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ABSTRACT

Mineral precipitation in an open fracture plays a crucial role in the evolution of fracture permeability in rocks, and

the microstructural development and precipitation rates are closely linked to fluid composition, the kind of host

rock as well as temperature and pressure. In this study, we develop a continuum thermodynamic model to under-

stand polycrystalline growth of quartz aggregates from the rock surface. The adapted multiphase-field model

takes into consideration both the absolute growth rate as a function of the driving force of the reaction (free

energy differences between solid and liquid phases), and the equilibrium crystal shape (Wulff shape). In addition,

we realize the anisotropic shape of the quartz crystal by introducing relative growth rates of the facets. The miss-

ing parameters of the model, including surface energy and relative growth rates, are determined by detailed

analysis of the crystal shapes and crystallographic orientation of polycrystalline quartz aggregates in veins synthe-

sized in previous hydrothermal experiments. The growth simulations were carried out for a single crystal and for

grain aggregates from a rock surface. The single crystal simulation reveals the importance of crystal facetting on

the growth rate; for example, growth velocity in the c-axis direction drops by a factor of ~9 when the faceting is

complete. The textures produced by the polycrystal simulations are similar to those observed in the hydrothermal

experiments, including the number of surviving grains and crystallographic preferred orientations as a function of

the distance from the rock wall. Our model and the methods to define its parameters provide a basis for further

investigation of fracture sealing under varying conditions.
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INTRODUCTION

Deformation and fluid flow processes in the earth’s crust

are closely linked – a key element of many problems with

wide scientific and economic impact, as geohazards, the

recovery of hydrocarbons, geothermal energy, CO2 seques-

tration, and the storage of hazardous waste. This coupling

leads to cyclic changes in the rock’s strength and recurrent

permeability-creating and permeability-destroying processes

like crack sealing by mineral precipitation at the fracture

walls (Holland & Urai 2010). The nature of fluid flow –
continuous flow or episodic flow through fracture net-

works – depends on crustal deformation mechanism, fluid

source, lithostatic stress, fluid pressure, temperature, and

rock strength (Oliver 1996; Blum et al. 2005, 2009; Cox

2005).

Tectonic mineral veins bear the traces of former defor-

mation, fracturing, and fluid-transport processes and con-

stitute a record of the complex geochemical, hydraulic, and

mechanical history of the rock. For example, a sporadic or

cyclic reopening of completely or partially sealed veins may

occur, as proposed for the crack-sealing process (Ramsay

1980). In growing antitaxial veins, new material is accumu-

lated at the boundary of the initial crack and the growing

vein crystals, which follow the trajectory of the opening

crack, whereas in syntaxial veins, sealing starts from the

fracture surfaces and propagates to the inside of the crack

(Durney & Ramsay 1973). According to their microstructural
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evolution during crystal growth, four major types of veins

have been identified (e.g. Bons 2000; Oliver & Bons

2001; Bons et al. 2012). Fibrous veins are composed of

grains with very large length to width ratios, often

separated by curved boundaries (Hilgers et al. 2001). It

was proposed that they form by a pressure dissolution–pre-
cipitation mechanism (Oliver & Bons 2001), involving dif-

fusive transport from nearby rock or assuming cyclic crack

sealing with very small crack increments (Cox & Etheridge

1983; Urai et al. 1991; Fisher & Brantley 1992). Veins

with elongate-blocky microstructure are assumed to result

from growth competition between grains starting as epitax-

ial overgrowths of rock wall grains (Bons 2000). Here, lar-

ger crack aperture leads to the development of crystal

facets, that is euhedral crystal terminations at the liquid

interface. Stretched crystal veins are composed of grains

with serrated boundaries bridging the whole distance

between both sides of an original fracture. They are sup-

posed to form by continuous crack sealing, where rock wall

material and fluid inclusions mark former vein–rock
boundaries (Bons 2000). Veins filled with grains showing

no signs of directional growth are termed ‘blocky veins’,

and a mechanism of homogeneous nucleation and free

growth following the fracture opening was proposed

(Okamoto & Tsuchiya 2009).

Experimental studies under well-defined conditions are

essential to test these models, but are rare in the literature.

Lee et al. (1996) and Lee & Morse (1999) studied calcite

growth in a synthetic unitaxial vein of 10 cm length and

2-mm aperture with a single Iceland spar crystal as sub-

strate. Under laminar flow calcite crystals started growing

from micron-sized, isolated seeds, forming aggregates of

30 to 60 lm diameter without well-defined facets in

1 month. The authors concluded that either very high

flow velocities or low supersaturations are necessary to

completely seal larger portions of a vein. Hilgers and

coworkers published several studies using the cubic min-

eral alum as a vein filling analogue in a transparent flow-

through cell with mm-sized gap (Hilgers & Urai 2002;

Hilgers et al. 2004; Nollet et al. 2006). At the upstream

inlet of the channel, the precipitation rate was higher and

leads to punctual sealing during the late stage, where indi-

vidual crystals dominated the remaining flow path. Obser-

vable difference in material precipitation occurs on lengths

of several 100 m (Hilgers et al. 2004). Hydrothermal seal-

ing of micro-fractures of 10–20 lm width under strong

uniaxial compression and confinement pressure was

observed by Hilgers & Tenthorey (2004). However, no

details on the flow or growth mechanism during sealing

were provided. Flow-through hydrothermal experiments

with apertures of ~300 lm under-defined (p, T, c) condi-

tions were carried out recently by Okamoto et al. (2010)

and Okamoto & Sekine (2011) for different quartz rocks.

These well-controlled experiments are used in the present

study for calibration and evaluation of the numerical simu-

lations.

Numerical models are useful for unraveling the relation-

ship between the microstructural pattern and the transport

process. They can help to quantify timing of vein closure

and predict temperature, composition, and pressure of the

mineralizing fluid. To date, numerical models have

required simplifications to reduce the complexity of the

physico-chemical processes. A purely kinetic approach with

an orientation-dependent growth-rate function was used in

the vein-growth model by Bons (2001). It takes into

account crystal symmetry and represents interfaces as dis-

crete line segments. For antitaxial growth, growth compe-

tition and tracking of grains at rock wall asperities were

simulated (Hilgers et al. 2001; Nollet et al. 2005), defor-

mation-related fibrous growth (Koehn et al. 2001) and

zeolite growth (Bons & Bons 2003). The simulation soft-

ware prism3D is based on a cellular automaton model and

has been applied to study diagenetic pore-scale mineraliza-

tion processes in quartz (Lander et al. 2008) and carbon-

ate rock (Gale et al. 2010). Although only a limited set of

grain orientations is used, differentiation between slow

kinetics of facets and fast growth of nonfacet orientations

is captured and explains experimentally observed features

such as nucleation discontinuities. On the other hand,

reactive transport models incorporate processes, which are

specific to the mineral system under consideration like dif-

fusion, advection, heat transport and include chemical reac-

tions (e.g. Steefel et al. 2005), and have been successfully

applied to model isotropic mineral growth (Li et al. 2008;

Yoon et al. 2012); however, they do not account for crys-

talline anisotropy and polycrystalline fabric. Hence, on the

microstructural scale, they can be applied up to date suc-

cessfully for nearly isotropic mineral growth.

Phase-field models (PFMs) have become standard tools

to describe microstructure evolution in materials science,

and in addition to diffusive- and fluid transport can capture

multicomponent phase transitions and kinetics of crystal

interfaces (Hecht et al. 2004). In contrast to finite element

approaches, the PFM relies on a partitioning of space into

domains with nonzero interface thickness. It offers a con-

venient way to integrate thermodynamics of bulk phases

and interfaces within a single kinetic approach, but needs a

precise input for the related parameters (Moelans et al.

2008). Previously, Hubert et al. (2009) used a PFM with

orientation parameter and diffusion-limited growth process

for 10 grains in 2D. The results were qualitative, as no

parameters adapted to a real mineral system were used.

Morphologic evolution with several hundreds of crystals in

2D and 3D was obtained for zeolite thin films (Wendler

et al. 2011), where thermodynamic data were used to gen-

erate the driving forces. The observed crystal shape was

modeled separately via anisotropy of surface energy and

kinetics, but no major difference was found. Polycrystalline
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growth of the mineral alum (KAl(SO4)2�12H2O) was sim-

ulated with a PFM presented by Ankit et al. (2013). The

results of synkinematic vein sealing revealed how the track-

ing of the evolving grain boundaries depends on rock wall

roughness and opening rate, in agreement with a kinetic

theory (Urai et al. 1991). Nevertheless, except the surface

energy anisotropy defining the crystal shape, no physically

related input parameters were chosen, so that a comparison

with the real system is not possible.

In the present work, we want to close this gap and adapt

a PFM to hydrothermal quartz growth, to describe one of

the most important precipitation processes in rock frac-

tures. Whereas previous phase-field approaches to mineral

growth relied on a qualitative description of a static crystal

shape, in this work we define the combined anisotropy of

kinetics and surface free energy, which can capture the

observed shape variability of natural crystals. This crystal

anisotropy is of special importance for nonfibrous vein

growth, where competition between crystals occurs.

Because the physical parameters used as input to the model

are not all available or are known only to limited accuracy,

a hydrothermal experiment is analyzed. Figure 1 presents a

flowchart of the strategy applied here: data for interfacial

energies and thermodynamics close to the studied pressure,

temperature, and composition (p, T, c) of the fluid are

selected from the literature. To provide input data for the

kinetic anisotropy function, crystal shapes from experimen-

tal micrographs are analyzed. This defines the initial model

setup, which is then applied for simulations of single crystal

and polycrystalline quartz growth. As a subset of the

model parameters are still uncertain, these are modified

and tested again within small-scale simulations. In a final

step, the model is compared to the experimentally

obtained morphologies and textures for validation. This is

achieved by statistical measures for grain number and ori-

entation distribution as function of the growth distance.

HYDROTHERMAL EXPERIMENTS FOR
QUARTZ VEIN FORMATION

Previous hydrothermal experiments on quartz vein growth

by Okamoto et al. (2010) and Okamoto & Sekine (2011)

are used to extract the missing physical parameters and to

give a validation case for the present model. Here, we intro-

duce these experiments briefly. Both experiments were car-

ried out in a pipe-like hydrothermal flow-through reactor

with inner diameter of 10.8 mm. Supersaturated solution

was produced by dissolution of quartz sand in the first ves-

sel at temperatures of 365°C and fluid pressure of 31 MPa

and subsequently precipitation of silica minerals occurred in

a second vessel by changing the temperature (Okamoto &

Sekine 2011). As the silica solubility in the chosen tempera-

ture range is retrograde (Fournier & Potter 1982), the

temperature increase to T = 430°C in the second vessel

leads to supersaturation. Previously, dissolution experi-

ments were conducted at T = 150–390°C and p = 31 MPa

to determine the quartz precipitation rate constants used in

this study (Okamoto et al. 2010). Furthermore, different

mechanisms of mineralization were found, depending on

the solution chemistry: Pure silica solutions by dissolution

of quartz sand gave rise to precipitation of amorphous and

microcrystalline polymorphs of quartz. From the solution

made by dissolution of granite sand, silica precipitation

occurred mainly as epitaxial overgrowth of existing grains

(Okamoto et al. 2010; Okamoto & Sekine 2011) and was

attributed to impurity concentrations of Na, K, and Al in

the range of several ppm in the solution.

Small blocks of different quartz-bearing rocks with

dimension 5 9 5 9 20 mm were aligned sequentially in

the reactor (Okamoto & Sekine 2011). They were cut at

the upstream side to create a synthetic ‘fracture’ of about

300-lm aperture. Flow of the supercritical solution was

established by a pressure difference of <0.2 MPa across the

precipitation reactor. From the geometry and flow rate of

Fig. 1. Flowchart of the model adaption process: Available parameters

from literature (interfacial energies, quartz kinetics and solubility data) are

supplemented with experimental data under the actual conditions (31 MPa,

430°C). Together with the PFM evolution equations, the initial setup is

defined, which is tested in restricted scenarios like single crystal or small

ensemble growth. Especially anisotropy functions and interface energies are

modified within the range of reported values to reveal observed morpho-

logic details. This final model setup is validated in larger simulations reach-

ing the length scale of the experiment.
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about 0.017 g sec�1, an average initial velocity of about

1.3 mm sec�1 can be deduced, indicating vigorous flow.

Fluid could pass through the slit as well as along the outer

boundaries of the rock blocks; hence, quartz precipitation

was observed on either location. As the blocks are

immersed in fluid within a circular tube, flow velocity in

the slit might have been different and have broken down

during sealing. The silica concentrations at the fluid inlet

and outlet of the reactor were determined by an induc-

tively coupled plasma atomic emission spectrometer

(ICP-AES; Hitachi P-4000). The final crystallized blocks

were weighted to determine the average silica concentra-

tion at the position of each rock block, using the precipi-

tated mass and the recorded in- and outlet concentrations.

2D thin sections were analyzed under polarized light to

determine the c-axis direction of the quartz grains by an

optical birefringence method.

For the calibration of the growth model in the present

study, it is necessary to determine the full orientation,

which fixes the cross-sectional shape of the crystals in the

prepared samples. To this end, two of the rock samples,

listed in Table 1, were characterized again in the present

study with respect to grain orientations. With an SEM

(Hitachi S3400N), forward-scattering images of thin sec-

tions at the outer rock wall were taken with up to 80-fold

magnification. Electron backscatter diffraction (EBSD)

images taken at selected spots were analyzed automatically

to give crystal orientations in form of Euler angle triples

(z-x0-z″ convention). Several hundred grown crystals at the

outer boundary of the rock blocks and grains from the

neighboring rock matrix were analyzed. From both optical

and EBSD images, it was deduced that all surface-bound

crystals are epitaxial overgrowths of rock grains under-

neath. Figure 2 shows an example of an optical and for-

ward-scattering image from the same location on the outer

surface of the metachert sample. In the optical image, the

former rock wall can be seen as fine dark line, not visible

in the forward-scattering image.

PHASE-FIELD MODEL

The multiphase-field model used in this work has been dis-

cussed and applied to mineral growth previously (Wendler

et al. 2011; Ankit et al. 2013). We briefly introduce the

model again so as to (i) motivate two important modifica-

tions of the model functions representing crystal anisotropy

and kinetic coefficient and to (ii) show how simulation

parameters for an arbitrary growth condition can be gener-

ated from thermodynamic and kinetic data. For a more

detailed discussion of the model, see Nestler et al. (2005),

Wendler et al. (2011), and Choudhury & Nestler (2012).

Model equations

Under the constant temperature and volume conditions of

the experiment, a local minimization of the Helmholtz free

energy F(/, c, T ) determines the system’s evolution. The

independent variables are temperature T, molar concentra-

tions c = (c1, ci, cK) of K different species and a set of N

phase fields / = {/1(x, t), /2(x, t), . . . /N (x, t)}, which

indicate temporally evolving domains with different physi-

cal aggregate or order state. Moreover, the phase fields can

be seen as volume fraction of the respective phases. In our

setup, N�1 individual crystal grains are represented by /a

(x, t) (phase index a = 1 . . . N�1), and the liquid phase

by /l (x, t) (l = N). In the interior or bulk of each phase,

a /a = 1 holds, which decays continuously to /a = 0 in

the exterior across the diffuse interface, characterized by

the interface width e. The free energy functional F is for-

mulated as spatial integral of interface and bulk energy

density contributions over the simulation domain Ω,

F ¼
Z
X

eað/;r/Þ þ 1

e
wð/Þ

� �
þ f ð/; c;TÞ

� �
dx: ð1Þ

The total interfacial free energy is established by the first

two addends in Eq. (1), namely the gradient energy ea(/,
∇/), which energetically penalizes steep changes of /a, and

the potential w(/)/e, which penalizes deviations from the

bulk state /a = 1 or /a = 0. As gradient energy density,

we choose here

eað/;r/Þ ¼ e
X

a\b
cab a

cap
ab ðn̂Þ

� �2
jqabj2; ð2Þ

where qab = /a∇/b � /b∇/a is a generalized gradient

vector, pointing in the direction of the interface normal

ðn̂ ¼ qab=jqabjÞ, and the subscript a < b indicates the sum-

mation over all combinations of a and b. The orienta-

tion-dependent interface free energy per unit area is given

by cabðn̂Þ ¼ caba
cap
ab ðn̂Þ (see Garcke et al. 1998; Nestler

et al. 2005 and references therein). The function a
cap
ab ðn̂Þ

introduces the anisotropy of the interface energy, which is

responsible for the evolution of crystal facets in equilib-

rium. For the second contribution to the interface energy,

we chose the multi-obstacle potential, which assumes

Table 1. Properties of the two rock samples used for analysis in this study. In addition to the saturation index of the input solution, concentration and satura-
tion indices were determined a posteriori using sampled inlet- and outlet concentration and the weighted amount of precipitate along the flow path.

Rock type Abundance quartz Grain size (lm) Saturation input sol. Si conc. (ppm) Saturation calc. growth time (h) slit width (lm)

Metachert 0.98 65 3.6 115–147 1.2–1.5 336 311
Sandstone 0.52 80 3.6 127–176 1.3–1.8 188 353

© 2015 John Wiley & Sons Ltd, Geofluids, 16, 211–230
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1

e
wð/Þ ¼ 1

e
16

p2
X

a\b
cab/a/b þ d

X
a\b\d

/a/b/d

� �
;

ð3Þ
if /a, /b, /c 2 ]0, 1[, and tends to +∞ everywhere else.

The third-order term in Eq. (3) with a parameter

d � 10cab is a correction to suppress the formation of spu-

rious third phases /d in any a–b interface (Nestler et al.

2005). The last addend in Eq. (1) is the bulk free energy

density, which determines the phase equilibria for planar

interfaces. It is constructed as interpolation between the

free energy densities of the local coexisting phases,

f ð/; c;T Þ ¼
X

a
faðc;T Þ hð/aÞ; ð4Þ

with the polynomial h(/) = /2(3–2/) as interpolation

function. Note that again the index a refers to many

‘quartz’ phase-fields, the crystal grains, and to one liquid

phase field /l. The free energy difference between these

two phases represents the driving force for crystallization.

The governing equation for the phase fields (Allen–Cahn
equation), which provides the local minimization of the

free energy Eq. (1), is given by

e
o/a

ot
¼ xð/;r/Þ � dF

d/a
� k

� �
¼ xð/;r/Þ

e r � oað/;r/Þ
or/a

� oað/;r/Þ
o/a

� �
� 1

e
owð/Þ
o/a

� 1

T

of
o/a

� k

� �
:

ð5Þ
In Eq. (5), d/d/a denotes the variational derivative

with respect to /a, and ðo=or/aÞ ¼ ðo=ðoðo/a=oxiÞÞÞ is

the partial derivative with respect to the components of

the gradient vector ∇/a. A Lagrange multiplier k estab-

lishes the summation constraint
PN

a¼1 /a ¼ 1. Interfacial

kinetics is represented in Eq. (5) by the prefactor x(/,
∇/), defined as interpolation of all local a–b-interface
contributions,

xð/;r/Þ ¼
X

a\b
gabð/Þxabðn̂Þ; with xabðn̂Þ ¼ x0

aba
kin
ab ðn̂Þ;

ð6Þ

with the interpolation function gab(/) and a kinetic coeffi-

cient x0
ab for each a–b interface, that accounts for the dif-

ference in attachment kinetics. In addition to the interface

energy anisotropy in Eq. (2), the kinetic anisotropy

akin
ab ðn̂Þ takes into account the orientation dependency of

growth rates. Different from former phase-field

approaches (Hubert et al. 2009; Ankit et al. 2013), the

kinetic anisotropy is of pivotal importance in this model

and will be related to experiments below. For the kinetic

coefficients, we restrict to two values x0
sl for the quartz–

liquid and x0
ss for the quartz–quartz interfaces (i.e. grain

boundaries, GBs). In the current study, the quartz–liquid
interfaces are chosen to be very mobile, in contrary to the

GBs. In previous applications of this model (Wendler

et al. 2011; Ankit et al. 2013), a simple interpolation of

the highly different interface mobilities x0
sl � x0

ss was per-

formed. This averaging creates low values of x at the

solid–solid–liquid triple junctions, so that it artificially

slows down interface motion there. To correctly treat the

growth competition between many grains, we propose

here a new interpolation function

(A) (B)

Fig. 2. Experimental image details. (A) Optical micrograph (polarized light) of outer boundary of the metachert sample. The initial rock wall is still visible as a

thin dark line (white arrow, black scale bar is 300 lm) (B) EBSD forward-scattering image of grain 308 and neighbors (rightmost crystal in A). The orienta-

tions of all grains at the sample boundary were determined by analysis of the Kikuchi pattern at the locations marked by squares. Intersection lines between

ideal crystal facets and the plane of view are plotted after fitting the facet distance relations dm/dz and dr/dz to determine the crystal shape. Dark patches

are multiple small and a few larger fluid inclusions at the initial rock wall (white dotted line in (B)).

© 2015 John Wiley & Sons Ltd, Geofluids, 16, 211–230
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gabð/Þ ¼
0 if /l[0 and a;b are both solid grains

/a/bP
a\b

/a/b
; else

(
:

ð7Þ
In this way, a constant (high) mobility along all liquid-

containing boundaries is maintained, as three-phase regions

abl and two-phase boundaries al (a, b: solid, l: liquid)

relax into equilibrium with the same rate.

It should be noted that in general mineralization prob-

lems, a diffusion–advection equation for the concentrations

and the Navier–Stokes equations for flow must be solved.

Below we show why this can be abandoned in the case of

quartz growth.

Input parameters for quartz growth

The task to find appropriate values as input parameters for

the PFM is a central part of the modeling process (strategy

outlined in Fig. 1). For the mineral a-quartz, three differ-

ent crystal forms are commonly observed (Fig. 3A): (i) six

{10�10} (m) facets of the hexagonal prism capped by two

nonequivalent rhombohedral facets, (ii) the positive rhom-

bohedron {10�11} (z face), and (iii) the negative rhombo-

hedron {01�11} (r face). The latter is often faster growing

as in the example of a natural needle crystal in Fig. 3B,

related to a higher impurity uptake (Ihinger & Zink

2000). The atomically rough c face ({0001}) is the fastest

growth direction and does not appear on euhedral crystals.

The trigonal crystal system of quartz (point group 32)

allows two enantiomorphic left and right handed variants,

appearing in equal proportions in nature. We neglect this

differentiation here, as the chiral facets {2�1�11} and {6�1�51}
were not observed on the experimentally grown crystals.

Interface energies

The free energy of the interfaces between quartz and an

aqueous liquid is not a unique property. Values between

1.08 J m�2 for the fully water coordinated {0001} face

and 0.12 J m�2 for the undercoordinated {0001} face

have been found by atomistic simulations (de Leeuw

2008). From the analysis of fluid inclusions in a greenschist

facies metapelite formed at approximately 300°C and

600 MPa, Hiraga et al. (2002) report a value of

0.145 � 0.055 J m�2, which is estimated as quite low due

to the effect of high pressure. For this study, we adopt the

average values of Parks (1984) under ambient conditions

and attribute it to the dominant z face, hence defining

csl = csl(z) = 0.360 J m�2 (s and l indicate solid and

liquid). All other facet energies are then defined in relation

to this energy by calibration of the anisotropy function,

thus generating the expected Wulff shape. Due to its influ-

ence on the local curvature at the crystal–crystal–liquid
junctions, also the grain boundary energy css is an impor-

tant parameter in competitive growth.

For textural equilibrium, the observed dihedral angle h
indicates the ratio of grain boundary energy and solid–
liquid energy and can be calculated from Young’s law as

2cos(h/2) = css/csl. Holness (1993) found a linearly

increasing equilibrium dihedral angle for quartz from 60°
at 400°C to 80° at 600°C (p = 400 MPa). This is sup-

ported by Hiraga et al. (2002) who reports an angle of

45° for an estimated temperature of 250–300°C. We

therefore choose the dihedral angle according to this linear

relationship for the temperature of 430°C as 61°, equiva-
lent to a ratio css:csl = 1.72.

Analysis of relative growth rates

The growth shape of a freely growing quartz is determined

by the differences in growth rate of its various faces. As no

precise data on atomistic growth rates under our experi-

mental conditions are available from literature, we analyzed

the shapes of selected needle crystals after the end of the

experiment, using thin section images. We assume the crys-

tal shape to preserve the symmetry of the point group; that

is, all equivalent faces have the same distance from the

ideal crystal center. The crystal center is thought to be

located in the middle of the 2D grain area at the surface of

the artificial fracture from which epitaxial overgrowth ini-

tially starts (the 2D ‘seed’ area). To reduce the degrees of

freedom, we assume that this area is circular. As a conse-

quence, the two relations that determine the final shape

(A) (B)

Fig. 3. Typical growth shape of quartz. (A) z

(f10�11g) and r (f01�11g) faces are

nonequivalent rhombohedral faces, m

(f10�10g, f01�10g) are prism faces (hexagonal

unit cell used for indexing). (B) Natural

needle shaped Brazilian quartz crystal

(diameter � 5 mm), which shows dominant

slow-growing z faces related to impurity

uptake, as analyzed using micro-infrared

spectroscopy of growth zone impurities

(reprinted with permission from Ihinger &

Zink (2000).

© 2015 John Wiley & Sons Ltd, Geofluids, 16, 211–230
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are the growth rate of m to z faces, vm/vz, and that of r to

z faces, vr/vz. As we only choose well-defined euhedral

crystals (Fig. 2A, the three larger crystals at the right side),

the ratio of growth rates can be approximated by the

ratio of distances from the crystal center, for example

vm/vz � dm/dz. To extract these 3D shape parameters

from the 2D thin sections, we apply the following geomet-

rical analysis: we start with an ideal quartz crystal in the

reference coordinate frame, its a-axis being parallel to the

x coordinate direction, and c-axis parallel to the z-direc-

tion. The normal vectors of all facets are calculated in the

frame of reference. The distances of the r and m facets (dr
and dm) from the center are predefined to typical values,

where z distance is taken as unity, dz = 1. Subsequently,

the transformation into the grain reference system is done

by rotation using the three Euler angles from the EBSD

measurements. The intersection lines between the hypo-

thetical crystal shape and the thin section plane are calcu-

lated and plotted as an overlay onto the image (Fig. 2B).

In most of the cases, the slopes of the intersection lines

unambiguously identify the facet index. A linear scaling is

applied to give an optimal match to the width, length, or

facet section length. In an iterative procedure, dm/dz (the

most sensitive parameter), dr/dz, and the vertical z coordi-

nate of the location of the crystal center are changed, to

iteratively improve the fitting. An example for the resulting

fit is shown in Fig. 2B for grain no. 308 of the metachert

sample. Here, the crystal section is bounded by two z and

two m facets with dm/dz = 0.3 and dr/dz = 1.1.

To additionally get absolute values for the growth rates,

the size of a few selected crystal grains were measured,

where the pyramidal tips in c-axis direction were visible in

the section plane (sandstone sample, growth duration

311 h). The distance from rock wall to tip was found to

be approximately 400 � 20 lm. Using the geometric rela-

tionship between c-axis and rhombohedral faces, an abso-

lute average growth velocity of vz = 0.03 � 0.003 mm

day�1 (3.6 9 10�10 m sec�1) was calculated.

The average growth rates found by the geometric cali-

bration procedure are given in Table 2 in comparison with

previous studies of hydrothermal growth at comparable

conditions. Here, all rates from the literature are scaled

with the rate of the reference z facet {10�11}. In addition,

for z and c facets, the absolute value in mm day�1 is given.

The vz/vr ratio of about 1:1.1 and the vm/vz ratio are

quite constant (our ratio of 1:5 is a lower bound), whereas

the c/z ratio shows greater changes. On the other hand,

when comparing absolute growth rates, the atomically

rough c face seems to be to be the proper reference with

the smallest variability under pressure and temperature

changes. This is mainly due to the lack of a nucleation bar-

rier for this face, whereas growth and dissolution rate of

flat faces are determined by the presence and number of

screw dislocations. Our growth-rate data compare well to

the literature, especially for the industrial quartz growth

data from Iwasaki et al. (2002). It must be noted that we

could not determine the growth rate of the noneuhedral

c face experimentally and have chosen a similar factor of

vc/vz = 8.6, giving a total rate of 0.03 mm day�1.

Construction of anisotropy functions

In the approach of the PFM, the crystal growth shape

results from a superposition of anisotropy of kinetics an

interfacial energy, in accordance with basic crystal growth

theory (Sekerka 2005). For vanishing driving force, the

interface evolves according to capillary anisotropy a
cap
sl ðn̂Þ

only, whereupon the Wulff shape is formed (n̂ is the sur-

face normal vector). For larger driving forces, this shape is

modulated by the kinetic anisotropy akin
sl ðn̂Þ to take into

account facet-specific kinetics; hence, the normal

velocity varies according to the product of both,

vðn̂Þ� a
cap
sl ðn̂Þ � akin

sl ðn̂Þ (see Appendix A). Figure 4(A,B)

represents a 2D schematic of this idea where the compact

Wulff shape in Fig. 4A is superposed by a kinetic Wulff

shape (Fig. 4B) with the same facets, albeit at different dis-

tances from the crystal center to give the growth shape

Table 2. Growth rates of different quartz forms, as determined from comparable hydrothermal growth experiments or used as input parameters in simula-
tions (last two rows in table). Dimensionless ratios scaled with the rate of the reference z facet (f10�11g) are listed. Dimensional values for z and c faces in

mm day�1 are also given.

r
f01�11g

m
f10�10g

z
f10�11g (mm day�1)

c
{0001} (mm day�1) Reference

1.67 0.0/0.17 1 0.03 8.33 0.25 Iwasaki et al. (2002), Table 1*

1 0.05 0.15† 2.87 0.43 Ostapenko & Mitsyuk (2006)‡

1.03 – >1 0.007 21.5 0.16 Lander et al. (2008)§, exp.

1 0.16 1 0.007 20 0.14 Lander et al. (2008)¶, sim.

1.07 0.24 1 0.03 8.6 0.26 This work**

*Grown by industrial process in alkaline Na2CO3/NaOH solution (345°C, 88 MPa). †Exception: in the data from Ostapenko & Mitsyuk (2006), the minor
rhombohedral face is taken as reference. ‡Data from Fig. 1 in Ostapenko & Mitsyuk (2006). Grown in hydrothermal reactor (1 M NaOH solution, 360°C,
100 MPa) by dissolution of large c-oriented single crystal due to temperature drop of 10 K at 360°C (relative supersaturation: 2.4–2.8%). §Grown in 0.3 M

Na2CO3 solution (69 MPa, 350°C) from single crystalline quartz feed material by temperature drop to 300°C. ¶Adapted to data from Table 2 in Lander et al.
(2008). **Grown from natural quartz sand (T = 370°C, p = 31 MPa) by temperature step to T = 430°C in Okamoto & Sekine (2011).
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defined above. The equilibrium crystal shape (Wulff shape)

is defined here mathematically by a fully facetted interfacial

energy anisotropy (Wendler et al. 2011; Ankit et al. 2013)

(Appendix B). The polar plot of the capillary anisotropy

function is depicted in Fig. 4C for the two-dimensional

case (bold red), constructed as a piecewise composition of

circular arcs (spheres in 3D). Due to a lack of reliable facet

energies from literature, we evaluated different ratios of

the solid–liquid energy of m to z faces (Fig. 1). The choice

of cslðmÞ : cslðzÞ ¼ a
cap
sl ðmÞ : acap

sl ðzÞ ¼ 0:786 results in the

depicted aspect ratio of Fig. 4A and resembles closely nat-

ural quartz crystals grown close to equilibrium (Suzuki &

Kasahara 2010). In the 3D simulations, we assume that

both rhombohedral r and z faces have the same interfacial

energy.

For the kinetic anisotropy akin
sl ðn̂Þ, we first choose a differ-

ent set of vertex vectors (blue) that maintain identical

facet directions, but lead to the high aspect ratio shape in

Fig 4D (solid black). This shape is implicitly defined by

demanding that both capillary and kinetic anisotropy

together give the growth ratios found by the calibration

procedure (Table 2), for example for the m facet

vðmÞ� a
cap
sl ðmÞ � akin

sl ðmÞ ¼ 0:786 � 0:3 ¼ 0:24. The rhom-

bohedral z facet {10�11} again constitutes the reference, for

which we define akin
sl ðzÞ ¼ a

cap
sl ðzÞ ¼ 1. The corresponding

polar plot is indicated by the bold red dashed line in

Fig. 4D, with the result that the velocity of the vertical prism

(m) faces are slowed down. Second, we want to prescribe a

high value of growth velocity for the c-axis (noneuhedral)

direction (Lander et al. 2008). This leads to a fast develop-

ment of the crystalline facets. For this purpose, the kinetic

anisotropy is modified as detailed in Appendix B (Eq. A3)

and given schematically as polar plot in Fig. 4D (bold solid

red). In our setup, we choose a factor of 8.6 for the ratio of

c- to z-direction, close to the hydrothermal growth velocities

given by Iwasaki et al. (2002).

Driving force

Whereas the crystalline anisotropies determine relative

rates, absolute rates depend on the driving force for crys-

tallization and reaction kinetics, which both need to be

defined as functions of the supersaturation. Quartz growth

and dissolution can be described by the overall reaction

(phase indices s: solid, l: liquid, aq: dissolved)

SiO2ðsÞ þ 2H2OðlÞ $ H4SiO4ðaqÞ: ð8Þ
In the context of solution thermodynamics, the driving

force of the reaction is given by the free energy difference

between crystal and aqueous solution. The change in

Gibbs free energy for crystallization of 1 mole of quartz

from solution at temperature T is given by (Rimstidt &

Barnes 1980; Dove & Han 2007)

DG ¼ RT ln
Q

KspðT Þ
� �

¼ RT lnðSÞ; ð9Þ

where R is the gas constant, Ksp(T) is the temperature-

dependent solubility product, and Q is the activity product

Q ¼ aH4SiO4

aSiO2
a2
H2O

� CH4SiO4
: ð10Þ

In the case of low salinity, the activities of water and dis-

solved silica equal unity, and we can approximate aH4SiO4

by CH4SiO4
, the molar concentration of orthosilicic acid,

and Ksp by C
eq
H4SiO4

, the equilibrium concentration deter-

mined for our experimental conditions (98 ppm, Okamoto

et al. 2010). The driving force is the deviation of the satu-

ration index S = Q/Ksp from unity. For a solution concen-

tration of 350 ppm, S = 3.6, and the Gibbs free energy

difference is 7322 J mol�1. In the thermodynamic formu-

lation Eq. (1), Helmholtz free energy densities of liquid and

solid phase as function of temperature and chemical compo-

sition are necessary. The mechanical work due to the change

in molar volume during crystallization at 31 MPa equals

n100

n100

n101

n101

(A) (B) (C) (D)

Fig. 4. 2D Schematic: Combination of capillary and kinetic anisotropies (only pyramidal and prism facets depicted): For a given equilibrium crystal shape

(=Wulff shape) (A), using the functional form Eq. (A2), the capillary anisotropy (C) is defined via the vertex vectors of the polyhedron. To get a growth shape

with same growth faces but larger aspect ratio (B), additionally the kinetic anisotropy (D) is defined (in c and d polar plots of the anisotropy functions are given

in red, the resulting crystal shape in black and the vertex vectors in blue). In Fig. D, the red solid curve indicates the extended kinetic anisotropy Eq. (A3), which

allows for high growth rates in noneuhedral directions (here given as 3:1 for the growth ratio of c to z faces, extension to three dimensions is analogous).
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pDV ¼ p VQtz
m � V

H4SiO4ðaqÞ
m

� �
� 145 J mol�1 and can

therefore be neglected. Hence, we may approximate the

Helmholtz free energy F = G–pV with the Gibbs free

energy.

To convert Eq. (9) into a free energy density, it has to

be divided by the molar volume of quartz, VQtz
m . One has

to bear in mind that one unit volume of solution includes

solute of a much smaller volume of quartz when precipi-

tated. For a dilute solution, this fraction is given by the

difference of actual and equilibrium silica concentration,

multiplied with the ratio of dissolved silica molecular vol-

ume to water molecular volume. Although water is in a

supercritical state at our experimental conditions, we

assume the volume fraction of silica and water to be well

approximated by VQtz
m =VH2O

m at low temperatures. Thus,

the free energy density difference is

Df ðCH4SiO4
Þ ¼ CH4SiO4

�C
eq
H4SiO4

� � vQtz
m

vH2O
m

� RT

vQtz
m

ln
CH4SiO4

C
eq
H4SiO4

 !

¼C
eq
H4SiO4

RT

v
H2O

m ðS�1Þ lnðSÞ;
ð11Þ

giving Δf = 1.059 9 105 J m�3. In the bulk free energy

formulation Eq. (4), we assign to each solid phase (repre-

senting a crystal grain) a free energy of fs = 0 and to the

aqueous solution the value from Eq. (11), fl = Δf. The dif-

ference establishes the driving force for crystallization,

Δf = fs–fl, which is assumed to be constant according to a

constant supersaturation at all quartz interfaces. This

implies that diffusion and advection are neglected and the

growth rate of the grains is assumed to be completely

dominated by interface kinetics. This assumption is admis-

sible if: (i) the rate of advection at the crystal interface is

large compared to the rate of diffusion, (ii) the average

flow velocity is large compared to the growth rate of the

crystal, and (iii) the flow is mostly laminar and uniform,

ensuring a constant gradient at the thin concentration

boundary layer adjoining the crystal–liquid border. If we

set the characteristic length scale in the flow problem to

the fracture aperture of 300 lm and the estimated average

velocity of 1 mm sec�1 and take density and viscosity of

water at the given supercritical conditions (IAPWS 2007),

the calculated Reynolds number of Re = 1.8 indicates that

the final condition is met. The first two conditions can be

evaluated by calculation of the dimensionless Peclet num-

ber Pe and Damk€ohler number of second kind DaII, (see

e.g. Dijk & Berkowitz 1998). Pe is defined as quotient of

advective versus diffusive transport rate, and DaII as ratio

of reaction rate to diffusion rate. With the diffusivity of sil-

ica in supercritical water at our growth conditions of

5 9 10�8 m2 sec�1 (Walton 1960), Pe = 7 follows, and

taking the average quartz growth velocity of

v = 3.5 9 10�10 m sec�1, DaII = 3 9 10�4. Hence, under

the actual experimental conditions, diffusion is fast com-

pared with crystal growth. It was previously demonstrated

that the crystallization process is dominated by interface

kinetics and not solute transport (Okamoto et al. 2010).

According to the Peclet number, advection and diffusion

are nearly of the same order, so that no concentration-

depleted crystal–liquid boundary layers are to be expected

in laminar flow. A similar argument was given for a simula-

tion study of quartz growth by Lander et al. (2008). Nev-

ertheless, the estimations given here will break down in the

late stage of crack sealing, because the characteristic length

scale then reduces to typical pore sizes.

Interface kinetics

For a supersaturation of the inlet fluid of S = 3.6, the

experimental growth velocity was evaluated to be

0.03 mm day�1. For general situations, the value of the

kinetic coefficient x in the phase-field Eq. (5) as function

of supersaturation and temperature must be given. Assum-

ing that the growth-rate rgr of the quartz–solution inter-

face depends linearly on the saturation index, transition

state theory gives

rgr ¼ k
Q

KspðT Þ � 1

� �
� k

CH4 SiO4

C
eq
H4SiO4

� 1

 !
¼ k ðS � 1Þ;

ð12Þ
where k– is the precipitation rate coefficient (Rimstidt &

Barnes 1980) for a system containing 1 kg of solute and

1 m2 of quartz surface area. From Eq. (12), we get an

equivalent interface velocity by multiplication with the

quartz molar volume and division by the ratio of surface

area and solute mass as

vgr ¼ VQt0z
m rgr
As=M

¼ VQtz
m k̂ ðS � 1Þ: ð13Þ

(Rimstidt & Barnes 1980), where k̂� is now the rate coeffi-

cient with units in mol m�2 sec�1. Dissolution–precipita-
tion series in the temperature and pressure range of our

experimental setup were carried out in (Okamoto et al.

2010), from which the rate coefficient was determined as

log(k–) = �0.0886–2638/T s�1 (T in K) and the surface-

to-mass ratio As/M = 33.6 kg m�2 for T = 390°C.
At higher supersaturation, when curvature effects can be

neglected, the growth velocity in the PFM scales for a

solid–liquid boundary as v ¼ x0
slDf (Appendix A). With

Eq. (13) and the free energy difference Eq. (11), the

model kinetic coefficient can now be defined as

x0
sl ¼

vgr
Df

¼ vQtz
m vH2O

m k

C
eq
H4SiO4

ðA=M ÞRT lnðSÞ : ð14Þ

With the values of molar data given in Table 5, the kinetic

coefficient amounts x0
sl ¼ 2:39� 10�15 m4 Js�1. In the der-

ivation of Eq. (14), a value of S substantially larger than 1
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has been imposed. The kinetic coefficient for grain boundary

motion x0
ss is chosen two orders of magnitude smaller to

avoid substantial grain boundary migration within the simu-

lation time. It must be noted that grain boundary motion is

an important process for longer time scales in the evolution

of metamorphic rocks and has been simulated with this

model for the case of partial melts in Wendler et al. (2009).

Parameter set

For the simulations, each model parameter with physical

units is nondimensionalized by dividing it by the respective

scale quantity and listed in column 5 of Tables 3–5. From
a simple dimensional analysis of the phase-field equation

Eq. (5), the scales for energy density f0, surface tension c0,
length l0, time t0 and kinetic coefficient x0 are related as

f0 ¼ c0=l0 and t0 ¼ l20=x0c0 (Wendler et al. 2009). Hence,

choosing a scale for length and interface tension deter-

mines the energy scale (an inaccurately chosen interface

tension will change the driving force), and choosing a scale

for the kinetic coefficient gives the time scale, provided

that length and interface energy are fixed. Here, we set

l0 = Δx = 1 lm as the distance between two grid points to

well resolve the smallest grains, c0 = 0.36 J m�2 as the

solid–liquid interface tension of quartz and the above-

defined kinetic coefficient as x0 = 2.39 9 10�15 m4 Js�1.

From this, an energy density scale of f0 = 3.6 9 105 J m�3

and a time scale of t0 = 1162 sec follow.

RESULTS AND DISCUSSION

We now apply the PFM for quartz growth starting from

single nuclei and polycrystalline seeds mimicking the rock

wall. In all simulations, we use the parameters from

Tables 3–5 with one exception: According to the parame-

ter adaption procedure given in Fig. 1, supersaturation

indices S in the range of the experimentally determined val-

ues (Table 1) are varied to account for observed differences

between simulation results and experiment. The respective

driving forces and kinetic coefficients are then calculated

according to Eqs (11) and (14). For vein growth, the

three dimensionality of the processes is essential, as mor-

phogenesis by growth competition involves fast-growing

directions on the whole orientation space of the crystal.

Nonetheless, as a computationally faster approach to test

various parameter configurations, we also applied 2D simu-

lations. The phase-field Eqs (5) are solved here using com-

bined finite difference and finite volume techniques on a

regular grid, with an explicit time update and a second-

order accurate spatial discretization. Computation time is

reduced by parallelization and algorithmic optimization

(Nestler et al. 2008b), so that the simulations presented in

this work could be solved on a quadruple core desktop

PC.

Single crystal

The simplest test of the model is the shape evolution of a

single crystal in 2D. Growth started from a circular seed of

60 lm diameter according to the typical grain size and a

driving force of D~f ¼ 0:15 was applied, corresponding to a

supersaturation of S = 2.7. The growth velocity was deter-

mined from the phase-field locations /s = 0.5 along facet

normals. The velocity of the z (inclined) and m (vertical)

facets and of the c-direction (long axis of crystal) is plotted

versus logarithmic time in Fig. 5A, with the solid phase-

field depicted at different time steps as insets. During the

development of the facets, the velocities asymptotically

converge to the theoretically predicted values given by

vðtn̂Þ ¼ ~x0
sla

kin
sl ð̂nÞacap

sl ð̂nÞD~f (Appendix A), which here is v

(z) = 0.15 and v(m) = 0.035. When the faceting is com-

plete, the c-axis velocity drops quickly by a factor of about

9 (given by the selected kinetic anisotropy). This dynamical

change results in an initial velocity advantage for the

Table 3 Numerical and model parameters.

Numerical parameter Symbol Eq. dim. value dim.less value

Grid spacing Δx – 1 lm 1.0
Time stepwidth Δt – 58 sec 0.05
Interface width e 1, 2, 3 4 lm 4.0
Higher order

potential parameter

d 3 4.32 J m�2 12.0

Table 4 Interfacial parameters (s: solid, l: liquid).

Interfacial parameter Symbol Eq. Dim. value Dim. less value Reference

s–l interface tension (z face) csl(z) 2, 3 0.36 J m�2 1.0 Parks (1984)
Interface energy anisotropy function a

cap
ab ðn̂Þ 2 Defined by Wulff shape: csl(r):csl(z):

csl(m) = 1:1:0.786
This work

s–s interface tension css 2, 3 0.62 J m�2 1.72 Hiraga et al. (2002);
Holness (1993)

s–l kinetic coefficient (z face) x0
slðzÞ 6 2.39 9 10�15 m4 J�1 s�1 1.0 Exp., this work

Kinetic coefficient anisotropy function akinab ðn̂Þ 6 defined by kinetic Wulff shape: vr:vz:
vm = 1:1.07:0.3

This work

s–s kinetic coefficient x0
ss 6 2.39 9 10�17 m4 J�1 s�1 0.01
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noneuhedral orientations. Thus, larger fracture openings

will privilege growth of noneuhedrally terminated grains

during the crack-sealing process, followed by competitive

growth for crystals with well-developed facets (Urai et al.

1991). The crystal finally achieves a constant shape ratio of

dm:dz = 0.21:1 after a duration t = 8.8 days (physical time,

t0 = 904 s) having a long axis of 0.5 mm (Fig 5B). To

simulate solid–liquid equilibrium conditions, we use a

method which adjusts the actual driving force in each time

step as to conserve the initial volume of the crystal (Nestler

et al. 2008a). Starting from a circular crystal of 200 lm
diameter, the shape in Fig. 5C finally develops. This is

close to the geometry we used as input for the capillary

anisotropy (Fig 4A) and confirms that evolution is now

dominated by interface energy minimization.

The evolution of a 3D quartz crystal was also simulated

with the anisotropy combination according to the calibra-

tion procedure described above. In this case, a spherical

nuclei of 40 lm diameter at a supersaturation of S = 3.9

grew within a physical period of 6.1 days to a size of

0.5 mm (Fig. 6A). The growth rates in 2D and 3D of

0.05–0.08 mm day�1 compare well to the estimated

experimental value of 0.03 mm day�1. Crystal facets of the

same crystal zone with different growth rates will change

their relative size in time. This may lead to the complete

elimination of the faster growing facet (Iwasaki & Iwasaki

1995). In the simulations, this can be observed as a slow

decay of the minor rhombohedral r faces, for which we

have set a slightly higher growth rate vr/vz = 1.1 in rela-

tion to the z faces, see Fig. 6A (right image). This change

in relative size of z versus r faces in time has also been

found in natural quartz crystals by analysis of growth sec-

tors (Ihinger & Zink 2000). In Fig. 6B, the initial stage of

the same process is shown, where a spherical nucleus has

been set. The crystal has relaxed into the 3D Wulff shape

with its compact habit and now starts to grow predomi-

nantly along the c-axis direction, which was rotated here

for 55° versus the y-axis.

Polycrystal

After ensuring that the habits and growth rates of simu-

lated and real single crystals coincide well, we studied poly-

crystalline growth with a focus on morphological details.

In this case, the triple junction (quadruple junction in 3D)

dynamics become important. The dynamics are influenced

by the magnitude of the grain boundary energy, but this

parameter is not well determined and deviations from the

reference value in Table 4 were also tested (see the proce-

dure given in Fig. 1).

Table 5 Bulk parameters. Physical parameters (for S = 3.6) are given without non-dimensional values, as they only enter the calculation of the free energies
(scale parameters are given in the text).

Bulk parameters Symbol Eq. Dim. value Dim. less value

Free energy, liquid fl 4 0 0 Calculated, this work
Free energy, crystal fs 4 1.059 9 105 J m�3 0.294 Calculated, this work
Temperature T 1, 2, 11, 14 703 K Okamoto & Sekine (2011)

H4SiO4 equil. conc. C
eq
H4SiO4

11, 14 98 9 10�6 Okamoto & Sekine (2011)
H4SiO4 concentration CH4SiO4 11, 14 350 9 10�6 Okamoto & Sekine (2011)
Rate coefficient for quartz precipitation k-(T) 14 k– = �0.0886 to 2638/T s�1 Okamoto et al. (2010)
Ratio quartz surface area versus mass As/M 14 33.6 m2 kg�1 Okamoto et al. (2010)

(A) (B) (C)

Fig. 5. (A) Facet velocities from a 2D

simulation of single crystal growth from a

circular nuclei of 60 lm diameter (grid size:

600 9 600). The velocities along the z and m

facets approach the theoretical values (dotted

line), and along the noneuhedral c-axis, a

velocity transition after full development of

facets is observed. Phase-field profiles are

displayed as insets at four time steps

(indicated by arrows). (B) A crystal grown

from a 40 lm seed reaches its c–m aspect

ratio of 8.2 predicted by the model at a

growth distance of about 1200 lm. (C) At

vanishing driving force, the crystal shape

changes to the equilibrium shape (ECS) given

by the interface energy anisotropy.
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In a 2D scenario, equally sized crystals with random orien-

tation were placed adjacent to form flat films of constant

height, as to reproduce the respective rock surface prepared

by a micro-cutter in the experiment. Periodic boundary con-

ditions were applied along the x-direction, that is a horizon-

tal wrapping of the simulation box. First, simulations were

repeated at least 20 times with the standard model setup

(Table 3–5) always using different grain orientations.

Figure 7 (A–C) shows that, after an initial competition pro-

cess, quartz crystals with c-axes subnormal to the substrate

prevail. The widening crystal bases closely resemble the sec-

tional images of the samples (e.g. Fig. 7E). Grain bound-

aries between the larger crystals are chiefly straight. The

grain boundary directions can be well explained by the prop-

agation of the adjoining facets in normal direction according

to their velocity, as proposed previously by Urai et al.

(1991). Sudden directional changes appear, when one of the

triple junction facets gets consumed and is replaced by

another one of the same crystal. Especially at small grain size,

curved boundaries evolve in competitive growth, where cap-

illary forces must have rotated the triple junction. As an

example, a detail from a forward-scattering image (metac-

hert sample) with similar features is included in Fig. 7E,

where the c-axis orientations of the neighboring crystals pro-

jected to the plane of view are comparable to the 2D simula-

tion. The fast kinetics we have defined for the c-axis

orientation causes a nearly instantaneous formation of pyra-

midal crystal tips for those grains aligned subnormal to the

rock wall (Fig. 7A). These have clearly an initial advantage

over the stronger misaligned ones, which form facets with-

out propagating much into the liquid. This effect becomes

more pronounced with increasing size of the seed grain and

is probably responsible for several exceedingly large crystals

found in the quartz thin sections, which protrude further

into the solution space than the well-aligned crystals (see

Fig. 2A, leftmost crystal).

Another noticeable feature commonly found both in 2D

and 3D simulations and sample images are ‘bicrystals’ com-

posed of two grains with slightly differing c-axis orienta-

tions that adopt a common convex shape during growth

(e.g. Fig. 7B and E, left sides). The liquid phase-field pro-

file of the final stage is given in Fig. 7F. Obviously, a small

amount of liquid phase is incorporated into the grain

boundary during propagation of the bicrystal triple junc-

tion. From analysis of simulations with different orienta-

tion, we conclude that this partially wet film predominantly

appears between grain pairs with similar c-axis orientation.

Hence, the wet boundaries track approximately the direc-

tion of the quartz prism (m) faces, and furthermore

remains stable only if supersaturations are chosen lower

than S = 3.0. The existence of a stable liquid film at a small

driving force is not an artifact of the model. It follows

from the value of the grain boundary energy relative to

that of the solid–liquid free energy of an m face that a total

wetting condition is fulfilled (2 ~cslðmÞ = 1.57 < ~css = 1.72,

Table 4). In the sample images, grain boundaries with

trails of fluid inclusions are frequently found (example indi-

cated by an arrow in Fig. 7E), which may be a remainder

of a wet boundary. Also, sometimes larger fluid inclusions

appear as worm-like features (at the base of the rightmost

crystal in Fig. 2B).

Capillary and kinetic anisotropy were defined in the

model using different shapes. This leads to a dependence

of the evolution of quartz equilibrium and growth shapes

on driving force. To test whether we can remove this

degree of freedom, both anisotropies were configured with

the same Wulff shape in a second simulation setup. A final

time frame is shown in Fig 7D. Again, growth competition

occurs, but a more contiguous quartz surface develops, sig-

nificantly different from the micrographs.

To verify the measured orientation parameters (Euler

angles) and to perform a direct comparison with the exper-

iment, ensembles of four to eight quartz grains were

selected from the sample micrographs and 3D simulations

were carried out. From micrographs and EBSD measure-

ments, the width of the grains at the former rock wall

boundary and their orientation was determined. Using this

as input, a starting scenario as depicted in Fig. 8A was cre-

ated. The initial seed shapes were chosen as ellipsoids with

the grain width as major axis, and the center position

(A) (B)

z r

Fig. 6. (A) Evolution of a 3D single crystal

into its growth shape (grid size:

120 9 120 9 500). As the growth ratio of z

to r faces was defined as vr/vz = 1.1, the

major rhombohedral faces (z) gradually grow

larger, while the minor r faces decrease. (B)

In the initial stage, a spherical nucleus relaxes

into its equilibrium shape, before elongated

growth along c-axis sets in (color indicates

spatial orientation).
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approximated by performing the shape fitting procedure as

described above. The ellipsoidal shaped sample grains were

embedded in a tiling composed of grains with c-axis sub-

parallel to the rock wall, to account for neighbors in the

third dimension (Fig. 8A). For this specific configuration,

the central subnormally aligned grain no. 236 had a left

and right neighbor (241 and 242) with identical orienta-

tion, and it is hence treated as a single grain (Fig. 8E).

Figure 8 (A–C) shows the evolution of one specific micro-

geometry over the physical time of 8 days, with the final

structure intersected at the expected position (Fig. 8A,

white dashed line) in Fig. 8D. An additional grain growing

into the field of view externally from outside of the section

(sample image in Fig. 8E, no. 237) was not taken into

account. The unknown details of the initial geometry

introduce a source of error in the simulations. Neverthe-

less, a good agreement is found, especially when compar-

ing absolute size of grains and orientation of facet

intersections (central grain no. 236 in Fig. 8D).

Validation: large system

As a final step, the hydrothermal growth of quartz on a

length scale comparable to the size of the synthetic fracture

aperture (~300 lm) was studied. In contrast to the micro-

ensemble simulations, random configurations of grains

sizes and orientations were applied, and averaged proper-

ties describing evolution of grain number, texture, and

sealing time analyzed. The simulation grid size was adapted

to match the physical size of the experiment and the num-

ber of grains chosen so that the average grain size of the

rock samples (Table 1) was reproduced.

In Fig. 9A, the final stage of the experiment after 311 h

is shown for free growth at the outer rock wall of the

metachert sample. Mostly crystals with c-axis orientation

subnormal to the wall rock advance, and those inclined for

more than 45° are completely replaced. For the 2D simula-

tion under corresponding growth conditions, 50 grains

with random orientations in the range of �90° to +90°
and average grain size of 65 lm were used. Fig. 9B shows

the simulation after a physical time of 200 hours when the

largest quartz crystals reached the same size as in the

micrograph (Fig. 9A) of 350 lm. Both experiment and

simulation show the evolution of a crystallographically pre-

ferred orientation (CPO) as the orange-to-red-colored

grains prevail, with their fast-growing c-axis oriented sub-

normal to the wall (note the difference in color scaling

from 0 to 45° for experiment and simulation). An unex-

pected effect is the dependence of crystal fabric on the

supersaturation (or driving force): The same setup with

saturation index reduced from 3.6 to 1.8 results in the

microstructure given in Fig. 9C, where the competition

sets in much faster and leaves only the well-aligned crystals

growing in isolation. When decreasing the supersaturation

further down to values of S � 1.8, growth cedes for most

seeds, with the exception of few grains which finally

occupy the whole liquid space. The reason for this behav-

ior is a predominance of capillary forces in this low super-

saturation regime: Crystal tips as well as grain–grain–liquid
junctions produce interface curvature, which constitutes a

negative driving force preventing growth or even inducing

dissolution of specifically oriented grains.

Accordingly, 3D simulations of free polycrystal growth

were carried out using an initial setup of 150 randomly

90°

0°

45°

(A) (B) (C)

(D) (E) (F)

Fig. 7. 2D quartz growth from rock wall with

10 equisized seeds (color scale for c-axis

angle given in A, grid size: 350 9 400,

supersaturation S = 2.35, same initial

configuration). (A–C) Time sequence showing

quartz needle evolution, using the combined

anisotropy developed for the experimental

conditions. (D) Compact quartz surface

results when applying the same anisotropy

function for surface energy also for kinetics.

In both cases, crystals aligned normal to the

fracture surface (orange to red) prevail, and

‘bicrystal’ shape develops. (E) Sample detail

with c-axis orientations of grains comparable

to simulation and adapted to the same length

scale. (F) Liquid phase-field showing partially

wet grain boundaries for specific orientations

(red stripes, indicated by arrow).
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oriented grains at the bottom of a simulation box of

600 9 600 9 540 lm size, for which we used doubled

grid spacing Δx = 2 lm to lower computational costs. The

initial grains were randomly distributed in a flat seed layer

by a 2D Voronoi tessellation algorithm, thereby ensuring

that the average grain size corresponds to the rock wall

grain size. As it is increasingly complicated to compare 3D

random microstructures to 2D micrographs, we use the

statistical measures as proposed by Okamoto & Sekine

(2011): First, the number of grains plotted as function of

increasing distance to the rock wall quantifies the speed of

the growth competition process (development rate of a

CPO). Distance L will always be scaled in the following

with the average grain size d, which was found to be the

relevant length scale in growth competition (Okamoto &

Sekine 2011). For the two samples in our study (metachert

and sandstone), the experimentally determined grain num-

ber scaled with the number of grains in the initial rock wall

layer is plotted versus the scaled distance L/d in Fig. 10A

(open and closed squares). The largest crystals had grown

up to a distance of L/d = 6, about 400 lm. Negative val-

ues of distance indicate positions in the original rock.

From the simulation frames we chose those for analysis

where the largest crystals had grown the same distance of

400 lm. The grain evolution for the standard parameter

set in 2D (red line) and 3D (small red circles) both fit very

well to the experimental value. To get comparable results,

it was important to exactly follow the experimental proce-

dure, which was done with 2D thin sections. Accordingly,

we used 2D slices of the 3D simulation data parallel to the

growth direction and counted grain numbers (and orienta-

tions) scanning line after line perpendicular to growth.

The c-axis orientation of the rock samples is not com-

pletely random (Fig. 11B at the rock wall). Hence, a 2D

(A)

(D) (E)

(B) (C)

Fig. 8. Test of the 3D phase-field model in a

micro-setup, with grain size and full orientation

determined from EBSD measurements (laterally

periodic boundaries, grid size: 150 99

90 99 150, color represents surface

orientation). (A–C) Three time steps showing

the evolution of 5 grains (no. 235, 236, 239,

241 = 242, 243 from Fig. 8(E) in perspective

view. Central prismatic grain is no. 236. (D)

Final stage with grain structure shown as

intersection. (E) Forward-scattering image

showing the grain ensemble and numbering.

Rock wall position is indicated as gray dashed

line.

(A)

(B)

(C) 0 90°45

Fig. 9. Experiment and simulation images of

free growth, scaled to the same physical size.

(A) c-axis orientations from outer rock

boundary for the metachert sample,

determined by birefringence measurements

(average grain size 23 lm). The color scaling

is similar to the simulations (red: c-axis

perpendicular, blue: parallel to rock wall). (B)

2D simulation with identical grain size and

random orientation (grid size: 3200 9 465).

(C) Setup as in B, but under supersaturation

S = 1.8 (Image A reproduced from Fig. 4B in

Okamoto & Sekine (2011), reprinted with

permission).
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simulation was started with a preferential orientation distri-

bution normal to the rock wall to match the preexisting

texture, which gives a similarly good agreement (#3 in

Fig. 10A, blue line). In contrast, a simulation with low

supersaturation S = 1.8 (#2, resulting in the microstructure

of Fig. 9C), indicated by the green line, clearly deviates

from the experimental data. The stronger decay of the

grain number plot indicates a fast initial selection process.

In addition, deviation of the observed orientation distri-

bution Robs(h) of an analyzed set of grains from a random

orientation distribution Rrnd(h) can be determined by cal-

culating the V-index (Okamoto & Sekine 2011):

V ¼
Z p=2

0

jRrndðhÞ�RobsðhÞjdh�
Xn

i
jRrndðhÞ�RobsðhÞjDh

with Dh¼ p
2n

andRrndðhÞ¼ cos
p
2
�h

� �
�cos

p
2
�ðhþDhÞ

� �
ð15Þ

The integral in this calculation extends over the possible

angles between the c-axis orientation and the fracture

normal h from 0 to 90° and is approximated in Eq. (15)

by a discrete summation of n (here n = 9) bins of angular

width Δh. Thus, a V-index of 0 indicates complete random

fabric, whereas the maximum of 1.67 (for n = 9) is

reached for perfect alignment of all grain c-axes. Grain ori-

entations have been analyzed along lines perpendicular to

the fracture boundary in a thin section (as in 2D simula-

tion images, for 3D simulation layer, slices were used in

the same way). The V-index plotted again as function of

scaled distance L/d from the seed plane is depicted in

Fig. 10B for both rock samples and the 2D and 3D simu-

lation discussed above. The 2D simulation results (#1, #2)

obviously deviate in magnitude from the experiment, but

show the same general trend. The metachert sample shows

a step-like increase at the rock wall, which could be attrib-

uted to a selective growth of grains with subnormal c-axis

orientations. To test this hypothesis, we modified the

(A)

(B)

Fig. 10. Statistical comparison of experiment and simulations (solid lines for

2D and small circles for 3D) for competitive free growth. Sample data are

given by filled and open black squares. Simulations #1–#3 are in 2D, #4 in

3D. Supersaturations are S = 3.6, except simulation #2 (S = 1.8). All simu-

lations start with random grain orientations, except simulation #3, where a

preferentially subnormal c-orientation distribution was created. (A) Number

of surviving crystals, normalized with number of grains at the initial vein/

host rock boundary. (B) c-axis fabric measure (V-index) quantifying devia-

tion from random c-axis orientation distribution.

(A)

(B)

Fig. 11. Syntaxial vein sealing (color scale as in Fig. 9): (A) c-axis orientations of partly sealed synthetic vein in metachert sample JU4-4IK with grain size

140 lm from previous study (image reproduced from Fig. 7D in Okamoto & Sekine (2011) with permission), pore space: gray, black scale bar: 0.3 mm. (B)

Simulation results, pore space in white color.
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orientation distribution in one simulation to describe pref-

erentially subnormal oriented starting grains, resulting in a

much better agreement thereafter (#3 in Fig. 10B). When

analyzing the 3D simulation (#4 in Fig. 10B), which was

adapted to the metachert grain size, no such mechanism is

necessary to explain the initial high texture index. To

reduce the fluctuations, five 2D scans at different slices of

the simulation box were averaged to give the results in

Fig. 10B (red circles). The major characteristics of textural

evolution are reproduced by the 3D simulation well.

As a simplified model of the geological process under

consideration, we reproduced the syntaxial sealing of the

synthetic hydrothermal vein from both sides of the open

space. An experimental microstructure is given in Fig. 11A

for the metachert sample (Okamoto & Sekine 2011), with

the initial rock wall boundary indicated as dashed line. An

example for a simulated fracture filling in 2D shows

Fig. 11B at a time step, where the remaining liquid space

is comparable to the experiment. As the width of the slit

aperture cut into the rock material is large compared to

the average grain size, grain orientations on upper and

lower parts of the ‘fracture’ are not correlated and thus

were chosen independently in the simulation. This may be

different in naturally occurring cracks, which would leave

grains with identical orientations on both sides. Although

the simulation was performed in 2D, many details appear

similar: Strongly misaligned grains (blue) are quickly over-

grown in the competition process. Even the short distance

of the vein aperture (300 lm) is sufficient to produce a

grain fabric in the fracture with dominating c-axis angles

from 45° to 90°, similar to the results of the hydrothermal

growth process. When subnormal oriented grains (forming

a sharp tip) impinge on their counterparts during vein clo-

sure, characteristic wavy grain boundaries are formed at

several places. An example in which the encountering

grains have similar orientations in experiment and simula-

tion is indicated by ovals in Fig. 11. These structures

would be recognizable in the completely sealed vein struc-

ture and could be used as a marker for the boundary

between upper and lower part.

Figure 12 shows four time steps of a 3D sealing simula-

tion for a smaller fracture with aperture width of 80 lm
and accordingly reduced average grain size of 7 lm. This

was done to reduce the computational costs. The simula-

tion starts with a longer initial phase of rest with low min-

eral mass accretion, in which mainly the grain facets are

formed (Fig. 12A). The retardation can be explained by

the small grain size leading to a higher average interface

curvature, which is equivalent to a negative driving force.

Thereafter, the well-aligned crystals finally protrude into

the open space and grow fast in the form of quartz needles

(Fig. 12B), and finally bridge the gap with an interlocking

structure. Complete hydraulic sealing appears here at

t = 10.3 days (Fig. 12D), with a remnant porosity of 2%.

With the approximation of a constant supersaturation

assumed in the simulation, this sealing time must be

regarded as a lower limit, as in the late stage of growth,

the reduced fluid-transport capability must be taken into

account.

CONCLUSIONS

This study shows how a general PFM can be adapted to a

geologically relevant mineralization process. A major goal

was to find reliable interface and bulk parameters necessary

to capture the morphological evolution of the polycrystal-

line quartz system. Methods were developed to supplement

existing thermodynamic and kinetic results by calibration

with specific experimental data. When configured with the

values given in this study, the model is able to represent

(A) (B)

(C) (D)

Fig. 12. (A–D) 3D simulation of fracture

sealing with initial aperture of 80 lm (grid

size: 150 9 150 9 80, S = 3.9) and an

average grain size of 7 lm (quartz surface in

fracture rendered according to surface

normal; grains at domain boundaries shown

in different color). After a longer initiation

period, fast needle growth sets in and creates

many crystal bridges. During the four time

steps (at t = 0.3, 1.6, 2.9 and 10.3 days)

porosity decreases to ~2% at the final stage

(D).
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experimental hydrothermal quartz growth at high tempera-

tures of about 400°C and high pressures of 30 MPa. For

different (p, T) conditions, thermodynamic parameters

such as driving force can be easily adapted from literature,

whereas the actual growth shapes might change, which

additionally requires detailed experiments. The following

modeling steps are important to quantitatively capture

quartz growth and have not been applied in combination

in previous numerical studies of vein growth:

• The solid–liquid interface energies csl for all exhibited

facets have been adapted to best approximate the

equilibrium crystal shape (Wulff shape). In the model,

the z facet ({10–11}) energy was chosen as a reference

for interface energy, and all other facet energies defined

via the capillary anisotropy function.

• Absolute growth rates depending on the degree of

saturation and temperature were defined to represent

precipitation kinetics of quartz. Independently, the

relative growth rates for all facets were chosen in form of

the kinetic anisotropy. In our case, we analyzed the

shapes of free grown needle crystals to estimate their

values and found facet-specific rates, which compare well

to results from other experimental studies. In addition,

we defined fast growth rates for noneuhedral directions,

which in the simulation favors quartz crystals aligned

normal to the boundary.

• The driving force for crystallization, corresponding to

the difference of free energies of solid and liquid phase,

was determined, and it controls whether silica is

precipitated or dissolved. Microstructure and overall

growth rate depend intricately on the driving force,

which is a function of the supersaturation – assumed as

constant in this work – and also depends on the

interfacial energy between liquid and crystal, which

changes with the local geometry.

In the quartz veins examined here, crystal aggregates

evolve by interaction, starting as epitaxial overgrowth of

the rock fabric. This growth competition process leads to

the formation of a crystallographic preferred orientation

and texture evolution, which closely resembles the hydro-

thermal experiment. As a consequence from the compari-

son of simulation and experimental results, we propose the

scaled grain number and the V-index as appropriate mea-

sures of validation. It was found that both parameters plot-

ted as a function of the scaled distance from the initial wall

are very sensitive to changes in the growth model parame-

ters, variance of grain sizes, and the existence of a predom-

inant texture in the rock matrix.

A strong dependency of morphology on the driving force

has been found in the simulations: Whereas high supersatu-

ration leads to more contiguous polycrystalline growth

fronts, low supersaturation favors isolated growth of quartz

needles and increases orientation selection. The predictions

possible with this model might help to unravel aspects of

the formation of vein microstructures and the estimation of

growth conditions. For the late stages of vein sealing, when

pore spaces are filled, transport by flow and diffusion will

be taken into account in future work.
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APPENDIX A: GROWTH EQUATION

Writing the phase-field kinetic equation Eq. (5) in the limit

of a sharp interface between phase a and b, one gets the local
growth velocity vn as function of surface normal vector n̂,

vn ¼ x0
abðn̂Þ f ðp;T ; cÞjba

� �
� cabðn̂ÞjÞ; ðA1Þ

where j is the mean curvature and f ðp;T ; cÞjba ¼ faðp;T ; cÞ�
fbðp;T ; cÞ is the driving force. Here, the kinetic coefficient

for the a–b interface x0
ab includes the kinetic anisotropy

function akin
ab ðn̂Þ as a modulating factor, and the surface ten-

sion, the capillary anisotropy a
cap
ab ðn̂Þ. It follows, that for

solid–liquid equilibrium (vn = 0), only a
cap
ab ðn̂Þ defines evolu-

tion by minimizing surface energy, hence creating the Wulff

shape. On the other hand, for larger driving forces, the

expanding Wulff shape created by the bracketed term on the

r.h.s. of Eq. (A1) is modulated by the kinetic anisotropy

function. Then, the velocity is given by

vn ¼ x0
ab � akin

ab ðn̂Þ � acap
ab ðn̂Þ � f ðp;T ; cÞjba:

APPENDIX B: MATHEMATICAL FORM OF THE
ANISOTROPY FUNCTIONS

The capillary anisotropy for the Wulff shape is calcu-

lated by finding the maximum inner product of surface

normal and all vertex vectors gslk of the crystal polyhe-

dron,

a
cap
sl ðn̂Þ ¼ max k n̂gslk

� �
; ðk ¼ 1. . .KÞ; ðA2Þ

(Wendler et al. 2011; Ankit et al. 2013). In Eq. (A2), K

denotes the number of vertex vectors and maxk {. . .},
the maximum value of all arguments in braces. Similar

to the surface energy in the Kossel crystal model, the

resulting energy shape is composed of circular arcs

(spheres in 3D), with facets appearing at the cusp loca-

tions (see Fig. 4C,D). Differently oriented crystals are

produced by rotating the vertex vectors gslk , which are

given in Appendix C in the reference coordinate system.

To realize an adjustable growth rate for non-euhedral

crystal directions, the following modification of Eq. (A2)

for the kinetic anisotropy was developed,

akin
ab ðn̂Þ ¼ 1þ d �max k n̂gabk

n o
�max k�1 n̂gabk

n o� �� �
�max k n̂gabk

n o
:

ðA3Þ
Here, maxk–1 {. . .} denotes the second largest argument

in the braces. The effect of the modulating prefactor in

brackets in Eq. (A3) is to leave the values at the facet ori-

entations unchanged – that is the cusp positions in the

gamma-plot – but shift all values in between proportionally

along the radial direction (from the dashed red curve to

the solid red curve in Fig. 4D). The strength of the prefac-

tor in our simulations is adapted by the constant d = 85 to

give the desired ratio of c- to z-facet velocity of vc:

vz = 8.6:1.

CRYSTAL SHAPE VECTORS

The capillary anisotropies in Eqs (A2) and (A3) are defined

by the vertex vectors of the Wulff shape. The angle between

the m- and c-crystal faces of 51.78° enters here. For the 2D
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simulations, the following six polygonal vertex vectors for

the Wulff shape

gsl1;2 ¼ 0

�1= cosð51:78	Þ
� �

¼ 0

�1:6163

� �
;

gsl3;...6 ¼ � sinð51:78	Þ
� cosð51:78	Þ

� �
¼ �0:7856

�0:6187

� � ðA4Þ

and the six polygonal vertex vectors for the kinetic Wulff

shape were used.

gsl1;2 ¼ 0
�1:6163

� �
; gsl3;...6 ¼ �0:3

�1:2354

� �
: ðA5Þ

In 3D, the quartz shape is a hexagonal prism capped by

two pyramids (c-axis parallel to z coordinate direction).

The Wulff shape contains 14 vectors, calculated by inter-

section of the respective facets at specified distances

(Table 6). Due to the nonequivalent pyramidal z and r

faces found in the analysis of the crystal shapes, the kinetic

anisotropy shape then comprises a set of 32 vertex vectors

(Table 7).

Table 7. The 32 polyhedral vertex vectors of the kinetic Wulff shape (3D).

Upper part (z > 0) Lower part (z < 0)

x y z x y z

0 0 1.6165 0 0 �1.6165
0.2204 �0.1273 1.4549 0.2204 0.1273 �1.4549
�0.2204 �0.1273 1.4549 �0.2204 0.1273 �1.4549

0 0.2546 1.4549 0 �0.2546 �1.4549
0.0262 0.3 1.3971 0.0262 �0.3 �1.3971
�0.0262 0.3 1.3971 �0.0262 �0.3 �1.3971
0.2467 �0.1727 1.3971 0.2467 0.1727 �1.3971
�0.2467 �0.1727 1.3971 �0.2467 0.1727 �1.3971
0.2729 �0.1273 1.3971 0.2729 0.1273 �1.3971

�0.2729 �0.1273 1.3971 �0.2729 0.1273 �1.3971
0.1732 0.3 1.2355 0.1732 0.3 �1.2355
0.1732 �0.3 1.2355 0.1732 �0.3 �1.2355
�0.1732 0.3 1.2355 �0.1732 0.3 �1.2355
�0.1732 �0.3 1.2355 �0.1732 �0.3 �1.2355
0.3464 0 1.2355 0.3464 0 �1.2355
�0.3464 0 1.2355 �0.3464 0 �1.2355

Table 6. The 14 polyhedral vertex vectors of the Wulff shape (3D).

Upper part (z > 0) Lower part (z < 0)

x y z x y z

0 0 1.6165 0 0 �1.6165
0.4536 0.7856 0.6187 0.4536 0.7856 �0.6187
0.4536 �0.7856 0.6187 0.4536 �0.7856 �0.6187

�0.4536 0.7856 0.6187 �0.4536 0.7856 �0.6187
�0.4536 �0.7856 0.6187 �0.4536 �0.7856 �0.6187
0.9072 0 0.6187 0.9072 0 �0.6187
�0.9072 0 0.6187 �0.9072 0 �0.6187
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