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ABSTRACT
Pseudo-random number generators (PRNGs) are a critical
infrastructure for cryptography and security of many com-
puter applications. At the same time, PRNGs are surpris-
ingly difficult to design, implement, and debug. This paper
presents the first static analysis technique specifically for
quality assurance of cryptographic PRNG implementations.

The analysis targets a particular kind of implementation
defect, the entropy loss. Entropy loss occurs when the en-
tropy contained in the PRNG seed is not utilized to the
full extent for generating the pseudo-random output stream.
The Debian OpenSSL disaster, probably the most prominent
PRNG-related security incident, was one but not the only
manifestation of such a defect.

Together with the static analysis technique, we present its
implementation, a tool named Entroposcope. The tool of-
fers a high degree of automation and practicality. We have
applied the tool to five real-world PRNGs of different de-
signs and show that it effectively detects both known and
previously unknown instances of entropy loss.

Keywords
Pseudo-Random Number Generator; PRNG; entropy loss;
information flow; OpenSSL; static analysis; bounded model
checking

1. INTRODUCTION

Motivation and goal.
Somewhat simplified, a pseudo-random number generator

(PRNG) is a software module that is seeded with a small
amount of externally-sourced entropy (read randomness)1

and “stretches” it into a stream that is indistinguishable
from random to a computationally-bounded adversary. The

1Entropy is, strictly speaking, a measure of uncertainty, but,
as customary, we overload the term to denote data with high
entropy, i.e., data that is difficult to guess for an adversary.
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seed is typically obtained from outside the immediate sys-
tem scope: A user-space PRNG, for instance, may query
the OS, which derives it, among other things, from physical
noise in the hardware. The PRNG then produces a stream
of pseudo-random data by, in cycles, permuting its internal
state and deriving a fixed-length output chunk from a part of
it. The latter part of the PRNG code, with which we will be
concerned in this paper, is deterministic and contains both
cryptographic and non-cryptographic parts.

On the implementation level, of all things, the non-cryp-
tographic parts have shown a history of defects causing fa-
tal security incidents. Many of these defects are entropy
losses, where entropy supplied in the seed is overwritten
with constant or predictable values, or otherwise remains
unused during PRNG operation. This kind of defect makes
it unnecessarily easy for an attacker to predict the PRNG
output.

The probably most prominent PRNG security incident,
the Debian OpenSSL disaster [28], was caused by such an
entropy loss. While sufficient seed entropy was available
(the code collecting entropy was working), only 15 bits of
it (the ID of the current process) were used for generating
output, resulting in merely 215 = 32768 distinct possible
output streams (fixing endianness and native word size). As
a consequence, for instance, only 215 key pairs could be gen-
erated on any affected system, which allowed an attacker to
easily brute-force the private key to any given public key
generated on a vulnerable system.

For an attacker, a flawed PRNG is an attractive vector,
as it constitutes a single point of failure for many services
relying on cryptography. The Debian OpenSSL disaster
effectively demonstrated this point by affecting the secu-
rity of—among other things—DNS (BIND), Email (postfix,
cyrus, uw-imapd), FTP, VPN (StrongSWAN, OpenVPN),
SSH (OpenSSH clients and servers), Kerberos authentica-
tion, Tor, and WWW (Apache).2 For almost two years, the
general public lacked awareness that cryptographic measures
securing these services on Debian systems were essentially
turned off.

Attacks based on PRNG flaws are also particularly insid-
ious, as they often require only passive access to the vic-
tim’s communications. Breaking into the victim’s system is
typically not necessary. Such an attack leaves behind less
evidence and is thus much more difficult to detect or, in af-
termath, reconstruct. This point was illustrated by a series
of unsolved bitcoin thefts probably going back to an entropy
loss in the Android PRNG [23].

2https://wiki.debian.org/SSLkeys
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Despite the gravity of the situation, there are very few ef-
fective quality assurance techniques against implementation
defects in cryptographic PRNGs. The first testing technique
claiming potential to have prevented the Debian OpenSSL
disaster was proposed only recently [27].

The overarching contribution of this work is the first static
analysis technique for detecting entropy loss in PRNG im-
plementations. An entropy loss is detected when the anal-
ysis finds two distinct seeds that produce the same output
stream. The technique is implemented in a highly auto-
matic analysis tool building on program verification technol-
ogy and effectively applies to real-world implementations.

Contributions in detail.
The paper identifies absence of entropy loss, a particular

important correctness property of PRNGs, and formulates
it within the popular semantical framework of information
flow. In contrast to functional specification, such a formu-
lation is both succinct, easy to understand, and uniform
across PRNGs. In contrast to the majority of established
security research scenarios, PRNG correctness is concerned
with maximizing and not minimizing information flow, ren-
dering most of the existing security analysis tools inapplica-
ble. The paper proposes a method to find deviations from
flow maximality and thus instances of entropy loss.

A particular challenge in this context is the use of cryp-
tographic primitives in PRNGs. Since our analysis is purely
information-theoretic, we propose a way to deal with the
issue by replacing such primitives with idealizations.

Implementing the method, the paper presents a tool for
PRNG analysis, built on top of the CBMC bounded model
checker for C and Java. Due to the carefully defined appli-
cation scenario, the tool enables a fast feedback cycle, with
counterexamples, i.e., potential witnesses of entropy loss,
aiding the developer in understanding the problem.

We have applied the analyzer to five popular PRNG im-
plementations, including the OpenSSL PRNG and Apple’s
version of Yarrow. We report our experiences in detail us-
ing the example of OpenSSL. One result is that the tool
detected a previously undiscovered (if small) entropy loss
in the OpenSSL PRNG. A larger previously undiscovered
entropy loss was detected in the Libgcrypt PRNG.

The paper also includes a “mini-museum” of entropy loss
with the goal to increase awareness of this kind of prob-
lem. This section presents and discusses several disparate
instances of entropy loss, demonstrating the importance of
the concept and the diversity of applications where the prob-
lem occurs.

2. ILLUSTRATION OF ENTROPY LOSS:
ANDROID PRNG (2013)

The origin of the Android PRNG lies in the Apache Har-
mony project, a clean room reimplementation of the Java
Core Libraries under the Apache License. The Harmony
PRNG was part of the Android platform up to and includ-
ing Android 4.1. It was replaced when a problem with the
PRNG became widely known [23], after a series of mysteri-
ous bitcoin thefts.

Bitcoin transactions are ECDSA signatures and include a
nonce that is often generated by a PRNG. If the same nonce
is used for two transactions signed by the same key, then

anyone can reconstruct the private key of the victim from
public information and divert their money without having
to compromise their system. Entropy loss in the PRNG
increases the probability of nonce reuse.

The entropy loss occurred in the main method of the An-
droid PRNG, engineNextBytes(byte[] bytes), which fills the
caller-supplied array bytes with pseudo-random values. The
PRNG operates in cycles, each cycle generating 20 pseudo-
random bytes. If the caller requests more bytes, several
cycles are performed; if the caller requests fewer bytes, the
surplus generated bytes are stored for later usage.

The main component of the PRNG state is an int[] array
of length 87, somewhat inappropriately named seed (Fig-
ure 1). The front part of this array is populated with the
externally-provided entropy (i.e., the actual seed). The seed-
ing can happen either manually by calling setSeed() or au-
tomatically. In the latter case, the PRNG is seeded with
20 bytes of entropy requested from the OS kernel on first
invocation of engineNextBytes(). This so-called self-seeding
mode is typically considered preferable as less error-prone.

Figure 1(c) shows the essence of the PRNG’s operation in
this scenario. In cycle k, the 20 pseudo-random bytes are
computed by combining the seed (words 0–4 in Figure 1(a)),
the cycle counter k (as a 64-bit integer in words 5–6), and
the output of cycle k−1 (resp. SHA-1 initialization vector in
the initial cycle) with the SHA-1 compression function. The
computation makes use of the scratch space in words 16–
79, and its result is stored in words 82–86. The latter are
subsequently unpacked into bytes that form the output of
the cycle.

To compute the output, the seed and the cycle counter
have to be suffixed by a standard-defined SHA-1 padding.
The PRNG keeps track of the length of the seed in word 80.
The essence of the vulnerability is that a stale value of this
length (i.e., zero) is used after initializing the seed in the
self-seeding mode. As a consequence, the cycle counter and
the SHA-1 padding constant overwrite words 0–2, leaving
only two words of the original seed (Figure 1(b)). Twelve
bytes of entropy are lost, and the actual amount of entropy
in the PRNG amounts thus to 8 instead of 20 bytes.3

The goal of our analysis is to detect that two seeds differ-
ing in words 0–2 will produce the same output stream.

3. FOUNDATIONS

3.1 The PRNG Model
In this paper, we treat a PRNG as a function

g : {0, 1}m → {0, 1}n ,

which translates a seed of m bits into a stream of n bits
(m,n > 0). The fact that we only consider finite streams
is inconsequential in the scope of this work. Since PRNG
implementations typically use bytes as an atomic unit of
information exchange, we establish the following convention.
Whenever we use the parameters M and N , we are implying
m = 8M and n = 8N .

The above model of a PRNG as a function from seed to
output goes hand in hand with the following assumptions
that we make:
3The PRNG also contains a native backup component in
case the kernel does not provide an entropy source. Inciden-
tally, this component contained two more instances of en-
tropy loss, though these were much simpler technically [23].
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0 4 5 6 7 8 15 16 79 80 81 82 86

seed 0 . . . 00
computation

space # 0 space for
SHA1 result︸ ︷︷ ︸

20 byte
↑

counter
↑
0x80000000

0 4 5 6 7 8

seed counter 0x80000000 . . .

(a) Intended operation

0 1 2 3 4 5 6 7 8

counter 0x80000000 seed (rest) 0 . . . 00 . . .︸ ︷︷ ︸
8 byte

(b) Effect of the bug

out0 = sha1(seed | 0 | sha1 -iv)

outk = sha1(seed | k | outk−1)

(c) Equations describing the output of
the Android PRNG in each cycle

Figure 1: Structure of the Android PRNG’s main array (1 word = 1 int = 4 bytes)

1. The PRNG is seeded before it starts producing output.

2. The seed is chosen uniformly at random from the set
{0, 1}m for some m > 0.

3. An attacker neither knows the seed nor has control
over its choice.

4. The PRNG is not re-seeded, i.e., the seed remains con-
stant throughout the PRNG’s lifetime.4

5. An attacker knows the source code of the PRNG but
cannot inspect or corrupt its internal state.

6. We only consider sequential operation (i.e., no multi-
threading).

3.2 PRNG Security Concerns
Security of a PRNG means intuitively that a computation-

ally-bounded attacker cannot predict its output with any
practical probability. We will not state a complete formal
model of PRNG security. Instead, we describe three major
concerns that are its necessary prerequisites. In this paper,
we focus on Concern 2, but to delineate the problem prop-
erly, we briefly discuss the others as well.

Concern 1. The entropy contained in the seed should
be sufficiently large. While we leave open what exactly is
considered sufficient, the issue can be further broken down
as follows. First, the seed range 2m (i.e., number of possible
seeds) should be sufficiently large. For instance, the cur-
rent time of the day in milliseconds provides only slightly
more than m = 26 bits of entropy. Second, entropy is maxi-
mal for the uniform distribution. Skewed seed distributions
will reduce entropy content. Third, in practice, entropy ar-
guments are only sound relative to attacker knowledge. If
one seeds the PRNG with current time but the attacker can
roughly identify the moment when the seeding takes place,
the effective unpredictability will be significantly below the
theoretical 26 bits mentioned above.5

Since, hardware noise is typically an important source
of PRNG seeds, ensuring sufficient seed entropy requires
4Reseeding can be modeled by considering several PRNG
functions. An example featuring the Yarrow PRNG is shown
in Figure 4(b), Section 6.
5This circumstance was used in cracking the online poker
PRNG in [2] or the hardware PRNG in encrypted hard
drives [1]. In the latter case, the hardwired seed was close
to the manufacturing time embossed on the drive.

knowledge of said hardware (e.g., rotating hard drive vs.
SSD) and its characteristics (e.g., seek time distribution).
In the meantime, it has become widely known that proper
seeding can be a substantial challenge in virtual machines
and embedded devices [15].

Concern 2. Seed entropy should not be lost during
PRNG operation. For an unbounded attacker, predicting
the PRNG output of length n > m should not be easier
than predicting the m-bit seed itself.

Since the output is a deterministic function of the seed,
it is clear that it is impossible to keep unpredictable both
the output and the seed after observing the output. Barring
permanent inflow of entropy, the only practical solution to
this dilemma is to maximize the flow of information from
the seed to the output and to prevent seed reconstruction
by means of a cryptographic one-way function, shifting the
adversary assumption from an unbounded to a computa-
tionally bounded one. This is indeed the way most crypto-
graphic PRNGs operate.

Summarizing, absence of seed entropy loss (Concern 2),
together with sufficient seed entropy (Concern 1), impedes
an attacker at brute-forcing the seed resp. a part of the seed
sufficient to predict the output.

Concern 3. It should be computationally infeasible to
analytically invert g. A resource-bounded attacker should
not be able to compute seed from an observed prefix of
g(seed).

Examples of PRNGs susceptible to seed reconstruction
are PRNGs that do not use cryptography, such as the linear
congruential generators (LCG). A typical representative is
the drand48 generator in the C standard library.

A different example is the Dual EC DRBG, which uti-
lizes a supposedly one-way elliptic curve primitive incor-
porating two parameters P and Q. The parameters were
chosen by the NSA in an opaque manner, even though the
(non-)invertibility of g and thus the security of the PRNG
hinges critically on their choice. As [5] notes, “[. . . ] it may
be the case the adversary knows a d such that dQ = P .
Then [. . . ] a distinguisher could immediately recover the se-
cret prestates from the output.”

When considering more elaborate PRNG security models
such as [7], further concerns can be identified. One can
examine whether a PRNG can withstand an attacker that
has some control over the choice of the seed or the capability
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PX Y

An attacker tries to guess the secret input X after observing
program output Y . The secret X typically reflects some in-
formation in the real world and has fixed entropy. Reduced
information flow between X and Y makes X harder to guess,
increasing security.

(a) Classical information flow analysis scenario

P Y
PR
NG

X X ′

An attacker tries to guess X′ after observing Y . The secret X′

is generated by a PRNG, and its entropy depends on proper-
ties of the generator. Reduced information flow between the
seed X and X′ makes X′ easier to guess, diminishing security.

(b) PRNG security scenario

Figure 2: Information flow scenarios illustrated

to temporarily inspect or corrupt the internal state of the
PRNG. We consider such further concerns out of scope for
this paper.

Of the three concerns elaborated above, the first concern
cannot be solved by means of (mere) code analysis, as it
involves the larger system into which the PRNG is embed-
ded. The third concern has solution components in the form
of widely-vetted one-way primitives, such as cryptographic
hash functions of the SHA family. For the second concern,
this paper makes a contribution in supplementing the usual
manual code review with a practical technical solution.

3.3 Entropy and Information Flow
In general, entropy of a random variable X is a measure of

an observer’s uncertainty about its value. Information flow
or leakage refers to the decrease of an (unbounded) attacker’s
uncertainty about a secret part of a program’s initial state
after observing a part of its final state. Information flow in
a deterministic terminating program can be identified with
the degree of injectivity of the input-output function induced
by the program [18].

There is a vast body of work in information flow analysis,
going back several decades. The entropy loss problems with
PRNGs have entered public awareness in 2008 at the latest,
but as far as we are aware the two have never been previously
brought together. A part of the explanation is probably in
the fact that information flow research concentrated on mini-
mizing information flow for confidentiality, while maximizing
information flow is needed for PRNG security (Figure 2).

Various entropy metrics have been defined, such as Shan-
non entropy, min-entropy, etc. In this paper we will be con-
centrating on min-entropy [25], which is a measure in bit of
the probability to guess the value of X in one try. Similar
arguments can be made for other metrics.

Definition 1 (Min-entropy). The min-entropy of a
random variable X

H∞(X) := − log max
x

Pr[X = x] ,

where log is a logarithm to the base 2.

We choose min-entropy for its clear operational guarantees
w.r.t. guessability. By construction, the probability of an
adversary successfully guessing the value of X in one try is
not larger than 2−H∞(X).

Proposition 1. If X follows a uniform distribution on
a finite set of values, then

H∞(X) = − log
1

|{x ∈ X}| = log |{x ∈ X}| .

Concretely, if X follows a uniform distribution on {0, 1}m,
then H∞(X) = m bits.

In the PRNG setting, we are considering a pair of jointly
distributed random variables X and Y , where Y = g(X).

Proposition 2. Let X and Y be random variables with
Y = g(X) and X following a uniform distribution.

H∞(Y ) =− log max
y

Pr[Y = y] =

− log
maxy∈Y |{x ∈ X | g(x) = y}|

|{x ∈ X}| =

H∞(X)− log max
y∈Y
|{x ∈ X | g(x) = y}| .

Corollary 3. Under the assumptions of Proposition 2,
H∞(Y ) 6 H∞(X) with H∞(Y ) = H∞(X) if and only if g
is injective.

In terms of information leakage, this result can be inter-
preted as H∞(Y ) being maximal iff the information that g
leaks about X is maximal. Due to this constellation, many
existing information flow analysis tools are not directly ap-
plicable to the problem, as they inherently provide upper
bounds on leakage only. We, in contrast, need lower leakage
bounds.

4. THE ANALYSIS METHOD
Per Corollary 3, assuring that no seed entropy is lost (i.e.,

the PRNG output is at least as unpredictable as the seed) is
synonymous to establishing that the function g induced by
a PRNG is injective. Thus, for a given PRNG implementa-
tion, the analysis computes the above-described function

g : {0, 1}m → {0, 1}n

for given m and n (m 6 n) and checks whether the entropy
preservation condition

g(seed1) = g(seed2)→ seed1 = seed2 (1)

holds. In other words, we check whether two distinct seeds
produce distinct pseudo-random streams.

While the condition (1) is quite concise on this level of
abstraction, checking it with existing program verification
technology is not without challenges. Two major ones are:
reasoning about cryptographic primitives and making the
analysis practical.

4.1 Modeling Cryptographic Primitives Used
in a PRNG

During its operation, a typical PRNG will invoke crypto-
graphic primitives, such as, e.g., the SHA-1 hash function.
The primitives are by design computationally hard to invert
and are used, among other things, to prevent an attacker
from calculating the seed from the observed PRNG output
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(Concern 3). As a consequence, it is also computationally
infeasible to reason about them with verification technol-
ogy.6

For assuring absence of bugs in the implementation of the
primitives, this infeasibility is not too problematic, as the
primitives are standardized, with widely-available reference
implementations and test suites. The non-cryptographic
PRNG code, on the other hand, is not standardized, error-
prone, and cannot be easily tested.

Our goal is thus to check absence of entropy loss in the
latter, non-cryptographic parts, while assuming that cryp-
tographic primitives do not contribute to it. We do not
attempt this by considering only the code between the prim-
itives, as reasoning about unstructured code is challenging
and poorly supported in existing verification systems. In-
stead, we still consider a whole-program correctness prop-
erty (i.e., entropy flow through the whole PRNG, from seed
to output) but replace the cryptographic primitives with
idealizations.

We assume that the definition of g contains several occur-
rences of a cryptographic function h:

hi : {0, 1}ki → {0, 1}l .

Instead of the function g, we henceforth consider the func-
tion g̃ with the same signature, derived by replacing each hi

in g with a function h̃i of the same signature. Altogether,
we consider two types of idealizations h̃i.

The first type of idealization replaces hi in g with a pro-
jection, i.e., a function of the form

h̃i(x1, . . . , xji , . . . , xji+l−1, . . . , xki) = (xji , . . . , xji+l−1)

for some user-specified 1 6 ji 6 ki. Since the output of h
is l bits long, we expect the input to contain at least l bits
of entropy. In practice, it suffices to assume that the l bits
are supplied as one contiguous region xji , . . . , xji+l−1; the
other parts of the input can be discarded.

For each i, we let the user identify the entropic region
start ji by visually matching bit patterns occurring in the
seed to the inputs of hi. In general, there is only a small fi-
nite choice of possible values of ji, and in practice, the choice
is often even smaller, as most PRNGs supply a concatena-
tion of a few longer bitvectors to h, each with a distinct
purpose (see Section 6.4 for an example).

Now, while h and the above h̃ are both injections from
xji , . . . , xji+l−1, they are otherwise incomparable functions,
and the properties of g̃ need thus not carry over to g (though
very often they do). In other words, this type of idealization
is unsound.

The second type of idealization replaces hi in g with an un-
interpreted function (i.e., a fresh function symbol) h̃i, while

adding the following injectivity axiom for h̃i, based on a
user-supplied ji:(
h̃i(x1, . . . , xji , . . . , xji+l−1, . . . , xki) =

h̃i(x
′
1, . . . , x

′
ji , . . . , x

′
ji+l−1, . . . , x

′
ki

)
)
→(

xji = x′ji ∧ . . . ∧ xji+l−1 = x′ji+l−1

)
.

(2)

We assume that the cryptographic primitive h satisfies (2),
which, e.g., for cryptographic hash functions, is a common

6More precisely, it is not feasible to establish properties re-
lated to their injectivity (which we are interested in). In
contrast, it is quite easy to prove, for instance, mere termi-
nation of the SHA-1 implementation.

information-theoretical approximation of the collision-resis-
tance property. Since h̃ is otherwise uninterpreted, we are
making strictly fewer assumptions about the nature of h in g̃
than in g. The properties of g̃ thus carry over to g, which
makes this type of idealization sound.

Theorem 4 (Soundness). Let g̃ be obtained from g by
substituting each occurrence of h with an uninterpreted func-
tion h̃ satisfying (2). If g̃ is injective and h satisfies (2),
then g is injective.

Together with the soundness of the employed program ver-
ification technology, the theorem implies that the analysis
is guaranteed to detect all instances of entropy loss in the
scope given by m and n.

The reason for also having unsound idealization is that
it produces injectivity counterexamples (pairs of program
traces) that are easier to interpret for the user, as the output

of each h̃ is just a copy of a part of its input. The user can
thus easier track the flow of information in the PRNG by
identifying occurrences of the same concrete bit pattern on
the way from the seed to the output. This does not hold for
the sound idealization. We typically perform the analysis
with the unsound idealization first to find defects, and later
automatically strengthen the idealization to the sound one
to confirm their absence.

If no idealization can be synthesized to make (1) hold, then
either the contiguous input region assumption is violated (we
have not experienced this) or there is an entropy loss in the
PRNG.

4.2 Scope and Limitations
While it is important to say what our analysis is designed

to do, it is just as important to say what it is not designed
to do.

The analysis does not consider entropy collection. The
analysis will detect entropy loss in the non-cryptographic
portions of any entropy extraction code, but otherwise makes
no claims about its function. We are assuming that the pro-
vided seed contains maximal entropy. We are not discussing
the size of the seed necessary for a desired level of security.

The analysis never examines the implementation of the
cryptographic primitives, and cannot ensure that they are
implemented correctly. We assume, the risk in this area
is sufficiently mitigated by using reference implementations
and the appropriate test suites.

The analysis only detects loss of entropy in the first N
bytes of output, given a seed of M bytes. This limitation
is key to achieving a tractable, automatic analysis that is
sound and reasonably complete in its scope. The parameters
M and N can be trivially adjusted, but checking with higher
bounds consumes more resources. Values like M = N = 40,
corresponding to 2–4 PRNG cycles are easily manageable
(details in Section 6).

The analysis is complete, except for the overapproxima-
tion of the cryptographic primitive with its injectivity speci-
fication (2). If a PRNG relies for its injectivity on properties
of a primitive other than (2), the analysis will produce a false
alarm. This is a constellation that we yet have to encounter
in practice.

If an entropy loss is detected, its severity and impact has
to be established by a security analyst.
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1. Complete the analysis driver template, fix m and n.

2. If necessary, disable self-seeding.

3. Configure the source code for analysis (complete the
project-specific part of the Makefile).

4. Provide idealized cryptographic implementation
(choose j in each occurrence of (2)).

5. Run a sanity check, checking that CBMC can symbol-
ically execute the code.

6. Run the entropy loss analysis.

7. If analysis returns success, perform vacuity testing: in-
troduce a bug in the implementation and repeat.

8. If analysis returns a counterexample, run the coun-
terexample visualizer.

9. If counterexample is spurious, refine the idealized cryp-
tographic implementation and repeat the analysis.

10. If counterexample is genuine, evaluate the defect’s
severity and fix it as appropriate.

Figure 3: General analysis procedure

4.3 Checking Non-Invertibility (Concern 3)
Though this is not our main concern in this paper, we

can use a simple variation of the method above to check an-
alytical non-invertibility of g. To this end, we replace the
top-level injectivity assertion (1) with one of non-injectivity:
g(seed1) = g(seed2), and the assumption of injectivity of
cryptographic primitives (2) with a corresponding non-in-
jectivity assumption. This approach implements a standard
check that there is no information flow from the seed to the
output, or the flow passes through a one-way primitive. The
one-way property of the primitive remains to be established
by cryptanalysis (see the discussion of Dual EC DRBG in
Section 3.2).

5. Entroposcope: A TOOL FOR DETECT-
ING ENTROPY LOSS

We have implemented our analysis in an automatic detec-
tion tool named Entroposcope. The tool consists of an
off-the-shelf verification tool (the bounded model checker
CBMC [20]), a Java program for generating the injectivity
verification condition and interpreting a potential satisfying
assignment, an analysis driver template, an idealized hash
function template, and a Makefile template. The overall
analysis procedure is outlined in Figure 3. The individual
components are described in more detail in the following.

Relational reasoner.
Entroposcope relies on CBMC to generate for a given

PRNG implementation a propositional formula in conjunc-
tive normal form

φ(seed , out , aux ) (3)

that encodes the function g induced by the implementation.
The arguments of φ are vectors of propositional variables.
By construction, the formula ∃aux . φ(seed , out , aux ) is true
iff the PRNG produces the output encoded by out from

RAND_add(in, M, M);
RAND_bytes(out , N);

(a) For the OpenSSL PRNG

PrngRef ref;
prngInitialize (&ref);

prngInput(ref , (BYTE*) in, M,
SYSTEM_SOURCE , M * 8);

prngForceReseed(ref ,0);
prngOutput(ref , (BYTE*) out , N);

prngInput(ref , (BYTE*) in2 , M,
SYSTEM_SOURCE , M * 8);

prngForceReseed(ref ,0);
prngOutput(ref , (BYTE*) out2 , N);

(b) For the Yarrow PRNG (incl. reseeding)

Figure 4: Analysis drivers (excerpts)

the input encoded by seed . The auxiliary variables aux are
used to represent intermediate states and for the Tseitin
encoding7.
Entroposcope generates from the formula (3) produced

by CBMC a formula of the form

ψ ∧ φ(seed , out , aux ) ∧ φ(seed ′, out ′, aux ′)∧
seed 6= seed ′ ∧ out = out ′ . (4)

This formula (4) is essentially a negation of the correctness
condition (1). Its satisfiability coincides with a loss of in-
jectivity of g and thus entropy in the PRNG. Satisfiability
of (4) is checked with an off-the-shelf SAT solver (Minisat).
The subformula ψ is a bit-level encoding of the idealization
injectivity axiom (2).

In logic-based verification, it is often customary to en-
code a relational property such as (1) as a safety property
via self-composition, a program transformation syntactically
duplicating the program [4, 8]. Self-composition is techni-
cally challenging in presence of heap, pointer arithmetic, and
complex global state. To sidestep this problem, Entropo-
scope operates on the logical formula level shown above
rather than by transforming the program.

Analysis driver.
The starting point of the analysis is the analysis driver

that defines the main function exercising the PRNG func-
tionality. The driver consists of two parts: a generic and a
PRNG-specific part. The PRNG-specific part is defined by
the analyst in conformance with the PRNG API. It is sup-
posed to seed the PRNG with an M -byte seed and generate
an N -byte output. Figure 4 shows the PRNG-specific parts
of the drivers for the OpenSSL and the Yarrow PRNG.

The generic part of the driver is the same for all PRNGs
(not shown). It contains the scaffolding establishing the
naming convention for the seed and output buffers (needed
for generating (4)), as well as the code for counterexample
visualization.

7A well-known method for encoding an arbitrary circuit as
a formula in conjunctive normal form (CNF) required by a
SAT solver.
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SAT-based bounded model checker.
To generate the formula (3), Entroposcope uses the

SAT-based model checker CBMC [20]. CBMC is a very
mature and popular bit-precise verification tool supporting
almost all of ANSI C, including pointer constructs and dy-
namic memory allocation. Since recently, CBMC also sup-
ports programs written in Java.

CBMC executes the program symbolically starting from
the given function (in our case, the main function of the
analysis driver). During this process, called functions are
inlined and loops are unwound to the user-specified depth.
CBMC warns the user if the unwinding depth is insuffi-
cient to cover all of the program behaviors (this is known
as unwinding assertion checking). The unwound program
is transformed into the static-single-assignment (SSA) form.
In this form, statements can be interpreted as equations over
bitvectors. The equations are combined and reduced to a
formula of propositional logic in a process resembling syn-
thesis of arithmetic circuits. The formula is flattened into
conjunctive normal form (CNF)

∧
i

∨
j Li,j , where each lit-

eral Li,j is either a propositional variable or its negation.
The formula is exported in standard DIMACS format. The
metadata embedded in the formula allows us to identify the
variables representing the seed and the output.

Verification condition generator.
The subformula φ(seed ′, out ′, aux ′) in (4) is obtained by

syntactically duplicating φ(seed , out , aux ) with fresh vari-
ables. The schematic equality of bitvectors in (4) is, in re-
ality, encoded on the individual bit level; for the inequality,
Tseitin encoding is used to obtain an equisatisfiable formula
in conjunctive normal form.

Counterexample visualizer.
If the SAT solver finds a satisfying assignment for (4),

Entroposcope interprets it and outputs a pair of distinct
seeds and a common PRNG output that form a suspected
witness for entropy loss. The user needs to analyze the coun-
terexample to understand if it is spurious (i.e., due to the in-
sufficient choice of the cryptographic primitive idealization)
or if it is a real problem in the PRNG. To aid the user, the
analyzer also generates C preambles from the satisfying as-
signment and runs the PRNG once for each of the seeds. The
inputs and the idealized output of each cryptographic prim-
itive invocation together with any other debugging output
that the user may add are then displayed in a side-by-side
diff.

6. ANALYZING REAL-WORLD PRNGS:
OPENSSL AND OTHERS

We applied Entroposcope to a number of PRNGs, car-
rying out the analysis according to the procedure outlined in
Figure 3. In cases where no defects were found, we injected
and detected synthetic bugs.

Entroposcope finds the Android PRNG bug described
in Section 2 and verifies the effectiveness of the official patch.

We found no entropy loss in the Yarrow PRNG [16] in
the version used in Apple’s XNU kernel (part of iOS and
OS X). One of the scenarios we analyzed included reseeding
(Figure 4(b)): Entroposcope shows that the old and the
new seed fully influence the output before and after reseed-
ing respectively. On the other hand, attempts to analyze

Yarrow with M = 40, N = 40 (without reseeding) immedi-
ately fail due to the fact that Yarrow’s generator state is only
20 bytes large (a restriction prominently declared in [16]).

With Entroposcope, we found a previously undiscov-
ered entropy loss in the Libgcrypt PRNG, which we briefly
describe in Section 6.9.

In the following we report in detail the results of our analy-
sis of the OpenSSL PRNG. We also analyzed the PRNG
in BoringSSL, Google’s drop-in replacement for OpenSSL,
and found no defects in the latter.

6.1 Structure of the OpenSSL PRNG
The relevant functions of the OpenSSL PRNG API are

RAND_add(const void *buf, int num, double add_entropy) to
add entropy and RAND_bytes(unsigned char *buf, int num)

to generate output. They are shown as pseudocode in Fig-
ure 5. The code has been simplified for presentation, elid-
ing irrelevant features such as provisions for multi-threading
(postponed as future work), function pointer indirection,
etc. The PRNG is also parametric in the choice of a crypto-
graphic hash function; we present the default instantiation
with SHA-1. Nonetheless, please note that, unless explic-
itly mentioned otherwise below, we are analyzing the actual
unmodified source code of OpenSSL.

OpenSSL PRNG maintains two entropy pools: a 20-byte
buffer named md and a 1023-byte circular buffer named state.
Entropy added to the PRNG using RAND_add is split into 20-
byte chunks and hashed chunkwise into state. The chunks
are chained together using local_md, a thread-local copy of
the md buffer. Output generation proceeds in chunks of 10
bytes. First, a 20-byte hash is generated from the next 10
bytes of state and two counters; local_md is used for chain-
ing. Then, the hash is split, with 10 bytes forming output,
while the other 10 bytes are XORed back into state. This
process is repeated until enough output bytes are generated.
If the requested amount of output bytes is not a multiple
of 10, superfluous bytes are discarded.

6.2 Entropy Sources and the Analysis Driver
The analysis driver is straightforward, containing a call to

RAND_add followed by a call to RAND_bytes. The core part
of the driver is shown in Figure 4(a). A minor complication
arises due to the fact that the OpenSSL PRNG self-seeds,
i.e., automatically incorporates entropy from several sources
beyond what is supplied by the driver: (i) entropy collected
by an OS-specific routine (RAND_poll) added on first call
to RAND_bytes, (ii) PID, time of day, and hardware RNG
entropy (if available) added at every call to RAND_bytes,
and (iii) the content of the (potentially uninitialized) output
buffer supplied to RAND_bytes.

We choose to ignore these auxiliary sources, as they offer
little conceptual added value from the analysis perspective.
Technically, we set corresponding compilation flags (PURIFY,
GETPID_IS_MEANINGLESS) and supply empty implementations
for RAND_poll and time. Alternatively, it is trivial to include
the output of relevant functions and content of buffers as an
extra part of the conceptual seed in an extended scenario.

6.3 Pool Stirring
After self-seeding, but before generating first output, the

OpenSSL PRNG “stirs” state. During the stirring process,
RAND_add is called with a constant 20-byte input (literally
20 dot characters) for a total of at least 1023 bytes. The
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1 long md_count_0 = 0;
2 long md_count_1 = 0;
3 char state [1023] = {0};
4 char md[20] = {0};
5 int state_index = 0;
6 int stirred_pool = 0;
7

8 void RAND_add(const void *buf , int num) {
9 char local_md [] = copyOf(md);

10

11 for(int i = 0; i < num; i += 20) {
12 local_md = sha1(local_md
13 | state[state_index .. state_index +20>]
14 | buf[i..i+20<]
15 | md_count_0 | md_count_1);
16 md_count_1 ++;
17 state[state_index .. state_index +20>] ^=

local_md;
18 state_index = (state_index + 20) % 1023;
19 }
20 md ^= local_md;
21 }
22

23 void RAND_bytes(const void *buf , int num) {
24 if(! stirred_pool ++) stir_pool ();
25 char local_md [] = copyOf(md);
26 md_count_0 ++;
27 int i = 0;
28 while(num > 0) {
29 local_md = sha1(local_md
30 | md_count_0 | md_count_1
31 | state[state_index .. state_index +10>] );
32 state[state_index .. state_index +10>] ^=

local_md [0..10];

33 buf[i..i+10<] = local_md [10..20];
34 state_index = (state_index + 10) % 1023;
35 num -= 10;
36 i += 10;
37 }
38 md = sha1(md_count_0 | md_count_1 | local_md |

md);
39 }

Notation:

• We assume that every array has an associated implicit
length.

• buf[a..b] denotes the sub-array of buf starting with a

and ending with b (exclusive).

• Array actions such as assignments and XORs are to
be understood component-wise. If the right-hand side
of an assignment denotes more locations than the left-
hand side (Line 33), the superflous locations are ig-
nored.

• buf[a..b>] treats buf as cyclic and
amounts to buf[a..b], if b<=len(buf), and
buf[a..len(buf)]∪buf[0..b-len(buf)] otherwise.

• buf[a..b<] ignores accesses past the right array bound,
i.e., it is equivalent to buf[a..min(b,len(buf))].

• sha1(a | b | c) denotes the hash of the concatenation
of a, b and c.

Figure 5: Simplified pseudocode of the OpenSSL
PRNG

purpose is to better distribute the entropy throughout the
pool via the chunk chaining mechanism. At the same time,
stirring, obviously, does not increase the entropy content of
the pool.

We abstract from pool stirring in the analysis scenario.
It is a small and relatively simple piece of code: a single
loop repeatedly calling RAND_add. At the same time, stir-
ring imposes a prohibitively high computational tax on the
analysis. Instead, we assume that we are already sufficiently
exercising the RAND_add functionality through the analysis
driver. Technically, we disable stirring by instructing the
model checker to ignore the appropriate loop.

6.4 Idealized Cryptographic Functionality

Abstract description.
OpenSSL PRNG uses three static occurrences of a cryp-

tographic primitive (SHA-1 hash per default). Each occur-
rence can be invoked several times depending on the pa-
rameters M,N . As described in Section 4.1, we replace the
primitives by idealizations.

The first occurrence transfers the seed entropy into the
pool and is invoked in RAND_add as:

h1(local_md | state[state_index .. state_index +20>]
| buf[i..i+20<] | md_count_0 | md_count_1)

We idealize it as an injection from buf[i..i+20<] (third ar-
gument), based both on its name and it carrying the seed
material, as shown by the counterexample visualizer.

The second occurrence is for output generation and in-
voked in RAND_bytes:

h2(local_md | md_count_0 | md_count_1
| state[state_index .. state_index +10>])

We discuss this occurrence in detail in Section 6.5.
The third occurrence updates the global state upon com-

pletion of RAND_bytes:

h3(md_count_0 | md_count_1 | local_md | md)

We idealize it as an injection from local_md, though it is only
relevant, if one calls RAND_bytes more than once.

As the example shows, there is only a very limited choice
of argument for the injection, and roughly half of them—the
counters—can be eliminated outright. For each invocation
of a cryptographic primitive, Entroposcope’s counterex-
ample visualizer shows the exact callsite and the arguments
supplied to the primitive, its output, which argument po-
tentially contains or is influenced by the seed material, and
whether each invocation and the overall PRNG are currently
injective. This feedback effectively assists the user in synthe-
sizing the appropriate idealized functionality, i.e., choosing
the right j in (2).

Implementation.
On the implementation level, the hash function is imple-

mented by a stateful object with a stream-based interface.
The hash object is initialized by calling MD_Init, data to be
hashed is supplied via MD_Update, and finally, the hash value
is obtained by calling MD_Final. Passing a concatenation of
several buffers as an argument to the hash function, which
we use in the pseudocode, is implemented by repeated calls
to MD_Update. We instrument each call with a counter that
makes it possible to distinguish the three logical occurrences
of the primitive shown above even though they use the same
interface.
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6.5 OpenSSL PRNG Loses Entropy in Out-
put by Design

Attempts to synthesize an idealization for the hash func-
tion invocation h2 shown in Section 6.4 show a peculiar
problem. Abstracting away from details, the entropy flow
from the 20 byte of state to the 20 byte of PRNG’s output
in RAND_bytes can be represented as follows (see Figure 5
for notation):

o1 = h2(... | state[ 0..10]);
o2 = h2(... | state [10..20]);
out = o1 [10..20] | o2 [10..20];

Note that the entropy in state[0..10] and state[10..20]

is “spread” over o1 and o2 respectively, yet o1[0..10] and
o2[0..10] are discarded. Thus, some of the entropy con-
tained in state will not make it to the output in this com-
putation.

The fact that this particular construction is prominent
and pervasive throughout the PRNG suggests that it is not
an accident but a design decision by OpenSSL. While we do
not agree with it, we choose to mask the issue and concen-
trate on uncovering other problems.

We achieve the masking by defining h2 as injective from its
last argument, state[state_index..state_index+10>], to the
last 10 byte of its output (as opposed to an injection from
a 20-byte argument to the full 20-byte output as demanded
by (2)). It is clear that the actual SHA-1 implementation
does not have this property, but the unsound idealization
makes the code fragment above injective from state[0..20]

to out, as the discarded parts of o1 and o2 no longer contain
entropy. This deviation from (2) silences the alarm.

6.6 Entroposcope Detects the Debian Incident
The Debian incident occurred when the Debian OpenSSL

maintainer, as part of a campaign against memory-related
errors, patched OpenSSL to be memory-safe. As mentioned
above, OpenSSL uses uninitialized memory as an additional
source of entropy for its PRNG, but the patch not only elim-
inated that but unintentionally disabled all PRNG seeding.
Or rather almost all, as the current PID was still used as a
source of entropy in RAND_bytes to prevent stream duplica-
tion upon forking (this part is elided from Figure 5).

The incident corresponds to the Debian maintainer hav-
ing deleted Line 14 from the source code in Figure 5. This
way, the entropy-containing buf[i..i+20<] is no longer read
from in the rest of the PRNG. Defining an idealized hash
function that ensures injectivity of the PRNG (like the first
one in Section 6.4) becomes impossible. For any given ide-
alization, Entroposcope produces a counterexample to in-
jectivity (any two seeds will produce the same output after
invoking SHA-1 in RAND_add), which immediately leads to
the detection of the problem. The counterexample visualizer
helps pinpoint the exact place where the problem occurs.

Once the idealized functionality is developed, Entropo-
scope can also be included as a completely automatic check
into the continuous integration process in order to prevent
introduction of bugs during maintenance.

6.7 Entroposcope Detects A Previously Undis-
covered Anomaly in the OpenSSL PRNG

When we applied Entroposcope to the OpenSSL PRNG,
the tool immediately detected a bug in a piece of code that
manages entropy in the large pool. The defect is close in

spirit to the one in the Android PRNG. Even though it
turned out not exploitable in the larger context, the inci-
dent demonstrates that Entroposcope is effective at doing
what it is designed to.

The problem occurs in the code implementing the circular
buffer state that is the large entropy pool. The following
code is encountered towards the end of RAND_bytes:

for (i=0; i<MD_DIGEST_LENGTH /2; i++) {
state[st_idx ++]^= local_md[i];
if (st_idx >= st_num) st_idx =0;
if (i < j) *(buf++)=local_md[i+MD_DIGEST_LENGTH /2];

}

In the pseudocode implementation of Figure 5, this code
corresponds to Lines 32–33. After the analysis driver has
seeded the PRNG with M bytes, we reach this code for the
first time with st_idx = st_num = M . The former variable is
the current index into state, while the latter is the number
of bytes in the pool that are filled with seed data.

The code above is itself part of an outer loop. It is easy to
see that the sequence of values of st_idx at inner loop entry
is M, 9, 19, 29, . . . The correct sequence, in contrast, would
have been 0, 10, 20, . . . or at leastM, 10, 20, . . . (a special case
in the code reading from the pool treats st_num as zero). The
significance of these values is that they are used to decom-
pose the pool into chunks supplying entropy in each cycle of
output generation. The code above forces chunks of the
form state[0..10], state[9..19], state[19..29], . . . While
each chunk is 10 bytes long, the first two chunks overlap by
one byte. Accordingly, the last byte of entropy in the pool
(byte number M − 1) is never used for output generation.

The code above thus suffers from a small but real entropy
loss, though this defect is masked during normal operation.
The bug can only manifest itself when the entropy pool is
not full (st_num < 1023). In practice, though, the pool is full,
alone by virtue of self-seeding and pool stirring. Under these
circumstances, another instance of wrapping code comes into
effect, correctly wrapping the index at the right bound of the
state buffer.

The bug can be fixed—which Entroposcope verifies—by
prepending the loop shown above with

if (st_idx >= st_num) st_idx =0;

From a larger perspective, though, an overhaul of the con-
voluted pool index manipulation in the whole PRNG could
be beneficial.

6.8 Statistics
Entroposcope completes a single analysis run of the

OpenSSL PRNG for M = N = 40 in 33 seconds on a modest
desktop computer (Intel Core i7 860 2.80GHz CPU). Of this
time, translation of the PRNG behavior into a formula by
CBMC took 7 seconds, generating the relational proof obli-
gation 16 seconds, SAT solving 7 seconds, and generation
of a counterexample from a satisfying assignment 3 seconds.
The size of the formula supplied to the SAT solver was 191
megabytes in DIMACS format. OpenSSL is the largest and
most complex PRNG we considered.

6.9 Entroposcope Detects a Previously Undis-
covered Entropy Loss in Libgcrypt PRNG

For reasons of space, we can only superficially describe the
problem here; details can be found in the extended version
of the paper [11].
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The Libgcrypt PRNG describes itself as modeled after
the one in [13]. Its critical function mix_pool perturbs the
state of the generator by repeatedly hashing overlapping re-
gions of the entropy pool back into the pool. The Libgcrypt
implementation deviates from [13] in several ways. In par-
ticular, the region of the pool supplied to the hash function
in Libgcrypt is not contiguous but contains a 20-byte “hole”.
The hole has the consequence that mixing a full pool reduces
its entropy by at least 20 bytes. Other deviations from [13]
make the flow of entropy difficult to understand. The prob-
lem was fixed by the Libgcrypt developer after we reported
it.

7. A MINI-MUSEUM OF ENTROPY LOSS
Entropy loss is not limited to (cryptographic) PRNGs. All

entropy-processing applications are susceptible. To demon-
strate the importance of the concept, we briefly discuss three
instances taken from different application domains. While
Entroposcope detects injectivity failures in all of these
cases, we are not claiming that it is the best means to deal
with the problem. In scenarios like the third one (Linux
kernel), the routine use of the tool, on the other hand, is
probably advisable.

7.1 Debit Card PINs
A requirement of the early eurocheque debit card system

(“EC-Karte” in Germany) was that an ATM can check the
card PIN offline. To this end, the PIN was derived by en-
crypting and transforming the public data stored on the
card. As the source of entropy the banks chose four hex
digits of the ciphertext. To obtain a decimal PIN, the hex
digits A − F were replaced by 0 − 5 correspondingly. In
the final step, any occurrence of an initial zero was replaced
by one, as the banks deemed a PIN beginning with a zero
confusing for the customer. This decimalization produced
a skewed PIN distribution, with small digits more common
than large digits. Amplified by other features of the cards,
the entropy loss resulted in four-digit PINs that were easier
to guess than a uniformly distributed three-digit PIN [21].
The problem was solved when offline PIN checking was re-
tired and online checking became mandatory.

7.2 Online Poker Card Deck Shuffling
ASF Software Inc. was one of the first online poker soft-

ware providers. Since cheating by the operator is a concern
in online gambling, the company published its deck shuffling
source code with the intent to increase client confidence in
its software.

The analysis of the software reported in [2] has shown
that it fails on all three security concerns. Concern 1 was
violated due to seeding the PRNG with current time, which
was not only limited in range to 32 bits (a shuffled deck of
cards contains nearly 226 bits of entropy) but also roughly
known to the attacker. The software furthermore also failed
Concern 2. The shuffling process produced a skewed dis-
tribution of decks containing less entropy than a properly
shuffled deck or the PRNG output used to control the shuf-
fle.

7.3 Linux ASLR Vulnerability
Address space layout randomization (ASLR) is a popu-

lar OS mechanism to mitigate buffer overflow attacks. An
entropy loss in the Linux kernel prior to version 3.19-rc3

reduces the effectiveness of the stack randomization by a
factor of four.8

In the following code (assuming x86 64 architecture), the
entropy source are the lowest 22 bits (STACK_RND_MASK=0x7ff)
of the value obtained from get_random_int() (Line 7). In
Line 8, the result is shifted left by PAGE_SHIFT = 12 bits,
causing an unsigned overflow of the 32-bit random_variable.
22 + 12 − 32 = 2 bits of entropy inadvertently never reach
the return value of the function. The solution is to declare
random_variable as a 64-bit integer, as was intended.

1 static unsigned long randomize_stack_top(unsigned
long stack_top)

2 {
3 unsigned int random_variable = 0;
4

5 if ((current ->flags & PF_RANDOMIZE) &&
6 !(current ->personality & ADDR_NO_RANDOMIZE)) {
7 random_variable = get_random_int () &

STACK_RND_MASK;

8 random_variable <<= PAGE_SHIFT;
9 }

10 #ifdef CONFIG_STACK_GROWSUP
11 return PAGE_ALIGN(stack_top) + random_variable;
12 #else
13 return PAGE_ALIGN(stack_top) - random_variable;
14 #endif
15 }

Another entropy loss in the ASLR implementation on Linux
has also been reported.9

8. RELATED WORK AND ALTERNATIVES

Previous own work.
This paper builds upon insights collected during the pilot

study [10], where we proved correctness of the (fixed) An-
droid PRNG in an interactive theorem prover. The current
paper significantly extends and improves this work, both in
the information-theoretical development and in practicality.

The fact that proof construction previously took hours
and required substantial user interaction motivated us to re-
design the approach, changing the underlying program ver-
ification architecture and the idealization of cryptographic
primitives. The result is a vastly improved pragmatics, with
drastically reduced need for user interaction, counterexam-
ples to PRNG correctness, and turnaround times in the mag-
nitude of seconds rather than hours.

Functional verification and testing.
Of course, it is possible to state and verify a functional

specification of the PRNG implementation with existing ver-
ification technology. However, since PRNG output lacks in-
trinsic meaning, such a specification would have to closely
mimic the implementation and thus be complex and tedious
to write. It would be difficult to understand it and ascer-
tain its adequacy; neither would it be possible to reuse it for
another PRNG. The information flow specification (1), on
the other hand, directly expresses the desired property, is
compact and easy to understand, and is nearly independent
of the PRNG implementation in question.

Functional testing is rare for similar reasons. The only
test suite containing reference seeds and corresponding out-
8H. Marco, CVE-2015-1593, http://hmarco.org/bugs/linux-
ASLR-integer-overflow.html
9http://hmarco.org/bugs/linux-ASLR-reducing-mmap-by-
half.html
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puts we are aware of is part of the NIST SP 800-90 standard
for PRNGs implementing it. Note that such a suite essen-
tially constitutes a regression test, i.e., it only assures that
all implementations of the standard perform in the same
way. Unit testing of PRNGs is often impeded by the lack of
modularity in implementations.

Statistical testing.
Several statistical test suites exist for assessing the qual-

ity of random numbers. Among the most popular are DIE-
HARD with its open source counterpart DIEHARDER and
the NIST SP800-22 test suite. The suites scan a stream of
pseudo-random numbers for certain predefined distribution
anomalies. At the same time, we are not aware of recommen-
dations on how the stream is to be produced. In practice, it
appears customary to derive the stream from a single seed.
The tests are repeated multiple times (with different seeds)
to increase the degree of confidence but the results between
individual runs are not cross-correlated.

Given the single-stream nature of the mentioned tests, it
is reasonably safe to expect that any modern cryptographic
PRNG will pass them, even in presence of entropy loss.
In [27], it was empirically demonstrated that the defective
Debian OpenSSL PRNG passes the NIST SP800-22 test.

The first significant advance in quality assurance for cryp-
tographic PRNGs has been made only recently in the form
of LIL testing [27]. The test estimates the distance in a
particular statistical metric between a set of bit sequences
generated by running a PRNG and a similarly-sized set of
truly random sequences. The authors show that the de-
fective Debian OpenSSL PRNG is associated with a signifi-
cantly larger distance to uniform randomness than the intact
PRNG when considering 1000 sequences of 2GB each.

The LIL test is agnostic of the exact way the sequences
are generated. The advice given by the authors is to gen-
erate them in a way reflecting the particular application of
interest. The advantage of such a test (as of testing in gen-
eral) is that it can be made to reflect the actual deployment
scenario, including the larger system, up to the hardware
layer. On the other hand, it requires insight into the ex-
act planned PRNG usage pattern, as different patterns can
produce significantly different results.

For example, a single-threaded Debian OpenSSL PRNG
client fails the LIL test as carried out in [27]. The test
was run in a simulated environment on a Windows sys-
tem, where PIDs are recycled with a substantial probability.
Since the PID is the only source of entropy in the broken De-
bian PRNG (in the single-threaded case), many generated
sequences were identical. The same test on an actual Debian
system would have (as far as we understand) succeeded, as
Linux only recycles PIDs after they wrap around. Finally,
testing cannot detect less severe (but still cryptography-
affecting) instances of entropy loss where the probability of
repeated streams is sufficiently low.

Information flow analyses.
Many information flow analyses have been developed—

most of them with the use case of minimizing information
flow. Maximizing information flow, in contrast, plays a much
less prominent role. The first appearance we are aware of
is as required information release in [6]. The concept has
been revisited in [24] for the purpose of optimizing secure
multi-party computation protocols. The latter work devel-

ops tooling based on symbolic execution and SMT solving
and is the one closest in spirit to ours.

A research branch measuring the amount of information
flowing in programs (rather than checking absence or max-
imality of flows) is Quantitative Information Flow analysis
(QIF). Several methods and tools for QIF exist, including
our own for C programs [19]. Yet, the complexity of PRNGs
coupled with large desired flows puts this application beyond
the reach of state-of-the-art QIF tools.

Some of the entropy loss instances described in this pa-
per are “simple” enough to be detectable by some form of
(to be developed) static or even dynamic dataflow anal-
ysis. This is the case where some part of the entropy-
carrying state is never read (Sections 6.6, 6.7) or immedi-
ately overwritten with clearly irrelevant values (Section 2).
Other instances (Section 6.9) feature complex flows that re-
quire, at the least, (unsound) cryptographic primitive ideal-
ization to be detectable without losing practical complete-
ness. Furthermore, due to their lack of precision and impos-
sibility to use sound idealizations, aforementioned analyses
can only detect bugs. Entroposcope, on the other hand,
can prove their absence within the analyzed scope. Nonethe-
less, dataflow analyses have the advantage of scalability and
warrant further investigation.

Manual PRNG analysis.
A number of publications report results of manual anal-

ysis of individual cryptographic PRNGs or PRNG classes,
among them [12–14,17,22,23,26] and [3,7,9]. The perspec-
tive taken in the latter works is based on elaborate attack
models, where the attacker, for instance, can control the
distribution of the inputs used to seed the PRNG, view, or
even corrupt the internal PRNG state.

Complementary research.
There exists a wide body of work on randomness in cryp-

tography and security. Research subjects include secure the-
oretical PRNG constructions, cryptographic schemes that
either do not require randomness or degrade gracefully in
presence of bad randomness, empirical studies of random-
ness in practice through cryptographic artifacts collected
from public sources, studies and methods of entropy col-
lection in embedded devices or virtual machines. Since this
research is orthogonal to the immediate goals or techniques
of our work, we do not survey it here.

9. CONCLUSION
We have presented the first static analysis and one of the

first technical quality assurance measures for cryptographic
PRNG implementations. We implemented our analysis in
a tool named Entroposcope and demonstrated its prac-
ticality by analyzing five real-world PRNGs implementing
different designs, including one of the most complex in wide
deployment today.

In the experiments, Entroposcope uncovered PRNG de-
fects effectively and with reasonable effort. Five instances of
entropy loss showcase the tool’s capabilities, including pre-
viously undiscovered anomalies in OpenSSL and Libgcrypt.
The detection is systematic (i.e., it is not based on exam-
ples, patterns, or heuristics) and sound. A negative analysis
outcome guarantees absence of entropy loss in the analyzed
scope.
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The analysis we presented is intended to detect a large
but specific class of implementation mistakes. It is thus not
intended to replace expert review, nor, more generally, re-
search into good PRNG designs and deployment practices.
Yet, it is the first instance where the work of a PRNG se-
curity analyst in a particular area can be supported by an
effective tool.

Interesting directions for future research include exten-
sions to more powerful attacker models, scenarios with multi-
threading, and automatic counterexample-guided synthesis
of cryptographic idealizations.
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APPENDIX
A. DETAILS OF THE PROBLEMS DISCOV-

ERED IN THE LIBGCRYPT PRNG
In the following we describe a design flaw in the mix-

ing function of the Libgcrypt PRNG (also used in GnuPG),
which we discovered with the help of Entroposcope. Due
to the flaw, mixing the full entropy pool reduces the stored
entropy amount by at least 20 bytes. Furthermore, the
flaw makes a part of the PRNG output completely pre-
dictable. This bug existed since at least 1998 in all GnuPG
and Libgcrypt versions and is tracked as CVE-2016-6313.
The flaw was fixed after we had reported our findings to the
Libgcrypt author.

A.1 The Mixing Function
The mixing function in question is mix_pool in random-

csprng.c. It is supposed to perturb the content of the en-
tropy pool while maintaining its entropy content. The lat-
ter requirement (freedom from entropy loss) means that the
mixing function ought to be injective, i.e., transform distinct
pools into distinct pools. This was not the case.

It remains to note that the length L of the entropy pool is
30 · 20 = 600 bytes in the default configuration. A comment
in the source states that the Libgcrypt PRNG is modeled
after a proposal by Gutmann [13].

Original Proposal by Gutmann.
Figure 6 shows the original proposal for a mixing function

presented in [13]. The mixing function operates in cycles.
The top rectangle represents the entropy pool at the begin-
ning of the (first) cycle, while the bottom rectangle shows
the pool at the end of the cycle. A 20-byte hash of a sliding
window first covering bytes [0,84) in the pool is computed
and the result is used to overwrite the bytes [20,40). Af-
ter that, the sliding window is shifted right by 20 bytes and
the next cycle commences. If a part of the sliding window
extends beyond the end of the pool, it is wrapped around.
The function terminates when all bytes in the pool have
been rewritten (i.e., after 30 cycles).

Implementation in Libgcrypt.
There are two relevant differences between the proposal

in [13] and the Libgcrypt implementation. The more gen-
eral difference is that the Libgcrypt sliding window has a
“hole” (Figure 7b). The hash here is computed from the
bytes [0, 20) ∪ [40, 84). The bytes [20,40), shown as hatched
in the figure, are no longer part of the hash input. The more
particular difference is that the first cycle (Figure 7a) devi-
ates from the other cycles (Figure 7b). Here, the hash is
computed from the bytes [L− 20, L) ∪ [0, 44).

Later on, we show that the hole in the sliding window
decreases the security of the PRNG.

Properties of the Libgcrypt Mixing Function.

Proposition 5. The pool is the only (effective) reservoir
of entropy.

We could identify only two potential threats to this claim
in the code:

• There is a small auxiliary entropy buffer (physically
trailing the pool) used in the hash calculation, but its

20+20+44
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Figure 6: Mixing function proposed in [13]
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Figure 7: Mixing function in Libgcrypt
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content is completely overwritten by data from the pool
at the beginning of each cycle.

• The hash context is reused between cycles and contains
a 20-byte chaining buffer. Yet, we note that the buffer’s
content at the end of a cycle is identical with the out-
put of the hash function. The hash function output
from cycle i, in its turn, is stored in the pool and fed
into the hash function in cycle i + 1, after the sliding
window shifts right. The chaining buffer, thus, injects
no additional entropy into each hash operation beyond
what is already contained in the pool.

Corollary 6. Each cycle i, thus, induces a mathemat-
ical function fi transforming a pool into another pool. The
whole mixing function is a composition of such cycle func-
tions:

mix_pool = f30 ◦ . . . ◦ f1 .

A.2 Entropy Loss

Proposition 7. Consider an entropy pool containing L
bytes of data with an entropy of L bytes. After applying the
Libgcrypt mixing function, the entropy content of the pool is
at most L− 20 bytes.

Proof. It is clear that the mixing function can only be
injective, if every cycle function fi is injective.

Yet, for any 2 6 i 6 30, the corresponding cycle func-
tion fi as implemented in Libgcrypt (Figure 7b) is not in-
jective. For example, any two pools differing (only) in the
byte range [20,40) will produce the same pool after apply-
ing f2.

A.3 Output Predictability
In general, an entropy loss makes it easier for an attacker

to brute-force the PRNG state. In this particular case, the
flaw causing the entropy loss also caused a partial trivial
output predictability.

Proposition 8. Whenever the Libgcrypt PRNG gener-
ates L bytes of output10, the last 20 bytes are trivially pre-
dictable from the first L− 20 bytes.

Proof. The PRNG produces output by deriving a so-
called key pool of length L from the main entropy pool (in
a way irrelevant here), mixing it, and returning its content
to the client. Due to the design of the mixing function, the
bytes [L−20, L) of the key pool (and thus of the output) are
obtained by hashing the bytes [L−40, L−20)∪ [0, 44). The
hash context chaining buffer at this point coincides with the
bytes [L− 40, L− 20), as explained above. We note that all
of the bytes in that range are contained in the first L − 20
bytes of the key pool and thus of the output.

In other words, by taking the bytes [L−40, L−20)∪[0, 44)
of the output, and hashing them with the hash context
chaining buffer set to bytes [L − 40, L − 20), an attacker
can perfectly predict the bytes [L − 20, L) of the output.
Simple proof-of-concept code confirms our finding.

10For simplicity, we assume that an L-multiple of bytes were
generated previously.

A.4 Details of the Analysis Process
We began the analysis with preparing the analysis driver

and distilling the relevant deterministic part of the PRNG.
In the manner similar to the OpenSSL case (Section 6.2), we
disabled self-seeding, fork detection and PID incorporation,
provisions for memory scrubbing, etc. For tractability, we
also reduced the pool size. The scenario M = N = L = 120
can be handled by the tool in under one minute.

For the idealization of the hash function, we needed to
make a choice of the entropy source within the sliding win-
dow. We experimented with the first, second, and third 20-
byte block of the 64-byte sliding window, but none of these
choices allowed proving absence of entropy loss. At this
point, we started to build a more detailed mental model of
the PRNG operation, for which the description in [13] was
helpful. Aided by the traces shown in the counterexample
visualizer, we quickly confirmed our suspicion that we were
facing a real flaw. A closer manual investigation of the flaw
revealed that it was not only causing an entropy loss but
partial trivial output predictability as well.

After fixing the PRNG by eliminating the hole in the slid-
ing window, it was easy to check that choosing the second
20-byte block in the sliding window as the entropy source
allows proving entropy preservation.

A.5 Conclusion and Aftermath
After finding the flaw, we reported it to Werner Koch,

the author and maintainer of Libgcrypt. We would like to
thank Werner for a productive discussion. Bugfix releases
are available as of 2016-08-1711. Each mixing cycle now
hashes a contiguous 64-byte region of the pool, maintaining
injectivity of the mixing function.

Interestingly, the deviating design of the first cycle of the
mixing function in the vulnerable PRNG makes the flaw un-
detectable with any dataflow analysis that does not replace
the hash function by an idealization.

Please note that we make no claims about the effect of
the flaw on the security of generated keys or other artifacts.

11https://lists.gnupg.org/pipermail/gnupg-announce/
2016q3/000395.html
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