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Abstract 

 

The establishment and patterning of the nervous system represents a complex process 

during embryonic development and is still far from being completely understood. The 

complexity of an intact embryo hinders the elucidation of particular developmental steps. 

Therefore, a simplified controllable cell culture system is more suitable for the detailed 

dissection of neurogenesis in vitro. The aim of this thesis was to generate a zebrafish neural 

tube in vitro in a 3D cell culture system. Thereby, a comparative study of neuronal 

differentiation in the zebrafish and in 2D and 3D zebrafish primary cell culture was 

performed. The 3D platform, based on a polycarbonate microchannel, was formed to fit with 

the dimensions of a zebrafish neural tube and moreover biofunctionalized for the cultivation 

of cells. In this platform neurogenesis in vitro was investigated and compared to the in vivo 

scenario. By treatment with an inhibitor for the nodal signaling pathway, the formation of 

mesendodermal tissue was reduced and a population of neural progenitor cells was 

enriched. Therefore, the established 3D cell culture platform reflects a similar dynamic of 

neurogenesis like the in vivo scenario and is well controllable. Moreover, it was investigated 

if cells can be guided and cultivated in an area of interest in the microchannel. Thus, a 

photolithographic method was established, in which by light-inducible surface patterning a 

functionalized surface was created on a polycarbonate film. Cells were cultivated almost 

exclusively on the functionalized area and avoided non-functionalized regions due to the 

oligoethylenglycol (Hirschbiel and Geyer et al., 2015). Thereby, a first step was made to 

investigate border regions, which are essential to separate particular brain parts, in vitro. 

Furthermore, based on studies which showed that the microenvironment in 2D and 3D 

results in altered cellular signaling, a co-cultivation study was performed with Wnt8a (an 

important factor for posteriorizing the neuroecoderm) and a Wnt reporter. A difference in Wnt 

reporter activation between cultivation in 2D and 3D was observed, whereas Wnt reporter 

activation was higher in 2D compared to 3D. Due to differences in 2D and 3D cultivated cells, 

existing 2D studies should be re-considered.  

By establishment of the 3D platform, based on a microchannel, a controllable, reproducible 

system was generated to study the formation of tubular structures, guide cells to an area of 

interest and study cellular communication. 
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Zusammenfassung 

Die Bildung des Nervensystems und dessen Strukturierung stellt einen komplexen Prozess 

während der Embryonalentwicklung dar und ist trotz einiger in vivo basierter Erkenntnisse 

bei weitem noch nicht vollständig aufgeklärt. Die Komplexität eines intakten Embryos 

erschwert die Aufklärung einzelner Entwicklungsschritte. Daher ist ein vereinfachtes 

kontrollierbares Zellkultursystem geeigneter, um Neurogenese in vitro detailliert aufzuklären. 

Ziel dieser Arbeit war es, das Neuralrohr eines Zebrafisches in vitro in einem 

dreidimensionalen Zellkultursystem zu generieren. Dabei wurde eine vergleichende Studie 

zur neuronalen Differenzierung im Zebrafisch und in einer 2D und 3D Zebrafisch 

Primärzellkultur durchgeführt. Als Basis des 3D Zellkultursystems diente ein Mikrokanal, 

geformt aus einem Polycarbonatfilm, welcher den Dimensionen eines Zebrafisch Neuralrohrs 

entspricht. Diese Kanalstruktur wurde biofunktionalisiert um die Kultivierung von Zellen zu 

ermöglichen. In dieser Plattform wurde der Prozess der Neurogenese in vitro mit der in vivo 

Situation verglichen. Durch Behandlung mit einem Inhibitor für den Nodal-Signalweg konnte 

die Bildung von mesendodermalem Gewebe reduziert und eine Population von neuralen 

Vorläuferzellen angereichert werden. Schlussfolgernd reflektiert die etablierte 3D Zellkultur 

eine ähnliche Dynamik der Neurogenese in vivo und repräsentiert ein gut kontrollierbares 

System. Darüber hinaus wurde untersucht ob Zellen gerichtet in einem bestimmten Bereich 

im Mikrokanal kultiviert werden können. Dafür wurde ein photolitographisches Verfahren 

entwickelt, wobei durch licht-induzierbare Oberflächenstrukturierung eine funktionalisierte 

Region auf dem Polycarbonatfilm generiert wurde. Es gelang Zellen nahezu ausschließlich in 

diesem Bereich zu kultivieren, wobei nicht- funktionalisierte Bereiche auf Grund des 

vorhandenen Oligoethylenglycols von den Zellen gemieden wurden (Hirschbiel und Geyer et 

al., 2015). Dadurch wurde eine Grundlage geschaffen um Grenzregionen, die essentiell sind 

um die einzelnen Gehirnabschnitte abzugrenzen, in vitro zu untersuchen. Basierend auf 

Studien die zeigten dass die Mikroumgebung in 2D und 3D in Veränderungen zellulärer 

Signalkommunikation resultiert, wurde eine Co-Kultivierungsstudie mit Wnt8a (einem 

wichtigen Faktor zur Strukturierung des posterioren Neuroektoderms) und einem Wnt 

Reporter durchgeführt. Es wurde ein Unterschied in der Wnt-Reporter Aktivierung zwischen 

Kultivierung in 2D und 3D Zellkultur beobachtet, wobei die Wnt-Reporter Aktivierung in 2D 

höher war als in 3D. Durch unterschiedliches Verhalten von 2D und 3D kultivierten Zellen 

hinsichtlich Signalkommunikation sollten Erkenntnisse aus vorangegangenen 2D Studien 

überdacht werden. Durch die Etablierung dieser 3D Plattform, basierend auf einem 

Mikrokanal wurde ein kontrollierbares, reproduzierbares System geschaffen, um tubuläre  

Signalkommunikation zu beobachten.
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1.  Introduction 

 

1.1 General Introduction 

The most fascinating event in biology is the development of a living creature. Starting from a 

fertilized egg embryonic development is characterized by different conserved mechanisms, 

including fertilization, cleavage, gastrulation, neurulation, organogenesis and growth.   

Massive cell rearrangements, proliferation and differentiation require a complex and 

accurately defined communication between cells over a short and long distance. The right 

cell type has to be generated at the right time and place. Therefore, a precisely regulation of 

the balance between differentiating cells and cells maintaining in the stem cells pool is crucial 

for successful tissue development and adult maintenance. Thus, various signaling pathways 

are essential to create a healthy adult organism. Although researchers gain more and more 

insights into the manifold processes of how a fertilized egg develops into an adult organism, 

the big puzzle is yet far away from being completely understood. Thus, embryonic 

development remains one of the most fascinating biological enigmas in biomedical research.  

1.2 The zebrafish as model organism 

Danio rerio represents a suitable system to study embryonic development, since fertilization 

takes place externally and the eggs develop into a larvae in three days. Moreover, the 

nervous system is already established after 48 hours post fertilization (hpf). Due to the 

transparency, embryonic development can be observed in the living embryo. Furthermore, a 

huge amount of zebrafish can be easily maintained with relatively low costs, since they are 

small and one female can lay hundreds of eggs. Besides, the zebrafish genome is 

sequenced and a number of genetic tools are available, as well as mutants and transgenic 

lines. Furthermore, Danio rerio is suitable for manipulations, e.g. microinjections, or 

transplantation assays. A zebrafish embryo can be raised into an adult organism in about 

three months (Fig.1).  



- 2 - 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

1.3 Embryonic development of Danio rerio 

1.3.1 From Cleavage to mid-blastula transition 

The fertilized zebrafish egg undergoes discoidal meroblastic cleavage, since cleavage takes 

just place in the blastodisc and is incomplete due to the huge yolk mass. The dividing cells 

form the blastoderm which is located at the animal pole.  

The onset of mid-blastula transition (MBT) can be observed at about the tenth cell division. 

MBT is characterized as the time point from then onwards zygotic gene transcription is 

active. During MBT the embryo consists of the internal and the external syncytial layer (YSL), 

the enveloping layer (EVL) and the periderm. The deep cells between the EVL and the YSL 

will mainly contribute to the formation of the embryo. (Gilbert, 6thedition).  

1.3.2 Gastrulation 

Gastrulation is characterized by the specification and positioning of the three germ layers 

ectoderm (future neural tissue and skin), mesoderm (gives rise to muscles, blood and inner 

organs) and endoderm (prospective gut, liver and pharynx; illustrated in the zebrafish fate 

map; Fig.2).  

 

Figure 1: Zebrafish development.  

The zebrafish development is characterized by 

cleavage, blastulation, gastrulation and 

neurogenesis/somitogenesis/organogenesis. The 

larvae hatches after about 2 days, resulting in an adult 

organism after 90 days. Hpf = hours post fertilization, 

dpf = days post fertilization. 
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Moreover, the anterio-posterior-, dorso-ventral- and left-right axes are established. Cell 

rearrangements like migration, involution and epiboly are a hallmark of this developmental 

step. Initially, the blastoderm cells surround the yolk during the so-called epiboly. The 

blastoderm thickens throughout the margin of the epibolizing blastoderm, indicating the 

future dorsal side of the embryo. This thickening, called germ ring, consists of an outer layer 

– the epiblast and an inner layer – the hypoblast (Gilbert, 6thedition).  

Cells from the epiblast and hypoblast intercalate on the future dorsal side of the embryo, 

thereby forming the embryonic shield, which is the homologous structure of the dorsal 

blastopore lip in amphibians, since it can generate a secondary axis when transplanted to a 

host embryo (Oppenheimer, 1936). Whilst epibolyzing the yolk, cells are also involuting at 

the margins and converge anteriorly and dorsally towards the embryonic shield.   

By these convergent-extension movements (C&E) of the hypoblast cells form the 

chordamesoderm, which will give rise to the notochord. Somites develop from paraxial 

Figure 2: Fate map of a zebrafish gastrula embryo. 

Gastrulation is characterized by the positioning and 

specification of the three germ layers ectoderm, mesoderm 

and endoderm. Mesendoderm tissue moves inside the 

embryo, placing the endoderm inner-most, mesoderm in 

between and ectoderm outside. The endoderm will give rise 

to intestine, liver and pharynx;  mesoderm develops into 

notochord, muscles, blood and inner organs and ectoderm 

will become future neural tissue and skin. 
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mesoderm located on both sides adjacent to the chordamesoderm. Due to the C&E in the 

epiblast, a subset of prospective neural cells gets positioned at the dorsal midline, forming 

the neural keel. The embryonic shield is important in the formation of the dorso-ventral axis 

and it can induce the fate of the ectoderm to become neural rather than epidermal. 

Furthermore, the anterio-posterior axis is formed by two signaling gradients. At the end of 

gastrulation the main body axes have been specified (Gilbert, 6thedition).  

1.3.3 Establishment of the central nervous system 

The establishment of the central nervous system (CNS) of an organism, including forebrain, 

midbrain, hindbrain and spinal cord starts at late gastrulation and continues during 

segmentation stages. Pivotal events of this complex process will be considered in detail in 

the following paragraphs. 

  

1.3.3.1 Neural induction – The classical “neural default model” under debate 

The development of the vertebrate nervous system begins with the so-called „neural 

induction”. The ectoderm, which normally gives rise to the epidermis of the skin, receives 

inductive signals from the adjacent mesoderm. Ectodermal cells respond to inducing signals, 

by demonstrating their competence and thus entering the “neural default program”. 

The classical “neural default model” was originally discovered and shown by studies in 

Xenopus laevis. In 1924, Hans Spemann and Hilde Mangold carried out one of the most 

important experiments in embryology. They transplanted tissue of the dorsal lip (dorsal 

mesoderm) of an early gastrula embryo to an ectopic position - underneath the ventral 

ectoderm (presumptive ventral epidermis) in another early gastrula embryo (the host). To 

distinguish clearly between donor and host cells, Spemann and Mangold used two newt 

species; one pigmented and the other non- pigmented. Whereas the transplanted donor cells 

continued in a normal manner to self-differentiate, forming chordamesoderm (notochord) 

ectodermal cells of the host underwent immense changes which lead to the formation of a 

secondary body axis with a second nervous system. Only these individual cells of the dorsal 

lip showed the ability to induce a secondary embryo in a host embryo. Thus, organizer 

properties were assigned to this specific cells and they were named “the organizer”, or 

“Spemann organizer” (Spemann and Mangold, 1924). This implied the first evidence of the 

function of non-neural cells to initiate neural fate by providing inducing signals. The organizer 

in turn, is established by dorsal-most vegetal cells of the blastula, called the so-called 

“Nieuwkoop Center” (homologous to the dorsal part of the yolk cell in zebrafish). Most likely, 

maternal β-catenin, enriched dorsally in the embryo, forms the Nieuwkoop center. 

 

Ventralizing signals were identified as members of the bone morphogenetic protein (BMP) 

family – BMP 2,4 and 7. They are able to inhibit neural induction, thus generating an 
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epidermal fate. If these BMP signals are blocked by their antagonists noggin, chordin or 

follistatin (released from Spemann´s organizer), inhibition of neural induction is prevented, 

hence generating a neural cell fate (Schmidt et al., 2013).  

In zebrafish the ventralizing signal was shown to be BMP2B and the antagonizing factor was 

called Chordino (Kishimoto et al., 1997; Schulte-Merker et al., 1997).  

 

However, recent studies in frog, mouse, chicken and zebrafish resulted in new insights and 

the “classical neural default model” got under debate. It seems that the model of neural 

induction is not “that simple” and requires a more complex interplay of signaling factors. 

Besides BMPS, possible involved candidates are e.g. Wnts, fibroblast growth factors (FGFs) 

or nodal (reviewed by Stern, 2006).  

Pivotal experiments by the De Robertis lab, in which they inhibited BMP 2, 4 and 7 resulted 

in severe trunk defects, but still a minor dorso-ventral polarity persisted. Inhibition of another 

member of the BMP family, the so-called anti-dorsalizing morphogenetic factor (ADMP) at 

the same time resulted in the formation of a massive brain. De Robertis showed that 

inhibition of BMPs and elimination of the organizer showed the same consequence as 

eliminating the surprisingly dorsally expressed ADMP. Hence, different members of the BMP 

family were suggested to function in a redundancy manner (Reversade et al., 2005; Stern et 

al., 2006). Moreover, in zebrafish follistatin- like product (fstl2) and noggin1 have been 

mentioned to act with chordin in a redundant way. Furthermore, FGF signaling is considered 

to induce posterior neuroectoderm independent of BMP signaling inhibition (Rentzsch et al., 

2004). The involvement of Wnts in neural induction is controversial. Surely, Wnt signaling is 

crucial at very early stages by accumulation β-catenin dorsally in the embryo, which 

determines the future dorsal side. However, at later stages the role of Wnts in unclear due to 

timing aspects (Stern et al., 2006). Additionally, in zebrafish Homeobox gene bozozok and 

the nodal- related gene squint (sqt) have been shown to function in parallel to specify dorsal 

mesoderm and anterior neuroectoderm, thereby antagonizing the repressive function of 

cyclops (cyc) (Sirotkin et al., 2000). 

Besides extrinsic signals from non-neural cells intrinsic factors contribute to neural induction.  

On the transcriptional level, members of the SRY-box containing genes B1 (SoxB1) family - 

in zebrafish sox1a/b, 2,3,19a/b - are redundantly crucial during blastula stages to take part in 

neuroectoderm fate. E.g. sox3 has been shown to act together with FGFs thereby regulating 

BMP expression (Schmidt et al., 2013). Other functions of SoxB1 members will be discussed 

later on).  

Therefore, BMP signaling is definitely required but not sufficient for ectodermal cells and 

additionally FGFs and SoxB1 members act together to adopt a neural fate.  

 

http://www.ncbi.nlm.nih.gov/books/NBK10100/
http://www.ncbi.nlm.nih.gov/books/NBK10100/
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1.3.3.2 Neural tube formation in vertebrates  

After neural induction, neural tube formation starts when the neural plate – a columnar 

epithelial sheet - rolls up its folds forming a neural groove, which finally fuses dorsally to build 

the central channel which becomes specified into brain and trunk. This main principle of 

primary neurulation is conserved among vertebrate species (Schoenwolf and Smith, 2000).  

Additionally, posterior structures like the lumbar and tail region are generated out of 

mesenchymal cells by secondary neurulation (Lowery and Sive, 2004). Although neural tube 

formation has been extensively studies in avian, amphibian and mouse embryos 

(Schoenwolf and Smith, 2000; Colas and Schoenwolf, 2001), molecular mechanisms are still 

not understood in detail, due to molecular differences between vertebrate species (reviewed 

in Araya et al., 2016).  

Since for this thesis in particular the zebrafish neurulation is important, neurulation in Danio 

rerio will be considered in-depth. 

 

1.3.3.3 Neural tube formation in zebrafish 

The zebrafish as a teleost and its neurulation differs faintly from amniote and amphibian 

vertebrates. After the initiation of the neural plate (Fig.3a) at 10-11hpf the neural plate is 

located above the mesoderm and the notochord and covered by the EVL. Neural plate cells 

are still disorganized. After neural induction, the left and right sides start to converge towards 

the dorsal embryonic midline. At 12hpf, neuroepithelial cells (NECs) elongate and intercalate, 

thereby internalizing at the midline. The neural keel (Fig.3b) is formed at 13hpf. Between 15-

17hpf the neural keel progresses further into the neural rod (Fig.3c), which appears as a 

cylindrical structure (Araya et al, 2016). Neural progenitor cells (NPC)s undergo a 90° turn of 

the mitotic spindle, thereby crossing the midline in so-called C-divisions (Tawk et al., 2007). 

Opposing apical proteins appear at the seam of the neural rod. Finally, at 18hpf the lumen 

has formed and thus a complete neural tube with proper apical/basal polarity and a lumen. 

Hence, the result is a proper neural tube (Fig.3d), very similar to other vertebrates (Araya et 

al., 2016). 

In amniotes like mouse and chicken, the neural plate was described as pseudostratified 

columnar epithelium, and in non-amniotes like Xenopus laevis, as a bi-layered tissue, 

consisting of a polarized superficial layer and an underneath nonpolarized layer. However, in 

zebrafish, the morphology of the neural plate is still unclear, due to controversial studies. Due 

to conflicting observations regarding neuroepithelial morphology, it was proposed that the 

teleost neural plate cells own epithelial and mesenchymal characteristics (Araya et al., 2016). 

Moreover, neurulation in zebrafish is influenced by intrinsic and extrinsic factors.  
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Intrinsic mechanisms of zebrafish neural tissue internalization are still not clarified. However, 

regulated convergence movements have been demonstrated to be crucial for tissue 

internalization and the formation of proper neural keel and rod. The non-canonical Wnt-PCP 

pathway has been shown to be involved in neural tube formation in mice and amphibians. 

Additionally, Wnt-PCP was suggested to act during zebrafish neuroepithelial morphogenesis, 

since the Trilobite/strabismus mutant resulted in a wider and thicker neural primordium (Tawk 

et al., 2007). Moreover, n-cadherin (cdh2) was considered, since absent cdh2 in the 

hindbrain leads to failure of internalization of the neural primordium, resulting in an abnormal 

T-shaped neural tube (Hong and Brewster, 2006). Additionally, protocadherin-19 (pcdh19) 

caused arrested neural tissue convergence and a divergent anterior neural tube morphology. 

Since abnormal phenotype were only observed during late keel stages, thus a precise spatio-

temporal organization seems to be crucial for neural tissue internalization (Hong and 

Brewster, 2006; Biswas et al., 2010).  

 

Additionally, extrinsic factors influence neural plate morphogenesis, although in another 

manner then in other vertebrates, due to the different organization of the non-neural 

Figure 3:  Neural tube formation in zebrafish. The neural tube (a) is 

formed by cell and tissue convergence and develops into a neural keel 

(b) by cell elongation and intercalation movements. At the neural rod 

stage (c) cells are already polarized and cross the midline (C-Divisions). 

The lumen forms secondarily resulting in the neural tube (d). 
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ectoderm. The overlying EVL unlikely mediates influencing cues. Recently, the adjacent 

mesoderm was discussed to might be involved to coordinate cell movements within the 

neural plate, but this remains unclear (Araya et al., 2014, 2016). Furthermore, since the 

neural plate and the underlying mesoderm are tightly in contact, the mesoderm might serve 

as a scaffold for the convergence of neural plate cells. The tightness may be supported by 

the placement of the basal proteins laminin and fibronectin, early during zebrafish 

gastrulation (Latimer and Jessen, 2010). Additionally, the neural plate is tightly packed 

between the EVL and the adjacent mesoderm, thus just a tiny duct remains for cells to move 

through. Thus influencing flow and shape of cells, which probably changes inner tissue-

contacts mediated by cell-cell adhesion proteins, which in turn might alter physical assembly 

of the ECM. However, also this processed has to be investigated further in detail (Araya et 

al., 2016). 

As already mentioned, mirror symmetric C-Divisions occurring at the right time and place 

have been shown to be involved in zebrafish neural tube development, as it was evidenced 

by experiments inhibiting C-Divisions. In the trilobite mutant, mirror symmetric C-Divisions 

take place in ectopic lateral locations and resulted in double neural tubes (Tawk et al., 2007). 

Moreover, no lumen formation was observed and the neural tube appeared as disorganized 

structure (Quesada-Hernandez et al., 2010, Žigman et al., 2011). Additionally, since it was 

indicated that the mitotic spindle apparatus is critical for oriented cell division, involvement of 

the subcellular basal determinant scribble was discussed to control mitotic spindle orientation 

during zebrafish neurulation by regulation cadherin- based cell adhesion. Moreover, C-

divisions occur rather due to a specified time window than local environment (Girdler et al., 

2013), however how cells respond to developmental time is unclear; microRNAs were 

considered to be involved (Araya et al., 2016). 

 

The C-divisions have been suggested to be important for the correct positioning of 

apical/basal proteins at the tissue midline and this might be required for lumen opening. 

However, C-divisions are not required in neural tube formation, but result in alterations in 

lumen formation. Initially, it has been shown that lumen opening starts from 17hpf onwards 

and extends dorsally, thus lumen formation might be dependent on the formation of the 

developing neuraxis. Apical adherence and junctional proteins like aPKC, Pard3, ZO-1 and 

β-catenin, which are located at the rod midline are placed there decreasing in amount from 

ventral to dorsal. Hence, a well-polarized neuroepithelial structure is crucial for lumen 

formation, since it has been shown that loss of aPKC or Pard6 is ongoing with a malformed 

lumen (Lowery and Sive, 2004, 2009). Midline C-divisions and cell polarization mechanisms 

are crucial to function synergistically to enhance efficiency of lumen generation. Moreover, 

laminin, a basal protein of the ECM, has been shown to be crucial for polarized lumen 
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formation (Araya et al., 2016). The neural tube undergoes dorso-ventral and anterio-posterior 

patterning due to two signaling centers. Thereby the neural tube is subdivided in forebrain, 

midbrain, hindbrain and spinal cord along the anterio-posterior axis. 

 

1.3.3.4 Dorso-ventral patterning of the neural tube  

The mature spinal cord is characterized to handle sensory input and to organize motor 

output. Thereby sensory neurons are located in the dorsal half and motor neurons in the 

ventral half of the spinal cord whereas the interneurons are located in between. During 

neurulation, dorsally neural crest cells are formed and specialized glia cells which build the 

midline of the roof plate. The floor plate forms ventrally at the midline by specialized glial 

cells. 

An opposed signaling gradient is patterning the neural tube along its dorso-ventral axis. The 

dorsal signaling center is located in the epidermal ectoderm and roof plate which secrete 

BMPs. The ventral neural tube is patterned by the morphogen Sonic hedgehog (shh) 

released from the notochord and floor plate (Patten and Placzek, 2000; Wilson and Maden, 

2005). 

Since in this thesis just the anterio-posterior patterning will be considered, the dorso-ventral 

patterning will not be explained more in detail. 

 

1.3.3.5 Anterio-posterior patterning of the neural tube  

According to the Nieuwkoop two-step mechanism for neural AP patterning it was suggested 

that 1. anterior neuroectoderm is formed by an activation signal separating non-neural from 

neural ectoderm and 2. patterning of the posterior neuroectoderm by a transformation signal 

which acts in a dose-dependent manner. Various explants and tissue recombination studies   

were performed to identify the “neural transformer”. E.g. in zebrafish non-axial marginal 

tissue was engrafted into the future head region, resulting in ectopic krx20 expression, which 

is a hindbrain marker (Woo and Fraser, 1997). Several studies in Xenopus, chicken and 

zebrafish showed that it is unlikely that FGFs or retinoids (RAs) could initiate posteriorization 

of neuroectoderm (Erter et al., 2001).   

Rather Wnt signaling could be crucial to convey posterior character to a distinct 

neuroectoderm region. This was at first evidenced in the headless mutant, in which the 

repressor of Wnt target genes, T-cell factor 3 (Tcf3) was inhibited (Kim et al., 2000).  

Additionally, by expression of the Wnt antagonist dickkopf 1 (dkk1) in the prechordal plate, 

the future forebrain is protected to become posteriorized. Another Wnt inhibitor, the 

Homeobox gene bozozok, has been shown to limit posteriorization of the neuroectoderm in 

the late zebrafish gastrula. 
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Formation of head structures has been shown to be ongoing with inhibition of Wnt, Nodal 

and BMP - all accessible to be inhibited by Cerberus – a head inducer. A series of 

overexpression studies as well as expression and dominant negative analysis identified 

Wnt8a to be the molecular candidate transforming the posteriorizing information to the 

neuroectoderm. Wnt8 is first expressed in the YSL expressed and in the blastoderm margin 

at early gastrulation stages. At about 70% epiboly Wnt8 expression is restricted to 

ventrolaterally positions (Kelly et al., 1995; Erter et al., 2001). In vertebrates, the genome 

contains to Wnt8 genes – Wnt8a and Wnt8b. In zebrafish, it has been shown to be a 

bicistronic wnt8a encoding both wnt8a transcripts` (Lekven et al., 2001).   

Additionally to the posteriorization of the neuroectoderm, Wnt8 has been shown to initiate the 

placement of the Midbrain-hindbrain boundary (MHB) by initiating the correct expression of 

otx2 and gbx1 (wnt1, pax2 and fgf8 are also involved in MHB development; Rhinn et al., 

2005).  

 

Wnts act as morphogens in a dose-dependent manner and it has recently been shown that 

Wnt8a molecules can be transferred by filopodia from a source cell to a receiving cell (Luz et 

al., 2014; Stanganello et al., 2015) thereby activating the canonical Wnt pathway in the 

receiving Stanganello et al. hypothesized a filopodia-based direct contact model, in which 

transport of Wnt8a on filopodia is required to pattern the zebrafish neural plate (Stanganello 

et al., 2015).  

 

1.3.3.6 Neurogenesis 

Neurogenesis is the process of generating new neurons in the brain. For a long time it was 

assumed that after birth no new neurons are formed. However, this theory was reversed by 

the discovery of the subventricular zone (SVZ) and the subgranular zone (SGZ) of the 

telencephalon as sources for neuronal birth in rodents and non-human primates. The first 

hints about birth of neurons in the adult brain were already mentioned in 1962 by Joseph 

Altman in 1962 and Michael Kaplan 1979, but their thoughts remained controversial until the 

1990s. Nowadays, even more brain locations are known to produce neurons. The formation 

of new neurons in the human brain is still controversial.  

In the zebrafish, the showpiece of proliferation and regeneration, 16 different proliferating 

regions were identified, including the homologous region to SVZ and the SGZ. The ability of 

the brain to change and adapt with experience is known as neuroplasticity. The zebrafish 

brain contains aprrox. 107 neurons (Schmidt et al., 2013). 
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1.3.3.6.1 Proneural activator genes, encoding for bHLH transcription factors 

After the neural induction, proneural genes which encode so-called Class II basic helix-loop-

helix (bHLH) transcription factors play a fundamental role in the decision if a multipotent 

neural stem cell (NSC) undergoes differentiation into a neuronal or glial cell type or self-

renews.  

bHLH transcription factors build dimers with Class I bHLH proteins, or E-proteins. The 

characteristic feature of the bHLH superfamily members are the two highly conserved α-

Helices, which are connected by a loop. In total, the bHLH motif contains approximately 60 

amino-acid residues.  

The basic domain is located at the amino-terminal end and represents the DNA-binding side. 

At this position the transcription factor binds to the DNA of a target gene at the E-Box 

(CANNTG). Thereby, particular bHLH transcription factors can either act as repressors or 

activators. Homo- and hetero-dimeric structures are formed with the HLH domain, located at 

the carboxy-terminal. The variability is due to the enormous combination potential of dimers 

and their binding affinities of the single monomers. 

 

1.3.3.6.2 Activation of neurogenesis by proneural genes – lateral inhibition by 

Notch/Delta signaling 

Neurogenesis is best explained in the fruit fly. In the late 1970s a set of genes was 

discovered in Drosophila melanogaster, regulating early steps of neural development. These 

genes are proneural genes of the so-called achaete-scute complex (AS-C) including achaete 

(ac), scute (sc), lethal of scute (lsc) and asense (ase) and encoding for bHLH transcription 

factors. AS-C factors dimerize with daughterless (DA), a bHLH protein (homologous to the 

vertebrate E proteins. The bHLH depicts a structural motif which is crucial for DNA binding 

and dimerization and is common in AS-C proneural gens. Moreover, another family of 

proneural genes contain atonal (ato) and the related amos (absent MD neurons and olfactory 

sensilla) and cato (cousin of atonal). The ato family members are part of another bHLH 

family, however they show still approx. 45% identity with bHLH domain of AS-C genes and 

70% identity with AS-C themselves (Bertrand et al., 2002).  

 

Vertebrate class II bHLH genes are categorized on their homology to proneural genes of 

Drosophila, depending on if they are inside the AS-C or not. Outside the AS-C they are 

named e.g. atonal, cato or amos. In vertebrates, their homologes belong to Neurogenin 

proneural genes (Neurog1, Neurog2 and Neurog3), Neurogenic differentiation genes 

(NeuroD2, NeuroD4, NeuroD6) and Olig differentiation genes (Olig1, Olig2, Olig3; Wilkinson 

et al., 2013). From the AS-C just Achaete scute-like 1 (Ascl1) is expressed in the developing 

nervous system.  
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On the contrary to invertebrates, proneural genes in vertebrates are expressed in an already 

specified and self-renewing neuroepithelium (Bertrand et al., 2002). The expression pattern 

of many neurogenesis key players - like Delta, Notch, Suppressor of Hairless, and genes of 

the AS-C - has also been characterized in zebrafish. Proneural genes in vertebrates have 

been shown to be highly heterogeneous. E.g. Gain-of-function (GOF) analysis of neurog 

genes have shown that when neurog genes are ectopically expressed in Xenopus or 

zebrafish embryos in the surface ectoderm, this leads to excessively produced NPCs, 

ectopically active notch and enhanced neuronal differentiation. Thus, like in Drosophila, 

ectopic expression or 0 mutations in proneural genes resulted in opposed phenotypes 

(Bertrand et al., 2002).  

Regulation of neurogenesis is achieved by lateral inhibition, mediated by the Notch/Delta 

pathway (Korzh and Strähle, 2002). Notch/Delta signaling differs from other pathways, since 

not just the receptor is a transmembrane protein, but also the ligand. This limits Notch 

signaling to direct cell-cell interactions. On the contrary, in pathways like the Wnt and HH 

pathway, ligands are not membrane bound and act in a diffusible manner.  

In a proneural cluster all proneural genes express Delta at a low dose. When one cell of the 

cluster becomes selected to differentiate into a neuron or glia cell, this selected cell prevents 

the neighboring cells in doing so as well. The prospective neuroblast expresses Delta at a 

higher level than the surrounding cells, thereby initiating Notch signaling in adjacent cells. 

After activation of the receptor notch by the ligand Delta or Serrate/Jagged, the activated 

notch receptor is cleaved two times (and one more time before binding the ligand) until the 

Notch Intracellular domain (NICD) enters the nucleus and starts the expression of repressors 

– Espl genes in Drosophila and homologs Hes/Her in vertebrates (Bertrand et a., 2002).  

Thus, the neighboring cells of the future neuroblast were repressed by lateral inhibition. 

Whereas morphogens like Wnts or Shh acting in signaling pathways cause cellular 

responses by a diffusion gradient (with the highest expression at the source; according to the 

French Flag model by Lewis Wolpert), Notch signaling is regulated by the intensity of 

proneural gene expression in NPCs. 

 

When the prospective neuroblast is irreversible determined, the neural progenitor undergoes 

differentiation. The expression of proneural genes in NPCs is limited, since proneural genes 

are downregulated and NPCs leave the proliferative zone, starting to differentiate. bHLH 

genes have been shown to promote neural differentiation when ectopically expressed, 

although they are expressed later than proneural genes under their transcriptional control. 

Such bHLH genes have been identified in Drosophila and vertebrates (Bertrand et al., 2002). 

In vertebrates, e.g. bHLH genes of the NeuroD family are expressed in immature neurons, 

which in turn activates the expression of markers for early neuronal differentiation, like Elav 
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like neuron-specific RNA binding protein 3 (elavl3; formerly HuC). Absence of Delta and 

Notch leads to a loss of lateral inhibition and overexpression of elavl3 (Park et al., 2000). 

 

Since neurogenins are one of the earliest expressed proneural genes and moreover 

important regulators of neurogenesis, they will be considered in detail. 

 

1.3.3.6.3 Neurogenins 

Neurogenins, transcription factors which also belong to the class II bHLH family, have been 

shown to act as activators of neurogenesis but inhibitors of gliogenesis. Neurogenins own a 

highly conserved bHLH domain. Moreover, they function as heterodimers, by binding through 

their HLH domain to the E-box CANNTG motif. Mouse and human own the neurog homologs 

neurog1, neurog2 and neurog3; the chick has neurog1 and neurog2; the zebrafish neurog1 

and neurog3 and the fly has just Tap (Target of Poxn; Yuan and Hassan, 2014). Whereas 

neurog1 and 2 show partly overlapping expression, activity of neurog3 is different, since it 

was shown that neurog3 is expressed much later, from about 24hpf onwards. Neurog3 

expression was observed in the anterior-ventral diencephalon contributing to the 

hypothalamus (Wang et al., 2001).  

Neurog1 will be focused in detail, since it´s important for this thesis. 

 

1.3.3.6.3.1 Neurogenin1  

Neurog1 represents one of the earliest proneural genes, functioning as activator of 

neurogenesis, but inhibitor of gliogenesis. Since neurog1 acts as an inducer of delta and 

neuroD, it has been shown to be an important player in regulating lateral inhibition and thus 

to be a neuronal determination factor (Wang et al., 2001). 

 

1.3.3.6.3.2 Neurogenin1 expression and function as a proneural activator of 

neurogenesis 

In Danio rerio and Xenopus – neurogenesis starts at the end of gastrulation (about 9hpf in 

zf), at the open neural plate stage. Neurog1 in zebrafish and in Xenopus is expressed in 

primary neurons in the neural plate. In zebrafish, neurog1 expression was shown to partly 

overlap with elavl3 expression (which indicates early post-mitotic neurons). Misexpression of 

neurog1 results in ectopic neurons in the non-neural ectoderm. Moreover, zebrafish neurog1 

is crucial for the development of all cranial ganglia. 

Primary neurons include Rohon-Beard sensory neurons (RBs; Fig.4), primary interneurons 

(PINs) and motorneurons (PMNs). Neurog1 expression appears in three strips, each strip 

containing the precursors of RBs, INs and MNs, respectively.  
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Misexpression of neurog1 leads to ectopic neuron formation in the 

ectoderm and absent RBs (Cornell and Eisen, 2002). Moreover if 

neurog1 function is down-regulated in embryos with absent 

Delta/Notch signaling, trunk neural crest (NC) is restored.  

Hence, neurog1 function is crucial for RB and later on neural crest-

derived dorsal root ganglia ganglion (DRG) formation (although they 

are induced independently), whereas neurog1 was shown to be 

strongly expressed in RBs and later in DRG and just shortly in NC 

(Cornel and Eisen, 2002). RBs develop at the neural plate border 

(NPB) before neurulation in developing anamniote embryos. They 

own some special features, since their cell bodies (which usually 

are found in the PNS) are located in the dorsal region of the spinal 

cord. RBs are innervating the skin of the embryo and are the first 

mechanosensory neurons acting in an embryo. Thus, factors 

involved in RBs` generation are supposed to be the earliest players 

in cell fate specification.  

On the transcriptional level, neurog1 has been shown to be involved 

in RB specification together with dlx3b, dlx4b, neuroD, tfap2a and 

tfap2c. RB specifiers act downstream of the NPB specifier prdm1a, 

which in turn is activated by NPB inducers BMPs and Wnts (Rossi 

et al., 2009). 

Additionally, neurog1 is essential in dopaminergic interneurons for 

specifying dopaminergic progenitors in zebrafish forebrain (Yuan 

and Hassan, 2014). Further on, neurog1 was shown in combination 

with the Notch pathway to regulate her4, which is involved in lateral inhibition in otic 

neurogenesis (Radosevic et al., 2014).  

Besides inhibition of zebrafish deltaA resulted in increased primary neurons and surrounding 

cells persisted as NSCs, neurog1 seems to be a target of Delta- mediated inhibition (Korzh 

and Strähle, 2002). Dominant-negative Delta expression results in absent neurog1 

expression in the neural plate (Korzh and Strähle, 2002). GOF of vertebrate Her/Hes genes 

(inhibitors of neurogenesis), resulted in a downregulation of neurog1 expression, but LOF of 

Her/Hes genes to an increase in neurog1 expression (Schmidt et al., 2013). Additionally, 

neurog1 is involved in determining neural identity in the thalamus, since neurog1 mediates 

generation of glutamatergic neurons in the caudal thalamus (Scholpp et al., 2009).  

Moreover, it was shown that overexpression of neurog induced ectopic expression of elavl3. 

Thus, it was supposed that neurog might be involved in generation of elavl3 precursor cells 

(Kim et al., 1997).  

Figure 4: 

neurog1:RFP 

expression in 

Rohon-Beard 

sensory neurons. 

Visualization of 

neurog1:RFP 

expression in Rohon 

Beard sensory 

neurons in the spinal 

cord at 24hpf. 
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1.3.3.6.3.3 Transcriptional regulation of neurog1 

Due to their complex tissue-specific expression pattern, neurogenins are supposed to be 

regulated by particular cis-regulatory elements, controlling e.g. neurog1 expression in 

primary neurons. Two regions, the lateral stripe element (LSE) and the anterior neural plate 

element (ANPE) were identified upstream of neurog1. Thereby, the LSE is crucial for 

expression in prospective RBs and in the reticulospinal neurons in the spinal cord anlage and 

hindbrain. The ANPE is needed for expression in the ventral caudal cluster in the future 

midbrain, trigeminal ganglia and some scattered nuclei in the anterior hindbrain. Neurog1 

expression in the dorsal telencephalon has been shown to be driven by LSE in zebrafish. 

Moreover, the ANPE contains an E-box enabling the interaction with bHLH factors (Blader et 

al., 2004).  

Furthermore, the more proximally located LATE has been shown to mediate expression in 

the diencephalon and hindbrain. The area of activity of LATE overlaps with that of the paired-

homeodomain transcription factor pax6, thus it seems that pax6 is involved in regulating the 

activity of LATE. It has been shown that pax6 binds to a conserved pax6-binding site in the 

LATE region. By knockdown of both zebrafish pax6.1 and pax6.2 results in a small eye 

phenotype and dramatically reduces endogenous neurog1 and transgene expression. Thus,  

pax6 regulates the activity of LATE directly (Blader et al., 2004).  

Additionally, the zinc-finger transcription factor zic2 and the bHLH factor her5 have been 

shown to negatively regulate neurog1. Zic2 has a repressing function in the longitudinal 

stripes, thereby separating prospective MNs, INs and SNs. Her5 inhibition results in an 

expansion of neurog1 and ectopic formation of a proneural area in the MHB (Blader et al., 

2004). Moreover, the β-catenin/Tcf complex, an intracellular transducer of canonical Wnt, 

promotes neurogenesis by directly binding to neurog1 mRNA, thus leading to transcription of 

the protein (Yuan and Hassan, 2014). 

 

1.3.3.6.3.4 Neurog1 is an inhibitor of gliogenesis 

Neurog1 acts as inhibitor of glial differentiation. On the one hand, if neurog1 is absent, 

precursors might become a glial cell. On the other hand, neurog1 functions independently of 

its proneural activity, since it sequesters the CBP/p300-Smad1 coactivator complex to 

prevent its interaction with STAT glial differentiation factors (Yuan and Hassan, 2014). 

 

1.3.3.7 Inhibition of neurogenesis by bHLH repressor genes: The Hairy/Enhancer of 

Split and Her/Hes family 

bHLH repressor genes demonstrate an antagonizing function to bHLH proneural gens, which 

act as activators of neurogenesis. It would be dramatic if all progenitor cells would 

prematurely develop into neurons only and would be gone prior they have proliferated and 
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developed all required neuronal and glial cell types. Small and deformed brains would be the 

consequence. Therefore, the differentiation potential has to be prevented in some cells, 

thereby maintaining the stem cell pool. Thus, repressors of proneural genes are essential to 

regulate the ratio between selected cells which undergo differentiation and cells which persist 

in the stem cell pool (Philpott, 2010). 

In Drosophila, this bHLH repressors have been identified as hairy and Enhancer of Split 

[E(spl)] and in vertebrates they  are called Her/Hes family, thereby the Hes factors are 

expressed by mammals and Her factors in zebrafish. In zebrafish, her4.1 has been shown to 

act in CNS and MHB and her6 in the CNS; both dependent of notch, whereas her5 functions 

at the MHB and her9 in the CNS, both Notch- independent (Kageyama et al., 2007). 

 

1.3.3.7.1 Structure of bHLH Hes/ Her repressor genes  

The structure of bHLH repressor genes delineates to be more complex than in bHLH 

proneural genes. Hes/ Her factors contain three conserved domains mediating transcriptional 

function. The BHLH, Orange and WRPW domain. Indeed, the BHLH domain owns like bHLH 

activators a DNA binding side and a helix-loop-helix region for dimerization. However, 

Hes/Her factors hold a proline residue in the middle of the basic region. Usually, bHLH 

factors bin to target genes with the so-called CANNTG E-box. Due to the proline residue in 

the E-box however, bHLH repressors bind to other target sequences at the so-called class C 

site CACG(C/A)G or the N box CACNAG with highest affinity. Dimerization is regulated by 

the Orange domain, since it selects partners to form heterodimers. Moreover, the C-terminal 

WRPW domain, which contains the tetrapeptide Trp-Arg-Pro-Trp, is responsible for 

repressing transcription. Hes/Her factors are polyubiquitylated and have short half-lives 

(Jones, 2004; Kageyama et al., 2007). 

 

1.3.3.7.2 Inhibition of neurogenesis by Hes/ Her repressor genes 

The Hes/ Her factors can repress their targets either in an active or passive way. Active 

repression occurs by direct binding of the WRPW domain to co-repressors encoded by the 

Transducin-like E(spl) (TLE) genes/Groucho-related gene (Grg); homologous to Drosophila 

groucho. Probably, the Hes/ Her-Groucho homolog complex represses transcription by 

inactivation of chromatin, like in Drosophila. Passive repression is mediated by the Class C 

site, where other bHLH repressors called Hey (Hes- related with YRPW mitif1) can bind, like 

Hey1 and 2. Thus, heterodimers are formed (bHLH factors can also build homodimers). 

Hence, Hes/ Her factors mediate a dominant-negative effect on E-box binding bHLH 

activators (Kageyama et al., 2007). The Hes/ Her genes (or hairy E(spl) in Drosophila) are 

expressed in cells with active notch signaling and inhibit neurogenesis, thus maintaining 
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some cells in the progenitor pool. Hes/ Her factors target members of the achaete-scute-like 

complex genes, thereby repressing them.  

In zebrafish, her3 and her9 are expressed in inter-proneuronal domains, where they repress 

proneural genes like neurog1. Her3 and her9 are Notch independent. Rather they are 

controlled by upstream located factors, including BMPs, thus controlling neurogenesis in 

inter-proneuronal domains (Bae et al., 2005). 

 

1.3.3.7.3 Hes/ Her genes regulate boundary formation 

By expression of Hes/ Her proteins in some cells, these cells reside in the stem cell pool. The 

regulation which cells are allowed to differentiate into a neuron or glia cell type and which 

remain stem cells plays an important role in boundary formation by maintaining organizer 

populations. Hes/ Her proteins have been shown to be crucial for the organizer formation of 

the zona limitans intrathalamica (ZLI), the boundary between the thalamus and the 

prethalamus and the located at the midbrain-hindbrain boundary (MHB) between the 

midbrain and the hindbrain (also called isthmus; Scholpp et al., 2009).   

Her5 in zebrafish has been shown to function in the MHB by repression of neurogenesis 

independently of Notch signaling (Geling et al., 2003). Moreover, her6 plays an essential role 

in thalamus development. It was shown that when her6 is absent, glutamatergic neurons are 

formed, initiated by premature neurog1. GOF of her6 leads to Ascl1- mediated GABAergic 

neurons (Scholpp et al., 2009).  

Boundary formation requires some special features of neuroepithelial or radial glial cells, 

respectively; e.g. slowed down proliferation and delayed or absent neurogenesis. In two 

adjacent compartments (with a boundary region in between), a higher expression of a Her/ 

Hes gene in one compartment and a lower expression of Hes/ Her in the other compartment 

has been shown, thus oscillating in these cells; e.g. Hes1 expressing cells. Proneural genes 

are ectopically expressed in boundaries when Hes genes are absent. Hence, organizer 

activity is lost due to ectopic neurogenesis. In zebrafish, her3 and her5 inhibit neurogenesis 

and are involved in MHB formation (Kageyama et al., 2007). Cell migration occurs only within 

a compartment, thereby cells don’t cross the boundary between two adjacent compartments 

(Kiecker and Lumsden, 2005).  

 

1.3.4 SOXB1 family members are essential for inhibition of neurogenesis and 

maintenance of the stem cell pool by regulation of pou5f3 (Oct3/4) expression 

The SOX genes encode for a group of transcription factors which share a HMG-type (high 

mobility group) box, responsible for DNA binding. Members of the Sox family are highly 

conserved among vertebrates.  
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Beside the SoxB family, also SoxC,D,E and F are existing and involved in neurogenesis and 

gliogenesis (reviewed in Reiprich and Wegner, 2015); but only the SOXB family will be 

considered.  

SoxB genes are subdivided in SoxB1 (containing Sox1-3) with an activator function and 

SoxB2 (Sox14, Sox21) with a repressor function (Karnavas et al., 2013). The B1 SOX 

transcription factors are involved in several steps during embryonic development. 

In zebrafish the SoxB1 family includes sox1a/1b/2/3/19a/9b. Recently, the role of these 

zebrafish SoxB1 family members was investigated by quadruple knockdowns of 

sox2/3/19a/9b which evidenced a redundant function in early development. Whereas 

sox3/19a/9b is expressed in the entire blastoderm at first, expression progressively 

disappears at the margin after 30% epiboly. At the shield stage, sox2/3/19a/9b is expressed 

in the prospective ectoderm and then in the future neuroectoderm. E.g. it was shown that B1 

genes in the blastula are involved in the regulation of bmp2/7 regarding dorso-ventral 

patterning. Moreover B1 sox regulates the expression of pcdh18a/b and non-canonical wnt11 

which in concert acts during gastrulation in convergence and extension (C&E) movements.   

During neurogenesis, SoxB1 members regulate Hes/Her bHLH repressors and the activation 

of region- specific transcription factor genes; e.g. zic1. Additionally, many signaling pathway 

genes need SoxB1 for their expression; e.g. oep in nodal signaling.  

Quadruple knockdown of sox2/3/19a/9b resulted in absent neurog1 (a bHLH proneural 

activator) and her3 expression (a bHLH repressor). However, ascl1a was upregulated 

broadly at 75% epiboly in the neuroectoderm. Hence, a precise interaction of neuronal 

differentiation programs, including bHLH genes and regulatory networks is enormously 

influenced by B1 sox. Additionally, an involvement of the SoxB2 subgroup in the continuing 

neurogenesis was mentioned. Sox14 and Sox21 own repressor functions. Sox21 may 

antagonize activity of SoxB1 proteins, allowing cells to progress into mature neurons 

(Wegner, 2011).  

Additionally, interaction of B1 SOX proteins with octamer binding transcription factor (Oct) 

3/4 (pou5f3 in zebrafish) was mentioned in activation of transcriptional repressor genes 

which inhibit further differentiation of NPCs (Okuda et al., 2010). An important feature of B1 

SOX is the interaction with co-DNA binding partner factors to specific sequences, thus they 

are involved in the regulation of various cell states (Okuda et al., 2010). The SOX2-Oct3/4 

complex was identified to perform an enhancer activity, thereby regulating the expression of 

pluripotent stem cell specific genes like Nanog, Oct3/4 and Sox2 itself (Masui et al., 2007).  
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1.3.4.1 The role of Sox2 

The most prominent member of the B1 Sox family is surely Sox2 (Sex determining region Y-

box 2). Sox2 is crucial for the generation of embryonic stem cells (ESCs), maintaining their 

pluripotency and guaranteeing their self-renewal (Wegner, 2011; Karnavas et al., 2013). 

Moreover, initially Sox2 was shown to reprogram already differentiated cells (mouse 

fibroblasts) to induced pluripotent stem cells (iPSCs) in concert with Oct3/4,c-Myc, and Klf4, 

under ES cell culture conditions. The iPSCs showed characteristics of ESCs and expressed 

specific markers (Takahashi and Yamanaka, 2006). Following studies indicated that not all of 

these factors are required, e.g. c-Myc is not needed (Mauksch et al., 2013). Even Sox2 alone 

might be sufficient to reprogram cells to a pluripotent state, as it was shown by induction of 

NSCs from mouse fibroblasts on a mitotically inactive feeder layer (Ring et al., 2012); thus 

Sox2 might be a master regulator for reprogramming to a neural precursor state (Graham et 

al., 2003; Mauksch et al., 2013).  

Sox2 is expressed in the prospective ectoderm and later on strongly in the neuroectoderm 

and in NPCs. In some NPCs it can be found as well in neurogenic niches of the adult brain. 

During the final cell cycle exit and shortly before differentiation, Sox2 is down-regulated in 

NSPCs and thus not anymore expressed in immature neurons. Hence, Sox2 is essential for 

the maintenance of NSC properties in functions, thereby interacting with various pathways, 

like Shh and Notch signaling. Overexpression leads to the persistence of precursor cells and 

blocked up-regulation of neuronal markers, whereas overexpression of dominant-negative 

Sox2 resulted in cell-cycle exit of cells and prematurely differentiation. At this point, it has to 

be mentioned, that (at least in mammals) ESCs switch on Sox3 and Sox1 when receiving the 

neural lineage, thus a redundant function of Sox2, Sox1 and Sox3 has to be considered 

(Wegner, 2011; Karnavas et al., 2013).  

Notably, only a knockout of Sox2 results in embryonic lethality, whereas knockdown of Sox1 

or Sox3 caused only mild abnormalities. A Sox2 knockdown in zebrafish depicted mild 

malformations (Zhang and Cui, 2014).  

In summary, Sox2 is a key transcription factors in embryogenesis, thereby involved in 

various processes. Sox2 (like other Sox members) mediates its regulatory function by 

binding an interaction partner, e.g. Oct4. Together with Oct4, Sox2 initiates other factors to 

activate pluripotent gene expression. Moreover, Sox2 in involved in neural induction and the 

maintenance of NPC characteristics during neural differentiation. Sox is not anymore 

expressed in immature neurons. Extrinsically, Sox2 is affected e.g. by the Notch and Shh 

pathway (Zhang and Cui, 2014).  
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1.3.5 Maturation of neurons 

During the establishment of the CNS, selected NPCs differentiate into neurons or glial cells 

like astrocytes and oligodendrocytes, whereas other NECs self-renew and reside in the stem 

cells pool. Maturation of neurons is mediated by two different steps, the specification and the 

commitment step. 

The specification step occurs in the ventricular zone (VZ). There cells with up-regulated 

Notch receptors remain as NSCs, whereas cells with down-regulated Notch receptors up-

regulate Notch-ligands followed by proneural bHLH genes, thereby progressing to terminal 

differentiation. In the intermediate zone (IZ), during the commitment step, downstream 

factors like NeuroD are switched on and cells terminally differentiate. Sox1-3 have been 

shown to prevent neuronal commitment and hence differentiation (Karnavas et al., 2013).  

E.g. during mouse neurogenesis, the so-called radial glial cells (RGCs), bipolar cells with the 

cell body located in the VZ and the radial fibers contacting the apical VZ and the pial surface, 

serve as scaffold for neurons to migrate. RGCs are multipotent and able to generate neurons 

as well as astrocytes and oligodendrocytes. When neurogenesis starts, the RGCs produce 

mostly asymmetric divisions in the VZ, to generate a RG daughter cell and either a neuron or 

an intermediate precursor cell (IPC). The SVZ is formed by IPCs, which divide there 

symmetrically to generate two or four neurons. Terminally differentiated neurons are located 

in the cortical plate (CP) (Lodato et al., 2014). Moreover, in mouse ESCS it was shown that 

neuroectoderm to radial glia progression is mediated by a Sox1 to Pax6 switch (Suter et al., 

2009). Furthermore, a crucial mechanism of RGC division is the so-called Interkinetic nuclear 

migration (INM), mediated by apical-basal-apical cycling of the nucleus throughout the cell 

Cycle (e.g. Nulty et al., 2015; Miyata et al., 2015). 

 

Other important players regulating the renewal of stem cells (SCs) and progenitor cells (PCs) 

and moreover cell fate determination are the Wnt ligands. Wnt members control the 

patterning of the body axes, cell fate specification, cell proliferation, and cell migration 

(reviewed e.g. in Clevers et al., 2014), thus Wnt signaling depicts one of the most important 

molecular machineries in embryonic development – besides Notch, TGF-β,-BMP, Hedgehog 

and Receptor tyrosine kinases. Hence, studying Wnt signaling has a huge impact on 

research since several decades.  

1.4 The Wnt family 

Proteins of the Wnt family are highly conserved across species like human, mice, Xenopus, 

zebrafish and the fruit fly. Wnts are secreted lipid-modified signaling glycoproteins that are 

350–400 amino acids in length. Special lipid-modifications like palmitoylation and 

glycosylation are required for proper secretion.  

https://en.wikipedia.org/wiki/Cell_differentiation
https://en.wikipedia.org/wiki/Cell_proliferation
https://en.wikipedia.org/wiki/Cell_migration
https://en.wikipedia.org/wiki/Lipid
https://en.wikipedia.org/wiki/Glycoproteins
https://en.wikipedia.org/wiki/Amino_acids
https://en.wikipedia.org/wiki/Palmitoylation
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Mutations in Wnts can have tremendous effects; e.g. GOF mutation can result in an 

oncogene and a LOF mutation may revoke the inhibitory effect of a tumor suppressor gene 

(Klaus and Birchmaier, 2008). 

The discovery of mammalian Integrated1 to be associated to a mouse mammary tumor virus 

(MMTV) (Nusse and Varmus, 1982) and the description of a mouse mutant swaying, lacking 

the anterior cerebellum (Lane, 1967) was shown to be a mutant of the allel Int1 (Thomas and 

Capechhi, 1990; Thomas et al., 1991). Moreover, a mutant in Drosophila, characterized by 

missing the wings was named as Wingless (Wg) in 1973 (Sharma, 1973) and turned out to 

be the homolog of mammalian Int1 (Rijsewijk et al., 1987; Cabrerea et al., 1987) (both 

together nowadays known as Wnt1), meant one of the early key discoveries in Wnt research.  

Whereas initially Wnt signaling was just related to embryonic development for about one 

decade, failure in Wnt signaling was afterwards linked to play a role in human cancer. 

Originally, Wnt signaling was categorized in canonical (β-catenin dependent) and non-

canonical (β-catenin independent). However, it has been shown that canonical Wnt ligands 

can also induce non-canonical Wnt signaling and the other way round (reviewed in Mikels 

and Nusse, 2006). Wnt1, Wnt3a and the already introduced Wnt8a are more related to the 

so-called canonical Wnt pathway. Additionally, e.g. the Wnt polarity (PCP), Wnt-Ca2+, and 

Wnt-atypical protein kinase C pathways are known as β-catenin independent or non-

canonical Wnt pathways, with e.g. Wnt5a and Wnt11 as ligands. 

 

Today, 19 different Wnt ligands are known in zebrafish. Moreover, the frizzled receptors and 

the LRP5/6 co-receptors, located in the plasma membrane, have been associated to Wnt 

signaling. Inhibitors like secreted frizzled-related proteins (SFRPs), Dickkopfs (DKKs) and 

the Wnt inhibitory factor have been identified (Klaus and Birchmaier, 2008). 

In this thesis just the canonical pathway will be considered. 

1.4.1 The canonical Wnt signaling pathway 

In a Wnt off state (Fig.5), cytoplasmic β-catenin is bound to the destruction complex, 

interacting with APC and axin. The casein kinase 1α (CK1α) and GSK3β mediates N-

terminal phosphorylation of β-catenin. Afterwards, β-catenin becomes degraded by the 

proteasome, by involvement of βTrCP- (β-transducin repeat-containing protein), which is 

related to the E3 ubiquitin ligase complex. Hence, β-catenin levels are low in the cytoplasm 

and during the off state. In the nucleus, the transcription factors LEF and TCF interact which 

groucho repressors to inhibit expression of Wnt-specific target genes. 

In the Wnt on state, phosphorylation of the co-receptors LRP5/6 is mediated by CK1γ and 

GSK3β, which leads to recruitment of Dishevelled to the plasma membrane, where it 

interacts with Frizzled receptors and polymerizes with other Dishevelled molecules.  
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The formation of the Dishevelled polymer, LRP5/6 phosphorylation and moreover 

internalization with caveolin result in transfer of axin to the plasma membrane and 

inactivation of the plasma complex. This leads to cytoplasmic stabilization and translocation 

of β-catenin to the nucleus, where it forms a transcriptionally active complex with LEF and 

TCF transcription factors by displacing Grouchos and interacting with other co-factors, finally 

activating transcription of Wnt target genes, e.g. the protooncogene c-Myc (Klaus and 

Birchmaier, 2008). Furthermore, it has been shown that Wnt/β-catenin signaling mediates 

neural differentiation by activation of the neuron-specific transcription factors, neurog1, 

NeuroD and brain-specific homeobox/POU domain protein 3A (Brn3a) in the CNS (Kondo et 

al., 2011). 

 

 

The impact of Wnt signaling (and many other pathways) on the embryonic development of an 

organism and moreover its correlation to diseases (mainly cancer) was extensively studied in 

vivo (e.g. reviewed in citation) and offers still great research potential. Thereby, model 

organisms like the mouse, chicken, frog or the zebrafish are useful tools, since they own all 

essential natural conditions for normal embryonic development. Although an embryo is a 

well-organized system, it is very complex. In an in vivo scenario, immense interactions of 

genetic regulatory networks, cell-cell communications, cellular migration-and differentiation 

Figure 5: Simplified scheme of the Canonical Wnt pathway. In the off-state, β-catenin is degraded 

by the destruction complex. When the ligand Wnt binds to the Frizzled receptor and LRP5/6 

coreceptors, this leads to the recruitment of Dishevelled and destruction complex to the membrane, 

resulting in an inactivation of the destruction complex, thereby stabilizing β-catenin. Accumulated β-

catenin enters nucleus, binds TCF/LEF and activates target gene transcription.  
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steps and many influencing cues often hinder to elucidate particular developmental 

processes. E.g. the formation of the neural plate is induced by an interplay of signals from 

the underlying mesoderm. Therefore, in vitro systems are more suitable to add either 

chemical or molecular cues in a controlled way and to study their effect on the (single) 

cellular level, in a simplified environment more precisely. 

 

1.5 Cell culture systems 

 
1.5.1 The innovation of cell culture systems and it´s role for research and medicine 

Since the last century until present, researchers try to establish a method to cultivate cells 

outside of an organism, thereby bothering to create conditions which mimic the natural 

environment of a cell. The establishment of cell culture systems over the years was 

influenced by continuously improved cultivating conditions, contributing to the immense 

progress which was made in stem cell research. The isolation and cultivation of pluripotent 

ESCs from mouse and human blastocysts and the generation of iPSCs from somatic cells 

depicted cutting-edge innovations, since they enabled access to unlimited cell material 

(Takahashi and Yamanaka, 2006). Thereby, the latter was enormously meaningful, since 

iPSC are unproblematic concerning ethical aspects. Hence, resulting in a tremendous 

influence and improvement on developmental and cellular studies as well as tissue 

engineering and regenerative medicine (Ader and Tanaka, 2014). 

 

1.5.2 2D vs. 3D Cell Culture Systems 

Nowadays an overwhelming variety of cell culture systems (CCS) is available for research. 

Surely, there is not “the one” CCS existing, which perfectly satisfies researchers needs. The 

choice to apply a certain CCS strongly depends on the researcher’s interest. 

A major impact on the improvement of CCS over time was provided by the development of 

proper differentiation protocols for stem cells in vitro. In this thesis, the main focus relies on 

the establishment of stem cells towards neural lineages. Besides offering cells the proper 

conditions required to differentiate into the cell type of interest, many other components 

influence the behavior of cells. Cell fate decisions depend on the environment which is 

surrounding a cell, provided soluble factors, the connection to the ECM or substrate, the 

interaction between cells, mechanical forces and the curvature of a cell. All this factors vary 

between 2D and 3D cell culture and can influence cell behavior and gene expression.  

Over time, 3D CCS interspersed, since 3D CCS resemble more the in vivo scenario 

(Altmann et al., 2009; Bosi et al., 2015). Thus, they are applied preferentially.  
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1.5.3 Soluble factors provide the differentiation towards neural lineages 

Nowadays, neural differentiation protocols are well-engineered. Cells can be differentiated in 

a defined manner from the stem cell state towards specific neuronal and glial subtypes of 

forebrain, midbrain/hindbrain and spinal cord by addition of particular cues, referring to the in 

vivo scenario (reviewed e.g. in Petros et al., 2011). 

 

Neural differentiation protocols are continuously in progress, with the aim to establish most 

minimalistic approach sufficient for neural differentiation, thus simplifying the CCS as much 

as possible.  

Key factors, known to be involved in neural induction have been shown to promote 

conversion of stem cells towards a neural progenitor fate. Addition of so-called small 

molecules, e.g. Wnt/BMP antagonists and FGF factors under serum free conditions leads to 

the development of NPCs. Moreover, e.g. inhibition of SMAD signaling and of the GSK-3β 

have been used for highly efficient neural differentiation of hESCs and iPSCs: Thereby 

SMAD signaling was inhibited by usage of the activin-like kinase (ALK) 4,5,7 inhibitor SB-

431542 (NI) together with noggin, (Chambers et al., 2009) and GSK-3β inhibitor CHIR99021 

(CHIR) (Laedwig et al., 2012).  

The NI represents a favored tool regarding neural differentiation (programming) and is of 

great interest in this thesis. The NI be considered in detail in the results part. 

 

1.5.4 Cell topography  

The topography of a cell has an immense impact on the connection between the cell and the 

extracellular matrix (ECM). The curvature between 2D and 3D cultivated cells differs 

enormously, resulting in an altered mechanical forces between cells and at the cell-ECM 

interface. In 2D, actin stress fibers and focal adhesions are located at the basal side of a cell 

and contractile forces to the surface and surrounding cells. In 3D, stress fibers are limited. 

Moreover, the variable arrangement and clustering of membrane receptors leads to changed 

cell responses and finally gene expression might be varied (Schwartz and Chen 2013).  

Cells in 2D grow as a flat monolayer with a fixed apical-basal polarity, whereas apical is 

facing the media supply where soluble factors are diluted and basal points towards a 

supportive surface below. 2D cells persist of a single plane of cells and thus a fixed height. 

Thus, interactions between neighboring cells are limited to the periphery of a cell. In a 3D cell 

culture, e.g. in a hydrogel, cells form spheroid structures in which epithelial cells are 

completely surrounded by ECM, the apical side is facing the lumen and basal is located 

outside. Soluble factors are enriched to the limited space in the lumen. Depending on the 

CCS, the arrangement of cells is more flexible in 3D, enabling the cells to generate multi-

layered tissue like structures, thus enhanced contact possibilities are offered all around a 
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cell, resulting in increased intercellular signaling. In 3D, cell receptors and adhesion 

molecules are arranged more naturally (Baker and Chen, 2012; Schwartz and Chen 2013; 

Knight and Przyborski, 2014). 

 

1.5.5 The substrate mimics the natural ECM  

The substrate on which cells attach has a great impact on cell differentiation and has been 

shown to be variable in stiffness, topography and geometric confinement. ECM stiffness can 

influence the cell fate. E.g. the neural ECM of the brain with a stiffness of 0,1 to 1 kPA 

supports the differentiation of mesenchymal stem cells to neurocytes (Engler et al., 2006; Lv 

et al, 2015).  

The neural ECM, which is of great interest in this thesis, depicts a dense substrate which can 

be found in brain and spinal cord tissue, filling up the space between neurons and glia. The 

neural ECM owns special components, since it is enriched in glycoproteins and 

proteoglycans, with a backbone created by hyaluronan. The ECM is connected to the 

basement membrane and constitutes the environment of blood vessels, diffuse interstitial 

matrix and the so-called perineuronal nets (PNNs) which surround the cell soma, proximal 

dendrites and axon initial segments of some neurons. Major components of the basement 

membrane include laminin, fibronectin and collagen IV. The densely structured PNNs consist 

mainly of chondroitin sulphate proteoglycans (CSPGs), Heparan sulphate proteoglycans 

(HSPGs), Tenascin and linker proteins (Latimer and Jessen, 2010; Giamanco and Matthews, 

2012; Soleman et al., 2013; Burnside and Bradbury, 2014). 

 

Since laminin-1 and fibronectin are of special interest in this thesis, just these two 

components will be considered.  

 

1.5.6 Laminin 

Laminins are heterotrimeric glycoproteins, characterized by different α, β and γ subunits and 

15 specific laminin isotypes in total. Laminin chains display a T-shaped structure and bind 

mainly to integrins, the non-integrin syndecans, dystroglycans and Lutheran blood group 

glycoprotein receptors. Laminins are essential for basement membrane assembly, migration 

and axonal pathfinding (Hohenester and Yurchenco, 2013; Burnside and Bradbury, 2014). 

 

1.5.7 Laminin-1 

Laminin-1 is responsible for permissive outgrowth by binding to growth cone integrins. A 

knockout of γ1 laminin in the mouse cerebral cortex has been described to result in altered 

neuritogenesis and neuronal migration and thus failure in cortex formation and axonal 

pathfinding (Chen et al., 2009).  
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Moreover, it has been shown that laminin-1 seems to be limited to epithelial basement 

membranes. If either FGF signaling, β1-integrin or laminin γ1 chain expression are prevented 

in ES cells, this results is the absence of laminin-1, which is ongoing with defect BM 

assembly and epiblast differentiation (Ekblom et al., 2003). 

In the zebrafish, laminins have been shown to be essential for notochord formation, since the 

laminin mutants named bashful (bal; lama1), grumpy (gup; lamb1), and sleepy (sly; lamc1), 

have been identified due to their reduced body length and defects in notochord differentiation 

(Parsons et al., 2002; Biehlmaier et al., 2007). Moreover, the establishment of the zebrafish 

MHB constriction requires laminin-dependent basal constriction (Gutzman et al., 2008). 

 

1.5.8 Fibronectin 

Fibronectin consists of three individual tandem repeats (I, II, III) and thus depicts a large 

dimeric protein. These tandem repeats contain functional domains which enable, like laminin, 

polymerization and interaction with cell surface receptors and other factors of the ECM. 

Fibronectin is also an important component of the developing CNS, suggested to be involved 

in adhesion, migration, proliferation and axon elongation. Additionally, fibronectin modulates 

the guidance function of CSPGs (Pankov and Yamada, 2002; Burnside and Bradbury, 2014). 

Inactivation of fibronectin in the mouse was shown to result in embryonic lethality (George et 

al., 1993). 

Laminin and fibronectin have been shown to be established in the basement membrane early 

during gastrulation (Latimer and Jessen, 2010). How different substrates provide ECM 

conditions in vitro and moreover how substrate topography and geometric confinement 

contribute to cell differentiation will be mentioned in relation to the corresponding CCS. 

1.5.9 2D Cell Culture Systems 

1.5.9.1 Feeder-free and feeder based substrates 

Cultivation of cells in vitro started over a century ago, (Carrel, 1912; Harrison, 1914) by 

usage of glass dishes. Nowadays, the application of 2D cell culture on glass and tissue 

culture plastic (with minimal changes) is still common. However, as already mentioned, 

monolayer culture conditions have been shown to be artificial (Schwartz and Chen, 2013; 

Hazeltine et al., 2013; Knight and Przyborski, 2014; Shao et al., 2015).  

2D CCS can roughly be categorized in feeder-free and feeder-based platforms. Initially, 

isolated human ESC colonies were plated on a feeder layer of mouse embryonic fibroblasts 

(MEFs), maintaining self-renewal and pluripotency in vitro (Thomson et al., 1998; Amit et al., 

2000). However, due to immunogenicity, viral transmission and inconstant culture conditions 

(Villa-Diaz, 2013), recently a method was generated to separate feeder cells from hESCs by 

application of a porous membrane. Thus enabling interactions between hESCs and MEFs, 
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but decreased contamination from MEFs (Shao et al., 2015). Moreover, in the classic two-

step neural induction protocol, EBs derived from murine and human ESCs were formed at 

first and afterwards they were plated on an adhesive substrate like MEF cells.  By addition of 

fibroblast growth factor 2 (FGF2) into the medium, cells differentiated into NSCs and formed 

so-called neural rosettes (Zhang et al., 2001). Further addition of epidermal growth factor 

(EGF) lead to a cell population called NSCFGF2/EGF , which lost the rosette shape and owned 

characteristics similar to the radial glia-like phenotype described in a fetal NSC population by 

Conti and colleagues. (Conti and Cattaneo, 2010; Conti et al., 2005). These cells display 

posterior identity similar to an anterior hindbrain fate, which might be caused by the 

posteriorizing effect of FGF2. Furthermore, the cells are suitable for long-term culture (long-

term neuroepithelial stem cells; lt-NES), (Karus et a.,2014). 

However, the described neural shapes are too unstructured, due to their heterogeneous 

randomly mixed cell population and sphere-like structure. 

 

Progress has been made establishing functionalized 2D surfaces with naturally derived 

proteins or synthetic polymers (Villa-Diaz et al., 2013). The first feeder-free culture system 

was generated by application of a Matrigel (secreted by Engelbreth-Holm-Swarm sarcoma 

cells and consists of ECM proteins like laminin, collagen IV and HSPGs) for coating of 2D 

culture surfaces, thereby improving hPSCs renewal under MEF condition medium (Xu et al., 

2001). Additionally, components of ECM proteins were integrated into synthetic polymers, 

mimicking the natural ECM. Furthermore, pure synthetic polymers with fully defined surface 

chemistry were developed for long-term self-renewal of hPSCs. Another method to modify a 

surface for 2D cell culture has been achieved by Oxygen plasma or UV ozone treatment, 

respectively (Shao et al., 2015).  

 

1.5.9.2 Substrate stiffness, substrate topography and geometric confinement 

Further on, referring to the variable mechanical stiffness of certain tissues in the embryo in 

space over time, mechanical stiffness was mimicked in vitro, regulating hPSC differentiation. 

It has been shown that hPSCs cultured on soft substrates developed a neuroepithelial fate 

with strongly expressing paired-homeodomain transcription factor 6 (pax6), whereas a stiff 

substrate resulted in mixed neuroepithelial and neural crest cells (AP2; Shao et al., 2015). 

The neural ECM of the brain has been shown to range between 0,1-1 KPa (Engler et al., 

2006; Lv et al., 2015). Moreover substrate nanotopography has been shown to influence cell 

differentiation. hPSCs cultivated on smooth glass showed strong self-renewal by enhanced 

pou5f3 (an Oct4 homolog) expression, whereas hPSCs grown on nanorough glass depicted 

a higher differentiation rate (Shao et al., 2015).  
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Furthermore, spatial cell fate patterning was mimicked in vivo by cultivating hPSCs in 

patterned adhesive ECM islands, resulting in patterned expression of pluripotency markers, 

with an increased expression from inside to outside. Additionally, when BMP4 was provided 

as external cue, hPSCs spontaneously built “germ-layer-like structures (Warmflash et al., 

2014).  

Thus, 2D CCS have been shown to be suitable for long-term self-renewal and large-scale 

expansion of hPSCs and moreover directed differentiation towards specific lineages. 

However, 2D CCS are limited since resembling an artificial environment and cannot cope 

with 3D CCS in this regard. 

1.5.10 3D Cell Culture Systems 

3D CCS can be subdivided in scaffold-based and scaffold- free platforms.  

 

1.5.10.1  Scaffold-based technologies 

3D substrates consists either of natural or synthetic components. Natural biomaterials often 

include ECM components like fibrin and hyaluronan and moreover naturally derived silk, 

gelatin and alginate. Advantageous features of these materials are their biocompatibility and 

cell adhesion sites, as well as their biodegradability. The latter may be useful for tissue 

engineering, however depicts a disadvantage for cell culture, due to being a variable factor. 

On the contrary, synthetic materials provide more stable conditions like a defined chemical 

composition and mechanical properties can be modified. Synthetic substances include e.g. 

polymers, titanium, bioactive glasses and self-assembled peptides. The main advantage of a 

synthetic-based scaffold is the reproducibility, inertness and non-degradability. However, 

cellular adhesion sites are missing, thus a coating with ECM proteins might be necessary to 

imitate the natural environment of the cells.  

Scaffold-based 3D systems can further on be subdivided roughly in hydrogels and solid 

substrates. Hydrogels provide a loose scaffold network, containing naturally-derived 

substances collagen, agarose, fibrin, hyaluronan and a high water content. Within hydrogels, 

cells are either embedded in an artificial ECM protein environment, or enabling the cells to 

migrate towards the inner-most region of the gel. By integration of biologically active 

molecules the ECM might by modified. Encapsulation of cells occurs by either radical 

polymerizations due to UV exposure, self-assembly of cells or ionic cross-linking.  

Moreover, it has been considered, that using a single ECM component in the hydrogel is not 

sufficient, as it has been shown in comparison to application of a commercial Matrigel, 

containing various ECM components. Loss of a proper ECM environment can lead to 

alteration of cell proliferation, adhesion and phenotype regulation. 
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Furthermore, a solid scaffold enables cells to form as an organized structure, in a 

controllable and reproducible way. Porous scaffolds have been shown to support e.g. the 

formation of epidermal-like structures (Knight and Przyborski, 2014). 

In a study, in which a stiff scaffold was combined with a softer ECM gel containing collagen 

and silk-fibroin bases biomaterials cortical brain like tissue was generated. Thereby, the stiff 

scaffold mediated neuronal anchoring and the softer ECM gel enabled axon penetration and 

connectivity (Tang-Schomer et al., 2013).  

Moreover, the patterning of a neural tube was reconstructed in 3D. Mouse ESCs were 

directly embedded in matrigel or synthetic matrices (providing a scaffold) and cells were 

cultivated under neural induction conditions, forming clonally neuroepithelial cysts with a 

single lumen. By addition of retinoic acid, a complete dorso-ventral patterning was achieved 

(Meinhardt et al., 2014).  

 

Furthermore, with the so-called direct laser writing (DLW) photopolymerization technique, 

tailored 3D scaffolds can be generated. By usage of different polymers with a variation in 

mechanical features or adjustment of scaffold sizes, the microenvironment can be defined 

precisely in regard to stiffness and additionally biofunctionalized. Thus, the effect of stiffness 

and ECM factors on cells can be investigated in this system (Greiner et al., 2015). 

 

1.5.10.2 Scaffold- free platforms 

3D CCS like low adhesion plates, micropatterned surfaces and hanging drop assays refer to 

this category. Scaffold-free platforms are characterized by the formation of mainly multi-

cellular aggregates, also called spheroids, or embryoid bodies (EBs) regarding to in vitro 

differentiation of stem cells. Within these structures, the cells build their own matrix 

components. Spheroid structures are formed by the so-called hanging drop technique or low 

adherence substrates.  

Within a hanging drop system, cells are cultured in a drop of media which is hanging on the 

lid of a cell culture dish. A main feature of this technique is the inability of cells to adhere at 

the surface. Thus, they form clumps. The hanging drop method is suitable for long-term cell 

survival, maintenance of the bone marrow stromal SCs and homogenous differentiation. 

Moreover, the generation of EBs is of special interest for stem cell biology to differentiate 

stem cells in vitro. EBs have been demonstrated to form as morula or blastula- like 

structures, however, this is hindered by the problematic long-term maintenance of EBs. 

Disadvantages of the hanging drop technique are the limited nutrient and gas diffusion as 

well as complicated media exchange, thus resulting in necrosis. Moreover, when EBs are 

formed using other techniques, it has been shown that the size of the EB can influence cell 

differentiation.  
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E.g. it has been shown that EBs with a diameter of 450µm mainly differentiated into cardiac 

cells, whereas EBs with 150µm diameter adopted an endothelial fate (Burridge et al., 2007; 

Ungrin et al., 2008).   

Another method for the generation of EBs is the cultivation in a 3D microwell array, which 

enables the formation of uniformly sized EBs in a high throughput assay and moreover 

showing once more that cell-cell contact is altered in 3D (shown by modulation of Wnt/β-

catenin signaling (Azarin et al., 2012).  

Furthermore, EBs can be formed in a free-floating 3D suspension culture. However, EBs 

were not suitable to investigate formation of lineage-specific histoarchitecture, since they 

consist of cells from all germ layers.  An important invention for the formation of neural 

structures was the introduction of serum-free suspension culture, which mediates the 

formation of specific regional identities (e.g. dorsal telencephalon) by adding morphogens 

implied a meaningful progress (Watanabe, 2005). The so-called serum-free floating culture of 

embryoid body-like aggregates (SEFB) protocol was further optimized by using ultralow-

attachment 96-well plates to control EB size by quickly reaggregation (SEFBq) dissociated 

ESCs into an EB-like structure. Addition of Wnt and TGFβ inhibitors resulted in the 

generation of polarized cortical epithelia in a temporally controlled manner, mimicking 

corticogenesis in vivo, although stratification was not achieved sufficiently with the SFEBq 

technique (Eiraku, 2008). A disadvantage of the SFEBq system is the difficulty of avoiding 

fusion of cellular aggregates during cultivation, resulting in variation of quality in different 

aggregates.  

 

On the contrary to the described passive cultivation systems, active systems, like microfluidic 

devices are connected to a bioreactor, which continuously provides the cell culture with fresh 

medium and nutrients. A microfluidic device consists of mostly several channels of 

micrometer scale dimensions, filled with a volume in the nanoliter range. Microfluidic devices 

provide a stable and spatially, chemically and temporally controllable microenvironment. 

Microfluidic devices are applied e.g. to study brain cells and circuits (Millet and Gillette, 

2012). Moreover, complex co-culture assays can be established in microfluidic devices, 

controlling various parameters like oxygen partial pressure, pulsation of fluid flow, critical flow 

velocity and support of the media. Microfluidic devices are used to mimic e.g. stem cell 

niches and enable long-term culture of cells (Gottwald et al., 2015).  

 

A microfluidic device, produced from polydimethylsiloxane (PDMS) was applied to study 

neuronal differentiation. Thereby, in the central channel NSCs, embedded in ECM hydrogel 

were cultivated and adjacent channels were filled with medium containing EGF and FGF to 

support neural differentiation. Afterwards, NSCS were isolated and quantified (Han et al., 

http://www.dict.cc/englisch-deutsch/oxygen+partial+pressure.html
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2012). However, disturbing factors like shear stress caused by the fluid flow might affect cell 

development and function. Moreover, chemicals might accumulate in the cells, influencing 

them (Millet and Gillette, 2012). 

 

1.5.10.3 Combined 3D CCS 

Moreover, by cultivation of 3D hPSCs, cerebral organoids (minibrains) with distinct brain 

regions were formed in a multiple-step method. First, neuroectoderm developed from EBs, 

which then were embedded in Matrigel droplets. The matrigel droplets in turn, were 

transferred to a spinning bioreactor to improve nutrient absorption, resulting in rapid 

development of brain tissues (Lancaster et al., 2013). However, just in about 1:1000 cases 

such a minibrain develops (personal communication). Furthermore, generated cerebral 

organoids consisted out of variable spatially distinct “brain regions” (Karus et al., 2014).  

 

In summary, suitable 3D CCS are existing to generate neural tissues. However, none of 

them is optimal for the approach of this thesis.  

 

1.5.10.4 Microcavity arrays produced by SMART 

A microcavity- based CCS is characterized by accumulation of cells and moreover control of 

aggregate size and to determine the position of each aggregate in a reproducible manner. 

Giselbrecht and co-workers established a method to produce such microcavities, the so-

called surface modification and replication by thermoforming (SMART).  

 

The SMART process can be subdivided in premodification, the thermoforming step and 

postmodifications. During the initial step, premodifications on the planar polycarbonate film 

(approx. 60µm thick), fix the position of the later generated postmodifications. Polycarbonate 

turned out to be a suitable material for thermoforming. The site determination is performed by 

anisotropic directed lithographic processes. Microthermoformed devices can be provided 

with micro- or nanopores (to support cells with nutrients), cell adhesion micropatterns, 

microelectrodes or surface micro- or nanotopographies. The SMART method is realizable 

due to the usage of flat semi-finished films during premodification, thus allowing complete 

access to the surface and optimal application of all mask-based lithographic modifications. 

Moreover, due to the stability of the material during the thermoforming step, the melting 

phase is avoided, which enables maintenance of modifications. This conditions are solely 

provided by the SMART process. Thus, SMART provides a unique suitable method for the 

generation of microcavities. The microcavities are thin-walled in the range of a few 

micrometers and free standing.  
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Microstructures depict a small volume and mass, low heat capacity, they are highly flexible 

and thermal resistant. Additionally, they are transparent and cause only low 

autofluorescence, thus providing optimal conditions for imaging. 3D microcavities are eligible 

CCS to study 3D tissue engineering. They can be applied as passive or active systems 

(Giselbrecht et al., 2006; Truckenmueller et al., 2011). In this regard, a microcavity in the 

form of a microchannel, coated with collagen, was applied in an active system to study 

transendothelial transport to mimic a 3D porous capillary system (Hebeiss et al., 2012).  

 

Thus, the microchannel produced by SMART seems to be the most suitable platform for my 

approach. 
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1.6 Aim of this project 

The complexity of neurogenesis in vivo hinders the detailed dissection of particular steps, 

due to the many diverse interactions of influencing factors, including the interplay of signals 

derived from the mesoderm. A simplified three-dimensional cell culture approach would be 

suitable to investigate neural differentiation in a controlled manner.  

Therefore, the aim of my thesis was to generate a zebrafish neural tube in a three-

dimensional cell culture system. Thereby, a comparative study was performed to study 

neuronal differentiation in the zebrafish embryo and in a 2D and 3D zebrafish primary cell 

culture.  

In the first part of my work, the microchannel was applied to investigate neurogenesis in 3D 

in vitro and compared to the in vivo situation. Furthermore, I guided cells to a distinct area of 

interest on a polymer channel. Finally, I controlled cellular signaling in a 3D cell culture 

system. In summary, my project provides fundamental ground work to control the formation 

of the neural tube by the establishment of an advanced 3D cell culture system. 

 

 

 

 

 

Figure 6: Time line of relevant events for this thesis. Genes and morphological structures which 

are described in this thesis are mention at their time point of appearance. 
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2. Material and Methods 

 

2.1 Material 

2.1.1 Equipment and Tools 

Name Description 

ABI StepOnePlus Life Technologies GmbH, Darmstadt 

Dissection forceps Fine Tip No.5 (Dumont) 

Glass needle Glass Thinw No Fil 1.0mm 3IN 

TW 100-3 

World Precision Instruments, Inc. 

Sarasota, USA 

Microloader tips 930001007 (Eppendorf) 

Micromanipulator Manual, M3301R (WPI Inc.) 

Microscopes Olympus SZX10/SZX16 

 

ZEISS Axiophot Trinocular 

 

Leica SP5 X Confocal microscope 

 

Leica DMI6000 SD 

Needle holder Microelectrode holder (WPI Inc.) 

Needle pollisher Model EG-44 Narishige 

Needle puller P-97 Flaming/Brown Micropipette Puller 

(Sutter Instrument) 

Photometer pND-1000B, NanoDrop (Thermo Scientific 

Inc.) 

Polycarbonate microchannel provided by Dr. Stefan Giselbrecht 

R100 Rotatest Shaker Luckham,  

1 ml Syringe Braun 

Teflon ring provided by Dr. Stefan Giselbrecht 

UV Ozone Cleaner – ProCleaner™ Plus BIOFORCE Nanoscience 

 

2.1.2 Chemicals 

Name Description 

4′,6-Diamidin-2-phenylindol (DAPI) Sigma-Aldrich, Taufkrichen, Germany 

Agarose Peqlab, Erlangen, Germany 
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Ampicillin Roth, Karlsruhe, Germany 

Anti-Digoxigenin-Fab-fragments Roche, Mannheim, Germany 

Bacto Agar Roth, Karlsruhe, Germany 

BCIP Roche, Mannheim, Germany 

Blocking Reagent Roche, Mannheim, Germany 

Bovine serum albumine (BSA) PAA, Coelbe, Germany 

Dimethylsulfoxide (DMSO) Fluka, Neu-Ulm, Germany 

DPBS (+/+) Invitrogen, Karlsruhe, Germany 

DPBS, without calcium and magnesium (-/-) Invitrogen, Karlsruhe, Germany 

Dulbecco´s modified Eagle´s medium 

(DMEM) 

Invitrogen, Karlsruhe, Germany 

eGFP Scholpp lab 

Ethanol Roth, Karlsruhe, Germany 

Ethidiumbromide Roth, Karlsruhe, Germany 

Fetal Bovine Serum BIOCHROME AG, Berlin, Germany 

Fibronectin Live Technologies, Gibco 

Gentamicin Reagent Solution (50 mg/ml) Invitrogen, Karlsruhe, Germany 

Glycerol Roth, Karlsruhe, Germany 

Glycine Roth, Karlsruhe, Germany 

Hyb- Live Technologies, Gibco 

Isopropanol Roth, Karlsruhe, Germany 

Laminin-1 Invitrogen, Karlsruhe, Germany 

Leibovitz´  L-15 Gibco, Karlsruhe, Germany 

Low melting agarose Carl Roth GmbH, Karlsruhe, Germany 

Methanol (MeOH) Roth, Karlsruhe, Germany 

NBT/BCIP solution Roche, Mannheim, Germany 

Nodal Inhibitor SB431542 Tocris 

Paraformaldehyde Merck, Darmstadt, Germany 

PBST Gibco, Karlsruhe, Germany 

Penicillin/Streptomycin Invitrogen, Karlsruhe, Germany 

Phalloidin  Sigma-Aldrich, Taufkrichen, Germany 

Pronase Carl Roth GmbH, Karlsruhe, Germany 

Proteinase K Sigma-Aldrich, Taufkirchen, Germany 

Triton-X-100 Roth, Karlsruhe, Germany 

Trizol Invitrogen, , Karlsruhe, Germany 

Trypsin 0,25 % (w/v) EDTA  Gibco/Invitrogen, Karlsruhe, Germany 
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Tween20 Roth, Karlsruhe, Germany 

Yeast extract Roth, Karlsruhe, Germany 

 

2.1.3 Software 

Name Description Source 

Adobe Photoshop CS4 Image editing Adobe systems, San Jose, 

CA, USA 

Cell A Photodocumentation Olympus, Rodgau, Germany 

Imaris 7.4.2 Image processing Bitplane AG, Zürich, 

Switzerland 

LAS AF Photodocumentation Leica, Wetzlar, Germany 

ND-1000 v 3.7.0 DNA/RNA measurement  

StepOne Software v2.1 

and v2.3 

qPCR Applied Biosystems 

 

2.1.4 Enzymes 

Name Source 

DNaseI Ambion Ltd, Warrington, UK 

Restriction enzymes New England Biolabs, Ipswich 

Reverse Transcriptase Promega, Mannheim 

Taq-Polymerase Promega, Mannheim 

 

2.1.5 Marker 

Name Source 

GeneRuler DNA ladder mix Fermentas, St. Leon-Rot, Germany 
 

2.1.6 Kits 

Name  Source 

SYBR® green Life Technologies GmbH, Dresden, 

Germany 

Direct-zol RNA Mini Prep Kit Zymo Research, Freiburg, Germany 

peqGold Gel extraction Kit Peqlab, Erlangen, Germany 

QIAGEN Plasmid Maxi purification Kit Qiagen, Hilden, Germany 
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2.1.7 Overexpression constructs 

Name  Description 

zfWnt8aORF-GFP-pCS2+ Sequence of zebrafish Wnt8a ORF1 cloned 
into pCS2+ (Rhinn et al., 2005) 

Tg(7xTCF-Xla.Sia:nlsmCherry) Moro et al., 2013 

His-CFP-pCS2+ Gift from Smith, Jim Group 

 

2.1.8 Primer 

Name Description 

pou5f3 Forward: CCC AAA CCC AAC ACT CTG G 
Reverse: ACG CTT TCC CTT CTG TCT ACG 

sox2 Forward: GGT AAC TTC AGC AGC CTC TCC 
Reverse: GGC TTC AGC TCG GTT TCC 

neurog1 Forward: GGA TTC TGC AAA ACC TCA AGC 
Reverse: CGC GAG TCC TCA TCA TCC 

elavl3 Forward: AGA CAT GGA GCA GTT GTT TTC C 
Reverse: GCT TCG TTC CGT TTG TCG 

β-actin1a Forward: CCT TCC TTC CTG GGT ATG 
Reverse: GGT CCT TAC GGA TGT CCA 

  

 

2.1.9 In situ probes 

neurogenin1 Houart lab 
 

2.1.10 Transfection reagents 

Name  Source 

FuGENE® HD Transfection Reagent Promega, Mannheim, Germany 

 

2.1.11 Cell lines 

Cell line  Description Culture Medium Source 

HEK293T 

(CRL-1573) 

Human embryonic 

kidney cells 

DMEM + 10% 

FCS 

American tissue 

culture collection, 

ATCC, Wesel, 

Germany 

PAC2 Zebrafish fibroblasts L15 + 15% FCS Foulkes 

Laboratory 

 

Cells Description Culture Medium Source 

Zebrafish primary cells Blastula (sphere 

stage)  embryo 

L15 + 15% FCS Fish facility 
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2.1.12 Bacterial strain 

Name  Description 

E.coli Nova Blue® Chemical competent cells (Invitrogen) 

Genotype: K-12 strain 

 

2.1.13 Fish lines 

Name  Description 

Tg(-8.4neurog1:GFP)  Blader et al., 2003 

Tg (elavl3 (huC):GFP) Park et al., 2000 

 

2.2 Methods 

2.2.1 RNA methods 

 

2.2.1.1 RNA isolation and cDNA synthesis 

For the analysis of dynamic expression of different marker genes during embryonic 

development a real time qPCR was performed. Therefore, RNA has to be isolated from 

zebrafish embryos at sphere stage, 10 somite stage, 24hpf and 48hpf. The isolated RNA was 

transcribed into cDNA by reverse transcription, which was performed with 20U of AMV 

reverse transcriptase in 80µl reactions containing 80 U RNAsin, 400ng of oligo d(T) primer 

and nucleotides.Following incubation for 45 min at 41°C reverse transcriptase was 

inactivated by heating at 70°C for 15 min. cDNA was stored at -80°C. 

 

2.2.1.2 Real time qPCR 

For qPCR analysis 4µl of 1:20 dilution cDNA were pipetted in each well of a 96 well plate 

together with the SYBR green Primer Mastermix (Promega). qPCR was performed in the ABI 

StepOnePlus Real-Time PCR system (Applied Biosystems) with a standard temperature 

cycle program, according to the manufacturer´s conditions. The relative levels of each mRNA 

were calculated by 2 -ΔΔCT methods (where CT indicates the cycle number at which the signal 

reaches the threshold of detection). Relative gene expression levels were normalized using 

the zf housekeeping gene β-actin mRNA. 
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2.2.2 In vivo experiments 

 

2.2.2.1 SB431542 Nodal Inhibitor Treatment in vivo 

Zebrafish were mated as already described. Zebrafish embryos were collected at the 2cell 

stage and placed in a well plate, 20 embryos each well. The embryos were treated from 2 

cell stage onwards for 24h or 48h respectively in a 20 and 40mM Nodal Inhibitor solution 

(diluted in E3) or as Ctrl in 0,1% DMSO (diluted in E3). The embryos were incubated in the 

28°C incubator in the dark. Moreover, treated and ctrl embryos were fixed in 4% PFA for in 

situ hybridization.   

 

2.2.2.2 In situ hybridization 

Embryos were dechorionated in 1x PBST with forceps or pronase and fixed in 4%PFA at 

4°C. Then the fixed embryos were washed twice for 5 min in PBST, incubated twice for 5 min 

in 100% MeOH and stored in fresh MeOH at -20°C.  

For the in situ hybridization the embryos were rehydrated twice for 5 min in PBST, then they 

were fixed again in 4% PFA for 30 min at RT and washed twice for 5 min in PBST. 24hpf 

embryos were digested with Proteinase K to permeabilize them to facilitate the penetration of 

the probe inside the embryo. This is not necessary for younger embryos. For the Proteinase 

K digestion the embryos were treated with 25µg/µl for 1-2 minutes and then washed twice in 

glycine (2mg/µl). Afterwards, the embryos were washed with PBST and then fixed again with 

4% PFA for 30 min at RT. Then they were washed again three times for 5 min in PBST. 

Incubation in Hyb+ for 0,5-6h at 69°C followed. Afterwards, the Hyb+ was replaced with pre-

warmed Hyb+ containing the antisense probe neurog1 and incubated over night at 69°C. The 

next day the probe was removed and the embryos were washed for 5 min in Hyb+ , three 

times for 10 min in 25% Hyb- , three times for 10 min in 25% Hyb- , 5 min in 2X SSCT and 

twice for 30 min in 0,2xSSCT at 69°C. After that they were washed 5 min in 50% 0,2 x 

SSCT/50% MABT, 5 min in MABT and then the unspecific binding sites were blocked by 

incubation with 2% DIG-block for at least one hour The blocking solution was replaced with a 

pre-absorbed DIG-antibody in a 1:4000 dilution in blocking solution and incubated over night 

at 4°C. The next day the embryos were washed five times for 15 minutes in MABT and 5-15 

in NTMT. The staining solution consisted of NCP-BCIP that was diluted 1:200 in NTMT and 

was added to the embryos in a 12 well plate. When the staining was strong enough, the 

staining reaction was stopped by washing twice in PBST and the embryos were fixed again 

in 4% PFA for 30 min at RT. After washing again for 5 min in PBST the embryos were stored 

in 70% glycerol at 4°C. 
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Solution: 

 

PBST: 1x PBS 

 0,1% Tween20 

Hyb-  50% Formamide 

 5x SSC (pH6) 

 0,1% Tween20 

MAB: 100mM maleic acid 

 150mM NaCl 

 pH 7,5 

MABT: MAB 

 0,1% Tween20 

2% DIG-block: 2% blocking reagent in MABT 

NTMT: 100mM NaCl 

 100mM Tris 

 1% Tween20 

 

 

2.2.2.3 Analysis of Rohon-Beard sensory neurons 

In vivo NI treatment was performed as described, with the zf neuro1:GFP transgenic line. 

RBs from embryos treated with 40mM NI and ctrl embryos treated with 0,1% DMSO from 

2cell-24hpf and 2cell-48hpf were analyzed. Therefore, embryos were mounted in 1,5% low 

melting agarose and with dorsal up and analyzed by confocal microscopy.  

 

Medium for breading and manipulation of zf embryos: 

 

MESAB: 400mg Tricaine powder (Sigma) 

 2,1ml 1M Tris (pH 9.0) 

 to 100ml with H2O 

 adjust to pH 7.0 and store at 4°C 

PTU 0,0003% 1-pheyl-2-thiourea in 1x PBS 
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2.3 Protein Method 

 

2.3.1 Phalloidin/DAPI staining of cells 

For visualization of the actin cytoskeleton and the nuclei, the cells were stained with 

Phalloidin FITC or TRITC and 4`,6-diaminidino-2-phenylindole (DAPI). Therefore, the L-15 

growth medium was removed from the petri dish and cells were washed twice for 5 min in 

PBS+/+. Afterwards they were fixed with 4% PFA on ice for 30 min. Then the cells were 

permeabilized using 0,1% Triton X-100 solved in PBS-/- . After this, the cells were stained 

with Phalloidin FITC or TRITC for 1h 15 min followed by 2x 5 min washing steps in PBS-/- . 

Then the cells were stained with DAPI for 6 min and afterwards washed again in PBS-/- .  

 

2.3.2 eGFP affinity assay 

The polycarbonate film was incubated for 15 min in a solution containing a 1µM 

concentration of enhanced green fluorescence protein (eGFP) in PBS. 1.93µl were taken 

from a stock solution of eGFP in PBS (154µM, 100µl) and diluted in 3ml PBS. After 

incubation, the polycarbonate film was washed 3x 5 min in PBS-/- and finally 2x 15 min 

washing steps in PBS-/- . The fluorescence intensity was measured on an Olympus SZX16 

microscope. 

 

2.4 Cell culture methods 

 

2.4.1  Maintenance of PAC2 cells 

Zebrafish PAC2 fibroblast cells were cultivated in Leibovitz`s L-15 medium (with 15% FBS, 

1% Pen/Strep and 0,1 % Gentamycin) at 28°C and without additional CO2 supply. For 

passaging the cells were washes with PBS -/- and detached with 0,25% trypsin-EDTA. The 

cells were passaged 1:3 once a week. 

 

2.4.2 Maintenance of HEK293 cells 

Human Embryonic Kidney 293T cells were cultivated in DMEM (with 10% FBS and 1% 

Pen/Strep) at 37°C and with 5% CO2 supply. Passaging was performed 1:20 every 4 days. 

 

2.4.3 Passaging cells 

For passaging, the medium was removed by aspiration, cells were washed once with PBS 

and Trypsin-solution (0,25% Trypsin) was added to the cells. Cells were incubated at RT until 

they started to detach from the flask walls. Trypsination was stopped by addition of medium 

containing serum. Cells were collected by centrifugation. After resuspending the cells in fresh 

growth medium cells were seeded in new tissue culture petri dishes.  
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2.4.4 Seeding cells 

Cells were trypsinized as described above, collected by centrifugation and resuspended in 

new growth medium.  To obtain the number of cells per ml, 10µl of cell suspension was 

transferred into a Neubauer counting chamber and counted by using a bright field 

microscope. After adjustment of the designated cell concentration by mixing cell suspension 

and culture medium, cells were distributes in tissue petri dishes for the experiment.  

 

2.4.5 Transient Transfection of cells with FuGENE HD 

For the transfection of a 30mm dish of 80% confluent cells were combined with FuGENE HD 

Transfection Reagent, 100µl growth medium without serum and antibiotics, 1µg plasmid DNA 

(or 0,5µg each for co-transfection) and 4µl FuGENE HD. This mixture was vortexed shortly 

and spun down. The used plasmids are described in the results part. The mixture was 

incubated 15 min at RT. In the meanwhile, the cells were washed with PBS and the growth 

medium was replaced by growth medium without antibiotics but with 10% serum. Afterwards, 

the transfection mixture was added dropwise to the dish and the cells were cultivated as 

described above for 24h. 

 

2.4.6 Primary cell culture  

To gain zebrafish sphere stage embryos used for the primary cell culture experiments, male 

and female zebrafish were placed in tanks separated by inlays over night. The next morning 

female and male were mated and the female laid eggs. Zf eggs were collected and 

dechorionated in 1-2 cell stage by 10mg/ml pronase to remove the chorion and washed 

immediately three times with fish water in a beaker.  Dechorionated embryos were washed 

fast in 70% EtOH, rinsed in sterile E3 medium and placed in calcium free Ringer´s solution. 

Cells were transplanted by usage of a Transplantation setup, containing of a transplantation 

needle, connected to a vacuum syringe. Cells were transplanted into a Fibronectin/laminin-1 

coated petri dish containing Leibovitz´s L-15 medium with 15% FBS, 1% Pen/Strep and 0,1% 

Gentamycin. Then, the NI treatment was performed. 

 

2.4.7 Biofunctionalization of the microchannel 

The microchannel was produced in the SMART process (provided by Dr. Stefan 

Giselbrecht).  

First of all, the microchannel was cleaned by a washing series in 70%,50%,35% Isopropanol, 

H2O dest and PBS-/- . As a prerequisite for the adherence of the coating solution, the 

microchannel has to be hydrophilized. Therefore, the microchannel is placed in a UV-Ozone 

cleaner and treated for 5 min (longer treatment is harmful for the polycarbonate). Afterwards 

the microchannel was coated with a mix of basal proteins; Fibronectin/Laminin-1 
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0,01mg/0,5ml + 0,02mg/1ml (testing of different coating conditions is described in the results 

part). Around the polycarbonate some drops of PBS-/- were placed to avoid drying-out of the 

channel during the incubation in the 31°C incubator for 2h. After that the microchannel was 

washed 3x 10 min in PBS-/- to eliminate unbound proteins. Finally the microchannel is ready 

to use. 

 

2.4.8 Primary cell culture in 3D 

The PC foil containing the microchannel was placed into a 60mm petri dish, weighted down 

with a Teflon ring and the petri dish was filled with medium. Zf sphere stage-derived cells 

were isolated from the embryo with the transfection needle as described and directly seeded 

in the microchannel. Then the SB431542 Nodal Inhibitor (NI) treatment was performed. 

 

Transplantation capillaries: 

Capillaries for transplantation were pulled on the Flaming-Brown puller with the following 

parameters: 

 

Pull-heat (H) 253 

Pull-force (P) 40 

Pull-velocity (V)  70 

Pull duration (T) 35 

 

Medium for breading and manipulation of zebrafish embryos: 

 

E3 medium: 0,1% NaCl 

0,003% KCl 

0,004% CaCl2 x 2H2O 

0,016% MgSO4 x 7H2O 

0,0001% Methylene blue 

Calcium free Ringer solution: 55mM NaCl 

 1,8 mM KCl 

 1,25 mM NaHCO3 

 

2.4.9 SB431542 Nodal Inhibitor (NI) treatment of primary cells 

Zf blastula-derived primary cells from the transgenic neurog1:RFP line were treated with  

SB431542 NI to inhibit mesendoderm formation. Control cells were treated with 0,1% DMSO. 

Cells were transferred into a petri dish as already described. 1µM SB431542 was added to 

the medium and cells were incubated at 28°C for 48h in the dark (due to the light sensitivity 
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of the NI). Control cells were treated with 0,1% DMSO. Afterwards, cells were fixed with 4% 

PFA for 30 min on ice and stained with the nuclei marker DAPI and the actin cytoskeleton 

marker phalloidin as described. 

 

2.4.10 Cell Guidance in 2D 

In the 2D cell guidance experiment PAC2 fibroblasts were seeded on the PC film and 

cultivated in Leibovitz´s L-15 medium with 15% FBS, 1% Pen/Strep and 0,1% Gentamycin at 

28°C for 24h. Afterwards, the cells were washed in PBS-/- for 2x 5 min to remove non-

adherent cells. Next, the cells were fixed with 4% PFA for 30 min and stained with the nuclei 

marker DAPI and the actin cytoskeleton marker phalloidin as described. 

 

2.4.11 Cell guidance in a 3D microchannel 

The microchannels were coated with a Fibronectin/Laminin-1 0,01mg/0,5ml + 0,02mg/0,1ml 

solution for 2h at 31°C. Afterwards the coating solution was removed and unbound proteins 

were washed out by incubation with PBS-/- for 2x 5 min to remove non-adherent cells. Next, 

the cells were fixed with 4% PFA for 30 min and stained with the nuclei marker DAPI and the 

actin cytoskeleton marker phalloidin as described. 

 

2.4.12 Co-Culture assay 

2D HEK293T cells were used for the co-culture experiment (since they showed a higher 

transfection rate than PAC2 fibroblasts. Cells were transfected with 1µg zfWnt8aORF-GFP-

pCS2+ were cultivated for 24h. In another petri dish 2D cells co-transfected with 7xTRE-

mCherry-NLS/His-CFP-pCS2+ were cultivated for 24h Then, the cells were trypsinized and 

seeded together for co-culture into a 3D microchannel, whereas cells inside the 

microchannel were analyzed for 3D cell culture and cells attached outside of the 

microchannel were analyzed for 2D cell culture. Cells were cultivated for another 24h. As 

control, 7xTRE-mCherry-NLS/His-CFP-pCS2+ transfected cells were seeded in the 3D 

microchannel. Again, cells inside the microchannel were considered for 3D analysis, cells 

outside in the petri dish for 2D analysis. Living cells were imaged by confocal microscopy. 

 

2.5 Image Acquisition 

For phenotype analysis the embryos were anaesthetized with Mesab and for ISH analysis 

the embryos were embedded in 70% glycerol/PBS. Pictures were taken with an Olympus 

SZX16 microscope equipped with a DP71 digital camera by using Cell A imaging software. 

For confocal analysis, living embryos were embedded in 1,5% low melting agarose in 1x E3. 

Confocal images were obtained using a Leica TCS SP5 X microscope with a 40x dip-in 

objective for embryos and a 63x dip-in objective for cells. Images of the SB431542 NI 
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treatment of primary cells in 2D were taken with the inverted Leica DMI6000 SD microscope, 

using the 20x objective. The images were processed using Imaris 7.4.2 software. 

Fluorescence intensity of eGFP protein was measured by carrying out five linear scans 

passing non-irradiated and irradiated areas across the PC film and compared with the 

fluorescence intensity measured in a non-irradiated zone on the same film. 

 

2.5.1 Image Processing 

The Phalloidin/DAPI z-stack data recorded at the Leica SP5 confocal microscope was 

processed using the Leica Application Suite Advanced Fluorescence (LAS AF).  

 

2.5.2 Quantification of Fluorescence Intensity 

For the quantification of neurog1 pos. nuclei and RBs the Imaris 7.4.2 software was used. 

Nuclei were quantified using the spots tool. Marking of the spots was adjusted by manually 

marking neurog1 pos. nuclei if necessary. For comparison, total nuclei were counted as well 

with the spots tool. 

In the 2D cell guidance experiment, nuclei of PAC2 cells were also quantified using the spots 

tool. For evaluation of the surface area covered by cells the surface of cells was calculated 

using the surface tool.  

In the Co-culture assay, Tcf nuclei were counted with the spots tool and compared to His-

CFP (total) nuclei. 

 

2.6 Statistical analysis 

The double-sided student´s t-test was used for comparison of two samples. Calculation of 

the mean averages and standard deviation was performed using at least three biological 

replicas. P-values <0,05 were considered as significant. Error bars indicate standard error 

(SD). 

 

 

 

 

 

 

 

 



- 46 - 
 

3. Results 

 

Neurogenesis is an important and complex process, which requires the integration of various 

molecular mechanisms, including the regulated activity of multiple signaling pathways, e.g. 

Wnt, FGF, Shh and TGF-β/BMP. These signaling pathways in turn govern neural induction, 

cell fate specification, differentiation and morphogenesis of the nervous system. Due to the 

complexity in an intact embryo, a simplified three-dimensional cell culture approach would be 

suitable to investigate neural differentiation in a controlled manner.  

Therefore, the aim of my thesis was to generate a zebrafish neural tube in a three-

dimensional microchannel. Thereby, a comparative study was performed to study neuronal 

differentiation in the zebrafish embryo and in a 2D and 3D zebrafish primary cell culture.  

The microchannel was applied to answer the following questions: 

 

3.1. Can I control neurogenesis in vitro? 

3.2. Can I guide cells in a polymer channel to an area of interest? 

3.3. Can I control cellular signaling in vitro? 

 

In all this contexts the 3D platform was compared to 2D culture and in the neurogenesis part 

additionally to the in vivo scenario. 

 

3.1 Control of neurogenesis  

 

3.1.1 Expression analysis of relevant dynamic markers during zebrafish embryonic 

development (with Anna Geenen) 

For the investigation of dynamic markers for neurogenesis during zebrafish embryonic 

development a real time quantitative PCR was performed. The in vivo cell fate during 

embryonic development was analyzed by quantifying expression of dynamic markers at 

different time points of interest, important for neurogenesis (sphere stage, 10 somite, 24hpf 

and 48hpf; Fig.7). At sphere stage the prospective neuroectoderm is generated, at 10 

somites the neural keel appears and at 48hpf the central nervous system is established. 

Pou5f3 (a Oct4 homolog) was evaluated as a pluripotent marker for embryonic stem cells 

(ESCs), sox2 as neural stem cell marker (NSCs), neurog1 to analyze neural progenitor fate 

(NPCs) and elavl3 (a HuC homolog) for mature neurons (MN).  
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The relative gene expression was evaluated within a marker but not between the different 

markers, since the expression of a marker was analyzed in correlation to the 24hpf stage 

(just pou5f3 was correlated to the expression at sphere stage, since sphere stage expression 

was higher than the normalizing factor).  

Normalization was calculated in relation to the housekeeping gene β-actin.  

 

The ESC marker pou5f3 (Fig.7b) was highly expressed at sphere stage and decreased until 

the 10 somite stage, where pou5f3 was still detectable with 0,8% (SEM 0,3%) at 24hpf with 

0,2% (SEM 0,04%) and 48hpf with 0,1% (SEM 0,02%).  

Sox2, the NSC marker (Fig.7c), was not detectable at sphere stage, but showed the highest 

expression at the 10 somite stage. At the 10 somite stage, sox2 expression was 40,8% 

higher than at 24hpf (SEM 24,8%). At 48hpf a decrease of 44,2% compared to 24hpf was 

observed (SEM +/- 24,8%).   

Neurog1, the indicator for neural progenitor fate (Fig.7d), depicted a minor expression at 

sphere stage and increased until 10 somite stage.  

Figure 7: Expression analysis of relevant dynamic markers during zebrafish 

embryonic development. Scheme of stem cell differentiation during embryonic 

development (a). Relative gene expression of pou5f3 (b) (ESCs), Sox2 (c) (NSCs), neurog1 

(d) (NPCs) and elavl3 (e) (postmitotic neurons) shown by qPCR (right). Data represent for 

pou5f3: n=3, sox2: n=3, neurog1: n=4 and elavl3: n=5 embryos. 
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The highest expression was detected at 24hpf. Neurog1 expression was 1,8% lower (SEM 

12,8%) at the 10 somite stage compared to 24hpf. At 48hpf a decrease of 41,3% was 

detected (SEM 4%) compared to 24hpf. 

Early postmitotic neurons are indicated by elavl3 expression (Fig.7e), which was not 

detectable at sphere stage, but increased obviously until the 10 somite stage, keeping this 

expression level until 24hpf with just a slight decrease of 0,6% (SEM 12,2% for 10 somite). 

Until 48hpf, once again a dynamic increase of elavl3 expression 64,9% (SEM 19,5%) was 

observed compared to 24hpf.  

The analysis of characteristic markers for ESCs, NSCs, NPCs and mature neurons displayed 

the process of cell fate during embryonic development. 

Thus, the qPCR data showed that neurog1 reflects the dynamics of neurogenesis. 

 

Moreover double transgenic Tg(-8.4neurog1:RFP)/ Tg (elavl3 (huC):GFP) expressing 

zebrafish embryos are shown at 24 hpf (Fig.8a, a`) and 48 hpf (Fig.8b, b`), respectively.  

The expression of neurog1 and elavl3 is partly overlapping, since neurog1 expression starts 

at 9hpf in the three longitudinal stripes of the neural plate. Elavl3 is expressed from 10hpf 

onwards, just in a subset of neural plate cells (Kim et al., 1997; Park et al., 2000).  

Neurog1 is expressed in all primary neurons and elavl3 indicates all postmitotic neurons in 

the forebrain, midbrain and hindbrain at 24hpf (Fig.8a,a`) and 48hpf (Fig.8b,b`).  

Neurog1 dynamically reflects neurogenesis in vivo. Within this thesis, a comparative study 

was performed to evaluate controllability of neuronal differentiation in the zebrafish embryo 

compared to 2D and 3D zebrafish primary cell culture.  
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3.1.2 Neural differentiation in vivo 

For the formation of a neuroepithelium ESCs have to differentiate from a pluripotent state to 

a proneural fate. It has been shown, that by inhibition of nodal signaling (ndr1/ndr2 in 

zebrafish) mesendoderm formation is blocked, thus enhancing ectoderm formation, which 

partly will give rise to the prospective nervous system. In this regard, a Nodal Inhibitor (NI) - 

SB431542 - blocks kinase activity by binding to the ATP binding sites of the activin-like 

kinase (ALK) 4,5 and 7 receptors of the TGF-β pathway (Fig.9), thus blocking  

phosphorylation of downstream effectors Smad 2 and 3.  

Figure 8: Expression of neurog1:RFP/elavl3:GFP in a 24hpf and 48hpf 

zebrafish embryo. Dorsal view (a) and lateral view (a´) of 

neurog1:RFP/elavl3:GFP expression at 24hpf and in a 48hpf zebrafish 

(b,b`). Scale bar = 100µm. Di = Diencephalon, E = eye, Hb = Hindbrain,  

Mhb  =Midbrain-hindbrain boundary, sc = spinal cord, Te = Telencephalon, y 

= yolk.  
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Hence, mesendoderm formation is inhibited (Inmann et al., 2002; Sun et al., 2006; Hagos 

and Dougan, 2007; Lippmann et al., 2014).  

Zebrafish embryos were treated with the NI and Dimethylsulfoxide (DMSO) as a control. 

Alteration of neurogenesis was observed by in situ hybridization with neurog1 as indicator for 

a proneural fate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3 Analysis of neurogenin1 expression  

Zebrafish wildtype embryos were collected and placed in a well plate, 20 embryos each well. 

The embryos were treated from 2-cell stage until 24hpf and from 2-cell stage to 48hpf, with 

concentrations of 20mM and 40mM Nodal Inhibitor solution (diluted in E3) or 0,1% 

dimethylsulfoxide DMSO; diluted in E3). The embryos were incubated in the 28°C incubator 

in the dark, due to the light sensitivity of the NI. After the NI in vivo treatment, embryos were 

fixed and in situ hybridization was performed with neurog1 as a marker (Fig.10). Whole 

mount embryos were imaged by stereomicroscopy from the lateral side (Fig.10a,b,c). 

Afterwards the trunk region of the spinal cord (indicated by black cutting lines in Fig.10.a,b,c) 

was cut out and is shown in Fig.10a`,b`,c` in a dorsal view. In the 2-cell-24hpf control embryo 

neurog1 was expressed in the dorsal telencephalon, diencephalon, hindbrain and spinal cord 

(Fig.10a,a`). In the 20mM NI treated embryo from 2-cell-24hpf a stronger neurog1 expression 

was observed in the dorsal telencephalon and diencephalon (yellow arrows), hindbrain and 

spinal cord (Fig.10b). Moreover, the spinal cord increased in width (Fig.10b`, red arrows) 

compared to the spinal cord of the control embryo (Fig.10a`).  

Figure 9: Inhibition of mesendoderm formation by the SB431542 Nodal 

Inhibitor. Blockage of the ALK 4,5,7 receptors leads to inhibition of nodal 

signaling (Simplified scheme). 
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Additionally, a more broadly neurog1 expression in the dorsal telencephalon was observed. 

In the 40mM NI treated embryo from 2-cell-24hpf also a strong neurog1 expression is visible 

in the dorsal telencephalon and diencephalon and these expression domains expanded 

further (Fig.10c, yellow arrows). Furthermore, neurog1 was strongly expressed in the spinal 

cord which notably increased in the width (Fig.10c`, red arrows) compared to the control 

embryo (Fig.10a`).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, by inhibition of nodal signaling, the NSC population was increased in vivo. 

 

3.1.4 Analysis of Rohon-Beard sensory neurons 

Involvement of neurog1 has been shown to be crucial for the development of Rohon-Beard 

(RB) sensory neurons and inhibition of neurog1 resulted in failure of RB sensory neuron 

formation (Cornell and Eisen, 2002). Therefore, I investigated if NI treatment results in 

alteration of neurogenesis, reflected by a change in RB sensory neurons. Since in the in situ 

hybridization it was shown that 40mM NI treated embryos from 2cell-24hpf showed the 

strongest effect reflected by the neurog1 expression, neurog1:GFP embryos were treated 

with this concentration and compared to control embryos (DMSO treated).   

After NI treatment, RB sensory neurons of the neurog1:GFP transgenic embryos were 

imaged by confocal microscopy (Fig.11a,b). The average numbers (Fig.11a`,b`) of RB 

sensory neurons were analyzed with the Bitplane Imaris software. Quantification resulted in 

an average number of 52,8 RBs for control and 68,6 for NI treated RBs, meaning a 1,3 fold 

increase for 2cell-24hpf (Fig.11c). Significance was determined as n.s. (not significant) with 

the Student`s T-Test. 

Figure 10: Neurogenin1 in situ hybridization. Neurog1 expression was evaluated in 2cell-24hpf 

ctrl; n=20 (a,a`) and treated embryos; n=20 (b,b`,c,c`). Black lines in a,b,c indicate cut out spinal 

cord parts in the trunk region; shown in a dorsal view (a`,b`,c`). Yellow arrows show changes in the 

expression of dTe and Di in treated embryos, red arrows indicate widening of the spinal cord. Scale 

bar = 50µm. dTe = dorsal Telencephalon, Di = Diencephalon.  
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Thus, inhibition of nodal signaling in vivo was at first visualized by an increase in the NSC 

population, shown by the neurog1 in situ hybridization. This hint was then further validated by 

a significant increase in the average number of RB sensory neurons. 

 

Since the complex environment of an intact embryo hinders the detailed dissection of 

particular signaling steps, a 3D cell culture approach would be more suitable to investigate 

neural differentiation in a controlled manner.  

At first, it was investigated if in 2D in vitro cultivated primary cells, derived from zebrafish 

blastula embryos can adopt a proneural fate.  

 

Figure 11: Analysis of Rohon-Beard sensory neurons. Confocal (a,b) and schematic 

(a`,b`) pictures of  ctrl (a,a´) and NI treated (b,b`) embryos. Scale bar = 50µm. The 

average numbers of RB sensory neurons are shown in (c). Data represent an average 

from n=11 control embryos and n=5 NI treated embryos with the indicated standard 

deviations (n.s. = not significant, statistical significance was determined by using the 

student´s t-test).  
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3.1.5 Cultivation of neural progenitor cells in vitro 

Pluripotent cells of blastula sphere stage embryos from the transgenic neurog1:RFP line 

(with a nuclear localization) were cultivated for 48h and stained with Phalloidin/ DAPI to 

visualize the nuclei (blue) and the actin cytoskeleton (green). Neurog1:RFP negative cells 

were indicated as blue nuclei whereas cells expressing neurog1:RFP are shown in red with a 

variation in intensity (Fig.12a,a`).        

 

Thus, it was shown that some of the sphere-stage derived cells developed into a proneural 

fate.  

 

Although primary cells developed a proneural fate in vitro, observed NPCs were not so 

abundant. To enrich this cell population and to commit more cells towards the proneural fate, 

cells were treated with the NI to enrich ectoderm and prospective neuroectoderm formation. 

3.1.6 Control of neurogenesis in 2D 

Cells from the transgenic neurog1:RFP zebrafish line were seeded on a petri dish and 

treated with 1µM NI for 48h (control cells were treated with 0,1% DMSO). The treated cells 

showed obviously an increase in the number of neurog1:RFP positive cells (Fig.13b) 

compared to control (DMSO; Fig.13a). Neurog1:RFP positive nuclei were quantified with the 

Bitplane Imaris Software and evaluated in relation to total nuclei (Fig.19,20a). 

 

Figure 12: Cultivation of neurog1:RFP cells in 2D. Neurog1:RFP blastula-derived cells were 

cultivated for 24h. Nuclei of neurog1:RFP negative cells are shown in blue, positive nuclei in red (a). 

Zoom-in is shown in (a`). Staining was performed for nuclei (DAPI, blue) and actin (Phalloidin, green). 

Scale bar = 10µm. 
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Thus, pluripotent zf blastula-derived cells were forced to develop a proneural fate. Hence, by 

inhibition of nodal signaling a NPC population was increased in vitro. 

 

One important aspect of developing a cell culture system (CCS) is to create conditions which 

mimic the in vivo scenario as realistic as possible. For a long time period, exclusively 2D cell 

culture systems were used for in vitro studies. However, in 2D cells are cultured in an 

artificial environment, since cells depict a different curvature, resulting in an altered 

arrangement of membrane receptors, which may result in different cellular responses and 

thus to changes in gene expression (Schwartz and Chen, 2013; Ader and Tanaka, 2014; 

Knight and Przyborski, 2014; Shao et al., 2015). 

 

Therefore, 3D CCSs are more suitable, because they enable cells are more natural behavior 

like in the in vivo scenario. Nowadays, various 3D CCS are existing, e.g. scaffold-free 

systems like the hanging drop technique, low adhesion substrates and scaffold-based CCS 

like various hydrogels and matrigels, microarrays and microfluidic devices (systems 

discussed in the introduction). 

However, none of the CCS was perfectly fitting for the 3D cell culture approach investigated 

in this thesis.  

Figure 13: Control of neurogenesis in 2D. Neurog1:RFP blastula-derived cells were treated 

with DMSO as ctrl (a) or the NI (b) and cultivated for 48h. Nuclei of neurog1:RFP negative 

cells are shown in blue, positive nuclei in red. Staining was performed for nuclei (DAPI, blue) 

and actin (Phalloidin, green). Scale bar = 20µm. Three independent experiments were 

performed (for statistics see Fig. 20a).  
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The most suitable platform, the polycarbonate microchannel developed by Stefan 

Giselbrecht and co-workers, was therefore biologically modified to optimize it for my 

approach to generate a zebrafish neural tube. 

3.1.7 Establishment of a 3D cell culture system to generate a neural tube 

This part of the project was performed in collaboration with S.Giselbrecht and P.Nikolov 

(MERLN Institute for Technology‐Inspired Regenerative Medicine, Maastricht University and 

Institute for Biological Interfaces, KIT). I thank them for thermoforming of the PC film and 

discussions about the design of the microchannel.  

 

3.1.7.1 Design and production of a 3D microchannel by SMART 

Since I was interested to investigate the formation of a neural tube in vitro, I needed a 3D 

platform to support the formation of a tubular shape and to fit in size with a zebrafish neural 

tube. Our collaboration partners Stefan Giselbrecht and Pavel Nikolov developed a three-

dimensional microchannel which is produced by Surface Modification and Replication by 

Thermoforming (SMART; Fig14a). This process consists of three steps, including 

premodification, the thermoforming step and postmodifications. Multiple microchannels can 

be formed in one polycarbonate foil (Fig.14b). Moreover, the microchannel is visualized by 

confocal microscopy (Fig.14c) and SEM (Fig.14d). The microchannel can be modified in size 

and shape to support the formation of tubular structures. Moreover it is possible to modify the 

polymer film in a physical, chemical or biological way (Giselbrecht et al., 2006; 

Truckenmueller et al., 2011). A similar 3D microchannel produced by SMART was already 

applied to mimic transendothelial transport in a blood vessel (Hebeiss et al., 2012).  

The microchannel was designed and modified to be suitable for our investigations, as 

described in the following paragraphs. 
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3.1.7.2 Functionality of the microchannel 

The functionality of the microchannel was tested by cultivation of zebrafish PAC2 fibroblast 

cells. After 24h the cells were adherent, covering the complete surface inside the 

microchannel. Fibroblasts were fixed with 4%PFA and stained to visualize nuclei (DAPI; 

blue) and the cytoskeleton (Phalloidin; green; Fig.15).  

Moreover, zebrafish primary cells attached almost in the complete microchannel (Fig.18).   

 

Figure 14: Production and visualization of the microchannel. 

Production of the microchannel by SMART (a). The formed microchannel 

is shown in an overview image (b), Confocal BF (c) and SEM (d). 

Figure 15: Biofunctionality test of the microchannel with PAC2 cells. 

Zebrafish PAC2 fibroblast were cultivated for 24h and stained for nuclei 

(DAPI, blue) and actin (Phalloidin) green. Scale bar = 100µm. 
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Thus, the microchannel is functional for cell lines (also HEK293 and neuro2a cells were 

tested) and zebrafish primary cells. 

 

3.1.7.3 Coating with basal proteins laminin-1 and fibronectin 

Since a main feature of a neuroepithelium is its apico-basal polarity, the microchannel was 

coated with the basal proteins laminin-1 and fibronectin to determine the basal side for the 

cells. Laminins were shown to be essential for basement membrane assembly (Ekblom et 

al., 2003; Hohenester and Yurchenco, 2013) and moreover laminin-1 to be essential for the 

developing neocortex (Burnside and Bradbury, 2014). Fibronectin is as well a major 

component of the developing CNS, suggested to be involved in adhesion, migration and 

axon elongation (Pankov and Yamada, 2002; Burnside and Bradbury, 2014). Inactivation of 

fibronectin in the mouse was shown to result in embryonic lethality (George et al., 1993). In 

cell culture, e.g. on coverslips, it was shown that when the surface is coated with fibronectin 

or laminin, cell attachment was improved (Cooke et al., 2008). Hence, in my approach 

laminin-1 and fibronectin were tested in various concentrations (Table 1; Fig.16). Moreover, 

Cyclo olefin polymer (COP) and Polycarbonate (PC) was tested. It was shown that from the 

COP as well as from the PC foil coating solution persists as roundish drops (which were also 

not relevantly changed by a 2h incubation at 31°C). This might be due to the hydrophobicity 

of the foil. It has been shown that by UV/ozone treatment e.g. carbon nanotube surfaces can 

be turned to be hydrophilic, enabling attachment of the ECM proteins (e.g. laminin and 

fibronectin) and thus improve cell attachment (Pryzhkova et al., 2014). Therefore, it was 

tested if a UV-ozone treatment could hydrophilize the PC or COP foil respectively, thus 

improving the adhesion of the coating.  

 

A combination of different UV-ozone treatment times and coating solutions were analyzed on 

the PC or COP foil respectively (Table 1; Fig.16).  

Figure 16: Testing of different coating conditions with and without UV-ozone treatment. PC foil 

was coated with different laminin-1 conditions or laminin-1/ fibronectin mixed. Coating was tested 

without UV-ozone treatment and after UV-ozone treatment for different times. 



- 58 - 
 

 

Indeed, the UV-ozone treatment resulted in an improved adhesion of coating solutions. 

Finally, a UV-ozone treatment time of 5 min (Pryzhkova et al., 2014) and a laminin-

1/fibronectin mixed coating solution of 0,02mg/1ml (laminin-1) + 0,01mg/0,5ml (fibronectin) 

was considered as working concentration, since it reflected the best conditions for cell 

attachment. 

Table 1: UV only, UV ozone and coating conditions. PC and COP foil was tested with various 

coating and UV-ozone conditions.   

Foil Type UV only UV ozone Concentration Laminin-1 Concentration Fibronectin

PC - - 1mg/1ml -

PC - - 0,01mg/1ml -

PC - - 0,005mg/1ml -

PC - - 0,002mg/1ml -

PC - - 0,001mg/1ml -

PC - - - 1mg/0,5ml

COP - - 1mg/1ml -

COP - - 0,01mg/1ml -

COP - - 0,005mg/1ml -

COP - - 0,002mg/1ml -

COP - - 0,001mg/1ml -

COP - - - 1mg/0,5ml

PC - - 0,02mg/1ml 0,01mg/0,5ml

PC - - 0,004mg/1ml 0,002mg/0,5ml

PC 30 min - 0,005mg/1ml -

PC 30 min - 0,02mg/1ml 0,01mg/0,5ml

PC 30 min - 0,004mg/1ml 0,002mg/0,5ml

PC - 30 min 0,005mg/1ml -

PC - 30 min 0,02mg/1ml 0,01mg/0,5ml

PC - 30 min 0,004mg/1ml 0,002mg/0,5ml

COP 30 min - 0,005mg/1ml -

COP 30 min - 0,02mg/1ml 0,01mg/0,5ml

COP 30 min - 0,004mg/1ml 0,002mg/0,5ml

COP - 30 min 0,005mg/1ml -

COP - 30 min 0,02mg/1ml 0,01mg/0,5ml

COP - 30 min 0,004mg/1m 0,002mg/0,5ml

PC - 1 min 0,02mg/1ml 0,01mg/0,5ml

PC - 2 min 0,02mg/1ml 0,01mg/0,5ml

PC - 5 min 0,02mg/1ml 0,01mg/0,5ml

PC - 10 min 0,02mg/1ml 0,01mg/0,5ml

PC - 15 min 0,02mg/1ml 0,01mg/0,5ml

PC - 30 min 0,02mg/1ml 0,01mg/0,5ml
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3.1.7.4 Schematic visualization of a neural tube in the microchannel 

The illustration in Figure 17a (Front view) and Figure 17c (side view) shows the vision of a 

zebrafish neural tube in a 3D microchannel. The microchannel is modified in size (60µm 

width, 100µm depth) and shape (tubular) to mimic the dimensions of a zebrafish neural tube 

(Fig.17b). One characteristic feature of neural tube formation is the establishment of a solid 

lumen and apical/basal polarity, whereas the apical side is located towards the lumen and 

the outer basal side (yellow) is connected to the ECM (e.g. Araya et al., 2016). As described 

in the previous paragraph, a coating with basal proteins (pink) – laminin-1/fibronectin – 

determines the basal side for the cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.8 Control of neurogenesis in a 3D microchannel 

Since cell behavior in 2D is artificial, I investigated if there is a difference in neuronal 

differentiation in 3D compared to 2D. Can I enrich a NPC population by defined NI treatment 

as well?  

I seeded neurog1:RFP primary cells in the microchannel and treated them with 1µM NI. Cells 

were cultivated for 48h.  

Confocal images of NI treated cells (Fig.18b,b`) showed clearly more neurog1:RFP positive 

cells compared to control cells (Fig.18a,a`). Neurog1:RFP positive nuclei were quantified with 

the Bitplane Imaris Software and evaluated in relation to total nuclei (Fig.19,20b). 

 

Figure 17: Vision of the establishment of a neural tube inside the microchannel. The scheme 

of a microchannel, coated with the basal proteins laminin-1/fibronectin is shown in Front View (a) 

and Side View (b). The microchannel was designed in the dimensions of a zebrafish neural tube 

(c), also supporting formation of the tubular structure. Pink = coating, yellow = basal side.  
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Fig.19 illustrates the relation of neurog1:PFP nuclei to total nuclei of the 2D and 3D 

experiment in confocal pictures (19a,b,c,d) and schematic nuclei analysis 

(19a`,b`,b``,c`,d`,d``; detected with the Bitplane Imaris Software). 

 

Statistics of the NI in vivo and in vitro experiments are compared and shown in Fig.20. 

 

 

 

 

 

 

Figure 18: Control of Neurogenesis in 3D. Front View (a) and Top View (a`) of ctrl neurog1:RFP 

cells treated with DMSO and NI treated neurog1:RFP cells (b, b`). Cells were stained for nuclei (DAPI, 

blue) and actin (Phalloidin, green). Pos. neurog1:RFP nuclei show a red color.. Channel width = 300 

µM at the top, 100 µm at the bottom. One experiment was performed ( quantification is shown in 

Fig.20b). Scale bar = 100µM. 
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3.1.9 Comparison of in vitro altered neurogenesis to the in vivo scenario 

In this part of the thesis a comparative study was performed, investigating neuronal 

differentiation in vivo and in a 2D and 3D zebrafish primary cell culture. 

In the in vivo experiment, a NI treatment with 40mM from 2cell-24hpf enhanced the NSC 

population as it was indicated by a stronger neurog1 expression in dorsal Telencephalon, 

Diencephalon and spinal cord. Additionally, a broader spinal cord of the NI treated embryo 

was observed compared to control (as it was shown in the in situ hybridization; Fig.10). 

Moreover, an increase in the average number of RB sensory neurons expressing 

neurog1:RFP in the nuclei (Fig.11) from 52,8 for control embryos to 68,6 RB sensory 

neurons for NI treated embryos was observed meaning a 1,3 fold increase (Fig.20c). 

Significance was determined as n.s. (= not significant) with the Student´s T-Test. 

In the 2D in vitro experiment, 87,5% neurog1:RFP positive and 12,5% neurog1:RFP negative 

nuclei were counted from NI treated cells. 32,7% neurog1:RFP positive nuclei and 67,3% 

neurog1:RFP negative nuclei were detected from control cells; (Fig.20a), displaying a 2,7 

fold increase of neurog1:RFP positive nuclei. However, when neurog1:RFP positive control 

cells were compared to neurog1:RFP positive NI treated cells, the increase was detected as 

n.s. (= not significant, determined with the Student`s T-Test). 

In 3D I quantified 73,0% neurog1:RFP positive and 27,0% neurog1:RFP negative nuclei from 

NI treated cells and 29,1% neurog1:RFP positive and 70,9 % neurog1:RFP negative nuclei 

from control cells, which resulted in an 2,5 fold increase of neurog1:RFP positive nuclei 

(Fig.20b).  

 

 

Figure 19: Acquisition of neurog1:RFP pos. nuclei in 2D vs. 3D. Confocal (a,b,c,d) visualization and 

schematic acquisition (a`,b`,b``,c`,d`,d``) of neurog1:RFP ctrl cells cultivated in 2D (a,a`) and 3D (b,b`,b``). NI 

treated cells are shown in 2D (c,c`) and 3D (d,d`,d``). Staining is shown for nuclei (DAPI, blue). Pos. 

neurog1:RFP nuclei are visualized in red. (For statistics see Fig.20). Scale bar = 50µm. 
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Although a neural tube could not be generated, the NSC population was enriched by defined 

NI treatment. Thus, the established 3D CCS resembles most the in vivo scenario, reflects 

better the dynamics of neurogenesis in vivo and is well controllable.   

 

For the establishment of a complex neural tube and moreover its patterning, precise tissue 

organization, depending on the generation of a sharp interface of neighboring compartments 

is crucial. At specific borders it regulates the organization of key signaling centers like the 

mid-diencephalic organizer and the midbrain-hindbrain boundary. At a later stage of 

boundary formation, cell intermingling is prevented between two adjacent subdivisions 

(Kiecker and Lumsden, 2005; Xu and Wilkinson, 2013). 

 

In vitro studies investigating boundary formation are rare, but would be suitable to clarify 

signaling events during boundary formation.  

 

Figure 20: Quantification of neurog1:RFP pos. nuclei of the 2D (a) and 3D (b) in vitro 

experiment and RB sensory neurons expressing neurog1 in vivo. Graphs in (a) show the 

quantification of the NI 2D in vitro experiment shown in Fig.13, graphs in (b) show the NI 3D in vitro 

experiment performed in Fig.18 and graphs in (c) visualize the NI RB sensory neurons  in vivo 

experiment shown in Fig. 11. Percentage of neurog1:RFP pos. nuclei (red) and neurog1:RFP neg. 

nuclei (blue) from control and NI treated cells (a,b) were evaluated and normalized to the total number 

of cells. Results from (a) and (b) were compared to the average number of RB sensory neurons 

expressing neurog1:RFP from control and NI treated embryos (c). Data shown in (a) represent an 

average from 3 independent experiments with the indicated standard deviations (neurog1:RFP pos. 

ctrl cells were compared to neurog1:RFP pos. NI treated cells; n.s. = not significant, statistical 

significance was determined by using the student´s t-test). Data shown in (b) represent one 

experiment (significance was not determined). Results in (c) represent an average of 11 control and 5 

NI treated embryos (analysis was performed from a constant area of the spinal cord) with the indicated 

standard deviations (n.s. = not significant; statistical significance was determined by using the 

student´s t-test). 
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3.2 Guided Cell Attachment 

 

The following part of my thesis was performed in collaboration with A. Hirschbiel and 

C.Barner-Kowollik (Institute for technical chemistry and polymer chemistry, KIT). The 

functionalized wave pattern was produced by A. Hirschbiel and C. Barner-Kowollik. Testing 

of eGPP capability was performed together with A.Hirschbiel. ToF‐SIMS measurements were 

performed by A. Welle (Institute of Functional Interfaces, KIT). The thermoforming of the PC 

film was carried out by P. Nikolov and S. Giselbrecht (Institute for Biological Interfaces, KIT; 

MERLN Institute for Technology‐Inspired Regenerative Medicine, Maastricht University). B. 

Yameen (Harvard Medical School, Boston, MA, USA) and G. Delaittre (Institute of Toxicology 

and Genetics, KIT) are thanked for discussion. Parts of this chapter were reproduced with 

permission from Hirschbiel, A. F.; Yameen, B., Welle, A.; Nikolov, P.; Giselbrecht, S.; 

Scholpp, S.; Delaittre, G.; Barner‐Kowollik, C.; Adv. Mater. 2015, 27, 2621‐2626 (DOI: 

10.1002/adma.201500426). Copyright 2015 Wiley. 

 

The generation of boundaries in vitro depicts an advantageous approach regarding the 

investigation of neural cells and networks and moreover to study co-cultivation and 

intercellular communication. In an organism, boundaries are formed e.g. between to 

compartments, preventing the migration of cells from one compartment to the other. This cell 

separation is important for regionalizing the brain. Therefore, boundaries are generated e.g. 

in brain organizing centers; the zona limitans intrathalamica (ZLI) and the midbrain hindbrain 

boundary (MHB). The MHB e.g. separates the midbrain from the hindbrain (Kiecker and 

Lumsden, 2005).  

 

In these days guided cell attachment is a well-established and common method to analyze 

the behavior of cells in a distinct environment (e.g. Jung et al., 2008).  

Patterning of a cell repellent polymer, characterized by a cell repellent and a cell attractant 

area, displays an effective way to guide cells into a specific area of interest on a solid 

substrate. This approach depicted a basic step for the investigation of boundary formation in 

vitro.  

Therefore, we investigated cellular guidance to a functionalized wave pattern (area of 

interest). Our collaboration partners developed a process to functionalize a thin PC film into a 

resolved surface spatially by UV irradiation and subsequent passivation with poly   

oligo(ethylene glycol) methyl ether methacrylate (MeOEGMA). 
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3.2.1 Synthetic strategy for the development of a functionalized wave pattern by Astrid 

Hirschbiel 

By combination of photopatterning via o -nitrobenzyl-mediated cleavage – and reversible-

deactivation radical polymerization micropatterns of an oligo(ethylene glycol) (OEG) 

derivative and carboxylic acid moieties were generated. OEG is an effective 

biopassivating/antifouling compound and a useful to avoid non-specific protein/biomolecule 

adsorption (Cheng and Cao, 2010; Rodriguez-Emmenegger et al., 2013). Moreover 

carboxylic acid functional groups on the polycarbonate film improve adhesion of proteins and 

cells on the surface (Lee et al., 1994). 

3.2.2 Testing of adhesion capability of the functionalized wave pattern 

3.2.2.1 Protein adhesion 

First of all, protein adhesion was tested by treatment with fetal calf serum (FCS) (Fig. 21b). 

FCS consists of various proteins and is often used as a highly fouling complex biological fluid 

to test surface resistance to biofouling. FCS attached exclusively in the non-passivated 

pattern (irradiated area). A strong ToF-SIMS signal was given by the FCS layer for the CN− 

and CNO− fragments, reproducing the distinct wave-shaped pattern of the photomask 

(measurement by Alexander Welle).  

 

3.2.2.2 eGFP adhesion 

Moreover the affinity of enhanced green fluorescent protein (eGFP) was proven by 

measuring the fluorescent intensity inside the irradiated area and next to it. Fig.21c shows 

the bright field and fluorescence image of a film after treatment with an eGFP solution. 

Straight through an area of about one millimeter the fluorescent intensity was measured 

(Fig.21d). This particular surface was previously partly irradiated before SI-ATRP (e.g., 

patterned –white arrows in Fig. 21c, bottom) and compared to that of a non- irradiated zone 

on the same film. We recognized that eGFP favors the wave pattern, whereas the non- 

irradiated area showed significantly less fluorescent protein adsorption (Fig.21c). A 

quantitative evaluation of the fluorescence intensity (min = 0; max = 256) shows an average 

fluorescence value of 90.40 ± 5.61 (mean ± S.E.M.) in the irradiated area compared to the 

non-irradiated control surface with an intensity of 59.80 ± 5.12 (Fig. 28d). 
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3.2.3 Cellular guidance in 2D 

Further on, we confirmed our strategy regarding guided cell adhesion by cultivating cells from 

a solid zebrafish fibroblast line (PAC2) on the polymer films. Such a cell line was already 

applied for cell chip experiments (Efremov et al., 2013). PAC2 fibroblasts cells were seeded 

on the PC film, cultivated for 24 h and stained with markers for cell nuclei (DAPI) and actin 

cytoskeleton (Phalloidin). We noticed that fibroblasts attached mainly to the irradiated areas, 

thus respecting the pattern.  

Figure 21: Testing of adhesion capability of the functionalized wave pattern. BF image of the 

polycarbonate film clearly showing the irradiated area (a). ToF-SIMS map of the CN − and CNO − 

signals of FCS (b). eGFP attachment to the wave pattern (c). Fluorescence intensity of eGFP in the 

patterned area compared to the non-patterned area The intensity shown in (d) is based on an average 

of 5 measurements. Scale bar = 200µm. Reprinted and modified from Hirschbiel and Geyer et al., 

2015. 
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The cells avoided the non-irradiated areas (Fig.22a-c). The density of cells (Fig.22d) was 

evaluated by quantification of cell nuclei (DAPI), whereas the actin cytoskeleton (Phalloidin) 

reflects the surface area covered by cells (Fig.22e). Quantification of the cell density 

strikingly evidenced a significant increase of nuclei on the irradiated areas, with 0.0004 cells 

μm−2 (blue bar) compared to the non- irradiated surface, where we saw a density of only 

0.0001 cells μm−2 (red bar). Moreover we observed that cells attached to the irradiated 

surface differed in their morphology from the few cells adhering next to the pattern (Fig.22c). 

Whereas the cells on the passivated surface show a small round morphology, fibroblasts on 

the non passivated surface display a flatter shape. By pseudo-coloring this phenomenon was 

highlighted (Fig.22c). Quantification of the surface coverage (Fig.22e) indicated that 70.3 ± 

6.3% (mean ± SEM) of the non- irradiated surface was covered with cells compared to 15.1 ± 

4.9% of the passivated surface. In general, we observed that the cells cover a much larger 

area in the non- passivated areas of the substrate. For the determination of the significance 

of difference between the data sets, a Student’s T-Test was used and a p -value of p<0.0001 

(***) was calculated. 

Figure 22: Attachment of PAC2 fibroblast cells to a surface patterned polycarbonate film. a) 

PAC2 fibroblast cells, stained with nuclei marker (DAPI),actin cytoskeleton (Phalloidin) and merged 

with the corresponding bright field picture. b) Quantification of the cell distribution, by surface 

rendering of the nuclear DAPI signal and localization of cell nuclei. c) Pseudo coloring of the cells: 

irradiated area (red) and non-irradiated area (yellow). D) Density of cells on the surface: irradiated 

area (blue) and non-irradiated area (red). e) Percentage of surface covered by cells: irradiated area 

(blue) and non-irradiated area (red). The cells were stained and measured after 24 h. Data represent 

an average from 3 independent experiments performed in triplicates with the indicated standard 

deviations (***p< 0.0001, statistical significance was determined by using the student´s t-test). Scale 

bar = : 200µm. Reprinted and modified from Hirschbiel and Geyer et al., 2015. 
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Figure 23: Attachment of PAC2 fibroblast cells to a surface patterned 3D polycarbonate 

microchannel. Scheme of a thermoformed 3D microchannel with an irradiated surface interrupted by 

a non-irradiated zone (a). Front view and top view of an untreated microchannel (ctrl) with PAC2 

fibroblast cells stained with DAPI and Phalloidin (b). Top view overview of PAC2 cells in the patterned 

microchannel (c). Data represent one experiment (statistical significance was not determined). 

Channel width = 600 µm. The cells were cultivated in both cases for 5 d.  

Reprinted and modified from Hirschbiel and Geyer et al., 2015.                                                       -67-          

- 

The cell division rate for PAC2 fibroblasts in culture may be too slow to explain the observed 

cellular distribution. Hence, we suggest that fibroblasts migrate from the non- irradiated 

surface onto the irradiated surface supported by cellular shape analysis.  

 

3.2.4 Cellular guidance in 3D 

Moreover we investigated guided cell adhesion of zebrafish PAC2 fibroblasts in a three 

dimensional microchannel (Figure 23). A combination of the above- mentioned SMART 

process and photolithographic patterning was applied to generate a non- irradiated (cell 

repellent) stripe in a 3D microchannel (Fig.23a). This novel platform enables the generation 

of a cell attractant/cell repellent 3D surface, inducible by light. PAC2 fibroblasts were seeded 

in a non-patterned control channel (Fig.23b), in which we found an all-over coverage of the 

channel surface by fibroblasts after 5 days. On the contrary, fibroblasts which were cultivated 

similarly in a patterned microchannel were almost exclusively found in the irradiated areas 

and avoided the non- irradiated zone, demonstrating the effectiveness of our 

photolithographic method in combination with thermoforming to produce discrete cell-

populated zones inside a single 3D microchannel (Fig.23c). 
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Thus, by employing a mild UV lithographic patterning approach we have developed a facile 

methodology to pattern cells onto a flexible polymer substrate. Further, we evidenced that 

specific areas of our polymeric substrate can be opened for biological impact, including 

strongly fouling sera such as FCS or eGFP. The introduced methodology is to date the only 

avenue for cell guiding on a thin, thermoformable polycarbonate substrate making use of a 

simple photochemical approach. This work paves the way for a patterned surface 

functionalization of thermoformed microstructures which could serve as a base for 

applications ranging from simple patterned cell culture systems to advanced tissue culture 

systems in 3D. 

This work represents a first step towards the investigation of boundary formation in vitro. One 

cell population can already be cultivated in an area of interest. If further on cultivation of two 

distinct cell populations next to each other would be possible, like it is the case during 

boundary formation, e.g. investigation of the compartmentalization at the MHB of the neural 

tube would be possible. 

Moreover, for neural tube formation coordinated movements of many cells in both time and 

space are crucial and regulated by an appropriate communication of cells. In general, 

intercellular interactions determine cell fate and have been shown to be dependent on the 

cell microenvironment, influenced by altered clustering of membrane receptors in 2D 

compared to 3D. 
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3.3 Cellular signaling  

Intercellular interactions by cell adhesion molecules and membrane receptors have been 

shown to be different in 2D compared to 3D and result in altered cellular signaling and gene 

expression (Schwartz and Chen 2013; Knight and Przyborski, 2014) and thus are crucial in 

determining cell fate. However, how these interactions on pathways influence human 

embryonic stem cell (hESC) behavior is still poorly understood. 3D culture of hESCs affects 

cell fates, including self-renewal and differentiation to a variety of lineages. Therefore, 

alteration of cell-cell contact on canonical Wnt/β-catenin signaling in hESCs in a microwell 

array producing 3D colonies was investigated. In the 3D microwell culture, a higher E-

cadherin expression, ongoing with a Wnt downregulation, was observed in comparison to 

cultivation on 2D substrates. However, EBs grown in microwell cultures displayed higher Wnt 

signaling (despite the reduction) than EBs from hESCs cultured on 2D substrates. Moreover, 

in Wnt upregulated cells, an upregulation of genes connected to cardiogenesis was shown in 

EBs (Azarin et al., 2012).  

 

Thus, I performed a Co-culture assay with zfWnt8aORF-GFP-pCS2+ (an important player in 

patterning the neuroectoderm) and Tg(7xTCF-Xla.Siam:nlsmCherry) in 2D and the 3D 

microchannel to investigate if I observe changes in cellular signaling, indicated by altered 

Wnt reporter activation. 

3.3.1 Comparison of Wnt reporter activation in 2D compared to 3D 

HEK293T cells were transfected with Wnt8a-GFP and Tcfmcherry/HisCFP (co-transfected). 

After 24h of cultivation the cells were co-cultured in 2D (Fig.24a; Top View) and 3D (Fig.24 b; 

Front View) for another 24h. Additionally, Tcfmcherry/HisCFP co-transfected cells were 

cultivated alone to serve as control. Cells were visualized by Confocal imaging.  
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Thereby the Wnt reporter activation (Fig.25e) and the Tcf intensity mean (Fig.25f) were 

analyzed and compared between 2D vs. 3D and moreover between TcfmCherry/His-CFP 

and Wnt8a-GFP co-cultured cells with TcfmCherry/His-CFP (control). The Wnt reporter 

activation was visualized by Confocal images (Fig.25a,b,c,d) and analyzed with the Bitplane 

Imaris Software. Nuclei of cells expressing TcfmCherry are shown in red, whereas His-CFP 

nuclei are shown in blue (Fig.25b`,b``,c`,d`,d``).  

Quantification of activated Tcf nuclei (Fig.25e) showed a 26,1% activation in 2D and a 13% 

activation in 3D (controls). Analysis from the co-cultivation resulted in 56% activation in 2D 

and 44,7% activation in 3D. Hence, co-cultivation resulted in a significantly higher Wnt 

reporter activation (*p<0,05). Furthermore, cultivation in 3D showed a lower Wnt reporter 

activation compared to 2D, both in the TcfmCherry/His-CFP culture (control) and the Co-

culture with Wnt8a.  

The evaluation of the Tcf Intensity Mean (Fig.25f) showed clearly an increase in the 2D Co-

culture compared to control (*p<0,05) and 3D Co-culture compared to control (*p<0,05). 

When TcfmCherry/His-CFP cells were cultured alone, they showed an intensity mean of 

9,4% in 2D and 7,2% in 3D. In the 2D Co-culture, 68,7% Tcf intensity was observed 

compared to 46,6% in the 3D Co-culture (*p<0,05).  

Thus, Wnt reporter activation and the Tcf intensity mean were clearly higher in the co-culture 

than in TcfmCherry/HisCFP cultured alone.  

Figure 24: Co-cultivation of Wnt8a-GFP and TcfmCherry/His-CFP transfected HEK293T cells in 

2D and 3D.  2D (a; Top View), and 3D (b; Front View) Co-culture of HEK293T cells visualized by 

Confocal imaging after 24h. Wnt8a=green, TcfmCherry=red, His-CFP=blue.  Channel width 175µM at 

the top, 60µm at the bottom. Scale bar = 20 µm. 
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Significance of the data sets was determined with a Student’s T-Test and a p -value of 

p<0.05 (*) was calculated. 

 

Moreover, Wnt reporter activation and Tcf intensity mean were higher in 2D than in 3D, in the 

co-culture and in TcfmCherry/HisCFP cultured cells. Thus, cellular signaling is higher in 2D 

than in 3D. 

 

 

 

 

 

 

 

 

Figure 25: Analysis of Wnt reporter activation and Tcf Intensity-Mean. Confocal (a,b,c,d) and 

schematic analysis (a`,b´,b``,c`,d`,d``) pictures of Tcf/His-CFP cells cultivated in 2D (a,a`) and in 3D 

(b,b`,b``).  Wnt8a and TcfmCherry/His-CFP transfected cells were co-cultured in 2D (b,b`,b``) and 3D 

(d,d`,d``). Wnt8a=green, TcfmCherry=red, His-CFP=blue. Wnt reporter activation (e) and Tcf Intensity-

Mean (f) were quantified. Scale bar: 20µm. Data represent an average from three independent 

experiments performed in triplicates with the indicated standard deviations (*p< 0.05, statistical 

significance was determined by using the student´s t-test). 
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Summary 

In this thesis I investigated the formation of a neural tube in a 3D microchannel, thereby 

establishing a novel three-dimensional biofunctional cell culture system. This platform was 

used to study all the steps involved in the process of neurogenesis, focusing in particular on 

guided cell attachment and cellular signaling.  

Although it could not be possible to mimic all the stages of neural tube in vitro, it was 

possible to enrich pluripotent zebrafish blastula- derived cells towards a NSC population by 

defined NI treatment. In my work, I could show for the first time that the established 3D CCS 

resembles most the in vivo scenario and reflects the dynamics of neurogenesis in an 

embryo, as shown by the comparison of neuronal differentiation in the zebrafish embryo and 

in a 2D and 3D zebrafish primary cell culture. Moreover, since it is not possible to study and 

dissect a single pathway in vivo, the big advantage of the 3D CCS is that it is well 

controllable. This will allow us to study singularly the effect of each molecule involved in the 

process of neurogenesis. 

 

Furthermore, guided cell attachment on a polymer substrate was investigated in 2D and 3D.  

A cell attractant/cell repellent platform was generated, inducible by light, by combination of 

photolithographic patterning (Christopher Barner-Kowollik, Astrid Hirschbiel) and the 

formation of a polycarbonate microchannel by SMART (Stefan Giselbrecht, Pavel Nikolov). 

Thus, we created a functionalized surface, to which we can attach a particular protein or 

guide cells to this region of interest. The non-functionalized surface had a cell-repellent 

effect. Thus we could guide cells to a specific region of interest. This platform can now be 

used as tool for biological applications, e.g. cell-cell communication, with the long-term 

regard to investigate boundary formation. Boundary formation was shown to be very 

important during embryonic development, since e.g. it´s important for the 

compartmentalization of the different brain parts – forebrain, midbrain and hindbrain (Kiecker 

and Lumsden, 2005; Rhinn et al., 2005).  

 

Moreover, it has been shown that cells in a 3D cell culture mimic the in vivo environment 

more realistic than 2D cells, which display an artificial environment. In 2D cells grow as flat 

monolayer, whereas in 3D cells are shaped in a spherical or tubular form. Thus, cell 

adhesion proteins and membrane receptor arrangement differs drastically between 2D and 

3D cells, which leads to changes in signaling and finally gene expression (Schwartz and 

Chen 2013; Knight and Przyborski, 2014).  

Thus, in the last part of my thesis I investigated in a co-culture approach differences in 

cellular signaling between 2D and 3D cell culture. When I analyzed the effect of Wnt 

releasing cells on reporter cells, I could indeed observe that Wnt reporter activation and Tcf 
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intensity mean showed higher values compared to the control. Moreover, Wnt reporter 

activation has been shown to be higher in 2D compared to 3D in the co-culture. 

Thus, this cell culture approach shows that also for Wnt the cellular signaling is higher in 2D 

compared to 3D, underlying the importance of mimicking a more physiological environment 

for cells when studying signaling pathways, as it has been shown for surface stiffness 

(Dupont et al., 2011). 
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4. Discussion 

 

The establishment of the central nervous system (CNS) represents a complex process 

during embryonic development and has been extensively studied mainly in mammalian, 

avian and non-amniote vertebrates (Schoenwolf and Smith, 2000; Colas and Schoenwolf, 

2001). During patterning of complex tissue like the CNS, a tremendous number of cells have 

to arrange themselves in a spatially and temporally precise way. Thereby cells have to 

rapidly change their features, due to distinct requirements during proceeding development 

(e.g. maturation into a neuron from a neural precursor cell). However, the machinery 

generating neural tissue architectures is still far from being completely understood (Karus et 

al., 2014).  

The zebrafish is a suitable model to study the development of the CNS in its entirety, due to 

the transparency of the zebrafish embryo and the fact that the CNS is generated in 48hpf. 

However, due to the complexity of neurogenesis in vivo the detailed elucidation of particular 

steps is hindered due to the many diverse interactions of influencing factors, including the 

interplay of signals derived from the mesoderm. Therefore, a simplified three-dimensional 

cell culture platform was established to investigate neural differentiation in a controlled 

manner.  

 

The dynamic of gene expression we studied in vivo was taken in account to gauge the 

controllability of neurogenesis in 3D cell culture to the in vivo scenario.  

 

 

 

 

 

 

 



- 75 - 
 

Neurogenesis is regulated by a gene cascade, 

mediating the differentiation from embryonic stem cells 

(ESCs) and moreover self-renew to maintain the stem 

cell pool. Neural stem cells (NSCs) further on different 

into neural progenitor cells (NPCs) and some of the 

NSCs self-renew and reside in the stem cell pool as 

well.  NPCs finally differentiate into postmitotic neurons 

(Fig.26). One important gene in this cascade is 

neurogenin1 (neurog1). Neurog1 acts early in this gene 

cascade by determining which cells of the NSCs will be 

NPCs and differentiate further into postmitotic neurons.  

The proneural gene neurog1 has been shown to act as 

an activator of neurogenesis (Korzh and Straehle, 2002; 

Blader et al., 2004) and inhibitor of gliogenesis (Yuan 

and Hassan, 2014). Neurog1 is expressed in primary 

neurons and neurog1 misexpression leads to ectopic 

neuron formation in non-neural ectoderm (Kim et al., 

1997). Moreover, neurog1 is crucial for the formation of 

Rohon-Beard (RB) sensory neurons, and misexpression 

of neurog1 results in a loss of Rohon-Beard sensory 

neurons (Cornell and Eisen, 2002).  

 

4.1 Neurog1 reflects the dynamics of neurogenesis 

My qPCR data showed that neurog1 was slightly 

detectable at sphere stage, but increased rapidly until 

10 somite stage, resulting in a maximal expression at 

24hpf, followed by a rapid decrease until 48hpf. Thus, 

neurog1 reflects the dynamics of neurogenesis and was used as an indicator for proneural 

fate in this thesis. 

 

Following the analysis of neurogenesis dynamics in the in vivo situation, I investigated if I can 

modulate and thereby control neurogenesis by forcing ectoderm formation. In the embryo, 

the dorsal ectoderm receives inductive signals from the adjacent mesoderm. Ectodermal 

cells respond to inducing signals, adopt a neural fate and form the neural plate, which gives 

rise to the neural tube. The remaining ectoderm develops into skin (epidermis) and 

derivatives.  

Figure 26: Neuronal 

differentiation.  

During embryonic development, 

ESCs self-renew and differentiate 

into NSCs. NSCs renew themselves 

and further on differentiate into 

NPCs, which finally differentiate into 

postmitotic neurons. 
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Genetically, the formation of the germ layers ectoderm, mesoderm and endoderm, is 

regulated by nodal signaling (Hagos and Dougan, 2007). To this aim a Nodal Inhibitor was 

used.  

 

4.2 Nodal signaling initiates and patterns mesendoderm formation  

In all vertebrates the nodal-related subclass of the TGF-β superfamily initiates and patterns 

mesoderm and endoderm. In the zebrafish, these nodal-related genes are called nodal-

related1 (ndr1) - previously known as squint (sqt) and nodal-related2 (ndr2) – previously 

named cyclops (cyc).   

Since my aim was to force ectoderm formation, which partly adopts a neural fate to generate 

the CNS, I prevented mesoderm formation in the zebrafish embryo by pharmacological 

inhibition of nodal signaling mediated by treatment with the SB431542 Nodal Inhibitor (NI). 

The NI blocks the activin-like kinase (ALK) 4,5 and 7 receptors of the nodal signaling 

pathway, which in turn prevents phosphorylation of downstream effectors Smad 2 and 3 

(Callahan et al., 2002; Inmann et al., 2002). Hence, mesendoderm formation is inhibited (Sun 

et al., 2006; Hagos and Dougan, 2007; Lippmann et al., 2014) and solely ectoderm is 

generated which will give rise to epidermis and neural tissue. 

By NI treatment of zebrafish embryos it has been shown that the formation of structures 

derived from mesendoderm - like somites, notochord, blood, heart and Kupffer´s vesicle - 

was prevented and moreover embryos displayed cyclopia, mimicking the severe phenotype 

of the ndr1/ndr2 double mutant (Hagos and Dougan, 2007).  

In my in vivo experiment, in which zebrafish embryos were treated with the NI, I observed the 

same effects of mesendoderm inhibition resulting in this severe phenotype.  

The NI has been applied in several studies to inhibit mesendoderm formation. However, the 

concentration which was used varied. A NI concentration of 50µM failed to mimic the 

ndr1/ndr2 double mutant phenotype (Sun et al., 2006). A much higher dose of 800µM and 

additional perforation of the embryos at the margin guaranteed complete penetration of the 

NI into the embryos, resulting in a ndr1/ndr2 double mutant phenotype, thus completely 

blocking nodal signaling. Moreover, it has been shown that anterior trunk spinal cord was lost 

in double ndr1/ndr2 mutants but more anterior and posterior neural fates were present. Nodal 

signaling has been suggested to mediate the generation of trunk and antagonizes anterior 

fates. Therefore, nodal signaling might act through an intermediary posteriorizing signal to 

initiate trunk spinal cord. Posteriorizing signals are located at the lateral margin, and the 

posteriorizing influence might be due to absent nodal signaling (Feldmann et al., 2000). 

Lower concentrations showed a more mild phenotype similar to teratocarcinoma-derived 

growth factor 1 (tdgf1; previously known as one-eyed pinhead; Hagos and Dougan, 2007). 
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The milder phenotype was also observed by treating cleavage stage embryos with 50µM NI 

(Sun et al., 2006).  

In my study, I tested higher concentrations of the NI; 20mM and 40mM, since NI treatment 

was performed through the chorion. 

Moreover, it has been shown that the time in which embryos are exposed to the NI is playing 

an important role. In the embryo, nodal signaling acts in a time window from mid-to-late 

blastula stages. Thus, specification of cells fates along the animal-vegetal axis by nodal 

signaling occurs in a time-dependent way. When nodal signaling was blocked at a later time 

point (after mid-to-late blastula stages) just the specification of margin-derived cell types was 

inhibited, whereas animal-region derived cell types specified. Thus, cell fate also depends on 

how long cells receive nodal signals and a uniform nodal dose results in more marginal cell 

fates (Hagos and Dougan,2007).  

In my in vivo experiment, zebrafish embryos were treated with the NI from 2-cell stage until 

24hpf and from 2-cell stage until 48hpf. In my qPCR data it was shown that the highest 

neurog1 expression was detected at 24hpf with a rapid decrease until 48hpf (due to 

differentiation of NPCs into mature neurons). Therefore, I analyzed the effect of the NI on 

neurogenesis on these stages by neurog1 in situ hybridization.   

 

4.3 By inhibition of nodal signaling the neural progenitor cell population is increased 

in vivo  

With a working concentration of 40mM and a treatment time from the 2-cell stage until 24hpf 

not only mesendoderm formation was inhibited. Loss of derivatives of mesoderm and 

endoderm as well as cyclopia were recognizable with a working concentration of 40mM NI 

and treatment from 2-cell until 24hpf, comparable to the severe ndr1/ndr2 double mutant 

phenotype described by Hagos and Dougan. Ectoderm and future neuroectoderm formation 

was enhanced, reflected by a stronger neurog1 expression in the dorsal telencephalon, 

diencephalon and spinal cord compared to the control embryo (DMSO treated). Additionally, 

the spinal cord of the treated embryo (Fig.10c`) was obviously wider than the spinal cord of 

the control embryo (Fig.10a`). Since the cut out spinal cord parts (cut surface indicated by 

black lines in the whole mount embryos; Fig.10a,b,c) are shown in the dorsal view under a 

cover slip (Fig.10a`,b`.c`), this might have minimally changed the shape of the spinal cord 

pieces. 

 

Thus, in my experiment it was shown that by inhibition of nodal signaling the NPC population 

is increased in vivo. 
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Treatment with NI concentrations of 20mM and 40mM from the 2-cell stage until 48hpf 

resulted in massive malformation of the embryos, indicated by an immense shortened and 

tilted body axis and a clumpy head and seemed to have a toxic effect on the embryos.  

 

Furthermore, since neurog1 has been shown to be crucial for the formation of RB sensory 

neurons I treated transgenic neurog1:GFP zebrafish embryos with 40mM NI from the 2cell 

stage until 24hpf. An 1,3 fold increase in the average number of RB sensory neurons was 

observed (Fig.11).  

 

Thus, after visualization of an enrichment of the NSC population in vivo (shown in the in situ 

hybridization) an increase of NSCs was additionally quantitatively confirmed by the 

upregulation in the average number of RB sensory neurons, both due to inhibition of nodal 

signaling. 

Hence, ectoderm and neuroectoderm formation is controllable in vivo, resulting in an 

enrichment of the NSC population and an increase in the number of RB sensory neurons, 

due to defined NI treatment.  

 

Since the aim of my study was to generate a neural tube in a simplified 3D controllable cell 

culture system, I investigated in the next step if I can force zebrafish primary cells to adopt a 

proneural fate in vitro, first of all in 2D cell culture. 

 

In various in vitro studies an involvement of the already described NI promotes hESCs 

conversion into a neuronal cell type. Mostly by the so-called dual SMAD inhibition (Chen et 

al., 2015). Thereby, the NI and the bone morphogenetic protein (BMP) antagonist noggin 

inhibit the SMAD pathway synergistically (Chambers et al., 2009; Wattanapanitch et al., 

2014). Moreover, by combination of dual SMAD inhibition with the Glycogen synthase kinase 

3 β (GSK-3β) inhibitor CHIR99021 human fibroblasts can be converted into postmitotic 

neurons with morphological, immunocytochemical and functional characteristics. It was 

hypothesized, that TGF-β inhibition promotes mesenchymal-to-epithelial transition (Ladewig 

et al., 2012).  

Furthermore, a combination of the NI and LDN-193189 (LDN) was tested. LDN acts as an 

inhibitor of BMP type I receptors ALK2 and 3 and prevents phosphorylation of Smad1,5 and 

8. Dual inhibition with the NI and LDN for one day and an additional day with LDN was 

sufficient to force generation of Pax6+ (a neuroectoderm marker) cells efficiently (Surmacz et 

al., 2012; Rodrigues et al., 2014).  
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Nevertheless, compared to the described methods, using combined factors to generate 

neuronal cell types, in my approach I tested solely one factor, the NI, to keep experimental 

conditions simple and thus more controllable.  

 

4.4 By inhibition of nodal signaling the neural progenitor cell population is increased 

in vitro 

In my studies, I used not murine or human ESCs, but ESCs derived from the transgenic 

neurog1 zebrafish line.  The aim of my study was to generate a zebrafish neural tube in vitro, 

since the spinal cord of the zebrafish as a lower vertebrate is not as complex as a 

mammalian spinal cord. Moreover, since I performed a comparative study of neuronal 

differentiation in vitro to neuronal differentiation in the in vivo scenario I took advantage of the 

transparency of the zebrafish embryo, which enables investigation of nervous system 

development in the living organism which is rapidly established until 48hpf.  

Initially, I investigated if pluripotent zebrafish sphere-stage derived primary cells differentiate 

to NPCs in vitro. Indeed, a minor population of NPCs was observed. Since I showed that in 

vivo a NPC population was enriched by NI treatment, I tested if the NI is also applicable for 

neuronal differentiation of zebrafish primary cells in vitro.  

In neuronal differentiation studies using mouse and human ESCs mostly a concentration of 

10µM was used (Chambers et al., 2009; Wattanapanitch et al., 2014). I tested 1µM, 5µM and 

10µM NI concentration and treated cells from sphere stage to 24h and 48h respectively. By 

usage of 1µM NI and a treatment time of 48h I observed the highest enrichment of 

neurog1:RFP positive nuclei. Thus, I used a concentration of 1µM Nodal Inhibitor and a 

treatment time of 48h. Moreover, whereas for mouse and human ESC neuronal 

differentiation mostly Dulbecco`s modified eagle medium (DMEM) medium was used as 

basis, I figured out that for sphere-stage derived zebrafish primary cells the Leibovitz`L-15 

medium is more suitable. Moreover, zebrafish sphere-stage derived cells required fetal calf 

serum (FCS) at least at the beginning of cultivation: In contrast, in neuronal differentiation 

studies in mESCs and hESCs, neuronal differentiation was improved in serum-free culture 

conditions, due to instruction of specific regional identities by adding potent morphogens. 

However, with the culture conditions I used an 2,7 fold enrichment of the NPC population, 

indicated by neurog1:RFP positive nuclei, was achieved compared to neurog1:RFP positive 

nuclei of control cells (treated with DMSO; Fig.13).  

 

Thus, by inhibition of nodal signaling the neural progenitor cell population is increased in 

vitro. Hence, the NI is applicable for zebrafish primary cells as well. Compared to the NI in 

vivo treatment where a treatment time until 24hpf showed the highest enrichment of NPCs, 

the in vitro NI treatment required a treatment time until 48hpf. This delay in cellular 
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differentiation might be due to a disturbance of the cell cycle, which was probably caused by 

the change of cell culture medium.  

Since in this thesis I investigated the establishment of a zebrafish neural tube in 3D cell 

culture system, the next paragraphs describe the generation of neural tissues in vitro, 

thereby comparing 2D and 3D cell culture systems. 

 

4.5 Generation of neural tissue architectures in vitro 

NSCs have been shown to be capable forming neural structures in vitro (Han et al., 2012; 

Zhu et al., 2013), and in advanced 3D cell culture systems they can even build multilayered 

complex architectures (Tang-Schomer et al., 2013; Meinhardt et al., 2014; Karus et al., 2014; 

Muguruma et al., 2015). The ability of NSCs to generate complex neural structures in vitro is 

mainly based on the self-organizing properties of NSCs. Beside the access to unlimited cell 

material, the continuously improving neural differentiation protocols and progress in the 

establishment of novel optimized cell culture systems induced a new dimension for studying 

initial steps of neural development and brain diseases in vitro (Karus et al., 2014). In vitro 

generate neural tissues can be roughly categorized in unstructured shapes and more 

complex and structured architectures. The so-called neural rosette, long-term neuroepithelial 

stem cells (lt-NES) and neurospheres display unstructured neural tissues.   

Developing NSCs maintained proliferative characteristics when fibroblast growth factor (FGF) 

was added to the medium and formed neural rosette structures. The neural rosette 

generates apical-basal polarity (indicated by the apical proteins zona occludens 1 and N-

cadherin in the core) and seem to undergo interkinetic nuclear migration (INM, a periodically 

movement of the nucleus of a cell between the apical and basal membrane during cell cycle; 

Falk et al., 2012; Nasu et al., 2012). When epidermal growth factor (EGF) was added, so-

called NSCFGF2/EGF cells were generated, which own features similar to the radial glia-like 

phenotype described in a fetal NSC population (Conti and Cattaneo, 2010; Conti et al., 

2005). These cells are suitable for long-term culture (long-term neuroepithelial stem cells; lt-

NES), and display posterior identity similar to an anterior hindbrain fate, which might be 

caused by the posteriorizing effect of FGF2 (Karus et al.,2014). 

Neural rosettes can be generated classically with the two-step neural induction protocol. 

Thereby, ESCs are cultivated without adhesion to a substrate at first. Due to their round 

shape in this phase they are called embryoid bodies (EB). After the EB forming phase, EBs 

are plated on an adhesive substrate, like mouse embryonic fibroblast (MEF) feeder cells and 

are cultivated with FGF/EGF to generate lt-NES.  

Although neural self-organization can be achieved in monolayer culture, a 3D suspension 

culture is more suitable for spontaneous generation of complex neural histoarchitectures, 

since they allow 3D growth. In the early 1990s, the first studies were performed applying 3D 



- 81 - 
 

culture, cultivating NSCs with FGF and EGF from fetal and adult rodent brain as free-floating 

aggregates named neurospheres, thereby establishing classical 3D neurosphere culture 

(Reynolds et al., 1992). Neurospheres formed from primary cells have been described as 

primitive, consisting of a heterogeneous mixture of randomly distributed mitotic cells and 

moreover NSCs and NPCs. Cells within a neurosphere have been shown to be primitively 

separated from each other, due to their regional origin of their primary tissue (e.g. nestin- 

positive NSCs/NPCs located at the neurosphere edge and glial fibrillary acidic protein 

(GFAP) and βIII-tubulin-positive neurons in the neurosphere core; Campos et al., 2004; 

Jensen and Parmar, 2006; Sirko et al., 2007; von Holst et al., 2006). However, authentic 

neural tissue architectures like a layered cortical neuroepithelium do not generate in a 

neurosphere. Cells establishing neurospheres have been compared with a radial glia-like 

stem cell (Karus et al., 2011, Reynolds and Rietze, 2005) and might be similar to the 

NSCFGF2/EGF cell. Thus, the neurosphere-forming cell is presumably a late-stage neural 

precursor cell, displaying inability to contribute to complex pattern formation (Karus et al., 

2014). 

 

Thus, the described neural shapes are too unstructured, due to their heterogeneous 

randomly mixed cell population and sphere-like structure. In my thesis, the aim was to 

generate a structured, tubular-shaped zebrafish neural tube. However, the classical two-step 

neural induction protocol and 3D suspension culture do not support the generation of a 

tubular shape, due to a lack of a scaffold.  Therefore, a 3D cell culture system, providing a 

scaffold is required to support the formation of a tubular shape.  

 

4.6 Complex neural tissue architectures 

Classically, EBs were cultivated in medium containing fetal calf serum when detached from 

mouse embryonic fibroblast feeder cells. These EBs were not suitable to investigate 

formation of lineage-specific histoarchitecture, since they consist of cells from all germ 

layers.  The introduction of serum-free suspension culture enabled the formation of specific 

regional identities (e.g. dorsal telencephalon) by adding morphogens implied a meaningful 

progress (Watanabe, 2005). The so-called serum-free floating culture of embryoid body-like 

aggregates (SEFB) protocol was further optimized by using ultralow-attachment 96-well 

plates to control EB size by quickly reaggregation (SEFBq) dissociated ESCs into an EB-like 

structure. Addition of Wnt and TGFβ inhibitors resulted in the generation of polarized cortical 

epithelia in a temporally controlled manner, mimicking corticogenesis in vivo, although 

stratification was not achieved sufficiently with the SFEBq technique (Eiraku, 2008).  

A drawback of the SFEBq system is the difficulty of avoiding fusion of cellular aggregates 

during cultivation, resulting in variation of quality in different aggregates.  
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Moreover, by cultivation of 3D hPSCs, cerebral organoids (minibrains) with distinct brain 

regions were formed in a multiple-step method. First, neuroectoderm developed from EBs, 

which then were embedded in Matrigel droplets. The matrigel droplets in turn, were 

transferred to a spinning bioreactor to improve nutrient absorption, resulting in rapid 

development of brain tissues (Lancaster et al., 2013). However, just in about 1:1000 cases 

such a minibrain develops (personal communication). Furthermore, generated cerebral 

organoids consisted out of variable spatially distinct “brain regions” (Karus et al., 2014).  

Whereas neural tissues like neural rosettes and neurospheres represent a too unstructured 

architecture, complex neural tissues like multilayered cortical epithelia display complex and 

structured systems. However, they are rarely reproducible. The generation of complex 

structures requires strict following of cell culture guidelines. Moreover, complex architectures 

display a spherical structure as well, since existing advanced cell culture systems including 

3D suspension culture combined with cultivation of neural architectures in a well plate, 

matrigel and/or bioreactor do not support the formation of a tubular structure as well, due to a 

lack of scaffold. 

 

Recently, the patterning of a neural tube was reconstructed in 3D. Mouse ESCs were directly 

embedded in matrigel or synthetic matrices (providing a scaffold) and cells were cultivated 

under neural induction conditions, forming clonally neuroepithelial cysts with a single lumen. 

By addition of retinoic acid, a complete dorso-ventral patterning was achieved (Meinhardt et 

al., 2014). However, this approach resulted as well in the generation of neural cysts, since a 

scaffold supporting the formation of a tubular shape is missing.  

Thus, none of the described CCS is suitable to generate a controllable 3D CCS to support 

the formation of a zebrafish neural tube. Therefore, a reproducible platform is required to 

enable the cultivation of a complex 3D tubular neural architecture, still guaranteeing 

controllability of neural differentiation.  

 

4.7 Establishment of a three-dimensional cell culture system 

A 3D microchannel (provided by S. Giselbrecht and colleagues) thermoformed from a 

polycarbonate foil by the Substrate modification and replication by thermoforming (SMART) 

technology (Giselbrecht et al., 2006; Truckenmüller et al., 2011) served as basic structure for 

the 3D cell culture system. The microchannel was modified in size and shape to support the 

formation of a zebrafish neural tube (60µm width, 100 µm depth). First of all, the functionality 

of the microchannel was tested with robust PAC2 cells, which attached and covered 

completely inside the microchannel. Zebrafish primary cells were more difficult to cultivate, 

probably because the composition of their ECM is not as strong as the ECM of zebrafish 

fibroblasts. 
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Since the generation of a neuroepithelial structure requires the establishment of apical/basal 

polarity, the microchannel was biofunctionalized with basal proteins to determine the basal 

side for the zebrafish primary cells. 

 

4.8 Biofunctionalization of the microchannel provides basal information for the cells  

Proteins of the ECM, like laminin, fibronectin, gelatin and collagen have been shown to 

promote cell attachment and differentiation. Especially laminin-1 (Ekblom et al., 2003; 

Hohenester and Yurchenco, 2013) and fibronectin (Pankov and Yamada, 2002; Burnside 

and Bradbury, 2014) are enriched in the neural ECM and have been shown to be essential 

for basement membrane assembly and adhesion, migration and axon elongation. The 

biological performance of a substrate has been shown to be due to different conformations of 

laminin on a substrate. Laminin domains mainly act through integrin and non-integrin binding 

proteins. Integrins in turn have been described as primary mediators of neural cell behavior 

on ECM components (Martinez-Ramos et al., 2007). 

 

Due to the importance of laminin-1 and fibronectin for the neural ECM and neuronal cell 

behavior, I used a laminin-1 and fibronectin coating to determine the basal side for the cells 

on the PC. Thereby, different coating conditions of laminin-1 alone and in combination with 

fibronectin were tested, with and without UV-ozone treatment (Pryzhkova et al., 2014; Table 

1). It was shown that a UV/ozone treatment on carbon nanotubes hydrophilized their 

surfaces, ECM proteins were attached and thus cell attachment was improved. Thereby, the 

best result was achieved with a treatment time of 5 min (Pryzhkova et al., 2014). In my 

approach, with a UV/ozone treatment time of 5 min I observed the best effect as well. 

Moreover, by Cooke and co-workers it was shown that a coating with the ECM proteins 

laminin (0,01mg/ml) and fibronectin (0,05mg/ml) on coverslips cell attachment was improved. 

However, I gained the best cell attachment with a laminin-1/fibronectin mixed solution of 

0,02mg/1ml (laminin-1) + 0,01mg/0,5ml (fibronectin). 

  

4.9 By inhibition of nodal signaling the neural progenitor cell population is increased 

in 3D  

In various studies it has been shown that an involvement of the already described NI 

mediates neuronal conversion of ESCs (Chambers et al., 2009; Ladewig et al., 2012; 

Wattanapanitch et al., 2014: Chen et al., 2015; Liu et al., 2015). 

In my 3D CCS, I investigated controllability of neuronal differentiation applying the NI with the 

same conditions as in the 2D CCs. An 2,5 fold increase of neurog1:RFP positive nuclei was 

observed compared to control cells (DMSO treated; Fig.18,19,20).  

Thus, by inhibition of nodal signaling the NPC population was increased in 3D. 
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4.10 The 3D cell culture system reflects better the dynamics of neurogenesis in vivo 

and is well controllable 

A comparative study was performed investigating neural differentiation in the zebrafish and in 

2D and 3D zebrafish primary cell culture. Although a zebrafish neural tube could not be 

generated in vitro, it was shown that by defined NI treatment the inhibition of nodal signaling 

resulted in an enrichment of the NPC population in vivo, as it was reflected by an increase of 

neurog1 expression and an expansion of the spinal cord of treated embryos (Fig.10b,b`c,c`) 

compared to control embryos (Fig10.a,a`). Moreover, an 1,3 fold increase in the average 

number of treated RB sensory neurons (Fig.11a,a`) was observed compared to control 

embryos (Fig.11b,b`). Furthermore, by defined NI treatment the NSC population was 

enriched in vitro, as it was indicated by an 2,7 fold increase of neurog1:RFP positive nuclei in 

2D and 2,5 fold enrichment in 3D compared to controls (Fig.20).  

Thus the established 3D CCS approaches closer to the in vivo scenario than the 2D CCS, 

which displays an artificial environment. Hence, controllability of neurogenesis can be 

achieved in the established 3D CCS, which reflects better the dynamics of neurogenesis in 

vivo and is well controllable. 

 

4.11 Advantages and limitations of the established three-dimensional cell culture 

system 

S. Giselbrecht and co-workers established a three-step process, consisting of 

premodification, thermoforming and postmodification for the establishment of 3D 

functionalized microstructures for 3D cell culture applications called SMART. The main 

advantage of the SMART technology is that polymer foils are thermoformed not in a melting 

phase but in a softened state (in contrast to e.g. microinjection moulding), thus guaranteeing 

maintenance of previously generated modifications due to the highly material coherence. 

Moreover, modifications established in 2D are even available on vertical side walls of the 

microchannel in high resolution and in depth of the material. The SMART technology enables 

the production of thin-walled flexible microstructures, which can be adjusted in surface 

modifications, size and shape – e.g to mimic the dimensions of a zebrafish neural tube and 

support the tubular shape due to the tubular microchannel. 

A limiting factor is the thickness of the polymer film, which has to be stretched and bend 

around mould structures. Smallest thermoformable structures range in the low ten-

micrometers. Another limitation is the depth of a microstructure, meaning the ability of a film 

to be stretched without tearing, which depends on wall thickness distributions (Giselbrecht 

2006; Truckenmueller et al., 2011).  
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The SMART technology was also used to produce so-called microcontainer arrays, which 

are 3D chips for cell culture applications (Giselbrecht et al., 2008).  

Moreover, by the SMART technique, a similar microchannel was applied to study 

transendothelial transport in vitro. S. Giselbrecht, U. Schepers and co-workers established a 

3D porous capillary system, coated with collagen, which enabled grow of HUVEC endothelial 

cells on the inner walls of the microchannel, mimicking the natural curvature of a blood 

vessel.  This 3D porous capillary system, which was created by a combination of microscale 

thermoforming and ion track technology, was used to study transendothelial transport of 

drug-like molecules (Hebeiss et al., 2012).  

 

Since I observed that in my 3D cell culture approach the cells favored to attach on the walls 

of the microchannel, I suppose the stiffness at the bottom of the microchannel might be too 

rigid for the cells. Since it was shown that the stiffness of the neural ECM of the brain ranges 

between 0,1-1 kPa (Lv et al., 2015), cultivation of cells in a hydrogel inside the microchannel 

might support further neuronal differentiation, providing a softer substrate and moreover 

would support three-dimensional growth of cells. Additionally, to exclude a zebrafish-specific 

cross-reaction, neuronal differentiation should be studied with a mammalian cell line as well, 

e.g. mouse neuroblastoma derived neuro2a cell line.  

Moreover, further differentiation should be forced by cultivation of zebrafish primary cells in 

neuronal differentiation medium by addition of soluble factors driving further differentiation 

into mature neurons, e.g. FGF8 to induce midbrain/hindbrain fate (Petros et al., 2011). 

 

Nevertheless, the established 3D CCS described in this thesis provides the most suitable 

platform to generate a simple neural tube under controllable conditions, further enabling to 

investigate singularly the effect of each molecule involved in the process of neurogenesis. 

Recently, Meinhardt and colleagues (2014) reconstructed a patterned neural tube in 3D, 

resulting in neuroepithelial cysts. On the contrary, our established 3D microchannel allows 

the formation of tubular structures, which additionally can be modified in size and shape to 

mimic the dimensions of a zebrafish neural tube. Takahashi and colleagues (2016) cultivated 

neuron bundles without precoating in a longitudinal way and named them “neural 

microtubes”. Compared to this study, in my approach I investigated neuronal differentiation in 

a 3D tubular platform from the beginning, additionally determining the basal side for the cells 

by coating with the basal proteins laminin-1 and fibronectin. Moreover, 3D CCSs generating 

more complex neural architectures (like minibrains; Lancaster et al., 2013) require often a 

multi-step fabrication process, which is often hardly reproducible. Furthermore, although 

gradients of developmental morphogens in neural tube patterning were investigated (Demers 
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et al., 2016) we preferred a simplified, controllable and thus reproducible scaffold which 

allowed us to focus on single molecules and their effect on the process of neurogenesis. 

 

Formation and further on patterning of the neural tube requires precise tissue organization, 

depending on the generation of a sharp interface of neighboring compartments. At specific 

borders it mediates the organization of key signaling centers like the mid-diencephalic 

organizer and the midbrain-hindbrain boundary. At a later stage of boundary formation, cell 

intermingling is prevented between two adjacent subdivisions (Kiecker and Lumsden, 2005; 

Xu and Wilkinson, 2013). 

In vitro studies investigating boundary formation are rare, but would be suitable to clarify 

signaling events during boundary formation. Therefore, guided cell attachment in vitro was 

investigated in collaboration with A. Hirschbiel and C. Barner-Kowollik, creating a cell 

attractant/ cell repellent polymer. 

 

4.12 By establishment of a functionalized (cell attractant) surface area distinct are by 

light cells can be guided to this specific are in 2D and 3D 

By light inducible photolithographic patterning a functionalized, cell attractant area was 

created on a polycarbonate film, which is advantageous due to its amenability to 

thermoforming, e.g. into thin-walled 3D microchannels. The surface outside of the 

functionalized (irradiated) area had a cell repellent effect, due to the biofouling properties of 

the oligoethylenglycol (OEG; Nan Cheng, 2010; Rodriguez-Emmenegger et a., 2013), as it 

was indicated by fetal calf serum (FCS) adhesion (Fig.21b). Moreover, enhanced green 

fluorescent protein (eGFP) attached primarily to the wave pattern, whereas the non-irradiated 

area displayed significant less eGFP adsorption (Fig.21c). Furthermore, PAC2 cells were 

guided to the functionalized wave pattern and attached densely almost exclusively there 

displaying an expanded cell surface (Fig.22). As the cell division rate for PAC2 fibroblasts in 

cell culture may be too slow to explain the observed cellular distribution, I suggest that 

fibroblasts migrate from the non-irradiated surface to the irradiated surface supported by 

cellular shape analysis. Moreover, a non-irradiated, cell repellent stripe was designed in a 

microchannel, to investigate if cells can be guided in 3D as well. PAC2 cells avoided the non-

irradiated stripe and attached almost solely in the irradiated surface (Fig.23).  

Thus, cells can be guided to an area of interest on a polycarbonate film in 2D and 3D. 

 

In another approach, Irvine and colleagues (2001) made use of Arg-Gly-Asp (RGD) peptides 

for control of cell adhesion (instead of OEG), thus clustering these peptides on comb polymer 

films. On the contrary, in our method we created a micropattern of cell-repellent OEG and 

cell attractant carboxylic acid moieties; which increased adhesiveness, resulting in protein/ 
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cell attachment on the film.  Furthermore, in a similar study cell-repellent polyethylenglycol 

(PEG) was sulfonated to generate a comb-like polymer for highly resolved cell micropatterns. 

NIH 3T3 fibroblasts attached into the comb structure, whereas the sulfonated PEG areas 

were avoided by the cells (Jung et al., 2008). 

However, compared to the method of e.g. Jung and colleagues, our introduced approach 

reflects up to now the only possibility for cell guiding on a thin, thermoformable polycarbonate 

substrate produced by a simple photochemical approach. This enables a patterned surface 

functionalization of thermoformed microstructures allowing applications from simple 

patterned CCS to advanced tissue CCS in 3D (Hirschbiel and Geyer et al., 2015). 

 

A further modification of the photolithographic technique would be to generate two adjacent 

surfaces, with distinct functionalization. This might enable cultivation of two cell populations 

next to each other and would by an interesting approach to study boundary formation in vitro.  

Another opportunity would be to cultivate cells in a hydrogel inside the microchannel, filling 

the microchannel in three steps, with an intermediate 

polymerization step in between. Thus, cultivation of different 

cell populations next to each other would be possible, 

mimicking a border between two cell populations at the 

interface between two adjacent hydrogels (Fig.27). The 

hydrogel contains proteins of the neural ECM, like laminin, 

fibronectin, chondroitin sulphate proteoglycans and heparan 

sulfate proteoglycans (Soleman et al., 2013; Burnside and 

Bradbury, 2014). Thus, it would be possible to study cellular 

communication at a boundary in vitro.  

 

Moreover, for neural tube formation coordinated 

movements of many cells in both time and space are crucial 

and regulated by an appropriate communication of cells.  

In general, intercellular interactions determine cell fate and 

have been shown to be dependent on the cell 

microenvironment, influenced by altered clustering of 

membrane receptors in 2D compared to 3D. 

 

 

 

 

 

Figure 27: Model for the 

formation of a boundary in 

vitro. Hydrogel, enriched with 

cells (e.g. neuro2a) is filled in 

the microchannel in three-

steps, with intermediate 

polymerization steps in 

between. The hydrogel 

contains proteins of the 

neural ECM. 
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4.13 Intercellular interactions modulate Wnt/β-catenin signaling 

Wnt/β-catenin and FGF signaling has been shown to influence the specification and 

maintenance of a neuromesodermal axial progenitor in mouse ESCs. In amniotes, a 

specialized population of cells (called long-term neuromesodermal precursor; NMp), 

mediated by Wnt and FGF signaling at the end of gastrulation, widens and forms the spinal 

cord and paraxial mesoderm. In an adherent cell culture approach with mouse ESCs, it was 

shown that by controlled increase of Wnt/β-catenin and FGF signaling cells adopt features of 

the NMp. Moreover, the effect of Wnt/β-catenin and FGF signaling was increased when 

mESCs were cultivated as 3D aggregates and the population self-organized, underwent 

growth and axial elongation mimicking partly the behavior of embryonic spinal cord and 

paraxial mesoderm (Turner et al., 2014). 

Hence, Wnt/β-catenin signaling was increased in 3D microwell culture compared to 2D 

adherent culture. 

 

Furthermore, in a 3D cell culture system, control of EB size and shape has been shown to 

regulate cell-cell contacts on canonical Wnt/β-catenin signaling in hESCs. Moreover, 

variations in EB size has been described to affect efficiency of cardiogenesis (Burridge et al., 

2007; Ungrin et al., 2008). Azarin and colleagues investigated the involvement of β-catenin 

between Wnt signaling and cadherin-mediated-cell-cell-interactions, which influences various 

developmental processes. Thereby, hESCs were cultivated on a 2D substrate and compared 

to cultivation in a 3D microwell array. In the 3D microwell culture, a higher E-cadherin 

expression, ongoing with a Wnt downregulation, was observed in comparison to cultivation 

on 2D substrates. However, EBs grown in microwell cultures displayed higher Wnt signaling 

(despite the reduction) than EBs from hESCs cultured on 2D substrates. Moreover, in Wnt 

upregulated cells, an upregulation of genes connected to cardiogenesis was shown in EBs 

(Azarin et al., 2012).  

Thus, Wnt signaling was downregulated in 3D compared to 2D. The aberrant activation of 

the pathway could lead to misinterpretation of results underlying the importance of finding the 

right condition to study developmental process in environment that mimic as close as 

possible the in vivo situation but more controllable in terms of molecular pathway activation. 

 

4.14 Wnt reporter activation is higher in 2D than in 3D cell culture 

To confirm this results in my system, I performed a similar study investigating Wnt/β-catenin 

signaling in a co-culture approach with Wnt8a (since it is an important factor for 

neuroectoderm patterning; Kelly et al., 1995; Erter et al., 2001 ;Rhinn et al., 2005)  co-

cultivated with 7xTCFCherry/HisCFP, serving as Wnt reporter. Cells were cultivated in 2D 
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and in 3D in the microchannel. In the 2D culture higher Wnt reporter activation was detected 

compared to 3D, confirming the results from Azarin and co-workers. 

Hence, existing cellular signaling studies which have been performed in 2D should be 

reconsidered.  

 

These results open up the possibility to use the system established in this thesis for more 

precise study of neurodevelopment. 

 

 

Conclusion and Outlook 

 

In this thesis a 3D CCS was established to support the formation of tubular structures (e.g. a 

neural tube). In contrast to existing CCS, which support the formation of spherical structures, 

the established 3D microchannel supports the formation of tubular structures and can be 

modified moreover in size to mimic the dimensions of a zebrafish neural tube. Moreover, the 

microchannel provides a reproducible scaffold, to study neuronal differentiation in a 

controllable manner. Hence, the established 3D microchannel represents a ground-breaking 

system to generate a complex and structured neural tube. Furthermore, the tubular shape 

would support the investigation of gradient formation in the neural tube and is suitable to 

mimic a NSC niche. Moreover, further modification of the cell guidance approach would 

enable to study boundary formation in vitro, in e.g. at the mhb.  
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