
BanD 89

Wissenschaftliche Berichte des Instituts für Fördertechnik und
Logistiksysteme des Karlsruher Instituts für Technologie (KIT)

ZäZILIa SeIBoLD

Logical Time for Decentralized Control
of Material Handling Systems

Lo
gi

ca
l T

im
e

fo
r D

ec
en

tr
al

ize
d

Co
nt

ro
l o

f M
at

er
ia

l H
an

dl
in

g
Sy

st
em

s
Z.

 S
ei

bo
LD

Zäzilia Seibold

Logical Time for Decentralized Control
of Material Handling Systems

WiSSenSchaftliche Berichte

institut für fördertechnik und logistiksysteme
am Karlsruher institut für technologie (Kit)

Band 89

Logical Time for Decentralized Control
of Material Handling Systems

by
Zäzilia Seibold

dissertation, Karlsruher institut für technologie (Kit)
fakultät für Maschinenbau, 2016
referenten: Prof. dr.-ing. Kai furmans, Prof. Kevin Gue Ph.d.

Print on demand 2016

iSSn 0171-2772
iSBn 978-3-7315-0567-9
dOi: 10.5445/KSP/1000057838

This document – excluding the cover, pictures and graphs – is licensed
under the Creative Commons Attribution-Share Alike 3.0 DE License
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):
http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher institut für technologie (Kit)
Kit Scientific Publishing
Straße am forum 2
d-76131 Karlsruhe

Kit Scientific Publishing is a registered trademark of Karlsruhe
institute of technology. reprint using the book cover is not allowed.

www.ksp.kit.edu

Logical Time
for Decentralized Control

of Material Handling Systems

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Maschinenbau
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Dipl.-Ing. Zäzilia Seibold

Tag der mündlichen Prüfung: 17. Juni 2016
Hauptreferent: Prof. Dr.-Ing. Kai Furmans
Korreferent: Prof. Kevin Gue Ph.D.

Danksagung
Die vorliegende Arbeit entstand während meiner Tätigkeit als wis-
senschaftliche Mitarbeiterin am Institut für Fördertechnik und Logistiksys-
teme des Karlsruher Instituts für Technologie. Ich möchte mich an dieser
Stelle bei allen Personen bedanken, die zum Gelingen dieser Arbeit beige-
tragen haben.
Ich bedanke mich bei meinem Doktorvater Prof. Dr.-Ing. Kai Furmans
für die vertrauensvolle Betreuung. Während meiner Zeit am IFL habe ich
nicht nur im wissenschaftlichen Arbeiten viel von ihm gelernt. Prof. Kevin
Gue PhD danke ich für die Übernahme des Koreferats. Als Betreuer meiner
Diplomarbeit hat er die Begeisterung für wissenschaftliches Arbeiten und
dezentrale Steuerungsalgorithmen in mir geweckt. Bei Prof. Dr.-Ing.
Gisela Lanza bedanke ich mich für die Übernahme des Prüfungsvorsitzes.
Besonderer Dank gilt all meinen Kollegen für die gemeinsame Zeit am IFL.
Allen Studierenden danke ich, die als Hiwis oder Abschlussarbeiter mit
mir gemeinsam den GridSorter weiterentwickelt haben. Ebenso danke ich
Gebhardt Fördertechnik und flexlog für die Unterstützung beim Aufbau
und der Inbetriebnahme des GridSorter-Demonstrators.
Meinen Eltern und Geschwistern danke ich sehr herzlich für das Korrek-
turlesen und die interdisziplinären Diskussionen, die maßgeblich zur Ver-
ständlichkeit und Lesbarkeit meiner Arbeit beigetragen haben. Sie haben
mich auf dem gesamten Lebensweg hierhin unterstützt und zu meiner Ent-
wicklung beigetragen.
Aus vollem Herzen bedanke ich mich bei Andreas dafür, dass er so ist,
wie er ist.

Karlsruhe, August 2016 Zäzilia Seibold

i

Kurzfassung
Die vierte industrielle Revolution zielt darauf ab, Produktionssysteme
durch Verwendung zahlreicher kleiner elektronischer Bauelemente und
Sensoren weiterzuentwickeln. Durch selbstständigen Informationsaus-
tausch und daraus abgeleitete Entscheidungen versprechen diese Systeme
mehr Flexibilität und Robustheit. Im Bereich der Fördertechnik hat die
Forschung zu modularen, dezentral gesteuerten Systemen geführt. In den
letzten fünf bis zehn Jahren wurden viele dezentrale Steuerungsalgorith-
men für diese Systeme entwickelt, die in dieser Arbeit klassifiziert wer-
den. Der erfolgreiche Umgang mit Deadlocks, also Situationen, in denen
sich Ladungsträger endlos gegenseitig blockieren, wurde als Herausforde-
rung erkannt. Das Deadlock-Risiko ist besonders hoch in Systemen mit
dichten Transportweg-Strukturen und vielen Ladungsträgern. Bisher gibt
es keinen allgemein anwendbaren Steuerungsalgorithmus für den Trans-
port von Ladungsträgern, der Deadlocks strukturell verhindert und nicht
nur während des Transports vermeidet. Der GridSorter, ein modulares
Förder- und Sortiersystem mit gitterartiger Struktur, wurde als Anwen-
dungsbeispiel für diese Arbeit gewählt, da er eine dichte Struktur mit
vielen Ladungsträgern aufweist.

Schematische Darstellung eines exemplarischen GridSorter Systems

iii

Kurzfassung

In dieser Arbeit wird ein neues Steuerungsprinzip für dezentral gesteuerte
Materialflusssysteme vorgestellt: Logische Zeit, ein Prinzip für verteilte
Systeme, das parallele Prozesse synchronisiert, wird auf dezentral gesteu-
erte Materialflusssysteme übertragen. Es wird bewiesen, dass das Sys-
tem dadurch Deadlock-frei ist. Darüber hinaus führt logische Zeit zu ho-
her Robustheit gegenüber schwankenden Transportzeiten, die z.B. durch
Beschleunigungs- und Bremsvorgänge entstehen.
In dem dezentralen Steuerungsalgorithmus mit logischer Zeit für Material-
flusssysteme besitzt jedes Modul einen Reservierungs- und einen Trans-
portmanager. Der Reservierungsprozess kann als Iterative Tiefensuche
mit A*-Heuristik beschrieben werden, die von der Gesamtheit der Re-
servierungsmanager aller Module für mehrere Ladungsträger parallel
durchgeführt wird. Skalierbarkeit und Vollständigkeit des Reservierungs-
prozesses werden in dieser Arbeit behandelt.
Zur Untersuchung des Systemverhaltens mit dem vorgestellten Steuerungs-
algorithmus wurde ein Simulationsmodell implementiert. Mithilfe einer
Varianzanalyse wird der Einfluss mehrerer Steuerparameter untersucht:
Wenn man die Größe des Suchbaums durch den gezielten Ausschluss al-
ternativer Routen verringert, führt dies zu einer verbesserten Systemleis-
tung bei gleichzeitig reduziertem Kommunikationsaufwand. Zwei Eigen-
schaften des Layouts beeinflussen den Durchsatz des Systems besonders:
die Größe des Layouts und die Anzahl der Einschleusungen in Relation
zur Größe des Layouts. Im Zusammenhang mit dem Prinzip der logischen
Zeit werden verschiedene Beobachtungen gemacht: Bei geringer System-
last entstehen Wartezeiten durch asynchrone logische Uhren, jedoch steigt
die Synchronität der logischen Uhren mit zunehmender Systemlast. Eine
zusätzliche Synchronisierung der einschleusenden Module verbessert zu-
dem die Systemleistung.
Insgesamt wurde in dieser Arbeit ein dezentraler Steuerungsalgorithmus
mit logischer Zeit für Materialflusssysteme entwickelt, die daraus resul-
tierende Deadlock-Freiheit theoretisch bewiesen und die Systemleistung
mithilfe eines Simulationsmodells untersucht. Außerdem wurde der Algo-
rithmus erfolgreich auf einem 5×5-Demonstrator des GridSorters imple-
mentiert und getestet.

iv

Abstract
The fourth industrial revolution aims to transform production systems by
using numerous, small-scaled electronic devices. By sharing information
and taking independent decisions, the systems promise more flexibility and
robustness. In the field of material handling systems, research has led to
modular systems with decentralized control. In the last five to ten years,
many decentralized control algorithms have been developed for these sys-
tems that are classified in this thesis. Successful handling of deadlocks,
i.e. situations in which transported items block each other infinitely, has
been identified as challenge. The risk of deadlocks is particularly high in
systems with dense structures and a high number of transported items.
Until now, no generally applicable control algorithm exists for the trans-
portation of boxes that structurally prevents deadlocks instead of avoiding
them during transport. The GridSorter, a modular sorter with grid-like
structure, is chosen as showcase system for this thesis because it forms a
dense network with a high number of transported items.

Schematic representation of an exemplary GridSorter system

In this thesis, a new control principle for decentralized material hand-
ling systems is presented: Logical Time, a control principle for distributed
systems that synchronizes parallel processes, is transferred to decentral-

v

Abstract

ized control of material handling systems. With logical time, the material
handling system is proven to be deadlock-free and is robust against varying
transport times that arise for example from acceleration and deceleration.
In our decentralized control algorithm with logical time for material hand-
ling systems, each module owns a reservation and a transport manager.
The reservation process can be described as Iterative Deepening A* path
search which is executed in parallel for several boxes by the collectivity of
reservation managers of all modules. Scalability and completeness of the
reservation process are discussed in this thesis.
To study system behavior with the presented control algorithm, a simula-
tion model has been implemented. With the help of analysis of variance,
the impact of several control parameters is investigated: Reducing the
size of the search tree by limiting the number of alternative routes leads
to better system performance and less communication effort. Two lay-
out characteristics influence system throughput mainly: system size and
the number of sources related to system size. Related to the principle
of logical time, different observations are made: Under low system loads,
waiting times emerge from asynchronous logical clocks but the synchronic-
ity of logical clocks increases with increasing system load. An additional
synchronization among source modules improves system performance.
In this thesis, a control algorithm with logical time for material hand-
ling systems with decentralized control has been developed, theoretically
proven and system behavior has been studied in simulation. In addi-
tion, the control algorithm has been successfully implemented on a 5×5-
demonstration system of GridSorter.

vi

Contents
Kurzfassung iii

Abstract v

1 Introduction 1
1.1 Problem Description and Research Questions 3
1.2 Structure of the Thesis . 5

2 Material Handling Systems with Decentralized Control 7
2.1 A Graph-Based System Description 8
2.2 Existing Systems in Research and Industry 9
2.3 Strategies for Routing and Deadlock Handling 17

2.3.1 Resource Deadlocks, Livelocks and Starvation 18
2.3.2 Routing in Material Handling Systems

with Decentralized Control 21
2.3.3 Excursus: Time-Window-Based Route Reservation

in AGV Systems . 27
2.4 Classification of Material Handling Systems 30

2.4.1 Criteria for Classification 31
2.4.2 Classification of Existing Systems and Deductions . 32

2.5 The GridSorter as Showcase System 35
2.6 Conclusion: The Research Gap 36

3 Distributed Deadlock Prevention with Logical Time 37
3.1 Choice of Routing Strategy 37
3.2 Formal System Description and Assumptions 39
3.3 Transferring Logical Time to Material Handling 42
3.4 Controlling Material Handling with Logical Time 45

3.4.1 Assigning Logical Clocks to Resources 47
3.4.2 Reservation of Resources

using Logical Timestamps 50
3.4.3 Acquisition of Resources using Logical Time 53

3.5 Proof of Satisfying the Clock Condition 56

vii

Contents

3.6 Proof of Absence of Deadlocks 58
3.7 Conclusion on the Usage of Logical Time 60

4 Decentralized Control of GridSorter with Logical Time 63
4.1 Control Architecture and Components 63
4.2 Reservation Process . 66

4.2.1 Existing Search Algorithms for Path Finding 67
4.2.2 Choice of Search Algorithm

for Decentralized, Parallel Route Planning 69
4.2.3 Parallel Route Reservation

with Decentralized Iterative Deepening A*-Search . 70
4.2.4 Local Routing Decisions during Search Phase 79
4.2.5 Partial Route Reservation 88
4.2.6 Completeness of the Reservation Process 91

4.3 Transport Process . 93
4.3.1 Local Coordination of Transport Steps 93
4.3.2 Local Transport Granting Decisions 96

4.4 Conclusion on Decentralized Control 98

5 Modeling GridSorter with Agent-Based Simulation 101
5.1 Simplifications . 101

5.1.1 Simulating Decentralized Control
with One Processor 102

5.1.2 General System Set-Up 103
5.1.3 Transport of Boxes 103
5.1.4 Message Sending . 104

5.2 Observing System Behavior 104
5.3 Input Parameters . 104
5.4 Performance Indicators . 108

6 System Behavior of GridSorter Controlled with Logical Time 113
6.1 General Simulation Set-Up 113

6.1.1 Statistical Analysis of Simulation Results 114
6.1.2 Selecting Layouts for Simulation Studies 116

6.2 System Behavior and Basic Control Settings 117
6.2.1 Description of System Behavior 117
6.2.2 Setting of Basic Control Parameters 122

6.3 Synchronicity of Logical Clocks 126
6.3.1 Synchronization Based on Box Transport 127

viii

Contents

6.3.2 Additional Synchronization
Among Source Modules 131

6.4 System Behavior in Different Layouts 134
6.4.1 Impact of System Size and Number of Sources

on Throughput . 134
6.4.2 Impact of Positioning of Sources and Destinations

on Throughput . 135
6.4.3 Communication Effort 137

6.5 Partial Route Reservation 138
6.6 System Behavior under Varying Transport Times 141
6.7 Conclusion on System Behavior 143

7 Conclusion 145
7.1 Conclusion on Thesis . 145
7.2 Outlook . 147

Notation 149

Acronyms 153

References 155

List of Figures 163

List of Tables 167

A Decentralized Control 169

B Layouts 171

C Results for Partial Route Reservation 185

D Students’ Thesis related to GridSorter 187

ix

1 Introduction

A revolution is not a bed of roses. A revolution
is a struggle between the future and the past.

-- Fidel Castro

Digitalization has changed many aspects of our lives: Thanks to electronic
devices, we work, communicate and build relationships in a completely
different way than ten to fifteen years ago. How does the use of electronic
devices change production systems? Industry 4.0 is the German buz-
zword to describe the transformation of production principles triggered
by technological progress in the field of sensors, actuators, control devices
and automated systems (Kagermann et al. 2012). It implies that we are
standing at the beginning of another industrial revolution. Cyber-Physical
Systems are part of this industrial revolution (Broy et al. 2012). The term
stands for systems where the cyber-world merges with the physical world:
the systems are able to sense the physical world and create a digital im-
age of it. With this image, they assess alternative scenarios and interact
accordingly with the physical world. At the same time, they communicate
with other systems via networks.
This work looks at material handling systems as part of production sys-
tems. In this field, research has led to the development of modular material
handling systems with decentralized control. Even though the develop-
ment of these systems started before the term Industry 4.0 was created, the
system characteristics fit very well to the requirements of Cyber-Physical
Systems: Each module is able to perform simple material handling tasks
independently thanks to its sensors, actuators and its own control. By
communicating with each other, several modules coordinate to fulfill com-
plex system tasks.
What are the advantages of modular material handling systems with de-
centralized control? Seibold and Furmans (2016) have described some
desirable characteristics of future material handling systems. We want to
point out some of them: The absence of central control implies the absence

1

1 Introduction

of a single point of failure. The systems are designed in such a way that the
system continues to work even though single modules have stopped work-
ing. This characteristic can be described as high robustness. Another big
advantage is the facilitation of installation and reconfiguration. The sys-
tem control configures itself, once the user has built up the physical system
set-up. In addition, the production of these modules can be standardized
and completed at the manufacturer’s site. Also, we believe that decentral-
ized control algorithms offer the chance that complex and varying material
handling tasks can be realized with relatively simple control algorithms.
In the last five to ten years, much research has been conducted to develop
decentralized control principles for material handling systems. The risk of
deadlocks has been identified: A deadlock in a material handling system
is usually characterized by items blocking each other on the way to their
destination. The risk of deadlocks is particularly high in systems with
dense structures and a high number of transported items: On grid-like
patterns with high occupancy, for example, there are many different ways
in which transported items could block each other. Different methods for
deadlock handling have been developed for different systems. Nevertheless,
especially in systems with high deadlock risk such as systems with grid-like
patterns, the developed methods are quite complex and mostly specific to
the task of the system. Besides, more and more material handling systems
are being developed with grid-like patterns because they promise high
efficiency per used surface.
The objective of this thesis is to develop a general control principle for
decentralized material handling systems that prevents deadlocks and guar-
antees efficient system behavior even with disturbances leading to varying
transport times. Logical Time is a control principle of distributed sys-
tems and has been used to synchronize parallel processes (Lamport 1978).
Each process owns a Logical Clock that is only set forward if an event
takes place. By assigning timestamps to events, a partial order is estab-
lished that can be used for synchronization and negotiation. We believe
that this principle can be transferred to decentralized control of material
handling systems in order to prevent deadlocks effectively. In addition,
the control principle leads to a high system robustness against transports
times that differ from planned transport times.
We have chosen the GridSorter as showcase system to apply the developed
algorithm because it forms a dense network with a high number of trans-
ported items. The GridSorter consists of rectangular conveyor modules
forming a dense network. The GridSorter is primarily used for sorting of

2

1.1 Problem Description and Research Questions

goods i.e. multiple items enter the system at sources and are transported
to their specific destination. Figure 1.1 is a schematic representation of
an exemplary system set-up: The boxes enter the system on one side and
leave the system sorted by color on the other side.
Each of the modules is a conventional right-angle-transfer module and is
able to convey a box in four directions with its sensors, actuators and
its own control. By communicating with each other, the modules coor-
dinate their actions. The GridSorter has no central control holding all
information about the system state and taking decisions. In contrast,
communication among the modules is required so that a module gets the
necessary information to take decisions.

Figure 1.1: Schematic representation of an exemplary GridSorter system

The control algorithm must be able to fulfill different tasks. First, the
conveyor modules must recognize the topology of the system because it is
built up physically by the user and can be different each time. Second,
the conveyor modules must take routing decisions in order to find routes
to the destination of the goods. And third, the conveyor modules must
perform the transport of the boxes without any collisions.

1.1 Problem Description
and Research Questions

Many different material handling systems have been researched and devel-
oped. The handling of deadlocks has been identified as one key challenge
(Mayer 2009; Krühn 2014) that must be resolved to guarantee system live-

3

1 Introduction

ness i.e. functioning system behavior, especially in systems with grid-like
patterns. System liveness includes the absence of deadlocks, livelocks and
starvation. Resulting research questions to extract essential insights are:

1st Cluster of Questions What systems have been developed in the
last few years? How is their decentralized control designed? What
kinds of deadlocks and livelocks are relevant in material handling
systems? Which system characteristics increase the risk of dead-
locks? How do other developers minimize the risk of deadlocks in
their systems? How are deadlocks handled in systems of other re-
search fields?

Most existing control algorithms are usually specific to one application.
To simplify the algorithms for routing and deadlock handling, limitations
are imposed. Logical time is a control principle that is applied in the field
of distributed systems for the use of common resources. In this thesis,
this principle will be applied to decentralized control of material hand-
ling systems. The objective is to develop a control principle that can be
generally applied to different systems and that prevents deadlocks. If we
want to transfer the principle of logical time to material handling systems,
the principal questions are:

2nd Cluster of Questions What are similarities between distributed
systems and material handling systems? How can the principle of
logical time be transferred to material handling systems? Is it possi-
ble to prevent deadlocks even in systems with high risk of deadlocks
by using the principle of logical time?

If the principle of logical time is transferred to material handling, the ex-
isting control algorithms for route reservation and transport of boxes must
be adapted or new algorithms must be developed. As exemplary system,
we have chosen the GridSorter because it shows high risk of deadlocks and
high routing complexity. Questions related to the control algorithm are:

3rd Cluster of Questions How should the decentralized control be
designed if the principle of logical time is applied? How is it possible
to plan efficient routes for single boxes with acceptable duration and
complexity? How can system scalability be achieved?

4

1.2 Structure of the Thesis

To study system behavior and performance, a simulation model is needed
because the resulting behavior of decentralized decisions of conveyor mo-
dules cannot be analytically modeled (so far). Related questions are:

4th Cluster of Questions How can the system be modeled in simu-
lation? What kind of simplifications are necessary to simulate the
system? What input parameters influence the system behavior?
What are key performance indicators?

Once the model is developed, it can be used to answer different questions
related to the system behavior dependent on varying input parameters.
The following questions summarize the intention:

5th Cluster of Questions How can system behavior be illustrated
and interpreted? Which performance indicators are helpful? What
kinds of interesting effects can be observed related to logical clocks?
How do the different input parameters and layout characteristics
influence system performance?

1.2 Structure of the Thesis
In Chapter 2 an overview of existing material handling systems with de-
centralized control in research and industry is given. A special focus lies
on algorithms for routing and deadlock handling. This is also the reason
why an excursus is made to deadlocks, livelocks and starvation in operat-
ing systems and another excursus to routing in systems with autonomous
guided vehicles. A classification of the systems follows, again focusing on
the algorithms for routing and deadlock handling. At the end of the chap-
ter, our choice of the GridSorter as showcase system is reasoned and the
research gap is highlighted. The first cluster of questions is answered.
Chapter 3 is the main part of this thesis, and transfers the principle of
logical time to material handling systems. After reasoning the choice of
routing strategy, our approach to control the system with logical clocks is
presented. It is shown how the order of transport steps is established and
respected in order to prevent deadlocks. The chapter closes by proving
the absence of deadlocks which also includes the absence of livelocks in
our system. The second cluster of questions is answered.
In Chapter 4, the control architecture with all control components is in-
troduced. The components responsible for the control of route reservation
and transport are described in more detail because the principle of logical

5

1 Introduction

time is used in these components. Different methods to reduce the com-
plexity of the route reservation are presented. The absence of starvation
is shown by discussing the completeness of the reservation process. The
third cluster of questions is answered.
Chapter 5 presents the simulation model of GridSorter. It discusses sim-
plifications, and introduces input parameter and performance indicators.
The fourth cluster of questions is answered.
In Chapter 6, system behavior is studied under different input parameters.
This chapter consists of three parts: in the first part, the general system
behavior is explained and the best combination of input parameters for the
basic control algorithm is determined. The second part concentrates on
the principle of logical clocks and interesting effects in their synchronicity.
In the third part, the influence of the layout on the system behavior is
studied, especially on throughput and communication effort. The influence
of partial route reservation on these indicators is included. The last cluster
of questions is answered in this chapter.
After responding to all clusters of questions, the final chapter draws an
overall conclusion to the thesis. Have all research questions been answered?
How could the principle of logical time be applied to other systems?

6

2 Material Handling Systems
with Decentralized Control

Curiosity is always the first
step to resolving a problem.

-- Galileo Galilei

In section 2.2, we introduce projects in research and industry in the field
of material handling systems with decentralized control. The keywords
used to describe their properties are quite different: Plug&Play, Grid...,
Internet of Things, Physical Internet, cognitive, cellular ... etc., but all
systems have the same key idea. The decisions are not taken by one central
control, but the system is divided into modules that take decisions (more
or less) self-dependently. The objective is to increase flexibility by reducing
the effort for installation or reconfiguration of a system. Furmans et al.
(2010) describe desired properties of future material handling systems and
propose suitable design patterns to achieve the properties. Seibold et
al. (2015) reappraise the propositions and study how the development
of recent years has brought the ideas forward.
All material handling systems with decentralized control face similar chal-
lenges in matters of control: The routing strategy is essential for system
performance and for the handling of deadlocks. This is why section 2.3.2
devotes attention to strategies for routing and deadlock handling in exist-
ing systems. We also include an excursus to systems of autonomous guided
vehicles (AGV) with centralized control because they have developed in-
teresting approaches using time-window-based routing.
In section 2.4, we classify the presented systems according to criteria
mainly related to routing and deadlock handling strategy and draw con-
clusions on research gaps.

7

2 Material Handling Systems with Decentralized Control

2.1 A Graph-Based System Description
We introduce a graph-based system description as an aid to understand-
ing the key difference in the control of continuous and discontinuous ma-
terial handling systems. Continuous material handling systems are able
to generate a continuous flow of goods by means of conveyors. The pos-
sible transport routes are defined by the installed conveyor equipment.
Discontinuous material handling systems transport the goods with au-
tonomous guided vehicles (AGVs), each of them being able to transport
a certain number of goods. For discontinuous systems, we only consider
track-guided systems because they have clearly defined transport routes
like continuous conveyor systems. This common characteristic makes it
possible to compare the control principles of both system types. Table 2.1
shows the common characteristics and the differences between a conveyor
system and an AGV system as examples for continuous and discontinuous
material handling systems respectively.
Some common characteristics exist that become clear if the systems are
modeled as graphs (see Table 2.1):

– In both system types, there aremobile objects which must be moved
from a starting position to a destination. The mobile objects need
resources to remain in one position or to move to another position.

– The physical resources form a network that can be described as a
graph with nodes and edges. A node represents the possibility
for a mobile object to remain in one position. An edge connects
two nodes and enables a mobile object to move from one node to
another. If nodes are connected with more than one other node, a
routing decision has to be taken in which direction a mobile object
should move.

Nevertheless, there are differences in the control of the systems (see Ta-
ble 2.1):

– Which are the active objects? Within continuous systems, the
nodes i.e. the resources are active, meaning they are equipped with
actuators, sensors and eventually a decentralized control. Within
discontinuous systems, the mobile objects i.e. the vehicles are active,
and are equipped with actuators, sensors and a control.

– How is the destination of a mobile object assigned? Within contin-
uous systems, each mobile object has its specific destination location
(or none if the object should remain somewhere in the system for

8

2.2 Existing Systems in Research and Industry

storage purpose). Within discontinuous systems, a mobile object in-
herits its destination from the goods it transports. Depending on the
assignment of transport orders to mobile objects, the mobile objects
have to move to different destinations.

With decentralized control, the two system types differ in terms of rout-
ing decisions: Within continuous systems, the nodes i.e. the resources are
active and thus able to take routing decisions1. Within discontinuous sys-
tems, it is the mobile object that should be able to take routing decisions.

Common Characteristics Continuous MHS
e.g. conveyors

Discontinuous
MHS e.g. AGVs

Mobile objects boxes vehicles

Nodes and edges defined by conveyors lanes

Differences

Active Objects nodes
i.e. conveyors

mobile objects
i.e. vehicles

Destination of mobile object specific interchangeable

Table 2.1: Common characteristics and differences of continuous and
discontinuous material handling systems (MHS) with
decentralized control

This theoretical system description can help to classify the systems de-
scribed in section 2.2. It is also relevant for the understanding of dead-
lock risk and the control algorithms and is resumed in section 2.3.1 and
Chapter 3.

2.2 Existing Systems in Research and Industry
In this section, we introduce seven continuous material handling systems
featuring decentralized control. We first present the “FlexConveyor” be-
cause this system is the basis for several other systems including the Grid-
Sorter. We then present four track-guided, discontinuous material hand-
1 Some research projects aim at turning the boxes in active objects being able to take

routing decisions (Emmerich et al. 2012). These systems offer the opportunity to
rethink the existing control algorithms.

9

2 Material Handling Systems with Decentralized Control

ling systems featuring decentralized control. We only present systems with
track-guided vehicles and exclude systems with free-moving vehicles from
this overview because they face different challenges in routing and deadlock
handling. All systems with the term “Grid” have the common idea that
goods are stored and transported in a grid pattern generated by conveyor
modules or routes of AGVs.
After presenting the systems with decentralized control, we give an excur-
sus presenting a couple of systems with centralized control showing the
similarity of grid-like movement of boxes. For these systems, no details of
the control algorithms have been published. Nevertheless, it shows that
control algorithms for grid-like systems are in great demand.

FlexConveyor is a modular material handling system with decentralized
control (see Figure 2.1). According to Mayer (2009), each module is iden-
tical: a rectangular right-angle-transfer which is able to transport goods
in the four cardinal directions. Nowadays, different kinds of modules can
be combined (flexlog GmbH 2015). The conveying system can be eas-
ily built by the user by combining the conveying modules, because they
are equipped with wheels and can be connected without any tools. The
connection between neighbors is physical, electronic and electrical. Each
module has its own control and communicates with its neighbors to take
decisions. For each box entering the system, a route is reserved from source
to destination to prevent opposing routes on bidirectional conveying mo-
dules. With so-called deadlock tokens, loops of boxes waiting for each
other are avoided (Mayer and Furmans 2010).

Figure 2.1: FlexConveyor, Left: photograph of identical, transfer modules
(Seibold et al. 2013), Right: graphic of a network built of different
module types (flexlog GmbH 2015)

10

2.2 Existing Systems in Research and Industry

GridSorter is based on the idea of FlexConveyor. Again, the system is
built of rectangular transfer modules (as in the early version of FlexCon-
veyor), each being able to communicate with its neighbors and to take
decisions (Seibold et al. 2013). The difference to FlexConveyor is the
system task and the density of the conveying network. The main task of
GridSorter is to sort goods, i.e. to transport goods to different destinations
based on case-specific, known criteria. In order to reach a high module-
and space-efficiency, the conveying network is built as densely as possi-
ble: the result is a grid-like network topology (Seibold et al. 2014). The
topology can have any form and the sources and destinations can be at
any side module of the conveying network. Seibold et al. (2013) adapt
the routing and deadlock handling of FlexConveyor to GridSorter. With
this control, deadlocks occur if high throughput is required and if order
input is not controlled accordingly.

GridStore and FlexConveyor are based on the same idea. In GridStore,
a dense network transfer modules with decentralized control, the grid, is
used to store goods. GridStore aims to combine the apparently opposing
objectives of high throughput and high density of a storage system (Gue
et al. 2014). Items are retrieved on one side of the grid and replenished on
the opposing side. The used control algorithm is called “Virtual Aisles”
because stored items are moved out of the way of requested items in order
to form aisles. The decision as to how items should be moved is taken by
each module stepwise based on the current situation.

Figure 2.2: Left: Graphic of GridPick (Uludag 2014).
Right: Graphic of GridSequence (Gue et al. 2012)

11

2 Material Handling Systems with Decentralized Control

GridPick is a special implementation of GridStore. Items are retrieved
and replenished on the same side of the grid in order to supply items of
one order to a picker (see Figure 2.2). In comparison to commonly used
flow racks, the walking distance of a picker and therefore the pick time
of one order can be reduced. To enable movements in all four cardinal
directions, the “Virtual Aisles” algorithm has been adapted and balances
the number of items per row (Uludag 2014).

GridSequence uses like GridStore and GridPick a dense network of trans-
fer modules with decentralized control. The system task is to establish a
certain sequence within the retrieved items (see Figure 2.2). The “Virtual
Aisles” algorithm has been adapted by assigning an intermediate destina-
tion to each item depending on its sequence number (Gue et al. 2012).

Cognitive Conveyors are built of small-scaled modules with decentral-
ized control (see Figure 2.3). Since one module is as small as one roller,
several modules must form groups in order to transport items: Omnidirec-
tional movement of items is possible. The main system task is to transport
items, but it is also possible to use the system for buffering and sequenc-
ing (Krühn et al. 2013). Krühn (2014) describes the control algorithm
which reserves a route from source to destination for each box and avoids
deadlocks during transport.

Figure 2.3: Graphic of Cognitive Conveyors (Krühn 2014)

12

2.2 Existing Systems in Research and Industry

Conveyor Showcase for the Internet of Things Within the “Internet
of Things”, objects communicate with each other and take decisions self-
dependently (ten Hompel 2010). The control of continuous material hand-
ling systems is achieved by agents who are responsible for certain objects
like single conveyor modules or the load being transported (Feldhorst et al.
2010). The system has been industrialized under the name THINGtelli-
gence (Lanfer Automation GmbH & Co. KG 2015). Roidl (2012) describes
a control algorithm where multiple routes are planned from each source to
each destination with a heuristic based on the path finding algorithm of
ants. Thanks to this heuristic, load-dependent routing is possible. Each
conveyor module receiving an item decides probabilistically in which di-
rection the item should be transported based on the routing information.
Another similar control algorithm is described by Hofmeister et al. (2010).
Again, routes are planned from each source to each destination based on
topology and load information. The difference is that the routing infor-
mation is collected and cumulated for certain time windows to capture
the change of load with time which is then considered in the route plan-
ning. The control algorithm has been tested in different scenarios (Elger
et al. 2010). Both control algorithms are only valid in unidirectional
conveyor networks.

Figure 2.4: Schematic 3D-model of the modular warehouse
(Montreuil et al. 2012)

Modular Warehouse as Part of the Physical Internet The Physical
Internet stands for the vision in which standardized loads and material
handling systems facilitate global transport tasks. One solution within
the Physical Internet is the Modular Warehouse (see Figure 2.4) where

13

2 Material Handling Systems with Decentralized Control

stored objects are able to perform rectilinear movement with specific ma-
terial handling devices (Sittivijan 2014). Even though the system in Figure
2.4 seems to be a continuous material handling system, the control algo-
rithm is described in the same way as for a discontinuous one because the
objects take decisions. We therefore consider this system as a discontin-
uous material handling system where each object is carried by a vehicle.
Objects are active if they need to be transported to a specific destination.
The route is planned on the basis of the information where other objects
are located and if they have planned to move away. When executing the
transport along the planned path, conflicts are resolved by using unique
priorities of the objects. An object with lower priority is forced to move
from its planned route if it is required to give way to an object with higher
priority. Deadlocks are detected with a centralized control algorithm and
resolved by changing the priorities of the objects. Some specific livelocks
cannot be resolved even though they are detected by the central control.

Figure 2.5: Graphic of GridFlow (Schwab 2015)

GridFlow with Transport Vehicles is a system where multiple transport
vehicles enable the movement of pallets that are stored very densely (see
Figure 2.5). The pallets are placed in a grid pattern and the vehicles move
underneath the pallets following this grid pattern. Like within GridStore,
the objective is to achieve high storage density while guaranteeing low re-
trieval times. The system features decentralized control, i.e. each vehicle
decides autonomously. Schwab (2015) presents a control algorithm where
each vehicles decides on its next movement based on communication with
all other vehicles. Deadlocks and livelocks are detected and resolved by or-
dering the vehicles using unique priorities. The vehicle with lower priority
is forced to give way to the vehicle with higher priority.

14

2.2 Existing Systems in Research and Industry

Figure 2.6: Example for a warehouse transport problem (Hama et al. 2002)

Distributed Agents in a Cellular Warehouse Hama et al. (2002) describe
a cellular warehouse where transport agents are able to transport items
in a grid-like pattern. The system is brought from a current state to
a target state by the agents negotiating with each other. Each agent
chooses its action, i.e. movement, based on a built-in behavior function
given by artificial neural networks. Whether or not an agent is allowed to
perform its action is decided by negotiation with the surrounding agents to
establish an ordering. With this control mechanism, the agents are able to
solve transport problems similar to the 8-puzzle-problem (see Figure 2.6).

Figure 2.7: Photograph of electric monorail system (Chisu et al. 2010)

Agent-Based-Controlled Electric Monorail System Chisu et al. (2010)
describe the modularization of an electric monorail system (see Figure
2.7) and its surrounding conveyor modules. Each resource, for example
the vehicles and the conveyor modules are controlled by an agent. Routes
are reserved in advance because the tracks can be used bidirectionally.
Each vehicle calculates the shortest path and communicates its decision
to the other agents for reservation of the chosen route (Wilke 2006). The

15

2 Material Handling Systems with Decentralized Control

agents communicate with each other by means of a blackboard in order to
reduce the number of message transfers (Tenerowicz-Wirth 2013).

Excursus: Systems with Grid-like Patterns and Centralized Control

For all of the three following systems, no details of the control algorithm
have been published. Nevertheless, they stand out due to the mechanical
realization of the grid-like architecture.
The Celluveyor presented by Uriarte et al. (2015) consists of hexagonal
modules able to transport boxes unidirectionally thanks to so-called omni-
wheels (see left side of Figure 2.8). The resulting functionalities are similar
to those of the Cognitive Conveyor.

Figure 2.8: Left: Photograph of Celluveyor (Uriarte et al. 2015)
Right: Schematic representation of the shuttle system Store Biter
(Gebhardt Fördertechnik GmbH 2015)

Yalcin et al. (2015) investigate the suitability of grid-based storage systems
for early baggage in airports. They have chosen the approach of a central-
ized control. Details have not been published yet. The baggage is trans-
ported by electromagnetic power. The system is called Fluid Logistics.
The Motion Cube uses a nonslip traction to move specialized load carriers
in production (Festo AG & Co. KG 2015). The movement principle is also
described by Tadakuma et al. (2012a) and Tadakuma et al. (2012b): Gear
wheels are positioned at 90◦ to each other and are able to realize linear
movement of the carriers in all directions (see Figure 2.9). The advantage
of nonslip traction is the highly precise positioning of the carriers.

16

2.3 Strategies for Routing and Deadlock Handling

Figure 2.9: Schematic representation of Motion Cube
(Festo AG & Co. KG 2015)

enabled to move in up to three dimensions (see right side of Figure 2.8).
Just like in continuous systems, a high network density increases the risk
of deadlocks and the level of routing complexity.

2.3 Strategies for Routing

and Deadlock Handling

Past and ongoing research on decentralized control of material handling
systems has shown that deadlock handling is a critical success factor. In
some of the previously presented systems, very complex deadlock hand-
ling mechanisms have been developed and implemented. The objective
of all these systems is to define a decentralized control algorithm that
guarantees a functioning and efficient system behavior while causing low
communication effort. Functioning system behavior is given if every box
is eventually transported to its destination. In the following, this prop-
erty is called system liveness. System efficiency is usually measured by
system throughput (sometimes as a function of system density). The com-
munication effort can be measured by the number of sent messages per
reservation or per time unit.
Deadlock handling is a basic requirement for every operating system and
has been widely studied in the field of resource allocation. In section
2.3.1, we introduce the conditions under which a deadlock arises and the
strategies for dealing with resource deadlocks in operating systems. In

17

The trend to grid-like pattern is not only observable in continuous material
handling systems but also in discontinuous ones. In a shuttle storage
system developed by Gebhardt Fördertechnik GmbH (2015), vehicles are

2 Material Handling Systems with Decentralized Control

In section 2.3.2, we examine how existing routing strategies of material
handling systems with decentralized handle deadlocks. We also discuss
how these routing strategies fit to the deadlock handling strategies used
in operating systems.
In section 2.3.3, we present some research from the field of multi-agent
routing. Time-window-based routing has already been applied to systems
of multiple moving objects, for example AGVs. Since some challenges such
as deadlock handling are similar, the results from this research could be
helpful for material handling systems with decentralized control.

2.3.1 Resource Deadlocks, Livelocks and Starvation

Tanenbaum and Bos (2015, p. 439) define a deadlock as follows:
A set of processes is deadlocked when every process in the set is
waiting for a resource that must be released by another process
in the set.

Coffman et al. (1971) define four conditions that must coexist for there to
be a deadlock. A deadlock can only occur if all four conditions are fulfilled.
If one of the conditions can be excluded, the risk of deadlocks is barred.
Tanenbaum and Bos (2015, p. 440) describe these conditions as follows:

Mutual Exclusion Each resource is either currently assigned to
exactly one process or is available.
Hold and Wait Processes currently holding resources that were
granted earlier can request new resources.
No Preemption Resources previously granted cannot be
forcibly taken away from a process. They must be explicitly
released by the process holding them.
Circular Wait There must be a circular chain of two or more
processes, each of which is waiting for a resource held by the
next member of the chain.

Figure 2.10 shows two examples of deadlocks that could occur in a modular
conveying system. The relevant modules are occupied with boxes each
waiting for the next conveying module to become available. Mayer (2009)

18

systems with decentralized control, dealing with deadlocks becomes even
harder because there is no central control instance that has all information
about current states of resources and processes.

2.3 Strategies for Routing and Deadlock Handling

Figure 2.10: Deadlock because of opposing routes (left) and because of boxes
waiting in a loop (right)

19

the decentralized control of FlexConveyor. He states that the first three
conditions are always present:

– Mutual exclusion is given because a conveyor module can only carry
one box.

– The Hold-and-Wait condition is given because a box remains on a
conveyor until the next conveyor on its route becomes available.

– No preemption is possible, as the box cannot be taken from the
conveyor.

Consequently, the circular wait condition is the only condition that can be
attacked. In Figure 2.10, two kinds of deadlocks are shown where boxes are
waiting in a circular chain for each other. On the left, opposing routes have
been chosen for the two boxes. On the right, the routes of the boxes are
not opposing but forming a loop. These conditions can also be formulated
for discontinuous material handling systems.
Not only deadlocks hinder processes from their termination, but livelocks
and starvation also exist as closely related problems (Tanenbaum and Bos
2015). A livelock is described as a situation with several processes repeat-
edly switching between resources without progressing. Starvation can be
described as a situation where the rule of resource allocation repeatedly dis-
advantages a certain process. Consequently, the requested resource is never
requested to the one process which is why the process will never terminate.
In a material handling system, a livelock is characterized by an object
performing the same cycle of movements all over again (Schwab 2015)
without being transported to its destination. Starvation could happen at a
crossing where the objects from different directions compete for a resource.
If one direction has high throughput and is always prioritized, the objects
from the other direction will never get closer to their destination.

transfers the four deadlock conditions defined by Coffman et al. (1971) to

2 Material Handling Systems with Decentralized Control

Tanenbaum and Bos (2015, p. 343) describe four strategies for dealing
with deadlocks:

Just ignore the problem: Maybe if you ignore it, it will ignore
you.
Detection and recovery: Let deadlocks occur, detect them,
and take action.
Dynamic avoidance by careful resource allocation.
Prevention by structurally negating one of the four required
conditions.

Ignoring the problem of deadlocks is only a solution if the occurrence
probability of deadlocks is low and if the occurrence is accepted by the
system user. For deadlock detection, different algorithms exist. Recovery
could be achieved by preemption of resources or the rollback or killing of
processes. The objective of deadlock avoidance is to keep the system in
safe states where no deadlocks can occur. Before a resource is allocated
to a process, it must be checked that this results in a safe system state.
For deadlock prevention, the system must be designed in such a way that
at least one of the four conditions is negated. The ordering of resources
is one method for deadlock prevention. By defining an order in which
the resources must be requested, the circular wait condition is structurally
negated. According to Raynal (2013), the drawback of this method is its
inefficiency because long chains of waiting resources can build up. Lynch
(1981) proposes defining only partial ordering between resources in order
to reduce waiting chains. She uses the method of vertex coloring as an
approach to find a good partial ordering for a set of resources knowing
which resources are needed by each process.
Which of the four strategies can be applied in material handling systems?
The first, ignoring the problem, is only acceptable if the occurrence of
deadlocks is improbable because of system design. Otherwise, ignoring
deadlocks is not acceptable because each box must reach its destination.
Detection of deadlocks and system recovery by rollback is possible, but
this strategy would have a negative impact on throughput because previ-
ously performed transports would have to be performed backwards again.
Also, these rollback strategies could become complex because of potential
livelocks occurring. Within deadlock avoidance, a compromise has to be
found between careful resource allocation and system performance. Ad-
ditionally, deadlock avoidance must take place during the transportation
of boxes and may cause delays if the computing time is high. In mate-

20

2.3 Strategies for Routing and Deadlock Handling

rial handling systems with decentralized control, a deadlock prevention
strategy that does not decrease system performance is preferable.
The differentiation between these four strategies for deadlock handling is
controversially discussed. Levine (2005) refutes the distinction between
avoidance and prevention because both strategies aim to negate one of the
four deadlock conditions. Observing material handling systems, one could
even say that deadlock detection and recovery corresponds to prevention
of deadlocks: Boxes never wait in a loop for each other because the con-
trol directly reacts once a loop is detected. Consequently, the waiting of
boxes is not visible for an external observer. Nevertheless, the distinction
between the four strategies seems to be natural.
In the context of material handling system, we describe the four strate-
gies as follows.
Ignoring Deadlocks are ignored because they are unlikely to happen.
Detection & recovery At some (very) short moment, the loop of waiting

objects exists. For example, if two conveyor modules decide indepen-
dently from each other to send a box, detect an opposing deadlock
and revise the previous decision.

Avoidance The deadlock of objects in a loop is detected shortly before it
happens. The occurrence is avoided by waiting of objects.

Prevention The deadlock of objects in a loop is prevented long before it
could happen. The system structure is changed.

Examples for each of the four strategies will be presented in the following
section, in which we discuss existing routing strategies.

2.3.2 Routing in Material Handling Systems
with Decentralized Control

Let us first explain what the term routing stands for before describing
what different kinds of routing strategies exist in material handling sys-
tems with decentralized control. The term routing is differently defined
depending on the field of application. In addition, it is used differently by
different authors from identical fields. We refer to the definition of routing
within communication networks and systems of autonomous guided vehi-
cles. In communication networks, data packages are sent from source to
destination through a network of routers which has similarities to sending

21

2 Material Handling Systems with Decentralized Control

physical boxes through a network of conveyors. In AGV systems, single
vehicles move self-dependently through a network of passive resources.
In communication networks, “the network layer is routing packets from
the source machine to the destination machine” (Tanenbaum 2011, p. 380).
This definition implies that the routing contains all related tasks necessary
to send a package from source to destination, including the path finding
and the actual sending of the packages. Tanenbaum (2011, p. 49) dif-
ferentiates between the routing algorithm and the forwarding algorithm
as follows:

How the network makes the decision as to which path to use
is called the routing algorithm. [...] How each router makes
the decision as to where to send a packet next is called the
forwarding algorithm.

Usually, packages are sent from source to destination via multiple routers.
In each router, two different processes are responsible for routing and for-
warding (Tanenbaum 2011, p. 381): The routing process “is responsible
for filling in and updating the routing tables” and the forwarding process
“handles each packet as it arrives, looking up the outgoing line to use
for it in the routing tables.” In systems with virtual circuits, the routing
algorithm is not started for each package individually.
However, in the field of the control of Autonomous Guided Vehicles (AGVs)
routing describes the planning of a route for a specific vehicle and the exe-
cution of the route (Qiu et al. 2002). In this thesis, we use the term routing
according to Qiu et al. (2002): Routing comprises the route planning for
a specific box and the execution of the transport.
In material handling systems, the routing algorithm directly influences the
deadlock handling strategy because it controls the possibility of forming
a circular chain of waiting boxes. We now present three criteria that are
helpful to describe different routing strategies (see Figure 2.11):

– Route planning can be done for each individual object or for several
objects moving to the same destination. Route planning for a group
of objects corresponds to the principle of forwarding packages in
virtual circuits in communication networks (Tanenbaum 2011).

– Route planning and execution can be decoupled in time, i.e. plan-
ning is done before execution is started. Or route planning can be
performed during execution. Qiu et al. (2002) differentiates between
static and dynamic routing.

22

2.3 Strategies for Routing and Deadlock Handling

Routing

for each

individual object

for a group

of objects

staticdynamic

time-window-basedtime-independent

Time-independent

Route Reservation

Time-window-based

Route Reservation
Dynamic RoutingForwarding

Figure 2.11: Criteria for routing and four resulting routing strategies

23

– The route planning can be performed time-independent or time-
window-based by considering future system states. These two ap-
proaches are called different names by many authors.

Based on these three criteria, it is possible to describe eight different rout-
ing strategies. As shown in Figure 2.11, we group them into four mutual
exclusive routing strategies. This classification is also a combination of
classifications by Mayer (2009), Qiu et al. (2002), ter Mors (2009) and has
been developed together with Geier (2015).
Forwarding Routes are planned from each source to each destination for a

group of objects. During route execution, objects move to the next
resource based on this information.

Dynamic Routing For each individual object, the routing decision i.e.
where to move next is taken dynamically taken during route exe-
cution.

Time-independent Route Reservation The route from source to destina-
tion is reserved for each individual object before it moves. Route
planning is decoupled from execution. The reservation is kept active
until the object has passed.

Time-window-based Route Reservation Again, the route from source to
destination is reserved for each individual object before it moves.
The resources are only reserved for the duration of the time window
the object is planned to need them.

2 Material Handling Systems with Decentralized Control

We will now describe how the four routing strategies are implemented in
existing systems and what kind of deadlock handling strategy is used in
combination.

Forwarding is used in unidirectional conveying networks within the vi-
sion of the Internet of Things. During route planning, all possible routes
from source to destination are rated, usually based on distance and load.
These possible routes correspond to virtual circuits in communication net-
works. In addition, this rating can be made for time windows considering
time-dependent loads. During transportation of a box, it is forwarded
to the next node with probabilistic or deterministic decisions based on
the rates of a route.
Opposing deadlocks are prevented by the unidirectional system design.
Deadlocks because of loops of waiting boxes are not mentioned by Roidl
(2012) and Hofmeister et al. (2010). We believe that the frequency of
these deadlocks is extremely low in the studied network topologies, which
is why ignoring deadlocks is an acceptable strategy.

Dynamic Routing is based on the objective that the box should be trans-
ported to the port promising the best route. It can easily lead to deadlocks
in networks with long bidirectional lanes, as used for FlexConveyor, be-
cause two boxes on opposing routes cannot give way to each other. In
dense networks, a dynamic routing is possible because each box can be
transported in multiple directions, and thus give way to other boxes. In
GridStore, GridPick, GridSequence and the modular warehouse within the
Internet Of Things, such dynamic routing algorithms are used.
Depending on how the control algorithms are designed, different deadlock
handling strategies are implemented. In GridStore and GridSequence, for
example, one conveying direction is excluded system-wide because boxes
are never transported to the North. Hence, deadlocks because of boxes
waiting for each other in a loop are structurally impossible. The proof of
system liveness of GridStore is given with the help of sentential logic and
can be found in (Gue et al. 2014). In GridPick, the control algorithm
aims to keep a balanced number of boxes per row. Deadlock Handling
strategy could be considered to be dynamic avoidance by careful resource
allocation. The proof of system liveness of GridPick has been pursued
using Petri Net Modeling for a system of up to 5×5 conveyor modules and
can be found in (Uludag 2014). Within the modular warehouse described

24

2.3 Strategies for Routing and Deadlock Handling

by Sittivijan (2014), conflicts between different boxes are detected and
resolved by using priorities. This corresponds to the strategy of detecting
deadlocks and recovery with the help of back- or sidetracking of certain
boxes. No proof for the absence of deadlocks is presented. Schwab (2015)
also detects deadlocks and resolves them by assigning priorities to vehicles.
The proof is given with the help of sentential logic. Hama et al. (2002)
also use priorities which are dynamically changed according to the history
of an agent. They do not go into further details about the handling of
deadlocks in loops.

Time-Independent Route Reservation is used for the control of both
FlexConveyor and Cognitive Conveyor. The reservation algorithm pre-
vents opposing routes. Nevertheless, deadlocks occurring in loops could
still occur.
Within the control of the electric monorail system described by Wilke
(2006) these deadlocks are not mentioned by the author. We believe that
deadlocks in loops are improbable because of the sparse network and the
low number of vehicles in the system. By contrast, complex deadlock hand-
ling is performed before every transport step in order to avoid deadlocks
occurring in loops if the system design allows the occurrence.

Figure 2.12: Cross-deadlock because of boxes waiting in two overlapping loops

Mayer (2009) handles deadlocks by sending special messages, so-called
deadlock tokens, before each transport step. The algorithm is similar to
the distributed deadlock detection proposed by Chandy et al. (1983). In
order to reduce communication effort, Mayer (2009) uses topology infor-
mation and only checks for deadlocks if a box enters a loop. This deadlock

25

2 Material Handling Systems with Decentralized Control

(2009) prevents cross-deadlocks by restricting the routing of boxes: Cer-
tain combinations of reservations are not accepted.

Figure 2.13: Local deadlock because of two boxes blocking each other at a
crossing (Krühn 2014)

Krühn (2014) extends the deadlock handling algorithm of Mayer (2009)
in two ways: By sending cross-deadlock tokens in certain situation, cross-
deadlocks are avoided and the route reservation is not restricted in order
to prevent cross-deadlocks. Since the modules of cognitive conveyors are
smaller than the transported boxes, Krühn (2014) additionally integrates
a mechanism to avoid local deadlocks on crossings (see Figure 2.13). He
states that communication effort for deadlock handling is not locally lim-
ited and that overlapping crossings must be able to exchange messages
with short latencies.

Time-Window-Based Route Reservation structurally negates deadlocks
because the route is reserved in advance using time windows. Hence, a
conveyor module is only reserved for one box at the same time. Mayer
(2009) names the high computing time and high data transfer requirements
which would be required for replanning of routes as disadvantages. Time
windows would have to be adapted permanently if transports cannot be
fulfilled as planned in order to avoid deadlocks. It is not clear whether
replanning could always avoid deadlocks.
In material handling systems with decentralized control, it has not been
studied how time-window-based routing can be applied. This is why the
next section presents an excursus to the research field of time-window-
based routing strategies for systems with AGVs.

26

handling does not avoid so-called cross-deadlocks (see Figure 2.12). Mayer

2.3 Strategies for Routing and Deadlock Handling

2.3.3 Excursus: Time-Window-Based Route Reservation
in AGV Systems

In section 2.1, we have learned that common characteristics and differences
exist between continuous and discontinuous material handling systems.
The routing strategies are similar but they need to be executed differently
because the decision is taken by different participators. For an up-to-
date overview, we suggest reading the literature review by Vivaldini et
al. (2015).
The strategy of time-window-based route reservation has already been ap-
plied to systems with AGVs. Routes are computed and reserved for one
vehicle after another under consideration of already existing route reserva-
tions. The routes are thus computed sequentially. How do the developed
routing algorithms deal with the challenge that a route is not executed
by the vehicle as previously planned? We will present below the work
of four different research groups who take into account the occurrence of
incidences such as a delayed vehicle. Briefly said, there are two different
methods of dealing with incidences: rerouting of vehicles or reordering
of vehicles.
Kim and Tanchoco (1991) present one of the earliest approaches to time-
window-based routing and call it conflict-free routing. They introduce the
notion of a time window graph being “a directed graph in which the node
set represents the free time windows and the arc set the reachability be-
tween the free time windows” (Kim and Tanchoco 1991, p. 2380). The
time window graph which is uniquely defined for a specific source node
and a starting time is computed during route computation by considering
conflicts between different edges. As a path-finding algorithm, they use
Dijkstra, but also present an alternative using A*. With regard to inci-
dences, they use so-called safety allowances enlarging the time windows
reserved for a vehicle. These enlarged time windows enable the system to
cope with minor changes in the plan execution but also reduce through-
put. If bigger changes in plan execution lie outside of the safety allowance,
rerouting becomes necessary for which Kim and Tanchoco (1991) do not
present any method.

27

2 Material Handling Systems with Decentralized Control

Gawrilow et al. (2008) present a similar time-window-based routing algo-
rithm which they call dynamic routing2. In contrast to Kim and Tanchoco
(1991), they generate a graph of free time windows on edges and not on
nodes. They model the AGVs as polygons and restrict the simultaneous
usage of edges if the polygons of two vehicles could collide when generating
the time window graph for the whole system. After each route reserva-
tion, the time window graph is adjusted accordingly. Similar to Kim and
Tanchoco (1991), they use safety tubes in order to cope with small inci-
dences like a slightly delayed vehicle. If a delayed vehicle is in conflict with
another reservation, they reroute the affected vehicle. Therefore, Stenzel
(2008) presents three different rerouting strategies: In the first, the geo-
graphical part of the route is kept and only the time windows are adjusted.
In the second, an alternative route is found for the part of the route where
the incidence occurred. The third one is used if the previous strategies do
not succeed: The vehicle is stopped and a new route is calculated from its
current position to its destination. Other vehicles could be affected and
must also be rerouted. If vehicles block each other from rerouting, they
can be routed to so-called parking zones to move out of the way. Like
this, successful rerouting is guaranteed.
Maza and Castagna (2005a) present a time-window-based routing which
is based on the route planning algorithm of Kim and Tanchoco (1991).
They call it sequence-based conflict-free routing because of their strategy
for dealing with incidences: They use the scheduled entry time of a vehicle
in a resource to establish a resource-dependent priority of the vehicle. If
this priority is respected i.e. the order of the vehicles using one resource
corresponds to the order of the scheduled entry times, deadlocks are pre-
vented. In (Maza and Castagna 2005a; Maza and Castagna 2005b), they
propose different methods for changing this priority if incidences occur in
order to decrease the impact of incidences.
Context-aware routing is a time-window-based routing algorithm presented
by ter Mors (2009) based on the ideas of the three previously presented
approaches. For the route planning he uses the free time window graph
where nodes represent free time windows of resources and edges represent
reachability between two time windows (see Figure 2.14). The graph is
computed before computation of the route and is not specific for a source
node and a start time. The approach of ter Mors (2009) to deal with in-

2 Unfortunately, they use the term dynamic with a different meaning than described in
section 2.3.2. To distinguish whether a route is planned before or during execution,
they use the terms offline and online respectively.

28

2.3 Strategies for Routing and Deadlock Handling

Figure 2.14: Free time window graph where the edges represent reachability of
free time windows (Zutt et al. 2010)

What can we conclude from this short overview of existing research in
time-window-based route planning for AGV systems? The approaches for
dealing with incidences can be divided into two groups. Some of them try
to make the planned route more robust by enlarging the reserved time-
windows. If conflicts arise because of incidences, a rerouting is triggered.
The other approach is to extract the orders of vehicles on resources from
the planned route. This order can be either respected in order to prevent
deadlocks or the order can be changed with regard to potential dead-
locks arising.

29

cidences is similar to the one of Maza and Castagna (2005a). From the
plans of all vehicles, he derives the order in which vehicles will use a specific
resource. The timing (or the execution) of plans can be changed without
risk of deadlocks as long as this order is respected (ter Mors et al. 2008).
He also presents some repair algorithms for changing the order of vehicles.
These repair algorithms detect more situations for safe reordering of vehi-
cles than those of Maza and Castagna (2005a). Zutt et al. (2010) present
a repair algorithm where the reordering of the vehicles is accomplished by
rerouting. They study different heuristics to determine the order in which
the vehicles are allowed to reserve a new route. Within the best perform-
ing heuristic, the vehicle with the longest wait is allowed to reroute first.
They test their rerouting algorithm in grid-based topologies, amongst oth-
ers, and show that it outperforms the approach without rerouting.

2 Material Handling Systems with Decentralized Control

What are the differences between AGVs and a modular, continuous mate-
rial handling system with decentralized control like GridSorter?

– In systems with AGVs, the routes are planned by a central controller
with the knowledge of all existing reservations. Even if the route
planning is executed by the individual vehicle, the knowledge of all
existing reservations is required. Within continuous systems, it is
sufficient if each resource only knows its own reservations.

– The routes are planned sequentially for one vehicle after another.
Within continuous systems, multiple routes should be planned in
parallel.

– If the routes of AGVs are planned by a central control instance, there
is no need to synchronize any clocks. The challenge of synchronizing
clocks of decentralized controls has not been addressed. The synchro-
nization would become necessary in continuous as well as continuous
systems.

– In the presented research for AGVs, all rerouting approaches have
been triggered by a central control instance knowing the complete
system state (including the current position of each vehicle and the
occurrence of incidences). In continuous systems with decentralized
control, no control instance knows all reservations or the position of
all transported boxes.

2.4 Classification of Material Handling Systems
with Decentralized Control

Several classifications exist for some of the systems presented in section 2.2:
Schwab (2015) introduces a taxonomy to describe “GridFlow”-systems and
Mayer (2009) presents criteria to define the term “completely decentral-
ized”. Within this thesis, the principle of logical time is applied to the
decentralized control of material handling systems in order to develop an
efficient routing and deadlock-free system behavior. This is why we in-
troduce criteria that are related to these challenges in section 2.4.1. An
overview of how existing systems can be classified with these criteria is
given in section 2.4.2. Parts of this section have been developed together
with Geier (2015).

30

2.4 Classification of Material Handling Systems

2.4.1 Criteria for Classification

The following classification focuses on the design of the control, especially
the routing strategy and the handling of deadlocks in loops. We have
already seen that system characteristics such as density of goods or network
density influence the risk of deadlocks which is relevant for the choice
of deadlock handling strategy. We therefore also include these criteria
in our classification.

Main System Task The main system task describes the intra-logistic
task the system has been designed for. If a system is suited for multi-
ple tasks, we only included the most important one in the classification.
The intra-logistic tasks include Transport, Sorting, Storing, Buffering, Se-
quencing and Picking.

Routing Task Even if the systems have quite different tasks from an
intra-logistics perspective, they can be reduced to two different tasks from
a routing perspective. Either items have to be transported to certain desti-
nations (routing task Transport) or some items have to be buffered/stored
while other items need to be retrieved (routing task Retrieving from
buffer). In the latter case, one of the main tasks of the routing is to
solve conflicts with the buffered items.

Goods Density The density of the goods clearly depends on the routing
task. If items need to be buffered/stored, a high density of goods should
be achieved. If items should be transported to a destination, the density
of goods is low compared to systems with buffered/stored items. If the
objective is to achieve high system throughput, a compromise must be
found between a high number of items in the system and increased lead
times because of items interfering with each other (cf. Little’s law).
The risk of deadlocks increases with increasing density of goods.

Network Criteria Related to the network of the material handling sys-
tem, two criteria are important for routing and deadlock handling: On
the one hand, it is crucial whether the network is unidirectional or bidirec-
tional. On the other hand, the density of the network is important. The
network density can be described with the average node degree (which is

31

2 Material Handling Systems with Decentralized Control

the number of neighbor nodes of a node). In the existing systems, all grid-
based networks achieve an average node degree close to four neighbors3.
Theoretically, cognitive conveyors have a higher node degree because they
enable omni-directional movement of the boxes, but the developed routing
algorithm only includes the four cardinal directions. The network density
is high if most of the modules are connected to four neighbors and low if
modules are usually connected to fewer than four neighbors.
Depending on the combination of the two criteria, the risk of different dead-
lock types is high. The risk of opposing deadlocks is high in bidirectional,
sparse networks, whereas the risk of deadlocks in loops increases with the
network density independently of unidirectional or bidirectional usage.

Routing Strategy In section 2.3.2, we introduced four different routing
strategies: Forwarding, Dynamic Routing, Time-independent route reser-
vation, Time-window-based route reservation.

Loop Deadlock Handling In section 2.3.1, we introduced four different
deadlock handling strategies: Ignoring, Detection & Recovery, Avoidance
and Prevention. We limit this criterion to the handling of deadlocks in
loops because opposing deadlocks are less complex to handle.

2.4.2 Classification of Existing Systems and Deductions

Table 2.2 shows the classification for all systems presented in section 2.2.
The continuous material handling systems are shown in the upper part
of the table and the discontinuous systems in the lower part. For better
readability, the systems are first divided by the criteria Routing Task
and Goods Density and then ordered by the criterion Loop Deadlock
Handling. What can be deduced from this overview?
With regard to the Routing Strategy, we can state the following:

– Forwarding is only used in unidirectional networks because opposing
deadlocks are prevented by the system design.

– Dynamic Routing is only used for Retrieving from buffer. It seems
to be easier to solve conflicts with buffered items by dynamic nego-
tiation with the local neighbors.

3 The average node degree in grid-like patterns is not equal to four because border
modules have less than four neighbors

32

2.4 Classification of Material Handling Systems

Sy
st
em

M
ai
n

Sy
st
em

Ta
sk

R
ou

tin
g

Ta
sk

G
oo

ds
D
en
sit
y

N
et
w
or
k

C
rit
er
ia

R
ou

tin
g
St
ra
te
gy

Lo
op

D
ea
dl
oc
k

H
an
dl
in
g

In
te
rn
et

of
T
hi
ng

s
Tr

an
sp
or
t

sp
ar
se

&
un

id
ir
ec
ti
on

al
Fo

rw
ar
di
ng

Ig
no

re

EH
B

Tr
an

sp
or
t

sp
ar
se

&
bi
di
re
ct
io
na

l
T
im

e-
in
de
pe

nd
en
t

ro
ut
e
re
se
rv
at
io
n

Ig
no

re

Fl
ex
C
on

ve
yo
r

Tr
an

sp
or
t

Tr
an

sp
or
t

lo
w

sp
ar
se

&
bi
di
re
ct
io
na

l
T
im

e-
in
de
pe

nd
en
t

ro
ut
e
re
se
rv
at
io
n

Av
oi
da

nc
e

C
og

ni
tiv

e
C
on

ve
yo
r

Tr
an

sp
or
t

de
ns
e
&

bi
di
re
ct
io
na

l
T
im

e-
in
de
pe

nd
en
t

ro
ut
e
re
se
rv
at
io
n

Av
oi
da

nc
e

G
rid

So
rt
er

as
of

Se
ib
ol
d

et
al
.
(2
01

3)
So

rt
in
g

de
ns
e
&

bi
di
re
ct
io
na

l
T
im

e-
in
de
pe

nd
en
t

ro
ut
e
re
se
rv
at
io
n

In
co
m
pl
et
e

Av
oi
da

nc
e

M
od

ul
ar

W
ar
eh
ou

se
B
uff

er
in
g

D
et
ec
ti
on

&
re
co
ve
ry

G
rid

Fl
ow

w
ith

A
G
V
s

B
uff

er
in
g

D
et
ec
ti
on

&
re
co
ve
ry

C
el
lu
la
r
W
ar
eh
ou

se
B
uff

er
in
g

R
et
ri
ev
in
g

fr
om

bu
ffe

r
hi
gh

de
ns
e
&

bi
di
re
ct
io
na

l
D
yn

am
ic

ro
ut
in
g

D
et
ec
ti
on

&
re
co
ve
ry

G
rid

P
ic
k

P
ic
ki
ng

Av
oi
da

nc
e

G
rid

St
or
e

St
or
in
g

P
re
ve
nt
io
n

G
rid

Se
qu

en
ce

Se
qu

en
ci
ng

P
re
ve
nt
io
n

Ta
bl
e
2.
2:

C
la
ss
ifi
ca
tio

n
of

m
at
er
ia
lh

an
dl
in
g
sy
st
em

s
(M

H
S)

w
ith

de
ce
nt
ra
liz
ed

co
nt
ro
l

33

2 Material Handling Systems with Decentralized Control

– Time-independent route reservation is used for Transport of items in
bidirectional networks.

– Time-window-based route reservation is not used (yet).

low goods density high goods density

sparse & uni-

directional network

sparse & bi-

directional network

Ignore

Detect &

Recover

Avoid

Prevent

Internet of Things EHB

FlexConveyor
Cognitive

Conveyor

GridSorter GridPick

GridStore

GridSequence

GridFlow

Cellular and Modular

Warehouse

dense & bi-

directional network

Table 2.3: Deadlock handling strategy in relation to goods density
and network criteria

Table 2.3 illustrates the relation between goods density and network crite-
ria on one side and the deadlock handling strategy for loop deadlocks on
the other side. We can state the following:

– Ignoring deadlocks is only applied in systems where network density
and goods density are low.

– Detection & Recovery is only applied in dense, bidirectional networks
because recovery is feasible with sidetracking of an item in any direc-
tion. Moreover, it is only applied for Retrieving from buffer, because
a buffered item might be used for sidetracking with no or low impact
on the system performance.

– Avoidance seems to be generally suited to different systems, but one
of the presented algorithms does not avoid all deadlock situations.

– No Prevention algorithm exists for Transport of items.

34

2.5 The GridSorter as Showcase System

We can see that the choice of deadlock handling strategy is closely related
to the network criteria and the goods density. Table 2.3 illustrates: The
higher the network and goods density, the higher the risk of deadlocks, the
“higher” the chosen deadlock handling strategy.

2.5 The GridSorter as Showcase System
We have chosen the GridSorter as showcase system because it is suited to
the implementation of a control algorithm for the transport of goods to
specific destinations in dense networks with high deadlock risk.
Figure 2.15 shows the physical system: Each of the modules is a conven-
tional 90◦-transfer module and is able to convey a box in four directions.
With optical sensors on all four sides of the module, it detects the position
of the transported good and can thus control the transport of the goods.
Using its control, called FlexBox, the module can independently process
information and make decisions. A physical, electrical and electronic con-
nection exists to all four directly adjacent modules. Two adjacent modules
can therefore exchange information in form of messages.

Mechanical, electrical and electronic connection

between neighboring modules

Conveying module with sensors, actuators

and control

Figure 2.15: The physical system: a conveying module and its connections

35

2 Material Handling Systems with Decentralized Control

The topology of the network is recognized by a decentralized process based
on the Link-State-Routing-Algorithm (Tanenbaum 2011): After each mo-
dule has requested the identifier of its neighbors, this information is dis-
tributed through the entire network. With this information, each module
generates an adjacency matrix of the network. In this way, it can calcu-
late shortest paths and extract the minimal path length to destinations,
for example. Information about the goods such as the destination can be
achieved in different ways: The relevant information can either be read
from a bar-code/RFID chip or it is provided by an external system. Once
the source module knows the goal of the carried box, it starts, depending on
the control algorithm, actions for route reservation or transport of the box.

2.6 Conclusion: The Research Gap
There are various material handling systems with decentralized control.
Some of them are integrated in visions like the Internet of Things or
the Physical Internet. The field of systems with decentralized control
seems to be very active because a lot of the presented systems have been
newly developed in the last five years (compare to systems presented by
Mayer (2009)). Two systems are even industrialized (FlexConveyor and
THINGtelligence). All of the presented systems correspond well to the
design rules formulated in the vision of the Fourth Industrial Revolution
(Kagermann et al. 2012).
The system design, especially the density of the network and the trans-
ported goods, influences the risk of deadlocks. A lot of effort has been
invested in developing control algorithms that handle deadlocks in dense
networks. Nevertheless, no deadlock prevention algorithm exists for sys-
tems where all items have to be transported to a specific destination as
fast as possible. The routing strategy is closely related to the deadlock
handling strategy. To date, no decentralized control algorithm exists in
the presented material handling systems that uses time windows for the
route reservation.
The objective of this thesis is to close the research gap by developing a
control algorithm that prevents deadlocks and can be applied to a wide
range of system tasks. The GridSorter is used as showcase system to
apply the developed control algorithm.

36

3 Distributed Deadlock
Prevention with Logical Time

Pure mathematics is, in its
way, the poetry of logical ideas.

-- Albert Einstein

In the previous chapter, we presented how existing decentralized control
algorithms of material handling systems deal with the risk of deadlocks.
In section 3.1, we reason our choice of routing strategy. After presenting a
formal system description in section 3.2, we then introduce the principle of
logical time (section 3.3) and present the control of GridSorter using logi-
cal time (see section 3.4). In section 3.5, we show that the clock condition
formulated by Lamport (1978) is satisfied following the reservation and
granting conditions. Finally, in section 3.6, we prove the absence of dead-
locks if this principle is used. Parts of this chapter have been published
by Seibold and Furmans (2014).

3.1 Choice of Routing Strategy
Section 2.3.2 presented existing material handling systems with decentral-
ized control. Deadlock risk increases with the network density and the
density of transported goods. As the modules of GridSorter form a dense
network, the risk of deadlocks is present. Consequently, the strategy of
ignoring deadlocks is not an option.
We examine if and how the three presented routing strategies could be ap-
plied to GridSorter and how the mechanisms for deadlock handling impact
the system performance and complexity of the routing control.

Forwarding The routing strategy to forward boxes in the most promis-
ing direction has only been applied in unidirectional networks because it

37

3 Distributed Deadlock Prevention with Logical Time

does not handle opposing deadlocks in bidirectional networks. Within
GridSorter, additional control rules would be required to handle opposing
deadlocks and deadlocks in loops leading to complex deadlock avoiding
mechanisms.

Dynamic routing Within dense networks, dynamic routing can be ap-
plied because each module has enough routing possibilities to give way
for other boxes. Since the routing decisions are taken short-term, only the
current state of the local surrounding is taken into account. Therefore, it is
hard to guarantee efficient system behavior because future system states
are not considered. Also, the risk of livelocks and starvation increases.
Dynamic routing has only been applied to systems where a larger propor-
tion of the boxes needs to be stored. Within GridSorter, the objective is to
transport all boxes to their destination. Hence, it is possible to take future
system states into account. System liveness is hard to prove in systems
with dynamic routing decisions because interdependency of multiple local
decisions must be taken into account.

Time-Independent Route Reservation With the strategy of time-
independent route reservation, deadlocks must be avoided during the trans-
port of a box by sending messages to detect loops of waiting boxes. In a
dense network like GridSorter, the number of needed message transfers
before each transport step increases because the loops can have any form
and size in a dense network. In addition, the communication for deadlock
avoidance increases with system size because it is not locally restricted.
In large systems, transport delays could occur because of a high number
of needed message transfers. On the other hand, the deadlock avoidance
algorithm is very complex, as can be seen in Krühn (2014), which increases
the effort for a correct implementation and adaption to different systems
and system tasks.

Time-Window-Based Route Reservation With time-window-based route
reservation, waiting times can be taken into account during the routing
process. Using time windows of physical time in a system with decentral-
ized control, the physical clocks of the modules have to be synchronized,
which could be done by communication. Also, it is a challenge to han-
dle transport delays leading to arrival times at modules differing from the
planned time windows. One approach in AGV systems is to increase the

38

3.2 Formal System Description and Assumptions

reserved time windows to reduce the probability that a reserved time win-
dow has to be adapted (Stenzel 2008). Another approach is to ignore the
reserved time windows and only to respect the order of vehicles using a
specific resource for preventing a deadlock (ter Mors 2009). Within Grid-
Sorter, this would mean that an order must be established between all
boxes transported by the same conveyor.
Based on this assessment, we have chosen the time-window-based route
reservation as routing strategy. What kind of principle could be used in
order to combine the advantages of time-window-based route reservation
(efficient and deadlock-free routing) without incurring the disadvantages
(synchronization, rerouting)? How can the ordering of transports be es-
tablished and respected in a system with decentralized control?
Partial ordering of resources has been studied in the field of distributed
multi-process-systems by Lamport (1978). He uses logical clocks to es-
tablish a partial ordering of events in order to represent causal relations
between events. In the next section, we therefore describe our material
handling system as a multi-process system with multiple resources.

3.2 Formal System Description
and Assumptions

The system consisting of conveyor modules and boxes can be considered to
be a distributed multi-process system as follows: The transport of a box
from source to destination is considered to be a process. When the box is
being conveyed i.e. moving, the corresponding process is in state Transport,
otherwise it is in state Hold and Wait. The process starts when the box is
inserted in the system and the transport steps from one conveyor module
to the next one are considered to be events of this process. The process
is finished when the box reaches its destination.
Conveyor modules are considered to be resources. A box needs to be
conveyed by two conveyor modules concurrently to be transported from
one module to the next one. Thus, the corresponding process in state
Transport must hold to both resources. The duration of this transport
phase is not defined but finite. When the box is standing still, it remains
on one conveyor module. Thus, a process in state Hold and Wait only
needs to hold to one resource but it has already requested the resource
it needs for the next transport step. Usually, a resource is only assigned

39

3 Distributed Deadlock Prevention with Logical Time

Ri

Pa

Ri Ri

PaPa Pa

Process Pa
in state

Hold and
Wait

Process Pa
in state

Transport

Resource Ri Resource Ri
held by

process Pa

Resource Ri
requested by
process Pa

Figure 3.1: Legend for figures explaining resource acquisition

to one process, because a conveyor module is the same size as one box.
Tandem transport is the only exception: Having three aligned conveyor
modules, the middle module can receive a box from one side and send a
box to the opposite side concurrently. In the case of tandem1 transport,
this resource is assigned to two processes.
One important difference between the system of modular conveyors and
a distributed multi-process system lies in the characteristic of Cyber-
Physical-Systems: The time required to physically move a box is many
times higher than the time needed to share and process information be-
tween distributed controls in cyber-space. This is also the reason why the
route can be reserved for the transport of each individual box.
The graphical representation of processes, resources and possible relations
between them is shown in Figure 3.1 and is based on the representation
of Tanenbaum and Bos (2015).

Rj

(b)

RkRi

Pb

Rj

(c)

RkRi

Pb

Rj

(a)

RkRi

Pb

Figure 3.2: Course of acquisition of resources for single transport

1 The literal meaning of the word “tandem” implies that only two boxes move together.
Nevertheless, if several aligned modules perform tandem transport simultaneously, a
chain of boxes (more than two) move together. This is also called slug movement.

40

3.2 Formal System Description and Assumptions

Tanenbaum and Bos (2015) describe a sequence of actions required to use
a resource as follows: request, use and release the resource. Because of the
route reservation, the sequence of actions is the following in our system:

1. Reserve the resource
2. Request the resource
3. Use the resource
4. Release the resource

What is the sequence of actions for the transport of a box? Figure 3.2
shows the course of acquisition of resources for single transport. All re-
sources have been reserved already. Part (a) shows process Pb holding
to resource Ri and having requested resource Rj . Rj not being assigned
to any other process, it is granted to process Pb which then switches to
state Transport holding both resources (see part (b) of Figure 3.2). After
a finite duration of transport, process Pb releases resource Ri and requests
the next resource Rk which is shown in part (c). We note that a resource
can only be released by a process if the next resource has been granted
to this process already.

Rj

(a)

RkRi

Pb

Rl

Pa

Rj

(b)

RkRi

Pb

Rl

Pa

Rj

(c)

RkRi Rl

PaPb

Rj

(d)

RkRi Rl

PaPb

Figure 3.3: Course of acquisition of resources for tandem transport

Figure 3.3 shows the course of acquisition of resources for tandem trans-
port. Again, the resources have been reserved already. In part (a), process

41

3 Distributed Deadlock Prevention with Logical Time

cess Pa. Process Pa, in turn, has requested resource Rk. Tandem transport
is physically possible because the trio of resources Ri, Rj and Rk is aligned.
Once resource Rk is granted to Pa, Pa switches to state Transport (see part
(b)). Resource Rj can now be granted to process Pb while it is still held
by Pa (see part (c)). Pb switches to state Transport as well. Transition to
part (d) is triggered when process Pa switches to Hold and Wait after a
finite physical time interval. In addition, process Pb switches to Hold and
Wait and requests the next resource after a finite physical time interval.
This situation is not shown in the figure.
Let us summarize: The transition from state Hold and Wait to Transport
takes place when granting conditions are fulfilled. A resource can only
be granted to a process if it is free, i.e. not held by another process, or
if tandem transport conditions are fulfilled. The transition from Trans-
port to Hold and Wait is time-triggered because the transport has a finite
duration in physical time.
The property of system liveness includes the termination of each process
i.e. each box must be transported to its destination. In order to prove
system liveness, it is necessary to prove the absence of deadlocks, live-
locks and starvation.

3.3 Transferring Logical Time

to Material Handling

A distributed system consists of multiple parallel processes, each being a
set of events with a defined order. Because of this defined order, causal
relations exist between the events of one process. Lamport (1978) calls
a causal relation between two events a “happening before” relation. The
events of the processes are represented by dots in Figure 3.4. The parallel
processes are connected to each other by messages defining a causal rela-
tion between the events of two different processes: The event of sending a
message happens before the event of its reception. The sending of a mes-
sage is represented by a wavy arrow in Figure 3.4. The entire set of causal
relations forms a partial ordering of the events in the system. Event p1
is happening before q3 in Figure 3.4 because they are connected through
a sequence of causal relations. However, the ordering of event p3 and q3
cannot be determined because there is no sequence of causal relations.

42

Pb is again requesting resource Rj which is this time already held by pro-

3.3 Transferring Logical Time to Material Handling
Fig. 1.

a, CY ,Y

(9 (9 ~o
~ o

P4'

P3

P2'

Pl ~

q7

q6

q5

q l

r 4

r 3

r 2

r 1

event. We are assuming that the events of a process form
a sequence, where a occurs before b in this sequence if
a happens before b. In other words, a single process is
defined to be a set of events with an a priori total
ordering. This seems to be what is generally meant by a
process.~ It would be trivial to extend our definition to
allow a process to split into distinct subprocesses, but we
will not bother to do so.

We assume that sending or receiving a message is an
event in a process. We can then define the "happened
before" relation, denoted by "---~", as follows.

Definition. The relation "---->" on the set of events of
a system is the smallest relation satisfying the following
three conditions: (1) I f a and b are events in the same
process, and a comes before b, then a ~ b. (2) I f a is the
sending of a message by one process and b is the receipt
o f the same message by another process, then a ~ b. (3)
I f a ~ b and b ~ c then a ---* c. Two distinct events a
and b are said to be concurrent if a ~ b and b -/-* a.

We assume that a ~ a for any event a. (Systems in
which an event can happen before itself do not seem to
be physically meaningful.) This implies that ~ is an
irreflexive partial ordering on the set of all events in the
system.

It is helpful to view this definition in terms of a
"space-time diagram" such as Figure 1. The horizontal
direction represents space, and the vertical direction
represents t ime-- la ter times being higher than earlier
ones. The dots denote events, the vertical lines denote
processes, and the wavy lines denote messagesfl It is easy
to see that a ~ b means that one can go from a to b in

' The choice of what constitutes an event affects the ordering of
events in a process. For example, the receipt of a message might denote
the setting of an interrupt bit in a computer, or the execution of a
subprogram to handle that interrupt. Since interrupts need not be
handled in the order that they occur, this choice will affect the order-
ing of a process' message-receiving events.

2 Observe that messages may be received out of order. We allow
the sending of several messages to be a single event, but for convenience
we will assume that the receipt of a single message does not coincide
with the sending or receipt of any other message.

559

Fig. 2.

cy c~

(9 (9 ~)
O O U

- 2 - - - q6 -- ;#.i
Y _ P3' ~ ~ ~ ~ ~ _ ~ ~ - ~ r3

the diagram by moving forward in time along process
and message lines. For example, we have p, --~ r4 in
Figure 1.

Another way of viewing the definition is to say that
a --) b means that it is possible for event a to causally
affect event b. Two events are concurrent if neither can
causally affect the other. For example, events pa and q:~
of Figure 1 are concurrent. Even though we have drawn
the diagram to imply that q3 occurs at an earlier physical
time than 1)3, process P cannot know what process Q did
at qa until it receives the message at p , (Before event p4,
P could at most know what Q was planning to do at q:~.)

This definition will appear quite natural to the reader
familiar with the invariant space-time formulation of
special relativity, as described for example in [1] or the
first chapter of [2]. In relativity, the ordering of events is
defined in terms of messages that could be sent. However,
we have taken the more pragmatic approach of only
considering messages that actually are sent. We should
be able to determine if a system performed correctly by
knowing only those events which did occur, without
knowing which events could have occurred.

Logical Clocks

We now introduce clocks into the system. We begin
with an abstract point of view in which a clock is just a
way of assigning a number to an event, where the number
is thought of as the time at which the event occurred.
More precisely, we define a clock Ci for each process Pi
to be a function which assigns a number Ci(a) to any
event a in that process. The entire system ofc lbcks is
represented by the function C which assigns to any event
b the number C(b) , where C(b) = C/(b) i fb is an event
in process Pj. For now, we make no assumption about
the relation of the numbers Ci(a) to physical time, so we
can think of the clocks Ci as logical rather than physical
clocks. They may be implemented by counters with no
actual timing mechanism.

Communications July 1978
of Volume 21
the ACM Number 7

Figure 3.4: Distributed system: parallel processes with multiple events and
causal relations (Lamport 1978)

Lamport (1978) assigns a number to each event representing the logical
time at which the event occurs. Ci is the logical clock of process Pi and
Ci〈a〉 the logical time of event a if it is an event of process Pi. The set of
logical clocks of all processes is represented by C where C〈a〉 = Ci〈a〉 if a
is an event of process Pi. He formulates the clock condition as follows:

For any events a, b: if a→ b then C〈a〉 < C〈b〉
where “→” is the symbol for “happening before”. Please note related to
the clock condition that the logical time of an event is assigned by the
set of all logical clocks C.
Let us now transfer the principle of logical time to the decentralized control
of a material handling system. First, we present the parallelisms between
a modular conveyor system and distributed systems.

– Parallel processes exist because multiple boxes should be transported
concurrently.

– The transport steps needed to convey the box to its destination rep-
resent the events2 of this process.

– There are “happening before” relations among the events of one pro-
cess, i.e. the transport steps of one box, arising from the physical
movement.

2 Usually, an event is not allowed to have a duration. In our case, the duration is
defined in physical time. In logical time, the event does not have any duration.

43

3 Distributed Deadlock Prevention with Logical Time

– For each event of one process, two resources are needed, because one
transport step is enabled by two conveyors.

– If routes of two different boxes overlap each other, the conveyors used
by both boxes are common resources of these processes3.

– There are “happening before” relations among the events related to
one resource used by multiple processes, i.e. the transport of different
boxes on the same conveyor.

– There are no “happening before” relations between boxes whose
routes do not overlap. The transport steps of all boxes can thus
be partially ordered.

ro

k l

p

a

b
q

m n

i j

s t

a1 a2 a3

b1

b2

b3

c

c1

c2

process transport of a box

resource conveyor module

event transport step

Figure 3.5: Example for routes of three boxes with one common resource

Figure 3.5 shows an exemplary situation of three boxes on the GridSorter.
As described before, two different kinds of “happening before” relations
exist:
First, the transport steps of each box can only take place in a prede-
termined order.

a1 → a2 → a3
b1 → b2 → b3

c1 → c2

3 If tandem transport is possible, a common resource is held by two processes con-
currently. If single transport is required, a common resource must be used by the
processes subsequently.

44

3.4 Controlling Material Handling with Logical Time

Second, on the module where the routes of box a and b cross, the transport
steps must happen in a certain order: Box a must have left the module
before box b enters or vice versa.

b3→ a1 or a2→ b2

The route of box c does not overlap with another route. Therefore, no
causal relations exist and the transport of box c can be performed inde-
pendently from the other boxes.
For the two kinds of “happening before” relations on GridSorter, the fol-
lowing two conditions must be fulfilled in order to satisfy the clock con-
dition:

1. The transport steps of one box must happen at advancing logical
time.

2. Consider one conveyor module: The outgoing transport of one box
must take place at an earlier logical time than the incoming transport
of the next box.

In the example of Figure 3.5, the following conditions must be fulfilled
regarding the logical time at which the transport steps are performed:

C〈a1〉 < C〈a2〉 < C〈a3〉
C〈b1〉 < C〈b2〉 < C〈b3〉

C〈c1〉 < C〈c2〉
C〈b3〉 < C〈a1〉 or C〈a2〉 < C〈b2〉

One possible combination of logical times of the events satisfying these
conditions is shown in Figure 3.6.
We want to use the principle of the logical time for partial ordering of trans-
port steps to design a deadlock prevention that does not have an negative
impact on the system performance. In the next section, we describe how
material handling systems could be controlled using logical time.

3.4 Controlling Material Handling
with Logical Time

Lamport (1978) describes an algorithm using logical time for a system
where parallel processes send messages to each other containing time-

45

3 Distributed Deadlock Prevention with Logical Time

a

b

1 2 3

2

3

4

c

1

2

Figure 3.6: Example for routes of three boxes with exemplary logical times

In our system, multiple common resources exist and each process can be
terminated by using a different sequence of resources. In addition, it is not
the processes that send messages and take decisions, but the resources4.
This is why the control algorithm presented by Lamport (1978) needs to
be extended in order to be applied to the control of material handling. In
section 3.4.1, we present our solution of assigning logical clocks to resources
instead of processes.
Figure 3.7 shows for each box, resources are reserved using timestamps
based on the described “happening before” relations (section 3.4.2). Dur-
ing the transport process, the partial order among the transport steps
defined by the set of reservations has to be respected. Therefore, we de-
scribe the conditions for requesting, granting and releasing of resources
in section 3.4.3. These conditions are closely related to the timestamps
of the corresponding reservations and guarantee that the logical clocks of
the resources are only set forward and never back. Figure 3.7 also shows

4 This is the point where I want to say special thanks to my sister and her husband for
their patience during hour-long discussions whether the boxes should be the processes
or the resources. I learned that for IT specialists it is very contra-intuitive that a
process is a dumb thing, incapable of taking decisions or having a logical clock.
However, we model our system like that because all other parallelisms fit very well.

46

stamps T in order to request access to a common resource. The logical
clocks are assigned to the processes and set according to the timestamps
contained in received messages.

3.4 Controlling Material Handling with Logical Time

Transport processRsv

Transport processRsv

Transport processRsv

Reservation of modules

assigning timestamps to

transport steps

Execution of transport steps

according to their partial

order

Figure 3.7: Parallel reservation of resources and execution of transport steps

3.4.1 Assigning Logical Clocks to Resources

Figure 3.8 shows the example of Figure 3.5 as a multi-process system in-
spired by the representation of Lamport (1978). The three processes Pa,
Pb and Pc are represented by vertical lines. Thus, each line represents
the transport of one box and therefore needs an uninterrupted sequence
of resources to be successfully terminated because a box always needs to
be carried by at least one conveyor. During a transport step, represented
by a dot in the figure, the box is transported from one module to another.
For this transport both resources are needed. In the model, the physical
duration of a transport step is irrelevant: the event simply includes the
process switching from one resource to the next. A “happening before”
relation between two processes is represented by a dotted arrow and be-
comes necessary if a resource is used in common i.e. if two routes cross.
In the example of 3.5, there is only one conveyor module which is used
by two boxes. In Figure 3.8, the common resource Rl is highlighted in
gray. The dotted arrow states that Rl must first be released by process Pa
before being granted to Pb which corresponds to the “happening before”
relation a2 → b2.
Even though Figure 3.8 looks very similar to 3.4, it contains an additional
dimension compared to the system described by Lamport (1978). For this

47

not synchronized and a resource must be able to receive a new reservation
while it is held by another process and while events are taking place. Basic
ideas of this section have been developed together with Haude (2014).

that the boxes enter the system at different times. Thus, the processes are

3 Distributed Deadlock Prevention with Logical Time

Following this resource in the horizontal direction, we recognize that it
also forms a sequence of events like a process. Consequently, each event is
related to one process and two resources that need to be synchronized.

Pa Pb Pc

Rk

Rl

Rm

Rn

Ro

Rp

Rl

Ri

Rt

Rq

Rr

a3

a2

a1

b1

b3

b2

c1

c2

Transport
of box a

3rd transport step of box
a from conveying

module m to module n

box a carried by
conveying module n

Transport
of box b

Transport
of box c

Figure 3.8: Representation of GridSorter as multi-process-system inspired by
Lamport (1978)

How can the logical time be assigned to the events in our system? C is the
set of all logical clocks in the system and C〈a1〉 the number assigned to
event a1 by the set of all logical clocks. In (Lamport 1978), C〈a1〉 = Ca〈a1〉
is assigned by the logical clock of process a if event a1 is part of process a.
In our system, it is not the processes that are equipped with a control, but
the resources. Let Ci denote the logical clock of resource Ri. Consequently,
the logical time of an event can only be assigned by the related resources
which must have logical clocks of their own5. For each event of a process,
two resources are necessary.
For example in Figure 3.8, the transport step a1 of box a is enabled by
conveyors k and l. The logical clocks of both resources must assign the
same logical time to the event. It must hold good that

C〈a1〉 = Ck〈a1〉 = Cl〈a1〉
if a1 is an event for which resource Rk and Rl are needed.

5 Implicitly, the process also has a logical clock having the same logical time as the
resource(s) it is holding to.

48

purpose, please consider resource Rl highlighted in gray in Figure 3.8:

3.4 Controlling Material Handling with Logical Time

the set of all logical clocks C and changed the way in which this set as-
signs a logical time to an event.

Logical Clocks of Modules

Reservation of Modules Transport of Boxes

Reserving time windows with
timestamps for incoming and outgoing

transport steps

“agreeing on timestamps
of transport steps”

Performing transport steps
according to the order

of the timestamps

“synchronizing logical clocks with
neighboring modules”

Ticking with each performed
transport step

No reservation in the past!

Figure 3.9: Control design of GridSorter with logical time

So how is a valid sequence of resources for a process found? And how do the
resources agree on the logical time of an event? The interrelation between
the reservation of modules, the transport of boxes and the logical clocks is
shown in Figure 3.9. In order to find a route for a specific box to its des-
tination, the conveyors send reservation requests to each other, assigning
timestamps T to the transport steps of the box. By assigning a timestamp
to each transport step, both conveyors agree on the logical time at which
the transport should be performed. The entire set of reservations estab-
lishes a partial ordering among all transport steps of all boxes. In order to
satisfy the clock condition formulated by Lamport (1978), the transport
steps must be performed according to the partial ordering defined by the
reserved timestamps. During transport of the boxes, each module sets its
logical clock to the timestamp of the performed transport step, and there-
fore synchronizes its logical clock with the neighboring conveyor module.
The transport of boxes influences the reservation of modules because new
reservations must only be accepted if they lie in future logical time in order
to satisfy the clock condition (see section 3.5).

49

One might have the impression that the idea of logical time has been dras-
tically changed in comparison to Lamport (1978), but we only expanded

3 Distributed Deadlock Prevention with Logical Time

3.4.2 Reservation of Resources using Logical Timestamps

For each process, all resources needed for its successful termination must
be reserved before the process requests the first resource that could be
commonly used. To use the principle of logical time for the control of a
decentralized material handling system, the reservations must fulfill cer-
tain conditions which are introduced in this section. We do not present
the algorithm showing how a set of possible reservations is found (i.e. the
route reservation process) in this chapter because it is not relevant for the
principle of logical time. A possible implementation of the route reserva-
tion process is introduced in Chapter 4. In this chapter, we simply assume
that a valid sequence of resources is known and reserved for each process.
Each reservation is defined by a starting and an ending timestamp be-
cause the module is occupied by the box between the incoming and the
outgoing transport. Two subsequent conveyor modules on the route of a
box agree on the timestamp for this transport step. These reservations
are distributively stored among the resources so that each resource only
keeps its own reservations. A resource is able to keep multiple reservations
for different processes.

1 2

4

3

2 3 3

2

4

b

3

2

1a

2

1

2

1

c

reservation with

starting timestamp 2

and

ending timestamp 3

Figure 3.10: Example for routes of three boxes with reservation of resources

Figure 3.10 shows the reservations for the previous example if the mo-
dules agree on the timestamps as shown in Figure 3.6. The reservations
are represented by white arrows. Each timestamp of a transport step is
listed as ending timestamp of the reservation of the sending module and as

50

3.4 Controlling Material Handling with Logical Time

dule where two routes are crossing, the reservations do not interfere with
each other because the reservation for box a has the ending timestamp 2
whereas the reservation for box b has the starting timestamp 3.
Please note that the reservations are not necessarily received and accepted
in the order of their timestamps. It is possible that a reservation is accepted
even though another reservation exists for later timestamps as long as
it lies in the future and does not interfere with other reservations. For
example, the commonly used resource in Figure 3.10 could have received
the reservation of box b before the reservation for box a.
Let us now describe the reservation conditions formally: The reserva-
tion of a resource for a specific process is defined by two timestamps:
Let Tin (Pa, Ri) denote the timestamp of the incoming transport and
Tout (Pa, Ri) the timestamp of the outgoing transport. The reservation
of resource Ri for process Pa is defined by the pair of timestamps

[Tin (Pa, Ri) , Tout (Pa, Ri)]

with
Tin (Pa, Ri) < Tout (Pa, Ri) (3.1)

representing that the incoming transport of a box must take place be-
fore its outgoing transport (see Figure 3.11). This condition guarantees
that the clock condition for the causal relation between the events of one
process is respected.

i

Tin Touta

Figure 3.11: Timestamps of one reservation

Two conveyors are needed to transport a box from one conveyor to the
next one. If process Pa needs to use resource Ri and Rj subsequently,
the condition

Tout (Pa, Ri) = Tin (Pa, Rj) (3.2)

must be fulfilled (see Figure 3.12). This condition guarantees that both
resources agree on the logical time of the related event.

51

starting timestamp of the reservation of the receiving module. On the mo-

3 Distributed Deadlock Prevention with Logical Time

i j

Tout Tina

Figure 3.12: Timestamps for one transport step

As stated above, a resource can only be granted to one process at a time
(with the exception of tandem movement). If process Pa should use re-
source Ri before process Pb, the reservations must fulfill the condition

Tout (Pa, Ri) < Tin (Pb, Ri) (3.3)

if single movement is planned, because box a must have left conveyor i
before box b can enter (see Figure 3.13). This being the case, the clock
condition for the causal relation between the events of two different pro-
cesses is respected. Single movement is necessary if the incoming direction
of box b is perpendicular to the outgoing direction of box a.

i

a

Tin

b

Tout

Figure 3.13: Two boxes using module i in single movement6

Tandem movement is physically possible if the corresponding trio of re-
sources is aligned, which is why box a leaves module i on the opposite
side of box b entering (see Figure 3.14). In this case, resource Ri can be
assigned to two processes and instead of condition (3.3), the condition

Tout (Pa, Ri) = Tin (Pb, Ri) (3.4)
must be fulfilled.

6 The incoming direction of box a is irrelevant for condition (3.3) and (3.4). The figure
only shows an exemplary incoming direction of box a.

52

3.4 Controlling Material Handling with Logical Time

i

a

Tin Toutb

Figure 3.14: Two boxes using module i in tandem movement6

Let Ci be the logical clock of resource Ri defining its current logical time.
Related to the logical clock, the reservation for process Pa must satisfy
the condition

Ci ≤ Tin (Pa, Ri) (3.5)

in order to be in future logical time of the resource7.

3.4.3 Acquisition of Resources using Logical Time

In section 3.2 we describe the course of acquisition of resources and state
that a resource is only granted if the granting conditions are fulfilled.
In this section, the conditions for granting and releasing a resource are
defined using the timestamps of the related reservation. Each resource
holds a list of all accepted reservations. Reservations are deleted once the
corresponding transport steps are fulfilled.
Figure 3.15 shows the course of acquisition of resources for a single trans-
port like Figure 3.2 with the additional information of the logical clocks
of the related resources. In part (a), process Pb is holding to resource Ri
and its logical clock depicts the timestamp of the outgoing transport. If
now resource Rj is granted to Pb, it sets its logical clock to the timestamp
of the incoming transport.

Cj := Tin (Pb, Rj) (3.6)

In part (b) of Figure 3.15, Pb holds to resource Ri and Rj and switches to
state Transport. The logical clocks of both resources show the same logical

7 As in any calendar system, reservations lying in the past cannot be accepted. An
alternative, later time has to be found for the reservation.

53

3 Distributed Deadlock Prevention with Logical Time

Rj

(b)

RkRi

Pb

Rj

(c)

RkRi

Pb

Rj

(a)

RkRi

Pb

Ci = Tout(Pb,Ri) Ci = Tout(Pb,Ri)
=

Cj = Tin(Pb,Rj)

Cj = Tout(Pb,Rj)

Figure 3.15: Course of acquisition of resources for single transport
with logical clocks

What are the conditions for resource Rj to be granted to process Pb? The
following three granting conditions (GC) must be fulfilled before start-
ing a transport:
GC1 Rj is requested by Pb. This condition guarantees that the sending

conveyor is ready for the transport to be started.

54

time. When the box is successfully transported to the next resource as
shown in part (c) of Figure 3.15, the following actions take place:

– The resource Ri is released.
– Ri deletes the reservation of process Pb because all related transport

steps have been performed.
– Process Pb requests the next resource Rk and switches to state Hold

and Wait.
– Rj sets its logical clock to the timestamp of the outgoing transport.

Cj := Tout (Pb, Rj) (3.7)

Please note that the transition from the state Transport to the state Hold
and Wait is only triggered by the end of the transport step i.e. it takes
place after a finite physical time without any special conditions related
to the reservation.

3.4 Controlling Material Handling with Logical Time

Tout (Pa, Rj) < Tin (Pb, Rj)8. Like this, the conveyor only performs
the transport step with the lowest timestamp. This guarantees that
the transport steps of the accepted reservations are performed in the
previously defined order.

GC3 The third granting condition depends on the transport type:
single Rj is free, i.e. not held by any other process.
tandem Rj is held by Pa which is in state Transport and tandem

transport is physically possible (compare Figure 3.3).
This condition is related to the physical feasibility of a transport and
guarantees that no collisions occur.

The granting conditions guarantee that the transports are fulfilled in the
order of their reservation timestamps so that the logical clock of the con-
veyor is always set forward and never back.
What does this set of logical clocks look like for an external observer? Each
module has its own logical clock which is only set forward in discrete steps
if a box is transported. If two neighboring modules perform a transport
together, their logical clocks are synchronized i.e. their logical clocks are set
forward to the timestamp reserved for the transport step. The set of logical
clocks does not define one identical system time, because all logical clocks
could differ from each other. The logical time is completely independent
of physical time. For example, it could happen that a conveyor module
remains in the same logical time for a long period of physical time because
no box has to be transported.
Figure 3.16 shows an conveyor network forming a crossing where boxes
have only been transported from West to East several times. All other
modules have remained in the logical time 0. The left side of the figure
shows a valid reservation because all timestamps lie in the future logical
time of the participating conveyor modules. When the transport of box a
is finished, the conveyor modules have updated their logical time by syn-
chronizing with the neighboring module when performing a transport step.
The logical clocks have skipped all time steps in between. To put it more
explicitly, one could say that the boxes bring the time to the conveyors.

8 Within tandem movement, resource Rj keeps a reservation with Tout (Pa, Rj) =
Tin (Pb, Rj) which is allowed.

55

GC2 Rj has performed all transport steps with lower timestamps and
deleted the relevant reservations. Therefore, Rj can be granted to
Pb if it does not keep a precedent reservation for any process Pa with

3 Distributed Deadlock Prevention with Logical Time

19

0

20 21

0

0

21

1

1

a

Reservation with

starting timestamp 21

and

ending timestamp 22

22

21

22

19

21

22 21

22

1

a

Logical time of this

module

Figure 3.16: A conveying network before (left) and after (right) the transport
process of box a

3.5 Proof of Satisfying the Clock Condition
In this section, we show that the described algorithm satisfies the clock
condition defined by Lamport (1978). The “happening before” relation
only exists between events of one process or between events on one re-
source. It is therefore sufficient to show that the events of one process
take place in ascending order of their timestamps and that the logical
clock of one resource is advancing i.e. the related events take place in
ascending order of their timestamps.

Proof. Let R be the set of all resources in the system and P be the set of all
processes in the system. With the reservation conditions (3.1) and (3.2),
we guarantee that the timestamps of reservations of one process are as-
cending. It is physically given that the transport steps are executed in this
order. Thus, the events of one process are forcibly executed with ascend-
ing timestamps. In addition to these physical characteristics, the events
happen in order of their timestamps because the process only requests the
next resource when it releases the previous one (compare section 3.4.3).
Let us look at Pb is holding to resource Rj : Since all preceding transport
steps of process Pb must have been executed, the associated reservations
have been deleted. Thus, if process Pb is holding to resource Rj and wait-

56

3.5 Proof of Satisfying the Clock Condition

ing for the next resource, no reservation exists for process Pb on any other
resource Ri ∈ R with

Tout (Pb, Ri) < Cj . (3.8)

Consider now the events related to one resource: The logical clock is set
to a new value if the resource is granted to a new process (equation (3.6))
or if the next resource is requested (equation (3.7)). The clock condition
is fulfilled if the logical clock of each resource is only set forward. Let us
look at resource Rj that has been previously released by process Pa and
is requested by Pb. Before Rj is granted to process Pb, its logical clock
corresponds to the ending reservation timestamp of process Pa, thus

Cj = Tout (Pa, Rj) .

For the logical time to be advancing, the condition

Cj ≤ Tin (Pb, Rj)

must be satisfied if resource Rj is granted to process Pb.
Let us assume the contrary: The logical clock is set backward because
Cj > Tin (Pb, Rj). Either reservation of process Pb has already existed
when the resource has been granted to process Pa. In this case, it would
have violated granting condition GC2 with

Tin (Pb, Rj) < Tout (Pa, Rj)

or the reservation of process Pb has been accepted after Rj has been
granted to Pa, in which case it would have violated reservation condition
(3.5) with

Cj > Tin (Pb, Rj) .

If a process requests the next resource, the logical clock of the resource is
set from the starting timestamp of the reservation to the ending timestamp.
The clock condition is always satisfied because of reservation condition
(3.1).
We can conclude that the clock condition is also satisfied for the events
happening on one resource. This means the following: if process Pb is
holding to resource Rj , no reservation on resource Rj exists for any process
Pa ∈ P with

Tout (Pa, Rj) < Cj . (3.9)

57

3 Distributed Deadlock Prevention with Logical Time

3.6 Proof of Absence of Deadlocks by
Contradicting the Circular Wait Condition

We already know from section 3.2 the formal description of our system
consisting of conveyor modules and boxes as a distributed multi-process
system. In section 3.4, we have defined reservation and granting conditions,
and in section 3.5, we have shown that a system following these conditions
satisfies the clock condition defined by Lamport (1978).
Our approach to prove the absence of deadlocks is the following: We want
to prove that a deadlock cannot occur if the system follows the reserva-
tion and granting conditions of section 3.4. Therefore, we have chosen
a proof by contradiction. As stated in section 2.3.1, a deadlock exists if
the following conditions are fulfilled (Tanenbaum and Bos 2015): First, all
involved resources are held by a process. Second, the resources cannot be
preempted. Third, all involved processes are in state Hold and Wait. And
fourth, the processes are waiting in a circular chain. The circular wait
condition is the only one that can be negated in our system. To prove the
absence of deadlocks, we show that the circular wait condition contradicts
the described reservation and granting conditions.
We know that a logical clock in our system is only set forward if an event
takes place. In case of a deadlock with circular wait condition, no events
take place in a set of resources held by processes. Therefore, the corre-
sponding set of logical clocks would remain infinitely in their current logical
time9. In our proof, we must show that the logical clocks of resources held
by process are set forward definitely.
There is a finite number of processes and resources in the system. Thus,
there is a finite number of reservations and there is a finite number of
timestamps included in the reservations. Let us consider only the resources
held by a process. If we can show that, out of this set of resources, the
resources with the minimal value as logical time set their logical clock
forward definitely, we can conclude that every event of every process will
take place at some time because it will be the event related to the resource
with the minimal value for the logical clock at some time.

9 Logical clocks can also remain infinitely in their current logical time if no process
wants to use the resource any more. Thus, the reverse statement is not true.

58

3.6 Proof of Absence of Deadlocks

Proof. Let us assume the worst case: All processes in the system are in
state Hold and Wait. Let Cmin denote the minimum logical time of all
resources held by a process and

Rmin = {Ri | Ci = Cmin}

the set of the held resources having the minimal logical time. Processes are
only in Hold and Wait if granting conditions are not fulfilled. The granting
conditions defined in section 3.4.3 must be checked for these processes:

– GC1 is fulfilled because the processes have already requested the
next resource.

– Because of (3.8) and (3.9), there is no resource Ri ∈ R keeping a
reservation for a process Pa ∈ P with Tout (Pa, Ri) < Cmin. Thus,
GC2 is fulfilled for the set of resources Rmin.

– Therefore, the processes holding these resources can only be in Hold
and Wait because of GC3 meaning that the requested resource is not
released by the previous process.

Suppose that the processes holding to the resources Rmin are waiting in
a chain as shown in Figure 3.17. In our system, the chain should include
at least four different resources so that a deadlock in a loop is possible.
Opposing deadlocks with only two resources are prevented by reservation
condition (3.3).

R2 RiR1

P1

Ri+1

P2

… R1‘
…

Pi Pi+1 P1‘
… …

Figure 3.17: Chain of processes in Hold and Wait

It is not defined yet whether tandem transport is possible between these
resources. From reservation conditions (3.2), (3.3) and (3.4), we can de-
duce

Tout (Pi, Ri) = Tin (Pi, Ri+1) ≥ Tout (Pi+1, Ri+1)

and consequently

Tout (P1, R1) ≥ Tout (P1′ , R1′) . (3.10)

59

3 Distributed Deadlock Prevention with Logical Time

For there to be a deadlock with circular waiting of these resources, it must
be given P1 = P1′ and R1 = R1′ . We can deduce

C1 = Tout (P1, R1) = Tout (P1′ , R1′) = C1′ (3.11)

Equation (3.10) is only consistent to (3.11) if tandem transport with reser-
vation condition 3.4 is used exclusively in (3.10). For that, all trios of
resources in this circular chain of Hold and Wait must satisfy the physical
tandem transport condition by being aligned. This is only the case if all
resources are aligned, which makes it impossible that R1 = R1′ . We can
state that a circular waiting of resources connected with tandem transport
reservations is physically impossible.
If R1 = R1′ , there must be at least one single transport between resources
in the chain and equation (3.10) becomes

Tout (P1, R1) > Tout (P1′ , R1′) (3.12)

which is in contradiction to (3.11). A circular waiting of processes is
impossible.

3.7 Conclusion on the Usage of Logical Time
It is possible to use the principle of logical time in modular material
handling systems with decentralized control like GridSorter. By assign-
ing timestamps to transport steps, a partial order between the transport
of different boxes is defined during route reservation. When boxes are
transported, the conveyor modules must follow the defined sequence in
order to prevent deadlocks. The absence of deadlocks in a system using
logical time for routing and transport control has been proved. Livelocks
are eliminated as well because a box is only allowed to enter the system if
a route to its destination has been successfully reserved and because boxes
never backtrack on their route.
During transport, starvation cannot occur because the order of accepting
processes is defined by the timestamps. Therefore, a certain process is
never disadvantaged forever. During the reservation process, starvation
occurs if the conveyor modules are not able to find a route for single
boxes. In section 4.2.6, we show that the reservation process is complete
i.e. finds a valid route for each box.

60

3.7 Conclusion on the Usage of Logical Time

Since logical time advances in discrete steps only if boxes are transported,
the system is robust to variations in transport times. With logical time
there is no need to adjust arrival times as it would be necessary using
physical time (Mayer 2009). Also, it is not necessary to synchronize the
logical clocks of the modules, as would be necessary using physical time.
However, it needs to be considered whether the resulting asynchronicity of
the logical clocks has an effect on system performance (see section 6.3).
In this chapter, we assume that every transport step is finished after a finite
interval in physical time. This assumption is wrong if, for example, the box
gets jammed or if the conveyor module breaks down. If the logical time in
one conveyor module no longer advances, the entire system can be brought
to a standstill. The affected module and its neighboring modules need to
be able to detect such a situation and react accordingly, for example by
rerouting affected boxes (Fuß et al. 2015; Alt 2014).
Using a routing strategy with time windows, it is possible to consider wait-
ing times due to other boxes during route reservation. The metric to rate
different routes is based on lead time (see section 4.2.3). Likewise, the size
of the routing decision tree increases as it gains an additional dimension.
Consequently, the communication effort for route reservation with time
windows is higher than for a route reservation without time windows.
Also, the number of sent messages during route reservation increases with
system size which could delay boxes waiting on source modules for the
reservation to be completed. There are different ways to deal with this
challenge; for example, route reservation could be started a certain time
before the box is planned to enter the system. Another approach is to
accept partially reserved routes (see section 4.2.5).
Unlike the communication effort for route reservation, the number of mes-
sages during the transport of a box decreases in comparison to control
algorithms using deadlock avoidance. Because of the predefined order be-
tween transported boxes, the granting of a transport step of a specific box
only needs two messages representing a clearly limited, local communica-
tion effort. The physical transport of a box by far exceeds the duration
of this message exchange.

61

4 Decentralized Control of
GridSorter with Logical Time

There are plenty of difficult obstacles in your path.
Don’t allow yourself to become one of them.

-- Ralph Marston

In Chapter 3, we applied the principle of logical time to the decentral-
ized control of a material handling system. We showed that the system
is free of deadlocks if it fulfills certain reservation and granting condi-
tions. Based on these conditions, control rules need to be defined that
each conveyor module has to follow. The challenge is that these local
decision rules should create interaction between neighboring conveyor mo-
dules that lead to an efficient system behavior. Therefore, the control rules
must at least fulfill the reservation and the granting conditions described
in section 3.4.2 and 3.4.3.
In the following section 4.1, we first introduce the control architecture and
components of one conveyor module. Different components are responsible
for different processes.
The reservation manager, for example, is responsible for the reservation
process as described in section 4.2 whereas the transport manager is re-
sponsible for the transport process as described in section 4.3. Both sec-
tions first describe the processes from an observer’s point of view and then
define the local decision rules.

4.1 Control Architecture and Components
For each box entering the system, a route must be reserved in the so-
called reservation process and afterwards the transport process must be
performed. Both processes should be controlled by local decisions of con-
veyors because the system does not possess a central control. Informa-

63

4 Decentralized Control of GridSorter with Logical Time

tion exchange by message passing is necessary because several conveyor
modules are involved in the reservation and transport process of one box.
Additionally, several transport processes and reservation processes are run-
ning simultaneously because several boxes are in the system.
Each conveyor module has the same control architecture and decision rules
because the modules should be identical and interchangeable. Each module
can be identified by a unique module ID. To control the different and simul-
taneously running processes, the control consists of multiple components,
each managing different types of tasks and processes. The components,
their tasks and their dependencies are shown in Figure 4.1.

Logical Clock

Reservation Manager Transport Manager

Reserving time

windows with

incoming and

outgoing timestamps

Granting transports

according to the

order

of the timestamps

Ticking with each

released transport
No reservation

in the past!

Hardware ControlLayout Manager

Generating

and updating

topology

information

Accepted reservationsShortest paths

Performing

transports

based on

sensor data

and by

controlling

actuators

Granted transports

Identification of neighboring modules

Figure 4.1: Control components and how they influence each other

The hardware control is connected to all sensors and actuators. Based on
sensor data and in coordination with the predecessor or successor module,
it is able to perform the transport of a box from one module to the next.
It also controls the electronic connections to the neighboring modules, the
so-called FlexPorts. From these connections, it identifies the neighboring
modules, which is an important item of information for the layout manager.
The layout manager is responsible for the recognition of the topology of
the network of conveyor modules. In our system, we use a Link-State-
Routing protocol (Tanenbaum 2011). Knowing its own adjacencies, each
module sends a message to its neighbors which is then flooded through-
out the network. Based on the adjacencies of all conveyor modules, each
module calculates for each of its connected ports the shortest paths to

64

4.1 Control Architecture and Components

all other modules using the Dijkstra algorithm (Dijkstra 1959). Only the
minimal path length is stored in the routing table. The algorithms for
topology recognition are not within the scope of this thesis because dif-
ferent algorithms have already been tested in simulation by Mayer (2009)
and implemented on hardware by flexlog GmbH (2015).

j

D1

D2 D3

N S E W

Routing table of module j

Distance

to module
via port

1 ∞ ∞ ∞D1

∞ 3 5 5D2

∞ 6 6 8D3

Figure 4.2: A GridSorter system and the corresponding routing table
of module j

Figure 4.2 shows an exemplary topology of a GridSorter system and the
corresponding routing table of module j. For simplicity, only the rout-
ing table entries with the minimal path length to destination modules are
shown. The table content defines the minimum number of necessary trans-
port steps to the destination when using the specified port. Destination
D1 can only be reached via port North whereas the other destinations
can be reached via the other three ports.
The inner part of Figure 4.1 looks similar to the control design in Figure
3.9: The dependencies between reservation of modules, transport of boxes
and the logical clocks have already been defined in Chapter 3.
Based on the routing table calculated by the layout manager, the reserva-
tion manager is able to take routing decisions when receiving reservation
requests. It decides based on existing reservations whether reservation re-
quests can be accepted. If this is the case, the requests are forwarded to the
successor module. Otherwise, they are rejected. These routing decisions
are described in detail in section 4.2.4.
The transport manager is responsible for the decision whether the trans-
port of a box can be released. It ensures that the transports corresponding
to the accepted reservations are performed in the specified order and that

65

4 Decentralized Control of GridSorter with Logical Time

no collisions occur. Consequently, it only releases the transport of the
earliest planned reservation and hands over this information to the hard-
ware control. The decisions of the transport manager are described in
detail in section 4.3.
With each released transport, the logical clock is set forward, which then
also influences the decisions of the reservation manager because it must not
accept a reservation request for past logical time. Each module remains
in the time of the transport performed last. Hence, there is no central
and no physical time. This difference in logical time can lead to (physical)
waiting times. But we believe that in heavily used networks, the modules
synchronize automatically with each other, because many transports take
place. This proposition is investigated in section 6.3.

4.2 Reservation Process
In Chapter 3 we assumed that a route is successfully reserved for each
box before the transport starts. This section presents the reservation pro-
cess i.e. how the route is reserved. We have several requirements that are
already set: The reservation process must execute a time-window-based
route reservation because logical time should be used for deadlock pre-
vention. In addition, a decentralized algorithm should be used for route
reservation. Since a resource must be reserved before the transport can be
requested and performed, it is also required that the reservation process
is successfully completed before the first transport step. The reservation
process can take place as soon as the destination of the box is known. If
the reservation process is not finished before the box arrives on the source
module, the box needs to wait on the source module.
What is the objective of the reservation process besides reserving a valid
route to the destination? In order to increase system throughput, the travel
time of a box should be minimized and the number of boxes in the system
maximized according to Little’s law λ = N/t (Little 1961). Thus, the
first objective of the reservation is to find an available path to its specific
destination that is short in terms of travel time. The second objective of
the reservation is to clear the source module as soon as possible so that
another box can enter the system.
After we introduce existing search algorithms for path finding in section
4.2.1, we reason our choice to use iterative deepening A* search for route
planning in section 4.2.2. We then present in section 4.2.3 our distributed

66

4.2 Reservation Process

design of iterative deepening A* search. This section describes the algo-
rithm from the perspective of an external observer, whereas the following
section 4.2.4 presents the algorithm from the perspective of one conveyor
module: It is explained how a conveyor module takes routing decisions
when receiving a reservation message.
One challenge is the scalability of the reservation process. Scalability
should be given with regard to the size of the network, the number of
boxes in the system and also the number of simultaneously running reser-
vation processes. Depending on these parameters, the duration of the path
search can increase drastically. In section 4.2.5, we introduce methods by
which the complexity of the search can be reduced in order to accelerate
the path search and to assure scalability in the above-mentioned parame-
ters. Finally, in section 4.2.6 the completeness of the route reservation
process is proven.

4.2.1 Existing Search Algorithms for Path Finding

In this section, the basic principles and common characteristics of existing
path-finding algorithms are presented. For detailed explanations of the
search algorithms and information about their algorithmic complexity and
time requirements, we refer the reader to the stated literature. Figure
4.3 shows a basic categorization of existing path-finding algorithms and
illustrates how characteristics are inherited.
The search for the shortest path is a known problem in graph theory.
Usually, the path-finding algorithms sequentially explore nodes to find an
optimal path to the destination. The neighboring nodes of the active
node are added to the list of open nodes, called open-list. The path-
finding algorithms differ in the manner in which the node to be explored
next is selected from the open-list. All of these algorithms are centralized
algorithms, where the nodes are visited sequentially and all information
about visited nodes is available.
As uninformed algorithms, the depth-first search and the breadth-first
search (Cormen 2009) are the base for path-finding algorithms. The
breadth-first search generates a tree of partial paths and explores all nodes
in one level of depth before exploring deeper nodes, whereas the depth-
search explores one path in its total depth before backtracking and explor-
ing neighboring nodes closer to the root node. Depth-first is not complete,
i.e. it does not terminate if the graph is infinitely large and is not optimal

67

4 Decentralized Control of GridSorter with Logical Time

Breadth-First
Depth-First

Iterative Deepening
Depth-First

Dijkstra

A* IDA*

Tree of Partial Paths One Partial Path

U
n

in
fo

rm
e

d

S
e

a
rc

h

B
e

s
t-

F
ir

s
t

S
e
a

rc
h

 w
it

h

P
re

d
ic

ti
v

e

H
e

u
ri

s
ti

c

K
n

o
w

n

P
a

th
 C

o
s

ts

Figure 4.3: Basic categorization of existing path-finding algorithms

68

if terminated upon finding the destination. The advantage of depth-first
search is the low memory usage.
The depth-first iterative deepening search combines the advantages of
depth-first and breadth-first search (Korf 1985a) by repeatedly perform-
ing depth-first searches with limited depth. With each iteration, the depth
limit is increased by one. In this way, the nodes are visited in order of a
depth-first search but the cumulative order of newly explored nodes cor-
responds to breadth-first search. It seems to be wasteful that nodes are
visited multiple times, but this disadvantage of a constantly increased
run time is negligible compared to the advantage of low memory usage
(Korf 1985a).
The Dijkstra search (Dijkstra 1959) and A*-search (Hart et al. 1968)
generate the open-list like the breadth-first search. As best-first searches,
they use cost information to select the node to be explored next. Dijkstra
uses the path costs from the root node to the open node. A*, on the other
hand, uses a predictive heuristic by adding an estimation of the remaining
path costs to destination. If the heuristic is admissible, i.e. underestimating
the real costs, both algorithms are proven to be optimal in graphs with
non-negative path costs. However, they still feature the same disadvantage
of high memory usage as the breadth-first search.

4.2 Reservation Process

The Iterative deepening A* search (IDA*) is a combination of iterative
deepening depth-first search with the A* heuristic (Korf 1985b). The
path costs, estimated as in A*, are used to select the node to be explored
next. These heuristic costs are also used to define the depth limit which
is iteratively increased. If the depth limit is increased according to the
heuristic cost estimation of the root node and the heuristic is admissible
i.e. underestimating the true path costs, IDA* finds optimal paths.

4.2.2 Choice of Search Algorithm
for Decentralized, Parallel Route Planning

For decentralized route planning, the search for the route path of a box
should be performed by the collectivity of modules. Each module hosts
its corresponding node in the search graph and knows the predecessor
node and potential successor nodes. Nodes are then explored by handing
over the search from module to module with the help of messages. Since
conveyor modules are only able to send messages to neighboring modules,
the search should follow the depth-first principle. Since the route planning
should be time-window-based, the search tree is infinitely large due to the
temporal dimension. Therefore, the search depth should be limited like
in depth-first iterative deepening.
As described in section 4.1, each module knows the minimal path length
to a specific destination via a specific port. With this information, the
modules are able to estimate the remaining path cost to the destination
of a box as a predictive heuristic as performed within A* search. Based
on these two characteristics of our system, a decentralized version of IDA*
seems to be suitable for the route planning.
In our case, the system has multiple sources for entering boxes. Thus,
multiple searches for route planning should be executed in parallel. Each
search only requires one conveyor module at a time to host the active node.
Consequently, parallel execution of multiple searches is possible because
there are multiple conveyor modules in the system. Each module keeps the
information about the searches it has participated in and is able to handle
multiple searches exploring itself independently of searches exploring other
nodes. The influence of the interference of parallel searches on the quality
of the route planning cannot be predicted. One might suppose that it
increases with the number of active searches in the system. In accordance
with the depth-first principle, at most one partial and then total path

69

4 Decentralized Control of GridSorter with Logical Time

is reserved for one box simultaneously, which reduces the probability of
interference with other searches. The advantage of low memory usage
in centralized execution corresponds to low probability of interference in
decentralized execution.

4.2.3 Parallel Route Reservation
with Decentralized Iterative Deepening A*-Search

The path search algorithm Iterative Deepening A* (IDA*) by Korf (1985b)
is a search algorithm for finding a time-independent path. The search is
executed by a central control. Within IDA*, the search tree is explored
depth-first. The node to be explored next is selected from the successors
of the currently explored node based on a heuristic that estimates the cost
of the total path as within A*. The depth is limited by a maximal path
cost and is iteratively increased if the search does not terminate with the
current limitation.
The first adaptation to our system is to extend the time-independent path
finding to a time-dependent path finding. The search tree becomes a
spatio-temporal search tree. We use the lead time i.e. the travel time of
a box from source to destination as heuristic costs because it takes the
spatial and temporal dimension into account. The search depth is limited
by limiting the heuristic costs of a path.
The second adaptation to our system is necessary because the search
should be executed on decentralized controls where each conveyor mo-
dule takes local routing decision. To explore the search tree, the conveyor
modules exchange reservation messages handing over the search to each
other. As an aid to taking reasonable routing decisions while participat-
ing in multiple searches in parallel, each conveyor module stores routing
information locally in a reservation table.
Since the search algorithm IDA* is executed on decentralized controls each
of which is hosting a certain set of nodes in the search tree, we call it
Decentralized Iterative Deepening A* in short DIDA*.

The Spatio-Temporal Search Tree

A node in the search tree is not only defined by its location, i.e. its con-
nected conveyor modules. Because of time-dependent route reservation, it
is additionally defined by the logical time of the incoming transport of the

70

4.2 Reservation Process

box. Consequently, the definition of a node in the search tree consists of a
spatial and a temporal part. In our case, a node in the search tree is defined
by the module ID and the logical timestamp of the incoming transport of
the box on this module. The edges between nodes depend on the spatial
and the temporal dimensions and represent the reachability of free nodes.

i j k l

00 0 0

1 1 1 1

22 2 2

3333

module i module j module k module l
...... ...

spatial dimension of search tree

temporal dimension
of search tree

Figure 4.4: The search tree of four modules without any reservation

Figure 4.4 shows an exemplary search tree for a linear conveying line of
four modules. The horizontal dimension represents the spatial dimension
of the search tree, whereas the vertical dimension represents the temporal
dimension. Each node is connected to exactly one node of each neighbor-
ing module. The timestamp of a successor node must be greater because
of reservation conditions (see section 3.4.2). Message passing is used to ex-
plore the search tree and to check for the reachability of free time windows
on neighboring modules. If one of the connected nodes is not reachable,
it is replaced by a node with a higher timestamp. During the reservation
phase, time windows are reserved for a specific box. In accordance with
the reservations, the search tree has to be changed by deleting distinct
nodes and edges. In Figure 4.5, the first transport step for box a has been
reserved and the opposing edge has been deleted. The dotted edge indi-
cates that this successor node is reachable but not desirable because the

71

4 Decentralized Control of GridSorter with Logical Time

box would backtrack. Figure 4.6 shows the total reserved route for box a.
Crossing edges have been deleted to prevent opposing transports whereas
parallel edges next to the reserved route are marked as tandem transports
because they could take place simultaneously.

i j k l

00 0 0

1 1 1 1

22 2

333

332211a

module i module j module k module l
...... ...

2

3

Figure 4.5: The search tree of four modules during the reservation process

If there are no spatial restrictions to routes, an infinite number of possible
routes exists for each box because the routes can include an unlimited
number of cycles. Consequently, the search tree is infinitely large in the
spatial dimension. In order to reduce the size of the search tree in spatial
dimension, we identified two methods: One method is to guarantee cycle-
free routes1 by prohibiting boxes from visiting one module more than once.
In Figure 4.5, the box is not allowed to move with timestamp 1 from
module i to j and in timestamp 2 back again (represented by the dotted
edge). Another method to further reduce the size of the search tree is to
limit the spatial path length1 (Alt 2014). One possible implementation is

1 Restricting the spatial dimension of the search tree also supports that system behavior
is perceived as intelligent by humans. Silver (2005) states that cycle-free routes are
generally rated as more intelligent and consistent by human observers. We also
believe that routes with short path lengths are perceived as more reasonable by
human observers because boxes are directly transported to their destination without
detours.

72

4.2 Reservation Process

i j k l

00 0 0

1 1 1 1

22 2 2

3333

332211a

module i module j module k module l

...... ...

Figure 4.6: The search tree of four modules after the reservation process

to only allow routes with shortest path length (different implementations
are presented in 5.3.3).
In addition, the restriction of routes can be defined individually for each
module because each module selects the possible successor nodes for each
reservation request specifically. Hence, it is possible to define restrictions
depending on the position of the conveyor module on the reserved route.
For example, it could be interesting that modules close to sources only
accept shortest paths whereas modules that are used less accept detours.

Lead Time as Spatio-Temporal Heuristic Costs

The lead time ttot of a path is defined as the travel time of a box from
its source to its destination using the specific path. The expected lead
time texp of a path from source to destination is used as heuristic for
the selection of the successor node. Like the search tree, the lead time
also has a spatial and a temporal part. The lead time consists of the
time when the box is moving (spatial part) and the time when the box
is waiting (temporal part). When estimating the expected lead time, the
spatial part can be deduced from the path length and the temporal part
from the logical timestamps of the reservation. The path length can be

73

4 Decentralized Control of GridSorter with Logical Time

taken from the routing table and does not need to be calculated for each
reservation request. The expected lead time is estimated in the unit of
logical time steps.
Once a node is explored, the expected lead time is calculated for all succes-
sor nodes to prepare the decision on which node should be explored next.
The expected lead time of the successor nodes consists of the upstream
lead time tup, which is the lead time from source to the explored node,
and the estimation of the downstream lead time, which is the lead time
from the explored node via the specific successor node to the destination.
The initial estimation assumes the absence of waiting times and calcu-
lates the downstream lead time as the minimal path length to destination
ldest (fi) using the port fi to the specific successor node. The information
about the minimal path length is taken from the routing table.
It is also possible to select the successor node based on other criteria than
expected lead time. For example, it could be preferable that certain mo-
dules, for example the neighbors of sources, are not occupied by waiting
boxes. In this case, the module chooses the successor node that offers
the earliest outgoing transport. In section 5.3.3, we present implementa-
tions where neighbors of source modules use different criteria to select the
direction of outgoing transport.

Limiting the Search Depth

The search depth is limited by the maximal lead time tmax defining the
maximal heuristic costs of a search node to be explored. It limits the num-
ber of explored nodes per iteration and, therefore, influences the number
of required iterations to find a valid route to destination. Each search
iteration is started by the source module that is responsible for the deter-
mination of the depth limit. The depth limit must be increased each time.
The more it is increased, the fewer search iterations are needed, but the
quality of the found path could decrease because the destination can be
found before all paths with better or equal costs are explored. Usually, the
source module sets the depth limit to its currently expected lead time.

Exploring the Search Tree by Message Passing

Within our path search, IDA* is not executed by one control but by a set
of multiple conveyor modules. Each path search is started by the source
module by sending the first reservation message. Only one module at

74

4.2 Reservation Process

a time is allowed to take routing decisions: the module that is hosting
the currently explored node in the search tree. The search is handed
over to a neighboring module by message passing. If the search tree can
be further explored, the module selects a successor node. If the search
needs to be backtracked, the search is handed over to the predecessor
node. Consequently, the search tree is explored by passing messages from
module to module.
Each module only knows its own reservations. Reachability from its own
free time windows to free time windows of neighboring modules must be
checked by messages. For the exploration of the search tree, we introduce
three different types of reservation messages:

– An Explore message is sent if the active module hands over the
search to a successor module to deepen the search by exploring the
search tree. This is also called a reservation request.

– A Backtrack message is sent if the active module wants to back-
track the search to the predecessor module. The reservation request
is rejected.

– A Confirm message is sent to the predecessor module to confirm
the reservation because the search has terminated successfully.

S

S M

M DCONFIRM

EXPLORE

CONFIRM CONFIRM CONFIRM

EXPLORE EXPLORE

D
EXPLORE

BACKTRACKBACKTRACK BACKTRACK

... ...

......

Start of new

search iteration
Routing decisions

End of

search phase

Start of

confirmation phase

Confirmation

of reserved route

End of reservation

process

Figure 4.7: Course of reservation: search phase (upper half) and confirmation
phase (lower half) whereby S = Source, M = Module
and D = Destination

The reservation process can be divided into two phases: the search phase
and the confirmation phase. The search phase is started by the source

75

4 Decentralized Control of GridSorter with Logical Time

the search phase, each module takes routing decisions when receiving an
Explore or Backtrack message. It then hands over the search to the
predecessor module with a Backtrack message or to the successor mo-
dule with an Explore message. If the search is backtracked to the source
module, it starts a new search iteration with increased depth limit. Once
the search reaches the destination module with an Explore message, the
search phase is finished and the confirmation phase starts: Each module on
the reserved route gets a Confirm message and forwards it to its predeces-
sor. In this way, the reserved route is confirmed from destination to source.

Content for Reservation Message Comment

Reservation ID

General information
set by source

Destination ID

Source ID

Maximal lead time tmax

Message type {Explore, Backtrack, Confirm} Updated by each
module before sending
the message

Timestamp Tmsg

Expected lead time texp

Port permission Indicating the
Backtrack causeProposed timestamp Tprop

Table 4.1: Content of reservation (rsv) message (msg)

A reservation message includes all information that a module needs to take
routing decisions for the path search. The general information is set by
the source module, node information is updated by each module as is the
information indicating the Backtrack cause.
Each path search can be identified by a unique reservation ID because
several reservation processes are running in parallel. The reservation ID
is set by the root node i.e. the source module, and consists of the source
module ID and the logical timestamp of the incoming transport of the box
on the source module. When the source module initializes a path search
it includes general information in the first reservation message, which is
then included in all forwarded messages. This general information of one
reservation includes the reservation ID, the destination module ID, the
source module ID and the current maximal lead time tmax.

76

module by sending an Explore messages as shown in Figure 4.7. During

4.2 Reservation Process

In addition to the general reservation information, a reservation message
includes the following information which is updated by the module sending
the message: the type of reservation message, the logical timestamp Tmsg
of the transport between the sending and the receiving module and the
expected lead time texp.
The search can be backtracked because of two different causes that are
indicated in the Backtrack message:

1. If the branch behind this node is fully explored, the reservation re-
quest should not be sent again during the current search iteration.
Consequently, the module sends a Backtrack message denying
port permission. This means that the node can only be explored
in subsequent search iterations.

2. If the path with the requested timestamp ends in a dead end because
no free time window is reachable from this node due to other reser-
vations, the module proposes an alternative timestamp Tprop. This
means that another free time window should be used. With the infor-
mation of the Backtrack message, the predecessor module deletes
the node with the dead end from the search tree and substitutes it
with another successor node using the proposed timestamp Tprop. If
the expected lead time of the new node exceeds the maximal lead
time, the module additionally denies port permission because the
search depth of the current search iteration would be exceeded. In
this case, the new node can only be explored in subsequent search
iterations.

Figure 4.8 shows four conveyor modules where only module k holds a reser-
vation. The sequence of messages is shown in the upper part, while the
explored search tree is shown in the lower part. The first search iteration is
started by the source module with a depth limit of 3 as maximal lead time
since the minimal path length to the destination module is 3. When the
search reaches module k, it replies with a Backtrack message because
the reservation request interferes with the existing reservation. Module k
proposes timestamp 4 as alternative. This alternative timestamp indicates
that the box would have to wait on module j: the resulting estimated lead
time exceeds the depth limit. Therefore, module j sends a Backtrack
message denying permission to send the reservation request for the pro-
posed timestamp during this search iteration. The source module starts
another search iteration with depth limit 5 which is successfully completed.

77

4 Decentralized Control of GridSorter with Logical Time

i j k l3

2

module i module j module k module l

S D

0

1

2

5

4

Sequence of

Messages

Explored

Search Tree

Tprop = 4

T = 1

T = 4T = 1

T = 2

denied

T = 5

1st search iteration

with depth limit 3

2nd search iteration

with depth limit 5

EXPLORE

BACKTRACK

EXPLORE

CONFIRM

Figure 4.8: Example for the exploration of a search tree by message passing

Storing Routing Information Locally

In systems with decentralized control, each module must store the relevant
information of the explored nodes it is hosting. Therefore, it keeps the
information of explored nodes in two different reservation tables. Accepted
reservations are kept in the active reservation table. Rejected reservations
are kept in the inactive reservation table. In central implementations of
IDA*, the information about explored nodes is deleted after backtracking.
This is why one of its main advantages is low amount of memory required.
Thanks to decentralized control, the information about explored nodes
can be kept in order to shorten the subsequent search iterations. The
information is deleted once it becomes irrelevant i.e. if the logical clock is
set forward in such a way that the inactive reservation entry lies in the past.
In addition to the general reservation information, a reservation entry in-
cludes the following information:

– The state of the reservation table entry: Explore and Confirm
reservation entries are kept in the active reservation table. Entries
with state Backtrack are kept in the inactive reservation table.

78

4.2 Reservation Process

– The description of the reservation: The start of a reservation is de-
fined by the incoming port fin and the timestamp of the incoming
transport Tin. The end of a reservation is defined by the outgoing
port fout and the timestamp of the outgoing transport Tout.

– The routing information: For each reservation table entry, the up-
stream lead time tup is stored. Also, the expected lead time texp (fi),
the outgoing timestamps Tout (fi) and the permission are stored sep-
arately for each connected port fi.

The routing information is used to take routing decisions i.e. decisions
as to which successor node an Explore message should be sent or if the
reservation should be rejected. It is initialized with the reception of the first
Explore message, updated with information of Backtrack messages
and partially reset in subsequent search iterations (compare section 4.2.4).
An overview of all information included in a reservation message and a
reservation table entry can be found in appendix A.

4.2.4 Local Routing Decisions during Search Phase

In the previous section, we explained how the search algorithm is designed
in order to find a time-dependent route with decentralized control. The
data formats of reservation messages and reservation table entries have
been introduced. In this section, the routing decisions are explained in de-
tail, i.e. we describe how a conveyor module reacts if it receives a reserva-
tion message. A first version of local routing decisions has been developed
together with Oberkersch (2013).
Figure 4.9 shows a combination of activity charts of the search phase. Ac-
tivities are represented as rectangles and decisions as diamonds. Three
events serve as starting points (left side of chart): the start of a reserva-
tion process by the source module at the beginning of the search phase and
the reception of an Explore or Backtrack message during the search
phase. All four ending points of the chart (right side of chart) are defined
by sending of a message: Whereas sending an Explore or Backtrack
message hands over the search to another module, the Confirm message
indicates the end of the search phase and the beginning of the confirma-
tion phase. The gray backgrounds highlight the three main activities: the
decision on incoming transport, the generating and updating of routing in-
formation and the decision on outgoing transport. All three main activities
are explained in detail in the following sections.

79

4 Decentralized Control of GridSorter with Logical Time

Check
incoming
transport

Does inactive
entry exist?

possible

Update EntryInitialize new
reservation entry

Destination
reached?

yes

yes

no

no

Check
outgoing
transport

Set entry
inactive

Update routing
information of entry

no

yes

Source
reached?

Calculate
maximal lead time

not
possible

possible

Generating and updating
of routing information

EXPLORE

BACKTRACK

CONFIRM

START of
reservation process

not
possible

BACKTRACK

BACKTRACK

EXPLORE

Receive message

Receive message

Send
message

Decision on
Outgoing Transport

Decision on
Incoming Transport

Send
message

Send
message

Send
messageSelect outgoing port

Figure 4.9: Combined activity chart for events during search phase

80

4.2 Reservation Process

Let us go through Figure 4.9: If a module receives an Explore message,
it first checks whether the requested incoming transport can be performed
through this incoming port at the specific timestamp. If the incoming
transport is not possible, it directly sends a Backtrack message. If, on
the other hand, the incoming transport is possible, the module generates
or updates the routing information. The routing information is also up-
dated if a module receives a Backtrack message. Then, the module
checks whether an outgoing transport is possible depending on the rout-
ing information and the other entries in the active reservation table. If
the outgoing transport is possible, the module sends an Explore mes-
sage in the most promising direction. If, on the other hand, the outgoing
transport is not possible, the module sends a Backtrack message to
the predecessor module. The source and destination modules react dif-
ferently: If a source module receives a Backtrack message, it increases
the depth limit to send another Explore message. If a destination mo-
dule receives an Explore message, it starts the confirmation phase by
sending a Confirm message.

Decision on Incoming Transport

The decision whether or not an incoming transport is possible depends
on the entries in the active reservation table. We identified four different
reasons why a request should not be accepted because of the incoming
transport.

Requested timestamp in the past If the timestamp of the requested
incoming transport is lower than the logical clock of the module,
the reservation request should be rejected in order to guarantee
advancing logical time (see 3.4.2). In this case, the module includes
the following information in the Backtrack message: It proposes
the earliest timestamp Tprop higher than the logical clock and not
colliding with another reservation. It increases the expected lead
time texp by the difference between this proposed timestamp and
its own logical clock C.

texp := texp + Tprop − C

If the expected lead time exceeds the maximal lead time, the depth
limit of this search iteration has been reached. Therefore, the mo-
dule denies permission to send the reservation request for the pro-
posed timestamp during this search iteration.

81

4 Decentralized Control of GridSorter with Logical Time

i j
5a

b

6

Tprop = 8

T = 6

11

10

4 8

logical time of this
module

EXPLORE

BACKTRACK

Figure 4.10: Example for rejection because of requested timestamp in the past

Figure 4.10 shows a situation in which a reservation request is re-
jected because the requested timestamp for the transport lies in the
past. The logical clock of module i is set to 4 whereas the logical
clock of module j is set to 8. Once module i requests a transport
for timestamp 6, module j sends a Backtrack message proposing
timestamp 8 for the transport. The other reservation for box b on
module j is not interfering.
Reservation sent in a loop If there is another reservation entry for
the same reservation, the reservation has been sent in a loop. Within
the Backtrack message, the module denies permission to send the
reservation request again during this search iteration. Independent
from the expected lead time, the module indicates that the search
tree should not be further explored to avoid a loop in the route.

i j
a

g h
10

9

9

8

11

10

12

11

denied

T = 12EXPLORE

BACKTRACK

Figure 4.11: Example for rejection because of reservation sent in a loop

Figure 4.11 shows a situation in which a reservation is sent in a
loop. Since module j already holds a reservation for box a, it is not

82

4.2 Reservation Process

allowed to accept a second one. Within the Backtrack message
it denies permission to send the reservation request again. Thus,
module i now needs to try another port or has to backtrack the
search to module g.
Crossed reservation requests If two adjacent modules simultane-
ously send reservation requests for the same timestamp to each
other, they could be caught in a closed loop raising the sending
timestamps infinitely. If this situation is detected based on the
existing reservation table entries, one of the modules first rejects
the reservation (without permission to resend it) and then sends
its own reservation request again. Backtrack and Explore mes-
sages have to be sent in this order because the reservation table
of each module has to be consistent at all times, meaning no two
accepted reservations should interfere with each other.

T = 6

denied

i j
56

T = 6

4a b6

T = 6

a

b

a

b

Tin,source,a < Tin,source,b

Tin,source,b > Tin,source,a

EXPLORE

BACKTRACK

EXPLORE

EXPLORE

Figure 4.12: Example for rejection because of crossed reservation requests

Figure 4.12 shows the example for crossed reservation requests. Mo-
dule i and j simultaneously send reservation requests including time-
stamp 6 to each other. Both detect the situation and compare the
reservation IDs of the reservation requests. They first compare the
incoming timestamp of the source and then the source module ID.
Since the reservation of box a is “older”, module i sends a Back-
track message for box b and resends the Explore message for box a.
Interfering with another reservation If the timestamp of the re-
quested incoming transport collides with another reservation, i.e.
the module is not available at that timestamp, the module rejects
the reservation. It includes the information when it is available again

83

4 Decentralized Control of GridSorter with Logical Time

and increases the expected lead time by the difference between the
newly proposed timestamp Tprop and the previously requested time-
stamp Tmsg included in the Explore message.

texp := texp + Tprop − Tmsg

If the expected lead time exceeds the maximal lead time, it denies
permission to send the reservation request for the proposed time-
stamp during this search iteration.

i j
5a

b

10

Tprop = 12

T = 10

11

10

4 8

logical time of this
module

EXPLORE

BACKTRACK

Figure 4.13: Example for rejection because of another reservation interfering
with the incoming transport

In Figure 4.13, module j rejects the reservation request for box a
because it interferes with the existing reservation for box b. It pro-
poses 12 as an alternative timestamp because it is the first available
timestamp after the reservation for box b.

If the incoming transport is possible, the routing information is generated
or updated. If destination is reached, the module replies with a Confirm
message. Otherwise, it must take the decision on outgoing transport.

Decision on Outgoing Transport

The decision whether and in which direction an Explore message can be
sent, depends on the routing information included in the relevant reserva-
tion table entry and the other entries in the active reservation table.
The restrictions of routes can be implemented by defining a set of eligible
ports from which a conveyor module can select the outgoing port i.e. the
successor module. Let Fall be the set of all connected ports of one module.

84

4.2 Reservation Process

which the outgoing port can be selected. If the routes are not restricted,
Felg = Fall is valid.
Basically, we identified two different reasons why a reservation should be
rejected because of the outgoing transport.

All ports denied If all modules in the direction of eligible ports
have sent a Backtrack message with denial, there is no longer
any permitted path and the module sends a Backtrack to the
previous module without permission to send another reservation
request in the current search iteration. It includes in the message
the minimal expected lead time of all eligible outgoing ports because
it is relevant for the subsequent search information.

texp := min
fi∈Felg

(texp (fi))

Rsv table of module j

Box

a

[Tin , Tout]

[5 , -] [N , -]

[fin , fout]

Tout

texp

perm

N

6
14
in

S

10
16

den.

E

8
17

den.

W

8
21

den.

tmax

20

Figure 4.14: Example for rejection because of all ports denied

Figure 4.14 shows an exemplary reservation table entry for box a.
Tout and fout are not defined yet because no outgoing port has been
selected. North cannot be selected as the outgoing port because it
is already the incoming port. From all other directions, the module
has received Backtrack messages denying permission. Module j
must also send a Backtrack to North denying permission.
Interfering with another reservation If the outgoing timestamps of
all permitted directions interfere with the next reservation in the
active reservation table, the module sends a Backtrack message.
It includes the information when it is available after the next reser-
vation and increases the expected lead time accordingly. If this
calculated expected lead time exceeds the maximal lead time, it

85

Felg ⊆ Fall is then the set of eligible ports for a specific reservation from

4 Decentralized Control of GridSorter with Logical Time

denies permission to send the reservation request for the proposed
timestamp.

texp := tup + Tprop − Tin + min
fi∈Felg

ldest (fi)

Rsv table of module j

Box

a

[Tin , Tout]

[5 , -] [N , -]

[fin , fout]

Tout

texp

perm

N

6

14

in

S

10

16

-

E

8

17

-

W

8

21

den.

tmax

20

b [7 , 10] [N , S]

Tout

texp

perm

8

12

in

10

12

-

8

14

den.

8

16

den.

12

Figure 4.15: Example for rejection because of another reservation interfering
with the outgoing transport

Figure 4.15 shows an example in which no outgoing port can be
selected because of another interfering reservation. The reservation
table shows two entries; an outgoing port should be selected for
the entry of box a. Again, North cannot be selected because it
is the incoming port. West has been denied because the maximal
lead time has been exceeded. South and East could be selected
according to the port permission but the outgoing timestamps in-
terfere with the reservation of box b with incoming timestamp 7.

If there is at least one permitted direction whose outgoing timestamp does
not collide with the next reservation, the module needs to select the out-
going port in order to send an Explore message in this direction.

Selecting the Outgoing Port In order to meet the first objective
of the reservation process to find routes that are short in terms of
travel time of the box, the module usually selects the port with the
lowest expected lead time out of the possible ports Felg. If there
are several ports with the same rating, it prefers the port opposite
to the incoming port because direction changes are time-consuming.
If both ports with direction change are rated equivalent, they are
selected alternately.

86

4.2 Reservation Process

The criteria for selecting the outgoing port can be different depend-
ing on the position of the module. The source module and its neigh-
bors use criteria differing from the usual criteria in order to free the
source module as soon as possible: These modules select the outgo-
ing port with the lowest outgoing timestamp independently of the
expected lead time.

Once the outgoing port is selected, the information for the Explore mes-
sage is determined:

Tmsg := Tout (fout)
texp := texp (fout)

Rsv table of module j

Box

a

[Tin , Tout]

[5 , -] [N , -]

[fin , fout]

Tout

texp

perm

N

6

14

in

S

10

16

-

E

8

17

-

W

8

21

den.

tmax

20

Figure 4.16: Example for selection of outgoing port

In Figure 4.16, South and East can be selected as outgoing ports. With
the common selection criteria, usual modules select South as the outgo-
ing port because it has the lower expected lead time. Modules that are
neighbors of sources select East as outgoing port because it has the lower
outgoing timestamp.

Generating and Updating of Routing Information

The routing information included in the reservation table entry is gener-
ated, updated and reset depending on the information of received mes-
sages.
As shown in Figure 4.9, the routing information is updated when receiving
an Explore or Backtrack message. A distinction is made between
receiving a reservation request for a search node defined by reservation
ID and incoming timestamp for the first time, and receiving it again after
having initially rejected it.

Receiving a reservation request for the first time If no inactive
reservation entry exists for the same reservation ID and the same

87

4 Decentralized Control of GridSorter with Logical Time

incoming timestamp, the routing information has to be generated.
The outgoing timestamp for every port is set one timestamp later
than the incoming timestamp. The upstream lead time for this re-
quest and the expected lead time for all ports are calculated based
on the message information and the path length information pro-
vided by the layout manager (compare section 4.1). The permission
is set to default state: each port is permitted for outgoing transport.

tup := texp − min
fi∈Felg

ldest(fi)

texp (fi) := tup + ldest(fi)
Tout (fi) := Tmsg + 1

Receiving a reservation request again If an inactive entry exists
for the same reservation ID and the same incoming timestamp, this
entry is reactivated. The incoming port is updated according to the
receiving direction of the message. If the maximal lead time of the
message is identical to that of the reservation entry, this module has
already searched for a path during this search iteration and therefore
the routing information is not updated. If, on the other hand, the
maximal lead time has changed, the permission is reset to default
so that all possible outgoing ports can be chosen again.
Receiving a reservation rejection If a module receives a Back-
track message for an active entry, it only updates the routing
information for this port: It sets the outgoing timestamp to the
proposed timestamp and updates the expected lead time and the
permission in accordance with the contents of the message. In addi-
tion, it updates the maximal lead time as contained in the message.

4.2.5 Partial Route Reservation

With increasing system size, the search tree and, therefore the duration of
the reservation process increases. As a consequence, the boxes would have
to wait on the source module because of the long duration of the reservation
process. One possibility to achieve scalability with increasing system size is
to start the transport of a box while the reservation process is still running.
Korf (1990) also encounters the problem that the exponential run time
of IDA* is not acceptable in certain real-time applications (e.g. example
computer games). He presents one solution called threshold-limited-IDA*

88

4.2 Reservation Process

where the decision about the first move is taken after a search iteration
without finding the destination based on the heuristic costs of all explored
nodes. In our system, this would correspond to starting the transport
process when a partial route has been reserved. The idea of reserving
partial routes within GridSorter has also been presented by Alt (2014).

ID

S

D

1 2 3 4a S = Source
ID = Inter-Destination
D = Destination

4b

5

6 7

Depth limit of search
iterations from source

Depth limit of search
iteration when ID is found

Depth limit of search
iterations from inter-
destination

Figure 4.17: Schematic representation of the partial route reservation

What is the method? We want to split the route reservation process into
sequential parts. The beginning of the route is fixed while the remaining
part of the route to the destination is not found yet. The confirmation
of the partial route can basically be initialized by any module keeping a
valid, reserved time window of the relevant route. The module is able
to fix the upstream route by sending a Confirm message and is then
acting as a new source for searching the downstream part of the route. We
call this module inter-destination. Figure 4.17 schematically represents
the method of partial route reservation in an example. During the fourth
search iteration from the source module, an inter-destination is found.
The partial route to this module is confirmed regardless of progress of
the search iteration. This search iteration numbered 4a is substituted by
the first search iteration from the inter-destination module numbered 4b.
Neighboring paths to the reserved partial path are not searched any more.
In this example, the destination is found during the 7th search iteration
while the box is already being transported to the inter-destination module.

89

4 Decentralized Control of GridSorter with Logical Time

What has to be considered in order to prevent deadlocks? Because of
the running reservation process, it is not guaranteed that the reservation
will be confirmed as planned. Consequently, the inter-destination must
not have any other reservations later than the relevant reservation. In this
way, it is theoretically able to buffer the box infinitely. Like this, the reser-
vation process can continue without additional restrictions because the
inter-destination module can raise the outgoing timestamp with each new
search iteration until a valid route to the destination is successfully found.

When should an inter-destination be selected? Selecting an inter-
destination module might increase the lead time of the total route because
a part of the route is confirmed while it is not known what lead time the
total route will achieve. In addition, it is not possible to estimate the
potential increase of lead time because no upper limit of lead time for
any route is known. Nevertheless, the deeper the search tree has been
explored, the better the selection of partial route. Consequently, an inter-
destination module should be selected as late in the reservation process as
possible and only if necessary. The objective of partial route reservation is
to avoid that boxes wait on source modules because of ongoing route reser-
vation. Therefore, the source module decides whether an inter-destination
module should be searched based on the progress of the reservation pro-
cess. If the source module receives a Backtrack message indicating that
the current search iteration was unsuccessful, and if there is a risk that
the new search iteration will exceed the duration of the transport of the
box to the source module, the source module enables the search for the
inter-destination and includes this information in the reservation message.
With the existing routing information of the previous search iterations, the
most promising partial routes are explored first. If a module decides to
act as inter-destination, it disables the search for another inter-destination
by changing the information in the reservation message.

What kind of module is suitable as inter-destination? An inter-
destination module is not allowed to accept any reservation requests later
than the reservation concerned. To avoid the complete blockage of other
reservation processes, neighbor modules of sources or sinks or other inter-
destinations are not allowed to be inter-destinations. The objective of
choosing an inter-destination is to increase the time which is available for
the reservation process before it delays the start of the transport process.
Consequently, it should be at a certain distance from source. In addition,

90

4.2 Reservation Process

the probability that the inter-destination module lies on a good route in-
creases with length of the partial reserved route. We therefore formulate
the condition that the remaining distance between inter-destination and
destination should not exceed a certain distance. This condition can be
parametrized and is defined by a portion of the total distance between
source and destination.
The impact of the partial route reservation is studied in section 6.5.

4.2.6 Completeness of the Reservation Process

In this section, we discuss the completeness of the route reservation pro-
cess. Completeness is given if a valid route is found for every box re-
gardless of the initial situation i.e. the layout, the source module and
existing reservations. As described in previous sections, DIDA* is used
as path-finding algorithm being executed on decentralized controls. Korf
(1985b) has proven IDA* to be optimal, and therefore complete, if the
heuristic is admissible i.e. underestimating the real path costs. Because
of asynchronous logical clocks, we cannot guarantee that our heuristic is
admissible i.e. always underestimating remaining path costs. We can still
conclude that DIDA* is complete if it is run as decoupled path search.
However, multiple path searches run in parallel in our system. How do
these parallel searches interfere with each other? And how does this im-
pact the completeness of the route reservation process? Because of de-
centralized control and parallel running path searches, we are not able to
prove completeness but we present some arguments suggesting that par-
allel searches do not compromise completeness.
The interference of parallel searches could have different negative effects:
On the one hand, communication livelocks could occur where messages
are sent between the same modules repeatedly. To avoid communication
livelocks, it is important that with each reservation message, a decision
is taken and routing information changed. Situations in which a module
sends an identical reservation request again can lead to livelocks because
this identical request is declined all over again.

– Each Backtrack message either indicates that the request should
not be send again or proposes another timestamp. Therefore, each
reservation request differs from previously sent reservation requests.

91

4 Decentralized Control of GridSorter with Logical Time

– If a module simultaneously2 receives two reservation requests that
interfere with each other, one reservation message is handled first.
The other one is handled second taking into account the reservation
entry of the first request.

– If two modules simultaneously send interfering reservation requests
to each other (compare to situation Crossed Reservation Requests
in section 4.2.4), the modules decide which reservation request to
accept using the reservation ID. In this way, the path searches are
brought into a fixed order regardless of the node where they are
interfering with each other. The logical timestamp included in the
reservation ID is the first criterion in order to prefer “old” route
searches over “new” ones. If both logical timestamps are identical,
the source module ID is used as criterion.

We claim that these methods successfully avoid communication livelocks.
On the other hand, reserved routes could block each other in such a way
that no search is terminated successfully. Because of a finite number of
reservations in the system, the system is empty at some point in the future.
Hence, a route can be found more easily the higher the timestamps. How is
the interference of reservation requests handled by the conveyor modules?

– If a reservation request interferes with other reservations, a later
timestamp is proposed. Like this, this path search is “pushed into
the future” where the system is more likely to be free of other reser-
vations.

– The information about interference is kept for the next search itera-
tion, even though the interfering reservation might not exist anymore
because another route has been reserved. Like this, we avoid that
each search iteration explores identical routes again. By contrast,
the path search is further “pushed into the future” where the system
is more likely to be free of other reservations.

We claim that these methods successfully handle interfering reservation
requests in such a way that one of the path searches can continue to find a
path whereas the other path search generates reservation requests for later
timestamps. Simulation of the system supports our claim (see Chapter 6).

2 Since the reservation manager is single-threaded, two simultaneous events have to be
handled one after another. Usually, the order is randomly chosen.

92

4.3 Transport Process

4.3 Transport Process
Based on the granting conditions for the transport of a box as introduced in
section 3.4.3, we now present decision rules for the decentralized control of
the transport process of one box. The transport manager introduced in sec-
tion 4.1 is responsible for the decisions described in the following sections.
The transport process is only allowed to be started after the reservation
process is successfully finished. Each module stores the information of the
relevant reservation locally. Another requirement is the ability of the hard-
ware control to execute the transport of a box. For the transport of a box
from one module to another, both hardware controls have to be notified
about the transport of the box. They then communicate with each other
in order to execute the transport as soon as it is physically possible. The
hardware control is also able to execute a sequence of different transport
steps in the order of receipt of the transport notification.

4.3.1 Local Coordination of Transport Steps

We first explain the message types used for the coordination of a transport
step before explaining the events and actions that are performed by a
conveyor module during the execution of the incoming and the outgoing
transport of one reservation entry.

Message Passing for Coordination

The coordination of a transport step is limited to the two participating
modules i.e. the sending module and the receiving module. As shown in
Figure 4.18, the transport manager uses two different transport message
types: Request and Grant. The sending module sends a Request
message to the receiving module indicating that it seeks to perform the
transport of a box. Once the receiving module replies with a Grant
message, both modules notify their hardware control about the transport.

GRANT

REQUEST

receiving modulesending module

Figure 4.18: The two transport message types

93

4 Decentralized Control of GridSorter with Logical Time

With the content of the transport message, the modules verify that they
both hold a corresponding reservation table entry containing the same
information about the transport step. A transport message consists of
the message type, the reservation ID and the logical timestamp of the
transport step that should be performed.
An overview of all information included in a transport message can be
found in Appendix A.

Execution of Incoming and Outgoing Transport Step
of a Reservation Entry

A reservation entry defines two transport steps by setting port and logical
timestamp: the incoming transport and the outgoing transport. Dur-
ing the execution of both transports, the transport state indicates which
transport should happen next and if it is already confirmed. The trans-
port manager includes this additional information in the reservation en-
try. There are four different transport states: Receiving Requested,
Sending Granted, Sending Requested and Sending Granted. We
explain the meaning of these transport states by describing the execution
of both transport steps of one reservation (see Figure 4.19). The position
of the box and the sent messages are represented graphically in the middle
block of the figure. All actions, events and transport states are described
for the middle conveyor module. The transport state of the reservation
entry is written above the module. Events are listed on the left, whereas
triggered actions are listed on the right.
The first event related to the transport process of a reservation entry is the
reception of a Request message from the predecessor module. The middle
conveyor module updates the transport state to Receiving Requested
and checks the granting conditions for the incoming transport. Details of
checking the granting conditions are explained in the next section 4.3.2.
Once the granting conditions are fulfilled, the module replies to the pre-
decessor with a Grant message and changes the transport state to Re-
ceiving Granted. In addition, it sets its logical clock to the timestamp
of the incoming transport step and notifies its hardware control that the
box can be received.
Once the receiving transport has physically started, the hardware control
informs the transport manager. The transport manager sends a Request

94

4.3 Transport Process

a

a

a

a

a

a

REQUEST

GRANT

REQUEST

GRANT

ActionsEvent

-

RECEIVING

REQUESTED

RECEIVING

GRANTED

SENDING

REQUESTED

SENDING

GRANTED

-

REQUEST

message

received

granting

conditions

fulfilled

incoming

transport

started

GRANT

message

received

outgoing

transport

finished

Transport State

of Reservation Entry

send GRANT message

update logical clock

notify hardware control

update logical clock

notify hardware control

delete reservation entry

check

granting conditions

send REQUEST message

Figure 4.19: Events, transport states and actions during the execution of the
transport steps of one reservation

95

4 Decentralized Control of GridSorter with Logical Time

message for the outgoing transport to the successor module and changes
the transport state to Sending Requested accordingly.
On receiving the Grant message from the successor module, the middle
module updates the transport state to Sending Granted. Additionally,
it sets its logical clock to the timestamp of the outgoing transport and
notifies its hardware control that the box can be sent.
If the hardware control informs the transport manager that the sending
transport is finished, the transport manager deletes the reservation table
entry. Both transport steps have been executed successfully.

4.3.2 Local Transport Granting Decisions

In the previous section, the execution of transport steps has been described
by defining events and triggered actions. In this section, we define con-
ditions that must be fulfilled by a module before granting a transport by
sending a Grant message to the predecessor module. For a correct con-
trol algorithm, it is also necessary to define when a module should check
the granting conditions.

What are the conditions for granting an incoming transport?

The conditions can be deduced directly from section 3.4.3. GC1 states
that the predecessor module must have requested the transport. Con-
sequently, only reservation entries with transport state Receiving Re-
quested are eligible for granting. GC2 states that only the incoming
transport with the lowest timestamp is allowed to be performed. GC3 is
related to physical feasibility of the transport step depending on the sta-
tus of both modules performing the transport together. This condition
is monitored additionally by the hardware control. In section 3.6 it has
been proven that the system is deadlock-free. Consequently, the transport
step will become physically possible at some time, allowing the hardware
control to perform the transport.

Which information is used for checking the granting conditions?

The transport manager is responsible for checking whether the granting
conditions are fulfilled. The conditions are checked based on the informa-
tion in the reservation table. We can assume that the reservation table is

96

4.3 Transport Process

i j k

l

32211a

4

5

b

4

Rsv table of module k

Box

a

b

[Tin , Tout]

[2 , 3]

[4 , 5]

Tsp state

-

Receiving

requested

8

logical time of this module

1 11

4

Figure 4.20: Exemplary situation for granting conditions that are not fulfilled

3 To minimize the time between two transports, it is possible to hand over monitoring
of physical feasibility to the hardware control. In this case, the Grant message would
be sent before the previous box has left the module.

97

ordered by the values of the timestamps of the incoming transport. Since
the transport steps have to be performed in the order of their timestamps,
it is sufficient to check the first entries:
For single transport, only the first reservation entry is relevant. If the
transport state indicates Receiving Requested, the incoming transport
step is granted by sending a Grant message to the predecessor module.
Physical feasibility is given because the previous transport must have been
finished since no previous reservation entry exists3.
For tandem transport, the second reservation entry is relevant. Granting
conditions are fulfilled if the first reservation entry is in transport state
Sending Granted and the second entry is planned as tandem transport,
i.e. the incoming timestamp corresponds to the outgoing timestamp of
the first entry. The receiving module sends a Grant message to the
predecessor module. Physical feasibility is given because the previous box
is already being transported to the next conveyor module.
In Figure 4.20, module k is not allowed to grant the incoming transport of
box b from module l because another transport of box a is planned with
a lower timestamp. It is sufficient to check the reservation entry of box
a. The waiting of box b is necessary because the logical clocks of the four
modules are not synchronized. The objective is to keep the logical clocks
as synchronized as possible.

4 Decentralized Control of GridSorter with Logical Time

When are the conditions checked?

Since the conditions depend on the status of the reservation table, it is
necessary to check granting conditions once there is a relevant update in
the reservation table. The updates can be triggered by events related to
the transport of boxes or to running reservation processes.
Relevant updates due to the transport of boxes are:

– Reception of Request message: A reservation entry is newly re-
quested to be transported.

– Reception of Grant message for an outgoing transport: The incom-
ing transport of another box may be performed as tandem transport.

– An outgoing transport has been finished: An incoming transport
may be performed as single transport.

The relevant updates related to running reservation processes are:
– A reservation process has been successfully finished at the source

module: The transport manager of the source module should send a
Request message for the outgoing transport to the first module on
the grid.

– If the first reservation entry must be rejected because no outgoing
port can be found, it is deleted from the reservation table. If the
formerly second and now first reservation entry is in state Receiving
Requested, it may be performed as single transport. Figure 4.20
can serve as an example: If the reservation of box a is deleted, the
incoming transport of box b can be granted.

4.4 Conclusion on Decentralized Control
The control architecture is divided into multiple components, each re-
sponsible for managing a different and distinct process: In this thesis, the
reservation manager and the transport manager use the principle of logical
time described in Chapter 3. Using logical time, the time-dependent route
reservation leads to a more complex search tree than time-independent
route reservation. For the path search, IDA* has been adapted to run on
decentralized controls; we call this algorithm DIDA*.
The transport process is handled by the transport manager, whose re-
sponsibility is to adhere to the sequence of reservations defined by the
logical timestamps.

98

4.4 Conclusion on Decentralized Control

System liveness is given if deadlock, livelock and starvation can be ex-
cluded. In section 3.6, we proved the absence of deadlocks. The absence
of livelocks is given because we use route reservation before starting the
transport of a box. The absence of starvation is closely related to the
completeness of the route reservation process which has been discussed in
section 4.2.6. In addition to the discussion, the observation of simulation
experiments substantiate our claim of system liveness.
This chapter shows that it is possible to solve quite complex tasks such as
the route planning and execution for multiple mobile objects by defining
local decision rules for conveyor modules. The prevention of deadlocks
with the principle of logical time has successfully been transferred to local
decision rules for each conveyor module.

99

5 Modeling GridSorter
with Agent-Based Simulation

Reality can be beaten with
enough imagination.

-- Mark Twain

To study system behavior, agent-based simulation is used because the
complex emerging behavior of several conveyor modules taking indepen-
dent decisions cannot be described analytically. The simulation model is
implemented with the simulation software Anylogic. Each conveyor mo-
dule is represented by a software agent.
The level of abstraction from the physical system should be chosen to
ensure that, on the one hand, results of the simulation are reliable and
that, on the other hand, the effort required to run a simulation experiment
is acceptable. Therefore, in section 5.1 the simplifications of the simulation
model compared to the physical system are described.
System behavior can be observed in the simulation software in two differ-
ent ways: Visualization and Parameter Variation Experiment (see section
5.2). System behavior is influenced by different input parameters which
are introduced in section 5.3. Finally, system behavior is assessed with
different output measures as performance indicators which are introduced
in section 5.4.

5.1 Simplifications
In section 5.1.1, we present the simplifications that need to be made be-
cause multiple agents are simulated by one processor. Each agent owns
its own control consisting of several control components. The principle
of logical time is only applied in the reservation and transport manager.
Therefore, other control components are simplified.

101

5 Modeling GridSorter with Agent-Based Simulation

The general system set-up of a GridSorter system in simulation includes
layout requirements and the modeling of the arriving boxes. The arrival
of boxes is defined by when and where a box arrives and what destination
is assigned. These simplifications are described in section 5.1.2.
By simplifying the modeling of the physical movement of boxes, the sim-
ulation effort is by far reduced because no physics engine is necessary to
calculate rigid body dynamics (see section 5.1.3).
Sending of a message through several control layers on the hardware is
a complex task. In the simulation, sending a message is modeled by an
event. The resulting simplifications are described in section 5.1.4.

5.1.1 Simulating Decentralized Control
with One Processor

To simulate the decentralized control of GridSorter, each conveyor module
is modeled as an independent agent in the simulation. The agents are
activated by events, for example the reception of a message or the arrival
of a box. If several events happen at the same simulation time, they are
activated in the order of their scheduling i.e. the order of computing of
the central simulation controller.
As described in Chapter 4, the control of each module consists of several
control components:
The hardware control is modeled without simulating sensors and actu-
ators. The control logic is transferred to an abstract level leading to a
similar behavior when transporting a box as on real hardware. The result-
ing simplifications are described in detail in section 5.1.3. The communi-
cation ports between modules are not modeled in the simulation. Thus,
the main function of the simulation is responsible for the assignment of
neighboring modules to agents.
The layout manager is partly included in the agent control of a conveying
module. The generation of the adjacency matrix of the layout is centralized
whereas the routing table is generated based on this information by each
module. This hybrid approach has been chosen since topology recognition
is not part of this thesis. Different algorithms have already been tested
and implemented on hardware by Mayer (2009) and flexlog GmbH (2015).

102

5.1 Simplifications

As important parts of implementing the principle of logical time, the reser-
vation manager and the transport manager are implemented as decen-
tralized control components as described in Chapter 4.

5.1.2 General System Set-Up

The layout for a simulation experiment must fulfill the following require-
ments to be a valid layout: Each destination must be reachable from each
source via at least one route. This means that the layout can be repre-
sented by one connected graph. If the graph is not connected, it can be
divided in two or more graphs to be valid layouts again. Source modules
must not be connected to more than one other module i.e. they are lo-
cated outside the grid. Destination modules are allowed to have between
one and four connected ports i.e. they can be located inside of the grid.
In such cases, the boxes would have to be removed vertically from their
destinations because they are surrounded by grid modules. One technical
solution could be that the boxes fall onto some kind of slide or net.
The arrival of boxes on sources is modeled as a random process; all source
modules are equally used. Each source features an infinitely large buffer
for waiting boxes. Destinations are assigned to boxes randomly. Each
destination is chosen with the same probability.
In the simulation, conveyor modules do not break down. This means
that they are always capable of communicating with neighboring modules,
taking decisions and transporting boxes.

5.1.3 Transport of Boxes

In the simulation, the transport of boxes is modeled without malfunctions.
It is simplified by neglecting acceleration: The transport of a box from one
module to the next has a certain duration that depends on the conveying
direction. Transports in an East-West direction can have a different
duration than transports North-South. Additional time is needed to
change the conveying direction. On the hardware, this corresponds to the
change between roller and belt drive. When performing tandem transport,
the middle module includes a small delay before accepting the incoming
transport so that the two boxes are conveyed with a small gap between
them. This corresponds to the behavior of conveying hardware. All these
durations can be modeled deterministically or stochastically.

103

5 Modeling GridSorter with Agent-Based Simulation

Modeling the transport of boxes with these described durations overesti-
mates the time needed to transport boxes through several modules. In
reality, the transport through several modules is faster because the boxes
are not stopped and accelerated again. Modeling the real physical move-
ments of the boxes would increase the computing time of all simulation
experiments. Therefore, the transport through several modules is mod-
eled as several single transport steps in most simulation experiments. In
section 6.6, a simulation experiment is presented where the transport of
boxes is modeled with acceleration and deceleration.

5.1.4 Message Sending

In the simulation, the sending of messages is also modeled without mal-
functions: If a modules sends several messages to another module, the
messages are received in the order they have been sent. In addition, mes-
sages are not lost between modules. A duration is assigned to the sending
of a message deterministically.

5.2 Observing System Behavior
It is possible to run simulation experiments with visualization in order to
observe system behavior. Figure 6.3 shows the graphical representation of
the simulation environment. The visualization of system behavior together
with detailed printing of information of reservation and transport process
has been used for verification of the simulation model.
A parameter variation experiment can be conducted in order to analyze
the system behavior under different settings. In the following section, we
introduce all input parameters related to different topics.

5.3 Input Parameters
Independent variables, called input parameters in simulation, influence
system behavior and are related to the general system set-up, the transport
of boxes, the control algorithm and to the simulation experiment settings.

104

5.3 Input Parameters

5.3.1 General System Set-Up

In order to study system behavior in different layouts (section 6.4), the lay-
out for a simulation experiment can be read from an external file. Different
layout criteria can have an impact on system behavior. Some measurable
layout criteria are the number of modules ngrid, sources and destinations
or the width, height and ratio of the layout. Other criteria such as the form
of the layout and the position of source and destination modules are de-
scribed by categories because they are not measurable quantitatively. The
category n-sew for example describes layouts with sources in the North
and destinations on the other three sides. A list of all layouts and their
criteria can be found in Appendix B.
In order to study the system under different system loads (section 6.2.1),
the arrival of boxes has to be modeled: Either the simulation is controlled
with a constant work in process (CONWIP) i.e. there is a constant number
of boxes in the simulation, or the simulation is controlled by the total
arrival rate of boxes on all source modules. In this case, the inter-arrival
time of boxes is modeled with an exponential distribution. In both cases,
source modules dispose of infinite buffers for waiting boxes.

5.3.2 Box Transport and Message Sending

In order to model different mechanical variations of GridSorter, the physi-
cal transport of boxes can be parametrized with the following parameters:
the duration of a transport step in East-West direction, the duration of a
transport step in North-South direction, the duration of a direction change
and the time delay between two boxes if conveyed in tandem. In reality,
acceleration and deceleration influence transport times. Consequently, the
transport from one module to the next one takes shorter if the box does
not need to stop but can move through several modules. In a second mod-
eling of box transport, transport times vary dependent how far a box is
transported without being stopped. In addition, the transport times of
two boxes are adjusted if they are transported in tandem.
The sending of messages can be parametrized by the duration of the mes-
sage transfer to a neighboring module. To exclude the impact of com-
munication effort on system performance the duration of message transfer
can be set close to zero.

105

5 Modeling GridSorter with Agent-Based Simulation

5.3.3 Parameters for Basic Control Algorithm

In Chapter 4, different possibilities have been presented for variation of the
basic control algorithm. To study their impact on system performance, the
following parameters need to be set. The study is presented in section 6.2.2.
One main characteristic of the box transport is whether several boxes can
move together in the same direction (cf. section 3.2). If the hardware con-
trol is able to perform tandem transport, the tandem transport settings
can be set as follows:

– S Tandem transport is not allowed; only single transport is possible.
– T Tandem transport is allowed and used if possible.

The limitation of the path length aims to reduce the size of the search
tree by limiting routing possibilities (cf. page 72). It can be set as follows:

– Pa The path length is not limited. Each module is allowed to forward
a reservation request to all connected ports.

– Pb The path length is limited to the minimal path length between
source and destination with the following exception: If there is only
one direction promising the minimal path length to destination, the
directions with the second minimal path length can be chosen as
well.

– Pc The path length is limited to the minimal path length1 between
source and destination: Each module is only allowed to forward a
reservation request to the ports with the minimal path length to
destination.

The reachability of modules depending on this setting is shown in Figure
5.1 for two exemplary layouts.
The limitation of routes through source neighbors aims to hinder boxes
from blocking sources (cf. page 73). It can be set as follows:

– Na The routes through source neighbors are not limited. Each con-
nected module is allowed to send reservation requests to source neigh-
bors.

– Nb Connected modules are only allowed to send reservation requests
to source neighbors if they are a source or source neighbor, or if this
direction is the only direction offering the minimal path length to
destination.

1 The path length is measured in transport steps, i.e. the number of direction changes
may be different.

106

5.3 Input Parameters

S

D

D

S

reachable in setting Pa, Pb and Pc

reachable in setting Pa and Pb

reachable in setting Pa

Legend:

Figure 5.1: Reachable modules in different settings for limitation of path length
(letters correspond to description of settings)

S2S1

D1

D2

S2S1

D1

D2

S2S1

D1

D2

Na Nb Nc

Figure 5.2: Exemplary routes in different settings for routes through source
neighbors (letters correspond to description of settings)

The criterion for selecting the outgoing port of source neighbors also
aims to hinder boxes from blocking sources (cf. page 74). It can be set
as follows:

– lt Source neighbors select the port with the lowest expected lead time
(like all other modules).

– ts Source neighbors select the port with the lowest timestamp for
outgoing transport.

107

– Nc Connected modules are only allowed to send reservation requests
to source neighbors if they are source or source neighbor.

Exemplary routes depending on this setting are shown in Figure 5.2.

5 Modeling GridSorter with Agent-Based Simulation

5.3.4 Parameters for Partial Route Reservation

For the extension of the algorithm to allow partial route reservations as
described in section 4.2.5, two parameters are relevant: If a source module
needs to start a new search iteration by increasing the maximal lead time,
it can decide whether an inter-destination should be searched for. If the
number of messages that have been already sent within this reservation
process exceeds the chosen message count limit, the search for an inter-
destination is started. One criterion to select an inter-destination is the
maximal remaining distance to destination. The impact of these param-
eters is studied in Appendix C. In section 6.5, the impact of partial route
reservation on system performance and communication effort is examined.

5.3.5 Simulation Experiment

Each simulation run is parametrized by its random seed which is used
for the random number generators. The random number generators are
only used to model the box arrival and the destination assignment. The
control algorithm is purely deterministic.
The simulation time is measured in seconds. The duration of one simu-
lation run and the number of replications can be parametrized. To guar-
antee steady-state characteristics, all output variables are only recorded
after the duration of the warm-up period. The input parameter related
to the simulation experiment are determined and statistically reasoned
in section 6.1.1.

5.4 Performance Indicators
Different dependent variables are recorded in order to calculate perfor-
mance indicators and to make system behavior interpretable. The de-
pendent variables are either related to the total system, or to each single
module or to each single box. All dependent variables are determined
by Monte Carlo simulation since they cannot be analytically calculated.
Unless otherwise stated, average values are calculated during one simula-
tion run for all measures. For these to be reliable, the system must be
stable i.e. not overloaded.
For the application of the system in real world scenarios, mainly the system
throughput is important. To assess the efficiency of the control algorithm,

108

5.4 Performance Indicators

the number of sent messages is important because it gives an insight into
the duration of a reservation process and the workload of one control. In
addition to these measures, we also record other measures such as the
occupancy of modules to allow interpretation of system behavior based on
the simulation results. Logical clocks are only synchronized to each other
when performing a transport step together. Consequently, the set of logical
clocks is asynchronous from the point of view of physical time. In order to
better understand system behavior, several measures are recorded related
to synchronicity of logical clocks.
We describe below all recorded measures depending on the object they
are related to.
Related to the total system, the following variables are recorded to assess
system performance:

– Throughput λtot: number of boxes reaching their destination per
time interval.

– Number of boxes in the system Ntot: number of boxes on the grid
or waiting on source modules or their infinite buffer. If the arrival of
boxes is controlled by CONWIP, Ntot is an input parameter.

– Number of boxes on the grid Ngrid: boxes located on the grid in-
cluding the source and destination modules.

– Number of waiting boxes Nwait: boxes waiting for source modules to
get available (per source or in total). This variable indicates whether
the system is overloaded.

Related to a group of modules, the following variables are recorded to
assess synchronicity of logical clocks:

– Mean logical time C̄g(t) of all modules of group g at simulation point
of time t

– Average absolute deviation of logical time of one module from mean
logical time of group g of modules

dabs,g = 1
ng

1
Tsim

Tsim∑
t=0

∑
ng

|C̄g(t)− Ci(t)|

– Average difference between mean logical time of group g and mean
logical time of group h

dg,h = 1
Tsim

Tsim∑
t=0

(C̄h(t)− C̄g(t))

109

5 Modeling GridSorter with Agent-Based Simulation

Related to one module, the following variables are recorded to better
visualize system behavior:

– Occupancy oi: Percentage of time the conveying module i is occupied
by a box.

– Relative throughput λi: Number of boxes transported by module i
per time interval as ratio of system throughput per time interval.

Related to one box, we record the following variables to assess commu-
nication effort and system performance:

– Number of messages per reservation mrsv

– Number of messages per reservation mrsv,1 that are sent before the
first transport starts. If the complete route is reserved before the
transport process, it holds mrsv,1 = mrsv

– Real lead time of the performed transport process from source to
destination measured in physical time treal

– Difference between expected lead time measured in logical time and
real lead time measured in physical time tdiff

– Path length from source to destination measured in transport steps
ltot

Interrelation between different indicators The system throughput can
be calculated by the sum of the throughput of all sources or the sum of
the throughput of all destinations (flow equality):

λtot =
∑
src

λi =
∑
dest

λi

The total number of boxes in the system corresponds to the sum of boxes
on the grid and waiting boxes

Ntot = Ngrid +Nwait

Little’s Law describes the interdependence between the number of boxes
in the system, the throughput of the system and the lead time of one box.
With the described indicators, Little’s law can be expressed by

λtot = Ngrid/ttot .

110

5.4 Performance Indicators

The sum of the occupancy of all modules of the system equals the number
of boxes in the system ∑

grid

oi = Ngrid .

The described measures are used in Chapter 6 to assess the system behav-
ior when answering different research questions.

111

6 System Behavior of
GridSorter Controlled
with Logical Time

After climbing a great hill, one only finds
that there are many more hills to climb.

-- Nelson Mandela

In this chapter, we study system behavior of GridSorter under different
settings in order to understand the influence of different input parameters
on system performance. In a first step, we present the general simulation
set-up, the statistical analysis of results and the approach of selecting lay-
outs for different simulation studies. In section 6.2, we first illustrate the
basic system behavior with different plots and charts in order to make it
better interpretable. We then determine the combination of basic control
parameters that leads to the best system performance. In section 6.3, the
synchronicity of logical clocks and its influence on system performance is
studied. In section 6.4, we investigate the influence of layout character-
istics on system performance and communication effort. Whether partial
route reservation reduces communication effort is studied in section 6.5.
In section 6.6, we study system behavior under varying transport times
that arise from acceleration and deceleration during transport of boxes.

6.1 General Simulation Set-Up
In this chapter, we use the following terms to describe our simulation ap-
proach: A simulation run represents the uninterrupted simulation of the
system during a certain time period. Each simulation run is replicated
with different random seeds but identical settings. The term simulation
experiment includes these replications. The results of one simulation ex-

113

6 System Behavior of GridSorter Controlled with Logical Time

periment are determined by calculating mean values of the replicated sim-
ulation runs. In a simulation study, multiple simulation experiments under
different settings are conducted so that the influence of the relevant input
parameters on system behavior can be investigated.
In all following simulation experiments, the settings for the arrival of boxes
and the experiment settings are identical. The choice of these parameters
is reasoned in the next section.

– The arrival of boxes is controlled with CONWIP which guarantees a
stable system.

– The performance indicators are only recorded after a warm-up phase
of 200 seconds.

– The results of one simulation run correspond to one hour of operation
in physical time i.e. 3600 seconds.

– Each simulation run is replicated 10 times with different random
seeds. These runs together are one simulation experiment.

6.1.1 Statistical Analysis of Simulation Results

For the statistical analysis, two questions have to be considered:
1. Is the combination of duration of one simulation run and number of

iterations sufficient to get reliable mean values?
2. Is the warm-up period long enough to observe the system exclusively

in steady-state?
Let us treat the first question: To measure the reliability of results,
the standard error of the estimated mean is calculated for each simulation
experiment. The relative standard error of the mean is defined by:

SEx = s

x
√
N

(6.1)

where s is the sample standard deviation, x the sample mean and N num-
ber of samples.
The sample standard deviation is defined by:

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x)2 (6.2)

114

6.1 General Simulation Set-Up

To determine reliability of our results, we use system throughput as most
important performance indicator.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

[0; 0.2] [0.2; 0.4] [0.4; 0.6] [0.6; 0.8] [0.8; 1] [1; 1.2] [1.2; 1.4]

N
u

m
b

e
r

o
f

S
im

u
la

ti
o

n

E
x

p
e

ri
m

e
n

ts

Range of Relative Standard Error [%]

Figure 6.1: Relative standard error of all simulation experiments

115

Figure 6.1 represents the frequency of values of the relative standard error
of system throughput for all 4663 simulation experiments of the following
sections of this thesis. The relative standard error is less than 1.4% for
all simulation experiments and for most experiments, it lies between 0.2%
and 0.4%. We deduce that 10 simulation experiments are sufficient to
determine the mean system throughput of a simulation experiment.
Let us now treat the second question: The warm-up period should guar-
antee that the system is in steady-state when the recording of the per-
formance indicators is started. In our system, steady-state is achieved
if the number of boxes on the grid corresponds to the average number
of boxes on the grid in steady-state. The number of boxes on the grid
has been chosen as indicator for steady-state because all experiments are
controlled with CONWIP.
In layouts with a high number of modules, it takes longer to achieve this
system state. When observing the layout with the highest number of
modules, one can see that the number of boxes in the system corresponds
to the average number of boxes in the system after 25 seconds already.
We therefore assume that a warm-up period of 200 seconds is sufficient to
guarantee steady-state results at the start of recording.

6 System Behavior of GridSorter Controlled with Logical Time

6.1.2 Selecting Layouts for Simulation Studies

How are the layouts selected for different simulation studies? Layouts can
be described by many different characteristics such as number of modules,
number of sources and destinations, shape of the layout, or positioning
of sources and destinations. In addition, not only absolute numbers are
relevant, but the ratio of different numbers can be relevant as well. An
example: It is not suitable to compare a layout with 25 modules and 6
sources with a layout of 500 modules and 6 sources to investigate the
influence of layout size, because in the big layout, sources would represent
the bottleneck. In this case, it is more suitable to maintain the ratio of
number of sources and number of modules.
For the simulation studies, a layout population of 85 layouts has been
generated. Since we focus on dense networks, the shape is always a rect-
angle or close to one (some layouts have “cropped” corners). Likewise, in
most layouts the number of destinations exceeds the number of sources
which is a typical situation for sorting of goods. In most layouts, sources
are positioned on the North border of layout and destinations on the re-
maining three borders. In the layout presented in Figure 6.2, the sources
and destinations are positioned in this way which is called n-sew.

I I I I I I

O O
O O
O O
O O
O O
O O
O O
O O
O O
O O

O O

I = Input
O = Output

N-SEW

Figure 6.2: Graphical representation of one layout

In few layouts, the positioning of sources and destinations is different.
All other characteristics are varied so that the population of layouts is as
heterogeneous as possible. The number of modules varies from 25 to 506,
the number of sources from 1 to 36 and the number of destinations from 15
to 65. The aspect ratio of the layouts varies from 0.8 to 8. The population
of layouts can be studied in more detail in Appendix B where all layouts
are graphically presented and where the table in Tables B.2, B.3 and B.4
shows an overview of their characteristics.

116

6.2 System Behavior and Basic Control Settings

For some simulation studies, additional layouts have been created in or-
der to show specific effects. Those layouts are introduced in the relevant
sections.

6.2 System Behavior and
Basic Control Settings

In this section, we study different aspects of basic system behavior. To ex-
clude the influence of varying transport times, the durations related to box
transport are chosen in the most simple way: Regardless of direction, each
transport step takes 1 second and each direction change takes 0.2 seconds.
Time delay between two boxes conveyed in tandem is 0.05 seconds. The
message transfer time is set to 1−7 milliseconds which actually corresponds
to immediate sending of messages. Like this, system behavior is not neg-
atively influenced by the duration of reservation process. In section 6.5,
we then set the message transfer duration to the more realistic value of 3
milliseconds in order to show the effectiveness of partial route reservation.

6.2.1 Description of System Behavior

The objective of this section is to illustrate system behavior in more de-
tail. This is why we run experiments with the layout shown in Figure
6.2 and vary the total number of boxes in the system. In this way, we
can see how system behavior changes dependent on system load. The ba-
sic input parameters are set to the combination T Pb Nb ts (described
in section 5.3.3). The choice of this combination is reasoned in section
6.2.2 with a simulation experiment using full factorial design and the big
layout population.

Figure 6.3: Simulation screen shot of the layout of Figure 6.2

117

6 System Behavior of GridSorter Controlled with Logical Time

Figure 6.3 shows a screen shot of simulation of the layout presented in
Figure 6.2 under high system load. All sources are occupied, and boxes
waiting for sources to become available are not shown. The number on
the boxes depicts the ID of the destination conveyor. Since a screen shot
does not help much to understand system behavior, we present different
diagrams in the following.

Performance Indicators Related to the Total System

0

10

20

30

40

50

60

70

80

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 20 40 60 80 100 120 140 160 180 200 220

N
gr

id
[B

ox
es

]

λ t
ot

[B
ox

es
 p

er
 h

ou
r]

Number of boxes in system Ntot

Throughput

Number of boxes on grid

Figure 6.4: Throughput and number of boxes in system under different
system load

Figure 6.4 shows throughput and number of boxes on the grid in relation
to the total number of boxes in the system i.e. the system load (CONWIP).
We can see that the number of boxes on the grid first increases linearly
with system load because all boxes can be transported. Beginning from 50
boxes as system load, some boxes have to wait before being transported.
The system is then saturated with around 57 boxes on the grid; between
every fourth and fifth module is occupied with a box.
Throughput shows a very typical trend: It first increases strongly with
system load and then approaches its limit around 7600 boxes per hour.
It is important to notice that overloading the system does not have a
negative impact on system performance. Therefore, no regulation of load
is needed to maximize throughput. This effect has also been observed for
other layouts. In the simulation studies of following sections, system load
is chosen very high so that maximal throughput is achieved.

118

6.2 System Behavior and Basic Control Settings

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200 220

t t
o

t
[s

e
c

o
n

d
s

]
a

n
d

l t
o

t
[#

 t
ra

n
s

p
o

rt
s

te
p

s
]

Number of boxes in system Ntot

Path Length

Lead Time

Figure 6.5: Lead time and path length under different system load

Figure 6.5 shows average lead time and average path length in relation to
the total number of boxes in system. If one box is in the system, lead time
and path length are almost identical; the difference originates from the
duration of direction changes which is not included in path length. Lead
time increases with system load whereas path length remains at around
19.4 transport steps. The stability of path length can be explained by the
input parameter setting Pb limiting path length to minimal and second
minimal path lengths. The increase of lead time originates solely from an
increase in waiting time. The strong increase of lead time under low system
loads will be explained by the synchronicity of logical clocks in section 6.3.

Performance Indicators Related to the Modules

Figure 6.6 illustrates occupancy and relative throughput of two differ-
ent layouts (left and right) under two different system loads. Heat maps
have been chosen as illustration method: The gray value of one module
represents its occupancy oi or its relative throughput λi. What can be
observed from these plots?

– The left layout is already used to its full capacity with the low system
load of 20 boxes because the two sources are the bottleneck. Conse-
quently, the occupancy plot under high system load of 220 boxes is
quite similar.

119

6 System Behavior of GridSorter Controlled with Logical Time

I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Occupancy oi with Ntot = 20 boxes

Occupancy oi with Ntot = 220 boxes

Relative throughput λi with Ntot = 220 boxes

N-SEW N-SEW

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λtot,max = 8,650 [B/h] λtot,max = 4,570 [B/h]

1

2

1

2

Figure 6.6: Heat maps for occupancy and throughput of different layouts under
different system loads

120

6.2 System Behavior and Basic Control Settings

– In contrast, the right layout is able to receive more boxes thanks
to 10 sources: the occupancy plot under high system load is much
darker than the occupancy plot under low system load.

– In general, occupancy is higher around source modules which indi-
cates that they are the bottleneck of the layouts. This seems logical
since there are much more destinations than sources in both layouts.

– The last row illustrates relative throughput of both layouts under
high system load1. Again, it is evident that the left layout is not
uniformly used whereas the right layout shows a very homogeneous
usage of the modules.

– The throughput plots of both layouts show that source modules are
used equally.

– When comparing the occupancy and throughput plots under high
system load, they look quite similar: With high throughput, a mo-
dule is often occupied. However, a module could also be occupied by
waiting boxes and therefore achieve low throughput. This effect can
be observed within the second row of the grid of the right layout:
Throughput is higher than in the first row but occupancy is lower.
This means that boxes wait on source modules and on modules of
the first row for the second row to become available. In the second
row, additional throughput is achieved by East-West-movement of
boxes.

Figure 6.7 illustrates occupancy under high system load for two layouts
with another positioning of sources and destinations. What can be ob-
served?

– In Figure 6.6 and 6.7, the modules that are aligned with source mo-
dules are more occupied than other modules. This can be explained
by the routing preference to use the opposite port of the incoming
port as outgoing port to avoid direction changes.

– The occupancy plot of the right layout is generally darker which
means that there are more boxes on the layout which leads to a
higher throughput. In general, one can say that a layout has a good
structure and shape, if all modules are used uniformly i.e. if the oc-
cupancy and throughput plots show homogeneous gray values. The
darker the occupancy plot in total, the more boxes are on the layout.

1 Since the throughput plot under low system load looks quite similar, it has not been
included.

121

6 System Behavior of GridSorter Controlled with Logical Time

O O O O O O O O O O O O O O O O O O O O

I I

I I

I I

I I

I I

O O

O O O I O O O O I O O O O I O O O

O O

O O

I I

O O

O O

O O

I I

O O

O O

O O O I O O O O I O O O O I O O O

Occupancy oi with Ntot = 220 boxes

NSEW-NSEW EW-NS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λtot = 10,270 [B/h] λtot = 9,440 [B/h]

Figure 6.7: Heat maps for occupancy of layouts with scattered sources
and destinations

6.2.2 Setting of Basic Control Parameters

The objective of this section is to find a combination of settings for basic
control parameters that leads to high throughput with low communication
effort regardless of the layout. The relevant input parameters are described
in section 5.3.3 and result in 36 possible combinations. Simulation exper-
iments have been conducted with each parameter combination for all 85
layouts of our layout population. The number of boxes in the system is
set so high that there are always boxes in front of source modules. The
simulation experiments have been conducted together with Freund (2015).
We compare the parameter combinations in different ways. First of all, we
count the number of layouts for which a certain parameter combination
leads to the maximal throughput in this layout. This measure indicates in
how many layouts the parameter combination leads to best system perfor-
mance. Figure 6.8 illustrates that the combination T Pb Nb ts achieves
maximal throughput in 20 out of 85 layouts.

122

6.2 System Behavior and Basic Control Settings

0

5

10

15

20

T Pb
Nb ts

T Pb
Nb lt

T Pa
Nb lt

T Pa
Nb ts

T Pa
Na lt

T Pb
Nc lt

T Pb
Nc ts

T Pa
Na ts

T Pa
Nc lt

T Pb
Na lt

T Pc
Nc lt

T Pc
Nb lt

T Pc
Nc ts

T Pc
Nb ts

T Pc
Na lt

T Pa
Nc ts

T Pb
Na ts

T Pc
Na ts

N
u

m
b

e
r

o
f

la
y
o

u
ts

w
it

h
m

a
x

im
a

ll
y

a
c
h

ie
v

e
d

th
ro

u
g

h
p

u
t

Combination of basic parameters (only with tandem transport)

Figure 6.8: Number of layouts with maximally achieved throughput for each
parameter combination (see section 5.3.3 for notation of settings)

Second, we determine for each layout the maximally achieved throughput
and express the throughput achieved by any parameter combination as
proportion of this maximal throughput. Like this, the performance of a
parameter combination in all layouts is made comparable despite the dif-
ference of layouts. Likewise, the communication effort is made comparable:
We calculate the proportion of number of messages per reservation com-
pared to the minimally achieved value in this layout. With these measures,
an analysis of variance (ANOVA) is conducted.
Figure 6.9 shows the results of the analysis of variance for different in-
put parameters. In the first table, for example, all parameter combina-
tions with tandem transport are compared to all parameter combinations
without tandem movement. The left table analyzes the throughput ratio
whereas the right table analyzes the message ratio. The best performing
group is highlighted in gray in each table. A low p-value indicates that
the null hypothesis can be rejected with a low significance level concluding
that there is strong evidence that the groups differ from each other.
The following insights can be read from Figure 6.9:

– The system achieves higher throughput if tandem transport is al-
lowed in setting T.

– The system achieves lower throughput with strict limitation of path
length in setting Pc. The difference of throughput ratio between Pa

123

6 System Behavior of GridSorter Controlled with Logical Time

μ σ2 F p-value μ σ2 F p-value

S 87.75% 0.30% 1986.27 0.000 S 124.87% 10.15% 65.06 0.000

T 96.36% 0.27% T 133.98% 9.37%

μ σ2 F p-value μ σ2 F p-value

Pa 93.17% 0.30% 100.64 0.000 Pa 147.85% 20.07% 327.92 0.000

Pb 93.35% 0.32% Pb 123.25% 2.56%

Pc 89.65% 0.70% Pc 117.17% 2.00%

μ σ2 F p-value μ σ2 F p-value

Pa 93.17% 0.30% 0.54 0.462 Pa 147.85% 20.07% 272.67 0.000

Pb 93.35% 0.32% Pb 123.25% 2.56%

μ σ2 F p-value μ σ2 F p-value

Na 90.76% 0.48% 31.87 0.000 Na 113.96% 1.25% 283.89 0.000

Nb 93.12% 0.50% Nb 129.77% 5.01%

Nc 92.28% 0.41% Nc 144.55% 18.97%

μ σ2 F p-value μ σ2 F p-value

Nb 93.12% 0.50% 7.97 0.005 Nb 129.77% 5.01% 92.90 0.000

Nc 92.28% 0.41% Nc 144.55% 18.97%

μ σ2 F p-value μ σ2 F p-value

ts 92.01% 0.47% 0.15 0.697 ts 128.83% 9.93% 1.08 0.298

lt 92.10% 0.47% lt 130.02% 10.00%

Throughput as ratio of

maximally achieved throughput

Number of messages as ratio of

minimally achieved number of messages

P
a

th
 L

e
n

g
th

 L
im

it
R

o
u

te
s
 t
h

ro
u

g
h

S
o

u
rc

e
 N

e
ig

h
b

o
rs

C
ri

te
ri

o
n

 a
t

S
o

u
rc

e

N
e

ig
h

b
o

rs

T
ra

n
s
p

o
rt

S
e

tt
in

g
s

Figure 6.9: Results of analysis of variance for basic control parameters (see
section 5.3.3 for notation of settings)

124

and Pb is not significant but communication effort with setting Pb
is significantly lower.

– Both settings S and Pc reduce the size of the search tree. On the
one hand, this reduces communication effort but, on the other hand,
it also reduces throughput.

– The system achieves higher throughput if routes through source
neighbors are slightly restricted in setting Nb.

– The difference of throughput ratio among the settings ts and lt is
not significant. Both criteria for selecting the outgoing port of source
neighbor modules lead to comparable results.

6.2 System Behavior and Basic Control Settings

μ σ2 F p-value μ σ2 F p-value

T Pb Nb ts 99.41% 0.01% 7.22 0.0001 T Pb Nb ts 129.29% 1.16% 40.05 0.000

T Pb Nb lt 99.22% 0.01% T Pb Nb lt 128.92% 1.24%

T Pa Nb lt 99.00% 0.01% T Pa Nb lt 153.10% 6.63%

T Pa Nb ts 98.73% 0.02% T Pa Nb ts 147.52% 4.13%

Throughput as ratio of

maximally achieved throughput

Number of messages as ratio of

minimally achieved number of messages

T
o

p
 4

P
a

ra
m

e
te

r

C
o

m
b

in
a

ti
o

n
s

Figure 6.10: Results of analysis of variance for top-4 parameter combinations
(see section 5.3.3 for notation of settings)

125

– Pb The path length is limited to the minimal path length between
source and destination with the following exception: If there is only
one direction promising the minimal path length to destination, the
directions with the second minimal path length can be chosen as
well.

– Nb Connected modules are only allowed to send reservation requests
to source neighbors if they are a source or source neighbor, or if this
direction is the only direction offering the minimal path length to
destination.

– ts Source neighbors select the port with the lowest timestamp for
outgoing transport.

These insights are also confirmed by comparing the throughput ratios of all
36 parameter combinations. The top-4 parameter combinations (combin-
ing Pa, Pb and ts, lt) are compared by an analysis of variance in Figure
6.10. The low p-value indicates that there is strong evidence that the
groups differ from each other. The parameter combination T Pb Nb ts
performs best by achieving in average 99.41% of the maximally achieved
throughput. Related to communication effort, it performs second best by
achieving in average 129.3% of the minimally achieved number of mes-
sages. The differences in throughput and communication effort between
the first and second best parameter combination are very small.
It is interesting that both parameters that restrict routing possibilities
lead to best performance with the middle setting Pb and Nb which is a
compromise between no a strict limitation. Based on the results of both
comparison methods, all following simulation studies are conducted with
the parameter combination T Pb Nb ts. This combination is defined by
the following setting:

– T Tandem transport is allowed.
– Pb The path length is limited to the minimal path length between

source and destination with the following exception: If there is only
one direction promising the minimal path length to destination, the
directions with the second minimal path length can be chosen as
well.

– Nb Connected modules are only allowed to send reservation requests
to source neighbors if they are a source or source neighbor, or if this
direction is the only direction offering the minimal path length to
destination.

– ts Source neighbors select the port with the lowest timestamp for
outgoing transport.

6 System Behavior of GridSorter Controlled with Logical Time

6.3 Synchronicity of Logical Clocks

In contrast to physical clocks, logical clocks in our system are only set
forward if a box is transported. Consequently, logical clocks do not show
identical values of logical time. If the logical time of different modules dif-
fers strongly from each other, it can lead to over- or underestimating of the
expected lead time during the route reservation process. This means that
the real lead time during transport process differs from the expected lead
time. Since the expected lead time is measured in logical time, it has con-
verted to physical time which is done using the duration of transport steps.

j
1111 b1112

13

12

000012

1213
a

14

13

14

15

logical time of this
module

Figure 6.11: Exemplary situation for waiting because of asynchronous
logical clocks

Figure 6.11 shows an exemplary situation where the expected lead time un-
derestimates the real transport lead time. The logical clocks of the source
modules of both boxes differ strongly. During reservation process, box b
is planned to use module j before box a. During transport process box a
will be arriving first and has to wait until box b has passed. Consequently,

126

the real lead time of box a will be higher than its expected lead time. We
can see that waiting times arise from over- or underestimating real lead
time. And these waiting times can have a negative impact on through-
put i.e. system performance. We therefore study synchronicity of logical
clocks in this section using different measures related to different groups
of modules. To examine the impact of asynchronous logical clocks, we
compare the results of systems where logical clocks are only synchronized
by box transports with systems where logical clocks of source modules are
additionally synchronized with each other.

6.3 Synchronicity of Logical Clocks

6.3.1 Synchronization Based on Box Transport

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200 220

t to
t
[s

ec
on

ds
] a

nd
l to

t
[#

 tr
an

sp
or

ts
te

ps
]

Number of boxes in system Ntot

Path Length
Lead Time
Mean of lead time difference
Standard deviation of lead time difference

tdiff
tdiff

Figure 6.12: Lead time and path length and standard deviation of lead time
difference under different system load

Figure 6.12 resumes Figure 6.5 by adding the mean and standard deviation
of the difference between expected and real lead time tdiff as portion of
the real lead time. Under all system loads, the expected lead time tends to
underestimate the real lead time. High standard deviation indicates that
the expected lead time strongly over- and underestimates real lead time.
The highest standard deviation is achieved with around 10 boxes in the
system. The strong increase and following decrease of deviation represents
an explanation for the bend in increase of lead time. Two effects influence
the lead time contrariwise with increasing system load: The routes of

127

boxes interfere with each other which leads to “real” waiting times and an
increase in lead time. However, logical clocks are also better synchronized
which reduces the difference between expected and real lead time and
therefore decreases lead time. The better synchronicity of logical clocks
with increasing system load is shown in Figure 6.13. It visualizes the
average absolute deviation of a logical clock among the logical clocks of all
modules dabs,all, among source modules dabs,sources, among grid modules
dabs,grid and among destination modules dabs,dest.

6 System Behavior of GridSorter Controlled with Logical Time

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160 180 200 220

[ti
m

es
te

ps
]

Number of boxes in system Ntot

dabs, sources

dabs, grid

dabs, dest

dabs, all

Figure 6.13: Absolute deviation of logical time of different groups of logical
clocks in the standard layout

Figure 6.13 shows, as expected, that synchronicity of logical clocks in-
creases with increasing system load because more transports are performed
for which the logical clocks of participating modules need to be synchro-
nized. We can also see that source modules are generally better synchro-
nized with each other than the group of all modules. Under full system
load, source modules deviate around 3 to 4 time steps from the mean.
Where does the strong asynchronicity under low system loads come from?
In the following, we show that the behavior of logical clocks strongly de-
pends on the positioning of sources and destinations. As example layouts,
we have chosen the standard n-sew layout of Figure 6.2 and the corre-
sponding nsew-nsew layout.

128

Before we go into detailed explanation, we first want to present three
general effects regarding synchronicity of logical clocks:

– Neighbors Modules with high number of adjacent modules are syn-
chronized more often i.e. their logical clock is more often set forward.
Due to this effect, grid modules tend to be ahead in logical time.

– Throughput Modules with high relative throughput perform trans-
ports more often i.e. their logical clock is more often set forward.

6.3 Synchronicity of Logical Clocks

– Distance to destination Timestamps of transport steps must in-
crease with each transport step. The timestamp of the transport
step of one specific box to its destination is therefore higher than the
timestamp of the transport step of the source module. The difference
between both timestamps increases with path length.

-60

-50

-40

-30

-20

-10

0

10

0 20 40 60 80 100 120 140 160 180 200 220

[t
im

e
s

te
p

s
]

Number of boxes in system Ntot

dsources,all

dgrid,all

ddest,all

Difference di,all from mean logical time Relative throughput λi

-50 -40 -30 -20 -10 0 10 20 30 0.00 0.05 0.10 0.15 0.20 0.25

Ntot = 5 boxes Ntot = 5 boxes

Figure 6.14: Average logical time of a n-sew layout under different system
loads (upper part) and difference of logical time of modules (left)
and relative throughput (right) under low system load

129

Figure 6.14 shows the average difference of logical time of a group of mo-
dules from the mean of all logical clocks in the layout. The measure is
recorded for sources dsources,all, grid modules dgrid,all and destinations
ddest,all. If the difference is positive, the clocks of this group tend to go
ahead. If it is negative, the clocks of this group tend to lag behind. The
heat map on the left side shows the average difference of each single logical

6 System Behavior of GridSorter Controlled with Logical Time

clock from the mean logical time di,all under system load of 5 boxes. The
heat map on the right side shows the relative throughput of each module.
Under low system load, source modules tend to lag behind and destina-
tion modules are ahead of source modules. Under these conditions, the
described effect of distance to destination must be outperforming the ef-
fect of the higher throughput of source modules. Analogous, the left heat
map shows a smooth rise of logical time from North to South. In the
southern part of the layout, the relative throughput is high which leads to
clocks going ahead due to the second effect. With only one box in the sys-
tem, the logical clocks of destination modules are even ahead of the logical
clocks of grid modules. Since there is only one box in the system, it always
takes the same path with shortest path length and least direction changes
to a destination. Consequently, the first effect due to synchronization with
neighbors is weak and the second effect is weak because all the modules
on this route are equally used. The third effect leads to destinations being
ahead and sources lagging behind. Under high system load, destination
modules lag behind because of low relative throughput. The logical time
of source and grid modules go ahead in similar way.
Figure 6.15 shows the same plots but for the corresponding nsew-nsew
layout. The logical clocks show different, almost contrary behavior: Un-
der low system loads, source modules go ahead and destination modules
lag behind.
Because sources and destinations are positioned close to each other, the
grid modules close to source modules go ahead due to the low distance to
destination as can be seen in the heat map of logical time. In addition,
the relative throughput is high in the southern and northern part of the
layout. Consequently, sources are even more ahead because the effect
of relatively high throughput and short distance to destination do not
compensate such as in the other layouts but sum up. For high system
loads, destination modules lag behind as in the n-sew layout, but sources
go more ahead than grid modules.

130

Even though the behavior of logical clocks under low system loads is dif-
ferent depending on the positioning of sources and destinations, synchro-
nization increases with system load in all layouts. Nevertheless, expected
lead time and real lead time still differ from each other.

6.3 Synchronicity of Logical Clocks

-20

-15

-10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200 220

[t
im

e
s

te
p

s
]

Number of boxes in system Ntot

dsources,all

dgrid,all

ddest,all

Difference di,all from mean logical time Relative throughput λi

-50 -40 -30 -20 -10 0 10 20 30 0.00 0.05 0.10 0.15 0.20 0.25

Ntot = 5 boxes Ntot = 5 boxes

Figure 6.15: Average logical time of a nsew-nsew layout under different
system loads (upper part) and difference of logical time of modules
(left) and relative throughput (right) under low system load

6.3.2 Additional Synchronization Among Source Modules

As can be seen in the example situation of Figure 6.11, asynchronous log-
ical clocks of sources lead to waiting times during transport. We therefore
implement an additional synchronization among source modules: Each
time a source module sets its logical clock forward, it informs all other
source modules. Those set their logical clock forward accordingly if they

131

have no reservations for lower timestamps. Like that, the logical clock
condition is still fulfilled.

6 System Behavior of GridSorter Controlled with Logical Time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200 220

t to
t
[s

ec
on

ds
] a

nd
l to

t
[#

 tr
an

sp
or

ts
te

ps
]

Number of boxes in system Ntot

Path Length
Lead Time
Mean of lead time difference
Standard deviation of lead time difference

tdiff

tdiff

Figure 6.16: Lead time and path length and standard deviation of lead time
difference under different system load with synchronization
among sources

Figure 6.16 shows path length, lead time and leadtime difference between
expected and real lead time for the standard layout with source synchro-
nization. Comparing it to Figure 6.12, we can see that the expected lead
time differs less from real lead time under high system loads. Lead time
under a system load of 220 boxes is reduced by 4.8% leading to an increase
of system throughput by 2.2%. The method of synchronized source mo-
dules only takes effect for system loads higher than 6 boxes. Therefore,
lead time even decreases with increasing system load between 6 and 25
boxes. With system loads under 6 boxes, the interarrival time between
boxes on any source is quite high. During these times, the logical clocks of
source modules are not set forward which then leads to waiting times if the
routes interfere with routes of boxes that have been routed much earlier.
The positive effect of synchronizing sources can also be observed in other
layouts (group B and C of layout population of Table B.1). Figure 6.17
shows that the relative decrease of waiting time is proportional to the
relative decrease of difference between expected lead time and real lead
time. Figure 6.18 shows that the relative decrease of lead time tends to

132

be higher if grid modules are less synchronized in systems without syn-
chronization of sources.

6.3 Synchronicity of Logical Clocks

y = 0.8499x + 0.0322
R² = 0.969

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

-60% -50% -40% -30% -20% -10% 0%

R
el

at
iv

e
de

cr
ea

se
 o

f w
ai

tin
g

tim
e

Relative decrease of lead time difference

Figure 6.17: Relative decrease of waiting time as function of relative decrease of
lead time difference

y = -0.0935x + 0.1951
R² = 0.7079

-45%

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

0 1 2 3 4 5 6 7

R
el

at
iv

e
de

cr
ea

se
 o

f w
ai

tin
g

tim
e

Absolute deviation of logical time of grid modules

Figure 6.18: Relative decrease of waiting time as function of deviation of logical
time of grid modules without source synchronization

133

In these 8 layouts, the lead time has been reduced between 2 and 13%.
The number of boxes on the grid do not change which leads to an increase
of throughput between 2 and 17% depending on the layout.

6 System Behavior of GridSorter Controlled with Logical Time

6.4 System Behavior in Different Layouts

In this section, we investigate the influence of layout characteristics on
system behavior. In real world scenarios, it is desirable to maximize
throughput while minimizing invest which is proportional to the num-
ber of modules in the system. Often, boundary conditions are given such
as required system throughput or positioning of sources and destinations.
We first investigate the impact of system size and number of sources in
layouts with the same positioning of sources and destinations. Thereupon,
we investigate the impact of positioning of sources and destinations on
system throughput.

6.4.1 Impact of System Size and Number of Sources

on Throughput

Figure 6.19 shows the throughput of 63 layouts out of the layout popula-
tion all of which have source modules at the North border and destination
modules at the remaining three borders (positioning n-sew). The layouts
are all rectangular; some with “cropped” corners. The aspect ratio, the
number of modules, sources and destinations vary. The layouts are divided
in four groups according to the ratio of number of sources to number of
modules (source-module-ratio). We can see that the throughput increases
with increasing number of modules and increasing source-module-ratio be-
cause more modules and more sources facilitate more boxes on the grid.
The results can be approximated with power functions (see dotted func-
tions in Figure 6.19) with exponents around 0.45. We use the power func-
tion as approximation because of Little’s law: If the number of modules
is multiplied by factor x with stable aspect ratio, the lead time changes
approximately with factor

√
x because it is related to length and width

of the layout. Therefore, throughput is nearly proportional to the square
root of number of modules.

134

6.4 System Behavior in Different Layouts

y = 1038.6x0.3794

R² = 0.9478

y = 711.8x0.4325

R² = 0.9918 y = 634.55x0.4366

R² = 0.9625

y = 333.53x0.5218

R² = 0.9846

0

2,000

4,000

6,000

8,000

10,000

12,000

0 100 200 300 400 500

S
y
s

te
m

 T
h

ro
u

g
h

p
u

t
λ

to
t
[B

o
x

e
s

 p
e

r
h

o
u

r]

Number of Modules ngrid

L [0.078; 0.120]

M [0.044; 0.070]

S [0.027; 0.040]

XS [0.015; 0.025]

Layout Groups

with Source-Module-Ratio

Figure 6.19: System performance of different layouts as a function of the
number of modules and for different ratio of number of sources to
number of modules

6.4.2 Impact of Positioning of Sources and Destinations
on Throughput

Figure 6.20 shows the throughput of five layout groups under full load.
The layouts of one layout group only differ in positioning of sources and
destination modules: The first letters indicate the position of sources, the
second letters the position of destinations. The graphical representation
of the layouts can be found in the appendix in Figure B.1 and B.2.
Figure 6.20 shows the achieved throughput of all layouts and Figure 6.21
shows the results of analysis of variance for the different positionings of
sources and destinations. For this analysis, we express the measures as
portion of the maximal value in this layout group. Positioning ew-ns sig-
nificantly outperforms the other positionings in the studied layout groups
(highest mean with lowest deviation). Different hypotheses could help to
explain throughput differences:

– In layouts with lots of opposing box traffic, throughput is lower,
whereas throughput is higher in layouts with one or two main flow
directions. This effect favors n-sew and ew-ns positioning as in-
dicated by a high number of boxes on the grid on the right side of
Figure 6.21.

135

6 System Behavior of GridSorter Controlled with Logical Time

0

2,000

4,000

6,000

8,000

10,000

12,000

A B C D E

Sy
st

em
 T

hr
ou

gh
pu

t
[B

ox
es

 p
er

 H
ou

r]

Layout Group

N-SEW
NSEW-NSEW
NS-NSEW
NS-EW

Figure 6.20: Throughput of different layout groups with differing positioning of
sources and destinations under full load

P
os

iti
on

in
g

of

so
ur

ce
s

an
d

de
st

in
at

io
ns

Throughput
Shortest path length
between source and

destination

Number of boxes
on grid

μ σ2 μ σ2 μ σ2

N-SEW 84.96% 0.1458% 99.11% 0.0395% 85.13% 1.7704%
NSEW-NSEW 87.60% 0.7406% 84.94% 0.0353% 73.61% 1.2075%

NS-NSEW 89.98% 0.0244% 83.71% 0.0279% 72.73% 0.6531%
EW-NS 99.94% 0.0002% 95.48% 0.1180% 99.43% 0.0165%

F p-value F p-value F p-value
9.40 0.0008 53.05 0.0000 8.55 0.0013

Figure 6.21: Analysis of variance for differing positioning of sources and
destinations under full load

136

6.4 System Behavior in Different Layouts

– In layouts with shorter path lengths, lead time is lower and therefore
throughput is higher. This effect favors nsew-nsew and ns-nsew
layouts as indicated by the short distance between source and desti-
nation in the middle of Figure 6.21.

– Uniform occupancy and relative throughput suggest that no bot-
tleneck exists and throughput is higher. In section 6.2.1, we have
seen that the rows close to source modules represent a bottleneck in
n-sew layouts.

Looking at the results in Figure 6.21, opposing traffic reduces the occu-
pancy of the grid strongly. However, nsew-nsew and ns-nsew layouts
perform quite well thanks to the short average path length. ew-ns layouts
achieve highest average throughput despite relatively long path lengths be-
cause they achieve a high occupancy and do not have a bottleneck like
n-sew layouts.
For application of GridSorter in real world scenarios, it is likely that posi-
tioning of sources and destinations is given by the customer. In addition,
it is relevant how much traffic from one specific source to one specific des-
tination is required. In our simulation studies, every destination is equally
assigned to boxes from all sources. Therefore, the positioning of sources
and destinations is not further investigated.

6.4.3 Communication Effort

In this section, we study the communication effort in our layout population
to draw conclusion whether the system could realize the described routing
algorithm on real hardware. Figure 6.22 shows the average number of
messages for one reservation process. Since the transport process only
starts when the reservation process is finished, a high number of reservation
messages could hinder the box from being transported. Since the box
occupies the source module while waiting, system throughput is reduced.
In Figure 6.22, we see that the number of messages per reservation in-
creases with the average shortest path length between source and desti-
nation: The longer the path, the more messages need to be sent. The
trend function shows that the number of reservation messages increases
potentially with the average shortest path length. The longer the distance
between source and destination, the more messages need to be sent. It
is not a linear trend function because with increasing path length, it is
more likely that alternative routes need to be explored. If sources are

137

6 System Behavior of GridSorter Controlled with Logical Time

9

17
20

63

65

67

79

81

y = 0.7171x1.8084

R² = 0.9744

0

50

100

150

200

250

300

350

400

5 10 15 20 25 30

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

m
e

s
s

a
g

e
s

p
e

r
re

s
e
rv

a
ti

o
n

m
rs

v

Average shortest path length [# transport steps]

Layouts with close sources

All other layouts (with trend function)

Figure 6.22: Communication effort under full load dependent on average
shortest path length (layout IDs next to some points)

6.5 Partial Route Reservation
In this section, we study whether partial route reservation increases system
throughput by reducing the number of messages before the transport of a

138

direct neighbors such as in layout 65, 67 and 79, more reservation mes-
sages are needed. One reason could be that running path searches interfere
more with each other because source nodes are positioned close to each
other. We conclude that the size of the layout influences the communi-
cation effort indirectly. The distance between sources and destinations is
the determining measure and it is not only dependent on the size but also
in the shape of the layout.
The highest communication effort is required in layout 79 and 51 where
around 340 messages are sent in average per reservation. If it takes around
3 ms to send a message from one module to another, a reservation pro-
cess of 340 messages takes around 1 second in average which is accept-
able since it corresponds to the duration of one transport step. Neverthe-
less, all reservation processes with more reservation messages affect system
throughput. Therefore, we study the effect of partial route reservation
in the next section.

6.5 Partial Route Reservation

box starts. Again, we use our population of layouts and set the number
of boxes in the system so high that there are always boxes waiting for
sources to get available. In contrast to previous sections, the duration
of message transfer is now set to 3 milliseconds to take into account the
effect of long reservation processes.
The parameters for partial route reservation have been set as following (cf.
section 5.3.4): The remaining distance from the inter-destination module
should be less than half of the distance between source and destination.
Consequently, more than half of the path should be reserved. A source
module starts the reservation if the number of sent messages exceeds the
message count limit of 100 messages. These settings have shown best
results (cf. Appendix C).

0

5

10

15

20

25

30

(10; 50] (50; 100] (100; 150] (150; 200] (200; 250] (250; 300] (300; 350]

[L
a

y
o

u
ts

]

Average number of reservation messages
before transport process mrsv,1

without partial route reservation

with partial route reservation

Figure 6.23: Average number of reservation messages in different layouts with
and without partial route reservation

Figure 6.23 illustrates the average number of reservation messages before
the transport process starts in systems with and without partial route
reservation. Without partial route reservation, this measure corresponds
to the average number of messages per reservation process. The bars
indicate in how many layouts the average number of messages lies within
the interval on the x-axis. We see clearly that the average number of
messages before start of transport is reduced by partial route reservation.
With partial route reservation, it is less than 250 messages in average in
all layouts. Even though this is positive for system functionality, we now
have to investigate if system throughput is influenced negatively.

139

6 System Behavior of GridSorter Controlled with Logical Time

63

84

0

1

2

3 4

56

7

13

47

49

50

51

5455

56

57

58

59

75
76

77

78

80

8

12 79

y = 0.002x - 0.0188
R² = 0.7094

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

5 10 15 20 25 30

R
e
la

ti
v

e
 d

if
fe

re
n

c
e

o
f

th
ro

u
g

h
p

u
t

r λ

Average shortest path length [# transport steps]

Layouts with NSEW-NSEW

All other layouts (with linear trend function)

Figure 6.24: Relative difference of throughput in different layouts due to partial
route reservation (layout IDs next to some points)

Figure 6.24 shows the relative difference of system throughput rλ for all
85 layouts. It is defined by

rλ = λwith − λwithout
λwithout

where λwith is throughput with partial route reservation and λwithout is
throughput without partial route reservation. The x-axis indicates the
average shortest path length between source and destination. It becomes
clear that partial route reservation has a positive effect on throughput
in most layouts. For lots of layouts with small distance between source
and destination, the difference is smaller than 1% which is in magnitude
of the standard error and thus not significant. The positive effect on
throughput increases with the average shortest path length between source
and destination and can be approximated with a linear trend function.
The reason is that communication effort increases with increasing path
length. The negative effect of reservation processes with lots of messages
is reduced by partial route reservation. Two layouts exist where partial
route reservation has a clearly negative impact. Since both layouts show
nsew-nsew positioning, the reduced quality of the partially reserved route
seems to be important with opposing box traffic.

140

6.6 System Behavior under Varying Transport Times

6.6 System Behavior
under Varying Transport Times

All simulation experiments in previous sections have been conducted un-
der fixed transport times meaning that each transport from one module
to the next one takes exactly 1 second. In reality, acceleration and decel-
eration influence transport times. Consequently, the transport from one
module to the next one takes shorter if the box does not need to stop
but can move through several modules. In addition, right-angle-transfer
module have different transport times depending on the conveying direc-
tion because belts have more friction. We have measured transport times
on a 5×5-demonstrator system of GridSorter. Transport time in direc-
tion of belts varies between 0.6 and 0.85 seconds. In direction of rollers,
it varies between 0.9 and 1.95 seconds. Since the variation of transport
time origins from acceleration and deceleration, we modeled the physical
behavior of transport of boxes depending on the number of movements
without stop. In addition, the transport times of two boxes are adjusted
if they are transported in tandem.

I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

rollers (slow)
belt (fast)

belt (fast)
rollers (slow)

A B

Figure 6.25: Two configurations of arrangement of conveyor modules in
standard layout

We now study throughput and average transport times under varying
transport times for the standard layout of Figure 6.2. The modules are
arranged in configurations A and B (see Figure 6.25). In Figure 6.26, we
can see that the same standard layout achieves more throughput in config-
uration A than in configuration B. We conclude that the faster conveying
direction should be used for the longer side of the layout. Figure 6.26
indicates that a transport in direction of rollers takes around 0.97 seconds
in averages, and in direction of belts around 0.7 seconds in average. Under
low system load, transport times are a little shorter because boxes have
to stop less often. We also see that average transport times do not differ
much in both configurations.

141

6 System Behavior of GridSorter Controlled with Logical Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0 20 40 60 80 100 120 140 160 180 200 220

A
v

e
ra

g
e

 t
im

e
 o

f
tr

a
n

s
p

o
rt

fr
o

m
o

n
e

m
o

d
u

le
to

n
e

x
t

λ
to

t
[B

o
x

e
s

 p
e

r
h

o
u

r]

Number of boxes in system Ntot

Throughput

Throughput with turned modules

Transport time (rollers)

Transport time (rollers) with turned modules

Transport time (belt)

Transport time (belt) with turned modules

Figure 6.26: Throughput and average transport times under varying transport
times for standard layout

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0 20 40 60 80 100 120 140 160 180 200 220

λ
to

t
[B

o
x

e
s

 p
e

r
h

o
u

r]

Number of boxes in system Ntot

Fixed transport times "average"

Varying transport times

Fixed transport times "slow"

Figure 6.27: Throughput under varying and fixed transport times for
standard layout

142

6.7 Conclusion on System Behavior

In order to assess the influence of varying transport times on throughput,
we compare a system with varying transport times to a system with fixed
transport times. Fixed transport times have been simulated with two
different settings: With the setting “slow” we assume that a box stops
after each transport step. With the setting “average”, we assume that
each transport step takes the average transport time from the experiment
with varying transport times. Please note that transport times still differ
in the conveying directions even with fixed transport times.
Figure 6.27 shows throughput under varying and fixed transport times
for the standard layout with configuration A of Figure 6.25. Under low
system loads, the system with varying transport times achieves the same
throughput like the system with fixed transport times “average”. Under
high system load, the system with fixed transport times performs better.
Because of varying transport times, boxes have to wait more often for
each other. Nevertheless, it makes no sense to force the system to stop
boxes after each transport. The system with fixed transport times “slow”
achieves less throughput under all system loads.
The simulation experiments of this section show that the system control
with logical time is able to handle varying transport times. Like this,
the positive effect on system performance by transporting boxes through
several movements without a stop can be exploited.

6.7 Conclusion on System Behavior
Controlled with Logical Time

System behavior has been studied with GridSorter as showcase system.
Most important findings are:

– With the described system control, the system does not show a de-
crease of throughput because of overload. It is thus not necessary to
regulate system load.

– Uniform module occupancy and uniform relative module throughput
have a positive effect on system throughput.

– The basic control parameters should be chosen in such way that
routing possibilities are limited but not strictly.

– Synchronicity of logical clocks increases with increasing system load.
Especially under low system loads, asynchronous logical clocks lead

143

6 System Behavior of GridSorter Controlled with Logical Time

to waiting times. With an additional synchronization among source
modules, lead time can be decreased and system throughput in-
creased.

– Related to layout characteristics, system size is most important for
throughput. The ratio of sources to modules should be high enough.
Layouts with ew-ns positioning outperform layouts with other po-
sitioning of same size and shape.

– Communication effort increases potentially with distance between
source and path length. Therefore, system size influences communi-
cation effort indirectly.

– Partial route reservation shows positive impact both on the number
of required messages before start of transport as well as on through-
put. The positive effect on throughput increases linearly with dis-
tance between source and destination.

– Because of logical time, our system is robust to varying transport
times that arise for example from acceleration and deceleration.
Transporting boxes through several modules without a stop improves
system performance.

The simulation studies in this section have mainly been focused on theo-
retical questions. For application of GridSorter, studies with real-world-
requirements should be undertaken. Since system throughput depends on
many different control parameters and layout characteristics, it is neces-
sary to conduct simulation experiments for each application case. There-
fore, further investigation should have the objective to generate layouts
automatically (Fechtig 2014).2

2 A similar idea has been presented for Cognitive Conveyors by Shchekutin et al.
(2015).

144

7 Conclusion

Everyone is ignorant,
only on different subjects.

-- Will Rogers

The fourth industrial revolution aims to transform production systems by
using numerous, small-scaled electronic devices. By sharing information
and taking independent decisions, the systems promise more flexibility and
robustness. In order to profit from these opportunities, new decentralized
control algorithms have to be developed. This thesis makes a contribution
to decentralized control of modular material handling systems: Logical
time is, for the first time, used as control principle for routing of boxes and
deadlock-free transport to their destinations. The results look promising.

7.1 Conclusion on Thesis
What has been achieved in this thesis? Have all research questions been
answered?
In Chapter 2, we first have given an overview of existing modular ma-
terial handling systems with decentralized control. These systems have
been classified according to different criteria focusing routing and deadlock
handling. From this classification, the research gap has been identified: No
control algorithm exists for the transportation of boxes that prevents dead-
locks and is generally applicable. In addition, time-window-based route
reservation is not used in any of these systems. The GridSorter has been
chosen as showcase system because it shows high risk of deadlocks.

Take-Home-Message of Chapter 2 Multiple different modular ma-
terial handling systems have been developed and result in some very
impressive control algorithms. Nevertheless, no deadlock prevention
algorithm exists that can be applied universally.

145

7 Conclusion

In Chapter 3, the principle of logical time has been successfully transferred
to the control of modular material handling systems. Time-window-based
routing has been chosen as routing strategy and the principle of logical
time has been adapted to our application. It has been proven that the
system is deadlock-free. In addition, the system is robust against vary-
ing transport times.

Take-Home-Message of Chapter 3 Logical time is a very struc-
tured control principle that helps in designing deadlock-free control
algorithms.

In Chapter 4, the control architecture has been introduced. The two com-
ponents reservation manager and transport manager have been explained
in detail because they are responsible for route reservation and release of
transport steps. As path-finding algorithm, IDA* has been adapted to
decentralized control and time-dependent route reservation. We call the
developed algorithm DIDA* standing for Decentralized Iterative Deepen-
ing A*. Using time-dependent route reservation, the size of the search tree
increases. Scalability of the control algorithm can be achieved by select-
ing inter-destination modules and thus accepting partial route reservation.
The transport manager is responsible for guaranteeing that the execution
of transport steps corresponds to the reserved timestamps.

Take-Home-Message of Chapter 4 Iterative Deepening A* can be
used as path-finding algorithm for time-dependent route reservation
in modular material handling systems.

In Chapter 5, the simulation model of GridSorter has been presented.
Compared to reality, simplifications are required in order to achieve ac-
ceptable simulation effort. All input parameters that can be changed and
different important output variables that can be used as performance in-
dicators have been presented.

Take-Home-Message of Chapter 5 In order to study system be-
havior of material handling systems with decentralized control, an
agent-based simulation model should be implemented.

The objective of Chapter 6 was to make system behavior better under-
standable. Therefore, results of different simulation studies have been
presented. For improving route reservation, it is helpful to define limita-
tions such as the limitation of path length that reduce routing possibilities,
but still offer enough of them. Two characteristics of layouts influence sys-
tem throughput mainly: the number of modules i.e. system size and the
number of sources related to system size. Synchronicity of logical clocks

146

7.2 Outlook

increases with increasing system load. For low system load, synchronicity
depends strongly of positioning of sources and sinks.

Take-Home-Message of Chapter 6 Asynchronous logical clocks can
lead to waiting times. With an additional synchronization among
source modules, lead time can be decreased and system throughput
increased.

In this thesis, a control principle with logical time for material hand-
ling systems with decentralized control has been developed, theoretically
proven and tested in simulation. In addition, it has been successfully im-
plemented on a 5×5-demonstration system of GridSorter.

7.2 Outlook
What else can be achieved with logical time? Which further system func-
tionalities are imaginable? How could the principle of logical time be
applied to other systems?
Related to the presented control algorithm with logical clocks, a multitude
of questions still remains after closing this thesis:

– How could a better synchronicity of all logical clocks be achieved by
not adding too much communication effort? How much does a better
synchronicity increase system throughput?

– One advantage of logical time is that the system is robust against dif-
ferent and varying transport times respectively. Nevertheless, wait-
ing times could occur due to reserving time-windows in logical time
that differ a lot to physical time. Could waiting times be reduced
by a smaller scale of logical timestamps? How would this impact
communication effort for route reservation?

– What kind of local information such as module occupancy can be
additionally included in routing decisions to improve the quality of
the found path?

Not only the presented algorithm could be improved, but further system
functionalities could be achieved by enhancing the presented route reser-
vation process. The partial ordering of transport steps incorporated in the
principle of logical time could for example be used for buffering (cf. Sohrt
et al. (2014)) or sequencing of boxes. In the case of sequencing, the boxes
must leave the system through a defined destination in a defined sequence.

147

7 Conclusion

Furthermore, we believe that logical time could facilitate routing and dead-
lock handling in many other systems such as those presented in Chapter
2. The transfer of logical time to systems with high density of goods such
as GridStore and to shuttle systems such as Store Biter is a challenging
task. In addition, logical time could also be used in production for routing
of items through multiple production steps.
Finally, nothing remains but questions looking into the future: Which of
the systems presented in Chapter 2 will be industrialized next? When is
the first GridSorter going to be used in production or logistics? We are
excited to experience further progress of the announced fourth industrial
revolution. In our opinion, it is a huge challenge to bring together people
who are working on different research and development projects so that
one big revolution emerges from the multitude of small innovations.

148

Notation
The notation glossary is divided into multiple parts. The right column
indicates the page number of the introduction of the notation.

Legend for Graphical Representation of Figures with Modules

i j

5

b

6

T = 6

11

10

4 8

logical time of this

moduleEXPLORE

reservation with timestamp 10

for incoming and timestamp 11

for outgoing transport

box b

module ID

messagemessage type

Figure 7.1: Legend for graphical representation of figures with modules

Resources and Processes

Ri Resource i .39
R Set of all resources in the system . 56
Pa Process a. .39
P Set of all processes in the system . 56

Logical Times and Clocks and Timestamps

Ci logical clock of process or resource i . 48
C set of all logical clocks in the system. .48
C〈a〉 logical time assigned to event a

by the entire set of logical clocks .48

149

Notation

Ci〈a〉 logical time assigned to event a
by logical clock of process or resource i . 48

T logical timestamp . 49
Tin timestamp for incoming transport

defining the start of reservation . 51
Tout timestamp for outgoing transport

defining the start of reservation . 51
Tmsg timestamp included in reservation message 77
Tprop alternative timestamp proposed for transport 77

FlexPorts

fin incoming port . 79
fout outgoing port . 79
Fall set of all connected flexports of one module84
Felg set of connected flexports eligible as outgoing port

for a specific reservation . 84

Path Costs: Path Length and Lead Time

tmax maximal lead time . 74
texp expected lead time . 73
tup upstream lead time . 74
treal real lead time from source to destination . 73
tdiff difference between expected and real lead time 110
ldest (fi)minimal path length to destination through port fi

measured in transport steps . 74
ltot path length from source to destination

measured in transport steps . 110

Input Parameters and Performance Measures

ngrid number of grid modules in a layout. .105
λtot system throughput: number of boxes

reaching their destination per time interval 109

150

Notation

λi throughput of module i . 110
Ngrid number of boxes on the grid

including the source and destination modules 109
Nwait number of boxes waiting for source modules to get available . 109
Ntot number of boxes in the system (sum of Ngrid and Nwait) 109
oi occupancy of module i . 110
C̄ (t) average logical time at physical time t . 109
dabs,g Average absolute deviation of logical time of one module

from mean logical time of group g of modules109
dg,h Average deviation of mean logical time of group g

from mean logical time of group h . 109
mrsv number of messages per reservation . 110
mrsv,1 number of messages per reservation

that are sent before the first transport starts 110

151

Acronyms

AGV Autonomous Guided Vehicle
CONWIP Constant work in process
GC Granting Condition
IDA* Iterative-Deepening A*
MHS Material Handling System
msg message
rsv reservation

153

References
Alt, K. (2014). Erweiterung und Optimierung des Modells und der
Steuerung eines dezentral gesteuerten Stetigfördersystems.Master Thesis
supervised by, Z. Seibold, Karlsruhe Institute of Technology. Karlsruhe.

Broy, M., M. Cengarle and E. Geisberger (2012). Cyber-Physical Systems:
Imminent Challenges. In: R. Calinescu and D. Garlan (eds.), Large-
Scale Complex IT Systems. Development, Operation and Management,
Volume 7539 of Lecture notes in computer science, p. 1–28. Springer
Berlin Heidelberg.

Chandy, K. M., J. Misra and L. M. Haas (1983). Distributed deadlock
detection. ACM Transactions on Computer Systems 1 (2), p. 144–156.

Chisu, R., F. Kuzmany and W. A. Günthner (2010). Realisierung einer
agentenbasierten Steuerung für Elektrohängebahnsysteme. In: W. A.
Günthner and M. ten Hompel (eds.), Internet der Dinge in der Intralo-
gistik, VDI-Buch, p. 263–274. Springer Berlin Heidelberg.

Coffman, E. G., M. Elphick and A. Shoshani (1971). System Deadlocks.
ACM Comput. Surv. 3 (2), p. 67–78.

Cormen, T. H. (2009). Introduction to algorithms (3rd ed. ed.). Cambridge,
Mass.: MIT Press.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik 1 (1), p. 269–271.

Elger, J., C. Haußner, M. Hofmeister and G. Baier (2010). Chan-
cen und Herausforderungen von dezentral gesteuerten Flughafen-
Gepäckförderanlagen. In: M. ten Hompel (eds.), Internet der Dinge
in der Intralogistik, VDI, p. 275–294. Heidelberg [u.a.]: Springer.

Emmerich, J. S., M. Roidl, T. Bich and M. ten Hompel (2012). Entwick-
lung von energieautarken, intelligenten Ladehilfsmitteln am Beispiel des
inBin. Logistics Journal Proceedings.

Fechtig, A. (2014). Automatisierte Layoutgenerierung für ein modulares
Sortiersystem mithilfe naturinspirierter Algorithmen. Master Thesis su-
pervised by, Z. Seibold, Karlsruhe Institute of Technology. Karlsruhe.

155

References

Feldhorst, S., M. ten Hompel and M. Fiedler (2010). Paket Royale - Dezen-
trale Steuerung für das Internet der Dinge.Logistics Journal Proceedings.

Festo AG & Co. KG (06.10.2015). Mit Motion Cube zur individualisier-
ten Massenfertigung: Außergewöhnliches Entwicklungsprojekt gewinnt
Handling-Award 2015.

flexlog GmbH (2015). Dezentral steuerbar – Modulbaukasten mit Flex-
Technology, www.flexlog.de/de/produkte/flextechnology. [Online]
(Accessed on 23.07.2015).

Freund, P. (2015). Auswertung GridSorter. Seminar Paper supervised by,
Z. Seibold, Karlsruhe Institute of Technology. Karlsruhe.

Furmans, K., F. Schönung and K. R. Gue (2010). Plug-and-Work Material
Handling Systems. In: MHIA (eds.), Proceedings of the International
Material Handling Research Colloquium (IMHRC).

Fuß, B., Z. Seibold and K. Furmans (2015). Leistungsverfügbarkeit eines
modularen Sorters. In: M. ten Hompel (eds.), Tagungsband des Sympo-
sium Leistungsverfügbarkeit in der Logistik (im Druck). Logistics Jour-
nal.

Gawrilow, E., E. Köhler, R. H. Möhring and B. Stenzel (2008). Dynamic
Routing of Automated Guided Vehicles in Real-time. In: H.-J. Krebs
and W. Jäger (eds.), Mathematics – Key Technology for the Future, p.
165–177. Springer Berlin Heidelberg.

Gebhardt Fördertechnik GmbH (2015). StoreBiter 500-OLPS -
Vorteile, http://www.gebhardt-foerdertechnik.de/de/produkte/
lagertechnik/shuttlesysteme/paletten-storebiter-500-olps/
storebiterr-500-olps-vorteile.html. [Online] (Accessed on
21.04.2015).

Geier, B. (2015). Klassifizierung von dezentral gesteuerten Materi-
alflusssystemen. Seminar Paper supervised by, Z. Seibold, Karlsruhe
Institute of Technology. Karlsruhe.

Gue, K. R., K. Furmans, Z. Seibold and O. Uludag (2014). GridStore: A
Puzzle-Based Storage System With Decentralized Control. IEEE Trans-
actions on Automation Science and Engineering 11 (2), p. 429–438.

Gue, K. R., O. Uludag and K. Furmans (2012). A High-Density System for
Carton Sequencing. In: Bundesvereinigung für Logistik (eds.), Proceed-
ings of the 6th International Scientific Symposium on Logistics (ISSL).

Hama, K., S. Mikami, K. Suzuki and Y. Kakazu (2002). Motion coordina-
tion algorithm for distributed agents in the cellular warehouse problem.

156

www.flexlog.de/de/produkte/flextechnology
http://www.gebhardt-foerdertechnik.de/de/produkte/lagertechnik/shuttlesysteme/paletten-storebiter-500-olps/storebiterr-500-olps-vorteile.html
http://www.gebhardt-foerdertechnik.de/de/produkte/lagertechnik/shuttlesysteme/paletten-storebiter-500-olps/storebiterr-500-olps-vorteile.html
http://www.gebhardt-foerdertechnik.de/de/produkte/lagertechnik/shuttlesysteme/paletten-storebiter-500-olps/storebiterr-500-olps-vorteile.html

References

Artificial Life and Robotics 6 (1-2), p. 3–10.
Hart, P., N. Nilsson and B. Raphael (1968). A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths. IEEE Transactions on Sys-
tems Science and Cybernetics 4 (2), p. 100–107.

Haude, J. (2014). Synchronisierung der Fördermodule eines dezentral ge-
steuerten Sorters. Bachelor Thesis supervised by, Z. Seibold, Karlsruhe
Institute of Technology. Karlsruhe.

Hofmeister, M., G. Baier and M. Gärtner (2010). Strategien für die dezen-
trale agentenbasierte Steuerung von Materialflusssystemen. In: M. ten
Hompel (eds.), Internet der Dinge in der Intralogistik, VDI, p. 119–140.
Heidelberg [u.a.]: Springer.

Kagermann, H., W. Wahlster and J. Helbig (2012). Umsetzungsempfehlun-
gen für das Zukunftsprojekt Industrie 4.0–Abschlussbericht des Ar-
beitskreises Industrie 4.0. Forschungsunion im Stifterverband für die
Deutsche Wissenschaft. Berlin.

Kim, C. W. and J. M. A. Tanchoco (1991). Conflict-free shortest-time
bidirectional AGV routeing. International Journal of Production Re-
search 29 (12), p. 2377–2391.

Korf, R. E. (1985a). Depth-first iterative-deepening: An optimal admissi-
ble tree search. Artificial Intelligence 27 (1), p. 97–109.

Korf, R. E. (1985b). Iterative-deepening-A: An Optimal Admissible Tree
Search. In: A. Joshi (eds.), Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Altos, Calif., p. 1034–1036.
Kaufmann.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence 42 (2-
3), p. 189–211.

Krühn, T. (2014). Dezentrale, verteilte Steuerung flächiger Fördersysteme
für den innerbetrieblichen Materialfluss. Dissertation, Gottfried Wilhelm
Leibniz Universität Hannover. Hannover.

Krühn, T., M. Radosavac, N. Shchekutin and L. Overmeyer (2013).
Decentralized and Dynamic Routing for a Cognitive Conveyor. In:
IEEE/ASME (eds.), Proceedings of the International Conference on Ad-
vanced Intelligent Mechatronics (AIM), p. 436–441.

Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Communications of the ACM 21 (7), p. 558–565.

Lanfer Automation GmbH & Co. KG (2015). THINGtelligence, www.

157

www.thingtelligence.de
www.thingtelligence.de

References

thingtelligence.de. [Online] (Accessed on 23.07.2015).
Levine, G. N. (2005). The classification of deadlock prevention and avoid-
ance is erroneous. ACM SIGOPS Operating Systems Review 39 (2), p.
47–50.

Little, J. D. C. (1961). A Proof for the Queuing Formula: L = λW .
Operations Research 9 (3), p. 383–387.

Lynch, N. A. (1981). Upper bounds for static resource allocation in a
distributed system. Journal of Computer and System Sciences 23 (2), p.
254–278.

Mayer, S. (2009). Development of a Completely Decentralized Control Sys-
tem for Modular Continuous Conveyor Systems. Dissertation, Univer-
sität Karlsruhe.

Mayer, S. and K. Furmans (2010). Deadlock Prevention in a Com-
pletely Decentralized Controlled Materials Flow Systems. Logistics Re-
search 2 (3-4), p. 147–158.

Maza, S. and P. Castagna (2005a). A performance-based structural pol-
icy for conflict-free routing of bi-directional automated guided vehicles.
Computers in Industry 56 (7), p. 719–733.

Maza, S. and P. Castagna (2005b). Sequence based hierarchical conflict-free
routing strategy of bi-directional automated guided vehicl. In: P. Zítek
(eds.), World Congress, IFAC proceedings volumes, p. 2050. IFAC, El-
sevier.

Montreuil, B., R. D. Meller and C. Thivierge (2012). Functional Design of
Physical Internet Facilities: A Road-Based Crossdocking hub. In: MHIA
(eds.), Proceedings of the International Material Handling Research Col-
loquium (IMHRC).

Oberkersch, W. (2013).Entwicklung eines zeitfensterbasierten Algorithmus
für ein dezentral gesteuertes Stetigfördersystem. Masterarbeit supervised
by, Z. Seibold, Karlsruhe Institute of Technology. Karlsruhe.

Qiu, L., W.-J. Hsu, S.-Y. Huang and H. Wang (2002). Scheduling and rout-
ing algorithms for AGVs: A survey. International Journal of Production
Research 40 (3), p. 745–760.

Raynal, M. (2013). Distributed algorithms for message-passing systems.
Berlin and New York: Springer.

Roidl, M. (2012). Agentifizierung der Intralogistik. Forschungsbericht,
Technische Universittät Dortmund.

158

www.thingtelligence.de
www.thingtelligence.de

References

Schwab, M. (2015). A decentralized control strategy for high density mate-
rial flow systems with automated guided vehicles. Dissertation, Karlsruhe
Institute of Technology. Karlsruhe.

Seibold, Z. and K. Furmans (2014). GridSorter - Logische Zeit in dezentral
gesteuerten Materialflusssystemen. Logistics Journal.

Seibold, Z. and K. Furmans (2016). Plug&Play-Fördertechnik in der In-
dustrie 4.0. In: B. Vogel-Heuser, T. Bauernhansl, and M. ten Hompel
(eds.), Handbuch Industrie 4.0, p. 1–17. Berlin, Heidelberg: Springer
Berlin Heidelberg.

Seibold, Z., K. Furmans and M. Gebhardt (2015). Steuerung dezen-
traler Materialflusssysteme mittels Logischer Zeit. Vortrag auf der VDI-
Fachkonferenz Shuttle in der Logistik.

Seibold, Z., M. Gebhardt and T. Stoll (2014). Mehr Nutzen mit dem
GridSorter. Hebezeuge Fördermittel (2014 - 5), p. 260–262.

Seibold, Z., T. Stoll and K. Furmans (2013). Layout-optimized sorting
of goods with decentralized controlled conveying modules. In: IEEE
(eds.), Proceedings of the 7th Annual Systems Conference (SysCon), p.
628–633.

Shchekutin, N., L. Overmeyer, S. Zobnin and V. Shkodyrev (2015). Math-
ematical methods for the configuration of transportation systems with
focuson continuous and modular matrix conveyors. Logistics Journal.

Silver, D. (2005). Cooperative Pathfinding. In: AAAI (eds.), Proceedings
of Conference on Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE), p. 117–122.

Sittivijan, P. (2014). Modular Warehouse Control: Simultaneous Rectilin-
ear Movement of Multiple Objects within a Limited Free Space Environ-
ment. North Carolina: North Carolina State University.

Sohrt, S., Z. Seibold, T. Krühn, L. Prössdorf, L. Overmeyer and K. Fur-
mans (2014). Buffering Algorithms for Modular, Decentralized Con-
trolled Material Handling Systems: 1st Symposium on Automated
Systems and Technologies (AST). Berichte aus dem ITA, Garbsen:
TEWISS-Technik und Wissen GmbH 2014 (4), p. 29–36.

Stenzel, B. (2008). Online Disjoint Vehicle Routing with Application to
AGV Routing. Dissertation, Technische Universität Berlin. Berlin.

Tadakuma, K., R. Tadakuma, K. Ioka, T. Kudo, M. Takagi, Y. Tsumaki,
M. Higashimori and M. Kaneko (2012a). Additional manipulating func-
tion for limited narrow space with omnidirectional driving gear. In:

159

References

IEEE/RSJ (eds.), 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS 2012), p. 5438–5439.

Tadakuma, K., R. Tadakuma, K. Ioka, T. Kudo, M. Takagi, Y. Tsumaki,
M. Higashimori and M. Kaneko (2012b). Omnidirectional driving gears
and their input mechanism with passive rollers. In: IEEE/RSJ (eds.),
2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS 2012), p. 2881–2888.

Tanenbaum, A. S. (2011). Computer networks (5th ed. ed.). Boston: Pear-
son Education.

Tanenbaum, A. S. and H. Bos (2015). Modern operating systems (Fourth
edition, Global edition ed.). Boston, [Massachusetts]: Pearson.

ten Hompel, M. (eds.) (2010). Internet der Dinge in der Intralogistik. VDI.
Heidelberg [u.a.]: Springer.

Tenerowicz-Wirth, P. (2013). Kommunikationskonzept für selbststeuernde
Fahrzeugkollektive in der Intralogistik. München: Universitätsbibliothek
der TU München.

ter Mors, A. (2009). The world according to MARP: Multi-agent route
planning, Volume 2010-11 of SIKS Dissertation Series. [S.l.]: [s.n.].

ter Mors, A., X. Mao, J. Zutt, C. Witteveen and N. Roos (2008). Ro-
bust Reservation-Based Multi-Agent Routing. In: M. Ghallab (eds.),
ECAI 2008, Volume vol. 178 of Frontiers in artificial intelligence and
applications, Amsterdam ... [etc.], p. 929–930. IOS Press.

Uludag, O. (2014). GridPick: A High Density Puzzle Based Order Picking
System with Decentralized Control. Dissertation, Auburn University.
Auburn, Alabama.

Uriarte, C., H. Thamer and M. Freitag (2015). Fördertechnik aus der Zelle:
Hochflexibles Fördersystem aus kommunizierenden und kooperierenden
Modulen. Hebezeuge Fördermittel 2015 (10).

Vivaldini, K. C., L. Rocha, M. Becker and A. P. Moreira (2015). Compre-
hensive Review of the Dispatching, Scheduling and Routing of AGVs.
In: A. P. Moreira, A. Matos, and G. Veiga (eds.), CONTROLO’2014
– Proceedings of the 11th Portuguese Conference on Automatic Con-
trol, Volume 321 of Lecture Notes in Electrical Engineering, p. 505–514.
Springer International Publishing.

Wilke, M. (2006). Wandelbare automatisierte Materialflusssysteme für dy-
namische Produktionsstrukturen. Dissertation, Technische Universität
München. München.

160

References

Yalcin, A., O. Schocke and A. Koberstein (2015). Gitterbasierte Lagersys-
teme – neue Lösungen für Frühgepäckspeicher: Bewegungen auf kleiner
Fläche. Hebezeuge Fördermittel 2015 (8), p. 386–389.

Zutt, J., A. van Gemund, M. de Weerdt and C. Witteveen (2010). Dealing
with Uncertainty in Operational Transport Planning. In: R. R. Negen-
born, Z. Lukszo, and H. Hellendoorn (eds.), Intelligent Infrastructures,
Volume 42 of Intelligent Systems, Control and Automation: Science and
Engineering, p. 349–375. Springer Netherlands.

161

List of Figures
1.1 Schematic representation of an exemplary GridSorter system . 3

2.1 FlexConveyor: photograph of identical, transfer modules and
graphic of a network built of different module types 10

2.2 Graphic of GridPick and GridSequence 11
2.3 Graphic of Cognitive Conveyors 12
2.4 Schematic 3D-model of the modular warehouse 13
2.5 Graphic of GridFlow . 14
2.6 Example for a warehouse transport problem 15
2.7 Photograph of electric monorail system 15
2.8 Photograph of Celluveyor and schematic representation of the

shuttle system Store Biter . 16
2.9 Schematic representation of Motion Cube 17
2.10 Deadlock because of opposing routes and because of boxes

waiting in a loop . 19
2.11 Criteria for routing and four resulting routing strategies 23
2.12 Cross-deadlock because of boxes waiting in two

overlapping loops . 25
2.13 Local deadlock because of two boxes blocking each other at

a crossing . 26
2.14 Free time window graph where the edges represent reachability

of free time windows . 29
2.15 The physical system: a conveying module and its connections . 35

3.1 Legend for figures explaining resource acquisition 40
3.2 Course of acquisition of resources for single transport 40
3.3 Course of acquisition of resources for tandem transport 41
3.4 Distributed system: parallel processes with multiple events and

causal relations . 43
3.5 Example for routes of three boxes with one common resource . 44
3.6 Example for routes of three boxes with exemplary logical times 46

163

List of Figures

3.7 Parallel reservation of resources and execution of
transport steps . 47

3.8 Representation of GridSorter as multi-process-system 48
3.9 Control design of GridSorter with logical time 49
3.10 Example for routes of three boxes with reservation of resources 50
3.11 Timestamps of one reservation 51
3.12 Timestamps for one transport step 52
3.13 Two boxes using module i in single movement 52
3.14 Two boxes using module i in tandem movement 53
3.15 Course of acquisition of resources for single transport with

logical clocks . 54
3.16 A conveying network before and after the transport process

of box a . 56
3.17 Chain of processes in Hold and Wait 59

4.1 Control components and how they influence each other 64
4.2 A GridSorter system and the corresponding routing table

of module j . 65
4.3 Basic categorization of existing path-finding algorithms 68
4.4 The search tree of four modules without any reservation 71
4.5 The search tree of four modules during the reservation process 72
4.6 The search tree of four modules after the reservation process . 73
4.7 Course of reservation: search phase and confirmation phase . . 75
4.8 Example for the exploration of a search tree by message

passing . 78
4.9 Combined activity chart for events during search phase 80
4.10 Example for rejection because of requested timestamp

in the past . 82
4.11 Example for rejection because of reservation sent in a loop . . . 82
4.12 Example for rejection because of crossed reservation requests . 83
4.13 Example for rejection because of another reservation interfering

with the incoming transport . 84
4.14 Example for rejection because of all ports denied 85
4.15 Example for rejection because of another reservation interfering

with the outgoing transport . 86
4.16 Example for selection of outgoing port 87
4.17 Schematic representation of the partial route reservation 89
4.18 The two transport message types 93

164

List of Figures

4.19 Events, transport states and actions during the execution of
the transport steps of one reservation 95

4.20 Exemplary situation for granting conditions that are
not fulfilled . 97

5.1 Reachable modules in different settings for limitation of
path length . 107

5.2 Exemplary routes in different settings for routes through
source neighbors . 107

6.1 Relative standard error of all simulation experiments 115
6.2 Graphical representation of one layout 116
6.3 Simulation screen shot of the layout of Figure 6.2 117
6.4 Throughput and number of boxes in system under different

system load . 118
6.5 Lead time and path length under different system load 119
6.6 Heat maps for occupancy and throughput of different layouts

under different system loads . 120
6.7 Heat maps for occupancy of layouts with scattered sources

and destinations . 122
6.8 Number of layouts with maximally achieved throughput for

each parameter combination . 123
6.9 Results of analysis of variance for basic control parameters . . 124
6.10 Results of analysis of variance for top-4 parameter

combinations . 125
6.11 Exemplary situation for waiting because of asynchronous

logical clocks . 126
6.12 Lead time and path length and standard deviation of lead time

difference under different system load 127
6.13 Absolute deviation of logical time of different groups of logical

clocks in the standard layout 128
6.14 Average logical time of a n-sew layout under different system

loads and difference of logical time of modules and relative
throughput under low system load 129

6.15 Average logical time of a nsew-nsew layout under different
system loads and difference of logical time of modules and
relative throughput under low system load 131

6.16 Lead time and path length and standard deviation of lead time
difference under different system load with
synchronization among sources 132

165

List of Figures

6.17 Relative decrease of waiting time as function of relative decrease
of lead time difference . 133

6.18 Relative decrease of waiting time as function of deviation of
logical time of grid modules without source synchronization . . 133

6.19 System performance of different layouts as a function of the
number of modules and for different ratio of number of sources
to number of modules . 135

6.20 Throughput of different layout groups with differing positioning
of sources and destinations under full load 136

6.21 Analysis of variance for differing positioning of sources and
destinations under full load . 136

6.22 Communication effort under full load dependent on average
shortest path length . 138

6.23 Average number of reservation messages in different layouts
with and without partial route reservation 139

6.24 Relative difference of throughput in different layouts due to
partial route reservation . 140

6.25 Two configurations of arrangement of conveyor modules in
standard layout . 141

6.26 Throughput and average transport times under varying
transport times for standard layout 142

6.27 Throughput under varying and fixed transport times for
standard layout . 142

7.1 Legend for graphical representation of figures with modules . . 149

B.1 Graphical representation of layout group A and B 173
B.2 Graphical representation of layout group C, D and E 174
B.3 Graphical representation of layouts with ID 0 to 15 178
B.4 Graphical representation of layouts with ID 16 to 33 179
B.5 Graphical representation of layouts with ID 34 to 51 180
B.6 Graphical representation of layouts with ID 52 to 67 181
B.7 Graphical representation of layouts with ID 68 to 78 182
B.8 Graphical representation of layouts with ID 79 to 84 183

C.1 Results of analysis of variance for parameters of partial route
reservation . 185

166

List of Tables
2.1 Common characteristics and differences of continuous and

discontinuous material handling systems with decentralized
control . 9

2.2 Classification of material handling systems with decentralized
control . 33

2.3 Deadlock handling strategy in relation to goods density and
network criteria . 34

4.1 Content of reservation message 76

A.1 Content of Reservation Message and Table Entry and Transport
Message . 169

B.1 Overview of layout population of section 6.4 172
B.2 Overview of big layout population (ID 0 to 29) 175
B.3 Overview of big layout population (ID 30 to 59) 176
B.4 Overview of big layout population (ID 60 to 84) 177

167

A Decentralized Control

Content Rsv msg Rsv entry Tsp msg Comment

Reservation ID x x x

General information
set by source

Destination ID x x

Source ID x x

Maximal lead time tmax x x

Reservation msg type x
Node information
updated by each
module

Transport msg type x x

Timestamp Tmsg x x

Expected lead time texp x

Port permission x Indicating the
Backtrack causeProposed timestamp Tprop x

Reservation state x

Transport state x

Incoming timestamp Tin x

Description of
Reservation

Outgoing timestamp Tout x

Incoming port fin x

Outgoing port fout x

Upstream lead time tup x

Routing Information
Expected lead time for
each port texp (Fall)

x

Outgoing timestamp for
each port Tout (Fall)

x

Permission for each port x

Table A.1: Content of Reservation Message and Table Entry and
Transport Message

169

B Layouts
In the following, two populations of layouts are introduced. Each popu-
lation is described with an overview of the layout characteristics and is
then followed by a graphical representation of each layout included in
the population

171

B Layouts

L
a
y
o

u
t
G

ro
u

p

P
o

s
it

io
n

 o
f

s
o

u
rc

e
s
 a

n
d

d
e
s
ti

n
a
ti

o
n

s

#
 s

o
u

rc
e
s

#
 d

e
s
ti

n
a
ti

o
n

s
#
 m

o
d

u
le

s
#
 r

o
w

s
#
 c

o
lu

m
n

s
S

h
a
p

e
A

s
p

e
c
t

ra
ti

o

S
o

u
rc

e
-

d
e
s
ti

n
a
ti

o
n

-

ra
ti

o

S
o

u
rc

e
-m

o
d

u
le

-

ra
ti

o

D
is

ta
n

c
e
 f
ro

m

s
o

u
rc

e
s
 t

o

d
e
s
ti

n
a
ti

o
n

s

A

N
-S

E
W

6
4
2

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
7
.0

0
.0

2
4

1
9
.2

0
6

E
W

-N
S

6
4
2

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
7
.0

0
.0

2
4

1
8
.0

0
0

N
S

E
W

-N
S

E
W

6
4
2

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
7
.0

0
.0

2
4

1
5
.8

4
1

N
S

-N
S

E
W

6
4
2

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
7
.0

0
.0

2
4

1
5
.7

4
6

B

N
-S

E
W

1
0

4
2

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
4
.2

0
.0

4
0

1
8
.9

0
5

E
W

-N
S

1
0

4
2

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
4
.2

0
.0

4
0

1
8
.0

0
0

N
S

E
W

-N
S

E
W

1
0

4
2

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
4
.2

0
.0

4
0

1
6
.4

9
5

N
S

-N
S

E
W

1
0

4
2

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
4
.2

0
.0

4
0

1
6
.0

7
6

C

N
-S

E
W

6
3
8

1
8
9

9
2
1

re
c
ta

n
g
u
la

r
2
.3

3
6
.3

0
.0

3
2

1
6
.4

2
1

E
W

-N
S

6
3
8

1
8
9

9
2
1

re
c
ta

n
g
u
la

r
2
.3

3
6
.3

0
.0

3
2

1
6
.0

0
0

N
S

E
W

-N
S

E
W

6
3
8

1
8
9

9
2
1

re
c
ta

n
g
u
la

r
2
.3

3
6
.3

0
.0

3
2

1
4
.1

4
0

N
S

-N
S

E
W

6
3
8

1
8
9

9
2
1

re
c
ta

n
g
u
la

r
2
.3

3
6
.3

0
.0

3
2

1
4
.1

0
5

D

N
-S

E
W

6
3
0

1
0
5

5
2
1

re
c
ta

n
g
u
la

r
4
.2

0
5
.0

0
.0

5
7

1
3
.3

7
8

E
W

-N
S

6
3
0

1
0
5

5
2
1

re
c
ta

n
g
u
la

r
4
.2

0
5
.0

0
.0

5
7

1
4
.0

0
0

N
S

E
W

-N
S

E
W

6
3
0

1
0
5

5
2
1

re
c
ta

n
g
u
la

r
4
.2

0
5
.0

0
.0

5
7

1
1
.9

1
1

N
S

-N
S

E
W

6
3
0

1
0
5

5
2
1

re
c
ta

n
g
u
la

r
4
.2

0
5
.0

0
.0

5
7

1
1
.6

0
0

E

N
-S

E
W

4
2
2

1
2
1

1
1

1
1

q
u
a
d
ra

ti
c

1
.0

0
5
.5

0
.0

3
3

1
3
.1

8
2

E
W

-N
S

4
2
2

1
2
1

1
1

1
1

q
u
a
d
ra

ti
c

1
.0

0
5
.5

0
.0

3
3

1
2
.0

0
0

N
S

E
W

-N
S

E
W

4
2
2

1
2
1

1
1

1
1

q
u
a
d
ra

ti
c

1
.0

0
5
.5

0
.0

3
3

1
1
.0

4
5

N
S

-N
S

E
W

4
2
2

1
2
1

1
1

1
1

q
u
a
d
ra

ti
c

1
.0

0
5
.5

0
.0

3
3

1
0
.9

0
9

Ta
bl
e
B
.1
:O

ve
rv
ie
w

of
la
yo
ut

po
pu

la
tio

n
of

se
ct
io
n
6.
4

172

B Layouts

A N-SEW B N-SEW
I I I I I I I I I I I I I I I I

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O

A EW-NS B EW-NS
O O

I I I I

I I

I I I I

I I

I I I I

O O

A NSEW-NSEW B NSEW-NSEW
O O O O I O O O O O O O I O O O O O O O I O O O O I O O O O I O O O

O O

O O O O

O O I I

O O

O O

I I O O

O O

O O

O O I I

O O O O

O O

O O O O I O O O O O O O I O O O O O O O I O O O O I O O O O I O O O

A NS-NSEW B NS-NSEW
O O I O O O O I O O O O I O O O O I O O I O O I O O I O O I O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O I O O O O I O O O O I O O O O I O O I O O I O O I O O I O O

Figure B.1: Graphical representation of layout group A and B of section 6.4

173

B Layouts

CN-SEW DN-SEW
I I I I I I I I I I I I

O O O O

O O O O

O O O O

O O O O

O O O O

O O

O O

O O

O O

O O O O O O O O O O O O O O O O O O O O

CEW-NS DEW-NS
O O

I I

I I

I I

I I I I

O O O O O O O O O O O O O O O

I I

O O O O O O O O O O O O O O O O O O O

CNSEW-NSEW DNSEW-NSEW
O O O O I O O O O O I O O O O O O O I O O O O O O O I O O O

O O O O

O O

O O I I

I I O O

O O O I O O O O O O O I O O O

O O

O O

O O

O O O O I O O O O O I O O O O

CNS-NSEW DNS-NSEW
O O I O O O I O O O I O O O O I O O O I O O O I O O

O O O O

O O O O

O O O O

O O O O

O O O O

O O O O I O O O I O O O I O O

O O

O O

O O

O O I O O O I O O O I O O

EN-SEW EEW-NS ENSEW-NSEW ENS-NSEW
I I I I O O O O O O O O O O O O O O I O O O O O I O O I O O

O O O O O O

O O

O O I I O O

O O

O O I I O O

O O

O O I I O O O O

O O

O O O O O O

O I O O O O O I O O I O O

Figure B.2: Graphical representation of layout group C, D and E of section 6.4

174

B Layouts

L
a
y
o

u
t
ID

#
 s

o
u

rc
e
s

#
 d

e
s
ti

n
a
ti

o
n

s
#
 m

o
d

u
le

s
#
 r

o
w

s
#
 c

o
lu

m
n

s
S

h
a
p

e
A

s
p

e
c
t

ra
ti

o

S
o

u
rc

e
-

d
e
s
ti

n
a
ti

o
n

-r
a
ti

o

S
o

u
rc

e
-

m
o

d
u

le
-

ra
ti

o

P
o

s
it

io
n

 o
f

s
o

u
rc

e
s
 a

n
d

d
e
s
ti

n
a
ti

o
n

s

D
is

ta
n

c
e
 f
ro

m

s
o

u
rc

e
s
 t

o

d
e
s
ti

n
a
ti

o
n

s

S
o

u
rc

e
s

c
lo

s
e
 t

o

e
a
c
h

 o
th

e
r

0
1
0

5
7

4
0
0

2
0

2
0

q
u
a
d
ra

ti
c

1
.0

0
5
.7

0
.0

2
5

N
-E

S
W

2
2
.8

3
3

1
1
0

5
7

4
0
0

1
6

2
5

re
c
ta

n
g
u
la

r
1
.5

6
5
.7

0
.0

2
5

N
-E

S
W

2
2
.8

4
2

2
8

4
3

2
5
2

8
3
3

c
ro

p
p
e
d

4
.1

3
5
.4

0
.0

3
2

N
-E

S
W

1
9
.5

5
8

3
8

4
3

2
5
3

1
1

2
3

re
c
ta

n
g
u
la

r
2
.0

9
5
.4

0
.0

3
2

N
-E

S
W

1
8
.5

9
3

4
8

4
3

2
5
2

7
3
6

re
c
ta

n
g
u
la

r
5
.1

4
5
.4

0
.0

3
2

N
-E

S
W

2
0
.3

3
7

5
7

4
0

1
9
5

1
3

1
5

re
c
ta

n
g
u
la

r
1
.1

5
5
.7

0
.0

3
6

N
-E

S
W

1
6
.3

6
4

6
4

2
0

1
9
5

1
3

1
5

re
c
ta

n
g
u
la

r
1
.1

5
5
.0

0
.0

2
1

N
-E

S
W

1
6
.5

5
0

7
7

4
0

2
0
0

1
0

2
0

re
c
ta

n
g
u
la

r
2
.0

0
5
.7

0
.0

3
5

N
-E

S
W

1
6
.7

7
1

8
7

3
4

2
0
0

1
0

2
2

c
ro

p
p
e
d

2
.2

0
4
.9

0
.0

3
5

N
-E

S
W

1
6
.5

9
2

9
2
0

4
0

2
0
0

1
0

2
0

re
c
ta

n
g
u
la

r
2
.0

0
2
.0

0
.1

0
0

N
-E

S
W

1
6
.8

2
5

x

1
0

7
4
0

2
0
0

1
0

2
0

re
c
ta

n
g
u
la

r
2
.0

0
5
.7

0
.0

3
5

N
S

E
W

-N
S

E
W

1
4
.0

6
1

1
1

7
4
0

2
0
0

1
0

2
0

re
c
ta

n
g
u
la

r
2
.0

0
5
.7

0
.0

3
5

N
S

-N
S

E
W

1
3
.3

1
8

1
2

7
4
0

2
0
0

1
0

2
0

re
c
ta

n
g
u
la

r
2
.0

0
5
.7

0
.0

3
5

E
W

-N
S

1
6
.0

0
0

1
3

7
4
0

2
0
0

5
4
0

re
c
ta

n
g
u
la

r
8
.0

0
5
.7

0
.0

3
5

N
-E

S
W

1
9
.3

0
0

1
4

7
4
0

1
9
8

6
3
3

re
c
ta

n
g
u
la

r
5
.5

0
5
.7

0
.0

3
5

N
-E

S
W

1
8
.7

8
6

1
5

7
4
5

1
9
8

6
3
3

re
c
ta

n
g
u
la

r
5
.5

0
6
.4

0
.0

3
5

N
-E

S
W

1
8
.8

6
7

1
6

6
3
5

1
5
0

1
0

1
5

re
c
ta

n
g
u
la

r
1
.5

0
5
.8

0
.0

4
0

N
-E

S
W

1
4
.5

3
3

1
7

1
2

3
5

1
5
0

1
0

1
5

re
c
ta

n
g
u
la

r
1
.5

0
2
.9

0
.0

8
0

N
-E

S
W

1
4
.4

6
2

x

1
8

1
2

3
5

1
5
0

1
0

1
5

re
c
ta

n
g
u
la

r
1
.5

0
2
.9

0
.0

8
0

N
S

E
W

-N
S

E
W

1
2
.4

4
3

1
9

6
1
8

1
5
0

1
0

1
5

re
c
ta

n
g
u
la

r
1
.5

0
3
.0

0
.0

4
0

N
-E

S
W

1
4
.3

7
0

2
0

6
3
5

1
5
0

1
5

1
0

re
c
ta

n
g
u
la

r
1
.5

0
5
.8

0
.0

4
0

N
-E

S
W

1
4
.5

6
7

x

2
1

6
3
5

1
5
0

1
5

1
0

re
c
ta

n
g
u
la

r
1
.5

0
5
.8

0
.0

4
0

N
-E

S
W

1
6
.3

8
6

2
2

6
3
5

1
5
0

6
2
7

c
ro

p
p
e
d

4
.5

0
5
.8

0
.0

4
0

N
-E

S
W

1
5
.1

9
0

2
3

1
2

3
5

1
5
0

6
2
7

c
ro

p
p
e
d

4
.5

0
2
.9

0
.0

8
0

N
-E

S
W

1
5
.2

1
9

2
4

1
2

3
5

1
5
0

6
2
7

c
ro

p
p
e
d

4
.5

0
2
.9

0
.0

8
0

N
S

E
W

-N
S

E
W

1
4
.3

0
7

2
5

5
3
1

1
1
0

1
0

1
1

re
c
ta

n
g
u
la

r
1
.1

0
6
.2

0
.0

4
5

N
-E

S
W

1
2
.5

4
8

2
6

4
3
1

1
1
0

1
0

1
1

re
c
ta

n
g
u
la

r
1
.1

0
7
.8

0
.0

3
6

N
-E

S
W

1
2
.6

1
3

2
7

3
3
1

1
1
0

1
0

1
1

re
c
ta

n
g
u
la

r
1
.1

0
1
0
.3

0
.0

2
7

N
-E

S
W

1
2
.6

3
4

2
8

3
1
6

1
1
0

1
0

1
1

re
c
ta

n
g
u
la

r
1
.1

0
5
.3

0
.0

2
7

N
-E

S
W

1
3
.0

8
3

2
9

6
3
1

1
1
0

1
0

1
1

re
c
ta

n
g
u
la

r
1
.1

0
5
.2

0
.0

5
5

N
S

-N
S

E
W

1
0
.7

2
6

Ta
bl
e
B
.2
:O

ve
rv
ie
w

of
bi
g
la
yo

ut
po

pu
la
tio

n
(I
D

0
to

29
)

175

B Layouts

L
a
y
o

u
t
ID

#
 s

o
u

rc
e
s

#
 d

e
s
ti

n
a
ti

o
n

s
#
 m

o
d

u
le

s
#
 r

o
w

s
#
 c

o
lu

m
n

s
S

h
a
p

e
A

s
p

e
c
t

ra
ti

o

S
o

u
rc

e
-

d
e
s
ti

n
a
ti

o
n

-r
a
ti

o

S
o

u
rc

e
-

m
o

d
u

le
-

ra
ti

o

P
o

s
it

io
n

 o
f

s
o

u
rc

e
s
 a

n
d

d
e
s
ti

n
a
ti

o
n

s

D
is

ta
n

c
e
 f
ro

m

s
o

u
rc

e
s
 t

o

d
e
s
ti

n
a
ti

o
n

s

S
o

u
rc

e
s

c
lo

s
e
 t

o

e
a
c
h

 o
th

e
r

3
0

1
0

3
1

1
1
0

5
2
2

re
c
ta

n
g
u
la

r
4
.4

0
3
.1

0
.0

9
1

N
-E

S
W

1
3
.6

9
4

3
1

6
3
1

1
1
0

5
2
2

re
c
ta

n
g
u
la

r
4
.4

0
5
.2

0
.0

5
5

N
-E

S
W

1
3
.7

8
0

3
2

1
0

3
1

1
1
0

5
2
2

re
c
ta

n
g
u
la

r
4
.4

0
3
.1

0
.0

9
1

N
S

E
W

-N
S

E
W

1
2
.2

2
9

3
3

6
3
1

1
0
9

5
2
3

c
ro

p
p
e
d

4
.6

0
5
.2

0
.0

5
5

N
-E

S
W

1
3
.3

6
6

3
4

4
2
0

5
0

5
1
0

re
c
ta

n
g
u
la

r
2
.0

0
5
.0

0
.0

8
0

N
-E

S
W

8
.8

5
0

3
5

4
2
0

5
0

5
1
0

re
c
ta

n
g
u
la

r
2
.0

0
5
.0

0
.0

8
0

N
S

E
W

-N
S

E
W

7
.6

2
5

3
6

4
2
0

5
0

5
1
0

re
c
ta

n
g
u
la

r
2
.0

0
5
.0

0
.0

8
0

N
S

-N
S

E
W

7
.4

0
0

3
7

4
2
0

5
0

5
1
0

re
c
ta

n
g
u
la

r
2
.0

0
5
.0

0
.0

8
0

E
W

-N
S

8
.5

0
0

3
8

4
1
9

4
9

7
7

q
u
a
d
ra

ti
c

1
.0

0
4
.8

0
.0

8
2

N
-E

S
W

9
.2

1
1

3
9

4
2
0

5
1

3
1
7

re
c
ta

n
g
u
la

r
5
.6

7
5
.0

0
.0

7
8

N
-E

S
W

9
.7

0
0

4
0

4
1
7

5
1

7
9

c
ro

p
p
e
d

1
.2

9
4
.3

0
.0

7
8

N
-E

S
W

8
.5

2
9

4
1

1
1
5

2
5

5
5

q
u
a
d
ra

ti
c

1
.0

0
1
5
.0

0
.0

4
0

N
-E

S
W

6
.4

0
0

4
2

3
1
5

2
5

5
5

q
u
a
d
ra

ti
c

1
.0

0
5
.0

0
.1

2
0

N
-E

S
W

6
.4

4
4

4
3

2
1
5

2
5

5
5

q
u
a
d
ra

ti
c

1
.0

0
7
.5

0
.0

8
0

N
-E

S
W

6
.4

6
7

4
4

2
2
0

5
0

5
1
0

re
c
ta

n
g
u
la

r
2
.0

0
1
0
.0

0
.0

4
0

N
-E

S
W

8
.6

0
0

4
5

1
2
1

4
9

7
7

q
u
a
d
ra

ti
c

1
.0

0
2
1
.0

0
.0

2
0

N
-E

S
W

8
.5

7
1

4
6

2
1
9

4
5

5
9

re
c
ta

n
g
u
la

r
1
.8

0
9
.5

0
.0

4
4

N
-E

S
W

8
.3

1
6

4
7

9
5
0

3
0
0

1
5

2
0

re
c
ta

n
g
u
la

r
1
.3

3
5
.6

0
.0

3
0

N
-E

S
W

2
0
.1

2
2

4
8

9
5
0

3
0
6

1
7

1
8

re
c
ta

n
g
u
la

r
1
.0

6
5
.6

0
.0

2
9

N
-E

S
W

2
0
.0

6
4

4
9

1
2

6
5

5
0
0

2
0

2
5

re
c
ta

n
g
u
la

r
1
.2

5
5
.4

0
.0

2
4

N
-E

S
W

2
5
.6

7
2

5
0

1
2

6
5

5
0
6

2
2

2
3

re
c
ta

n
g
u
la

r
1
.0

5
5
.4

0
.0

2
4

N
-E

S
W

2
6
.4

1
0

5
1

1
2

6
5

5
0
0

1
0

5
0

re
c
ta

n
g
u
la

r
5
.0

0
5
.4

0
.0

2
4

N
-E

S
W

2
8
.5

4
6

5
2

5
3
1

1
1
0

5
2
2

re
c
ta

n
g
u
la

r
4
.4

0
6
.2

0
.0

4
5

N
-E

S
W

1
3
.4

9
0

5
3

5
3
0

1
0
8

9
1
2

re
c
ta

n
g
u
la

r
1
.3

3
6
.0

0
.0

4
6

N
-E

S
W

1
2
.4

4
7

5
4

1
2

5
7

5
0
0

2
0

2
8

c
ro

p
p
e
d

1
.4

0
4
.8

0
.0

2
4

N
-E

S
W

2
4
.1

5
2

5
5

1
0

5
4

4
0
0

1
6

2
6

c
ro

p
p
e
d

1
.6

3
5
.4

0
.0

2
5

N
-E

S
W

2
2
.1

3
0

5
6

1
0

5
7

4
0
0

1
0

4
0

re
c
ta

n
g
u
la

r
4
.0

0
5
.7

0
.0

2
5

N
-E

S
W

2
5
.0

9
3

5
7

9
4
8

3
0
0

1
0

3
2

c
ro

p
p
e
d

3
.2

0
5
.3

0
.0

3
0

N
-E

S
W

2
0
.0

5
6

5
8

9
5
0

3
0
0

1
0

3
0

re
c
ta

n
g
u
la

r
3
.0

0
5
.6

0
.0

3
0

N
-E

S
W

2
0
.8

3
3

5
9

4
2
0

2
7
0

1
8

1
5

re
c
ta

n
g
u
la

r
0
.8

3
5
.0

0
.0

1
5

N
-E

S
W

2
0
.6

5
0

Ta
bl
e
B
.3
:O

ve
rv
ie
w

of
bi
g
la
yo

ut
po

pu
la
tio

n
(I
D

30
to

59
)

176

B Layouts

L
a
y
o

u
t
ID

#
 s

o
u

rc
e
s

#
 d

e
s
ti

n
a
ti

o
n

s
#
 m

o
d

u
le

s
#
 r

o
w

s
#
 c

o
lu

m
n

s
S

h
a
p

e
A

s
p

e
c
t

ra
ti

o

S
o

u
rc

e
-

d
e
s
ti

n
a
ti

o
n

-r
a
ti

o

S
o

u
rc

e
-

m
o

d
u

le
-

ra
ti

o

P
o

s
it

io
n

 o
f

s
o

u
rc

e
s
 a

n
d

d
e
s
ti

n
a
ti

o
n

s

D
is

ta
n

c
e
 f
ro

m

s
o

u
rc

e
s
 t

o

d
e
s
ti

n
a
ti

o
n

s

S
o

u
rc

e
s

c
lo

s
e
 t

o

e
a
c
h

 o
th

e
r

6
0

6
1
8

2
1
0

1
4

1
5

re
c
ta

n
g
u
la

r
1
.0

7
3
.0

0
.0

2
9

N
-E

S
W

1
7
.0

7
4

6
1

4
1
8

4
0

5
8

re
c
ta

n
g
u
la

r
1
.6

0
4
.5

0
.1

0
0

N
-E

S
W

8
.1

1
1

6
2

1
2

3
5

1
5
0

1
0

1
5

re
c
ta

n
g
u
la

r
1
.5

0
2
.9

0
.0

8
0

N
S

-N
S

E
W

1
2
.5

4
8

6
3

1
2

3
4

1
5
3

9
1
7

re
c
ta

n
g
u
la

r
1
.8

9
2
.9

0
.0

7
8

E
W

-N
S

1
4
.0

0
0

x

6
4

1
2

3
5

1
5
0

6
2
7

c
ro

p
p
e
d

4
.5

0
2
.9

0
.0

8
0

N
S

-N
S

E
W

1
2
.7

0
0

6
5

1
2

3
5

1
5
0

6
2
7

c
ro

p
p
e
d

4
.5

0
2
.9

0
.0

8
0

E
W

-N
S

1
6
.5

0
0

x

6
6

1
0

3
2

1
1
0

5
2
2

re
c
ta

n
g
u
la

r
4
.4

0
3
.2

0
.0

9
1

N
S

-N
S

E
W

1
1
.8

7
5

6
7

1
0

3
2

1
1
0

5
2
2

re
c
ta

n
g
u
la

r
4
.4

0
3
.2

0
.0

9
1

E
W

-N
S

1
4
.5

0
0

x

6
8

4
1
6

4
0

5
8

re
c
ta

n
g
u
la

r
1
.6

0
4
.0

0
.1

0
0

E
W

-N
S

7
.5

0
0

6
9

4
2
0

3
5

5
7

re
c
ta

n
g
u
la

r
1
.4

0
5
.0

0
.1

1
4

N
S

E
W

-N
S

E
W

6
.6

0
0

7
0

4
1
8

4
0

5
8

re
c
ta

n
g
u
la

r
1
.6

0
4
.5

0
.1

0
0

N
-E

S
W

7
.9

4
4

7
1

2
1
8

4
0

5
8

re
c
ta

n
g
u
la

r
1
.6

0
9
.0

0
.0

5
0

N
-E

S
W

7
.8

3
3

7
2

4
2
0

5
7

3
1
9

re
c
ta

n
g
u
la

r
5
.6

7
5
.0

0
.0

7
0

N
-E

S
W

1
0
.3

0
0

7
3

5
3
1

9
2

4
2
3

re
c
ta

n
g
u
la

r
5
.7

5
6
.2

0
.0

5
4

N
-E

S
W

1
2
.7

4
2

7
4

7
4
0

2
0
4

6
3
4

re
c
ta

n
g
u
la

r
5
.6

7
5
.7

0
.0

3
4

N
-E

S
W

1
8
.3

7
9

7
5

9
5
0

2
8
0

7
4
0

re
c
ta

n
g
u
la

r
5
.7

1
5
.6

0
.0

3
2

N
-E

S
W

2
1
.9

7
1

7
6

1
0

5
7

3
6
8

8
4
6

re
c
ta

n
g
u
la

r
5
.7

5
5
.7

0
.0

2
7

N
-E

S
W

2
5
.4

6
8

7
7

1
1

6
3

4
5
9

9
5
1

re
c
ta

n
g
u
la

r
5
.6

7
5
.7

0
.0

2
4

N
-E

S
W

2
7
.6

9
4

7
8

1
9

5
9

3
9
0

1
0

3
9

re
c
ta

n
g
u
la

r
3
.9

0
3
.1

0
.0

4
9

N
-E

S
W

2
4
.3

9
0

7
9

3
6

4
0

4
0
0

2
0

2
0

q
u
a
d
ra

ti
c

1
.0

0
1
.1

0
.0

9
0

E
W

-N
S

2
1
.0

0
0

x

8
0

1
9

5
3

2
7
3

7
3
9

re
c
ta

n
g
u
la

r
5
.5

7
2
.8

0
.0

7
0

N
-E

S
W

2
1
.6

6
0

8
1

2
8

5
2

5
0
0

2
0

2
8

c
ro

p
p
e
d

1
.4

0
1
.9

0
.0

5
6

N
-E

S
W

2
5
.3

2
7

x

8
2

2
4

4
8

4
0
7

1
1

3
7

re
c
ta

n
g
u
la

r
3
.3

6
2
.0

0
.0

5
9

N
S

E
W

-N
S

E
W

2
1
.5

3
5

8
3

1
6

6
0

3
6
1

1
9

1
9

q
u
a
d
ra

ti
c

1
.0

0
3
.8

0
.0

4
4

N
S

E
W

-N
S

E
W

1
8
.5

0
0

8
4

1
8

5
8

4
0
7

1
1

3
7

re
c
ta

n
g
u
la

r
3
.3

6
3
.2

0
.0

4
4

N
S

-N
S

E
W

2
1
.2

5
3

Ta
bl
e
B
.4
:O

ve
rv
ie
w

of
bi
g
la
yo

ut
po

pu
la
tio

n
(I
D

60
to

84
)

177

B Layouts

Layout 0
I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O O O O O O

Layout 1
I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 2
I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 3
I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 4
I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

Layout 5
I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O

Layout 6
I I I I

O O

O O

O O

O O

O O

O O

O O O O O O O O

Layout 7
I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O O O O O O O

Layout 8
I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O

Layout 9
I I I I I I I I I I I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O O O O O O O

Layout 10
O I O O O O O O I O O O O O I O O

O O

O O

O O

I I

O O

O O

O O

O O O O I O O O O O O I O O O O

Layout 11
O I O O O I O O O O O I O O O I O O

O O

O O

O O

O O

O O

O O

O O O O I O O O I O O O I O O O O

Layout 12
O O O O O O O O O O O O O O O O O O O O

I

I

I

I

I

I

I

O O O O O O O O O O O O O O O O O O O O

Layout 13
I I I I I I I

O O

O O

O O

O O

O O

O O

Layout 14
I I I I I I I

O O

O O

O O

O O

O O

O O

O O

Layout 15
I I I I I I I

O O

O O

O O

O O

O O

O O

O O

Figure B.3: Graphical representation of layouts with ID 0 to 15

178

B Layouts

Layout 16
I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O O

Layout 17
I I I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O O

Layout 18
O I O O I O O O I O O I O

O O

O O

O O

I I

O O

O O

I I

O O

O O

O O

O O I O O I O O I O O I O O

Layout 19
I I I I I I

O O

O O

O O

O O

O O

O O O O O O O O

Layout 20
I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O

Layout 21
I I I I I I

O O

O O

O O

O O

O O

Layout 22
O I I I I I I O

O O

O O

O O

O O

O O

O O

O O

Layout 23
O I I I I I I I I I I I I O

O O

O O

O O

O O

O O

O O

O O

Layout 24
O O O I O O I O O I O O I O O I O O O

O O

I I

O O

O O

I I

O O

O O I O O O O I O O O O O I O O

Layout 25
I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O

Layout 26
I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O

Layout 27
I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O

Layout 28
I I I

O O

O O

O O

O O

O O

O O O O O O

Layout 29
O I O O I O O I O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O

O I O O I O O I O

Layout 30
I I I I I I I I I I

O O

O O

O O

O O

O O

O O

Layout 31
I I I I I I

O O

O O

O O

O O

O O

O O

Layout 32
O O I O O O I O O I O O O I O O

O O

O O

I I

O O

O O

O O I O O O I O O I O O O I O

Layout 33
O I I I I I I O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O O O O O O

Figure B.4: Graphical representation of layouts with ID 16 to 33

179

B Layouts

Layout 34
I I I I

O O

O O

O O

O O

O O

O O O O O O O O O O

Layout 35
O O O I O O O O

O

O O

I I

O O

O

O O O I O O O O

Layout 36
O O I O O I O O

O O

O O

O O

O O

O O

O I O O I O

Layout 37
O O O O O O O O O O

I I

I I

O O O O O O O O O O

Layout 38
I I I I

O O

O O

O O

O O

O O

O O

O O O O O O O

Layout 39
I I I I

O O

O O

O O

O O O O O O O O O O O O O O

Layout 40
I I I I

O O

O O

O O

O O

O O

O O

O O

O O O

Layout 41
I

O O

O O

O O

O O

O O

O O O O O

Layout 42
I I I

O O

O O

O O

O O

O O

O O O O O

Layout 43
I I

O O

O O

O O

O O

O O

O O O O O

Layout 44
I I

O O

O O

O O

O O

O O

O O O O O O O O O O

Layout 45
I

O O

O O

O O

O O

O O

O O

O O

O O O O O O O

Layout 46
I I

O O

O O

O O

O O

O O

O O O O O O O O O

Layout 47
I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O O O O O O O O O

Layout 48
I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O

O O O O O O O O O O O O O O O O O

Layout 49
I I I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 50
I I I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 51
I I I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Figure B.5: Graphical representation of layouts with ID 34 to 51

180

B Layouts

Layout 52
I I I I I

O O

O O

O O

O O

O O

O O

Layout 53
I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O O O O O O O

Layout 54
O I I I I I I I I I I I I O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O

O O O O O O O O O O

Layout 55
O I I I I I I I I I I O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O

O O O O O O O O O O O O O O O O

Layout 56
I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 57
O O I I I I I I I I I O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 58
I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 59
I I I I

O O

O O

O O

O O

O O

O O

O O O O O O O O

Layout 60
I I I I I I

O O

O O

O O

O O

O O

O O O O O O O O

Layout 61
I I I I

O O

O O

O O

O O

O O

O O O O O O O O

Layout 62
O O I O I O I I O I O I O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O I O I O I O I O I O I O

Layout 63
O O O O O O O O O O O O O O O O O

I I

I I

I I

I I

I I

I I

O O O O O O O O O O O O O O O O O

Layout 64
O I O O I O O I O O I O O I O O I O

O O

O O

O O

O O

O O

O O

I O O I O O I O O O I O O I O O I

Layout 65
O O O O O O O O O O O O O O O O O O

I I

I I

I I

I I

I I

I I

O O O O O O O O O O O O O O O O O

Layout 66
O I O I O O I O O I O O I O O

O O

O

O O

O

O O

O O I O O O I O O I O O O I O I O O O

Layout 67
O O O O O O O O O O O O O O O O

I I

I I

I I

I I

I I

O O O O O O O O O O O O O O O O

Figure B.6: Graphical representation of layouts with ID 52 to 67

181

B Layouts

Layout 68
O O O O O O O O

I I

I I

O O O O O O O O

Layout 69
O O O I O O O

O O

O O

I I

O O

O O

O O O I O O O

Layout 70
I I I I

O O

O O

O O

O O

O O

O O O O O O O O

Layout 71
I I

O O

O O

O O

O O

O O

O O O O O O O O

Layout 72
I I I I

O O

O O

O O

O O O O O O O O O O O O O O

Layout 73
I I I I I

O O

O O

O O

O O

O O

Layout 74
I I I I I I I

O O

O O

O O

O O

O O

Layout 75
I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

Layout 76
I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

Layout 77
I I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

Layout 78
I I I I I I I I I I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

Figure B.7: Graphical representation of layouts with ID 68 to 78

182

B Layouts

Layout 79
O O O O O O O O O O O O O O O O O O O O

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

O O O O O O O O O O O O O O O O O O O O

Layout 80
I I I I I I I I I I I I I I I I I I I

O O

O O

O O

O O

O O

O O

O O

O O

Layout 81
I I

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O O O O O

O O O O O O O O O O

Layout 82
O I O O I O O I O O I O O I O O I O O I O O I O O I O

O O

I I

O O

O O

I I

O O

O O

I I

O O

O I O O I O O I O O I O O I O O I O O I O O I O O I O

Layout 83
O O O I O O O I O O O I O O O I O O O

O O

O O

O O

I I

O O

O O

O O

I I

O O

O O

O O

I I

O O

O O

O O

I I

O O

O O

O O

O O O I O O O I O O O I O O O I O O O

Layout 84
O I O O I O O I O O I O O I O O I O O I O O I O O I O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O O

O I O O I O O I O O I O O I O O I O O I O O I O O I O

Figure B.8: Graphical representation of layouts with ID 79 to 84

183

C Results for Partial Route
Reservation

Throughput as portion of

maximally achieved

throughput

Message count

limit

Maximal Remaining

Distance to

Destination

μ σ2 F p-value

100 0.75 99.04% 0.04% 6.39 0.0000

300 0.75 98.91% 0.01%

500 0.75 98.80% 0.01%

100 0.5 99.64% 0.00%

300 0.5 99.00% 0.01%

500 0.5 98.79% 0.01%

100 0.25 99.19% 0.01%

300 0.25 98.77% 0.01%

500 0.25 98.70% 0.01%

100 all 99.29% 0.02% 16.62 0.0000

300 all 98.89% 0.01%

500 all 98.76% 0.01%

all 0.75 98.91% 0.02% 4.34 0.0134

all 0.5 99.14% 0.01%

all 0.25 98.89% 0.01%

Figure C.1: Results of analysis of variance for parameters of partial
route reservation

185

D Students’ Thesis related to
GridSorter

Many different students supported my work on GridSorter. I very much
appreciated the close collaboration, fruitful discussions leading to good
ideas and helpful results. Some of them are cited in my PhD thesis, but
I also want to thank the others:
Florian Geiser Sortieren mit Plug-and-Play Fördertechnik Diplomarbeit
(2012)
Jörg Schmidtobreick Herausforderungen an Routingprozessen bei dezen-
tral gesteuerten Materialflusssystemen Seminararbeit (2012)
Thomas Lienert Darstellung, Analyse und Optimierung des Flex-
Förderer-Reservierungsprozesses Seminararbeit (2013)
Vanessa Market und Anja Fechtig Stand der Technik und zukünftige
Lösungsansätze bei der Warensortierung Seminararbeit (2013)
Emilie Vannerot Das Pull-Prinzip in der dezentralen Steuerung Ma-
sterarbeit (2013)
Fernando Lauckner Das Twitter-Prinzip in der Steuerung eines Plug&-
Play-fähigen Sorters Diplomarbeit (2013)
Carlos Corrales Control algorithms for a Plug&Play sorter with multi-
directional conveying Master Thesis (2013)
Johannes Schmitt Modellierung eines dezentral gesteuerten Sorters mit
Hilfe der Graphentheorie Diplomarbeit (2013)
Benedikt Fuß Darstellung, Analyse und Optimierung des FlexFörderer-
Deadlock-Handling-Prozesses Seminararbeit (2013)
Theresa Voss und Katja Rabenseifner Literaturrecherche zur Ver-
kehrsaufkommengestützten Navigation und die Übertragung in die dezen-
tral gesteuerte Warensortierung Seminararbeit (2013)
Thomas Lienert Algorithmenentwicklung für einen dezentral gesteuerten
Sorter mit multidirektionalem Förderantrieb Masterarbeit (2013)

187

D Students’ Thesis related to GridSorter

Ernst Viktor Prohl Binäres Optimierungsmodell für den GridSorter
Hilfswissenschaftlicher Mitarbeiter (2014)
Theresa Gattermann Layoutanalyse bei einem dezentral gesteuerten
Sorter Bachelorarbeit (2014)
Marius Thoma und Martin Rometsch Sortieralgorithmen in der
Spieletheorie und der Informatik mit Bezug auf einen dezentral gesteuer-
ten Plug&Play-Sorter Seminararbeit (2014)
Lisa Prössdorf Erweiterung eines dezentral gesteuerten Sorters um die
Funktion des Speicherns Masterarbeit (2014)
Dominik Colling Steuerung eines Plug&Play-Sorters für unterschiedliche
Ladungsträgergrößen Masterarbeit (2014)
Almut Demel Leistungsuntersuchung für Einsatzfälle des GridSorters
Hilfswissenschaftliche Mitarbeiterin (2014)
Immanuel Ketterer Analyse eines zeitfensterbasierenden Reservierungs-
algorithmus eines Plug&Play Sorters Seminararbeit (2014)
Alexandre Araujo Analysis of possible applications of the GridSorter in
a packaging handling facility Bachelor Thesis (2014)
Lisa Wirsig Analyse der Einsatzmöglichkeiten des GridSorters in der
Lagervorzone Bachelorarbeit (2014)
Justine Portier Untersuchung von Einsatzmöglichkeiten des GridSorters
in der Kommissionierung Bachelorarbeit (2014)
Linda Lehmann Erweiterung der Steuerung eines modularen Sorters um
die Funktion der Sequenzierung Bachelorarbeit (2014)
Alexander Werling Weiterentwicklung des dezentral gesteuerten Rou-
tings eines modularen Sorters zur Effizienzsteigerung auf großen Layouts
Bachelorarbeit (2015)
Janine Gieringer, Franziska Ötjen und Johannes Schuh Literatur-
recherche rund um den GridSorter Seminararbeit (2015)

188

9 783731 505679

ISBN 978-3-7315-0567-9

ISSN 0171-2772
ISBN 978-3-7315-0567-9

Lo
gi

ca
l T

im
e

fo
r D

ec
en

tr
al

ize
d

Co
nt

ro
l o

f M
at

er
ia

l H
an

dl
in

g
Sy

st
em

s
Z.

 S
ei

bo
LD

The fourth industrial revolution aims to transform production systems by using
numerous, small-scaled electronic devices. By sharing information and taking
independent decisions, the systems promise more flexibility and robustness.
In the field of material handling systems, research has led to modular systems
with decentralized control.
In this work, a new control principle for decentralized material handling sys-
tems is presented: Logical Time, a control principle for distributed systems that
synchronizes parallel processes, is transferred to decentralized control of mate-
rial handling systems. The GridSorter, a modular sorter with grid-like structure,
is chosen as showcase system because it shows high risk of deadlocks. With
logical time, the material handling system is proven to be deadlock-free and is
robust against varying transport times. The time-window-based route reserva-
tion process can be described as Iterative Deepening A* path search which is
executed in parallel for several load carriers by the collectivity of all modules.
To study system behavior with the presented control algorithm, a simulation
model has been implemented. The influence of several control parameters,
layout characteristics and the synchronization of logical clocks is investigated.

Wissenschaftliche Berichte des Instituts für Fördertechnik und
Logistiksysteme des Kar lsruher Instituts für Technologie (KIT)
Prof. Dr.-Ing. Kai Furmans [Hrsg.]

	Kurzfassung
	Abstract
	Introduction
	Problem Description and Research Questions
	Structure of the Thesis

	Material Handling Systems with Decentralized Control
	A Graph-Based System Description
	Existing Systems in Research and Industry
	Strategies for Routing and Deadlock Handling
	Resource Deadlocks, Livelocks and Starvation
	Routing in Material Handling Systemswith Decentralized Control
	Excursus: Time-Window-Based Route Reservation in AGV Systems

	Classification of Material Handling Systems
	Criteria for Classification
	Classification of Existing Systems and Deductions

	The GridSorter as Showcase System
	Conclusion: The Research Gap

	Distributed Deadlock Prevention with Logical Time
	Choice of Routing Strategy
	Formal System Description and Assumptions
	Transferring Logical Time to Material Handling
	Controlling Material Handling with Logical Time
	Assigning Logical Clocks to Resources
	Reservation of Resources using Logical Timestamps
	Acquisition of Resources using Logical Time

	Proof of Satisfying the Clock Condition
	Proof of Absence of Deadlocks
	Conclusion on the Usage of Logical Time

	Decentralized Control of GridSorter with Logical Time
	Control Architecture and Components
	Reservation Process
	Existing Search Algorithms for Path Finding
	Choice of Search Algorithmfor Decentralized, Parallel Route Planning
	Parallel Route Reservationwith Decentralized Iterative Deepening A*-Search
	Local Routing Decisions during Search Phase
	Partial Route Reservation
	Completeness of the Reservation Process

	Transport Process
	Local Coordination of Transport Steps
	Local Transport Granting Decisions

	Conclusion on Decentralized Control

	Modeling GridSorter with Agent-Based Simulation
	Simplifications
	Simulating Decentralized Controlwith One Processor
	General System Set-Up
	Transport of Boxes
	Message Sending

	Observing System Behavior
	Input Parameters
	General System Set-Up
	Box Transport and Message Sending
	Parameters for Basic Control Algorithm
	Parameters for Partial Route Reservation
	Simulation Experiment

	Performance Indicators

	System Behavior of GridSorter Controlled with Logical Time
	General Simulation Set-Up
	Statistical Analysis of Simulation Results
	Selecting Layouts for Simulation Studies

	System Behavior and Basic Control Settings
	Description of System Behavior
	Setting of Basic Control Parameters

	Synchronicity of Logical Clocks
	Synchronization Based on Box Transport
	Additional Synchronization Among Source Modules

	System Behavior in Different Layouts
	Impact of System Size and Number of Sourceson Throughput
	Impact of Positioning of Sources and Destinations on Throughput
	Communication Effort

	Partial Route Reservation
	System Behavior under Varying Transport Times
	Conclusion on System Behavior

	Conclusion
	Conclusion on Thesis
	Outlook

	Notation
	Acronyms
	References
	List of Figures
	List of Tables
	Decentralized Control
	Layouts
	Results for Partial Route Reservation
	Students' Thesis related to GridSorter

