
Automatic Synthesis and Verification
of Industrial Commissioning Processes

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von
Richard Mrasek

aus Oberkirch

Tag der mündlichen Prüfung: 27.06.2016
Erster Gutachter: Prof. Dr.-Ing. Klemens Böhm
Zweiter Gutachter: Prof. Dr. Andreas Oberweis

www.kit.edu





Acknowledgment

The completion of this thesis would not have been possible without the sup-
port of and being in exchange with so many people to whom I owe lots of
gratitude.

First of all, my special thanks goes to my advisor Prof. Dr.-Ing Klemens Böhm.
He guided me patience and encouragement. His comments on my publica-
tions drafts were plenty and always helpful. I deeply thanks my co-advisor
Prof. Dr. Andreas Oberweis for his support.

My sincere thanks to the associates of Audi AG for the effective and enjoyable
cooperation. Especially Dr. Christian Allmann, Michael Becker, and Sascha
Nietert for their support with the project. I also deeply thank my colleagues at
the Information Systems Group for fruitful discussions and a good working
atmosphere, especially to Jutta Mülle for her expertise in the workflow research
and my office mate Fabian Laforet for his support.

I am grateful to my girl friend Christina Vinke, who always had an open ear for
me and helped me with her advice or just by listening.

iii





Kurzfassung

Ein wichtiger Schritt in der Fahrzeugproduktion stellt die Inbetriebnahme des
Fahrzeugs dar, die hauptsächlich aus den beiden nachfolgend beschriebenen
Tätigkeiten besteht.

› Überprüfung der ordnungsgemäßen Funktion aller Komponenten des
Fahrzeugs

› Installation (flashen) der Software auf den Steuergeräten des Fahrzeugs

Zur Durchführung dieser Tätigkeiten werden die Fahrzeuge zu verschiedenen
Prüforten gefahren oder transportiert. An jedem Prüfort wird das Fahrzeug von
einem Mitarbeiter an ein Diagnosesystem angeschlossen. Das Diagnosesys-
tem ist ein spezielles workflow system für die Inbetriebnahme. Es aktiviert
verschiedene Operationen im Fahrzeug und präsentiert dem Mitarbeiter die
manuellen Aufgaben, die er auszuführen hat, über ein Handterminal. Die se-
quentielle Anordnung und Parallelisierung dieser Operationen wird durch den
Inbetriebnahmeablauf beschrieben. Prüfprogrammierer entwickeln mit Hilfe
von Entwicklungswerkzeugen diese Abläufe. In der Regel sind die Inbetrieb-
nahmeabläufe komplex. Typischerweise enthält ein Ablauf mehrere hundert
Operationen, angeordnet in bis zu 14 parallelen Kanälen. Jedem Prüfort, und
damit jedem Prozessmodell, ist eine geplante Anzahl an Takten zugeordnet.
Bevor das Zeitlimit der Takte erreicht ist, muss die Ausführung der Abläufe
beendet sein. Anderenfalls kann dies zu großen Komplikationen und Störun-
gen im Produktionsablauf führen. Aktuell werden diese Abläufe von einer
Abteilung geplant und implementiert. Wie nachfolgend beschrieben, gibt es
einige Trends und Entwicklungen, wodurch die Komplexität noch größer wird
und die damit verbundenen Kosten für die Inbetriebnahme weiter ansteigen.

› Mit jeder neuen Fahrzeuggeneration wächst die Anzahl der Assistenz- und
Medien-Systeme. Diese neuen Systeme benötigen oft neue Steuergeräte und
Operationen, um in Betrieb genommen zu werden. Dies führt daher zu
umfangreicheren und komplexeren Inbetriebnahmeabläufen.

› Zugleich steigt die Anzahl an unterschiedlichen Fahrzeugserien und Varianten.
Jede Fahrzeugserie benötigt mehrere Inbetriebnahmeabläufe. Aufgrund der
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Kurzfassung

unterschiedlichen Komponenten in jeder Serie ist es kaum möglich, einen
Ablauf wiederzuverwenden. Die wachsende Anzahl an Fahrzeugserien führt
deshalb zu einem Wachstum an unterschiedlichen Inbetriebnahmenabläufen,
die entwickelt und gewartet werden müssen.

› Der Lebenszyklus einer Fahrzeuggeneration verringert sich kontinuierlich. In
immer kürzer werdenden Zeitabschnitten wird eine neue Generation entwick-
elt und auf den Markt gebracht. Dies führt zu neuen Inbetriebnahmeabläufen.

› Zur Erhöhung der Effizienz der Produktion werden die Taktzeiten in den Pro-
duktionsstätten immer weiter reduziert. Dies hat auch Auswirkungen auf die
Inbetriebnahme. Die einzelnen Abläufe müssen daher immer zeiteffizienter
geplant werden.

Diese Trends führen zu einem Anstieg der Anzahl und Komplexität der In-
betriebnahmeabläufe. Zugleich existieren für jedes Prozessmodell hunderte
von Abhängigkeiten, die das Modell erfüllen muss. Zum Beispiel benötigen
einige Operationen als Vor- bzw. Nachbedingung eine oder mehrere weitere
Operationen. Zudem haben die verwendeten Ressourcen einiger Operationen
nur eine beschränkte Kapazität. Die Qualität der Inbetriebnahme zu garantieren,
wird daher immer aufwendiger und komplizierter. Folglich steigen somit auch
die Entwicklungskosten. Aufgrund des hier beschriebenen Sachverhalts ergeben
sich die folgenden Hauptbeiträge dieser Arbeit:

1 Verifikation. Zur Qualitätssicherung wollen wir verifizieren, ob ein Prozess-
modell alle geforderten Abhängigkeiten erfüllt. Zu diesem Zweck führen wir
eine Modellprüfung (model checking) durch. Die automatische Modellprü-
fung erfordert eine Interpretation des Prozessmodells als ein formales Modell.
Eine solche Interpretation präsentieren wir in dieser Arbeit in Form einer von
uns entwickelten Transformation.

2 Synthese. Zur Unterstützung der Entwicklung von Inbetriebnahmeabläufen
entwickelten wir einen Algorithmus für die Synthese von Abläufen aus einer
Spezifikation der Abhängigkeiten und zusätzlichen Optimierungskriterien.
Unser Algorithmus exploriert den Zustandsraum der korrekten Prozessmod-
elle, um eine gute Lösung zu gegebenen Qualitätskriterien, wie z. B. der
Durchlaufzeit, zu finden.

Sowohl die Verifikation als auch die Synthese benötigen eine Liste von Ab-
hängigkeiten, die das Prozessmodell erfüllen muss. Die Spezifikation dieser
Abhängigkeiten stellt eine komplizierte Problemstellung mit zahlreichen Her-
ausforderungen dar. Einerseits müssen die Abhängigkeiten formal beschrieben
werden, z. B. in einer temporalen Logik, um die automatische Verifikation oder
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Synthese zu ermöglichen. Andererseits besitzen die Anwender häufig nur wenig
Erfahrung bezüglich der formalen Notationen. Daraus erschließt sich der dritte
Hauptbeitrag unserer Arbeit.

3 Spezifikation. Im Rahmen eines Vorstudiums konnte festgestellt werden, dass
nur wenige Muster von Abhängigkeiten existieren, die ein Prozessmodell
erfüllen muss. Diese Muster für abstrakte Abhängigkeiten wurden von uns
gesammelt und formal beschrieben. Die konkrete Ausprägung der einzelnen
Abhängigkeiten ist abhängig vom Kontext der Prozessmodelle und ihrer
Ausführung, z. B. von den Komponenten eines Fahrzeugs oder vom Prozessort.
Wir entwickelten ein Informationssystem, um diese Abhängigkeiten aus den
Mustern zu instanziieren und anschließend zu verifizieren.

Wir evaluierten unsere Beiträge anhand realistischer Prozessmodelle unseres
Industriepartners der Audi AG. Unsere Ergebnisse zeigen eine beträchtliche
Verbesserung der Qualität in den Inbetriebnahmeabläufen. Die Synthese führt
zu einer signifikanten Verbesserung gegenüber dem manuellen Entwurf. Durch
Experteninterviews konnte festgestellt werden, dass unsere Spezifikation be-
nutzerfreundlich und gut geeignet für ein echtes Produktionsumfeld ist.
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Abstract

The topic of this doctoral dissertation is the verification and synthesis of pro-
cesses, i. e., work-flows. Verification is the check if a given process model fulfills
all necessary properties. Synthesis is the automatic generation of a process
model from a set of properties. The running example of the thesis and the
use case for the evaluation is the commissioning of vehicles in the automobile
production.

Commissioning consists of two major exercises: First, testing if all parts of the
vehicle function properly. Second, installment (flashen) of the software on the
control units built in the vehicle. The sequential arrangement and parallelization
of these operations are planned as a commissioning process model. Process
developers define these process models with development tools. Commission-
ing processes are inherently complex. Typically, there are hundreds of tasks for
each vehicle, arranged in up to 14 parallel lanes. The state of the art is that a
dedicated department plans and implements the process models using author-
ing tools. There are several major factors that constantly increase the complexity
and cost of the process model design over time. For instance the number of as-
sisting/media components are increasing with each vehicle generation, leading
to an increase in the size of each individual commissioning process. At the same
time the number of different vehicle series and variants are increasing. Each
vehicle series requires several commissioning processes. Due to the different
components it is hardly possible to use the same process model for more than
one vehicle series. This leads to an increase in the number of process models
which must be designed and maintained. In combination, this leads to constant
increase in the number of process models and their complexity. At the same
time for each process model several hundred properties exist which the model
needs to adhere to. For instance, some operations require other operations
as pre- or postcondition, or some resources used by operations have limited
capacity. We want to support the development of high-quality commissioning
processes. In particular the major contributions of our work are:

1 Verification. To ensure a high quality of the commissioning processes we
verify if a process model fulfills all required properties. To this end, we apply a
model checking approach. For an automatic verification, e. g., model checking,
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it is necessary to transform the process to a formal model, representing the
necessary aspects.To this end, we develop a transformation of the process
models to a Petri net representation preserving the necessary information
for the verification. The high concurrent nature of commissioning processes
leads to performance issues with model checking. To this end, we propose to
tailor the model transformation to each respective property. For each property,
our algorithm identifies the region of interest in the process model and only
transforms these regions to a Petri net.

2 Synthesis. We want to support the development of the commissioning pro-
cesses. To this end, we develop an algorithm to synthesize a process model
from the properties the model needs to adhere to. In contrast to related work
we do not limit ourselves to cases where the dependency only allows one
possible process model. Additional constraints and optimizing criteria exist.
Our algorithm explores the space of correct process models to find a good
solution according to quality criteria, e. g., total processing time. We focus on
the restricted case that there are no repetitions. There is a number of settings
with this characteristic, for instance in manufacturing. In particular, loops
are unnatural in commissioning processes, since a feature is tested only once.
On the other hand, if a problem occurs and is fixed, a new commissioning
process is started. Our algorithm is able to handle complex large specifications
efficiently. In contrast to related work that are only able to process small scale
specifications.

Both the verification and the synthesis require a list of properties a process
model needs to adhere to. To specify these properties is itself a denoted problem
with several challenges. On the one hand, the properties need to be in a formal
language, e. g., temporal logic, to allow automatic verification and synthesis.
On the other hand, domain experts hardly have the knowledge to specify those
formal notations. This leads to the third major contribution, the user-friendly
specification of properties:

3 Specification. We have observed that there are few pattern properties that
testing processes adhere to, and we describe these patterns. They depend
on the context of the processes, e. g., the components of the vehicle or the
testing stations. We have developed a framework that instantiates the prop-
erty patterns at verification time and then verifies the process against these
instances.

We evaluate the approaches using realistic process models from our industrial
partner, the Audi AG. The verification framework leads an improvement of
the quality of commissioning processes. In our analysis we could detect issues
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in 90% of the commissioning processes. 23% contains major disturbances that
may influence the production flow negatively. The synthesis features a signifi-
cant improvement compared to the manual generation. Our simulation with
vehicle-specific process models yields a runtime reduction of in average 44%
compared to manual generation. From expert interviews we conclude that our
framework for the specification is user-friendly and well suited to operate in a
real production environment.
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Chapter 1

Introduction

Putting a vehicle into commission presents an important step in the production
process. The commissioning comprises of the two major exercises: the vehicle
function test regarding to all parts of the vehicle and the installment (flashen) of
the software on the control units build in the vehicle. To this end, each vehicle is
driven to several testing stations. In each station a factory worker connects the
vehicle to the diagnostic system, i. e., a workflow system for the commissioning,
cf. [ZS11], using MPS1. MPS invokes several operations on the vehicle and
displays the workers manual task over a hand-terminal.

The sequential arrangement and parallelization of these operations, both manual
and automatic, are planned as commissioning process model. Process develop-
ers define these process models with development tools. Vehicle commissioning
includes, say, checking for each vehicle produced, whether all electronic control
units are integrated correctly and putting them into service. ECUs are compo-
nents built in to the vehicle in order to control specific functionalities of the
car, e. g., for controlling the engine electronics. Each ECU needs to be tested
and put into operation, e. g., by installing certain software. To this end, the
server of the diagnostic system sends the process model to the MPS, a portable
computer system. The MPS is connected to the ECUs build in the vehicle in
order to execute automatic tasks on the vehicle, and to delegate manual tasks to
a factory worker over a hand terminal.

Figure 1.1 shows the general architecture of a diagnostic system. Commissioning
processes displays characteristic to be complex. Typically there are hundreds of
tasks for each vehicle, arranged in up to 14 parallel lanes. Each testing station,
and thus process model, uses a preplanned number of production cycles. The
execution of the models needs to be complete in this time limit or can either
cause a major disturbance of the production.

The state of the art is that a dedicated department is in charge of the planning
and implementation of those process models using authoring tools. There are

1Acronym of the german Mobile Prüfstation (engl. mobile testing station)
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Process Model

Vehicle

Diagnostic System MPS

Worker with 
hand terminal

Figure 1.1: The Simplified Architecture of a Diagnostic System

several major factors for increasing the complexity and costs of the process
model design.

› The number of assisting and media-components are increasing with each
vehicle generation. Those new components require more control units and
thus operations to put them into commissioning. This leads to an raise in
the size of each individual commissioning process, cf. [Har09].

› At the same time the number of different vehicle series and variants are
increasing. Each vehicle series requires several commissioning processes,
cf. [Rei10, p.48]. Due to the different components it is hardly possible to
use the same process model for more than one vehicle series. This leads
to a raise in the number of process model to design and maintain.

› The lifespan of each generation is constantly decreasing, cf. [Rei10, p.50].
This results in shorter development times of a new vehicles and new
commissioning process models.

› In order to increase the efficiency of the production the number and length
of the production cycles are constantly decreasing. This means that the
commissioning processes need to use the available time more efficiently.

In combination, this leads to a constant increase in the number of process
models and their complexity. At the same time for each process model several
hundreds of properties exist the model needs to adhere to. For instance some
operations require other operations as pre- or postcondition, or some resources
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1.1 Contribution

used by operations have limited capacities. In order to ensure the quality of the
commissioning process models are getting more and more complex and their
development costs are constantly increasing.

Specifi-
cation C

Process
Model LP

?Specifi-
cation C

Specification C

Process
Model LP

a) b) c)

Define C Test if LP ⊆ C Find a P with LP ⊆ C

Figure 1.2: Our Problem Statements Specification (a), Verification (b), and Synthe-
sis (c).

1.1 Contribution

In this thesis we are going to support process modeling, investigating testing
schemes in responds to, whether a given process model fulfills all properties
required (process verification), and approaches for semiautomatic generation of
process models (process synthesis). For process verification and process synthesis one
need the specification of the allowed behavior of the process models. Formally,
let P be the process model of a commissioning process, and LP denotes the
complete log of the process, i. e., all possible traces of the process model. Let
C denote the set of all traces allowed by the properties. We now can define
Specification, Verification, and Synthesis as follows:

Specification : Define the set of allowed traces C
Verification : For a given process model P check if LP ⊆ C

Synthesis : Generate a process model P with LP ⊆ C

Figure 1.2 illustrates our three major research fields: specification, verification,
synthesis. In the following subsection we will describe our major contribution to
each of those research fields.

3



Chapter 1 Introduction

1.1.1 Specification

Specification is one of the most frequent words in computer science. Therefore,
the course of this thesis we use the definition of Axel van Lamsweerde:

»Generally speaking, a formal specification is the expression, in some
formal language and at some level of abstraction, of a collection of
properties some system should satisfy.« [Lam00]

Regarding the process modeling field we can specify execution in two different
ways. On the one hand, we can describe the actual execution using an imperative
description or on the other hand describe the properties and constraints of all
the allowed behavior in a declarative way. We call the imperative specification of
a process its model, and the activity of imperative specification as the modeling
of the process. If not stated otherwise, we employ the word specification only
for the description of the declarative properties a process needs to adhere to.
On the one hand, most of the workflow systems can only execute imperative
process model such as Business Process Model Notation (bpmn), Yet Another
Workflow Language (yawl), or Open Test sequence eXchange (OTX). On the
other hand, it is only possible to describe the regulations and constraints of the
processes in a declarative way in general. Therefore, Verification and Synthesis
are two techniques employed in order to overcome this issue. Both techniques
require the declarative specification of the properties beforehand, which itself is
a complex issue.

The declarative specification gives way to several challenges. The knowledge
about the properties processes need to adhere to is typically distributed between
different employees in different departments. Documentation is often missing,
and property issues known by individual employees. The properties itself are
context-sensitive, i. e., holds only in specific context situation. For instance
some properties only exist at some testing station for some vehicles. In general
several hundreds of properties exist for an individual vehicle. In order to
allow automatic verification and synthesis techniques the properties need to be
available in a formal language, e. g., temporal logic. The specification in these
languages is complicated and error-prone regarding to the domain experts. It
is not possible for domain experts to give a succinct list of all properties by
interview. The experts can decide, if a presented candidate is a property or
not, but any given list is incomplete. Our major contributions of this thesis for
specification are:

Property Instantiation. We systematically collect all properties and the relevant
information for their specification by a series of interviews with domain experts.
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1.1 Contribution

We map most of the found properties onto a distinct set of classes, called prop-
erty patterns. We collect and store the relevant information of the specification
into a database of context knowledge. Before verification of a concrete process
model, we extract the context, query the database with the context and use
the results in order to instantiate the abstract property patterns to concrete
property instances. Within this approach we automate most of the declarative
specification, see Section 4.2 for further details.

Detection of Property Candidates. In order to support the initial detection of
the properties we use an automatic detection of possible property candidates.
To this end, we use a novel statistical analysis of a repository of existing process
models. This analysis returns a set of frequent and strong property candidates.
The manual classification reveals that the candidates contain actual properties
and reveals additional useful information about the processes, see Section 4.3
for furthermore details.

1.1.2 Verification

According to the guidelines of the Institute of Electrical and Electronics Engi-
neers (ieee) verification is:

»The evaluation of whether or not a product, service, or system
complies with a regulation, requirement, specification, or imposed
condition.« [IEE11]

In our case the system is the imperative process model for commissioning
and the specification are the declarative properties. The verification of the
commissioning process models gives way to several challenges.

In order to allow an automatic verification of process models we need an
interpretation of the execution semantic to generate the state space. The standard
of our employed notation (OTX) does not provide a formal description of the
semantic. The commissioning process models are in general highly concurrent
and relative large in size. In combination this leads to an exploding state space
and renders full-state verification impractical. Communicating the source and
the reason of a property violation is not trivial. Verification techniques give at
best a trace of transition that leads to a violating state. It is not efficient for the
domain experts to detect the source of the property violation by this transitions
trace. Therefore major contributions in the field of verification are:

Transformation to Petri Net. Automatic techniques in order to analyse OTX
process models require an interpretation of the execution semantic. We provide

5
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this by the transformation of the OTX process to the formal nation of Petri Nets.
Our transformation preserves the necessary information for the verification.
Petri nets allow for an efficient generation of their state space, see Section 5.1
for furthermore details.

Relevance Optimization. In order to reduce the complexity of the verification
to a comprehensive level we introduce a novel technique. Instead of generating
one Petri net for all properties to verify, we generate Petri nets tailored to each
property. To this end, we detect the relevant regions in the process model for the
property. Next our algorithm prunes the transformation in such a manner that it
only contain those regions. This allows us verifying several hundred properties
on complex highly-concurrent process models in seconds, see Section 5.2 for
further details.

Property Reporting. In the case of violation the verification algorithm returns a
trace of transition leading to the violating state. For each property pattern we
define a procedure in order to detect the relevant elements in the process model.
We highlight those elements in a visualization for communicating the cause and
reason of the violation to the domain experts, see Section 5.3 for furthermore
details.

1.1.3 Synthesis

Synthesis means combining several objects to a new entity. In context of process
modeling synthesis, this is the combination of properties in order to generate
an imperative process model, see [Awa+11; Yu+08]. Several challenges exist for
the synthesis.

The synthesized process models should be applicable to our use case, thus
the process model has to be a block-structured ones. There often exists a
great variety of models that fulfill the properties. For illustration, the sequential
arrangement of n nodes, in the absence of any constraint, give way to n! different
process models. This is required in order to synthesize a good process model
according to quality criteria out of the possible ones, e. g., processing time
should be short and more important according to the lean production paradigm,
cf.[Wom+07, p. 54] the waiting time of the worker should be reduced. It should
be possible to apply these approaches to the large real-to life specifications of
our use case. We target those challenges by the following major contributions.

Automatic Generation of Process Models. We developed a novel approach for
the synthesis of block-structured process models from declarative properties. In
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1.2 Overview

contrast to related work we can synthesize from an incomplete specification, i. e.,
a solution space containing more than one valid process model. In those cases
we apply a probability algorithm in order to find a good solution according to
predefined quality criteria, e. g., throughput time, see Section 6.2 for furthermore
details.

Use Case. We deploy our algorithm for synthesis to a large realistic application:
The design of the new commissioning processes of a new compact executive car
series. The use case leads to several new challenges for the generation and to a
several additions regarding the general synthesis framework, see Section 6.3 for
further details.

1.2 Overview

This thesis consists out of 7 chapters. Besides this section aiming at given
short introduction into the topic the other chapters displays the following
information.

Chapter 2: Commissioning of Vehicles. This chapter introduces to our scenario
and our research application field: the commissioning of vehicles. In this section
we focus on technical aspects of the commissioning relevant for the properties
of the process model. In detail we introduce the bus systems and protocols of
vehicle in Subsection 2.1, the commissioning operations in Subsection 2.2, and
the architecture of a Diagnostic System in Subsection 2.3.

Chapter 3: State of Research. In this chapter we describe the state of the art
in the relevant fields of business process research. We give an introduction to
the fields that are close to our research agenda and describe the differences
and similarities, i. e., imbedding our work into the recent field of research.
Namely we name the differences between imperative and declarative modeling
in Subsection 3.1, the specification of properties in Subsection 3.2, the verification
in Subsection 3.3, the automatic generation in Subsection 3.4, and the discovery
of process models from a log of previous executions in Subsection 3.5.

Chapter 4: Property Specification. This chapter focuses on the declarative spec-
ification of properties process models have to adhere to. Subsection 4.1 discusses
the different temporal logics for formal specification and comprises our rea-
soning. Subsection 4.2 presents our approach for context-sensitive instantiation
of property patterns. Subsection 4.3 displays our approach for the detection
of property candidates from a repository of process models. Subsection 4.4

7
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comprises the evaluation of the approaches. Subsection 4.5.1 concludes this
chapter with a review of the related work.

Chapter 5: Process Verification. In this chapter we display the way to verify if
a given process model fulfills all required properties. Subsection 5.1 presents
our transformation of an OTX process tree into formal model of Petri nets.
Subsection 5.2 presents our novel algorithm aiming to optimize the verification
to the relevant aspects of each property. Subsection 5.3 describes the way to
efficiently report violations of properties to the user. Subsection 5.4 evaluates
the verification and we conclude with a review of the related work in process
verification, see Subsection 5.5.

Chapter 6: Process Synthesis. This chapter focuses on the way to synthesize an
imperative process model from declarative properties. Subsection 6.1 presents
an approach based on the resource constraint scheduling and explains the
major drawbacks of approaches based on scheduling. Subsection 6.2 shows
our major synthesis algorithm. It is based on modular decomposition and a
probabilistic search for the under-specified regions. Subsection 6.3 applies this
algorithm to a real use-case: The commissioning of a new compact executive
car series. Subsection 6.4 evaluates the synthesis approach and in Subsection 6.5
we discuss the related work for the synthesis.

Chapter 7: Conclusion. Within this conclusion chapter, Subsection 7.1 recaps
the major contributions of our work and summarize our achievements. In
addition to this, Subsection 7.2 gives a short outlook on the research being
influenced by this work and sketches the leverages of our research in regard to
different applications fields.
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Chapter 2

Commissioning of Vehicles

In this chapter we introduce the scenario of this project, namely the commission-
ing of vehicles in the automobile industry. The chapter focuses on the relevant
aspects for the project. For a more comprehensive overview see the literature,
e. g., [ZS11], or the respective industry standards, e. g., [ISO12].

2.1 Bus Systems and Protocols

Figure 2.1 illustrate the simplified bus systems in a modern vehicle. The different
bus systems are the result of different application fields for vehicle communica-
tion, described in [ZS11]. The application fields can be classified into on-board,
i. e., communication between components inside a vehicle, and off-board ones,
i. e., communication between components in the vehicle and systems outside
the vehicle.

The on-board communication consists of three application fields with different
communication protocols. The first field is the real-time controlling operations,
e. g., the electronic controlling of the engine or the brakes. The necessary infor-
mations are often only a few bytes. Due to the security risk the bus systems must
support a low latency and high availability. The Controller Area Network (CAN)
bus system, or the newer CAN FD or FlexRay are used for these applications.
Second, for simple task, e. g. the controlling of the door or the light systems
a simplified CAN systems in cooperation with Local Interconnect Network
(LIN) systems are used. LIN is a bus system for cost-efficient communication.
The communications partner in a LIN bus are arrangement in a master/slave
relationship. A master can use up to 16 slaves. Third, for the infotainment
system, e. g., navigation and multimedia, a high amount of data are transported.
The latency and availability is only secondary. The Media Oriented Systems
Transport (most) protocol is often used for the infotainment system.

The off-board communication consist of two main applications fields. The first
field is the diagnosis in a car workshop for repairing and exhaust emission test.
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Figure 2.1: Bus Systems of an Automobile, simplified after [ZS11]

The communication require a high data rate and protection mechanisms, the
latency and availability is only secondary. Federal standards exists for the com-
munication (US OBD, European OBD) but manufacturer specific standards are
common. The second field is the initial installing of software on the Electronic
Control Unit (ecu) (flashen) and the testing of the components inside the manu-
facturing factory. For these application field the same communication protocols
are used, often in a modus allowing for a higher data rate.

CAN, FlexRay, and LIN describes the first two Layers in the OSI-Model.
The KeyWord Protocol 2000 (KWP2000) protocol and the Unified Diagnostic
Services (uds) protocol are communication protocols on the application layer of
the OSI model for communication with control units.
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Process Model Tasks Steps Comfort Moduls Library Functions

Abläufe Abfolgen Schritte Komfortmodule Bibliotheksfunktionen

Figure 2.2: The Module Hierarchy of a Commissioning Process, with the Official
German Names Below and the English Translation Above.

2.2 Commissioning Operations

The Figure 2.2 shows the module hierarchy of the commissioning operations.
You find the nomenclature used in the later chapters. Below you find the
nomenclature of the audi ag. These thesis mainly focuses on the first two layers
the process model and the tasks.

› Process Models (Abläufe): The commissioning process model is the highest
entity in the hierarchy. Process models describe the way to put a given vehicle
in commission. To this end, for each vehicle a series of operations are executed.
The process model describes the arrangement and parallelization of those
operations.

› Tasks (Abfolgen): Tasks describe operations performed on electronic control
units (ecu) in the vehicle. The operation can be automatic or requires a factory
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worker. Most of the tasks have preconditions that describe the execution
conditions, e. g., specific vehicle settings. The operations consist of several
steps. An example for a commissioning task would be A_ENG__Check_EM,
i. e., the check of the error memory (EM) for the control unit ENG (Engine
Control).

› Steps: Steps describe the concrete realization of a task. To this end, these
steps use prebuild comfort modules or call directly library functions of the
Diagnostic System.

› Comfort Modules: Comfort modules are prebuild modules to support develop-
ment of tasks and steps.

› Library functions: Library functions are the lowest level in the module hierar-
chy. They provide the basic operations, e. g., data transfer. Steps or comfort
modules call the library functions. The Diagnostic System, e. g., Sidis Pro of
the Siemens AG, provides the library functions.

2.3 Diagnostic System

Diagnostic Systems in the automobile industry are workflow systems, see
[AH04], for the commissioning of vehicles. The basic system architecture follows
the workflow reference model of the Workflow Management Coalition (WfMS),
cf. [HSK04]. We will show examples using the diagnostic system Open Test
Framework (OTF) of the emotive GmbH. Similar diagnostic systems exist from
other vendors like Prodis.Automation from DSA or Sidis Pro from Siemens
using different names for the components. The workflow reference model
defines six major components in a workflow system:

› Process Definition Tools: Process definition tools are used to design the tasks
and the process models. The final result output of the process definition tools
are process models interpreted by the work flow engine at runtime. For the
commissioning several different notations for process models exist, namely
Sidis Pro, Prodis.Automation, and OTX. The process definition tools of the
Open Test Framework (OTF) is the OTX-Designer.

› Workflow Enactment Service: The workflow enactment service consist of one or
many workflow engines. A workflow engine provides the run time execution
of an instance of a process model. In the Open Test Framework (OTF) the
workflow engine is called OTX runtime environment. The engine interprets OTX
process models and generates binary files for a high-performance execution.
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Figure 2.3: The Workflow Reference Model for Commissioning Processes

› Workflow Client Applications: The workflow client applications define how the
workflow engine interacts with human workers. To this end, Form Designer of
the Open Test Framework OTF allow to design custom user interfaces.

› Invoked Applications: The invoked Application components define how the
workflow engine interacts with applications outside of the engine. In the
context of commissioning these applications are mainly executed on ECUs
build in the vehicles. To this end, the workflow engine communicate over the
protocols in Section 2.1 with the the ECUs. Open Diagnostic Data eXchange
(ODX) is an eXtensible Markup Language (xml)-based data format defining
the structure of the messages. In the Open Test Framework OTF the Vehicle
Communication Interface (VCI) is used for invoked applications.
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› Other Workflow Engines: The interface 4 defines the way the workflow engine
interacts with other workflow engines. In general, diagnostic systems do not
communicate with other diagnostic systems and thus no implementation is
given in the Open Test Framework OTF.

› Administration and Monitoring Tools: The administration and monitoring tools
define the way to administrate process models and to monitor the execution
of process instances. The Open Test Framework OTF allows to debug process
models in a test environment and allows for simulations.

Figure 2.3 shows the workflow reference model, with five interfaces and their
counterpart in the Open Test Framework OTF. Other diagnostic system are Sidis

Pro and Prodis.Automation. OTX is a new industry standard for commissioning
process models.

Sidis Pro is a diagnostic system for the commissioning of vehicles from siemens.
It contains an authoring tool for the graphical development of commissioning
processes, simulation and analysis suites and as well as runtime environment
for the execution of the process models. The block-based process models are
serialized in a proprietary XML format.

Prodis.Automation is a diagnostic system for commissioning processes from
DSA (Daten- und Systemtechnik GmbH). The main component is a graphi-
cal process definition tool for commissioning processes. Prodis.Automation
provides a system to define Client Applications called Controls, the simulation
of process models and their analysis. Prodis.Automation uses a proprietary
XML format to serialize the commissioning process, but is able to support
OTX process models. Prodis.RTS is the runtime environment compatible to
Prodis.Automation.

Open Test Sequence eXchange

Open Test Sequence eXchange (otx) is an open ISO standard that »[. . .] proposes
an open and standardized format for the human- and machine-readable description of
diagnostic test sequences.«, cf [ISO12, p. 6]. OTX is an imperative block-structured
language, i. e., the steps are given implicitly and no explicit jumps are allowed.
OTX is serialized as XML document. The hierarchical format of an XML docu-
ment enforces the block-structure and renders XML techniques, e. g., schema
validation, possible. It is possible to directly write OTX in its XML source code.
The standard recommends using visual specification tools. The standard does
not describe explicitly a visualization of the OTX elements, however the exam-
ples are given as UML activity diagrams. It is possible to define several process
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models in one OTX document. Data objects can be global (for all process models
in the file) or local (only visible in one process model). Next we will give a short
overview over the most important node types in OTX.

<otx> is the root node of any OTX-file. It contains several attributes describing
meta information like the time-stamp or the OTX version. The <procedures>
node contains one or more <procedure> nodes. Each <procedure> is a process
model. The <realisation> node contains the concrete realization of his parent
node. In the case of a <procedure> node the steps of the process. <action> is
used to represent an atomic operation. The <realisation> child node specifies
the type of operation, e. g. data operators or the method call to an ECU in the
vehicle. In our use case the <action> nodes model the tasks. Several node types
exist to model control flow constructs. <flow> describe the sequential execution,
<parallel> an and-Gateway, <branch> an xor-Gateway, and <loop> specifies
iterations.

In Subsection 5.1 we will give a more detailed description of the OTX elements
and provide a translation of the execution semantics to the formal model of
Petri nets.

A +

B

C

+

Figure 2.4: The Process Model Described in Example 2.3.1 in BPMN Notation
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Example 2.3.1 . The following describes a simple OTX process file with
three Tasks A, B, C. Figure 2.4 shows the same process model in bpmn

notation.
<?xml version ="1.0" encoding ="utf -8"?>
<otx [...] >

<procedures >
<procedure name="p1" visibility="PUBLIC" id="1">

<realisation >
<flow>

<action id="Action_A">
<realisation xsi:type="ProcedureCall"
procedure="Task_A"></realisation >

</action >
<parallel id="p1" name="par1">

<realisation >
<lane>

<action id="Action_B">
<realisation xsi:type="ProcedureCall"
procedure="Task_B"></realisation >

</action >
</lane>
<lane>

<action id="Action_C">
<realisation xsi:type="ProcedureCall"
procedure="Task_C"></realisation >

</action >
</lane>

</realisation >
</parallel >

</flow>
</realisation >

</procedure >
</procedures >

</otx>
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State of Research

Process management is the art of monitoring the way activities are performed to
reach business goals. Moreover, process management is not about an individual
activity, rather it is about the interweaving of events, activities and decisions.
Process models are the formal description of a process. The instance of a process
model is one execution of the model. In general it is possible to execute a process
model in more than one way, e. g. using different branches in the process model.
For instance, we consider a process model describing that the task A is executed
first followed by either B or C. The process model allows for two different
executions either A and then B, or A and then C. During the execution different
events are thrown for tasks or decisions. We call the set of possible sequences of
events for a process model P its behavior LP.

3.1 Declarative/Imperative Process Models

There exist two major paradigms to specify a process model exists: the impera-
tive and the declarative ones. Imperative Process Modeling means to explicitly
define the possible executions, i. e., define the control flow of the process. Declar-
ative process modeling means defining the forbidden behavior, i. e., constrains
to the control flow. The possible executions are given implicitly, i. e., every
execution that is not forbidden is allowed.

In general the declarative process models are more flexible than the imperative
ones, i. e., allowing a larger set of possible executions. That can also cause
unforeseen and unwanted process behavior in declarative models, rendering the
model less controllable. [Fah+09b] argues that the understandability depends
on the nature of the processes. Sequential processes are easier to understand
in an imperative manner and processes with circumstantial information are
easier to understand in a declarative manner. An empirical evaluation [Pic+12]
resulted in a better understanding for imperative languages. [Fah+10] proposes
propositions about the maintainability of imperative and declarative languages.
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Table 3.1: The Differences Between the Declarative and Imperative Process
Modeling

Imperative Process model Declarative Process Model

› control flows given explicit › control flow given implicit

› in general easier to control › in general more flexible

› easier to understand › difficult to understand

› major tool support exist › prototype implementation

› suitable for structured pro-
cesses, e. g., production

› suitable for unstructured
processes, e. g., health-care

In summary sequential changes is easier in imperative language and change in
the circumstantial information are easier in declarative languages.

The imperative paradigm is widespreadly used in practice and therefore major
tool support exists. The declarative paradigm recently became a focus in research
but until today major tool support is missing, especially for process models in
the industrial settings. The imperative paradigm is best for structured processes
following a strict plan with few alternations, e. g., in the industrial production
domain. The declarative paradigm is best for unstructured process models
where deviations and exceptions appear frequently, e. g., in the health care
context [MGP15]. Table 3.1 summarizes the differences between the declarative
and imperative paradigm.

Declare is a declarative process language and a associated framework. Declare
tools have been referred to as declare and the language as ConDec [PSA07]
or in early stage as DecSerFlow for Web Services [AP06]. Dynamic Condition
Response Graphs (DCR Graphs) [HMS12] allow a nested sub-graph for bet-
ter understandability of declarative models. [Gia+15] extends the imperative
process notation BPMN to support declarative modeling.

Example 3.1.1 . Figure 3.1 shows the same process in two different nota-
tions, the imperative BPMN notation and the declarative Declare notation.
The model describes a process model that first execute once the task A
followed by the execution of B and C exactly once in arbitrary order. The
behavior of the Process P is LP = { 〈A, B, C〉 , 〈A, C, B〉 }
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Figure 3.1: (a) A Process Model in Imperative BPMN Notation (b) The Same
Process Model in the Declarative Declare Notation

It is possible to combine the two paradigms, e. g., using hybrid models with
parts of the processes described imperatively and others declaratively [SSO01;
Aal+09]. For our scenario regarding commissioning of vehicles predictability
of the execution is more important than flexibility. To this end, we use impera-
tive process models for commissioning process models. Additionally, no major
framework exists to execute declarative processes for the commissioning. The
declarative process models are related to our three major contributions and
models are in fact properties that a process should fulfill. Our three major con-
tributions of this thesis can then be formulated as the interaction of imperative
and declarative process models.

› Specification: How to design a declarative process model D?

› Verification: Given an imperative process model P and a (incomplete) declara-
tive process model D, is LP a subset of LD?

› Process Generation: Given a declarative process model D, find a good impera-
tive process model P, with LP being a subset of LD.

3.1.1 Imperative Process Notations

In general, a graphical notation describes the process model. Over the last
decades a plethora of different process model notations arise for different pur-
poses and domains. For this thesis we want to categorize the process notations
using two axes, Applied/Scientific Notations and Graph-based/Block-based
Notations.

Applied notations are developed to support the domain experts like the busi-
ness process designers to model their processes. The notations are characterized
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Figure 3.2: Classification of Process Notations to Applied/Scientific Notations
and Graph-based/Block-based Notations

by several specific functions and a high usability. Applied notations often lack
formal semantics, i. e., how to produce an instance i ∈ Lp. Often only a vague
textual description is given for contradicting interpretations. On the other side
there exists academic notations [LVD09]. For the academic notations a formal
semantic is given and, thus an unique interpretation. The academic notation
originates from academic work about the expressive power or respectively
verification. The formal semantic allows advanced verification and analysis
techniques. But the academic notation often lacks domain specific constructs
and tool support. A common approach to analyze applied notations is to trans-
form them on an academic language language, and subsequent use the analysis
technique of the academic language [LVD09]. The transformation itself is an in-
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terpretation of the applied notation and often ambiguous. YAWL [AH05] can not
be classified definitely into one of two categories. YAWL has an unambiguously
defined execution semantic and allows complex analysis techniques. At the
same time it was developed to be used as a practical application.[Min11, S.39]
shows that YAWL is despite of these properties still is not in widespread use.
[FRM13] indicates that usability reasons regarding the graphical presentation
may be the cause.

Graph-based notations describe the structure of the process model as directed
graph. The different kinds of nodes model different behavior. Often graph-based
notations distinguish between nodes that represents activities or events and
nodes for the control structure, e. g., gateways. Block-based notations describe
the structure of the process model as nested hierarchy of fragments, i. e., as
a tree. The leaf nodes are often the activities or events and the inner nodes
models the control structure. With repetition both block-based and graph-
based notations are Turing complete, similar to Goto-Computability/While-
Computability. Without the repetition of nodes it is possible to model a process
in a graph-based notation that can not be represented as a block-based notation.
This higher expressive power is not inherent an advancement. The modeling of
a process that can not be represented in a block-based notation has shown to
be hard to understand [MRC07] and often leads to errors in the process model
[MNA07]. To this end, guidelines of modeling forbids the use of these constructs,
cf. guideline G4 in [MRA10]. Similar guidelines hold for the modeling at the
audi ag. Some graph-based notations like BPMN and YAWL allows a part
hierarchical modeling by the use of sub graphs. The block-based notation
OTX allows exceptions of the block-based structures in specific situations, e. g.,
guided jumps out of a loop body, but are forbidden by intern rules. Web
Services Business Process Execution Language (ws-bpel) allows a graph-based
modeling beside the standard block-based notation. [Kop+09]. Refined Process
Structure Tree) (rpst) [VVK09] is not an actual process notation. RPST is a
decomposition of a graph-based notation into a block-based hierarchy. The
structure is similar to the block-based notations. We process the RPST similar to
a block-based notation, thus are listed here.

3.1.2 State Space Explosion for Concurrency

Concurrent execution leads to an explosion of the behavior space. This means
that the size of the behavior space |LP| scales exponentially with the size of the
process model |P| in the case of concurrency.
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Figure 3.3: (a) Parallel Split with m lanes and n tasks each (b) Urn Model

Corollary 1 . The size of a behavior space |LP| for a Process P that consists
of one parallel split with m-parallel lanes with k1, . . . , km tasks can be
calculated with the multinomial coefficient, i. e:

|LP| =
(

s
k1, k2, . . . , km

)
=

n!
k1!k2! . . . km!

with s = ∑i ki.

Corollary 1 can be mapped on a problem of the combinatorics. Consider an
urn with s different balls in it. Each ball has a color depending on the lane of
the task. So for k1 = 3, k2 = 2, k3 = 4 the urn would contain 3 red balls, 2 blue
balls and 4 green balls, see Figure 3.3(b). Balls are drawn from the urn without
placing a ball back to urn. If a color of a lane is drawn the next available task
of the lane is executed. It can be easily seen that the number of possible draws
correspond to the number of paths or |LP|.

Example 3.1.2 . Consider a process with three lanes and k1 = 3, k2 = 2,
k3 = 4 each. This leads to s = ∑i ki = 9 and thus the following behavior
space |LP|:

|LP| =
(

9
3, 2, 4

)
=

9!
3! 2! 4!

=
362880

288
= 1260

If k1 = k2 = . . . = km = n the formula is simplified to |LP| = (n m)!
n!m . Figure 3.4

shows |LP| for 2 lanes, 5 lanes and 10 lanes (m) with 1 to 10 tasks (n ∈ [1, 10]).
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Remark the logarithmic scale for |LP|. Commissioning processes contain up to
n = 14 with over 20 tasks each. The number of atoms in the universe is around
1082 − 1089. The explicit construction of |LP| thus is not possible for realistic
size commissioning processes.
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Figure 3.4: The Size of the Behavior Space |LP| for m = 2, 5, 10 and x ∈ [1, 10]

3.2 Specification of Declarative Properties

In general specification is the act to formalize what a system should accomplish.
In the course of this thesis we use the word specification for the formal descrip-
tion of the declarative properties a process model should fulfill. In contrast to
the model of the process that specifies how to accomplish the goal. For instance,
a property of a process is that each open connection should be closed at the
end of each execution. The model of the process is the set of actual steps and
their sequence. In contrast to a declarative model the specification is in general
incomplete. In general, it is not possible to directly execute a property spec-
ification. First we will describe the formal notations to describe the allowed
behavior. Formal notation can be automatically processed, e. g. verified, but their
specification is error-prone and requires experience in mathematically modeling
and abstract thinking. To this end, authors propose list of property patterns or
property classes with semantic meaning, e. g., an event is the precondition of
another event. The semantic information renders them easier to handle for
domain experts. The patterns can be mapped on a formal notation to allow
automatic processing. To further simplify the specification graphical notation
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are proposed. It is possible to map each graphical constructs in these notations
maps to a property pattern, and thus to a construct in a formal notation.

3.2.1 Formal Notations

First order logic is an extension of the propositional logic with predicates and
quantifier, e. g., ∀, ∃. First order logic is complete [Göd29] but in general not
decidable. [LRD10] uses first order logic to express the compliance rule graphs.
The logic formulas are evaluated over the set of all possible executions of a
process model P, i. e., LP. For instance the Response(A, B)-pattern are specified
as:

∀t(ActivityType (t, A)→ ∃d : (ActivityType (d, B) ∧ Pred (t, d))

Due to the fact that [LRD10] argues about the traces of a process model it is not
possible to formulate constraints that require multiple futures, e. g., the weak
anti-pattern of [TAS09].

Modal logics are another extension of the propositional logic with concept of
necessarily � and possibly ◊. Intuitively the � operator denote that something
is true in all possible worlds, the ◊ operator denotes that something is true in
one possible world. The kripke-structure is a graph-based formalization of the
world concepts. Node represents the possible worlds and edges the reachability
of worlds. Temporal logics are an application of the modal logic. The worlds
in the temporal logic refers to points in time, the � operator is interpreted as
»something is true in all possible futures« the ◊ operator as »something is true in at one
time in the future«. It is possible to generate kripke structures for process models
by generating their state space. The most famous temporal logics are Linear
Temporal Logic (ltl), Computation Tree Logic (ctl), and ctl*. Ctl* is a superset
of both ltl and ctl. Ltl uses a linear concept of time, i. e., only one possible
future exists while ctl and ctl* use a branching time concept. Past ltl (pltl)
is the extension of ltl with additional operators over the past. The expression
power of pltl and ltl is equal but some properties can be stated more succinct
in pltl. [DAC98] gives a mapping of their property pattern onto both ltl

and ctl. [TAS09] formulates the anti-pattern as ctl*-formulas. [ADW08] maps
bpmn-q to ltl formulas for the purpose of verification. [Mon+10] maps Declare
constructs on ltl formulas for the enactment. For instance the Precedence(A, B),
Response(A, B) and Existence(A) pattern in ltl are respectively:
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¬B U (A ∨ ¬◊B) (Precedence) �(A→ ◊B) (Response) ◊A (Existence)

[Yu+06] specify their properties with finite state automatons (FSA). To this end,
they give a mapping of the extended property pattern propols to finite state
products. Figure 3.5 shows the FSA for the Precedence(A, B), Response(A, B)
and Existence(A) pattern. Ω means any tasks not A or B. It is possible to express
the process model M as finite state automatons. The verification can be solved
by testing the intersection of the FSA of M with the complement of the property
FSA [Yu+06]. This approach has scalability problems because the FSA of a
process model scales exponential with the size of the model.

A

Ω Ω,A,B
A

B

Ω,B Ω,A

A

Ω Ω,Aa) b) c)

Figure 3.5: The FSA for the Precedence(A, B) (a), Response(A, B) (b) and Exis-
tence(A) (c) pattern

[RFA12] uses Petri nets to specify compliance properties. They verify if a given
trace complies by testing if the Petri net can replay the path. Due to the trace
based notation it is only possible to verify properties that can be expressed in ltl.
The approach of [RFA12] is used to check the traces in a log in a retrospective
matter. In general, it is not possible to generate all traces of a process model LP,
i. e., the approach cannot guarantee the compliance of unobserved behavior.

3.2.2 Pattern Specification

[DAC98] describes a set of property patterns for the specification of systems.
[DAC99] empirically evaluates if these patterns are sufficient to express most of
the real world specification needs. The patterns are either of the type ordering
or occurrence and are valid within a scope. Several mappings of the patterns to
formal languages are given by the authors or others, e. g., ctl, ltl, or quantified
regular expressions. The patterns are domain independent and on a rather high
abstraction level. This high abstraction level makes them universally applicable
but hinders their usefulness to more domain specific patterns. [CAC06] shows an
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approach to instantiate the property pattern with a question tree. [Yu+06] extend
the work of [DAC98] with combined patterns to the specification language
propols.

[TAS09] proposes a set of anti-patterns for data-flow errors. An anti-pattern
A is a behavior that should not occur in a process model P. The problem
is symmetric to the property verification and can be easily restated to verify
whether P |= ¬A. [TAS09] proposes a mapping of the data-flow anti-pattern to
ctl*-formulas.

3.2.3 Visual Specification

Bpmn-q [ADW08] as visual specification language is able to express two pat-
terns: Response and Precedence. The graphical patterns are mapped to ltl

formulas for the verification. The graphical notation resembles bpmn with addi-
tional edges. [För+07] proposes a visual language based on the uml activities
supporting several variations of the response, precedence and successive pat-
terns. [Bra+05] shows a visual representation of ltl-formulas in a language
similar to bpmn. In contrast to the other work the visual representation directly
maps to ltl and not to specification patterns. This results in high expression
power for the cost of less abstraction and complicated specification. Compliance
rule graphs (crg), see [LRD10], are a visual specification language for com-
pliance properties of process models. Each node in a crg refers to either the
occurrence or absence of an event, that either triggers the rule (antecedent) or is
the respective consequence. Edges denote the necessary sequential ordering of the
events. For instance the Response(A, B)-pattern would consist of an antecedent
occurrence node A connected to a consequence occurrence node B. For the verifica-
tion the crgs are mapped to first order logic formulas. Most of the declarative
process modeling languages support a mapping to ltl [PSA07; AP06; HMS12;
Gia+15]. Thus it is possible to use a graphical declarative process language for
the specification of properties.

3.3 Process Verification

IEEE defines verification as: »The evaluation of whether or not a product, service, or
system complies with a regulation, requirement, specification, or imposed condition. It
is often an internal process. Contrast with validation.« [IEE11, p.452]. In the case of
BPM the system for verifying is the process model. We can differentiate between
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generic requirements that should be true for all process models independently of
the domain, e. g., a process should always be able to reach a proper completion,
and the domain-specific properties, e. g., in the commissioning each connection
should be closed at the completion time. Section 3.3.1 discusses approaches
for the verification of generic properties, and Section 3.3.2 approaches for the
domain-specific verification. Another way to classify the verification approaches
is the time in which the verification takes place. Most of the approaches verify a
given process model at the design time, cf. Subsection 3.3.1 and 3.3.2. Monitoring
means to verify if a process instance complies with the regulation during the
execution, see Subsection 3.3.3. Conformance checking verifies if given previous
executions were comply, see Subsection 3.3.4.

3.3.1 Verification of Generic Properties

Generic properties are properties that every process model should fulfill inde-
pendently of the domain. The majority of research in generic property concen-
trates on the soundness of a process model.

Definition 1 (Soundness) .

A process model P is sound exactly if

› P does not contain a local deadlock, i. e., a state s is reachable with a token
in the incoming edge e to an AND-Join, and each reachable state s′ from s
also contains a token in e.

› P does not contain a lack of synchronization, i. e., a state s is reachable with
an edge containing more than one token.

Many different definitions of soundness exist. See [Fah+09a] for an overview.
[Aal+10] analyzes the decidability of several soundness properties. A soundness
property can be expressed as two temporal logic formulas, e. g., in ctl:

› Absence of local deadlock: AG EF (termination > 0)

› Absence of lack of synchronization: AG ( ∀p∈P m(p) ≤ 1 )

The state termination is the last state of the process model. P refers to places in
the Petri net representation.

Example 3.3.1 . The process model of Figure 3.6 contains both a deadlock
and a lack of synchronization. If at the first XOR-Split Gateway B the above
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path is taken than a deadlock will occur at the AND-join F. If the below path
of B and E is taken, the below path and in the next iteration at B the above
path, than a lack of synchronization will occur in the edge of D to F.

A
B

D

+
C E

+
F

Figure 3.6: A Process Model in the BPMN Notation Containing a Deadlock and
a Lack of Synchronization

Soundness was initially defined for workflow nets, i.e., a special Petri net, see
[Aal98]. Woflan is a tool for soundness verification of a workflow net. It uses a
complex algorithm that consists of several steps. First, [VBA01] use soundness
preserving reduction rules on the net. Next, if the net is not trivial after the
reduction, Woflan tests if the net is S-coverable [VBA01], utilizing the property
that a not S-coverable net implies an unsound net. If the net is S-coverable
Woflan constructs the state space of the net to analyze soundness. It is possible
to restate the soundness as a model checking problem and use a model checking
approach to analyze soundness, e. g., the LoLA tool kit [Sch00a]. Sese approaches
try to solve the soundness by decomposition of the process model into smaller
fragments. The complete process is sound if each of its fragments is sound.
One of such decomposition is the refined process structure tree (rpst) [VVK09].
[Fah+09a] shows a study of three different types of soundness checkers (Woflan,
LoLA, rpst) on a repository of industrial business processes.

In contrast to the verification of domain-specific properties the generic property
is known beforehand. Therefore it is possible to optimize the approaches to
verify the specific property. The optimization changes the result of the general
domain-specific properties, e. g., reduction rules of Woflan [VBA01]. For a
process model as a process tree, e. g., an OTX process model, it is not possible
to model an unsound process.
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3.3.2 Verification of Domain-specific Properties

In contrast to the generic properties like soundness, that every process model
should fulfill, stand the domain-specific properties that hold for a specific do-
main. Due to the domain specific nature the concrete properties are unknown
at the design time of the verification approach. Therefore, it is not possible to
optimize the approach to a concrete property. The domain-specific approaches
need to function for a variety of different properties with few if any assumption
about the properties. The domain-specific properties given raise to related prob-
lems on how to specify the properties, see Section 3.2. Compliance checking is
an application of domain-specific property verification. The properties in the
compliance case are the regulations imposed by a third party. For instance the
Sarbanes-Oxley Act (SOX) and Basel III for banking processes, or the guide-
lines of the Verband der Automobilindustrie (VDA, eng: German Association of the
Automotive Industry) for the automobile industry.

[Yu+06] transforms the Propols constraints and the ws-bpel process model into
a state machine. Next, their algorithm computes the intersection of the state
machines and test if the resulting state machine is empty. [ADW08] verifies
bpmn-q graphs on process models. To this end, [ADW08] reduces the process
model and subsequently verifies the model with an ltl model checker. [LMX07]
verifies bpel process models with properties, specified in bpsl, a XML-based
specification language. The verification transforms the bpel process models
into the formal π-calculus and the bpsl into ltl formulas in order to allow a
model checking verification. [Ly+11a] verifies the compliance of a process model
to compliance rule graphs. For control-flow properties [Ly+11a] propose an
abstraction with node relation to check the properties. For data-flow properties
[Ly+11a] propose behavior verification.

3.3.3 Monitoring of Process Instances

Verification of a process model guarantees that all instances of the model comply
with the properties. Another approach to guarantee the compliance is to monitor
the instances either during the runtime or to test them after completion.

[Ly+11b] monitors process instances if they fulfill a set of compliance rule
graphs (crgs). [Mag+11] monitors Declare constraints by transforming their
underlying ltl formulas into state machines. [RFA12] checks if a set of previous
executions, i. e., a log, complies with the specification. For some contexts only
an incomplete process model exists and not all steps are automated. In that
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case the process model verification is not possible and a monitoring approach
is the only solution to check the compliance. In general, not all aspects that
influence the execution are contained in the process model and often a further
abstraction is done for the verification, e. g., ignoring the constraints on the
branches. Those abstractions can lead to false positives, see Example 3.3.2. The
monitoring approaches only focus on the actual executions and thus take all
aspects into account that influence the execution.

Example 3.3.2 . Figure 3.7 shows a process model with the conditions of
XOR-branches on the edges. The Property »The tasks A excludes the tasks
D« is fulfilled for the process model. If we abstract from the condition the
property is evaluated to be violated and thus a false positive.

A

B

C

D

x

¬x

x

¬x

Figure 3.7: A Process Model with the Constraints of the Branches on the Edges

The use of monitoring is not possible in our use case. Commissioning processes
only have a limited time frame for execution. If a property violation is detected
as late as during execution time the countermeasures would cause a stop to
the assembly lines. Some authors call the monitoring after-the-fact approaches,
in contrast to the compliance-by-design approaches, i. e., the semantic verification
[SGN07].

3.3.4 Conformance Checking

Conformance checking is the problem if a given process model P can replay the
traces t in a log LP [Aal11]. In general conformance checking evaluates if the
model of a process discovery algorithm is correct, or tries to connect an event log
and process model. If the process model is declarative conformance checking can
be used to verify if the process that produces the log is correct. [ABD05] checks
if a given log LP complies with regulations given as ltl formulas. [AAD12]
replays previous process executions, i. e., the log LP, to detect performance
issues.

30



3.4 Automatic Generation

3.4 Automatic Generation

In this section we will discuss approaches to generate process models from
a declarative specification. First we will discuss approaches using scheduling
algorithms and their application to BPM, next approaches for the synthesis of
process models.

3.4.1 Scheduling

A schedule is the plan how to execute a set of Tasks T . The scheduling problem
is given by a set of Tasks T , their processing time p : T 7→ R in order to find
the optimal starting time of the tasks s : T 7→ R with respect to a precedence
relation ≺ between the tasks. Extensions of the scheduling problem include
additional constraint like resources, then called the Resource Constraint Project
Scheduling Problem rcpsp, or assigning workers to the tasks. The scheduling
problem is a generalization of the static job shop problem and thus NP-hard
[BLK83]. In order to solve the scheduling problem optimal approaches, heuris-
tics and genetic approaches [MMS02] have been proposed, see [Kol96] for an
overview.

[Sen+15] detects bottlenecks in clinical processes by comparing a schedule to an
actual process execution LP. To this end, [Sen+15] generates from a schedule a
process model P′ and checks the conformance of P′ to a log of executions LP.

The schedule describes one optimal execution of the tasks. A process model in
turn describes several executions that are allowed. It is possible to generate a
process model from a schedule that can replay the schedule. But this process
model would be very constraint allowing only this one schedule. In general
process model generated from a schedule are not block-structured.

3.4.2 Synthesis of Process Models

[Yu+08] synthesizes a process model directly from its specification. The specifi-
cations are in propols [Yu+08], a temporal constraint specification language.
The specifications are transformed into finite state machines and then integrated
into one machine. Next, each accepting path is generated from the state machine.
An algorithm similar to the α-algorithm [AWM04] is applied to synthesize a
process model from its set of paths. The approach of Yu et al [Yu+08] can only
be applied if the specification, i. e., the number of state machines, is small (≈
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6). To this end, [Yu+08] divides the specification into small groups, synthesizes
a process fragment for each group and manually combines the fragments. For
our use case, this approach would require over a hundred state machines for
each commissioning process model, and the manual combination would not be
feasible. [Awa+11] has specifications with ltl as starting point. It generates a
pseudo model from the specification. This model lists all paths that fulfill the
ltl formula. [Awa+11] generates an ordering relation graph from the set of
paths and uses it to synthesize a process tree. For our use case the generation
of all paths would not be feasible. This is because the number of paths grows
exponentially with the size of the specification. Even for the smallest process
model we have evaluated calculating all paths has not been possible.

An approach different from generating the process model from scratch is to
extract information from process models already specified and to create a similar
process. [Chi+09] uses a cbr-based method to this end. The search is based on
keywords that are annotations of the workflows. [Koo+08] guides the process
designer with suggestions on how to complete data-oriented visualization
models. The suggestions are generated from paths of existing visualization
process models stored in a repository. [Koo+08] does not allow building a
process model with an and-Split and therefore is not sufficient in our case.
[Lau+09] predicts which activity pattern, i. e., generic process fragment, will
follow the partly modeled process. The paths of existing process models are
extracted and analyzed with association rule mining. [Koo+08; Lau+09] extend
an existing process model, while our approach generates one from a declarative
specification. The approach of Chinthaka et al [Chi+09] requires annotations of
the existing process models. None of the approaches mentioned optimize the
runtime or consider constraints.

AI planning is the task of defining a set of actions that achieve a specified aim
[HTD90]. In a nutshell, it is the retrieval of an applicable plan in the solution
space. [VM91] uses a genetic algorithm in order to find a manufacturing plan.
Some approaches that synthesize business processes are discussed next: [MR02]
uses an AI planning approach to synthesize service compositions. Without
calling it AI planning, [AHK05] uses a similar approach for configuration-based
workflow compositions. [AK07] introduces a planning algorithm to compose
data workflows. None of these studies focus on optimizing the runtime of the
process or considers requirements similar to ours. These approaches are not
applicable to our problem statement.
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3.5 Process Discovery

Process Discovery is one of the major problem statements related to process
mining. The problem statement is given to a set of traces L (called log) in order
to find a process model P that is representative to L. Remark that representative
does not mean that L = LP. In general the log L is incomplete and does not
contain all possible behavior LP \ L 6= ∅ and L can contain infrequent and not
representative behavior called noise, i. e., L \ LP 6= ∅. Four major competing
quality criteria exist for the resulting process model: fitness, simplicity, generaliza-
tion and precision [Aal11]. Fitness is the ability of the process model to replay
the log L, simplicity is the size and complexity of the process model. Those two
criteria on their own are not sufficient. Consider the BPMN model in Figure 3.8,
called flower model [Aal11]. The process model is relative simple and can replay
any log L with the tasks {A, B, . . . , Z}. This model is not helpful because it con-
tains no information except the list of tasks. The precision quality criteria ensures
that the model is not under-fitting the log thus preventing flower models. At
the same time it is not helpful to overfit the log, i. e., the process model should
reasonable abstract from the log, called Generalization. To illustrate consider a
parallel split with 3 lanes, with 3 tasks each. 1680 possible ordering of tasks are
possible for this split, see Lemma 1. It is not likely that the log L contains every
possible arrangement.

BA . . . Z

Figure 3.8: A Process Model in BPMN Notation that can Replay any Log with
the Taks {A, B, . . . , Z}

3.5.1 Imperative Process Discovery

In this subsection we want to present two approaches for mining an impera-
tive process model – the α-algorithm and the inductive miner. A plethora of
approaches have been proposed to solve the process discovery of imperative
process models since the mid-90s. [Aal+03a] gives an overview over the classical
approaches up to 2003. Most of the earlier approaches cannot handle noise and
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incomplete logs. Recent approaches try to handle noise by heuristics [WA03],
genetic algorithm [MWA07; AMW05; BDA12] or integer linear programming
[Wer+08]. Decomposition based methods like [VA14; LFA13a] improve the
scalability of process discovery. We focus on α-algorithm and the inductive
miner because they are most relevant to our work and give an overview over
the classical methods, i. e, α-algorithm, and the more recent approaches, i. e.,
inductive miner.

The α-algorithm is one of the classical process discovery algorithms [AWM04].
The algorithm is able to rediscover a sound Workflow net, i. e., a special Petri
net, from a Log of task events. The algorithm consists of two phases. First we
define several ordering relations over the log L. Second, we use those relations
to define the places, transitions and edges in the Petri net.

Definition 2 (Log-based ordering relations, simplified after [AWM04]) .
Let L be a Log, and a, b tasks defined in the log L.

› a > b iff there is a trace σ = t1t2t3 . . . tn such that σ ∈W
and ∃i ∈ {1, . . . , n− 1} with ti = a and ti+1 = b,

› a→ b iff a > b and b 6> a

› a#b iff a 6> b and b 6> a

› a ‖ b iff a > b and b > a

Using those ordering relations the algorithm is straightforward by defining the
elements of a Petri net according to the relations. See Algorithm 1, simplified
after [AWM04].

Algorithm 1 AlphaAlgorithm (Log L) : Petri net PN
1: T = {t ∈ T | ∃σ∈Lt ∈ σ}
2: TI = {t ∈ T | ∃σ∈Lt = first(σ)}
3: TO = {t ∈ T | ∃σ∈Lt = last(σ)}
4: X = {(A, B)|A ⊆ T ∧ B ⊆ T ∧ ∀a∈A∀b∈B a→ b

∧ ∀a1,a2∈A a1#a2 ∧ ∀b1,b2∈B b1#b2},
5: Y = {(A, B) ∈ X | ∀(A′,B′)∈X A ⊆ A′ ∧ B ⊆ B′ ⇒ (A, B) = (A′, B′)},
6: P = {p(A, B) | (A, B) ∈ Y} ∪ {i, o},
7: F = {(a, p(A, B)) | (A, B) ∈ Y ∧ a ∈ A} ∪ {(p(A, B), b) | (A, B) ∈ Y ∧ b ∈ B}

∪ {(i, t) | t ∈ TI} ∪ {(t, o) | t ∈ TO},
8: return PN(T, P, F)
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The α-algorithm can discovery a sound process model efficiently. The algorithm
has several limitations. The algorithm requires the precondition that the log
is complete, i. e., contains all traces. The resulting process models of the α-
algorithm lack structure and are hard to understand, i. e., results in spaghetti
models.

The inductive miner [LFA13a] is a process discovery algorithm to detect ef-
ficiently a fitting block-structured process model from a log L. The block-
structured process model is inherent sound and death lock free and shown to
be easier to understand than arbitrary structured process models [MRA10]. The
algorithm first generates a graph called the direct-follows graph from the Log
L. In the graph each node corresponds to a task. If task B directly follows A in
at least one trace the graph contains an edge A to B. Next cuts are searched in
the direct-follows graph. Each type of cut corresponds to a control element in a
process tree, see Figure 3.9. The algorithm has been extended to deal with noise
[LFA13b] and incomplete logs [LFA14].

A C

B

D

A C

B D

A C

B D

Figure 3.9: Cuts of the Directly-follows Graph for Operators→, ×, and ∧

3.5.2 Declarative Process Discovery

The declarative process discovery uses a log of previous executions of a model
to (re)discover the declarative process model. In basic the approaches try to find
patterns in the set of paths that relate to, e. g., Declare constructs.

Example 3.5.1 . Consider the Log L = { 〈a, b, c〉, 〈a, c, b〉, 〈c, b〉, 〈b, c〉 }.
Figure 3.10 shows a Declare model that can produce the log we want to
rediscover.

Several approaches have been proposed for the declarative process discovery.
[CM13; CM12; MBA12; MMA11; Mag+13; CMM14] mine process models in the
Declare notation. They differ in the amount of declarative constructs they can
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L = { 〈a, b, c〉, 〈a, c, b〉, 〈c, b〉, 〈b, c〉 }

Figure 3.10: A Declarative Process Model with its Behavior Space L

discover [Mag+13; CMM14] and in their scalability [MBA12]. [Lam+08] and
[Che+09] use inductive logic programming for the declarative process discovery.
[MSR14] describes an approach to rediscover hybrid models, i. e., process models
partly defined imperative and partly declarative. Most of the approaches use
a variation of the apriori algorithm for the detection of association rules. The
declarative process discovery is related to our detection of behavior properties
in a process repository. See Subsection 4.3. The difference is similar to the one of
process synthesis and process discovery. For the detection of behavior pattern
we want to discover frequent behavior in a collection, i. e., find a frequent
subset of behavior. Declarative process discovery abstracts from the observed
behavior.
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Property Specification

Specification is the formal description of the properties a process model should
fulfill. Classical process modeling notations like BPMN, Petri nets, WS-BPEL,
YAWL, or OTX specify imperatively the possible execution sequences of a
process model. Imperative modeling is stating how to execute a process. The goal
of the process is given implicitly. For instance, the imperative process model for
a commissioning process is:

1. Start the engine (S).

2. Test the hand-glove light (H) and the radio (R) in arbitrary order.

The imperative specification in general omits some execution alternatives, i. e.,
the process model is over-specified and lacks flexibility.

In contrast to the imperative specification there exists declarative specification
[PA06]. The declarative specification consists of the process model goals and the
required properties for the execution. How to reach the goal is not specified and
must be decided in runtime, i. e., the control flow is not specified. For instance,
the declarative process model of a commissioning process is:

› Goal: Test the hand-glove light (H) and the radio (R).

› Properties: Testing of the hand-glove light requires a running engine (S→ H).

In this chapter, we focus on the declarative specification of process models, i. e.,
the properties of a process model. The declarative specification is required both
for the verification of existing process models and for the automatic synthesis.
A common definition of correctness of an imperative process model, e. g., a
Petri net, is that it must fulfill properties, e. g., in Computation Tree Logic (ctl).
Verification can be stated as testing if the imperative specification is correct,
see the Venn diagram in Figure 4(a). The diagram shows the behavior L, i. e.,
the possible execution traces of an imperatively specified process model (blue
circle), and the allowed behavior P specified by a declarative specification
of the properties (green circle). The verification tests if the process model
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Declarative
Specification

Imperative
Specification ?

Declarative
Specification

Imperative
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a) b)

Figure 4.1: Use-Case Verification (a) and Use-Case Synthesis (b)

allows a behavior not in the declarative specification, i. e., if P \ L = ∅. The
automatic synthesis generates an imperative specification from given declarative
properties. The imperative specification has to comply with the properties, see
the venn diagram in Figure 4(b), in other words finding a process model with a
behavior L with L ⊂ P for a property set P . The declarative specification of
the properties is thus a necessary step for the verification and the synthesis.

In this chapter we propose two approaches for the declarative specification of
properties: Section 4.1 introduces the notation of temporal logics. Section 4.2
shows a novel approach to generate automatically declarative properties for
a commissioning process from a domain data base. Section 4.3 presents a
scalable discovery of behavior patterns in a process model collection. In detail,
in Section 4.2 we analyze which properties a commissioning process should
comply and furthermore the related context informations. We observed that
the properties can be described with a few property patterns. We give a formal
specification of these patterns. The individual properties are automatically
generated by an instantiation of these property patterns. For the instantiation we
developed a model of the context knowledge. The context consists of, but is not
limited to, the electronic control units, their relationships and the dependencies
of the vehicle projects. To populate the database we use several sources, e. g.,
information about the control units from the production planning, existing
and specified dependencies, and the information of the process developers. In
Section 4.3 we show an algorithm to discover behavior patterns in the process
model repository. Behavior patterns are relationships between tasks that occur
frequently in the behavior space of the process models. They are candidates
for unknown declarative properties to discover. The behavior space grows
exponentially with the size of the process models and is much larger than
the set of executions that actually have occurred. This makes to discover the
patterns difficult. Further, behavior patterns are more abstract than structural
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ones, making their detection even harder. The core of our solution is to propose
a concise summary of the behavior space, to significantly reduce its size while
preserving the characteristics needed for the discovery of those patterns. We
use temporal logic as the formal foundation of our specification.

4.1 Temporal Logics

Linear Temporal Logic (ltl) was designed by Amir Pnueli for the verification
of software systems [Pnu77]. In 1983 Clarke et al [CES83] propose the language
CTL for model checking. [EH86] introduces ctl* as a superset of both CTL and
LTL.

Definition 3 (Computation Tree Logic*) .

The language of CTL* is defined by the following grammatic:

Φ := true | false | p | ¬Φ | Φ ∧Φ | Φ ∨Φ | Aφ | Eφ

φ := Φ | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | [ φU φ ]

In our domain, p is a state equation holding true over a marking M of a
Petri net. {A,E} are path operators and {X,F,G,U} are temporal operators.

Path operators:

A φ : The property φ must hold in all subsequent paths

E φ : The property φ must hold in one subsequent path

Temporal operators:

X φ : The property φ must hold at the next state

G φ : φ must always hold in the subsequent path

F φ : φ has to hold at least once in the subsequent path

φ U ψ : φ has to hold at least until ψ happens in the future
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Definition 4 (Linear Temporal Logic) .

The language of can LTL is defined by the following grammatic:

Φ := Aφ

φ := true | false | p | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | [φUφ]

I. e., LTL is the subset of CTL*, that starts with the path operator A and contains
no additional path operator. Often the preceding A operator is omitted from the
formulas and the temporal operators X,G,F are written as ©, �, ◊ respectively.
Due to the missing path operators the calculation model of LTL is over a set of
traces. Each event has exactly one possible future hence the name linear time.

CTL is another subset of CTL*. Model checking algorithms exist to efficiently
verify CTL properties, cf. [CES86]. The CTL syntax is as follows:

Definition 5 (Computation Tree Logic) .

The language of CTL is defined by the following grammatic:

φ := true | false | p | ¬φ | φ ∧ φ | φ ∨ φ | AXφ | AFφ | AGφ | A[φUφ]

| EXφ | EFφ | EGφ | E[φUφ]

I. e., in CTL the operators always occurs in pairs: one path operator followed
by a temporal operator. It is not possible to write two temporal operators in
sequence, e. g. the LTL/CTL* formula (AFG φ). In contrast to LTL (Linear
Temporal Logic) where the formula describes the property of an individual
execution, a CTL formula describes the property of a computation tree, i. e., a
set of executions. This allows to express properties that cannot be expressed in
LTL. An example is that after an event x there always exists a path executing y,
i. e., AG(x → EF(y)). The operators always occur in pairs: a path operator (A or
E) and a temporal operator (X, G, F or U). The path operators allow to identify
specific executions, i. e., the computation tree.
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Figure 4.2: Two Computation Trees, (a) fulfills the CTL Formula AG(x → EF(y)),
(b) does not

Example 4.1.1 . The computation tree in Figure 4.2(a) fulfills the CTL for-
mula AG(x → EF(y)). For the whole tree at any point of time (AG), after
the event x, a path exists (E) where the event y occurs at least once (F). The
tree in Figure 4.2(b) does not fulfill the formula. This is because after the
event x there is not any path that leads to the event y.

Past Linear Temporal Logic (pltl) extends LTL with operators in order to argue
about the past, see [LS95]. We denote them as X−1,G−1,F−1,U−1. For instance,
F−1φ says that at some time in the previous trace, φ has been true. pltl is of
the same expressiveness as LTL, i. e., each pltl formula can be rewritten to
an equivalent LTL formula. We use pltl because it allows to express some
formulas more succinctly.

4.2 Instantiation of Property Pattern1

The overall goal of the promotion project is to verify if a given commissioning
process is correct and besides that the synthesis of a process model from a
specification. Verification means checking if a process model fulfills certain
properties that are given. This is in contrast to validation, which is not at a
formal level, but relies on the intuition of the users to ensure that a process
meets their needs and is useful – For verification and synthesis it is necessary
to specify properties. We have collected such properties in cooperation with

1Parts of this Subsection are published in [Mra+14] and in an extended version in [Mra+15]
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domain experts from the audi ag by analyzing existing processes, and by
closely observing experts of commissioning when designing these processes.
To illustrate the notion of property, if a process uses more connections than
available in the commissioning infrastructure, the process must halt. In this
case process execution time is unnecessarily long. To this end, a commissioning
process should never use more connections in parallel than the capacity for the
protocol.

Properties typically are formulated as property rules, which are similar to
compliance rules, see [Knu+10; LMX07]. For example, a property rule states that
before executing Task X another Task Y has to be executed. This rule is called the
Precedence Pattern. Verification itself is a process that consists of several phases,
namely specifying the properties of the commissioning process, verifying them,
and presenting the results to the users. Our concern is the design and realization
of a framework supporting users throughout this entire process. In this chapter
we focus on specification of properties. For the verification see Chapter 5 and
Chapter 6 for the process synthesis.

Specification of properties gives way to several questions. First, in which form
should one specify the properties to allow an automatic verification technique?
Second, how one can utilize domain information for helping the users with the
specification of their properties? Third, what is the usability of the solution?

Designing such a framework for the specification gives way to several chal-
lenges:

1. The knowledge on which characteristics an industrial process should fulfill
is typically distributed among several employees in different departments.
Often documentation is missing, and properties merely exist in the minds of
the process modelers.

2. The properties frequently are context-sensitive, i. e., only hold in specific
contexts of a commissioning process. For example, some tasks need different
protocols to communicate with control units for testing at different factories.
Due to this context-sensitiveness, the number of properties is very large, but
with many variants with only small differences. This causes maintenance
problems [KRL11]. For instance, an average process model from our use case
has to comply with 39 properties. The properties and process models are
constantly being revised.

3. To apply an automatic verification technique like model checking or for the
synthesis of a process model, it is necessary to specify the properties in a for-
mal language such as a temporal logic [SMS05]. With vehicle-commissioning
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processes as well as in other domains, e.g., [DAC98; Ly+11a], specifying the
properties in this way is error-prone and generally infeasible for domain
experts who are not used to formal specification.

We have addressed these challenges based on the real-world use case of vehicle-
commissioning processes. More specifically, we make the following contribu-
tions: We have analyzed which properties occur for vehicle commissioning
processes and the respective context information. We have observed that there
are few patterns these properties adhere to. We propose to explicitly represent
these patterns, rather than each individual property. Next, we develop a model
of the context knowledge regarding vehicle-commissioning processes. Here
context consists of the components of a vehicle, their relationships and the
constraints which the vehicle currently tested and configured must fulfill. We
let a relational database manage the context information. To populate it, we use
several sources, e. g., information on the vehicle components from production
planning, constraints from existing commissioning processes, and information
provided by the process designers themselves. Our framework uses this informa-
tion to generate process-specific instances of the property patterns, transforms
such instances to a Petri net, and verifies it against these properties.

Our approach is to use a system that uses the context information to auto-
matically instantiate abstract classes of properties, called property patterns.
Subsection 4.2.1 defines these property patterns. Subsection 4.2.2 presents the
database to store the context information for the instantiation. Subsection 4.2.3
gives reasoning for the choice of the temporal logic to express the property
instances. Subsection 4.2.4 describes the instantiation of the properties. Our
evaluation in Subsection 5.4 will show that the framework as a whole does
detect rule violations in actual real-world commissioning processes.

4.2.1 Property Pattern for Commissioning Processes

Together with domain experts of the department commissioning we collected
typical properties for commissioning processes. From these collection we could
conclude several property patterns covering nearly all found properties. The
found patterns can be classified into five categories:

› P1 Syntactical Correctness: The process models should not contain any syn-
tactical errors, e. g., a parallel-node in OTX has between 2 and n lane-nodes as
child elements. Other kinds of nodes than lane are not allowed. Besides these
syntactical constraints of the OTX notation syntactically constraints of the
Audi AG exist. For Instance the naming conversation for tasks labels demands
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that a tasks starts with A_ followed by the short name of the control unit, and
separated by two underlines the operation of the tasks, called Identifier. The
short name of a control unit consists of three letters, followed by an optimal
location separated by a underline.

Abfolge = A _ ECU _ _ Bezeichner ECU = Bez _ Ort

› P2 Resources of the control units: Some control units need specific resources
at a testing place to execution some testing operations. For instance some
tasks require a bar code scanner. The scanner is only installed at some testing
places. If not available the process will block when trying to execute the task.

› P3 Connection to a communication protocol: At the time two different commu-
nication protocols are in use to diagnose the electronic control units and to
install the software. The protocols are KWP2000 (iso 14230) and UDS (iso

14229). Depended on the vehicle project and the version number a control unit
uses one of these protocols. A maximum of 10 control units can communicate
over a protocol at the same time. In total 14 connections can be used at one
time without regard of the protocol. If 10 connections for one protocol are
active a control unit needs to close the connection before another control
unit can communicate over the protocol. This leads to a longer processing
time and can cause a dead lock. Table 4.1 shows the classes of rules for the
communication protocols.

› P4 Dependencies between tasks: The occurrence of some tasks is dependent on
the occurrence of another task in the commissioning process. For Instance,
some tasks cannot be executed in parallel due to technical reasons. Some
tasks requires the previous execution of a second task as a precondition,
e. g., before the error log of a control unit can be read another task has to
check if the control unit is available. Table 4.1 shows the different property
patterns for the dependencies between tasks. The property patterns are the
result of an extension analysis of existing dependencies between tasks in real
commissioning processes.

› P5 Dependencies between control units: Additionally to the dependencies be-
tween tasks, dependencies between control units exist. These dependencies
hold true for all tasks that communicate with the specific control unit. For
instance, each task using the control unit for the comfort electronic (KEL)
cannot be used in parallel to a task using the control unit for the driving
authorization (FBE). Table 4.1 gives the property patterns for the dependencies
between control units.
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Given this list, we conclude that for some properties a model-checking approach
is feasible, while for others an algorithmic approach is more efficient. In general,
model checking allows the efficient verification of properties that specify the
temporal interaction of events in a process, e. g., properties regarding the control
or data flow. However, properties that are static and refer to the process model
at a whole, e. g., whether a certain resource is available for execution, can hardly
be expressed in a temporal logic and verified by model checking.

Violations of those properties can result in undesirable characteristics of the
process execution, subsequently referred to as major disturbance. An example
is that it may block the execution of the process. This holds for properties R3,
R4 and R5. Our approach is to define patterns for these properties. Table 4.1
shows the patterns. We use the term minor disturbance accordingly. This holds
for properties R1 and R2. They are on a representational level, i. e., the syntax
and the environment of the processes. Examples are violations of conventions or
deviation from best practice or from guidelines. To ensure syntactical correctness
(P1) we have implemented several checks, which take place before the model
checking verification. First, our framework does an XML validation, in order to
check, if the OTX document is valid against the XML schema. Additionally, we
check whether the task labels comply with the company regulations. In order to
check Property P2, our framework queries the database of context knowledge,
see Subsection 4.2.2. It is done to check whether the process model given can
use the respective resources. This resource check is static and is independent of
the data flow. However, we do not exclude properties that specify the resource
perspective in future iterations, cf. the data flow anti-patterns of [TAS09; Sta+14]
or [Sch+11]. Such properties would require including the handling of resources
at the Petri net level.

4.2.2 Database with Context Knowledge

Our goal is to generate instances of the property pattern of Table 4.1 for checking
commissioning processes automatically, based on the information collected a
priori. By definition, process context is any information that influences the
process flow and not defined by the process model. [Ros+06] classifies context
into immediate context (information that is related to the control flow), internal
context (internal information of a company), external context, and environmental
context. Our context information is mainly part of the first two categories
(immediate context or internal context). As argued in [Ros+06], the external context,
e. g., industry standards, influences the internal context. For instance, an industry
standard can specify the use of a new communication protocol. The new protocol

45



Chapter 4 Property Specification

Table 4.1: Property Patterns for Task and ECU Conditions

Property Name Description

P3.1 Maximal UDS
Connections

The number of paralleled connections to
communication protocol UDS should not ex-
ceed 10.

P3.2 Maximal KWP-
2000 Connections

The number of paralleled connections to
communication protocol KWP2000 should
not exceed 10.

P3.3 Maximal
Connections

The number of connections to the protocols
UDS and KWP2000 should not exceed 14.

P4.1 Sequential before
(Precedence)

If a task A occurs in the process, a task B has
to occur before A.

P4.2 Optional Sequen-
tial before

If both A and B occur in the commission-
ing process, B has to occur before A. B can
completely be missing.

P4.3 Sequential after
(Response)

The occurrence of task A leads to the occur-
rence of task B.

P4.4 Non-Parallel Tasks A and B are not allowed to occur in
parallel.

P5.1 Restricted access Only one task at the same time can access
each ECU C.

P5.2 Non-Parallel Some ECU C must never be tested in parallel
with an ECU C2.

P5.3 Close Connection Task close-C must close the connection to an
ECU C.
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Figure 4.3: Excerpt of the Data Base Schema for the Context Knowledge

may have a different capacity and thus changes how often certain tasks can
be in parallel. We have designed a relational database to manage this context
information. The rationale is that the context information is represented in a user-
friendly manner. The database needs to fulfill the following requirements:

› DB-R1 Representing Contextual Information: The database should contain the
contextual information of the commissioning processes. First, the properties
of the processes depend on the vehicle, i. e., components built into it to be
tested,mostly electronic control units. The type of the vehicle and its concrete
configuration determine the ECUs required. Second, the properties of the
processes depend on the process places the component is tested at. The
assembly lines for testing and configuring consist of these places. They vary in
different factories. Third, there exist dependencies between the commissioning
tasks, see Subsection 4.2.1.

› DB-R2 User-Friendly Specification of the Properties: Engineers should be able
to specify the properties in a comfortable way. To this end, the structure of
the database should support the perspective of these experts and not require
extensive experience with formal modeling.

› DB-R3 Use of Existing Documents and Information: Defining the properties
should use as much information from previous steps of the production life
cycle as is available. Information on the vehicle and its components which have
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to be tested arises during the production design and production planning.
The database should contain this information.

Figure 4.3 shows an excerpt of our database model illustrating the overall
structure, see [Sch12] for more details. Our model consists of three parts, in
line with DB-R2. One part comprises the vehicle components, e. g., the ECUs,
including variants of the component configurations, so-called options of the
vehicle. The product planning step delivers such information, which we use to
populate the respective part of the database, cf. DB-R3. Another part contains
the commissioning task objects, dependencies between tasks, and constraints
on the tasks, specified as CTL formulas. A third part describes the assembly
lines with process places and resources available there. Dependencies between
the parts complete the model, e. g., the resources required to perform a testing
task. The structure of the context knowledge given as database model allows
to define and maintain the context in a form expert users are familiar with, cf.
DB-R1, DB-R2.

4.2.3 Choice of Temporal Logic

The properties in Table 4.1 reason about events and their temporal relationships,
e. g., that after an event a an event b occurs sometimes in the future. To this
end, there is the need to specify the properties in a logic that allows for this
temporal behavior, i. e., a temporal logic. The most common temporal logics are
LTL, CTL, CTL*, and µ-calculus [Eme97]. CTL* is an extension of CTL without
the limitation that the path operators and temporal operators have to always
occur in pairs. For instance, it is possible to formulate EFG(φ). LTL is another
subset of CTL* where each formula always starts with the path operator A
followed only by temporal operators. Often LTL formulas are written without
the initial A, and the temporal operators (X, G, F, U) are replaced by (O,�,◊,U ).
Due to the absence of path operators, besides the initial A, LTL can only argue
about linear sequences of events, i. e., there is only one possible future to be
specified.

Formulas φ exist which can be expressed in CTL but not in LTL, while other
formulas ψ can be expressed in LTL but not in CTL. The expressiveness of CTL*
is a real superset of both CTL and LTL. The µ-calculus allows for an even larger
expressive power than CTL*. Figure 4.4 shows the expressiveness of the four
temporal logics. The property patterns of Table 4.1 lie in LTL ∩CTL, i. e., can
be expressed in all temporal logics. Related research has described patterns
expressible in CTL but not in LTL, e. g., the weak data flow patterns of [TAS09].
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CTL Property
Pattern LTL CTL* µ-calculus

Figure 4.4: The Expressiveness of four Temporal Logics.

To allow future patterns to be expressed, at least the expressive power of CTL is
necessary.

Another, but related issue is that we are dealing with large process models in
real world settings, thus we need to consider the complexity of the verification.
Model checking of a CTL formula is in complexity class P , model checking
of LTL is in complexity class pspace. The same holds for CTL* and the µ-
calculus. On a closer look the differences in complexity classes can be to put
into perspective. The complexity is determined by two parameters, the size of
the model |M|, and the size of the property |φ|. The runtime complexity for
LTL scales linear with |M| and exponentially with |φ|. For a bounded |φ| the
runtime of a model checking with LTL is comparable to CTL.

In conclusion, CTL is most appropriate in our framework. It allows expressing
our commissioning properties, model checking is efficient, and mature tools
exist. However, observe that our approach is not limited to CTL. Other temporal
logics are possible if a respective model checker is integrated.
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Figure 4.5: The Procedure for the Instantiation of Property Instances
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4.2.4 Property Instances

Figure 4.5 shows the process for the instantiation of the property patterns.
First, our approach determines the context of the commissioning process. The
context consists of but not limited to the process place, the vehicle project, and
the contained tasks, see Step 1 in Figure 4.5. The context is used to query the
database with context knowledge to extract the required information for the
instantiation, see Step 2 in Figure 4.5. For instance, the following queries to
the database: Which control units use the tasks from the process model at the
process place PP3 for the vehicle project VehPro1 and which dependencies
exists between the control units? This context information is used to generate
the instances of the property patterns from Table 4.1, see Step 3 in Figure 4.5.
Table 4.2 shows the CTL-Formula for the property patterns from table 4.1. The
atomic propositions are inequations referring to the distribution of tokens, i. e.,
the state of a Petri net. For instance, (Arun > 0) refers to all states where the
place Arun contains more than zero tokens, i. e., A is currently running.

Example 4.2.1 . The commissioning process contains the tasks {A, B, C}
and is executed at the process place PP2. The vehicle project is VehPro1.
This context is used to query the database. The information contains that
A and B use the control unit for comfort electronic (CEL) and the tasks
C uses the control unit for driving authorization (DAU). A dependency
exists for the vehicle project the tasks of CEL and DAU cannot be in parallel.
The context information is used to instantiate the property patterns. For
the property pattern R3.3 this results in the instance: AG( ¬ ( (CEL >
0) ∧ (DAU > 0) ) ).

The dynamic generation of properties from the database has several benefits
compared to their direct specification in, say, CTL. First, for a commissioning
process given we only consider the properties relevant for it. An allocation
of the correct rules to the correct processes, cf. [KRL11] is thus not needed.
Second, the maintenance of the properties is simplified. For example, if a new
ECU is available for a process place, one only needs to add the information
into the database, i. e., to Relation ECU. With a direct specification in turn, one
might have to specify several hundred properties. Third, the database stores
the contextual knowledge in a centralized and non-redundant form, instead of
managing all properties specified in CTL. For example, the Pattern »A leads to
B« has a few hundred instances. If, for example, the need to change the pattern
to »The first occurrence of A leads to B« arose, updating would be avoided.
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Table 4.2: CTL-Formula for the Property Patterns

Property Name CTL

P3.1 Maximal UDS
Connections

AG ( UDS ≤10 )

P3.2 Maximal KWP2000
Connections

AG ( KWP2000 ≤10 )

P3.3 Maximal Connections AG ( (UDS + KWP2000) ≤14 )

P4.1 Sequential before A [ (Arun=0) W (Brun>0) ]

P4.2 Optional Sequential
before

A [ (Arun=0) ∨ AG( Brun=0 ) )
W ( Brun>0 ) ]

P4.3 Sequential after AG ( (Arun>0) → AF (Brun>0) )

P4.4 Non-Parallel AG (¬( (Arun>0) ∧ (Brun>0) ))

P5.1 Restricted access AG (Xecu≤1)

P5.2 Non-Parallel AG ( ¬ ( (Xcon>0) ∧ (Ycon>0) ) )

P5.3 Close Connection AG ( (end>0) → (Xcon=0) )

Fourth, domain experts only need to specify properties in CTL when there is a
new property type, so the number of these error-prone and complicated tasks
is reduced.

In Section 5.4.1 we evaluate our approach for the instantiation of property
patterns. To this end, we show that the instantiation is able to generate sufficient
properties for the verification of commissioning processes in the automobile
industry.

4.3 Mining of Specifications

Behavior patterns are relationships between tasks or groups of tasks which occur
frequently in the set of possible executions of a process model. A property in
turn is a characteristic that all process models have to fulfill. Behavior patterns
are good candidates for properties unknown so far.
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Figure 4.6: Three Structurally Different Process Models that Fulfill the Property:
Response(a, b).

Example 4.3.1 . Think of the following behavior pattern: A task a occurs be-
fore a task b in nearly all cases. This is a hint that a might be a precondition
for b.

In general, behavior patterns do not occur directly in the process model, i. e.,
no explicit structure in the graph representing the model exists corresponding
to the pattern. Here, the differentiation between behavior and structure is the
conventional one from process similarity; see [Dij+11].

Example 4.3.2 . Figure 4.6 shows three structurally different process mod-
els, in bpmn notation. One behavior pattern is Response, i. e., after the
execution of a Task a, Task b occurs at some time in the future. Each model
fulfills the pattern, but an analysis solely looking at the graph-structure
level will not detect it.

Our concern is detecting many important and from an application perspective
useful behavior patterns from real process models of true-to-life size efficiently.
More specifically, patterns to be discovered have to be frequent in a collection
of models. These patterns are useful for several very important use cases. We
give three examples, namely verification, synthesis, and improved flexibility.

Verification : We can detect the rare cases where a property does not hold,
which are likely modeling errors or at least a violation of best practices.
New process models can be verified using these detected dependencies
[LMX07; ADW08; Wei+11a].

Synthesis : A synthesis algorithm can use the dependencies found to generate
more general process models [Awa+11; KRG07; Yu+08].

52



4.3 Mining of Specifications

Improved Flexibility : There frequently are large number of process models.
See [MBG14] for a study. Recent research has shown that declarative
process models tend to be more concise and readable than imperative
ones with the same flexibility [AP06; Mon+10]. However, the shift from
imperative process models to a declarative one is not trivial. Nevertheless,
a discovery approach such as ours can detect important dependencies,
i. e., the core of the new flexible model.

Behavior patterns describe the control flow of business processes, in contrast
to, e. g., data flow. In this study, we focus on block-based process models not
containing loops. There is a number of settings with this characteristic, for
instance in manufacturing. In commissioning processes, loops are unnatural
as well, since a feature is tested once. If a problem occurs and is fixed, a new
commissioning process is started. A further aspect is to consider properties not
only for individual tasks but for groups of activities as well.

Example 4.3.3 . With the commissioning of vehicles, each task performs an
operation on an electronic control unit (ECU). There are dependencies of
the form: Any task using ECU1 has a certain dependency to any task using
ECU2. For instance, before any task on ECU2 is executed, all tasks on ECU1
have to be completed.

Process models often are represented as labeled graphs or trees. Behavior
patterns cannot be discovered on the structural level of the process-model
graph in a straightforward way, e. g., frequent subgraph mining [JCZ13], cf.
Example 4.3.2. Each subgraph can be infrequent in the repository, but the
pattern Response(a, b) can be frequent. A lot of related work on discovering
patterns in process-model repositories is confined to the structure level [Gre+05;
RDC14; Lau+09; LRW09]. Next, considering the behavior space of the process
model explicitly, i. e., the possible execution paths, is not an option either. This is
because this space grows exponentially with the size of the model. For real-word
processes of normal size, it is not possible to generate that space explicitly. So
our setting is also different from ones analyzing previous executions [Che+09;
CMM14], e. g., logs whose sizes are limited.

As a first step, we collect descriptions of behavior patterns from the scientific lit-
erature. To avoid constructing the behavior space explicitly, we use a format for
concise summaries of this space for a set of process models, originally proposed
in Weidlich et al. [WMW11; Wei+11b], see Section 4.3.1. These summaries have
two important characteristics. First, their generation can take place efficiently,
as we will explain. Second, it is feasible to discover the model-based behavior
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Figure 4.7: A Simple Process Model P and its Behavior Space LP

patterns from the summary. While not trivial either, we present a respective effi-
cient solution in Section 4.3.2. Our evaluation shows that our overall approach
is applicable to real process models of realistic size. A case study with domain
experts reveals that the results are indeed useful. The patterns discovered point
to errors in process models already in use that had been undetected so far.

4.3.1 Behavior Patterns

In this dissertation, we focus on the control-flow aspect of processes. A process
model P specifies which events are executed in what order [Aal11] (p. 31). An
event can be the execution of a task or the sending of a message. A task a
throws two events for its execution, a.s for its start and a.e for the end. The set
of execution sequences a process model can generate is its behavior space LP.
We refer to an individual sequence in LP as σ. If an event is part of the sequence
σ we refer to it as a ∈ σ.

Example 4.3.4 . Figure 4.7 shows a simple process model and its behavior
space LP. Even for the tiny process depicted, LP consists of 12 different
executions.

In this dissertation we assume that there exists an unique mapping between
task names and their meaning. A counterexample would be that an abstract
notion, e. g., payment, can be represented by different tasks. In such settings, a
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preprocessing resulting in a mapping of meaning to tasks, e. g., [Leo+15; Kli+13],
may be necessary.

Table 4.3: Control Flow Patterns

Pattern Description

Existence A given task a has to occur sometime during all execu-
tions

Bounded Existence A given task a has to occur between min and max times
in every execution

Parallel Two tasks a and b must not occur in parallel

Precedence A task a requires the previous execution of a task b

Response A task a requires the subsequent execution of a task b

Succession Task a is always followed by a task b and vice versa

Mutually Exclusive If task a occurs, task b is absent and vice versa

Inclusive Task a mandates that task b is present

Chain Ordering Task a mandates that one of the tasks b1, b2, . . . , bn fol-
lows

Model-based behavior patterns are control-flow related occurrences of tasks
frequently observed in the behavior space of process models. For instance,
the occurrence of a task a is always followed by the occurrence of a task b.
We have collected frequently used patterns from the literature. To this end,
we have covered the specification language bpmn-q [ADW08], the compli-
ance rule graphs [Ly+11a], Declare [Mon+10], the Property Specification Pat-
terns [DAC98], and Commissioning Property Patterns [MMB14a; Mra+14]. See
Table 4.3 for a definition of the patterns. Table 4.4 shows which formalism
supports which patterns. In the commissioning context, it is sufficient to let the
properties refer to task labels, in contrast to, say, task parameter values. Observe
the difference between Response(a,b) and Precedence(b,a). Figure 4.6(b) shows
a process model that fulfills the pattern Response(a,b) but not Precedence(b,a).
This difference is important in real contexts, see [ADW08; DAC99; Mon+10;
Mra+14].

We do not consider Chain Ordering any further. An empirical study [DAC99]
has shown that Chain Ordering occurs in only 9 out of 555 cases. While rare
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Table 4.4: Five Declarative Specification Languages and the Patterns they can
Represent Directly (Tick) or as a Combination of Patterns (Circle). The
Omission of a Mark Means that the Language does not Support the
Pattern.
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Bpmn-q [ADW08] Ø Ø Ø ◦
Comp. Rule Graph [Ly+11a] Ø ◦ Ø Ø Ø ◦ ◦
Declare [AP06] Ø ◦ Ø Ø Ø Ø Ø Ø Ø
Prop. Spec. Pattern [DAC98] Ø Ø ◦ Ø Ø Ø Ø ◦ Ø
Comm. Prop. Pattern [Mra+14] Ø Ø Ø Ø Ø Ø Ø

patterns might be interesting in general, they do not help in our specific context.
[RFA12] has identified a set of frequently used specification elements similar
to the one we consider. [DAC99] and [Mra+14] shows that the patterns from
Table 4.4 occur in nearly any specification.

Table 4.5 shows the pltl formula for each pattern. Patterns 1 and 2 deal with
the occurrence of a single event or task. Patterns 3–8 describe a relationship
between two events or tasks. We call Patterns 1 and 2 occurrence patterns and 3 to
8 relational patterns. One can bring each pattern Pa from Table 4.5 into the form
Pa = G(X → Y). X is the trigger of the pattern and Y the cause. For instance,
in the Response pattern the start event of a is the trigger, and the occurrence
of b.s is the cause. In the table, a and b are placeholders for tasks; replacing a
and b with concrete tasks yields an instance of the pattern.2 We want to detect the
frequent strong instances of the model-based behavior patterns.

Definition 6 (Frequent and Strong Behavior Pattern) .

An instance of a model-based behavior pattern is frequent if the number
of process models in a repository containing the instance is greater than a
predefined threshold min sup. A model-based behavior pattern is strong if
the share of process models in the repository containing the pattern among
those meeting the precondition, i. e., containing the trigger, is greater than
threshold min conf.

2Slightly abusing our own terminology, we may use the terms »pattern« instead of »instance
of pattern« whenever clear from the context.
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Table 4.5: Control Flow Patterns

No. Pattern PLTL

1. Existence F(a.s)

2. Bounded Existence see [Mon+10]

3. Parallel G(a.s ∨ b.s→ (a.s ∧ [¬(b.s ∨ b.e) U a.e]
∨ (b.s ∧ [¬(a.s ∨ a.e) U b.e]))

4. Precedence G(b.s→ F−1 a.s)

5. Response G(a.s→ F b.s)

6. Succession G(a.s ∨ b.s→ (a.s ∧ F b.s) ∨ (b.s ∧ F−1 a.s))

7. Mutually Exclusive G(a.s ∨ b.s→ (a.s ∧ ¬F b.s) ∨ (b.s ∧ ¬F a.s))

8. Inclusive G(a.s→ F b.s ∨ F−1 b.s)

For the Bounded Existence pattern we want to discover the so-called maximal
bounds, i. e., there do not exist any larger bounds that are frequent as well.

Example 4.3.5 . Figure 4.6 shows three process models. The ones in (a) and
(c) fulfill the Precedence pattern, i. e., Task a has occurred before b. The
second model however does not fulfill the pattern. For min sup = 2 and
min conf = 3

4 the pattern is frequent but not strong. This is because in 1
3

of the cases where b is in a process model, b can occur without a previous
execution of a.

LP grows exponentially with the degree of concurrency of P. The behavior
space for one parallel split with n lanes and k1, k2, . . . kn tasks in each lane can
be calculated with the multinomial coefficient [MMB14a], cf. Subsection 3.1.2.

(
∑i∈[1,n] ki

k1, k2, . . . , kn

)
=

(∑i∈[1,n] ki)!
k1! k2! . . . kn!

Example 4.3.6 . Figure 4.8(a) shows a process model that consists of a
parallel split with m parallel lanes and n tasks per lane. Figure 4.8(b) shows
the size of LP with n on the x-axis, m = {2, 5, 10}. Observe that the y-axis is
log10 scaled.
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Figure 4.8: (a) Parallel Split with m Lanes and n Tasks Each (b) The Size of LP

Discovering model-based behavior patterns in LP is not feasible for models of
realistic size. Our approach is to use a summary of the process models. The
summary should have two important characteristics:

1. One can compute the frequent model-based patterns from it.

2. It is possible to efficiently compute this summary.

Weidlich at al. [WMW11] introduces the notion of behavioral profiles. Behavioral
profiles characterize the behavior space in terms of order constraints between
the task of a process model. They are grounded on the weak order notation.

Definition 7 (Weak Order, after [WMW11]) .

Let P be a process model with the tasks T. A pair of tasks (x, y) ∈ T × T
are in a weak order relation � if an execution sequence σ = t1, . . . , tn exists
with 1 ≤ j < k ≤ n with tj = x and tk = y.

Using the weak order relation, it is possible to define three other relations whose
combination forms the behavior profile.
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Definition 8 (Behavior Profile, after [WMW11]) .

Let P be a process model with the tasks T. A pair of tasks (x, y) ∈ T × T
can be in the following relations:

› The strict order relation  , if x � y and y 6� x

› The exclusiveness relation +, if x 6� y and y 6� x

› The interleaving order relation ‖, if x � y and y � x

BP = { ,+, ‖ } is the behavior profile of P.

The interleaving order and the exclusiveness relation are symmetric. It is possi-
ble to define the reverse strict order relation −1 as x   y⇔ y  −1 x. However,
the behavior profile as defined so far does not allow expressing the causality of
two tasks. Our context in turn requires this information in order to detect most
of our behavior patterns. [Wei+11b] extends the basic behavior profile to the
causal behavior profile CP with an additional relation.

Definition 9 (Causal Behavior Profile, after [Wei+11b]) .

Let P be a process model with the tasks T.

A pair of tasks (x, y) ∈ T × T is in the co-occurrence relation � if for all
execution paths σ in P it holds that x ∈ σ⇒ y ∈ σ.

CP = { ,+, ‖,�} is the causal behavior profile of P.

[Wei+11b] shows how to compute the causal behavior profile for a process
model efficiently. [WMW11; Wei+11b] uses the behavior profile to check the
consistency or similarity of two given process models. We in turn will use those
relations as core of a summary in order to detect the frequent behavior patterns
in a data base. As further constituent of our summary, we collect the minimum
and maximum numbers of task a appearing in a process model. This is to cover
the Existence and Bounded Existence patterns.

To detect the frequent patterns, we propose a mapping of the relations to pltl

formulas. Table 4.6 defines this mapping. Observe that the tasks are in exactly
one of the classic behavior relations from Definition 2.3 ( , −1,+, ‖).
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Table 4.6: Appearance and Ordering Relationships

Relationship Symbol Is true if

strict order relation a   b G(a.s→ ¬P b.s)
reversed strict order a  −1 b G(a.s→ ¬F b.s)
exclusiveness relation a + b G(a.s ∨ b.s→ (a.s ∧ ¬F b.s)

∨ (b.s ∧ ¬F−1 a.s))
interleaving order relation a ‖ b F(a.s→ [¬a.e U b.e])

co-occurrence relation a� b G(a.s→ F b.s ∨ F−1 b.s)

Example 4.3.7 . Figure 4.7 shows a process model and its complete log LP.
The tasks of the process model are in the following relations.

Behavior Profile Co-occurrence Relation Occurrences


a b c d

a + +    
b + +    
c  −1  −1 + ‖
d  −1  −1 ‖ +




a b c d
a � � �
b � � �
c � � � �
d � � � �




min max

a 0 1
b 0 1
c 1 1
d 1 1



4.3.2 Discovery of the Patterns in a Process Repository

This section describes the way our approach detects frequent patterns in a
process-model repository, based on the summary consisting of relationships.
First, we will describe the data structures behind our algorithms. Next, we
will show how to discover the Existence and Bounded Existence patterns that
are frequent and strong efficiently. Followed by a description of the discovery
algorithm for the relational patterns. We conclude with the approaches of how
to discover patterns for groups of tasks.

For each pair of tasks in the process models, we calculate the causal behavior
profile and store it. Table 4.7 shows an illustration for two process models P1 and
P2. For each pair of tasks, the relation Task contains both tasks (Task1, Task2),
the process model (Process) and the behavior relations of the two tasks.

Additionally, Capacity contains for each task of each process model P how
many times it occurs at least, and at most respectively, in any path in LP. The
number of tuples in the database, with #TasksP being the number of tasks in P,
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Table 4.7: The Task-Relation (Left) and the Capacity-Relation (Right)

Process Task1 Task2 Occ. Ord.

. . . . . . . . . . . . . . .
P1 a b Ö �
P1 b a �
. . . . . . . . . . . . . . .
P2 a b Ö �
P2 b a Ö �
. . . . . . . . . . . . . . .

Process Task min max

. . . . . . . . . . . .
P1 a 1 1

P1 b 0 1

. . . . . . . . . . . .
P2 a 1 1

P2 b 1 1

. . . . . . . . . . . .

is ∑P∈P |#TasksP|2. I.e., the number of tuples grows quadratically with the size
of the process models. This can lead to several thousand entries. This number is
easily processable; contrast this with the exponential growth of LP.

The discovery of the Existence and Bounded Existence Patterns is straightforward
using the Capacity-Relation. Regarding Existence, recall that a pattern is frequent
if the task occurs in more than min sup process models.

Algorithm 2 calculates the maximal Bounded Existence pattern, somewhat remi-
niscent of the Apriori algorithm [AS94]. From the intervals of size k we generate
candidate intervals of size k+ 1 (Line 5). If a candidate is infrequent, it is pruned
(Line 6). The algorithm continues until the largest interval has been found.

Algorithm 2 generateBoundedExistence(Task a, min sup): Set〈 〉 Pattern Pa
1: P ← all process models that contain a
2: Pa ← Find all frequent 0-intervals
3: for all k = 0; until Pa is unchanged; k++ do
4: C ← combine the k-intervals to form candidates
5: Remove the infrequent candidates in C
6: if C 6= ∅ then Pa = C
7: return Pa

Example 4.3.8 . Think of a Task a that is part of four process models. In
one, a occurs 1 to 5 times, in the second one 3 to 7, in the third one 0 to
2, in the fourth one 1 to 6 times. For min sup = 3 the maximal Bounded
Existence of a has values 3 to 5. See Figure 4.9.
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Figure 4.9: An Example for the Bounded Existence Pattern for four Process
Models.

This subsection presents our approach for discovering relational patterns, i. e.,
Patterns 3–8. First, we map the relationships of Table 4.6 to patterns. Next,
we define the conditions for strong and frequent patterns and the relationships
between patterns. Lastly, we show our discovery algorithm in order to find the
frequent strong patterns.

Each pattern consists of a trigger and a cause. The trigger always is the occurrence
of a task or the co-occurrence of two tasks. A process model P for a pattern
is activated if the Capacity-Relation contains the triggering tasks. For the cause
condition, we check if the the tasks contained in it are in the Task-relation.
Table 4.8 shows the trigger and the cause for each pattern.

Example 4.3.9 . For the Response(a, b) pattern, any process model P that
contains task a triggers it. We then check whether the cause is fulfilled, i. e.,
for each process model P containing a we check if the tuple (P, a, b, Ö, �)
is in the Task-Relation.

Lemma 1 . If two tasks a, b are in the relations defined in Table 4.8, then a,
b fulfill the respective pattern.

We can prove Lemma 1 by means of equivalence transformations. For instance,
consider the Response pattern:
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Table 4.8: The Trigger and Cause of the Patterns

Pattern Trigger Cause

Parallel a ∨ b (a, b) 6∈ ‖
Precedence b (a, b) ∈� ∧ (b, a) ∈Ö
Response a (a, b) ∈� ∧ (a, b) ∈Ö
Succession a ∨ b (a, b) ∈� ∧ (a, b) ∈Ö ∧ (b, a) ∈Ö
Mutually Exclusive a ∨ b (a, b) ∈ ×
Inclusive a (a, b) ∈Ö

(a, b) ∈� ∧ (b, a) ∈Ö ⇔ G(a.s→ F b.s ∨ P b.s) ∧ G(a.s→ ¬P b.s)
⇔ G((a.s→ F b.s ∨ P b.s) ∧ (a.s→ ¬P b.s))⇔ G((¬a.s ∨ F b.s ∨ P b.s)
∧(¬a.s ∨ ¬P b.s))⇔ G(¬a.s ∨ ((F b.s ∨ P b.s) ∧ (¬P b.s)))⇔ G(¬a.s∨

(F b.s ∧ ¬P b.s))
(*)⇔ G(¬a.s ∨ F b.s)⇔ G(a.s→ F b.s)⇔ Response(a, b))

(*) uses the property that each event occurs once in a path, i. e., Fe→ ¬Pe.

Reporting every co-occurrence of two tasks as a pattern would result in many
patterns that are not representative. Thus we only report frequent patterns. The
support of a relational pattern P is defined as follows:

supp (P) := number of tuples in the Task-Relation fulfilling the Cause condition

We only want to detect strong relational patterns, i. e., causes that are likely
if the trigger condition is fulfilled. The trigger depends on the pattern, see
Table 4.8. The confidence of a pattern P is:

conf (P) :=
supp (P)

no. of times the trigger condition holds

Definition 10 . A pattern is frequent if its support exceeds the predefined
threshold min sup. A pattern is strong if its confidence exceeds min conf.

Our algorithm described in the following will only discover frequent and strong
relational patterns in a collection of process models.
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Precedence(a,b) Response(a,b)

Succession(a,b)

Inclusive(a,b)Inclusive(b,a)

MutuallyExclusive(a,b)Parallel(a,b)

Figure 4.10: The Relationships of Relational Patterns. Directed edges represent
implications and dashed edges exclusiveness relationships.

A pattern can have relationships to others, i. e., it can imply or exclude them.
For instance, Response(a, b) implies Include(a, b), or Parallel(a, b) excludes Mu-
tuallyExclusive(a, b). Figure 4.10 shows some relationships between the rela-
tional patterns. These relationships allow improving the search for patterns.
For instance, we first search for all Inclusive patterns. We only have to con-
sider these pairs for the Response- and Precedence patterns. Succession(a, b)⇔
Precedence(b, a) ∧ Response(a, b). I. e., our approach generates Succession pat-
terns by a postprocessing of the Response and Precedence patterns.

The GenerateRelationPatterns Algorithm (Algorithm 3) incorporates the steps
described so far: It first generates all pairs of frequent tasks, see Lines 1–2. For
every such pair the algorithm checks if they form a MutuallyExclusive, Parallel,
or Inclusive-Pattern, see Lines 3–11. For each Inclusive pattern the algorithm
checks whether it forms a Response or Precedence-Pattern, see Lines 12–18. If
two tasks t1 and t2 are in a Response- and Precedence-Pattern, the algorithm
adds the Pattern Succession(t1, t2) to the set of patterns (Lines 19–23). The check
if a candidate pair c ∈ C is a pattern is a lookup in the data structure. This takes
place in logarithmic time if respective index structures are present. Thus, we
observe the following:

Lemma 2 . The Generate Relation Patterns-Algorithm is in the complexity
class O( |T |2 · log(|D|) ). T is the set of the tasks and D the data structure
containing the relationships.

This complexity is extremely low. The lemma implies with process models of
realistic size the focus of an evaluation does not have to be on performance; so
that we rather can directly turn our attention to the usefulness of the patterns
discovered from an application perspective. Next, the lemma features a very
coarse upper bound: This is because we have the pruning condition that a
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behavior pattern can only be frequent if its tasks are frequent as well, see
Line 1).

Relationships between individual tasks do not cover all information needs. To
this end, we also search for group pattern GP, i. e., patterns between a set of
tasks A and another set of tasks B. While straightforward at first sight, testing
all possible group patterns is not possible due to the exponential growth of
the number of possible combinations with the number of tasks. Instead, we
combine the support and confidence of all patterns containing two tasks. Let
GP be a group pattern and GP the set of 2-task patterns that relate to GP, i. e.,
that are covered by GP.

Definition 11 . The support and confidence of GP is:

supp(GP) = ∑
∀P∈GP

supp(P), conf(GP) =
supp(GP)

∑∀P∈GP number of times P triggers

The min sup of a group is defined as: min supGP = |GP| ·min sup

Example 4.3.10 . Let a, b be tasks. a performs the operation opa ECUa, and
opb on ECUb respectively. A Pattern Response(a, b) is redundant if the Pat-
tern Response(A, B) is frequent and strong. A, B are the set of tasks corre-
sponding to the same ECU as a and b respectively.

Even if a Pattern P1 is frequent and strong, another frequent strong pattern P2
could imply the pattern, rendering P1 redundant. Thus, a refinement of our
algorithm is that it does not return redundant patterns, defined as follows:

Definition 12 . A frequent strong pattern p1 : Trigger1 → Cause1 is redun-
dant if another frequent strong pattern p2 : Trigger2 → Cause2 of the same
type exists with Cause1 ⊂ Cause2.

Example 4.3.11 . Suppose that the frequent strong pattern Response(A, B)
exists. B is the set of tasks that operate on a specific ECU. Another frequent
strong pattern Response(A, C) exists with C being the tasks that use a
specific communication protocol. Every task that operates on the ECU uses
the same protocol, i. e., B ⊂ C. Response(A, B) is redundant, and we do not
report it.
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Algorithm 3 generateRelationPattern(min sup, min conf ): Set〈 〉 Pattern
1: Frequent tasks T = { Task t | capacity(t) > min sup }
2: Candidates C = T × T
3: for all (t1, t2) ∈ C do
4: if Mutually Exclusive(t1, t2) is a frequent strong pattern then
5: Pattern.Add(Mutually Exclusive(t1, t2))
6: C ← C \ (t2, t1)
7: else if Parallel(t1, t2) is a frequent strong pattern then
8: Pattern.Add(Parallel(t1, t2))
9: C ← C \ (t2, t1)

10: else if Inclusive(t1, t2) is a frequent strong pattern then
11: Pattern.Add(Inclusive(t1, t2))
12: end if
13: end for
14: for all Inclusive(t1, t2) ∈ Pattern do
15: if Response(t1, t2) is a frequent strong pattern then then
16: Pattern.Add(Response(t1, t2))
17: Pattern.Remove(Inclusive(t1, t2))
18: else if Precedence(t2, t1) is a frequent strong pattern then
19: Pattern.Add(Precedence(t2, t1))
20: Pattern.Remove(Inclusive(t2, t1))
21: end if
22: end for
23: for all Response(t1, t2) ∈ Pattern do
24: if Precedence(t2, t1) ∈ Pattern then
25: Pattern.Add(Succession(t1, t2))
26: Pattern.Remove(Response(t1, t2))
27: Pattern.Remove(Precedence(t2, t1))
28: end if
29: end for
30: return Pattern
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4.4 Evaluation

For the evaluation of the detection of property patterns we have evaluated our
approach with commissioning processes of the audi ag. We want to find out
whether our approach does help to detect properties in a collection of real
process models. To this end, we let a domain expert validate the patterns found.
For the evaluation of the property generation from patterns we refer to the
evaluation of our verification approach, see Chapter 5.4, and for our automatic
process generation, see Chapter 6.4.

Types of Patterns

Our industry partner currently has several hundred commissioning process
models. A typical size is around 200 task nodes, with, say, 50 different tasks.
While behavior patterns that are frequent exists in this entire set, and our
algorithm has found them without any problem instantaneously, they are only
moderately interesting. This is because the respective properties are generic
in nature and are known to the industry partner. I.e., verification has not led
to any improvement. However, models can be grouped by context, e. g., same
vehicle project and locality of production. The number of models per group is
small, typically 6 to 8. But discovering behavior patterns in such groups that not
manifesting themselves as properties in all models of the group is important
for verification purposes as well. Even more, if our results on such small sets
already are useful from the perspective of domain experts, we can rightfully
claim that this holds for larger sets with more complexity as well. So we now
report on the results for one such group. We set min sup to 5 and min conf to
0.96 in this specific experiment.

Our approach discovers 79 non-redundant frequent strong patterns, with four
different kinds of patterns, see Figure 4.11(a). An intermediate result is that
more than 90,000 relationships have been extracted.

Validation of the Patterns Found

We have asked a domain expert to validate the quality of the patterns found.
He is a professional process developer of our industrial partner with years of
experience in commissioning. We have asked him to classify the patterns as
Property, Covered, or Weak. Property is a characteristic that any process model
has to fulfill. Covered means that there is a property which is similar. For
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Figure 4.11: The Types of Patterns (a), and the Validation of the Patterns Found
(b).

instance, Response(A, B) is Covered if Response(A, C) with B ⊂ C exists as a
property. Weak patterns are characteristics that a process model does not have
to adhere to. Our domain expert has marked five patterns as Property, see
Figure 4.11(b), 13 patterns have been of category Covered. This shows that our
approach does detect real properties by discovering behavior patterns. 72.2% of
the behavior patterns in Property and Covered have been of type Response(a, b),
27.8% of type Precedence(a, b).

Summing up, the evaluation shows that our approach does detect properties
by discovering behavior patterns (Property and Covered). The Weak patterns
are profitable from an application perspective as well. They provide useful
information on the structure and the modeling of the processes. For instance, a
Weak pattern can help with process synthesis. [MMB14b] shows that synthesis
algorithms have to deal with underspecified cases, i. e., more than one process
model is possible for a given specification. The Weak pattern can then support
the synthesis by providing hints which model to select.

4.5 Related Work for Property Specification

In this Section we discuss the related work for the property specification. In Sub-
section 4.5.1 we discuss the work related to the instantiation of property patterns.
Subsection 4.5.2 shows the related work for mining property candidates.

4.5.1 Related Work for the Instantiation of Properties

Related work includes the user-friendly specification of properties, their man-
agement and the property-specific verification of processes.
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The direct specification of properties in formalisms like CTL is error-prone
and not feasible for a user without experience in formal specification. To deal
with this issue, different approaches have been developed. Most business pro-
cesses are modeled in a graph-based modeling language like BPMN [OMG11],
YAWL [AH05] or Petri nets [Aal98]. [Bra+05] extends the BPMN notation with
new elements that directly represent LTL operators. Bpmn-q [ADW08] extends
BPMN with new edge types that represent sequential ordering between tasks.
Compliance Rule Graphs [Ly+11a] allow a specification of requirements in a
graph-based formal language. Another approach is the specification of pat-
terns. [DAC98] introduces the property patterns to specify concurrent systems.
[Smi+02] extends the pattern system to cover variations of the property patterns
(propel, PROPerty ELucidation). [CAC06] uses a question tree to allow speci-
fying propel patterns. In our domain, only a few different property patterns
exist. Dependent on the context, many instances are generated. Because of the
small number of patterns but many similar instances, we have not found any of
the approaches to be helpful in our specific case.

Only a few studies evaluates the usability of a verification system. [BGB14]
analyzes the usability of the KeY Program Verification System [BHS07]. KeY is
a verification system for a restricted class of Java programs. [BGB14] analyzes
the cognitive dimension using a questionnaire. The insides of the questionnaire
include the importance of the proof presentation. An issues we also encounter
see Section 5.3. [BG12] uses a focus group method in order to evaluate the
usability of an interactive theorem proofer.

[ASI12] builds an ontology for compliance management domain. However, it
is not sufficient to capture the domain-specific information needed for the in-
stantiation of our patterns. Managing compliance properties includes allocating
properties to business processes. [KRL11] allocates the compliance properties
to the processes using potentially relevant activities. We in turn dynamically
generate only the relevant properties for the commissioning process using the
context knowledge directly before verification.

Constraint programming is a programming paradigm that is an alternative to
the usual imperative one. With the imperative paradigm, programming means
writing a sequence of commands to solve a problem. In constraint programming,
one must come up with a set of constraints C over a set of variables X , in order
to describe the problem. A solver then finds an allocation for all x ∈ X that
comply with all c ∈ C [Apt03]. Constraint programming therefore consists of
the following two steps: the programming step to write down the constraints C
and the solution step, often automatically. Model checking has two inputs: the
transition system M, in our case an imperative process model, and properties
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Φ. The constraints C do not allow to expressing the temporal aspects of our
properties. In principle, it would be possible to transform the process model
into a set of constraints and to find a solution. This approach is often used for
LTL model checking, called bounded model checking [Bie+03]. In our use case
however, this is not practical. This is because of the fact that the set of equations
grows exponentially, and finding a solution is in pspace, which has been proven
formally [LP85].

The goal of our work is to check if an imperative process model complies
with declarative properties. This stands in contrast to the declarative workflow
paradigm, at which the process model solely consists of a set of declarative
properties. Declarative workflows allow for any behavior as long as it fulfills the
specification [Mon+10]. A declarative specification is similar to the properties
in our context. However, properties in general are not sufficient to describe an
executable process model. The enactment of declarative workflows is not trivial
[PBA10], and tool support by major vendors is missing. To our knowledge, there
does not exist any tool that executes declarative process models comparable
to the commissioning of vehicles. Another aspect is that, in contrast to an
imperative process model, all possible executions in a declarative process model
are not easily comprehensible at specification time, leading to an unexpected
and possibly false execution of the process model. In consequence, our approach
has been to increase the quality of an imperative process model by verifying it
against relevant properties.

4.5.2 Related Work for Property Candidate Detection

In what follows, we first review approaches that find patterns on the struc-
tural level, then work on declarative process mining and, lastly, on process
similarity.

Smirnov et al. [Smi+12] detect action patterns in a process repository. They
use the behavior profile of a process schema in order to mine the patterns.
In contrast to our relationships, this profile does not contain the appearance
information. This renders the detection of the response and precedence patterns
impossible. Leopold et al. [LPM15] extend the work of Smirnov et al. [Smi+12]
toward handling the semantic heterogeneity of labels.

[Gre+05] discovers frequent patterns in the execution log of a process model.
[Gre+05] proposes two algorithms: w-find for an iterative level-wise exploration
and c-find for an exploration by composing connected components. The patterns
found are connected graphs. It is not possible to detect our patterns in this
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way. [Lau+09] analyses co-occurrences of activity patterns in process models.
Activity patterns are generic process fragments [TRI09] common in business
processes, e. g., notification or approval. [Lau+09] uses a frequent subgraph
mining approach. Frequent subgraph mining as is cannot identify our control-
flow patterns. [Lau+09] only identified information on the structural level.
[RDC14] used a crowd-based approach to mine patterns in a repository of data
mash-up process models. [RDC14] has detected interesting process fragments.
For our case, a crowd-based approach is not applicable. Many patterns are not
local, i. e., relate to different tasks at different positions in the process, hard to
detect by an expert or even crowd worker. A manual inspection also is more
time- and cost-consuming than our automatic discovery.

The so-called problem of process discovery is an instance of process mining, see
[Aal11]. The objective is to rediscover a process model P from a Log LP ⊆ LP.
Recent approaches use heuristics, [WA03], decomposition [LFA14], or genetic
approaches [BDA12]. We in turn look for the properties in a repository of
process models, the models themselves are given. More related to our problem
is the discovery of declarative process models [Che+09; CMM14], i. e., the model
is defined by constraints [PA06]. Our approach would have to meet the challenge
of summarizing LP. In declarative process discovery in turn, LP is of reasonable
size and can be analyzed.

Process similarity means defining a metric between process models [DDM08].
Approaches using label, structural, and behavior similarity have been proposed.
[KWW11] approximates LP by a set of relationships and defines two process
models as similar if their set of relationships is similar. In contrast to our
work, [KWW11] does not consider the appearance of relationships, required for
most patterns. The 4C Spectrum [Pol+14] describes and classifies the relations,
i. e., different variants of co-occurrence, conflict, causality, concurrency, that
may summarize the behavior space. They cover a total of over 100 relations
existing between two transitions. However, our smaller set of relations given in
Section 4.3.1 has been sufficient to detect all of our patterns. Thus we have not
needed the computation effort necessary to calculate all relations of Polyvyanyy
et al. [Pol+14].
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Process Verification
1

Verification derives from the latin word veritas »truthfulness« and facere »create«,
and means in computer science testing if a system conforms to the specification.
In our case the system is the commissioning process and the specification are
the context-sensitives properties, see Chapter 4. Recent research has shown
that real-life process models often do not comply with all properties [Men+08;
Fah+09a; Men09]. Many techniques for process verification are limited to specific
properties, e. g., soundness [AAB97; Bar+07]. To support the properties of our
scenario a general verification technique is required. Model checking verification
is such a general technique [Kar+00]. Model checking answers the question,
if the model of a system M satisfies a certain property φ, formally If M |= φ.
In our case, the system is a process model in form of a process tree and the
properties are dependencies regarding to a commissioning process we want to
check.

Example 5.0.1 . Due to technical limitations it is only possible to open 10

connections to the communication protocol KWP2000 at the same time.
We want to check if a given process model never is able to open more
connections than 10.

To unambiguously define when a system violates a property φ, it has to be
formally specified. Chapter 4 shows the specification of the properties. In this
Chapter, we focus on the problem of how one can verify if a given process
model as a process tree satisfies a given property Φ. To enable the verification
of process model by model-checking techniques we need a way to generate
the state space of the process model. The commissioning process notation
do not define a direct way to generate the state space, see Section 5.1. To
allow the generation we provide an interpretation by a transformation of the
commissioning process model into a formal language. We choose Petri nets
(PN) as the formal language. See Subsection 5.1.1 for the reasoning. We refer to

1Parts of this Chapter have been Published in [MMB14a] and in [Mra+15].
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the transformation of a Commissioning Process Model M to a Petri net PN as
co2pn : M→ PN, see Step 2 in Figure 5.1. The next step is to verify a temporal
formula φ on the Petri net. I. e., we want to know if PN is a model of φ. The
notation is PN |= φ. Let verify(PN, φ) be an operator that checks if PN |= φ,
then the verification is defined as:

verify(co2pn(M), φ)

The verification itself consists of two steps:

1. Construct the state space of the Petri net

2. Search in the state space for a state that is incorrect

One challenge is that the size of the state space grows exponentially with the
size of the Petri net, particular in the case of highly parallel processes common
for commissioning processes. This problem is called state space explosion, see
[Pel09]. A lot of work has been done to optimize the creation of a state space,
see [Wol07; Cla+01] for an overview. Usually, information on the structure of
process model languages gets lost when transforming the process to a formal
representation and cannot be used to optimize the creation of the state space.
An example is the information on which tasks of the process relate to which
organization unit. The transformation loses such information, and a requirement
that only holds for a specific organizational unit cannot be verified any more.
In contrast to other work, like [DAV05], [ADW08], and [TAS09], we want to
use such information to optimize the transformation otx2pn, in order to reduce
the size of the formal representation of the process. The subsequent reduction
of the state space with existing techniques for Petri nets is orthogonal to our
approach. In Section 5.4.2 we show that, in practice, it is advantageous to use
such techniques in addition.

Another issue we target is how to report the verification result to the user.
A simple message is not sufficient for the user to understand the cause of
the violation. To this end, we analyzed the counter example (a sequence of
transitions fired leading to a violating state) and used a pattern based reporting
approach to highlight the relevant aspects in the process model.

Subsection 5.1 shows our transformation of an OTX Process model to a Petri
net. Subsection 5.2 gives our reduction of the state space to allow an efficient
model checking for highly parallel process models. Subsection 5.3 shows how
we report the found violations to the user.
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5.1 Process Transformation2

To allow an automatic verification, e. g., model checking, the process repre-
sentation has to allow searching its state space. Unfortunately, there is no
implementation that analyzes the state space for the proprietary notation for
commissioning processes that we want to verify. At the moment, Audi AG uses
two concurrent proprietary Diagnostic Systems for commissioning vehicles:
Sidis Pro by Siemens AG and Prodis.Automation by DSA, see Chapter 2 for
details. Each of these systems uses its own WfMS, its own process notation, and
terminals to communicate with the workers. To simplify the maintenance of
the process model repositories, the new ISO-standard OTX should standardize
the process models. Therefore, we want to support three notations Sidis Pro,
Prodis.Automation and OTX. To this end, we have specified and implemented
a transformation of Sidis Pro and Prodis.Automation to OTX containing the
structural properties to verify, see Step 1 in Figure 5.1. It is not possible to
generate the state space for analyzing efficiently directly from an OTX process.
A common approach is to transform the process model in a formal language, cf.
[RWM10; LVD09], allowing the state space generation. To this end, we transform
the OTX process to a Petri net beforehand, see Step 2 in Figure 5.1. [Sch99;
Sch00b] show efficient ways to generate the state space of a Petri net for different
applications, e. g., model checking. We use the LoLA-Framework for producing
the state space in the form of a graph, see Step 3 in Figure 5.1.

SidisPro OTX Petri Net State Space
(1) (2) (3)

Prodis.Automation

flow

A parallel D

B C

A D

B

C

A

B C

C B

D

Figure 5.1: The Transformation Steps for the Verification of a Process Model

5.1.1 Formal Language

Formal verification techniques require an explicit representation of the execution
semantics. Unfortunately, the iso standard of OTX does not include a formal

2An early version of this chapter was published in [Mra+15]
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description of this. To this end, we define an interpretation of the core elements
of the OTX notation ourselves. We do so by specifying a transformation of
an OTX process model to a formal language that allows analyzing the state
space directly. This formal language has to fulfill several core requirements.
First, analysis tools should be available for the verification. Second, all the core
elements of OTX should have a representation in that language. Third, the
formal language should be as close as possible to the OTX processes, to allow
a mapping of the violations found to OTX constructs. Three classes of formal
languages seem possible, Kripke structures, π-calculus, and Petri nets.

Kripke structures are an extension of a transition system. Kripke structures are
connected, directed graphs (S, S0, R, L). Each node s ∈ S represents a state of
the system, with S0 being the set of start states. Each edge r ∈ R represents a
transition from a state to another one. A labeling function L : S 7→ 2AP maps
each state s to a set of atomic propositions true in s [CGP99]. A plethora of
tools exist for model checking Kripke structures, e. g., the spin framework, cf.
[Hol97]. However, commissioning processes contain a lot of parallel structures.
It is not possible to represent these concurrent structures directly as Kripke
structures. It would be possible to list all each combinations of executions as a
state. But this would lead to a Kripke structure too complex to handle, i. e., for
the average commissioning process approximately 1060 states. In contrast to a
Kripke structure, the π-calculus is able to directly express concurrent executions.
Model checking tools exist for the π-calculus, e. g., the prism model checker, cf.
[KNP02]. The π-calculus is based on a textual, i. e., rather a linear, description,
cf. [Aal03]. Most process notations either are graph-based or block-structured.
The mapping of a graph-based model to a textual one is not trivial. There does
not exist a clear mapping of the original process to elements in the π-calculus.
Thus, the reporting of violations found will be hard to understand. Finally,
Petri nets are based on bipartite graphs, see Section 5.1.2. They allow a direct
representation of concurrent systems. Tool support exists for model checking,
e. g., the LoLA-Framework cf. [Sch00a]. Petri nets are structurally similar to
most process notations and allow a simple mapping of subnets to constructs of
other notations.

Example 5.1.1 . Figure 5.2 shows a process in the three notations. The
process consists of three tasks (A, B, C). First, Task A is executed, followed
by a parallel execution of B and C. Figure 5.2(a) shows the process as a
Kripke structure. The labels in the states describe the execution of tasks.
Figure 5.2(b) shows the process in π-calculus. The process model consists of
three sub models in parallel. Only the first one can execute initially, because
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b(x) and c(x) require a signal on the channel b or c respectively. The first
sub model executes A by τA and then writes a signal on the channels b and
c. This allows the other sub models to be active, either B or C. Figure 5.2(c)
shows the process as a Petri net. For each tasks a place exist representing
the execution of that tasks. Transitions before the task states model the start
and ending of the tasks. Many authors, e. g., [Aal98] model the tasks as a
single transition. This modeling does not allow to argue about the parallel
execution of tasks.

A

B

BC

C

B

C

P = τA.( b〈x〉.0 | c〈x〉.0 )

| b(x).τB.0
| c(x).τC.0

• A

B

C

a) b)

c)

Figure 5.2: A Process as a Kripke-Structure, in the π-Calculus, and as a Petri
Net

We decided to use Petri nets as our formal representation. Tool support exists.
It allows representing concurrency directly and is graph-based. So a direct
mapping of constructs is possible. Table 5.1 shows a summary of the core
requirements for Kripke-structures, π-calculus, and Petri nets. We do not see
any problems when using our approach with other formal languages if a
respective transformation of OTX to the formal language is given.

5.1.2 Petri Nets

A Petri net is a directed bipartite graph with two types of nodes called places
and transitions. It is not allowed to connect two nodes of the same type.
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Table 5.1: Core Requirements for the three Formal Languages

Kripke-structure π-Calculus Petri net

Tool Support × × ×

Direct Concurrency × ×

Graph-based × ×

A

B

C

D

E

F

p1 p2

p3 p4

p5 p6

p7

p8

•

Figure 5.3: The Graphical Representation of a Petri Net (P, T, F, m0)

Definition 13 (Petri net) .

A Petri net is a tuple (P, T, F, m0)

› P is a set of places

› T is a set of transitions (P ∩ T = ∅)

› F ⊆ (P× T) ∪ (T × P) is a set of arcs

› A initial distribution of tokens over places m0 : P→N0

p ∈ P is an input place of t ∈ T if (p, t) ∈ F and an output place if (t, p) ∈ F. •t
denotes the set of input places of t and t• the set of output places. A mapping
m : P→N0 maps each p ∈ P to a positive number of tokens. The distribution
of tokens over places represents a state m of the Petri net with m0 being the
initial state. A Petri net is visualized as a graph. Circles represents places p ∈ P,
boxes or bars represents transitions t ∈ T, directed edges represents arcs, and
markers inside places represent tokens. The state m of the net is the distribution
of tokens over places.

78



5.1 Process Transformation

Example 5.1.2 . Figure 5.3 shows the graphical representation of a Petri
net PN = (P, T, F, m0) with:

› P = {p1, p2, p3, p4, p5, p6, p7, p8}

› T = {A, B, C, D, E, F}

› F = {(p1, A), (A, p2), (A, p8), (p2, B), (B, p1), (p2, C), (C, p3), (p3, D),
(D, p4), (p4, F), (C, p5), (p5, E), (E, p6), (p6, F), (F, p7)}

› m0(p) =

{
1 if p = p1

0 else

A transition t ∈ T is activated in a state m if ∀p ∈ •t : m(p) ≥ 1. A transition
t ∈ T in m can fire, leading to a new state m′ with:

m′(p) =


m(p)− 1 if p ∈ •t
m(p) + 1 if p ∈ t•
m(p) else

For instance, the Petri net in Figure 5.3 in state m0, have only one active
transition, the transition A. The firing of transition A leads to the new state m′

by removing the token in p1 and adding one token both p8 and p2.

We denote m t−→ m′ that m leads to m′ by firing the transition t. m∗ denotes the
set of states reachable from the state m, i. e., m′ ∈ m∗ iff a sequence of transitions
σ = t1, t2, . . . , tn exists with

m
t1−→ m1

t2−→ m2
t3−→ . . . tn−→ m′

Definition 14 (Reachability Graph) .

A Petri net (P, T, F, m0) induce a transition system (S, S0, A, T′) with:

› S = m∗ as the set of states

› s0 = m0 as the initial state

› A = T as the alphabet

› T′ = {(m, t, m′) ∈ S× A× S | ∃t∈Tm t−→ m′}
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p1 : 1 p2 : 1
p3 : 1,
p5 : 1

p4 : 1,
p5 : 1

p3 : 1,
p6 : 1

p4 : 1,
p6 : 1 p7 : 1A

B
C

D

E D

E

F

Figure 5.4: The Reachability Graph for the Petri net of Figure 5.3 (without Place
p8).

In general the reachability graph of a finite Petri net is not limited. Consider
the net of Figure 5.3, due to the loop between A and B the place p8 can contain
any number of tokens n ∈ N0, i. e., m∗0 is not limited. Figure 5.4 shows the
reachability graph for the Petri net of Figure 5.3, without Place p8 and its
adjacent edge. The labels over the states show the distribution of tokens, the
labels on the edges shows the sequence of transitions fired.

The possible unlimited nature of the reachability graph hinders analysis tech-
niques. The coverability graph of a Petri net does not have these limitations. A
coverability set C is the a set of mapping of the a place to a natural number or
∞, i. e., P 7→N0 ∪ {∞} with the following properties:

1. For each m ∈ m∗0 there is a m′ ∈ C with m′ ∈ m∗

2. For each m ∈ C \ m∗0 there is an infinite strictly increasing sequence of
markings converging to m′.

A coverability set C is minimal iff no proper subset is a coverability set.
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Definition 15 (Coverability Graph) .

A Petri net (P, T, F, m0) induce a transition system (S, S0, A, T′) with:

› S = C be the minimal coverability set

› S0 = m0 be the initial state

› A = T be the alphabet

› T′ = {(m, t, m′) ∈ S × A × S | ∃t∈Tm t−→ m′ or an infinite strictly
increasing sequence of markings converging to m′. }

p1 : 1 p2 : 1,
p8 : ∞

p1 : 1,
p8 : ∞

p3 : 1,
p5 : 1,
p8 : ∞

p4 : 1,
p5 : 1,
p8 : ∞

p3 : 1,
p6 : 1,
p8 : ∞

p4 : 1,
p6 : 1,
p8 : ∞

p7 : 1,
p8 : ∞

A

C

D

E D

E

F

BA

Figure 5.5: The Coverability Graph for the Petri net of Figure 5.3.

Figure 5.5 shows the Coverability Graph for the Petri net of Figure 5.3. The
Coverability Graph for a limited Petri net is also limited.

5.1.3 OTX2PetriNet

OTX is an XML-based process notation for commissioning processes. It allows
the definition of structured process models, i. e., an OTX process model can
be represented in a notation similar to process trees [LFA13b]. OTX defines
a commissioning process as nodes arranged in a tree. The nodes are of two
categories: atomic nodes (leaf nodes in the tree), and compound nodes (inner nodes).
Compound nodes describe the structural behavior of the process, and atomic nodes
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describe the commissioning tasks. In its core, OTX allows five different types of
compound nodes: flow, loop, branch, parallel, and handler.

For each node type of OTX we define at least one Petri net template. A Petri net
template is a Petri net subnet with an input place In and a certain Output Place
Out. If a node type allows child nodes, the template contains specific regions
for the insertion of the templates of the child nodes. Figure 5.6-5.9 shows the
insertion regions as dotted boxes.

Action Node

Action nodes are used to represent atomic operations, i. e., commissioning tasks,
in the commissioning process. In the Petri net representation we represent
the fact that a task n is running as a state labeln. As stated earlier, each task
communicates with an electronic control unit ECU in the vehicle. We present
the ECU with three transitions. ECU represents the use of the control unit.
ECUcon and ECUcon represents whether the connection to a certain ECU is
open (ECUcon) or closed (ECUcon). To communicate with the ECU the WfMS
uses one of two protocols. The place prot represents the connection to a protocol
(either UDS or KWP2000). The connection to an ECU implicitly opens with
the first task that uses the ECU. Specific tasks close the connection. To this
end, we define two templates: one for the tasks that close the connection, see
Figure 5.6(b), and one for the tasks that can implicitly open the connection, see
Figure 5.6(a). At the beginning of the process execution, each place ECUcon
contains a token, meaning that all connections are closed. Figure 5.6(a) shows
the template for the action node that opens a connection. After the In place two
transitions are possible: t_1 and t_2. If the connection to the ECU is open, i. e., a
token is in ECUcon, the t_2 can fire and generate a token in the places labeln
and ECU. If the connection to the ECU is closed, i. e., a token is in ECUcon, the
t_1 is active. This means that it removes the token in ECUcon and generates
one in the places ECUcon, prot, labeln, and ECU. The transition t_3 ends the
execution of the task, removing the token in labeln and ECU. The places prot,
ECU, ECUcon and ECUcon are shared between tasks. Each task n has its own
labeln, In, and Out Place.3

3Other authors, e. g., [Aal98], use a simple model for tasks consisting of a single transition.
This model does not allow verifying properties about the parallelization of tasks and the
usage of communication protocols.
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In

a)

t_2

t_1

labeln

ECU

ECUcon ECUcon

t_3

Out

prot

In

b)

t_2

t_1

labeln

ECU

ECUcon ECUcon

t_3

Out

prot

Figure 5.6: Template of the Action Node (a) and the Close Connection Action Node
(b).

Loop Node

The loop node is used for a structured repetition of a part of the process until a
condition is met. ISO defines the loop node as:

» For repetitive execution of flows, the Loop node shall be utilized.
[ . . .] As long as the condition holds, the loop flow is repeated. In
OTX loops, the condition can be checked before or after the flow. «
[ISO12]

This is equivalent to the structured iteration control flow pattern of [Aal+03b].
We use two templates for the loop node depending on whether the condition is
checked before or after the execution. Figure 5.7 shows the two templates for
the pre-test and the post-test loop node. The dotted region is the position where
the algorithm inserts the sub net for the unique child node.

In

a)

t1
t2

t3

Out In

b)

t1

t2

t3

Out

Figure 5.7: Template of the Loop Node with Checks Before the Execution (a) and
after the Execution (b).
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Branch Node

Process designers use the branch node to model alternatives in the process, e. g.,
two or more cases that exclude each other. ISO defines the branch node as :

» A Branch node contains one or more <case> elements. Every case
includes a boolean <condition> together with a <flow>. The first
case with a true condition is executed. If no condition is true, the
<default> flow will be executed. « [ISO12]

The branch node is equivalent to the exclusive choice control flow pattern of
[Aal+03b]. Figure 5.8(a) shows the templates for the branch node. The dotted
box is the region for the sub nets corresponding to the child nodes.

In

a)

ts_n te_n

Out

ts_1 te_1

. . . In

b)

t1 t2 Out. . .

Figure 5.8: Template of the Branch Node (a) and the Parallel Node (b).

Parallel Node

The parallel node is used to model flows that are executed in parallel. ISO defines
the parallel node as :

» A parallel node consists of one or more flows that shall be executed
at the same time. « [ISO12]

This is equivalent to a combination of the Parallel Split and Join control flow
pattern of [Aal+03b]. Figure 5.8(b) shows the template for the parallel node. The
dotted region identifies where the sub nets for the child nodes are inserted.
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Flow Node

The flow node is used for two cases: first, to define the sequential execution of
tasks and, second, to define sub processes that can be collapsed:

» In general, <flow> is used for grouping a sequence of nodes
together. When a <flow> is used stand-alone (not nested in a control
structure like loop, branch, etc.), it supports authors to partition
the procedure flow into logical blocks for providing clarity through
modular sequence design. « [ISO12]

The flow node can be used as the sequence control flow pattern of [Aal+03b].
Figure 5.9(a) shows the templates for the flow node. The dotted region is the
place where to insert the sub nets for the child nodes.

In

a)

. . . Out

In
b)

try fin
cat_1

cat_n

Out

Figure 5.9: Template of the Flow Node (a) and the Handler Node (b).

Handler Node

The handler node contains a try subprocess. If an error in the try subprocess
occurs, one or more catch subprocesses handle the error subsequently. An
optional final subprocess executes after the try and before the catch subprocess:

» A handler node contains a so called <try> flow followed by an
additional <finally> flow as well as <catch> flows for exception
treatment. The <handler> node monitors the <try> flow for excep-
tions, [. . .] « [ISO12]

Figure 5.9(b) shows the templates for the handler node. The dotted region specifies
the sub nets for the try, final and the catch subprocesses.

85



Chapter 5 Process Verification

5.1.4 Algorithm transformNode()

Algorithm 4 transform (OTX node n)
1: t← type of n
2: templatet(n)
3: if n is a compound node then
4: for all child nodes c of n do
5: transform(c)
6: end for
7: end if

Algorithm 4 transforms an OTX process model into a Petri net representation.
To this end, we call the method transformNode() of the root node. First, the
algorithm determines the type of the node n. The possible types are flow, branch,
parallel, loop, handler, and action, see Line 1. Next, the algorithm adds the places
and transitions that have been defined by means of the template of the type,
see Line 2. If the node is a compound node, the algorithm calls the function
recursively.

5.1.5 Property Instantiation

As explained in Section 4.2, the database of context knowledge stores under-
specified CTL-formulas. Our framework uses the context information to gener-
ate the instances for the verification. Each under-specified CTL-formula contains
place holders that our framework replace during the instantiation with concrete
places in the Petri net of the commissioning process. Their exist five types of
place holders, see Figure 5.6:

1. Arun : Replaced by the place run of an individual task.

2. XECU : Replaced by the place ecu of the ECU.

3. KWP2000 or UDS : replaced by the place prot for the communication
protocol.

4. Xcon : The connection place ECUcon for the ECU X.

5. end : The end place of the process, i. e., the place Out of the root element
in OTX.

Table 5.2 shows the under-specified CTL-formula for each pattern of Subsec-
tion 4.2.
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Table 5.2: CTL-Formula for the Property Patterns, Repetition of Table 4.2

Property Name CTL

P3.1 Maximal UDS
Connections

AG ( UDS ≤10 )

P3.2 Maximal KWP-2000
Connections

AG ( KWP2000 ≤10 )

P3.3 Maximal Connections AG ( (UDS+KWP2000) ≤14 )

P4.1 Sequential before A [ (Arun=0) W (Brun>0) ]

P4.2 Optional Sequential
before

A [ (Arun=0) ∨ AG( Brun=0 ) )
W ( Brun>0 ) ]

P4.3 Sequential after AG ( (Arun>0) → AF (Brun>0) )

P4.4 Non-Parallel AG (¬( (Arun>0) ∧ (Brun>0) ))

P5.1 Restricted access AG (Xecu≤1)

P5.2 Non-Parallel AG ( ¬ ( (Xcon>0) ∧ (Ycon>0) ) )

P5.3 Close Connection AG ( (end>0) → (Xcon=0) )

Example 5.1.3 . The process to be verified contains the ECUs = [AWG,
CEL, DAU]. For the process place PP2 and the vehicle series M3, an ECU
dependency exists that CEL and DAU are not allowed to be used in parallel.
For Property Pattern P5.2 one of the properties our framework generates is
following:

AG( ¬ ( (CELcon>0) ∧ (DAUcon>0) ) )
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Commissioning
Process Petri Net State Space

φ1
φ2

φ3

Commissioning
Process

Petri Net φ2 State Space φ2 φ2

Petri Net φ1 State Space φ1 φ1

Petri Net φ3 State Space φ3 φ3

a)

b)

Figure 5.10: (a) The Classic Approach for Process Verification (b) our Approach

5.2 Relevance Optimization4

As suggested by theoretically observation, see Subsection 3.1.2, and proven by
our own experiments is the state space for realistic commissioning processes too
large to generate and thus to verify. Our basic idea is, instead of generating one
state space for the complete process and subsequent analyze this one state space
for each property φ ∈ Φ, we want to generate a smaller state space for each
property φ, see Figure 5.10. To this end, we have to define which region of the
process model is relevant for a property φ, see Subsection 5.2.1. Subsection 5.2.2
explains the general algorithm. Subsection 5.2.3 shows how we use the relevance
function to find the set of relevant tasks. Subsection 5.2.4 explains how we prune
the irrelevant parts of the process for a property. Subsection 5.2.5 shows the
extension of the transformation algorithm and Subsection 5.2.7 discusses the
limitations.

5.2.1 Relevance Function

To improve the performance of the verification, we seek a transformation that
creates a smaller Petri net PNc that is a model to φ iff PN is a model to φ, i. e.,

4This chapter is published in [MMB14a]
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PNc |= φ⇔ PN |= φ. To this end, we want to exploit the hierarchical structure
of the process tree. We only want to explore the regions of the process that are
relevant for the verification.

Definition 16 (Abstract Relevance Function) .

Let relevant be a function for a temporal formula φ ∈ Φ and n ∈ N

relevant : Φ× N → {true, false}

relevant (φ, n) =

true if n is relevant for the verification
of property φ

false otherwise

An inner node n of the process tree is relevant if at least one of its child
nodes is relevant. We define Tφ as the set of tasks relevant for a property.
Formally describe:

Tφ := { t | t is a task node∧ relevant(φ, t) = true }

The concrete definition of relevant depends on the application domain and on
the execution model of the process. Our algorithm works with any definition of
relevance that features this abstract structure. For our use case, the commission-
ing of vehicles, we provide two definitions of the relevance function, one for
task-related properties, see P3.1–P4.4 in Section 4.2, and one for ECU-related
properties, see P5.1–5.3 in Section 4.2. At first we explain the execution and
resource model for a task n in our main use case.

Remark that Figure 5.6 shows the Petri net template for a task node. With
these definitions, we are now able to define the relevance functions for our
domain of commissioning processes. Our approach considers properties that
focus on sequential and parallel ordering and on objects a certain task requires,
c. f. Section 4.2. As consequence, we define two relevance functions, one for
each of the categories of properties identified in our domain.

Definition 17 (Task-relevance Function) .

Let n be a task n and φ a temporal formula that argues about the occurrence
or ordering of tasks. Lφ is the set of labels referred to in φ.

relevant (φ, n) =

{
true if ∃ l ∈ Lφ : labeln = l
false otherwise

89



Chapter 5 Process Verification

The templates P3.1–P4.4 use this relevance function. We want to include n if
the label of n is identical to one of the labels in Lφ. Further, it is possible to
consider labels of n when they are similar enough to a label in Lφ by replacing
labeln = l with sim(labeln, l) ≥ γ, γ ∈ (0, 1]. γ is a predefined threshold for
the similarity and sim a similarity function. A simple similarity function is the
Levenshtein distance, see [Lev66]. In the field of label matching, better metrics
have been proposed recently with higher recall, cf. [Kli+13] and using semantic
information, cf. [EKO07]. The rationale is that the labels of the tasks in real
processes often differ slightly. Therefore, the tasks mentioned in the properties
often do not perfectly match the labels in the processes. For instance, a property
could state that each task payment leads to a task confirm the payment. In the
processes the task label may be confirmation of the payment. Thus, we want a task
to be relevant if the similarity exceeds a domain-specific threshold γ. In our
concrete use case, company restrictions limit the labels to a predefined set.

Definition 18 (ECU-relevance Function) .

Let n be a task and φ a temporal formula that argues about ECUs. Rφ is
the set of ECUs referred to in φ.

relevant (φ, n) =

{
true if n communicates to one of the ECUs in Rφ

false otherwise

The templates P5.1–P5.3 use this relevance function. We have to consider a
task n if it has access to one of the ECUs in R. An example for applying the
ECU-relevance function is the following.

Example 5.2.1 . An ECU can only be accessed by one task at a time. In CTL
this is AG(r ≤ 1). Each task n with r ∈ require(n) is considered relevant
as well as all inner nodes containing such a task as one of its descendant
nodes, see Definition 16.

Other important classes of properties covered by our approach are the response
and cardinality constraints, cf. [Mon+10]. Also see the Example 5.2.2.
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Example 5.2.2 . Think of the following properties: Each task A leads to
a task B, cf. Property R3 in Section 4.2. A occurs never or once, while B
needs to occur once or more. The first part of this property is a response
constraint, the second one a cardinality constraint. In CTL this can be
formulated as follows:

AG((A)→ AF(B)) ∧ ¬AG((A) ∧ AF(A)) ∧ AG(B)

with A representing all states of the Petri net with at least one token in the
run-place of the task nodes for A, cf. Figure 5.6.

If a property φ argues about both ECUs as well as task ordering, it is possible
to combine these relevance functions. A node n is relevant when it is relevant
for either the task-relevance function or the ECU-relevance function. In Subsec-
tion 5.2.4 Lemma 3 states that our relevance functions preserve the properties
for all CTL formulas except for those with a Next-Operator. For some properties,
deciding which tasks are important is not trivial. To illustrate, dependencies
that cannot be determined a priori may lead to a large set of tasks, because
many tasks cannot be excluded and must be seen as relevant. The algorithm
still works, but the reduction is less efficient.

Example 5.2.3 . For instance the two properties »b leads to a« as CTL:
AG(b → AF(a)) and »b occurs 0 or 1 time« AG(a → AX(AG(¬a))) in
combination lead to a hidden dependency: The occurrence of a leads to the
absence of b in the subsequent paths.

5.2.2 Algorithm

We want to use the information on the relevant tasks from φ to arrive at a
smaller Petri net. We call the optimized transformation OTX2PNc(OTX, φ), and
the verification changes to:

verify(OTX2PNc(OTX, φ), φ)

To complete this overview, we present our approach in pseudo-code. Our
algorithm receives as input a process model P in the form of a process tree
and a set Φ of temporal formulas as input. prune(P, Tφ) is the actual reduction
algorithm. Tφ is the set of tasks that are relevant to property φ.
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Algorithm 5 constrain(P, Φ)
1: Constructing for each node n its set of tasks ltn

2: for all φ ∈ Φ do
3: Pφ ← prune(P, Tφ)

4: PN ← OTX2PN(Pφ)

5: verify(PN, φ)

6: end for

SEQ1

t1 AND1

t2 t3

XOR1

SEQ2

t5 t6 t7

t4

Node Set of Tasks

SEQ1 : t1, t2, t3, t4, t5,
t6, t7

AND1 : t2, t3

XOR1 : t4, t5, t6, t7

SEQ2 : t5, t6, t7

a) b)

Figure 5.11: The Process Tree of a Simple Process (a) and the Set of the Tasks of
its Inner Nodes (b)

Section 5.2.3 describes the construction of the set of tasks for each node in
the tree. Section 5.2.4 explains prune(P, Tφ) in detail. Section 5.2.5 gives the
changes to the transformation of Section 5.1, and the verification itself is subject
of Section 5.2.6.

5.2.3 Constructing the Set of Tasks

At first we parse recursively the tree, and for each subtree s in the process tree
we build the set of tasks belonging to s. Figure 5.11(b) shows the sets for each
inner node of the process tree from Figure 5.11(a). Let n be a node. Then ltn is
the set of tasks in the subtree with the root node n. In the pruning step we need
to check relevant(φ, n). To do so, we need the set ltn. To speed up subsequent
steps, we build a HashMap that maps each node n to ltn.
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5.2.4 Prune(P, φ)

In this step we reduce the process tree in order to speed up the verification task
later on. Starting point are the property φ and the root node n0 ∈ P, see Line 2

of Algorithm 6. We check if the node is relevant for φ, see Line 2 of Algorithm 7.
If relevant(φ, n) = true, we parse each child nc1, nc2, . . ., ncn of n0 and check
recursively if nci is relevant, see Line 4 of Algorithm 7. If relevant(φ, n) = false
we prune this subtree. The xor-node needs a different treatment, as we explain
later in this subsection. If the type of the parent is not XOR, we delete the node,
see Line 10 of Algorithm 7. Otherwise, we replace it with an empty node λ, see
Line 8 of Algorithm 7. Next, we check if an inner node n is left with only one
child node, see Line 2 of Algorithm 8. If so, we delete n and connect the parent
node of n with its child node, see Lines 3 and 4 of Algorithm 8.

Algorithm 6 prune(P, φ)

1: procedure prune(P, φ)
2: n0 ← get root node of P
3: pruneNode(n0, φ)
4: trimTree(n0, φ)
5: end procedure

Algorithm 7 pruneNode(n, φ)

1: procedure pruneNode(n, φ)
2: if relevant(φ, n) then
3: for all children n′ of n do
4: pruneNode(n′, φ)
5: end for
6: else
7: if type of parent of n = XOR then
8: replace n with λ

9: else
10: delete n from the process tree
11: end if
12: end if
13: end procedure

93



Chapter 5 Process Verification

Algorithm 8 trimTree(n, φ)

1: procedure TrimTree(n, φ)
2: if |n.childs| = 1 then
3: connect the children of n to the parent of n
4: delete n
5: trimTree(parent of n, φ)
6: else
7: for all children n′ of n do
8: trimTree(n′, φ)
9: end for

10: end if
11: end procedure

SEQ1

t1 AND1

t2

XOR1

λ t4

  

SEQ1

t1 t2 XOR1

λ t4

Figure 5.12: First and Second Pruning Step

Example 5.2.4 . Let the process tree of Figure 5.11 be given, and let the set
of tasks that influence φ be Tφ = {t1, t2, t4}. First, we delete the nodes with
ln ∩ Tφ = ∅. This results in the left tree of Figure 5.12. Then, we delete the
nodes with only one child node. See the right-hand side of Figure 5.12.

In order to preserve the result of the verification, the empty node for the
xor-node must remain. Take as example the temporal logic formula »After
an occurrence of t1 there always is an occurrence of t4 at some time in the
future«. In CTL this is AG(t1 → AF(t4)). This evaluates false for the process
in Figure 5.11. But it would be true if we had removed the other child of the
xor-node.

Lemma 3 . Our approach is correct for CTL without the Next-Operator X
(see Section 5.2.7).

Proof 1 (of Lemma 3) . Let S be the set of states and EG(φ) the CTL for-
mula, i. e., there exists a path p = (s1, s2, . . . , sn) where φ is always true. As
a result of our reduction, the paths are limited to the states that are able
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to influence φ, called Sφ, p′ = (s′1, s′2, . . . , s′n), s′i ∈ Sφ ⊆ S. If a path p exists
in the original Petri net, a path p′ exists in the reduced Petri net, too. If no
path p exists in the original Petri net, no path p′ can exist in the reduced
Petri net. The same reasoning applies for the formula E[φ U ψ] and for
(EFφ,AFφ,AGφ,A[φ U ψ]), by use of equivalences.

Often the Next-Operator is used to argue that the formula φ is true in the
following states, however false in the current, i. e., AXAG φ, for instance in
[TAS09]. It is possible to use our algorithm in those cases. Only if the actual
distance of states is relevant our algorithm cannot be applied, e. g., three states
in the future φ is true AXAXAX φ.

5.2.5 hl2pn(Pφ)

After the pruning step we use the process tree to build a Petri net. We start
with the root node and transform it to a Petri net. We recursively parse the
tree and transform each node. For each control structure we define a pattern
that describes its execution semantics as a Petri net, see Section 5.1. Figure 5.13

shows the pattern for an xor-node. The locations where the child nodes should
be inserted into a pattern are labeled with »Child 1« and »Child 2«. If one of
the children of an xor-node is λ, the respective branch is reduced to a simple
transition. Let n be an xor-node with two child nodes n1 and n2. If n1 6= λ
and n2 6= λ, then the pattern of Figure 5.13 is included into the Petri net. If
n1 6= λ and n2 = λ, the second branch can be reduced to a simple transition,
see Figure 5.14. If n1 = n2 = λ, then the complete xor-node is deleted.

In

In Out
Child 1

In Out
Child 2

Out

Figure 5.13: The Pattern for an xor-Node

5.2.6 Verify(PN, φ)

After the transformation, we generate the state space of the Petri net. We,
for our part, use the LoLA-Toolkit, cf. [Sch00a] for this task. Then a model-
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In

In Out
Child 1

Out

Figure 5.14: The Pattern for an XOR-Node with Empty Second Child Element

checking algorithm verifies if the Petri net satisfies the temporal logic formula,
i.e., PNc |= φ. Again, we use the CTL model checker of the LoLA-Framework,
which is an implementation of the ALMC-algorithm, see [VL93].

5.2.7 Limitations

The reduction just proposed does not change the sequence of the tasks, but it
may change the distance of tasks in the traces of the executions of a process
schema. For example, trace a→ b→ c in the original process P can be reduced
to trace a→ c by pruning b. The distance between a and c changes from two to
one. The CTL formula AG(a→ EX c) evaluates to false for the original trace, but
not for the reduced trace. Thus, our specification language is limited to argue
only about the ordering of tasks and not about their exact distance. However,
this is not as severe as it may sound at first sight: Namely, the state distance
may be non-intuitive. This is because how many states are between the tasks
depends on the Petri net model transformation. A solution would be extending
the notion of explicit time to tasks, see [Mon+08; GL06]. But this would require
a different formal model, e. g., timed Petri nets, and a different specification
language, e. g., rtctl. In the domains studied here, such explicit time constraints
do not play a role, and our approach does not support them. Therefore, we do
not allow the Next Operator (X) of CTL to be used to argue about the distance
of states in the property. It is possible to use the Next Operator (X) to argue
that the property should hold in the following states but not in the current. The
other operators of CTL can be used without limitation.

Our approach is efficient for requirements in which the set of relevant tasks can
be determined a priori, see Section 5.4.2. As stated earlier in Subsection 5.2.1 and
in Example 5.2.3, this could be an issue with hidden dependencies. In particular
our approach is efficient for ordering constraints on tasks, cardinality constraints,
negation constraints, i. e., a task excludes another task. All requirements found
in Subsection 4.2 fall into these categories. Moreover, the majority of specification
languages for business processes are limited to these types of requirements, see
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[ADW08; Ly+11a; AP06]. As we showed in the evaluation, cf. Subsection 5.4.2,
the runtime of our optimization algorithm is negligible compared to the runtime
of the verification itself. Thus, even in the few cases when our optimization
does not bring a significant gain it causes only little effort.

5.2.8 Using the Algorithm for Graph-based Processes

Until now we described how our relevance optimization algorithm can improve
the verification for a process model as a process tree. In the case that the
process model is in a graph-based notation like BPMN we want to give an
outlook about possible application. [Pol12] shows an approach in order to find
a structured process model that is the bi-simulation of an unstructured one.
This approach consists of calculating the causal net of the unstructured process
model, generating an ordering relationship graph (org) from the causal net, as
well as performing a modular decomposition. If the decomposition contains
no prime element than the modular decomposition can be transformed into a
bi-simulation process tree. If the decomposition contains a prime element it is
not possible to find a structured process model. Chapter 6 discusses the details
about the ordering relationship graph and modular decomposition.

We can leverage the work of [Pol12] to apply our relevance optimization algo-
rithm to unstructured process model. See Algorithm 9. Our pruning algorithm
handles prime elements like an xor-Split.

Algorithm 9 constrainUnstructured(P, Φ)

1: causal← Calculate Causal net of P

2: ORG← Calculate Ordering Relation Graph using causal

3: MDT ← Perform Modular Decomposition of the ORG

4: constrain(MDT, Φ)

5.3 Violation Reporting5

The LoLA-Framework returns a sequence of transitions fired leading to a
violating state in the case of a property violation. Our goal is to highlight the
important aspects in a graphical interface, supporting the user to understand

5This chapter was published in [Mra+15]
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Figure 5.15: The Reduction of the Counter Example

the property violation. Reporting all sequences of transitions fired that lead
to a state violating a property is not practical. In general, only some of the
transitions are important for the property violation and should be visualized.
To detect which elements of the counter examples our framework should mark
bears two major challenges: First, the complete counter examples are not a very
efficient means to report the errors to the end user. The sequence often contains
a large number of transitions, and most of them are unimportant for the specific
property. Second, the important information depends on the property pattern
we are analyzing.

To address these issues, we propose a two-step approach. First, we detect the
relevant entries in the counter example, see Subsection 5.3.1. Second, we collect
the important information in the remaining path for each pattern and report
it to the user, see Subsection 5.3.2. Subsection 5.3.4 gives an example for a
commissioning process and the task highlighted.

5.3.1 Reduction of the Counter Example

In Section 5.2 we show a reduction of the process tree, which is good from a
performance perspective. The approach reduces the OTX process tree to the
regions of relevance for each property. This reduction not only allows us to
efficiently verify the properties, it also significantly reduces the size of the
counter example.
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Example 5.3.1 . Consider the OTX process tree in Figure 5.15(a) and the
property »A precedence F«. Under the process tree there is one counter
example. The events refer to the transitions of the branch y, the parallel
node z, w, and the tasks b– f . Observe that most of the events reported
in the example are not important for the property, e. g., the fact that the
execution of C, D, E or G has started. The cause for the property violation,
i. e., the execution of the second branch of y, is hard to perceive, due to these
unimportant events listed. Figure 5.15(b) shows the process tree reduced
with the algorithm described in Section 5.2. This reduction leads to a much
smaller counter example, which contains only events directly related to the
property. Only three events are sufficient to show the cause of the violation.

5.3.2 Property Pattern Reports

Our goal is to report the property violations to the end user in a user-friendly
manner. We want to report by means of a visualization of the process where
the modeling error has occurred. This information depends on the property.
For instance, for the Response-Pattern, see Section 4.2, the information of the
sequential arrangement is important, in contrast to the maximal connection
pattern that requires the parallel arrangement. To this end, we propose a specific
reporting for each pattern. More specifically, we will describe how we extract
the information from the counter example and detect which elements our
visualization should highlighted. Elements are nodes in the graph, i. e., control
nodes or tasks. We will propose algorithms for each pattern. Their input is the
counter example, i. e., a sequence of transitions fired that leads to a violating
state. We call this sequence the log L. The algorithm returns a set of elements to
be highlighted in the visualization. The transitions in the counter example can
belong to tasks or to control structures, see the templates in Subsection 5.1.3.

Maximal Connection P3.1-P3.3 Algorithm 10 for the maximal connection
patterns P3.1-P3.3 returns a set of tasks which we highlight in the visualization
to report the error to the user. For the pattern Maximal Connection P3.1-P3.3 we
are only interested in transitions belonging to tasks, see Line 1 in Algorithm 10.
Line 2 reduces the event log to the tasks which open or close a connection to
the respective protocol, i. e., UDS for P3.1, KWP2000 for P3.2, both for P3.3.
Figure 5.6 shows that for each task only transition t_1 opens or closes a con-
nection. Therefore the result consists of tasks that execute transition t_1. Next,
we check which connections are open for the respective counter state. In other
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words, which transition »Open a Connection to the ECU X« is not followed by a
transition »Close a Connection to the ECU X«, see Line 3 in Algorithm 10. Last,
we return all tasks that have a starting event in L, see Line 4 in Algorithm 10.
These tasks are then highlighted in the visualization for the user.

Algorithm 10 report-P3 (event log L)
1: L← {e | e ∈ L ∧ e is a start transition for a task}
2: L← {e | e ∈ L ∧ e opens or closes a connection to the respective protocol}
3: L← {e | e ∈ L ∧ e opens and is not followed by closing event e’}
4: T ← {t | ∃e ∈ L : e is the starting event of t}
5: return T

Sequential Before P4.1 The Sequential before, also called precedence pat-
tern, refers to a Task A that requires the previous execution of another Task B.
If this property is violated A is executed without the execution of B. So we have
to report something that does not happen. This is more difficult than reporting
something does that happen. For this pattern we highlight A and a non-existing
instance of B.

Optional Sequential Before P4.2 and Not-Parallel Tasks P4.4 These two
patterns are relatively easy to handle. If they are violated, then both A and B
have to exist in the log. We can simply highlight the two tasks, i. e., the set of
highlighted elements is T = {A, B}.

Sequential After P4.3 This pattern, also known as Response or Leads-to,
describes a Task A that requires the subsequent execution of another Task B.
The pattern is symmetric to the Sequential-Before Pattern, and its processing is
analogous.

Restricted Access P5.1 The template for the actions has a place for the ECU
used, see Subsection 5.1.3. This place models the access to the component.
The pattern restricts the access to one action at the same time. In other words,
the place ECU is restricted to 1. For the pattern, we identify two tasks that
access the component ECU at the same time. Each task has an assignment
to the ECU it uses. First, we reduce the event log to tasks for the component
we are looking for. Next, we are only interested in tasks that are active, i. e.,
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AL = {A | A_s ∈ L ⇒ A_e 6∈ L}. Exactly two tasks A and B are active for a
counter example, see Lemma 4. We highlight the tasks A and B.

Lemma 4 . For P5.1 exactly two tasks are active, i. e., |A| = 2.

Proof 2 (of Lemma 4) . Because of the relevant region reduction described
in Subsection 5.3.1, only transitions belonging to tasks with the same ECU
are in the log. Now suppose that |A| < 2. Then the two tasks would never
access the same component at the same time. If it held that |A| > 2, three
tasks A, B, C ∈ AL would exist. Without loss of generality let As < Bs < Cs
be within the sequence L. The shorter sequence until Bs would already
cause the property violation. The algorithm would abort after Bs and report
the shorter counter example.

Algorithm 11 report-P5.1 (event log L)
1: L← {e | e ∈ L ∧ e is a start or end transition of a task}
2: L← {e | e ∈ L ∧ e uses the respective control unit ecu}
3: L← {e | e ∈ L ∧ e is of type A_s and not followed by an event A_e}
4: T ← {t | ∃e ∈ L : e is the starting event of t}
5: return T

Non-Parallel P5.2 We handle this pattern in a way similar to P5.1., except
that we are not only looking for the tasks for one Control Unit X but for two, X
and Y. Out of the active task (thus t_3 has not fired) in the log, only two tasks
exist, one Task A with access to Control Unit X and one Task B with access to
Y. We highlight the two Tasks A and B.

Close Connection P5.3 The counter example aborts at the first task X that
does not have its connection closed by at least one subsequent execution path.
We highlight this task X. Additionally, we look for each task in the process that
could close the connection for these respective tasks and highlight them as well.
Recall that the situation is not symmetric, i. e., while a connection may be opened
implicitly within a task, there must always exist designated activities whose
only responsibility is to close the connection.
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5.3.3 Observation

The construction described in Subsection 5.3.2 has the following characteristic:

Observation 1 . For each property pattern a reporting has been defined.
This reporting delivers a succinct set of elements for each pattern.

We will show that this reporting presents the violations to the user in a way
that is understandable.

Figure 5.16: A Commissioning Process

5.3.4 Example for Commissioning Process with Violations

Consider the commissioning process in Figure 5.16. The notation is similar
to the one of a UML-Activity diagram. The process contains three property
violations. First, for every control unit the task Test_Installation precedes task
Request_WFS (P4.1). Second, the control units FBE and KEL must not be used
in parallel (P5.2). Third, the connection to the control unit is not closed in all
cases (P5.3). The only task that can close the connection is Close_Connection.
Our framework has verified the commissioning process and has been able to
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Figure 5.17: The Highlighted Violations in the Commissioning Process

detect all three errors. Using the reporting just described the tool finds the tasks
relevant for the errors and highlights them, see Figure 5.17. The large red boxes
with exclamation points contain a description of the violations, when the mouse
hovers over them as well.

5.4 Evaluation6

First we will present an evaluation of the verification framework aaaft and its
visualization frontend CoVA, see Subsection 5.4.1. In Subsection 5.4.2 follows
an evaluation of the optimizing technique for the verification.

5.4.1 Verification Framework (AAAFT/CoVA)

According to ISO 9241-11, cf. [ISO98], usability has three different aspects to be
evaluated separately:

6The results of the evaluation have been published in [Mra+15] and [MMB14a]
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Effectiveness : Whether the user can complete his tasks and achieve the goals.

Efficiency : The amount of the resource usage to achieve the goals.

Satisfaction : The level of comfort the users experience achieving the goals.

Subsection 5.4.1 evaluates if the way the information on property violation is
presented to the user is effective. Subsection 5.4.1 evaluates the efficiency of
our framework to identify property violations in real processes as a whole.
In order to test the effectiveness, we count the number of violations found in
the process models, see Figure 5.18, and interview an expert to detect false
positives and negatives, see Subsection 5.4.1. To measure the satisfaction with
our tool, we use the standardized System Usability Score (sus), see [Bro13]. The
sus is a questionnaire that has proven to be applicable to a variety of scenarios.
According to [Sau11], the sus is reliable and valid, see Subsection 5.4.1 as well.

Efficiency of the Reporting

In order to evaluate our reporting scheme we compare it to two baselines. First,
given the counter example L, we highlight each element in L corresponding
to a transition (Baseline 1). Second, we use the counter example reduction
of Subsection 5.3.1, without the reporting from Subsection 7.2, and highlight
every element surviving the counter example reduction and corresponding to L
(Baseline 2). The third line (Reporting) shows our pattern-specific reporting,
see Subsection 5.3.2. Our evaluation criterion is the size of the event log of the
counter example. We have evaluated nine property violations in commissioning
processes (A – I). The properties belong to 6 different patterns: Precedence
(P4.1), Response (P4.3), Not-Parallel ecu (P5.2), Closed Connection (P5.3), and
Restricted Access (P5.1). We have selected these property violations because
their complexity is representative for the ones of violations found.

Table 5.3: The Number of Highlighted Elements for each Approach

Violation A B C D E F G H I
Pattern 4.1 4.1 4.3 4.3 4.1 4.1 5.2 5.3 5.1

Baseline 1 5 29 11 70 27 31 35 98 19
Baseline 2 2 3 2 4 4 4 15 10 6

Reporting 1 1 1 1 2 2 2 1 2
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Table 5.3 lists the number of elements of our reporting scheme and of the two
baselines. The Baseline 1 counter examples often contain dozens of elements.
The Baseline 2 counter examples perform well for the majority of the properties.
For some violations however, the number of elements still is rather large. The
ecu conditions in particular lead to many elements with the Baseline 2

approach. This is because many tasks with the respective ecus often are executed
before the violation occurs. Reporting finally performs much better than the
alternatives for all properties and yields concise output.

Efficiency of the Framework as a Whole

We have used our prototype in order to verify 60 commissioning processes,
newly generated or modified ones, before their execution. These processes
refer to four vehicle series: the middle class car M1, the upper-middle class
car M2, the executive car M3, and the sports car M4. They are executed at
34 stations. We have discussed the verification results and have categorized
the processes into three categories: correct, with minor process disturbance and
with major process disturbance. Figure 5.18 shows the number of processes
in the three categories for each vehicle series. Most of the minor disturbances
result from incorrect labels of tasks and missing values in the database. For few
processes, the verification framework has reported false positives, due to the
fact that we do not consider guard conditions. These false positives have also
been categorized as minor. In a significant share of the processes (≈ 23%), we
could detect a major disturbance. All this shows that our framework can detect
control flow disturbances in real commissioning processes. Major disturbances
are property violations that hinder the execution of the process particularly,
e. g., cause a deadlock.

Next, we study the key characteristics of the verification. In particular, depend-
ing on the size of the commissioning process, i. e., how many commissioning
tasks #Task and electronic control units #ECU such processes contain, we are
interested in the number of property instances our tool generates for each
process #PropIns. We also are interested in the runtime of the specification and
verification, i. e., the combined time our framework needs to specify the prop-
erties, as well as run the verification and report the violations. The framework
runs on a working notebook with 2.6 GHz (dual core) and 8 GB main memory.
We use a local MySQL database running on the same machine.

Table 5.4 shows the five-number summary of these characteristics and the re-
spective boxplots. The five-number summary consists of the five most important
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M1 M2 M3 M4

No. of Processes 13 17 25 5

Correct 3 3 0 0
Minor Disturbance 9 8 18 5
Major Disturbance 1 6 7 0
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Figure 5.18: Process Disturbances Found in the Evaluated Processes

percentile: the minimum value found Minimum, the first Quartile Q1, the me-
dian, i. e., second Quartile Median, the third Quartile Q3 and the maximum
value found (Maximum). Even for the most complex commissioning process
with 870 tasks, 103 ecu, and 280 different property instances our framework is
able to do the verification in 10.5 s. In 75% of the cases the verification needs
less than 3 seconds in total. The runtime is strongly correlated with the size of
the process, i. e., 0.926 for #tasks and 0.904 for #ECU, and even stronger with
the number of property instances, i. e., 0.973 for #PropIns. We have generated
and verified 2801 property instance and verified them in 104.1 seconds, i. e., an
individual property instance takes only 37.2 ms to be verified on average. The
boxplots in Figure 5.18 show that most of the commissioning processes contain
between 50 and 200 tasks and have between 15 and 100 properties and take
between 0.5 and 3 seconds to verify.

Expert Interviews

To evaluate our approach we have held semi-structured expert interviews. We
aim to test the three characteristics process quality, generality and usability. The
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Table 5.4: The Five-Number Summary for #Task, #ECU, #PropIns, and the runtime

Characteristic #Task #ECU #PropIns runtime

Q0 Minimum 5 2 2 108 ms

Q1 39 10 15 567 ms

Q2 Median 125 29 39 1 458 ms

Q3 211 54 95 2 973 ms

Q4 Maximum 870 103 280 10 544 ms
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Figure 5.19: The Boxplots for the #Task, #ECU, #PropIns, and runtime

interview guide is available on our website:
http://dbis.ipd.kit.edu/2027.php.

Process Quality : Has the framework increased the quality of the commissioning
processes? This criterion includes the change in the development time of
processes, the number of false positives and the number of false negatives.

Generality : Can the framework be used in a different context within the company?
For instance, is the framework general enough to be used in another
factory? How can the framework can be integrated into the tool chain?

Usability : Can the framework used in an intuitive way? Is the help of a technical
person needed in order to use the framework? Regarding usability we have
used the Standard System Usability Test (SUS), see [BKM08]. SUS is a
10 item test that is scored on a 5-point scale of strength of agreement or
disagreement. The SUS has the advantage that it is technology-agnostic,
i. e., it can be used in different application domains. Due to its wide usage,
a meta-test and guidelines exist to interpret the results, see [BKM08].
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Participants Participants in our study are domain experts, i. e., employees
who have developed commissioning processes. We have limited our interviews
to experts who had used our framework intensively and had enough expertise
to give feedback. We have been able to gain four experts who met these require-
ments for a qualitative interview. Their experience in developing commissioning
processes ranges between 1 and 14 years, with an average of 7 years. The experts
are waiting at different factories and departments at the audi ag.

Process Quality Generality Usability

Process Quality
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disagree
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Figure 5.20: Results of the Empirical Evaluation

Results and Discussion Figure 5.20 shows the results of our qualified inter-
views. The experts do not think that our framework will influence the devel-
opment time negatively. The number of false positives and of false negatives
are acceptable but should be improved. Our framework detected slightly more
false positives than false negatives. The experts saw a great potential of our
framework to be used in other testing environments as well. The rating of how
well the framework can be integrated into the tool chains varies between the
experts. The SUS score, i. e., a measure for the usability, ranges between 65 and
85 with an average of 71.67. This is slightly above the average (69.69) and median
(70.91) of reported studies using the SUS score, cf. [BKM08]. The fact that this
value is above average is a positive result given the complex nature of a formal
specification and verification tool. All experts see great potential in improving
the quality of the commissioning processes by means of our framework.

Discussion The evaluation has shown that the experts deem our framework
very useful to enhance process quality. One issue has been the number of
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false positives that our tool generates. We have found out later that outdated
specification documents have been the reason for these false positives. We have
now updated the database and have added additional checks before adding
information to the database. False negatives result from properties that are
unknown at verification time and are not yet specified. The costs of a false
positive are rather small. This is because, it is only a small manual effort of
an engineer to check the error and mark it as a false positive. The costs of
a false negative are much higher in general. They are however difficult to
quantify in a general fashion. For instance, one error might only lead to a
slightly larger processing time, while another error could cause a stop of the
production line. A minor issue is that the experts have criticized the amount of
information presented by our framework. To address this point, we plan to have
two modes. A debug mode that presents detailed information on the model
checking process, and a normal mode that only shows the information required
by the domain experts. In order to improve usability further, the experts had
suggested presenting the results in more than one language. Some experts
doubt that our framework can be easily integrated into the tool chain. After
having received this suggestion, we have reimplement the tool in C#, at the
time of the survey the tool has run in Java. At the moment we are integrating
existing databases of the audi ag into our tool.

5.4.2 Relevance Optimization for Process Verification

To evaluate our relevance optimization with some generality, we study two use
cases, namely »testing workflows at a car manufacturer«, see Subsection 5.4.2
and »data-flow anti-patterns« see Subsection 5.4.2. In the first use case, we
verify complex industrial processes. We hypothesize that our algorithm leads
to a significant performance within with complex processes. The stubborn set
reduction and the invariant based compression are activated. In the second
use case we evaluate our approach on another domain, »detection of data-flow
errors«, to study its generality.

Verification of Industrial Processes

Our industrial partner has provided us with 40 processes to carry out this
study. We have selected six representative processes, i. e., A, B, C, D, E, and F,
whose characteristics we will present in detail later. These processes are indeed
representative due to various criteria: number of requirements, duration of the
verification, number of tasks in the process, number of ECUs used, number of
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Table 5.5: Criteria of the Selected Processes

Nr.Req. Duration Tasks ECUs

parallel

tasks

sequential

relation

Arithmetic

Mean ∅
65 3 225 ms 174 38 7 188 24 527

Standard

Deviation

56 4 223 ms 165 25 12 709 49 592

A 33 956 ms 72 19 393 2 739
B 100 2 803 ms 162 59 6 275 7 931
C 275 9 498 ms 632 103 43 152 187 878
D 117 4 765 ms 482 68 25 090 121 292
E 104 3 775 ms 264 54 19 001 21 231
F 99 3 574 ms 267 64 10 855 32 348

parallel tasks, and number of sequential relationships. See Table 5.5. Each of
the requirements in Table 5.5 relates to exactly one requirement of Section 4.2.
These processes cover all requirements of Section 4.2 except for R2. R5 and R8
are most frequent.

Evaluation Procedure For each process and each requirement a reduced
Petri net is generated at the runtime of verification. Figure 5.21 shows the
number of places in the original net (org) and, in comparison, the number
of places of the reduced Petri net for the average case (avg) and the maximal
case (max). As shown in Figure 5.21, the Petri net is reduced significantly
to a size between 2.0% and 10.1% of the original size. The biggest process
yields the largest percentage reduction. The percentage reduction of the state
spaces is even larger than the percentage reduction of the Petri nets. It has not
been possible to compute the state spaces of the unreduced nets for an exact
comparison because of their sheer size, see Subsection 3.1.2.

Result Our reduction algorithm gives way to a significant reduction of the
runtime of the verification algorithm. Let Rp be the set of requirements for a
process p. Table 5.6 lists the number of requirements |Rp| generated from our
knowledge database. Let ci be the costs, i. e., the runtime to evaluate requirement
φi for the original Petri net, i. e., to verify(hl2pn(p), φi). Then, the total runtime
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Figure 5.21: Size of the Petri Nets from the Evaluation

of the transformation and evaluation for all requirements for the original Petri
net is:

t =
|Rp|

∑
i=1

ci

Let cci be the costs, i.e., the runtime to evaluate requirement φi for the re-
duced Petri net, i.e., to verify(hl2pnc(p, φi), φi). Then the total runtime of the
transformation and evaluation for all requirements by our algorithm calculates
to:

tc =
|Rp|

∑
i=1

cci

We aborted the verification when the state space exceeds 1 mio states and mark
the requirement as incomplete. In most cases of our evaluation, the verification
has not been computable for the original Petri net representation without
reduction. Even on a server with 128GB RAM it has not been possible to build
the state space even for the SH-process, which contains only eight parallel
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Table 5.6: Number of Requirements |Rp| and Runtime tc

Process p |Rp| tc in s completed t in s completed

A 33 0.956 100.00% 658.445 54.50 %

B 100 2.803 100.00% 1577.277 0.00 %

C 275 9.498 100.00% 4410.480 1.45 %

D 117 4.765 100.00% 1995.171 0.00 %

E 104 3.775 100.00% 1722.020 4.81 %

F 99 3.574 100.00% 1813.100 4.04 %

Table 5.7: Maximal Degree of Parallelization of the Processes

process A B C D E F

max. degree 8 11 10 11 12 10

branches. The processes have a maximal degree of parallelization of up to 12,
see Table 5.7.

Our reduction algorithm prunes efficiently these parallel nodes with a complex
structure. The size of the state space decreases by a much higher factor than the
number of places and transitions in the Petri net. For example, the biggest one
of our reduced Petri nets, the one for the D-process, is only 4.3% smaller than
the smallest unreduced process (A). But on the other hand, while the reduced
Petri net could be verified in seconds, it has not been possible to generate the
state space for the unreduced process.

Use Case 2: Data-Flow Errors

In order to prove that our approach is general, i. e., can be used in other domains
as well, we use our algorithm to detect data-flow errors. Besides modeling the
control flow, another important aspect of business-process-management systems
is to model the data-flow of the process. A common way to model the data in
a workflow is to include data objects and associate them to tasks with crud-
Operations (create, read, update, delete) [TAS09]. E. g., the authors of [TAS09]
annotate the transitions with data object access with the operations performed
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Figure 5.22: Workflow Net with Data-Flow Errors from [TAS09]

on the data object. The operations are: read, write and delete. For instance,
Transition t1 in Figure 5.22 reads data object a and writes the data objects c,
e, and f . Errors in the process model can cause anomalies like lost updates or
data objects never deleted. [TAS09] describes a set of data-flow anti-patterns.
If a process model contains such an anti-pattern it contains a respective data
anomaly. We want to verify that a given process does not contain any of the
data-flow anti-patterns described in [TAS09]. To keep the presentation simple,
we only consider the anti-patterns 1 to 8 and leave out the guard condition. The
requirements in our case are the absence of these data-flow anti-patterns from
the process, see Table 5.8.

For the use case Data-Flow Errors each anti-pattern is associated with a data
object o. A task n is relevant for this anti-pattern if it accesses the data object,
i.e., if n has either read, write or delete access to o.
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Table 5.8: Data-Flow Anti-Patterns According to [TAS09]

Anti-pattern Formalization in CTL

Missing Data E[¬write(d) U ((read(d) ∨ delete(d))]

Redundant Data (Strong) EF(write(d) ∧ AF(read(d)))

Redundant Data (Weak) EF(write(d) ∧ EF(read(d)))

Lost Data (Strong) EF(write(d) ∧ AX(A[¬read(d) U write(d)])

Lost Data (Weak) EF(write(d) ∧ EX(E[¬read(d) U write(d)])

Inconsistent Data AG(¬( (write(d) ∧ read(d)) ∨ (write(d) ∧
delete(d)) ∨ (read(d) ∧ delete(d)) )

Never Destroyed EF(write(d) ∧ EX(EG(¬delete(d)))

Twice Destroyed EF(delete(d) ∧ EX(E[¬write(d) U delete(d)])

Definition 19 (Data-Flow Relevance Function) .

Let n be a task and φ a data-flow anti-pattern for a data object o

relevant(φ, n) =


true if n may performs a read, write or

delete operation on the data object φ
is a data-flow anti-pattern for

false otherwise

Example 5.4.1 . For the Petri net in Figure 5.22 and the data-flow anti-
pattern φ′ = »Missing data with respect to data object o« the data-flow
relevance function is:

relevant(φ′, n) =

true if n ∈ {t2, t6}

false otherwise

We have evaluated our approach using the process of [TAS09], see Figure 5.22.
Our algorithm has detected all occurrences of any data-flow anti-pattern in this
process model. It could reduce the state space significantly, see Figure 5.23. The
x-axis of Figure 5.23 shows the requirements analyzed, the y-axis shows the
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Figure 5.22

number of the states in the state space for the original process and after our
optimization step.

5.5 Related Work for Process Verification

First, we discuss the verification of soundness. Next, we give an overview on
research on reduction on the level of the state space, then on work on reduction
of high-level process models and reduction in the case of processes as result of
process mining. We close the section with related work on the transformation from
high-level process languages to Petri nets, the verification of declarative processes and
frameworks for compliance checking.

Verification

We aim to check if a business process complies with the properties given.
[Tag+13] uses an approach that checks if the event log L, i. e., a set of execution
traces, complies with properties. In our case, there exist violations of properties
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that are not related to an event during process execution. For example, we do
not see how to recognize a violation of a non-parallel property from the log
of a process. Further, we use model checking in order to verify the processes.
Most high-level process languages lack the direct construction of the state space
required for model checking. To this end, a transformation to a formal language
like Petri nets is required. [LVD09] gives an overview of transformations from
bpmn, yawl and ws-bpel to Petri nets. Regarding the transformation aspect,
our approach is similar to [HSS05]. [Men09] empirically evaluates different
approaches for soundness verification. The criteria include error rate, process
size and verification time.

Business Process Compliance

A related field of research is the business process compliance, see [Ly13]. Com-
pliance is ensuring those process model are in accordance with prescribed
norms, cf. [SGN07], e. g., Sarbanes-Oxley, Basel II, HIP AA. In general two
approaches toward process compliance exists: the manual and expensive after-
the-fact checking of the process model and the automated detection. For the
automated detection the norms have to be specified formally. As well as in
our use case, the norm specification leads to maintenance problem, cf. [Ly+08].
Approaches exist to ensure the compliance of an existing process model by,
e. g., model checking [ADW08; LMX07; För+07] or synthesize a new process
model that complies with the norm [Awa+11; GV06]. Another approach is to
use process fragments that are compliance fragments to model the process, see
[Sch+10a; Sch+10b].

Reporting

[LF14] reduces the counter examples to give the end user a compact report of
the property violation found. To this end, [LF14] reduces the path using conflict
clusters, spurious conflicts, and distributed runs. The approach is able to reduce
the counter examples significantly, i. e., omit information that is unimportant
for the shareholder. For our processes, the approach of Subsection 5.3.1, which
is easier to compute, performs well. In consequence, we do not have to apply
the approach of [LF14] as a preprocessing step for the reporting patterns.
[LF14] could be used for the reporting of general properties not covered by the
patterns.

116



5.5 Related Work for Process Verification

Verification of Soundness

The soundness of a process is an important property. It means to guarantee
that there is not any deadlock or any lack of synchronization, cf. [Aal+10].
Soundness verification differs from the verification of activity-based ctl formula.
Soundness verification allows for reducing the state space with methods that
are not applicable to our problem. This is because these methods, e. g., stubborn
sets, would change the result of our verification. An example is given at the end
of this subsection, after we have addressed the stubborn-set reduction. A vast
amount of techniques exist to verify the soundness property for a given process.
The approach of [Fah+09a] evaluates three of these techniques on a collection
of 1368 industrial processes. In comparison to our production processes, see
Section 4.2.1, most of these processes are small. Only 8.59% of them yield a
state space with over 1 million states. In contrast, 78% of the processes from our
use case yield a state space of at least this size. The first technique in [Fah+09a]
uses the LoLA-Framework with a stubborn set reduction. The second technique
is the Woflan tool, see [VBA01]. Woflan uses a combination of techniques from
the Petri net structure theory and state space exploration. The third technique
decomposes the workflow graph and generates a process tree, cf. [VVK09].
Soundness is compositional with respect to Single-Entry-Single-Exit fragments
(sese), and therefore each fragment can be verified in isolation. Our verification
technique is more general than just verifying soundness as in [Fah+09a]. It is
however interesting to see that some insights at an abstract level are similar to
ours. In particular, the size of the processes correlates with the number of rule
violations, and a significant share of processes in industrial settings contains rule
violations. Over the past two decades, many authors have proposed alternative
notions of soundness, e. g., weak soundness or relaxed soundness, and more
expressive languages, e. g., cancellation regions or OR-joins, see [Aal+10]. One
fundamental approach is to reduce the complexity of the verification task by
reduction rules while preserving the property in question. [Wyn+09b] speeds up
the soundness verification of a reset workflow net by deploying reduction rules
on the net. [Wyn+09a] proposes a set of reduction rules to verify the soundness
of an YAWL workflow with cancellation regions and OR-Joins. In general, the
reduction rules depend on the property analyzed. For each reduction rule, it
must be guaranteed that applying the rule does not change the verification
result. A reduction rule that preserves the soundness property may not preserve
other properties, see Example 5.5.1.

Example 5.5.1 . The »Fusion of series places rule« of [Wyn+09b] preserves
the soundness property, but it is not possible to evaluate the sequential
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arrangement of places any more after such a reduction. To this end, reduc-
tion rules for soundness verification cannot be used for model-checking
verification without further examination.

Reduction on the Level of the State Space

The stubborn set reduction, cf. [Sch99], is a partial-order reduction technique. It
selects a subset of the operations enabled in a state s, i. e., stubborn set for s, and
only explores these subsets. The generation of the stubborn sets for standard
properties of a Petri net, e. g., boundedness, reachability, liveness, is described
in [Sch99]. [Ger+95] presents an approach for CTL formulas without the Next
operator. The verification can find smaller stubborn sets if the CTL formula is
limited to the EF and AG-Operators, see [Sch00b]. With these operators, it is
not possible to formalize all of the requirements of Subsection 4.2. For instance,
it is not possible to formalize R3 that A responds to B, AG(A → AF(B)). We
have evaluated the 40 processes from Section 4.2.1 without the stubborn set
reduction, to compare it to the results with the stubborn set reduction turned on.
Without the reduction, the average runtime increases by 64.2%. For the majority
of processes, the runtime only slightly increases (< 3%). The identification of
the stubborn sets is not effective for branching time model checking, e. g., CTL
or CTL* on complex processes, like the ones we want to verify. One reason is
that a dependent operation can activate another operation that then affects the
property analyzed. These results in big stubborn sets which tend to render the
verification infeasible for our application area. Having said this, the stubborn
set reduction and other approaches on this level are orthogonal to our approach
and can be used in addition.

Reduction on the Level of the High-Level Process

There already exist approaches which reduce the process schema focusing
on relevant aspects of the process, see [SO99] and [SO00]. Their goal is to
find structural errors, e. g., deadlocks or missing synchronization. This is done
by applying iteratively a chain of reduction rules to the process. These rules
remove elements that do not contain a structural error. If the process contains
a structural error, only the split and join gateways causing the error, remain
in the process. Otherwise, the process is reduced to a start- and an end-event.
[AHV02] and [Lin+02] extend the original incomplete algorithm and feature
correctness proofs. This approach finds only structural properties and does not
verify more complex requirements expressed in temporal logic.
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[DAV05] verifies a process in Event-driven Process Chains (epc) notation. The
authors propose a two-step approach: First, they reduce the EPC by means of
reduction rules, and then they run the verification algorithm. [DAV05] verifies if
an EPC model is sound; it is not possible to check more complex requirements
with their approach. [ADW08] extends the set of reduction rules of [DAV05] in
order to verify a BPMN process using requirements defined as queries in bpmn-
q. bpmn-q is a visual language to query business process models. [ADW08]
is restricted to some temporal operators, like leads-to (AG(φ → AF(ψ)) in
CTL) or precedence (¬E[ ¬ψ U (φ ∧ ¬ψ) ] in CTL). bpmn-q does not allow
specifying that nodes must not occur in parallel. To be precise, the property
pattern P3.1–P3.3 and P5.1–P5.3 of Section 4.2 cannot be expressed in bpmn-q.
With bpmn-q, it is possible to specify only 242 out of the 728 requirements
from our application scenario. Further, the approach of [DAV05] and [ADW08]
cannot remove entire regions of the process in one step. After each iteration of
the reduction algorithm of [ADW08] it may be necessary to check the process as
a whole if another reduction rule has become applicable. Our algorithm covers
each of their reduction rules. By using more information than [ADW08] on
the relevance of regions we can reduce more regions than that approach. For
example, [ADW08] regards the resource condition. By including this additional
information into the relevance function, our approach can reduce the Petri net
further.

Data-aware requirements not only concern the execution of tasks but also
variables that influence the control flow, e. g., »If variable x is greater than 800,
task A needs to be executed«. The requirements in our setting do not depend on
data, thus we have not taken data-aware requirements into account. A difficulty
with data-aware requirements in general is that modeling every possible state of
a variable can lead to a state space explosion. [Knu+10] improves the runtime of
the verification of data-aware requirements, in comparison to the time needed
to evaluate all states of a variable. It does so by abstracting from the individual
possible states of a variable in a preprocessing step. They face the same problem
as we do, i. e., confine the growth of the state space, but the context and therefore
the approaches differ. The work of [Knu+10] is orthogonal to our approach, and
a combination to analyze data-aware requirements seems feasible.

Process Mining and Conformance Checking

[MCA13b] and [MCA13a] use a related approach to check the conformance
of process schemata discovered by process mining techniques. Process mining
techniques aim to discover a process schema from a set of execution traces,
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i. e., from a log cf. [Aal11]. A recently proposed algorithm discovers processes
as block-based structures, cf. [LFA13b]. As in our approach, they explore the
hierarchical structure of a process tree to accelerate the computation.

Conformance checking validates if the discovered process is consistent with
the log. [MCA13b] and [MCA13a] decompose a discovered Petri net process
into sese fragments in order to build a process tree for conformance checking.
The algorithm of [MCA13b] checks the conformance for each inner node in the
process tree. The hierarchical structure of the process tree lets them identify
conformance problems and limit the complexity of the conformance analysis by
only exploring certain nodes. This algorithm explores only leaf nodes and inner
nodes containing a number of tasks below a threshold value. [MCA13b] is based
on the assumption that the conformance can be calculated meaningfully limited
to a sese region. In our verification case we cannot partition the problem in this
way. For example, a task A in one sese region can have a response requirement
for another task B in another sese region.

Transformation from Process Languages to Petri Nets

Many high-level process modeling languages (e. g., BPMN, WS-BPEL, EPC)
lack execution semantics adequate to create the state space that gives way to
verification. To this end, the high-level processes are first transformed to a
formal representation. [Rae+07] has developed a transformation from BPMN
models to Petri nets. For a transformation of WS-BPEL to Petri nets see [HSS05;
Sta05]. [LVD09] provides a survey of transformations from various process
languages to Petri nets. We follow a similar transformation approach, providing
for each control-structure element of the source language a Petri net pattern
that reflects its execution semantics. For OTX, the process language we are
supporting, we are not aware of any transformation described in literature so
far. But because of the similar structure of OTX and WS-BPEL, we have used
the approach of [HSS05] as the basis of our transformation.

Verification of Declarative Process Models

Classic procedural process models only explore a subset of the possible behavior
allowed, due to their implicit assumption that »all that is not explicitly modeled
is forbidden« [Mon+10]. This is problematic in domains that require high
flexibility like service choreographies, cf. [Mon+10]. To overcome this limitation,
declarative process languages do not define the imperative execution of the
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flow, but the set of rules that the process should fulfill. The flow of the process
includes all instantiations that do not violate the rules. The rules often are
defined in a graphical notation like ConDec [PA06] or [AP06]. For verification
or enactment, these models are mapped to a formal logic-based notation, e. g.,
LTL [Mag+12] or sciff [Mon+08]. Verification in declarative process models
means to test either if the rules are in conflict, thus no instantiation is possible
as in [Mag+12], or if the behavior matches predicted behavior at runtime or a-
posteriori, see [Mon+08]. This kind of verification is different from our approach.
We test at design time if the process model overlaps with forbidden behavior.

Compliance Checking Frameworks

The SeaFlows toolset is a framework for the specification and verification of
compliance rules on business processes, see [Ly13; Ly+11a]. For the specification
a new visual graph-based language, Compliance Rule Graphs (CRG), has been
developed. The language tends to be more usable for domain experts than
the formalization in, say, LTL. CRGs can be mapped unambiguously to rules
specified in first-order predicate logic. It would be possible to use SeaFlows
graphs as a specification language within our approach, but with two difficulties.
First, the LoLA-Framework can only simulate Petri nets with CTL formulas.
We would need to use or develop a different tool for the verification and state-
space generation of predicate logic. Second, because of the large number of
requirements of a certain requirement type, see Section 4.2, we have used an
automatic transformation to generate the requirements directly from domain
information. In such a setup, a graphical language would not bring any benefit.
[KRL11] uses an activity-oriented clustering to determine which requirement C
needs to be verified for which process model P. In more detail, the approach
of [KRL11] uses an IsTriggered function comparable to our relevance function.
In their approach, an antecedent occurrence node represents the occurrence
of a task triggering the requirement it belongs to, cf. [Ly13]. A requirement
is considered IsTriggered in a process model P if it either does not have any
antecedent occurrence node, or if the set of antecedent occurrence tasks is
a subset of the nodes in P. For example, in Pattern »B responds to A«, A is
the antecedent occurrence node, in pattern »A precedes B« B is the antecedent
occurrence node. [KRL11] focuses on entire process models. Our approach in
turn addresses regions within a process. The IsTriggered function cannot be
used as a relevance function because it would not preserve the requirements for
verification if applied to regions of the process model, see Example 5.5.2.
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Example 5.5.2 . Consider the Process Tree of Figure 5.11(a) and the require-
ment φ: »t2 responds to t1«, i. e., φ = AG(t1 → AF(t2) in CTL. φ evaluates
true on the original process model. Only t1 is an antecedent occurrence node.
If we use our pruning algorithm with the IsTriggered function the resulting
process model only contains SEQ1 and t1. On this process model, φ would
be evaluated to false. Thus the IsTriggered function does not preserve the
requirements in the general case and is not a valid relevance function for
our optimization.
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Process Synthesis

Process Synthesis means automatically generating an imperative process model
from specifications. The specification can be in several forms, e. g., bill-of-
material (BOM) [Aal99], obligations [GV06], artifacts [Loh13], or in form of a
temporal property [Awa+11; Yu+08]. Due to the increase in components the
complexity of the commissioning process models is steadily raising, e. g., over
1000 tasks per vehicle. In case of a manual generation, a large amount of design
iterations of a process model are needed until the model fulfills all properties
required, i. e, is correct. Chapter 5 describes the way to verify a given process
model if it fulfills the properties. In this chapter we want to synthesize an
imperative commissioning process model automatically.

However, the process synthesis gives way to several major challenges. First, the
resulting process model should be applicable for our use case, thus the process
model has to be block-structured. Second, often the specification allows more
than one possible process model. Our approach should be able to generate
a good process model according to quality criteria out of the possible ones.
Third, the approach should be scalable, i. e., it should be possible to apply the
approach to the large real-to life specification of our use case. To target those
challenges we want to propose a novel synthesis algorithm for the automatic
generation of process models.

We develop two algorithms for the synthesis. Section 6.1.1 presents the first
algorithm to synthesize a process model from a schedule. We will show that
such an approach is possible but fails to deliver block-structured process models
and thus is not suitable for our use case. To this end, we develop a second
algorithm in Section 6.2. The approach synthesizes a process model by a modu-
lar decomposition of the specification graph. Section 6.3 applies the algorithm
to the case study of a new vehicle model for a compact executive car and its
commissioning process, and gives some heuristics developed during the case
study. The case study reveals some new and novel requirements and shows the
applicability of our approach to a real scenario. Section 6.5 discusses the related
work for the process synthesis.
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6.1 Resource Constraint Scheduling Synthesis

A schedule is the planned execution of a set of activities. The Ressource
Constraint Scheduling Problem (rcsp) is an optimizing problem in order to find
an optimal execution for a given set of activities. The algorithm only considers
predecessor relations between the activities, as well as capacity dependencies of
resources. The resource constraint scheduling problem is related to our prob-
lem statement the synthesis of imperative process models from a declarative
specification. The dependency graph is similar to our sequential properties, and
with resources non-parallel dependencies can be expressed.

Let A = {a1, a2, . . . , an} be a set of activities, and a dependency graph G(A, E)
with (a1, a2) ∈ E iff the activity a2 requires the previous execution of a1. The
function run : A 7→ R+ gives the expected processing time of an activity. Given
a set of resources R, a function that for every activity and every resources
gives its usage rv : A × R 7→ N0, and a function that gives the capacity of
each resource cap : R 7→N0. We are searching for a Schedule s, i. e., a function
s : A 7→ R+ that states for each activity its starting time. The schedule should be
minimal according to total processing time of the process, i. e., we are looking
for a schedule s that is minimal to the following function:

min
s
( max( s(b) + run(b) | a ∈ A ) − min( s(a) | a ∈ A ) )

Under the constraint that the schedule s fulfills the predecessor relations, i. e.:

(a1, a2) ∈ E⇒ s(a1) + run(a1) < s(a2)

and at each time during execution the resource consumption should not exceed
the capacity for any resource, i. e.:

∀r∈R : ∑
a∈A,t∈[s(a),s(a)+run(a)]

rv(a) ≤ cap(r)

The RCSP problem is NP complete. Existing approaches using heuristics or
genetic algorithms can solve the RCSP in acceptable runtime.
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a1

5/1
a2

4/1

a3

4/1
a4

3/1 a3 a4

a1 a2

a) b)

Figure 6.1: Dependency Graph with Processing Time and Resource Consump-
tion (a) a Possible Optimal Schedule (b)

Example 6.1.1 . Let A = {a, b, c, d} bet set of activities. The processing
times are run (a1) = 5, run (a2) = 4, run (a3) = 4 and run (a4) = 3. Only
one resource r exists with cap (r) = 2. For each activity a ∈ A, rv(a, r) =
1. One predecessor relation between a1–a2 and between a3–a4 exist, i. e.,
(a1, a2), (a3, a4) ∈ E. Figure 6.1(a) shows the dependency graph for the
problem statement. The processing time and resource consumption are
given above the nodes (run (a)/rv (a, r)). A possible optimal schedule s is
given as s(a1) = 0, s(a2) = 5, s(a3) = 0, s(a4) = 5. Figure 6.1(b) shows the
schedule.

The generation of a process model from a schedule is possible, but the process
model will lack properties required for our use case, the commissioning of vehi-
cles. Subsection 6.1.1 will show a simple algorithm to construct a process model
from a schedule s. Subsection 6.1.2 discusses the limitation of the algorithm, i. e.,
that the algorithm and all approaches from a schedule are not able to generate
a flexible process model.

6.1.1 PNSyn Algorithm

The algorithm is able to generate Petri nets from a schedule s. The algorithm
is effective and we will show that the Petri net is able to execute the schedule.
However, the algorithm has two major drawbacks. First, the algorithm generates
an unstructured process model, in general. This holds even in cases the specifica-
tion allows a structured equally effective process model. For some unstructured
process models no trace-equivalent structured process model can exist. Second,
the generated models lack flexibility. The models are more constrained than
required and restrict the execution unnecessary. These inflexibility leads to
longer process processing time when activities deviate from the estimation.
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We define a relation ≺: A × A. The relation is true if two activities are in a
predecessor relation in the schedule s:

∀a, b ∈ A : (a, b) ∈ ≺ ⇔ s(a) + run (a) ≤ s(b)

The relation ≺ is transitive, irreflexive and asymmetric. The relation ≺ induce a
graph G2(A,≺). The dependency graph G is a sub graph of G2. For the Petri
net PN(P, T, F, m0) we define the set of transition as:

T = ts ∪ te ∪ {ta | a ∈ A}

ts is a silent start transition, required if more than one activities are started first.
te is a silent end transition, required if more than one activity end as last. The
set of places P is defined as:

P = i ∪ o ∪ {pab | (a, b) ∈ ≺} ∪ {psa | >b ∈ A : (b, a) ∈ ≺}
∪ {pea | >b ∈ A : (a, b) ∈ ≺}

i is the start place, o the end place, pab connects the transitions of two activities,
psa are the places for the starting activities, i. e., the activities executed at first,
and pea the place for the end activities, i. e., the activities executed at last.

F = (i, ts) ∪ {(ts, psa), (psa, ta) | >b ∈ A : (b, a) ∈ ≺}
∪ {(ta, pab), (pab, tb) | (a, b) ∈≺}
{(ta, pea), (pea, te) | >b ∈ A : (a, b) ∈ ≺} ∪ (te, o)

The starting state m0 is:

m0(p) =

{
1 Falls p = i
0 else

The relation ≺ can be computed in linear time, using the transitive of the
relation. The generation of the Petri net can be calculated in constant time.
Therefore the algorithm functions in linear time to the size of the schedule.
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Figure 6.2: Generated Petri net for the Schedule in Figure 6.1(b)

Example 6.1.2 . For the schedule in Figure 6.1(b) the following relations
holds: (a1, a2), (a3, a2), (a3, a4) ∈≺. This gives way to the following transi-
tions T, places S and edges F:

T = {ts, te, ta1 , ta2 , ta3 , ta4}

S = {i, o, pa1a2 , pa3a2 , pa3a4 , psa1
, psa3

, pea2
, pea4
}

F ={(i, ts), (ts, psa1
), (psa1

, ta1), (ts, psa3
), (psa3

, ta3),

(ta1 , pa1a2), (pa1a2 , ta2), (ta3 , pa3a2), (pa3a2 , ta2), (ta3 , pa3a4),
(pa3a4 , ta4), (ta2 , pea2

), (pea2
, te), (ta4 , pea4

), (pea4
, te), (te, o)}

Figure 6.2 shows the Petri net for the schedule of Figure 6.1.

6.1.2 Limitation of the PNsyn-algorithm

The PNsyn-algorithm often generate an unstructured process model. In general
no structured process model exists that is trace-equivalent to the unstructured
process model. This fact holds true even if the specification allows a structured
optimal process model.

Proof 3 . Consider the Petri net of Figure 6.2. The net is obvious unstruc-
tured. The set of execution paths is LP = { 〈a1, a3, a2, a4〉, 〈a1, a3, a2, a4〉,
〈a3, a1, a2, a4〉, 〈a3, a1, a4, a2〉, 〈a3, a4, a1, a2〉 }. This gives way to following
behavior profile:
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a1 a2 a3 a4

a1 + → ‖ ‖
a2 ← + ← ‖
a3 ‖ → + →
a4 ‖ ‖ ← +


Figure 6.3(a) shows the Ordering Relation Graph (org) for the behavior
profile. The graph contains a prime component and thus no structured
process model exists that is a trace-equivalent, cf. [Pol12]. The Petri net in
Figure 6.2 without the place pa3a2 and the adjacent edges is able to reproduce
the schedule s. The behavior profile is:


a1 a2 a3 a4

a1 + → ‖ ‖
a2 ← + ‖ ‖
a3 ‖ ‖ + →
a4 ‖ ‖ ← +


Figure 6.3(b) shows the Ordering Relation Graph for the new behavior
profile. The org does not contain a prime component, i. e., the model is
structured, see Figure 6.3(c).

a1 a2

a3 a4

a1 a2

a3 a4

AND

SEQ

a1 a2

SEQ

a3 a4

a) b) c)

Figure 6.3: Ordering Relation Graph for the Petri net of Figure 6.2

The counter example in proof 3 shows that in general the PNSyn-Algorithms
generates unstructured Petri nets. It is not possible to transform an unstructured
Petri net into a process tree. Therefore the generation of an OTX or Sidis.Pro
process model is not possible. This aspect is not limited to the PNSyn-Algorithm.
It is true for all approaches solely using a schedule s. The predecessor relation
≺ contains all information of a schedule. It is not possible to distinguish the
reason why two activities are in a ≺-relation. It could be to comply with a
given constraint, because of optimizing aspects, or just random. Due this aspect
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the process models are inherent inflexible and over-specified. This leads to a
unstructured process models and a lack of flexibility. This lack of flexibility could
lead to a sub optimal execution if the processing time of activities deviates from
the estimation. For instance, in one case the execution of a3 takes 6 time units
instead 4. For the Petri net in Figure 6.2 the processing time of the complete
process model would be larger, due to the additional dependency between
a3 and a2. In a flexible process model, without the additional dependency,
the unexpected processing time could be compensated and a better runtime
achieved.

[Sen+15] generates a Petri net from a schedule to test the validity of a schedule
s. To this end, the resulting process model is tested to conform to a log L of
actual executions, see the section conformance checking in 3.3.4. In the use case
of [Sen+15] the goal is to detect discrepancies between the schedule and the
actual execution, i. e., the lack of flexibility is not an issue.

6.2 Automatic Generation of Optimized Process
Models1

In Section 6.1 we have shown an algorithm to generate a process model from a
schedule. The generation from a schedule has some unwanted characteristics,
e. g., overly constraint and inflexible. In this section we will introduce a new
algorithm to synthesize a process model that does not constrain the execution
any more than necessary. First we want to motivate the algorithm and its
requirements using our use case, the commissioning of vehicles.

Example 6.2.1 . Our application scenario is commissioning. Commissioning
means configuring and testing the electronic components of a vehicle during
its production. Process models describe the arrangement of the configura-
tion and testing tasks. For instance, a factory worker has to configure the
transmission and to activate the anti-theft system. The transmission can
either be manual, i. e., Task M does the configuration, or automatic (Task A).
Task T activates the anti-theft system. Before the activation, a central com-
puter needs to generate a master key (Task G), and it opens the connection
to the specific control unit (Task O). The connection has to be closed before
the process finishes (Task C). The configuration of the transmission and the

1Parts of this Subsection are published in [MMB15] and the extended version in [MMB14b]
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activation of the anti-theft system require a running engine. Task E turns
it on. Figure 6.2(a) shows the tasks that may be part of the commissioning
process. The second column is the expected processing time. Commissioning
always has a context, i. e., the variation of the vehicle, its components, their
relationships and the constraints the vehicle currently tested must fulfill.
The variation determines which tasks have to be executed, e. g., a car with a
manual transmission requires different tasks than a car with an automatic
one.

Task time

E : Start Engine 1 s
M : Conf. Manual transmission 5 s
A : Conf. Automatic transmission 2 s
T : Activate anti-Theft system 1 s
C : Close Connection 1 s
O : Open Connection 1 s
G : Generate Master Key 5 s

a)

A

M E C

T

O

Gb)

Figure 6.4: The Tasks for Commissioning (a) and the Ordering Relations Graph
(b).

A context c determines the tasks Tc required for a process. It is not feasible to
model all processes for each possible set of required tasks by hand. This calls
for generic process models covering several contexts. With such generic models,
however, an optimal arrangement of tasks for any context does not exist.

+

E

G

O

+ +

T C

M

A

+

a)

E +

M

A

O

G + T C

b)

Figure 6.5: Two Distinct Process Models for the Graph in Figure 6.2(b)
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Example 6.2.2 . The context characteristic transmission determines the re-
quired tasks as follows: If the vehicle has an automatic transmission, the
commissioning requires execution of the tasks Tc ={E, A, T, C, O, G}. For
a manual transmission in turn the tasks are Tc ={E, M, T, C, O, G}. Fig-
ure 6.2(b) shows the dependencies between the tasks as a graph. Directed
edges represent ordering dependencies, while dashed lines represent exclu-
sive dependencies. The graph is the declarative specification we generate
the process model from. Section 6.2.2 shows how one can generate such a
specification from input in other languages.

Figure 6.5 shows two generic process models that comply with the depen-
dency graph of Figure 6.2(b). Figure 6.5(a) has a shorter processing time if
the transmission is automatic (7 to 10 seconds). For a manual transmission
in turn, the process model in Figure 6.5(b) has a shorter processing time (8
to 10 seconds).

With at least one process model for each possible context, the number of such
models increases exponentially with the number of context characteristics.

Example 6.2.3 . Say a vehicle has 10 different context characteristics, e. g.,
the kind of transmission, the navigation system, the safety system, etc. If
each option can occur or not 210 = 1024 different contexts are possible.

Next, several models typically are possible for a given context. The problem
studied here is how to generate a good process model for a given context from
a declarative specification. The model should be good according to predefined
quality criteria, e. g., throughput time. Process models that comply with the
dependencies can be very different with respect to quality and performance cri-
teria. Section 6.4 shows that models generated with our approach are about 50%
faster than the ones designed by professionals with several years of experience.
We focus on the restricted case that there are no repetitions, i. e., we focus on
process trees with inner nodes seq, and, xor, but not loop. There is a number
of settings with this characteristic, for instance in manufacturing. In particular,
loops are unnatural in commissioning processes, since a feature is tested only
once. On the other hand, if a problem occurs and is fixed, a new commissioning
process is started. Another assumption, which also holds for commissioning
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and elsewhere, is that context information together with experience from the
past allow to reliably estimate the processing time of individual tasks.

The generation of a process model from a declarative specification bears several
challenges. There often exists a great variety of models that fulfill the specifica-
tion, as mentioned before. To illustrate, the sequential arrangement of n nodes,
in the absence of any constraint, give way to n! different process models. For the
largest process in our evaluation, 4.12× 10340 models are possible. Generating
all possible models is not possible. It is challenging to detect a good process
model that does not violate any constraint.

Example 6.2.4 . There are four tasks A, B, C, and D. Suppose that the
following constraints exist: B must always occur before A and C (B →
A, B→C), and D always occurs before C (D→C). It seems reasonable to
put A and C in parallel, because this might reduce the throughput time, but
putting A and C in parallel rules out having A and D in parallel.

Related work in process synthesis is fully automatic only for processes that
are fully specified by their dependencies, see [Awa+11; Yu+08]. In case of an
under specification, [Awa+11] requires a process modeler to manually make
decisions, and [Yu+08] requires a manual clustering of the constraints. This
is not practical, because of the daunting number of possible models. To this
end, we propose a novel process synthesis algorithm whose output on the one
hand complies with the dependencies and on the other hand is good according
to predefined criteria. Our approach is as follows: First, it uses a modular
decomposition of the dependencies to detect the fully specified regions of the
process as well as the under-specified ones, so-called prime components. For
each prime component, our approach partitions the corresponding ordering
graph systematically, as follows. It selects a pivot element and generates several
smaller ordering graphs from the pivot partition. We reduce the problem in a
divide and conquer fashion until it is small enough to explicitly generate all
possible models. We repeat this for different pivot elements to have a better
coverage according to our quality criterion the throughput time of the process.
Other criteria such as overall energy consumption are possible as well. As
we show in the evaluation with thousands of non-trivial process models, our
approach is efficient, i. e., is able to test thousands of models in under a second,
checking for complex constraints. On average, our approach nearly halves the
processing time compared to the reference processes, which already are the
output of a careful intellectual design. Our approach can handle complex real-
world specifications containing several hundred dependencies as well as more
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than one hundred tasks. In our evaluation, the process models generated contain
between 98 and 185 tasks, and their arrangement typically is nontrivial.

6.2.1 Preliminaries

A meaningful input for process synthesis is the declarative specification in the
form of an ordering relation graph (org), see [Pol12]. The modular decompo-
sition of a graph yields its components and implies a hierarchical structure
of components called the Modular Decomposition Tree (mdt) [MM05], see
Subsection 6.2.3. The mdt separates the under-specified regions from the fully
specified ones.

Ordering Relation Graph

In an Ordering Relation Graph, each node represents a task. Each edge rep-
resents a dependency between tasks. The dependencies consist of ordering
dependencies, i. e., in which order do the tasks occur, and exclusive dependen-
cies, i. e., two tasks exclude each other.

Definition 20 (Ordering Relation Graph) .

The ordering relation graph is a directed attributed graph G = (V, E), with
V being nodes and E ⊆ V×V the edges. Each node corresponds to a task. E
consists of two subsets E→ and E# such that E = E→ ∪ E# and E→ ∩ E# = ∅.
E→ defines the ordering relation, i. e., two tasks that should be in a specific
order have an edge in E→. E→ is transitive and anti-symmetric:

(transitive) ∀(x, y), (y, z) ∈ E→ : (x, z) ∈ E→
(antisymmetric) ∀(x, y) ∈ E→ : (y, x) 6∈ E→

E# defines the exclusiveness relation, i. e., if two tasks exclude each other
they share an edge in E#.

E# is symmetric, i. e., ∀(x, y) ∈ E# : (y, x) ∈ E#. We do not allow self-edges,
i. e., ∀v ∈ V : (v, v) 6∈ E.

Note that E→ does not contain any cycle. For each task we determine the
processing time. The average error of the estimated execution times of our tasks
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from our application scenario is less than 17%. We had calculated these times
by analyzing the logs of existing traces.

Definition 21 (Neighborhood) .

The neighborhoods Nout(v), Nin(v) of a node v are defined as:

Nout(v) := {w | w ∈ V ∧ (v, w) ∈ E→}
Nin(v) := {w | w ∈ V ∧ (w, v) ∈ E→}

Nout(v) is the set of nodes with an incoming ordering edge from v. Nin(v) is
the set of nodes that have an outgoing ordering edge to v. For a set of nodes
V the incoming and outgoing set are defined as Nout(V) :=

⋃
v∈V Nout(v)

and Nin(V) :=
⋃

v∈V Nin(v) respectively.

In contrast to an imperative process language like bpmn, org is a declarative
description and not necessarily fully specified.

Process Tree

We want to generate the process model in the form of a process tree (pt). In
contrast to a graph-based process models, the process tree has two important
characteristics. First, it can be easily transformed into an executable process
language, see [MMB14b]. Second, a process tree is sound by default [Kop+09].
This means the following: First, the process will terminate properly. Second, for
each task at least one process instance contains it. Each process tree PT = (V , E)
is an ordered tree, thus a rooted tree for which an ordering is specified for
the children of each vertex. V consists of leaf nodes Vt and inner nodes Vc,
Vt ∪ Vc = V , Vt ∩ Vc = ∅. Each leaf node corresponds to a task, and each inner
node corresponds to a control structure. In this paper we consider three control
structures, namely sequence seq, parallel and and exclusive xor. These control
structures correspond to the basic control workflow patterns, see [Aal+03b].
This study focuses on the synthesis of process models without cycles. Hence,
we do not define a loop operator. It is possible to model the commissioning
processes using those control structures. Each control structure can be translated
to another block-oriented language, e. g., WS-BPEL, OTX, or to a graph-oriented
process language, e. g., Petri nets, BPMN.
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Table 6.1: Four Different Declarative Specification Language and the Patterns
they can Represent, Directly (Black Mark) or by Combination (Gray
Mark).
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BPMN-Q [ADW08] Ø Ø Ø Ø
Comp. Rule Graph [Ly+11a] Ø Ø Ø Ø Ø Ø Ø
Declare [AP06] Ø Ø Ø Ø Ø Ø Ø Ø
Prop. Spec. Pattern [DAC98] Ø Ø Ø Ø Ø Ø Ø Ø

6.2.2 Generating an Ordering Relation Graph

In this subsection, we explain how to generate an ORG from a declarative speci-
fication, e. g., Declare, Compliance Rule Graphs or bpmn-q. In our application
domain, each task is executed exactly once and for simplicity we consider here
the core set of specification elements that are supported by the majority of
graphical specification languages, see Table 6.2.2.

Figure 6.6 shows the core set of these elements and the representation for
Declare. The study of [RFA12] indicates a similar set of mostly used specifica-
tion elements. Empirical studies, e. g., [DAC99] as well as our experience in
[MMB14a] show that this core set is sufficient for the majority of the specifi-
cations. Bounded existence and chain ordering only occur rarely. A study in
[DAC99] reveal that only 10 out of 555 models contains Bounded existence and
chain ordering patterns.

We describe our algorithm for Declare, for Compliance Rule Graphs or bpmn-q
the algorithm would function equivalently. We start with a set of tasks Tc the
commissioning process has to comprise for the context c. Next, we check if a task
t ∈ Tc has an outgoing response, succession, responded existence or co-existence
edge to a task t2 not in Tc. If so, we add t2 to Tc. Our algorithm repeats these
steps until no further change happens, see Step 1–3. For each task we generate a
node in the ORG, see Step 7–9. If an ordering edge, an edge with an arrow, exists
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response A B•

precedence A B•

succesion A B• •

responded existence A B•

Aco-existence B• •

Anot co-existence B• •‖

Figure 6.6: Core Set of the Declare Elements

in the Declare graph between nodes v, w ∈ Tc we add an edge (v, w) ∈ E→ to
the ORG, see Step 10–12. At last, the algorithm delivers the ordering relation
graph ORG, see Step 13.

Algorithm 12 generateORG (Declare graph DG, task set Tc) : ORG

1: while t ∈ Tc has an activation edge to a task t2 6∈ Tc do
2: Tc ← Tc ∪ {t2}
3: end while

4: for all t ∈ Tc do
5: Add a state t to ORG
6: end for

7: for all response, precedence or succession edges between tasks t1, t2 ∈ Tc do
8: Add an edge (t1, t2) ∈ E→ to ORG
9: end for

10: return The ordering relation graph ORG

Example 6.2.5 . We want to generate the ordering relation graph for the De-
clare graph in Figure 6.8(a). The commissioning requires executing the tasks
B and E, highlighted in dark red in Figure 6.8(a). E needs the occurrence of
C, and C the precedence of task D. The algorithm extends the set of tasks
for the response and precedence pattern, see Figure 6.8(b)–(c). Finally we
transform the Declare graph to an ordering relation graph, see Figure 6.8(d).

6.2.3 Modular Decomposition

We want to generate a process tree from the declarative specification, i. e.,
from the org. Let G = (V, E) be such a graph. For any W ⊆ V we say that
GW(VW , EW) is the sub-graph induced by W, i. e., VW = W and EW = E ∩
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Figure 6.7: An Ordering Relation Graph (a), its Modular Decomposition (b) and
the Corresponding Modular Decomposition Tree (c)
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Figure 6.8: Generation of an ORG From a Declare Graph and a List of Tasks Tc

(W×W). We call W a module iff ∀v, v′ ∈ W, Nout(v)\W = Nout(v′)\W and
Nin(v)\W = Nin(v′)\W. Thus v and v′ have identical neighborhoods outside
of W. In other words, a module consists of tasks with the same dependencies
regarding tasks outside of the module.

Example 6.2.6 . Figure 6.9 shows an org with three nodes. The complete
graph {A, B, C} and all that sets with one element {A}, {B}, {C} form a
(trivial) module.
{A, B} is a module because of Nout(A)\{A, B} = Nout(B)\{A, B} = ∅ and
Nin(A)\{A, B} = Nin(B)\{A, B} = {C}. {A, C} is a module because of
Nout(A)\{A, C} = Nout(C)\{A, C} = {B} and Nin(A)\{A, C} = Nin(C)\
{A, C} = ∅. No other module exists in the graph. {B, C} is not a module
because of Nout(B)\{B, C} = ∅ and Nout(C)\{B, C} = {A}.

In our use case, a module often consists of tasks operating on the same electronic
control unit of the vehicle. W is a strong module if, for each module W ′ ⊆ V,
one of the following holds: W ∩W ′ = ∅, W ⊆W ′, or W ′ ⊆W.
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Figure 6.9: All Modules for an ORG with Three Nodes A, B, C.

Example 6.2.7 . For the graph in Figure 6.9 the set W = {A, B, C} is a
strong module because other module W ′ is a subset of W. The module
W = {A, B} is not a strong module because for the module W ′ = {A, C},
W ∩W ′ = {A} 6= ∅.

The decomposition of a graph into strong modules is called Modular Decompo-
sition, and the resulting hierarchical structure is called Modular Decomposition
Tree (MDT). Figure 6.7(a) shows the simple ordering relation graph of Figure 6.2,
its decomposition in four modules, see Figure 6.7(b), and the corresponding
modular decomposition tree, see Figure 6.7(c). [MM05] shows that a node W in
a MDT with children S1, S2, . . . , Sk is of one of the following:

Complete : ∀I ⊂ {1, . . . , k}, with 1 < |I| < k :
⋃
i∈I

Si is a module

Prime : ∀I ⊂ {1, . . . , k}, with 1 < |I| < k :
⋃
i∈I

Si is not a module

Example 6.2.8 . The graph in Figure 6.10(a) is a prime module, i. e., none
of the subsets W of {A, B, C, D} with 1 < |W| < 4 is a module. The graphs
in Figure 6.10(b)–(e) are complete, i. e., all subsets are modules.

A complete module W with the induced graph GW(VW , EW) either does not
contain any edges or is a clique in EW

# or EW
→, see the proof of Lemma 5. A com-

plete module can easily be transformed to a process tree deterministically, see
[Pol12]. For a prime module our approach will use a heuristic optimization.
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Figure 6.10: An Example for a Prime, Trivial, Parallel, Serial, and Branch
Module.

Lemma 5 . A strong complete module W is of exactly one of four types:

trivial : |VW | = 1
serial : For every v, v′ ∈ VW : (v, v′) ∈ EW

→ ∨ (v′, v) ∈
EW
→. Recall that the edges in EW

→ are cycle-free.
branch : For every v, v′ ∈ VW : (v, v′) ∈ EW

#
parallel : For every v, v′ ∈ VW : (v, v′) 6∈ EW

Proof 4 (of Lemma 5) . For |VW | = 1 the module is trivial. For |VW | = 2 the
pair (v, v′) is either (v, v′) ∈ EW

→ (serial), (v, v′) ∈ EW
# (branch), or (v, v′) 6∈ EW

(parallel). For |VW | ≥ 3 there exist two pairs of nodes (v1, v2), (v3, v4) with
(v1, v2) 6= (v3, v4). At least one element in the pair differs. Without loss
of generality let v1 6= v3. Each set of two elements is a module, and as
shown earlier it is either a serial, branch, or parallel. We call this the type
of the pair, namely typev1,v2

. Assume that the lemma is false. Then at least
two pairs of nodes exist with typev1,v2

6= typev3,v4
. W is a strong module

and thus all combinations of child elements are strong modules. The set of
nodes {v1, v3} is a strong module⇒ N(v1) = N(v3)⇒ typev2,v3

= typev1,v2
.

If v2 = v4 this is a contradiction to the assumption, so let v2 6= v4. The
set of nodes {v2, v4} is a strong module ⇒ N(v2) = N(v4) ⇒ typev3,v4

=
typev2,v3

⇒ typev3,v4
= typev1,v2

. This is a contradiction to the assumption.

Example 6.2.9 . Figure 6.10(b)–(e) shows an example for a trivial, parallel,
serial, and branch module.

[MM05; CH94] prove that the decomposition of a directed graph (V, E) can be
done in O(|V|+ |E|), thus in time linear with the size of the graph. We use the
MDT to transform the ORG into a process tree.
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Algorithm 13 synthesize(org G, context c): Process Tree PT

1: Determine Tc from c
2: G ← subgraph GW of G with the nodes W = Tc
3: PT ← Modular Decomposition of G

4: for all prime nodes P ∈ PT do
5: Process tree PTP ← synPrime(P)
6: Replace P with PTP
7: end for

8: for all leaf nodes l ∈ PT do
9: if l is a partition leaf node then

10: Gl ← org of l
11: Process tree PTl ← synthesize(Gl, c)
12: Replace l with PTl
13: end if
14: end for

15: return PT

6.2.4 Overview of the Automatic Generation

Our goal is to automatically generate a process model from a declarative descrip-
tion. Algorithm 13 synthesizes a process tree from an org and a context c. The
context c determines the required tasks Tc, see Line 1. We then reduce the org

G to the subgraph GW with the nodes W = Tc, see Line 2. The algorithm then
computes a modular decomposition of the org, see Line 3 in Algorithm 13.

The resulting modular decomposition tree (mdt) may contain both complete
and prime components. For complete components, a transformation to process
fragments exists, cf. [Pol12]. For a prime component in turn, several fragments
are possible, see Figure 6.11. In other words, each prime component stands for
an under-specified region. For each prime component P , we use a probabilistic
optimization to find a solution , see Line 5. We replace P with the solution
found, see Line 6.

synPrime() splits the org of the prime components into partitions. It generates
a graph with one node for each of these partitions. The algorithm recursively
calls itself, in order to replace each node with a subtree. Finally, our approach
transforms the process tree into a process language, e. g., BPMN, WS-BPEL.
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Figure 6.11: The Neighborhood Graph to Directly Generate a Process Tree (a),
three Possible Process Trees (b), (c), (d) for the Graph (a).

6.2.5 Under-Specified Regions

Each prime component P induces a graph GP = (VP , EP ). VP denotes the set of
strong components that belong to P . Figure 6.7 shows that the graph GP for the
prime component P consists of VP = {X,R,Y,Z} with EP = {(R→ X), (R→
Y), (Z→ Y)}. P is not fully specified and thus no unique corresponding process
tree exists. Due to the large number of possible process models for a prime
graph GP it is not feasible to construct every possible one.

The modular decomposition detects the fully specified and the under-specified
regions of the process. Even for small prime components it is not possible to
generate and test all possible process models. Our overall idea is to reduce the
size of the graph induced by a prime component iteratively until the number
of remaining solutions is low (< 100). So that we can solve the problem, see
Figure 6.11. Our intuition for the reduction is to select a pivot node v and detect
which nodes (V1) must occur before v, and which nodes (V2) can be scheduled
in parallel to v. V1 as well as V2 imply two smaller ordering graphs. We repeat
this steps with several different pivot nodes. Our approach randomly selects a
node v ∈ VP with Nout(v) = ∅ as pivot node. Lemma 8 will show why we need
this characteristic. The org GP is cycle-free, and thus a node v with Nout(v) = ∅
always exists.
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Definition 22 (Zero Neighborhood) .

The zero neighborhood of a pivot node v is N(0)(v) := {v}, N(1)(v) :=
Nin(v). For i ∈N, i > 1 we define the i-neighborhood as:

N(i)(v) :=


(⋃

v′∈N(i−1)(v) Nout(v′)
)
\ N(i−2)(v) if i ∈ {2, 4, 6, . . .}(⋃

v′∈N(i−1)(v) Nin (v′)
)
\ N(i−2)(v) if i ∈ {3, 5, 7, . . .}

Lemma 6 . The neighborhoods for a pivot node v of a prime component
GP (V, E) contain each node exactly once. This means that:

1.
⋃

i∈N N(i)(v) = V

2. ∀i, j ∈N, i 6= j : N(i)(v) ∩ N(j)(v) = ∅

Proof 5 (of Lemma 6) .

1. Assume that GP is not connected ⇒ two sub-graphs exists G′ with
the nodes in the connected graph of v and G′′ := GP \ G′. This is a
contradiction to the assumption that GP is a prime, because G′ and G′′

would form a component. Let w ∈ VP be a node, with w 6= v. GP is
connected thus a shortest undirected path p = (a0, a1, a2, . . . , an−1, an)
exists between v = a0 and w = an. p is alternating thus ∀i ∈ [0, n] :
(ai, ai+1) ⇔ (ai+2, ai+1), or a shorter path would exist. ai ∈ N(i)(v) and
thus w ∈ N(n)(v).

2. Assume N(i)(v) ∩ N(j)(v) 6= ∅ then a node w exists with w ∈ N(i)(v) ∧
w ∈ N(j)(v). This means that two shortest undirected paths would exist
between w and v. This is a contraction because only one path can be
shortest.

We use the neighborhood information for the partition of the graph. Each
partition n(i) is a subgraph of the org GP with the nodes N(i)(v). In other
words, the partitioning implies a graph Gv where each n(i) is a node. We refer
to this graph as the neighborhood graph. Formally, given a pivot node v, the
neighborhood graph Gv = (Vv, Ev) is as follows

Vv = {ni | N(i)(v) 6= ∅}
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Ev = {(ni, ni+1) | i ∈ {1, 3, . . .} ∧ ni, ni+1 ∈ Vv} ∪
{(ni+1, ni) | i ∈ {0, 2, . . .} ∧ ni, ni+1 ∈ Vv}

The graph contains each non-empty neighborhood as a node.

a) b) n¹ n² n³ n⁴n⁰
c)

Figure 6.12: A Prime Component (a), its Partitioning (b), and the Neighborhood
Graph (c)

Example 6.2.10 . For the graph in Figure 6.7(b) and the pivot Y the neigh-
borhoods are: N(0)(Y) = {Y}, N(1)(Y) = {R,Z}, N(2)(Y) = {X}, and for
i > 2 N(i)(Y) = ∅. The neighborhood graph GY(VY, EY) for the pivot Y is:

GY = ( {n0, n1, n2} , { (n1, n0) , (n1, n2) } )

Example 6.2.11 . Figure 6.12(a) shows a more complex graph that is a
prime component, i. e., there is no unique corresponding tree. The possible
pivot nodes are in violet. The pivot node at the top of Figure 6.12(a) leads
to the partitioning in Figure 6.12(b). Figure 6.12(c) shows the respective
neighborhood graph.

Lemma 7 . The partitioning into the neighborhood graph for a pivot v
preserves all order dependencies. In other words, for each edge (v1, v2) ∈
EP , one of the following holds:

(a) ∃i ∈N0 : v1, v2 ∈ N(i)(v)

(b) v1 ∈ N(i)(v), v2 ∈ N(j)(v), i 6= j⇒ (ni, nj) ∈ Ev
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n0 n1 n2 n3 n4 n5 . . . nk

Figure 6.13: Structure of the Neighborhood Graph

Proof 6 (of Lemma 7) . If v1, v2 ∈ N(i)(v) then the edge is in the subgraph
for N(i)(v). We now focus on (b).
case 1 – i ∈ {1, 3, 5, . . .}: If j = i− 1 then (ni, nj) ∈ Ev. Otherwise, if j 6= i− 1
then v2 ∈ Nout(v1) ∧ v2 6∈ N(i−1)(v) ⇒ v2 ∈ N(i+1)(v) ⇒ j = i + 1, and
(ni, nj) ∈ Ev.
case 2 – i ∈ {0, 2, 4, . . .}: In this case, a node v3 exists with (v3, v1) ∈ EP .
The transitivity of EP leads to (v3, v2) ∈ EP . v2, v1 ∈ Nout(v3) ⇒ v1, v2 ∈
N(i)(v)⇒ i = j, i. e., there is a contradiction to Lemma 7.

Lemma 7 states that our approach does not lose any dependencies. A symmetric
solution would be to select pivots with Nin(v) = ∅ and change the definition of
the neighborhood accordingly. However, a pivot v with Nout(v) 6= ∅ ∧ Nin(v) 6=
∅ would lose a dependency, see Lemma 8.

Lemma 8 . The neighborhood graph Gv for a pivot node v with Nout(v) 6=
∅ ∧ Nin(v) 6= ∅ does not preserve the order dependencies.

Proof 7 (of Lemma 8) . Let v with Nout(v) 6= ∅ ∧ Nin(v) 6= ∅ be the pivot
node. Then a node v− ∈ Nin(v) and a node v+ ∈ Nout(v) exists. The org

is cycle free, thus v+ 6= v− 6= v. The following dependencies, i. e., elements
of EP , exist: (v−, v), (v, v+), and, because of the transitivity of the org,
(v−, v+) ∈ EP . v ∈ N(0)(v), v+ ∈ N(1)(v), v− ∈ N(2)(v) altogether imply
that (v−, v) ∈ EP and (n2, n0) 6∈ Ev. This means that the dependencies
between v and v− have been lost.

Algorithm 14 synPrime (Neighborhood Graph G(V, E)) : ProcessTree PT
1: Pivot v← randomly select a node v ∈ G with Nout(v) = ∅
2: Gv(Vv, Ev)← calculate neighborhood of v
3: if N(λ) = ∅ then
4: return (select tree pattern randomly)
5: else
6: return synPrime(Gv)
7: end if
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Algorithm 14 generates a process tree for an under-specified region, i. e., a prime
component. First, the algorithm randomly selects a pivot node v, see Line 1

and calculates its neighborhood graph Gv, see Line 2. The parameter λ ∈ N+

defines when the neighborhood graph is small enough to generate a process
tree. If the neighborhood graph is too large, the algorithm calls synPrime() again,
and everything is repeated until the graph is processable. Figure 6.14 shows
the reduction of a neighborhood graph. If our approach selects n2 as the pivot
element then it builds the smaller graph on the right hand side.

n0 n1 n2 n3 n4 n5 ⇒ n2
n1

n3

n0

n4
n5

Figure 6.14: Reduction of a Neighborhood Graph with the Pivot n2.

If the neighborhood graph is small enough, i. e., N(λ) = ∅), Algorithm 14

randomly selects a tree pattern for it, see Line 4. A tree pattern is a process
tree for the neighborhood graph. The neighborhood graph in Figure 6.11(a)
contains 5 nodes and 4 edges. For a graph with five nodes thousands of process
trees are possible. For the graph in Figure 6.11(a) 53 trees are possible, given
the constraints. For most of these 53 process trees, there is another tree with
a lower overall processing time, for any processing times of the tasks. If we
exclude these dominated trees, three trees remain. Figures 6.11(b) and (c) show
two of them, randomly selected. The tree patterns define which additional
dependencies have to be added to generate a block based process model for the
specification. Section 6.2.6 shows and explains all tree patterns for λ ∈ [1, 5].
Figure 6.11(d) shows a process tree fulfilling the constraints in Figure 6.11(a),
but the processing time of the tree in Figure 6.11(b) is always shorter.

Example 6.2.12 . The Figure 6.15(a) shows the modular decomposition of
the introduction of the example from Figure 6.2. The prime node is small
enough to directly select a tree pattern. Our algorithm selects the tree pat-
tern shown in Figure 6.15(b) leading to the process tree in Figure 6.15(c).
This process tree can be easily transformed into the bpmn process in Fig-
ure 6.15(d).

For each org we have started out with, we calculate κ different process trees.
The resulting trees differ depending on the probabilistic choices in Algorithm
14, see Line 1 and Line 4. We select the best process tree found according to
quality criteria, e. g., the processing time. We calculate a quality value of each
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Figure 6.15: The MDT for the ORG of Figure 6.7 (a), the Process Tree for the
Prime Node PTP (b), the Resulting Process Tree (c) and the Process
Model in Bpmn Notation (d).

tree as follows. The average processing time for each node in a process tree
PT(V , E) is calculated recursively with function fit : V → R.

fit(n) :=


runtime(n) if type(n) = task
maxc∈childn fit(c) if type(n) = and

∑c∈childn fit(c) if type(n) = seq

maxc∈childn fit(c) if type(n) = xor

type : V → {task, and, seq, xor} is a function to determine the type of the tree
node. childn := {c | (n, c) ∈ E} is the set of nodes in the process tree with
parent node n. The estimation for the xor-Split is a worst case analysis, i.e., the
processing time is smaller than the estimated. If the probabilities of the splits
are known a priori a more precise average case assumption is possible, see
[Yan+12]. The fitness of a process tree fit(PT) is the fitness of its root node. The
algorithm returns the process tree with the highest fitness value. The resulting
process tree can easily be transformed to the notation required.
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6.2.6 Tree Patterns

In this section we explain the tree patterns for a neighborhood graph Gv. For all
possible runtimes of nodes in the neighborhood graph at least one of the tree
patterns is optimal according to the fitness function fit. To minimize the fitness
value we are trying to set tasks in parallel.

λ = 2 and λ = 3

n0 n1
SEQ

n0 n1
a)

n0 n1 n2
SEQ

AND

n0

n1

n2

b)

Figure 6.16: Tree Patterns for λ = 2 (a) and λ = 3 (b).

For λ = 2 only one process tree is possible that fulfills the requirements.
Figure 6.16(a) shows the org for λ = 2 and the only possible process tree.
For λ = 3 it is only possible to execute n0 and n2 in parallel. This parallel
arrangement leads to one possible process tree, see Figure 6.16(b).

λ = 4

For λ = 4 we can set in parallel three pairs of nodes (n0, n2), (n0, n3), (n1, n3).
If we set (n0, n2) in parallel, it allows setting (n1, n3) in parallel and leads to
the pattern in Figure 6.17(a). The dotted line shows the dependency added
according to the tree pattern. If we set (n0, n3) in parallel, we have to add the
two dependencies in Figure 6.17(b). This leads to the second tree pattern.
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Figure 6.17: The Two Tree Patterns for λ = 4

λ = 5

For λ = 5 we can set five pairs of nodes in parallel (n0, n2), (n0, n3), (n0, n4),
(n1, n3), (n1, n4), and (n2, n4). If we set (n0, n2) in parallel, then we additionally
can set in parallel either (n1, n3) or (n1, n4). If we choose (n1, n3) we can add
n4 to the parallel (n0, n2) resulting in the process tree of Figure 6.18(a). If we
choose (n1, n4) no other parallelism is possible resulting in the process tree of
Figure 6.18(b).

We have implemented the algorithms in C#. The program receives the org as
input, see [MMB14b] on how to generate an org from a declarative specification.
The output of the program is a process tree that is then transformed to the
commissioning process notation otx by a proprietary xslt script written by us.
The implementation can handle specifications with several hundreds of tasks
and thousands of dependencies in a few minutes, see Section 6.4.

6.3 Case Study – Compact Executive Car

We applied our synthesis framework to support the development of the new
commissioning process for a novel compact executive car series.

During the use case some aspects of the modeling arose that cannot directly
be handled by our approach. To this end, we designed several heuristics that
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Figure 6.18: The Three Tree Patterns for λ = 5

either add dependencies before the execution, see Subsection 6.3.1 and 6.3.2, or
are applied as a post-processing after the synthesis, see Subsection 6.3.3 and
6.3.4.

6.3.1 Arranging the Data Writing Tasks

To configure the electronic control units the software has to be installed on the
electronic control units. This requires a vast amount of data communicated over
a bus protocol with a low data rate. These configuration tasks, i. e., ZDC schreiben,
are the most time consuming for the new commissioning processes. To use
the communication protocol to its full potential only four parallel connections
should be used for the data transfer.
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To this end, we want to apply a post-processing of the commissioning process
that schedules the tasks more sequentially. The idea of our approach is to
combine two parallel lanes in each iteration until the constraint is fulfilled.

Algorithm 15 describes this heuristic. For each iteration of the algorithm we
collect the possible candidates for parallel lanes, see Line 4. We call the set of
all possible candidates C. A candidate c ∈ C is a pair of two parallel lanes on
any hierarchy level of the process model. For each candidate c ∈ C we calculate
the reduction of the resources if we combine the two lanes ∆res(c). Additionally
we calculate how the candidate would extend the processing time ∆run(c) and
the human worker time ∆hum. If the combination of the two lanes reduces
the process model under the limit for the resource we set ∆res to the limit
of the resource. For instance if we assume that the process model before the
reduction uses 5 resources and the limit of the resources is 4, then ∆res is at most
1. Next, we calculate the gain of the candidate with g(c) = ∆res(c)+λ

σ∆hum(c)+∆run(c)+λ

(Line 5). σ is a constant with σ > 1 that ensures that the human processing time
is considered more important than the total processing time. λ is a constant
with λ > 0 to adjust the quality and performance, i. e., a larger λ leads to a
broader search with a possible better quality result but if a longer runtime. Our
goal is to select candidates with a high gain to efficiently reduce the resource
consumption. Unfortunately, the selection of a candidate influences the values
of the other candidates subsequently. The selection of the best candidate at
one step could lead to a semi-optimal end result. To this end, we randomly
select the candidates and iterate the algorithm several times to find the best
arrangement. A completely random selection could lead to a long runtime of
our algorithm. We resolve this by weighting the probability of the candidates
by their gain with the probability mass function p(c), see Line 10-12.

Lemma 9 . p(c) = g(c)−min+ε

∑c′∈C g(c′)−|C|(min−ε)
is a probability mass function.

Proof 8 (of Lemma 9) . For this we need to proof ∑c∈C p(c) = 1.

∑
c∈C

p(c) = ∑
c∈C

g(c)−min + ε

∑c′∈C g(c′)− |C|(min− ε)
=

∑c∈C g(c)−min + ε

∑c′∈C g(c′)− |C|(min− ε)

=
∑c∈C g(c) + |C|(−min + ε)

∑c′∈C g(c′)− |C|(min− ε)
=

∑c∈C g(c)− |C|(min− ε)

∑c′∈C g(c′)− |C|(min− ε)
= 1

The factor ε in the probability function p allows us to scale how much the gain
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Algorithm 15 HeuristicZDCschreiben (ProcessTree original): ProcessTree best
1: while number of iterations is not fulfilled do
2: ProcessTree tmp← original.copy
3: while resource constraint not fulfilled do
4: Calculate all candidates C of parallel lanes
5: for all c ∈ C do
6: Calculate ∆res(c), ∆run(c), and ∆hum(c)
7:

g(c) =
∆res(c) + λ

σ∆hum(c) + ∆run(c) + λ

8: end for
9: min← min (g(c) | c ∈ C)

10: for all c ∈ C do
11:

p(c) =
g(c)−min + ε

∑c′∈C g(c′)− |C|(min− ε)

12: end for
13: rand← Random Number between 0 and 1

14: last← 0
15: for all c ∈ C do
16: if rand > last∨ rand ≤ last + p(c) then
17: choosen← c
18: break
19: else
20: last← last + p(c)
21: end if
22: end for
23: ProcessTree tmp← combine the two lanes of the candidate choosen
24: end while
25: if tmp has a larger processing time than limit then
26: continue
27: end if
28: if tmp has shorter processing time than best then
29: best← tmp
30: end if
31: end while
32: return best
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influence the probability. Next in Line 13 we select a candidate c ∈ C according
to the probability function p and combine the lanes of candidate c (Line 14). We
iterate (Line 3–15) until the resource constraint is fulfilled. In Line 16 we check if
the found solution tmp has a shorter overall processing time than the best found
solution so far. We repeat the algorithm until the maximal number of iterations
is reached, see Line 1–19. Other abortion criteria, e. g., maximum computation
time would be possible. Last, we return the best found solution for the resource
constraint, see Line 20. The problem is similar to the multiprocessor scheduling
problem, cf. Coffman:

» Formally, we are given a set T = {T1, T2, . . . , Tn} of tasks, each task
Ti having length l(Ti), and a set of m ≥ 2 identical processors. A sched-
ule in this case can be thought of as a partition P = 〈P1, P2, . . . , Pm〉
of T into m disjoint sets, one for each processor. The i-th processor,
1 ≤ i ≤ m, executes the tasks in Pi. [ . . . ] The finishing time for the
schedule P is then given by

f (P) = max
1≤i≤m

l(Pi)

where for any X ⊆ T , l(X) is defined to be ∑T∈X l(T).

An optimum m-processor schedule P∗ is one that satisfies f (P∗) ≤
f (P) all partitions P of T into m-subsets. « [CGJ78]

The multiprocessor scheduling is known to be NP-hard, cf. [CGJ78]. In contrast
to the multiprocessor scheduling our tasks or lanes cannot be arranged freely.
Complex sequential constraints exist limiting the possible scheduling. To this
end we could not leverage the work in the multiprocessor scheduling.

Example 6.3.1 . Figure 6.19 shows a process tree. Below the tasks their
respective runtime is written. The table on the right hand side shows
the gain g(c) for each candidate with λ = 0.1. The sum of all gains is
∑c′∈C g(c′) = 3.33, the minimum is 0.03 and |C| = 10. We choose ε = 0.01
to get the probabilities p(c) in the table on the right hand side of Figure 6.19.

6.3.2 Same Electronic Components

With the next heuristic we want to address an ordering of tasks communicating
with the same control unit. It is not possible to access the same control unit
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Figure 6.19: A Process Tree with its Candidates for the Reduction and their
Respective Gain g(c) and Probability p(c)

more than ones. Tasks that communicate with the same unit should be in serial.
A common task FSP loeschen (FehlerSPeicher) deletes and initializes the error
log of a control unit. After the deletion of the error log other tasks FSP schreiben
and FSP pruefen access the error log. The deletion of the error log takes a long
time. While other tasks can operate on the control unit the access of the error
log by FSP schreiben and FSP pruefen should be postponed as long as possible.
To this end, tasks should be scheduled in between the deletion of the error log
and the new access. The heuristic Algorithm 16 describes how we handle the
two challenges.

Algorithm 16 iterates over all pairs of tasks 〈t1, t2〉 with the same electronic
control unit (ecu), see Line 1. If a relationship between t1 and t2 exists we
continue with the next pair. If one of the tasks deletes the error log (FSP
loeschen) we schedule the tasks first, and if one tasks access the error log (FSP
pruefen oder schreiben) we schedule the task second, see Line 4 – 7. Else we
randomly either schedule t1 or t2 first, see Line 9 – 13. If a new succession
rule is added we have to recalculate the transitive hull to avoid adding a cycle,
see Line 15, see Example 6.3.2. If we iterate over all pairs we return the new
succession relationships, see Line 17.
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Algorithm 16 HeuristicSameComponent () : SuccessorRelationships

1: for all pair of tasks 〈t1, t2〉 with the same ECU do
2: if a relationship t1 → t2 or t2 → t1 exists then
3: Continue
4: else if t1 = FSP loeschen∨ t2 = FSP schreiben∨ t2 = FSP pruefen then

5: succesRel.add( t1 → t2 )
6: else if t2 = FSP loeschen∨ t1 = FSP schreiben∨ t1 = FSP pruefen then

7: succesRel.add( t2 → t1 )
8: else
9: if random number between 0 and 1 is smaller than 0.5 then

10: succesRel.add( t1 → t2 )
11: else
12: succesRel.add( t2 → t1 )
13: end if
14: end if
15: Recalculate transitive hull
16: end for
17: return succesRel

t1 t2

t3 t4

t1 t2

t3 t4

t1 t2

t3 t4

a) b) c)

Figure 6.20: Without Recalculating the Transitive Hull a Cycle Can Occur.
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Example 6.3.2 . To consider why we recalculate the transitive hull, see
Figure 6.20(a). In the first iteration the pair 〈t2, t4〉 is selected and the edge
(t2, t4) is added, see Figure 6.20(b). Without recalculating the transitive hull
the pair 〈t1, t3〉 is possible and the additional edge (t3, t1) would lead to a
cycle.

6.3.3 Reducing Depth of the Process Model

To minimize the amount of connection a commissioning process should use
only few parallelisms. To this end, we use a post-processing and combine short
running parallel lanes. The combination does not influence the processing time
of the process if the combined runtime is shorter than the longest running
lane.

Algorithm 17 HeuristicFewerParallelisation ()

1: for all parallel nodes P in the process tree do
2: while true do
3: l1 ←Lane with the shortest processing time in P.
4: Remove l1 from P
5: l2 ←Lane with the shortest processing time in P.
6: Remove l2 from P
7: lmax ←Lane with the longest processing time in P.
8: if runtime (l1) + runtime (l2) ≤ λ runtime (lmax) then
9: l3 ← combine l1 and l2

10: Add l3 to P
11: else
12: Add l1 and l2 to P
13: break
14: end if
15: end while
16: end for

Algorithm 17 iterates over all parallel nodes in the process tree, Line 1. For each
parallel node P the algorithm selects the two nodes with the shortest processing
time t1 and t2 and the one with the longest tmax, Line 3 – 7. Next the algorithm
checks if the combined processing time of t1 and t2 is shorter than the runtime
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of tmax times a factor λ, Line 8. The processing times are only guesses and
vary. To this end, the algorithm uses the factor λ ≥ 1 and only combines if
the processing time of tmax is for instance 20% higher (λ = 1.2). In this case
the algorithm combines l1 and l2 to l3 and add the lane to the parallel node
P, Line 9–10. If no such lanes exist the while-loop aborts, see Line 13, and
continues with the next parallel node.

6.3.4 Closing the Connections to the Control Unit

Every connection to an electronic control unit (ecu) has to be closed by a specific
task (Verbindungsabbau). Only a fixed amount of connections can be open at
the same time, to this end, the connection should be closed after use. The close
connection tasks are not part of the initial list and are added as a post-processing
step after the synthesis. For each sequential node we add a close connection
task after the last task of every control unit.

6.3.5 Different Configuration

The process model for the compact executive car will be executed using different
configurations C. Each of this configurations c ∈ C uses different tasks and skips
others. The set of task Tc for the configuration can overlap, i. e., Tc ∩ Tc′ 6= ∅. It
is important that the runtime of each configuration is optimized. To this end,
we change the optimum criteria to optimize to the sum of all configurations.

min ∑
c∈C

runtime (Tc)

If a task fails, then the task will be repeated in a different configuration. In the
worst case this means that all tasks in the model will be executed. To ensure
that the total runtime does not exceed the total cycle time planned for the
commissioning we add the constraint:

runtime (T) ≤ λt

with t as the cycle time of the factory and λ as the scheduled number of cycles
for the commissioning process.
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6.4 Evaluation

The evaluation consists of two parts: The general evaluation of the synthesis
algorithm using simulation, see Subsection 6.4.1, and the automatic generation
of the new compact executive car process models, see Subsection 6.4.2.

6.4.1 Evaluation of the Algorithm with Simulation2

Our evaluation uses 21 process models from a car manufacturer that specify
the testing and commissioning of middle-class vehicles. Each process model
reflects several context characteristics which are attached for the generation. The
context characteristics consist of properties of the vehicle project, of the factory
and of the components to put in commission. Professional process developers
have designed the process models. The tasks to be executed depend on the
components built into the vehicle to be tested. In cooperation with those domain
experts we have built the specification for the 21 process models, i. e., the order-
ing relation graphs, automatically using a knowledge base, see [Mra+14]. The
process models contain up to 185 tasks and over 3000 dependencies, including
transitive ones. The parameter λ defines the maximum size of the process trees.
The possible number of trees grows exponentially with the maximum size.
Therefore, the correct and optimal tree patterns are harder to find for larger
values of λ. Otherwise, a higher value could allow finding a process model with
a better processing time. We choose λ = 5 for our evaluation.

Table 6.2 shows the results for commissioning process models A, B, and C.
We have chosen A, B, and C because they are representative for the whole set,
ranging from a relatively small one (C) to one of the largest (B). For a summary
of all models see Table 6.3. The second row in Table 6.2 shows the processing
time measured for the process model created by hand. Table 6.2 then lists the
expected processing time of the process (pt) and the time our approach needs
to generate the respective model, i. e., computation time (ct), for 10 to 100,000

iterations. In all cases, the algorithm has been able to generate a process model
in less than 100 ms that outperforms the reference process model. After 100,000

iterations, in less than 1.5 minutes, it could find process models with processing
time 34%, 37%, and 50% lower than their manually generated counterparts.

For all 21 process models, Table 6.3 shows the minimum, maximum, and the
quartile for 7 values of the evaluation. The process models contain between 98

2Parts of this Subsection are published in [MMB15] and the extended version in [MMB14b]
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Table 6.2: Computation Time (ct) and Processing Time (pt) of our Approach

Process A Process B Process C

No. of Tasks 171 185 116
Ref. process time 171 780 ms 169 606 ms 148 014 ms

ct

in ms
pt

in ms
ct

in ms
pt

in ms
ct

in ms
pt

in ms
10 Iteration 35 188 420 34 227 260 32 132 998
50 Iteration 69 127 687 71 131 121 66 103 234

100 Iteration 113 127 687 113 131 121 104 103 234
1 000 Iteration 823 127 687 964 116 155 788 97 264

10 000 Iteration 8 207 112 918 8 298 113 874 7 817 71 513
100 000 Iteration 78 409 112 624 86 594 106 216 77 335 65 892

pt reduction 34.437 % 37.375 % 50.456 %

and 185 tasks, and need up to 178s to perform. Our approach requires ≈ 30s
and ≈ 37 000 iterations on average to generate the best result found. For all
instances our approach has identified a solution that is better than the manually
generated one in less than 100 ms. Our approach needs less than 3 iterations
to do so in most cases. On average, it nearly halves the processing time of the
commissioning process models (47.47%) compared to the reference points.

6.4.2 Use Case: Compact Executive Car Process Models

Besides the general analysis and performance gain of the vehicle-individual
generation shown in Subsection 6.4.1 we applied our synthesis to a large use
case and testing it in reality. The use case was the commissioning of the new
vehicle series for a compact executive car introduced in 2015. The process
model is large in size and consists of 496 tasks. The process model consists
of regions that need to be exactly described and two large regions that we try
to optimize. One region describe the installment of the software on the ECUs,
called Bedatung. The other region controls and test several parts of the vehicle,
called Funktionstest. Figure 6.21 shows the manual generated process model on
the left hand side, and the one of our synthesis on right hand side, with the two
regions, i. e., Bedatung and Funktionstest. We used the heuristics of Section 6.3
for the synthesis with λ = 0.1 and ε = 0.1. 96 human tasks existed, see also
Figure 6.21.
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Bedatung

Funktionstest

human

Figure 6.21: The Original Commissioning Process Model for the Compact Exec-
utive Car on the Left Hand Side and the Synthesized One on the
Right Hand Side.
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Table 6.3: The Minimum, Maximum, and Quartile for the Evaluation of 21

Commissioning Process Models

Minimum Median Maximum

Q0.00 Q0.25 Q0.5 Q0.75 Q1.00

Nr. of Tasks 98 123 133 146 185
Ref. Process Time in s 144.232 151.623 157.513 166.138 178.606

Best Found pt in s 64.643 72.637 84.529 93.487 108.496
iterations (it) 5 090 15 523 37 733 76 035 94 271
Calculation Time (ct) in s 4.641 12.356 30.284 63.392 77.480

pt reduction in % 33.39 40.62 47.54 53.62 58.03

To compare the performance of the generated process model to the original
one we simulated several commissioning processes on both process models
with real world runtime data. In total we used 193 runs of the process model.
Figure 6.22 shows the runtime of those runs for the original and the synthesized
process model. The runs could have one of two configurations C1 (140 runs) or
C2 (53 runs). For C1 we could achieve a average reduction of 5.92s or 5.5%, for
C2 the average reduction is 209.13s or 50.39% compared to the original manual
process model. The lesser reduction in the C1 configuration can be explained
by the critical path of the reduction that consists mainly of human worker tasks,
i. e., only minor optimization is possible.

6.5 Related Work for Process Synthesis

In this subsection we want to discuss related work in the field of process
synthesis, in particular synthesis approaches as [Yu+08; Awa+11], process dis-
covery [Aal11; LFA13b; LFA14], approaches using process similarity, see [Chi+09;
Koo+08; Lau+09], approaches to restructure process model [Pol12], approaches
using Artificial Intelligence approaches [VM91; MR02; AHK05; AK07], and
declarative process modeling [Mon+10; PBA10].

[Yu+08] synthesizes a process model from specification in the form of state
machines. First, [Yu+08] combines all state machines of the specification and en-
lists the possible execution paths. Next, an algorithm similar to the α-algorithm
[AWM04] is applied to synthesize a process model from its set of paths. [Yu+08]
can only be applied if the specification, i. e., the number of state machines, is
small (≈ 6). To this end, [Yu+08] divides the specification into small groups,

160



6.5 Related Work for Process Synthesis

0

100

200

300

400

500

600

700
Pr

oc
es

si
ng

Ti
m

e
in

Se
co

nd
s

IB1 IB3

× Original Process Model
� Synthesized Process Mdel

Figure 6.22: Processing Time of the Original and the Synthesized Process Model

synthesizes a process fragment for each group and manually combines the
fragments. For our use case, this approach would require over a hundred state
machines for each commissioning process model, and the manual combination
would not be feasible. [Awa+11] has specifications with LTL as starting point.
Next, they generate a pseudo model from the specification. This model lists
all paths that fulfill the LTL formula. [Awa+11] generates an ordering relation
graph from the set of paths and uses it to synthesize a process tree. For our
use case the generation of all paths would not be feasible. This is because the
number of paths grows exponentially with the size of the specification. Even
for the smallest process model we have evaluated calculating all paths that have
not been possible.

Process discovery means finding a process model that can reproduce the be-
havior given in a log see [Aal11]. [LFA13b] rediscovers a process model in the
process-tree notation. It generates a graph, called directly-follows graph, from
the log and tries to find different kinds of cuts in the graph. Each kind of cut
refers to a control structure in the process tree, i. e., seq, and, xor, loop. The
cuts partitions the graph and allow to hierarchically find a process tree for
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the log. In contrast to an org, a directly-follow graph is not transitive, and if
two nodes are in parallel they share a two-way edge. In contrast to no edge
in the org. It is not possible to find a cut for a prime component, thus the
approach of [LFA13b] does not help in case the specification is under-specified.
Put differently, the problem statement in [LFA13b] is different from ours; the
neighborhood graph of the complete log of a process tree never contains a prime
component. For an incomplete log, a prime component can occur. [LFA14] pro-
poses to use probabilistic activity relations in the case of an incomplete log.
The cut with the highest probability is chosen. This means that their algorithm
generalizes from the incomplete log and assumes relationships that are not
present. An org is an upper bound of the possible behavior. Assuming an
additional relation would result in a violation of a constraint. The approaches
of the process discovery are related to the synthesis of a process model. Both
approaches start with a graph-based source and use it in order to find a process
model. Important differences exist in the semantics of the graph. In the case
of the process synthesis the graph describes the allowed behavior. Our goal
is to find a suitable process model by further constraining the specification.
Figure 6.23(a) illustrates the process synthesis. Our approach finds a suitable
process model inside the allowed behavior, i. e., we work inwards from the
graph-presentation. In the case of process discovery the graph is generated from
the log. The graph therefore describes a subset of the behavior of process model
to rediscover. In general, the process discovery generalizes from the observed
behavior in order to find a process model. Therefore, the process discovery
works outwards from the graph, see Figure 6.23(b).

Forbidden Behavior

Allowed Behavior

Process Model

Process Model

Observed Behavior

Forbidden Behavior

a) b)

Figure 6.23: Illustration of Process Synthesis (a) and Process Discovery (b)

An approach different from generating the process model from scratch is to
extract information from process models already specified and to create a similar
process. [Chi+09] uses a CBR-based method to this end. The search is based on
keywords that are annotations of the workflows. [Koo+08] guides the process
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designer with suggestions on how to complete data-oriented visualization
models. The suggestions are generated from paths of existing visualization
process models stored in a repository. [Koo+08] does not allow building a
process model with an and-Split and therefore is not sufficient in our case.
[Lau+09] predicts which activity pattern, i. e., generic process fragment, will
follow the partly modeled process. The paths of existing process models are
extracted and analyzed with association rule mining. [Koo+08; Lau+09] extend
an existing process model, while our approach generates one from a declarative
specification. [Chi+09] requires annotations of the existing process models. None
of the approaches mentioned optimize the runtime or consider constraints.

[Pol12; PGD12] transform an unstructured model without cycles into a behav-
iorally equivalent structured process model. By structured we mean that for
each Split-Gateway there is a corresponding Join-Gateway. Structured processes
allow an effective verification, see [MMB14a] and are easy to understand cf.
[RM11]. [PGD12] determines relationships between the tasks of a process model
and generates an org using these relationships. Next, [PGD12] decomposes the
org into a Modular Decomposition Tree (mdt). In contrast to our approach,
[PGD12] generates the org from the behavior of an existing process model
and not from a set of compliance rules. The behavior is definite. The result
therefore is an unique process model. In our approach in turn, the behavior is
under-specified, and several process models are possible.

AI planning is the task of defining a set of actions that achieve a specified aim
[HTD90]. In a nutshell, it is the search for an applicable plan in the solution
space. [VM91] uses a genetic algorithm to find a manufacturing plan. [MR02]
uses an AI planning approach to synthesize service compositions. Without
calling it AI planning, [AHK05] uses a similar approach for configuration-based
workflow composition. [AK07] introduces a planning algorithm to compose
data workflows. None of these studies focus on optimizing the runtime of the
process or considers requirements similar to ours. These approaches are not
applicable to our problem statement.

In contrast to imperative process models, declarative workflows allow for any
behavior fulfilling the declarative specification, see [Mon+10]. Thus, declarative
workflows provide maximum flexibility not limited by a process model. In
comparison to our approach, and other like [Yu+08; Awa+11], that generates
an imperative process model from the declarative specification. The enactment
of declarative workflows is not trivial, cf. [PBA10], and tool support by major
vendors is missing. To our knowledge, there is no tool that executes declarative
process models comparable to the commissioning of vehicles.

163





Chapter 7

Conclusion

In summary this thesis displays novel and important contributions to three
interconnected fields in the process model research. Those three fields are
namely the specifications of declarative properties, the verification of those
properties on a given process model, and the synthesis of a process model from
a list of properties. Subsection 7.1 gives a summary over the contributions and
results of those fields. We mainly focus in this thesis on our own use case, the
commissioning of vehicles. But in fact we claim that our achievements regarding
to our research are applicable and more general. Subsection 7.2 sketches possible
future applications and show work that has been inspired by our research.

7.1 Summary

First, at the beginning of the thesis we introduced our scenario, the commissioning
of vehicles, see Chapter 2. This Chapter revealed details about the diagnostic
system used for the commissioning, the different communication protocols,
and the processes model notations. Next, Chapter 3 gave an overview over the
related fields in the business process research. A short description about those
research fields was given and the differences and similarities to our own work
highlighted.

Chapter 4 described our contributions and results in the field of the declarative
specification of properties that a process model should fulfill. Our use case
revealed several challenges regarding to the specification. For instance, the
knowledge about the properties a process model needs to adhere to is typically
distributed between different employees and departments. The properties are
often context sensitive, i. e., only hold for a specific process place or vehicle
series. To allow an automatic verification and synthesis the properties need to
be available in a formal form, e. g., temporal logic. Additionally it is often not
possible for a domain expert to give a succinct list of all properties by interview.
We addressed those challenges within two systems: Our automatic specification
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framework and our framework for property candidate detection. To this end,
we systematically collected all properties and the relevant information for their
specification by a series of interviews. We could map those properties to a
distinct set of classes, called property patterns. Next we built a database for the
storage of those patterns and with help of a template of the respective temporal
logic formula. Before the verification procedure our framework queries the
database using the process context, e. g., the process place and vehicle series.
Next, the framework automatically instantiate the process patterns to concrete
properties. A functional evaluation revealed that this system is able to generate
the properties for the verification of a process model. An expert interview
showed the usability of our approach. To address the challenge that the expert
cannot give a succinct list of all properties out of their head we developed
a second system. This system analyses existing process models and tries to
extract likely candidates for properties using statistical measures, similar to the
frequent item set mining. Our evaluation showed that we indeed could detect
properties with this approach and additionally revealed more knowledge about
the process models.

Chapter 5 displayed our contributions in the field of the verification, i. e., the
test if a process model fulfills all required properties. We could reveal several
challenges for the verification of commissioning process models. First, auto-
matic verification techniques, e. g., model checking, require an interpretation of
the execution semantic. Second, commissioning processes are typically highly
concurrent and large in size, leading to a large state space. Third, it is often
not trivial for domain experts to interpret the result of the verification and
to detect the cause of the property violation. We addressed those challenges
by developing an interpretation of the semantic of commissioning processes
by a Petri net representation. In order to address the growing state space we
used a reduction algorithm that limits the verification to its parts of the process
model relevant for the property. Lastly we give a reporting schema, parsing the
verification result and guiding the user in order to correct the property violation.
The evaluation revealed that our verification is functional, e. g., it can detect
property violations and is efficient for large commissioning processes.

Chapter 6 presented our contribution in the field of process synthesis, i. e., gen-
erating a process model from a declarative description. Our use case revealed
several challenges within this approach. First, we needed to synthesize a usable
process model for our scenario. This means that the process model needed
to fulfill several requirements, e. g., block-structured. Second, the declarative
description was in general not complete, i. e., more than one process model was
possible. We gave two different algorithms for the synthesis. The first algorithm
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used a resource-constraint scheduling as basis. We showed that algorithms with
a scheduling basis lack important characteristics, e. g., structuredness. This led
us to our second algorithm that uses a modular decomposition of the depen-
dency graph as its core. In the case of under-specification the decomposition
helped us to detect the under-specified parts of the process model. We employed
a probabilistic algorithm in order to detect the best solution for those parts. Our
evaluation showed that by using this algorithm we could greatly improve the
process performance by generating vehicle specific models. We also applied the
algorithm to the real use case, the commissioning of a new compact executive
car series. This revealed several new requirements that we addressed with
heuristic improvements to our synthesis algorithm.

7.2 Impact and Future Research

Overall, the techniques presented in this thesis have been well received by the
research community, especially the fact that our work successfully combines
requirements of the real world industry with theoretical concepts, that means
our research targets real problems. At the same time our main contribution was
generic and could be applied to different use cases.

Furthermore, our work on relevant optimization has been the inspiration for
other researchers work, e. g., in [TMB16]. [Sta+14] presented an approach for
the detection of data-flow errors in BPMN 2.0 process models. Data-flow errors
in BPMN 2.0 process models, such as missing or unused data, led to undesired
process executions. To this end, [Sta+14] detected anti-patterns in process
models. The detection of anti-patterns is symmetrical to the verification, i. e.,
detecting an anti-pattern X is equivalent to verify the property: Absence of X. The
work of [TMB16] increased the performance of those techniques by applying a
relevance algorithm, similar to ours, in order to detect the relevant regions.

Another important research field of the recent years was the compliance check-
ing of processes. Business process compliance is the execution of a process
according to regulations and legal norms. The compliance checking comprises
several similarities to the problems faced in our use case. Most compliance
rules are written as textual regulations. Those cannot be tested automatically
on process models similar to our technical rules. [Rat+15] motivated these prob-
lems. Our work regarding to the property pattern instantiation can be applied
to this end. Most of the compliance checking approaches does not consider
the state space explosion. One exception is the work of [Knu+10] that focused
on the state space growth caused by data constraints. For highly concurrent
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process models the state space is going to growth exponentially. Our relevant
optimization could be leveraged to support the compliance checking of highly
concurrent models. [Awa+11] used a synthesis approach in order to generate
process models from compliance rules. It was limited to fully-specified rule sets.
On this respect our work regarding synthesis field could be employed in the
case of under-specified specification.

In summary, our work has produced many novel ideas, approaches, and evalu-
ation results for the specification, verification, and synthesis of process models.
We could solve real problems from our industry partner and deliver novel
concepts regarding to those fields. Therefore, we hope that our contributions
can provide a sound basis for future research.
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Glossary

BPMN : Business Process Model Notation (bpmn) is a graphical graph-based
notation, used to model business process models. 4, 21, 37, 69, 97, 119, 120,
134, 140

CAN : Controller Area Network (CAN) is a serial communication bus system.
CAN is developed by BOSCH in 1983 for the communication of controlling
units in a vehicle, and later becomes several ISO standards. The two most
common implementation are the Highspeed-CAN and the Lowspeed-
CAN. In 2012 BOSCH present the extension CAN FD (Flexible Data Rate)
allowing a higher bandwidth. 9

CTL : Computation Tree Logic (ctl) is a temporal logic with a branching
time concept, i. e., more than one possible futures. Ctl is used to specify
properties for a formal verification, e. g., model checking. 37, 39–41, 48–51,
69, 86, 87, 90, 91, 94, 96, 119, 121, 122, 197, 201

CTL* : Computation Tree Logic Star (ctl*) is a temporal logic with a branching
time concept, i. e., more than one possible futures. Ctl* is a superset of
both ctl and ltl. It is used to specify properties for a formal verification,
e. g., model checking. 39, 40, 48, 49

Declare : Declare is a framework and process notation for the declarative speci-
fication of a process model in contrast to imperative languages like bpmn,
yawl, or Petri nets.. 135–137, 199

ECU : Electronic Control Unit (ecu) in the automobile context is an embedded
system, controlling a specific system in a vehicle, e.g., the engine electronic..
10, 13, 15, 46–48, 50, 65, 82, 86, 87, 89–91, 100, 101, 109, 201

EPC : Event-driven Process Chains (epc) are a graphical graph-based process
modeling language. EPCs have been developed by the University of Saar-
land together with the SAP AG in 1992.. 119, 120
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Glossary

KWP2000 : KeyWord Protocol 2000 (kwp2000) is a communication protocol for
vehicle diagnosis. 10, 44, 46, 73, 87

LIN : Local Interconnect Network (LIN) is a serial communication protocol. It
is a cost-efficient protocol for the connections of sensors and actors in a
vehicle. 9

LTL : Linear Temporal Logic (ltl) is a temporal logic with a linear time concept,
i. e., every event has one possible future. Ltl is used to specify properties
for a formal verification, e. g., model checking. 39–41, 48, 49, 69, 70, 121,
161

MOST : Media Oriented Systems Transport (most) is a serial bus system for
the transport of audio, video, language, and data in a vehicle. 9

MPS : The Mobile PrüfStation (mobile testing station) is a mobile computer
system with dedicated software for the commissioning of vehicles. It
connects to the vehicle over a cable and communicates to the factory
worker over wireless hand terminals.. 1

ODX : Open Diagnostic Data eXchange (ODX) is a XML-based formal descrip-
tion language for the diagnosis of vehicles.. 13

ORG : Ordering Relation Graph is a graph structure with several edge types
that represent the allowed ordering of tasks in a process model, i. e., the
ORG is a declarative specification of a process model.. 133, 135–137, 199

OTX : The Open Test sequence eXchange (OTX) is a formal process notation
for commissioning processes in the automobile industry. 4–6, 8, 12, 14–16,
21, 28, 37, 43, 45, 74–77, 81–83, 86, 98, 99, 120, 128, 134

RCSP : The Ressource Constraint Scheduling Problem (rcsp) is an optimizing
problem to find for a given set of activities an optimal execution. To
consider are predecessor relations between the activities, and capacity
dependencies for resources. 124

RPST : Refined Process Structure Tree) (rpst) is a decomposition of a graph-
based notation into a block-based hierarchy. 21

UDS : Unified Diagnostic Services (uds) is a communication protocol to com-
municate with ecus in an automobile. 10, 44, 46
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Glossary

WS-BPEL : Web Services Business Process Execution Language (ws-bpel) is an
executable block-based process notation for business processes containing
web services. 21, 37, 120, 134, 140

XML : EXtensible Markup Language (xml) is an markup language for docu-
ments that are both human-readable and machine-readable.. 13, 14, 45

YAWL : Yet Another Workflow Language (yawl) is a graph based process
notation based on the workflow patterns. 4, 21, 37, 69, 117
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