits to emulate the APIN.

To generate the cyclostationary CBGN, up to 10 different
LTI filters can be configured with the estimated CBGN spec-
trum. Switching among these filters cyclically, a LPTV filter
is realized. The synthesized WGN is filtered with this LPTV
filter. The magnitude is quantized with 12 bits, the frequency
resolution is 2.44 kHz. Although we divided each mains period
equally into 10 frames in the estimation, the emulator allows
flexible timing of switching between LTI filters, with a time
resolution of 500 µs.

The NBNs, the PINSs and the CBGN are all synchronous
with the mains voltage. Depending on the region, an ideal
mains voltage is a 50 or 60 Hz sinusoidal wave. However,
influenced by the network’s load scenario, a real mains voltage
always exhibits minor variation of frequency. With help of a
zero-crossing detector (ZCD) connected to the grid, we syn-
thesized a global timing signal in the emulator to synchronize
the aforementioned noise types. Summing all types of noise
up, we could obtain the mixed noise, which is then converted
from digital to analog by a DAC and then amplified for final
output.

V. MEASUREMENT

As we have introduced before, depending on the interest
of research, either the overall channel noise or the power

consumer noise can be characterized. Generally, three chal-
lenges are to be overcome in the noise measurement at power
lines: protecting the devices from the mains voltage and
transition peaks; obtaining the synchronization between the
noise and the mains phase; isolating the channel/consumer
under measurement from the interference generated by the
measuring devices. Particularly, when measuring a single
power consumer, an additional task of isolating it from the
network while supplying it with a ”clean” mains voltage must
be accomplished as well.

A. Measuring Setup

The problem of device protection can be solved with a LV
power line coupler, which behaves as a band-pass filter and
isolates the devices from the low-frequency mains voltage.
A suppressor-diode-based protection circuitry after it is also
needed [14]. In our framework, we used a pre-amplifier instead
of a traditional passive diode network as the protecting stage
for higher flexibilities with respect to frequency and gain. A
zero-crossing detector (ZCD) was also implemented to sim-
plify the acquisition of the mains voltage’s phase. An universal
software radio peripheral (USRP) was used to capture the
coupled noise and the output of the ZCD. Detailed hardware
parameters are listed in Table III.

The interference generated by the measuring devices can be
avoided in the measurement, if the devices are supplied by a
power outlet far away from the measuring point (e.g. at another
network phase) and through a mains filter, which is also known
as line impedance stabilization network (LISN) [7]. A LISN is
a carefully designed symmetric passive low-pass filter, which
strongly attenuates all signal and noise portions in the PLC
band of interest and passes the mains voltage, as shown in
Fig. 8. The same method can also be used to obtain the clean
mains voltage for power consumer measurements. According
to Liu, the performance can be even further improved with an
uninterruptible power supply (UPS) instead of the grid as the
power source [12].

Based on these hardware devices, we set up our noise
measuring equipment as illustrated in Fig. 9. The receiver
Rx is supplied by a power outlet on a different network
phase through a LISN, so that its own interference will not
significantly influence the channel/consumer under test. The
power consumer under test is supplied by a UPS over a LISN,
so that only its own generated noise will be measured at point
B, without interference from the grid. Both the noise and the
output of the zero-crossing detector are recorded.

B. Laboratory Measurements

As case studies, we performed three different laboratory
measurements: the channel noise at an ordinary power outlet in
our office, the noise generated by a dimmer lamp and the noise
generated by a monitor. The time waveforms and spectrograms
are shown in Fig. 10. It can be observed that the CBGN was in-
significant in both consumer noise measurements. Comparing
to the dimmer lamp, which showed almost only strong periodic
impulses in its noise, the monitor also generated considerable
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Table III: Key parameters of the measuring hardware

Analog-to-digital Sampling rate Input range Resolution Input impedance
converter 25 MSPS ±1.25 V 14 bits 50 Ω
Coupling Amplifier gain∗ Flatness in 10 MHz Zero-crossing Detection pulse width

circuit 0 dB or −20 dB ≤0.5 dB detector 500 µs
*: An 20 dB attenuation is activated when capturing noise with APIN to prevent the high peaks from clipping.
It is deactivated when measuring power consumers which generate no APIN.
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Figure 8: Performance of the designed LISN.
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Figure 9: The power line noise measuring setup. When the
switch is set to A, the channel noise is measured; when
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NBNs, which may be caused by the synchronizing signals for
its communication with the computer.

We applied our characterization approach to the channel
noise measurement in Fig. 10a for a case study, because
it shows a more complicated behavior than both consumer
measurements. A strong periodical NBN was detected at
16.16 kHz with a bandwidth of 1 kHz. The estimated 100 Hz
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Figure 10: Three laboratory noise measurements.

Table IV: Estimated parameters of the PIN in the laboratory
channel measurement.

∆τ (ms) τw (µs) τ0 (µs) A
10 40 5200 0.2

envelope is shown in Fig. 11. A PIN synchronous to the mains
was extracted, the parameters of which are listed in Table
IV. No APIN was detected in the measurement. Ten different
filters were estimated for the time-varying CBGN, as shown
in Fig. 12.

Then we emulated the measured channel noise with our
emulator. The spectrogram is shown in Fig. 13. The charac-
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teristics in the frequency domain and time domain were recon-
structed. Note that the noise at lower frequencies, i.e. below
150 kHz, including the NBNs, appears strongly attenuated in
the emulation, due to the frequency response of the amplifier
of the emulator, which was designed for the frequency band
between 0.15 and 10 MHz.

VI. CONCLUSION AND OUTLOOKS

In this paper, aiming at the frequency band from 0.15 to
10 MHz, we reviewed the existing models of power line noise.
For every known noise category, we selected a model and
proposed an approach of extraction and parameterization. The
methods were tested with synthesized noise. Based on the
selected models, we designed and implemented an FPGA-
based real time noise emulator, which can regenerate a noise
scenario according to the estimated noise parameters. We also
designed a measuring system which can capture the noises
of both LV power line channels and power consumers. A
laboratory channel noise measurement was analyzed with our

Figure 13: The PSD of the measured (top) and emulated
(bottom) channel noises over time, in dBV2

characterizing methods and emulated with our emulator. The
emulation was then compared to the measurement to validate
the emulation. As future work, other properties of LV power
line channels such as the transfer function and the access
impedance shall be characterized and emulated as well.
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Powerline-munikationskanälen, Mensch & Buch Verlag, Berlin, 2004.

[41] Jing Lin and Brian L Evans, “Cyclostationary noise mitigation in
narrowband powerline communications,” in Asia-Pacific Signal &
Information Processing Association Annual Summit and Conference
(APSIPA ASC). IEEE, 2012, pp. 1–4.

[42] David Middleton, “Procedures for determining the parameters of the
first-order canonical models of class a and class b electromagnetic
interference,” Transactions on Electromagnetic Compatibility, , no. 3,
pp. 190–208, 1979.

[43] Hendrik C Ferreira, Henricus M Grové, Olaf Hooijen, and
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