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Zusammenfassung

In der heutigen Zeit steigen Datenmengen rasant an. In Folge des-
sen reicht eine einzelne Maschine häufig nicht mehr aus um diese zu
speichern und zu verarbeiten. Daher wird in dieser Arbeit der Ansatz
verfolgt eine Datenbank in einem verteilten System zu implementieren.
Vor allem bei komplizierten analytischen Anfragen an die Datenbank
fällt dabei allerdings häufig ein großer Anteil der Ausführungszeit auf
die Kommunikation zwischen den einzelnen Maschinen des Systems ab,
weshalb versucht wird das Volumen der kommunizierten Daten zu mini-
mieren.
Zunächst werden frühere Arbeiten zu den Themen hauptspeicherbasier-
te und spaltenorientierte Datenbanken, kommunikationseffiziente Grup-
penkommunikationsalgorithmen und verteilte Datenbanken betrachtet,
deren Ergebnisse zum Teil für die in dieser Arbeit entwickelten Algorith-
men verwendet werden oder die Grundlage für eine Komplexitätsanalyse
bilden.
Im Hauptteil werden Techniken, die bereits in einer früheren Arbeit, auf
der diese Arbeit aufbaut, entwickelt wurden, analysiert und Verbesserun-
gen dieser vorgeschlagen. Es werden hierbei im speziellen Algorithmen
für Anfragen betrachtet, die nur die ersten k Tupel des Ergebnisses for-
dern und die nicht allein durch lokale Berechnungen auf den einzelnen
Recheneinheiten der verteilten Datenbank gelöst werden können und da-
her einen großen Kommunikationsaufwand bergen. Es werden hier große
Optimierungsmöglichkeiten erwartet, da diese in den Skalierungsexperi-
menten der vorhergehenden Arbeit keine zufriedenstellenden Eigenschaf-
ten aufwiesen.
Anschließend werden drei ausgewählte Anfragen aus dem Online Analy-
tical Processing (OLAP) Benchmark TPC-H genauer analysiert und mit
Kommunikationsaufwand verbundene Joins in diesen identifiziert. Zur
effizienten Ausführung von Joins, werden die zuvor entwickelten Algo-
rithmen auf diese Anfragen angewandt und gegen andere Lösungsmög-
lichkeiten abgewogen um die Entscheidungen zu begründen.
Zur Evaluierung der neu entwickelten Algorithmen werden die drei An-
fragen des TPC-H Benchmarks in Form eines Prototyps implementiert
und in einem großen Rechnerverbund von 128 Knoten auf einer Daten-
bank mit bis zu 30 Terabyte (zum Teil bis zu 128 Terabyte) an um-
kompressierten Daten ausgeführt. Hierbei werden zunächst Skalierungs-
experimente durchgeführt um den Einfluss der Anzahl der Knoten des
Rechnerverbundes auf die Laufzeit und den Kommunikationsanteil der-
selben zu analysieren. Anschließend werden die gemessenen Laufzeiten
mit denen der vorhergehenden Arbeit und des aktuellen TPC-H Rekord-
halters verglichen. Dabei werden im Vergleich zum aktuellen Rekord-
halter bis zu 35 mal schnellere Laufzeiten erreicht und im Vergleich zu
der früheren Arbeit deutlich bessere Skalierungseigenschaften, die zum
Großteil auf deutlich geringere Kommunikationsvolumen zurückzuführen
sind, erkannt. Diese resultieren auch in schnelleren Laufzeiten, wenn die
Algorithmen auf vielen Knoten im Cluster und großen Datenbeständen
ausgeführt werden.
Der implementierte Prototyp wird mit Hilfe performanter Bibliotheken



zur Parallelisierung implementiert und verwendet Implementierungen
des offenen Standards Message Passing Interface (MPI). Um schnel-
le Ausführungszeiten zu gewähren, werden alle Daten zu jeder Zeit im
Hauptspeicher gehalten und Spaltenweise gespeichert, da dies sich als ef-
fizient für analytische Anfragen erwiesen hat. Zur weiteren Verbesserung
der Laufzeiten wurden einzelne Teile von OpenMPI durch alternative
Implementierungen ersetzt, die in durchgeführten Tests bessere Ergeb-
nisse erzielten.

Die Hauptbeiträge dieser Arbeit sind:
• Eine Technik um bessere Partitionierungen der Tabellen einer Da-

tenbank zu finden, die es ermöglichen einige Joins ohne zusätzliche
Kommunikation auszuführen

• Ein Algorithmus, der zur Auswahl der ersten k Elemente des Er-
gebnisses einer Anfrage bei bestimmten Partitionierungen der Da-
tenbank ein von der Größe der Datenbank unabhängiges Kommu-
nikationsvolumen verursacht, indem er die nicht lokal auswertbaren
Filterbedingungen der Anfrage faul auswertet (lazy evaluation)

• Eine Analyse des Kommunikationsbedarfs beim Verzögern eines
Joins, der nicht lokal auf einer Maschine ausgewertet werden kann,
und ein Vergleich zum Kommunikationsaufwand bei einer frühen
Durchführung des Joins. Dazu werden bewiesene untere Schranken
der benötigten Gruppenkommunikationsprimitive benutzt um aus-
sagekräftige Ergebnisse zu liefern

• Die Anwendung der entwickelten Algorithmen auf komplexe Anfra-
gen des TPC-H Benchmarks, die nicht ohne höheren Kommunika-
tionsaufwand zu lösen sind

• Die Implementierung der entwickelten Algorithmen in einem Pro-
totyp einer verteilten Datenbank und die Evaluation desselben in
einem Cluster von 128 Knoten auf einer Datenbank von bis zu 30
(oder 128, falls nur ein kleiner Teil der Datenbank genutzt wird)
Terabyte an unkompressierten Daten

Außerdem werden bewährte Techniken aus der vorhergehenden Ar-
beit übernommen, wie eine Kommunikationsvolumensparende Möglich-
keit aus den Teilergebnissen der einzelnen Knoten ein Gesamtergebnis
des Rechnerverbundes zu ermitteln, wenn nur die ersten k Tupel des
Ergebnisses benötigt werden. Des Weiteren wird auch erklärt, wie Kom-
munikationsvolumen durch das Ausnutzen früher kommunizierter Infor-
mationen eingespart werden kann, was die Laufzeiten erneut senkt.

Den Abschluss der Ausarbeitung bildet ein Rückblick auf die erbrach-
ten Leistungen sowie eine Analyse möglicher weiterer Arbeiten, die nötig
sind um die entwickelten Algorithmen in ein Marktreifes System zu in-
tegrieren.



Abstract
As a result of the growing amounts of Data in todays Databases, one

machine is often not sufficient to store and process these. The proper
solution to this problem is to scale the system out on a cluster. How-
ever, the distribution of the data throughout the machines of the cluster
results in a high percentage of communication time in the overall execu-
tion time of a query, especially for complex analytical queries. For this
reason, we try to minimize the volume of communicated data to allow
faster runtimes when a query cannot be executed on a single node of the
cluster without any communication. We analyze techniques from pre-
vious work and propose improvements to them backed by a complexity
analysis of the communication volume for both, our algorithms and the
algorithms from the previous work.
For the evaluation of our algorithms we implement them for chosen
queries of the TPC-H benchmark and run them on a cluster of up to
128 nodes with a database of up to 30 terabytes of uncompressed data
(128 TB if only a small proportion of the database is used). We provide
both, scaling experiments and runtime comparisons to previous work
and the current TPC-H record holder.

The main contributions of this work are:
• A technique to find a better partitioning of the tables in a database

to allow the execution of joins without communication effort
• An algorithm that selects the first k tuples of the result set of a

query with a communication effort independent from the size of the
database, given certain conditions of the partitioning

• An analysis of the communication effort of a delayed join that can’t
be evaluated locally on a node, in comparison to the communication
effort when executing the join early

• The application of our algorithms to solve complex queries of the
TPC-H benchmark that can’t be executed without a high amount
of communication effort

• The implementation of the queries in a prototype and evaluation
of our algorithms on a large cluster consisting of 128 nodes for a
database with up to 30 terabytes of uncompressed data (or 128 TB
if only a small proportion of the database is used)
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1. Introduction
In todays big data warehouses fast online analytical processing (OLAP) becomes
more and more important in order to avoid long waiting times for ad-hoc queries.
While the speed improvement of hardware becomes slower over time, the amount
of data to be processed increases drastically. To be able to process such large data
volumes parallelization becomes essential. As the number of processing units and
memory on a single machine is usually not large enough and the prices for high
performance machines are getting higher, scaling systems up does not seem like a
solution for this problem. However, the possibility of scaling a system out to multi-
ple machines is a promising approach as those single machines are cheaper than one
big machine and there is virtually no bound on the number of computers that can
be combined into a cluster.
Despite the huge combined performance and memory of a cluster a new bottleneck
evolves in the linking network [19], thus developing more communication efficient
algorithms for distributed query execution is required.
As there was a lot of research on the area of sophisticated group communication
algorithms and there are widely available implementations of these, like the Mes-
sage Passing Interface (MPI), we will base our algorithms on the usage of group
communications to achieve the smallest possible amount of communication effort.

1.1. Contribution

In this work we analyze common patterns that appear in many OLAP queries
and that require vast amounts of communication when executed on a distributed
database.
We provide solutions for queries following these patterns that are very efficient in
terms of the data transmitted between the nodes of the cluster running the database
using group communication operations. In order to support decision making between
different approaches to minimize communication, we analyze our algorithms using
proven lower bounds for common group communication primitives and compare
these results with other sophisticated solutions.
In particular, for certain data distributions, we develop an algorithm to select the
top k results of a query with a communication effort independent from the size of the
total result set, even if the query contains a filter condition that can’t be evaluated
locally.
We also prove that, in most cases, it is beneficial in terms of communication volume
to perform joins, that can’t be evaluated locally on a node, as late as possible.
Another contribution is a generalized way to find better distributions of the data
that enable the database to evaluate most joins locally without the need of commu-
nication while executing the query.
To evaluate the performance of our algorithms in terms of practicality for real-world
applications, we combine our ideas to run chosen queries from the TPC-H benchmark
that seem to be hard to execute efficiently as other work shows. We implement these
queries in a prototype of a distributed database, run them on a large cluster with an
input of up to 30 terabytes of uncompressed data (128 terabyte for queries that use
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only a small proportion of the input data) and compare our results to previous work
and the current record holder of the TPC-H benchmark, where we achieve runtimes
of factor 11 to 35 faster. We also run both, strong and weak scaling experiments to
evaluate the behavior of our algorithms when scaling out the system and achieve a
good scaling behavior especially for weak scaling experiments which is the kind of
scaling out systems we expect in real-world applications.
We achieve these fast runtimes by making full use of the available hardware, state-
of-the-art parallelization libraries and sophisticated algorithms from other work: We
use full multi-core parallelization on each node of the database cluster by using ad-
justed versions of the algorithms from [5] implemented using highly efficient thread-
parallelization libraries and inter-node parallelization with well studied group com-
munication operations implemented in libraries following the open standard MPI.

1.2. Outline

We start this thesis with an overview of work on topics related to this thesis: We
give a short introduction on main-memory and columns-based databases and on the
group communication operations used for our algorithms, followed by an overview
of research on distributed databases.
In Section 3 we give an insight on the index structures we use for faster access on
tuples in the database, the Message Passing Interface (MPI) and the communication
Model we use for our analysis. Sections 4 and 5 are the main part of this work. In
Section 4 we develop algorithms for the communication efficient execution of queries
following certain patterns that appear in many real-world queries and compare these
algorithms to other solutions. We then explain how to apply those techniques on
chosen queries of the TPC-H benchmark in section 5 and explain our decision for
choosing our algorithms over others. In Section 6 we give details on our implemen-
tation and explain the limitations of our prototype. Section 7 then describes our
evaluation techniques and provides an a posteriori analysis of the scaling behavior
in different scaling experiments of the implemented queries. Finally, in Section 8
we review the work of the entire thesis and draw conclusions from our results and
describe their applicability in productive systems.
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2. Related Work

2.1. Main Memory Column Store Databases

Lots of work (e.g. [17, 23]) has shown that a column based representation of the
data held in main memory works best for OLAP databases and saves memory due
to better possibilities for data compression. Also, because of the growing size of
main memory on modern machines, data can be hold completely in main mem-
ory speeding up query execution time remarkably, while the hard disk is only used
for persistent backups [10]. These results lead to many proprietary databases like
SAP HANA [8] or EXASOL EXASolution [7] and research databases like HyPer [15]
using both at least for parts of their implementation.

While this work mainly focuses on the communication efficiency in query execution,
our prototype is implemented as a main memory column store database to achieve
fast execution times.

2.2. Group Communication Primitives

While we only study the communication efficiency in OLAP databases, there is also
some more fundamental research on this topic: Fraigniaud and Lazard [9] study the
lower bounds on many group communication operations in networks on different
communication models. Bruck et al. [3] analyze the lower bounds on different types
of group communications and provide optimal algorithms for those. The results
of these two research publications are used for our theoretical analysis and give a
deeper insight on the underlying algorithms used in this work.
Sanders and Träff [21] propose an algorithm for (personalized) alltoall communi-
cation where every processor on a node has an individual message to send. Their
algorithm is used in our prototype for all larger alltoall communications as it behaves
better in our experiments than other implementations of the alltoall operation.

2.3. Distributed Databases

There has been a large variety of research on the field of distributed databases. Most
solutions, however, don’t integrate cluster parallelism deep into their implementa-
tion but, for example, run a separate database on every node of the cluster and use
a middleware to coordinate the cooperation of the nodes. Also, many distributed
databases rely on heavy replication of the data among all nodes. While this prevents
problems with communication times as all data is available on every node, it pre-
vents the system from truly scaling out as every node still needs enough memory to
store all data held in the database. Weidner [26] gives a more detailed explanation
of these systems and provides several examples.
Rödiger et al. [19] propose an algorithm for optimal partitioning and partition as-
signment for distributed joins, however due to the structure of the synthetic data
of the TPC-H database these problems can be solved in a trivial way in our case
because at least one of the relations taking part in a join is always partitioned by
the join-key. They also use the algorithm for solving open shop from [12] to sched-
ule their communication but this only gives high benefits on network utilization for
value skewed data while the improvement over round robin for uniform data seems

13
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to be negligible.
Dees and Sanders [5] use full many-core parallelization to execute TPC-H queries
but they don’t cover inter node parallelization, however adapted versions of their
algorithms are used for intra node parallelization in our implementation.
Bernstein and Chiu [1] describe in their work how to reduce the effort required for
later joins by doing early semi-join reductions and determine which queries can be
solved using semi-join reductions. The approach of semi-joining early is also used
by Weidner [26] and we show that it is more beneficial in terms of communication
time to do joins at a later stage for many queries. Chen an Yu [4] present how to
combine joins and semi joins to get a benefit even for cases were a single semi-join
is not profitable on its own.
Koutris [16] proposes the use of Bloom-filters [2] for semi-join reductions to reduce
communication time. However, their algorithms don’t seem to scale with the number
of nodes in a database cluster and there are more space efficient versions of bloom
filters: Putze et al. [18] improve space-efficiency for Bloom-filters by using only one
hash value for every element inserted into a large hashed bitmap and compressing
it using Golomb coding [11]. Sanders et al. [20] also propose a distributed version
of these singe-shot Bloom-filters which seem to be an appropriate way for saving
communication for filters that can’t be evaluated locally if the filter is not queried
too often.
Weidner [26] shows that there is a lot of room for improvement on current solutions
at least for manually written translation from SQL to C-code but his solutions for
some queries still don’t seem to scale well. We continue their work and find im-
provements for their approaches by using algorithms with less communication effort
at the cost of more computational work.

14



3 Preliminaries

3. Preliminaries

3.1. Data distribution and indices

We assume a distributed database where all tables are distributed horizontally
among all nodes, meaning that every node holds some rows for every table and
that rows of a table are kept together and not split among multiple tables. We also
waive replication of data in most cases. These assumptions are crucial for a system
designed to scale out on a theoretically unlimited number of processing nodes.
As it is important for many queries to determine the location of tuples referenced by
other tuples on foreign key relations, we construct indices to achieve this in constant
time.
For the algorithms presented in this work we mostly use range indices. A range
index is used for one-to-many relations where the tuples on the many-side of the
relation are grouped by this foreign key: The index has an entry for every tuple
on the one-side of the relation that points to the first tuple on the many-side that
references the first tuple. So for the tuple at position i the tuples referencing that
tuple can be found in the range index in the interval [range(i), range(i+ 1)].
Another index that can be useful in a distributed database is one that maps foreign
keys to the node where the referenced tuple is located. In our case this can be done
easily by storing for every node the key of the first tuple of every table on every
node. So if we want to find the node of a tuple with key x we just have to find the
node i with index(i) ≤ x < index(i + 1). This works for all cases where the tables
are ordered by their key and the database is distributed by a range partitioning [6].

Using horizontal partitioning of the data leads to two major different situations when
performing a join. We adopt the classification from Weidner [26] and denote joins
that can’t be performed without accessing data on another node as remote join or
on a remote join path and local joins respectively. The efficient execution of these
remote joins is the main topic of this thesis.

3.2. Message Passing Interface (MPI)

In order to execute queries in a distributed database, the nodes of the cluster run-
ning the database need to communicate at some points of the execution. In the
interest of doing so in an efficient way we use sophisticated group communication
patterns. A group communication is an operation that many (or in our case all)
nodes take part in.
The standard Message Passing Interface (MPI) provides a library specification in-
cluding many of these group communication operations among with other function-
alities and has been implemented for several programming languages including C,
C++, C# and Java.

The operation we use most in our algorithms is the (personalized) alltoall com-
munication where every node holds some data to send to every other node: If the
program runs on P nodes, every node holds P blocks of data (possibly differently
sized) and sends block i to node i.

15
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Other operations we use are reduce, allreduce, gather, allgather, scatter and broad-
cast:

• Reduce: The data from all nodes, each of the same size (n), gets combined
by an associative operation. The result is gathered at one of the nodes (called
the root) and has size n.

• Allreduce: Same as reduce, but the result lies on all nodes.
• Gather: The data from all nodes gets gathered at one root node resulting in

one block of data with a size of
P −1∑
i=0

size(i) where P is the number of nodes
taking part in the gather operation and size(i) is the size of the data block on
node i.

• Allgather: Same as gather, but the result lies on all nodes.
• Scatter: Opposite of gather. The root node sends one block of data to each

node (possibly of different sizes). The ith block is sent to node i.
• Broadcast: The root node sends the same block of data to all other nodes.

Further study on group communication can be found in [9], [21] and [3].

3.3. Communication Model

Stonebraker [25] describes three different architectures for high transactionrate mul-
tiprocessor systems:

• Shared Memory: All processors share one central memory
• Shared Disk: Every processor has its own memory but one disk is shared

among all processors
• Shared Nothing: The processors share no resource. Every processor has its

own memory and disk and the processors are linked by a network
By the classification of Stonebraker the architecture we design our algorithms for
is shared-nothing as we only cover inter-node parallelization and use the algorithms
from [5] for intra-node parallelization. However, as in a usual cluster every node
has multiple processors sharing the same memory, our implementation supports a
combination of shared memory and shared nothing: We support full intra-node par-
allelization to use all the available processors of a node (shared memory). Between
the nodes of the cluster there is no shared resource except for the linking network,
that is used to exchange messages between the nodes (shared nothing).

For our analysis we use the one-port fully connected message-passing system where
in every communication round every node can send and receive data from one other
node and all nodes are equally distant.
To evaluate communication complexity we use the linear model, which states that
the time required for sending n units of data is α + n · β where β is the time for
sending one unit of data and α is some overhead yielded by every communication.
These models are also used by Bruck et al. [3] and Fraigniaud et al. [9] in their
analysis.
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4. Distributed Query Execution

4.1. Partitioning
When (equi-)joining two tables the optimal partitioning of the data is when both
tables are copartitioned after the join key, meaning that all tuples of both tables
with the same value on the join key should be on the same partition of the dis-
tributed database thus a join on these two tables can be executed locally needing
no communication effort.
There are some rules that can be used to determine tables that can be copartitioned
by foreign-key relations by possibly giving up the partitioning by the primary key
of one of the tables.
Let the partition graph for a database schema be defined as follows:

• Tables in the database are modeled as nodes v ∈ V
• Foreign key relations for tables that are not copartitioned by that key are

modeled as directed remote edges r ∈ R
• Foreign key relations for tables that are copartitioned by that key are modeled

as directed local edges l ∈ L

Table 0 Table 1

Table 2

Table 3

Local edge (one-to-many)
Remote edge (one-to-many)

Figure 1: Example of a partition graph

In this graph possible tables to be copartitioned can be found easily. If there is a
remote edge r = (t1, t2) ∈ R such that the graph (V, {r} ∪ L) is acyclic, then r can
be made local by repartitioning t2 to the corresponding elements in t1 and all t ∈ V
with (t2, t) ∈ L∗ respectively.
Note that in general a table can only be copartitioned with one other table on it’s
foreign key, so if there are two edges (t1, t), (t2, t) fulfilling the requirements above,
t can only be copartitioned with t1 or t2, not both.

In the example table schema from Figure 1 Table 1 can be repartitioned by its for-
eign key to Table 3.
Additionally Table 0 can be repartitioned to Table 1 at what Table 2 must be repar-
titioned to match the new partitioning of Table 0.
After that no other repartitionings are possible in this schema although there is
still the edge r = (Table 2, Table 1) ∈ R because (V, {r} ∪ L) has the cycle
(Table 0, Table 2, Table 1). The resulting graph can be seen in Figure 2.
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Table 0 Table 1

Table 2

Table 3

Local edge (one-to-many)
Remote edge (one-to-many)

Figure 2: Example of a partition graph after copartitioning the tables

In this example it is easy to see that there can be more than one partition graph for
a given table schema where no more repartitionings are possible.
While having many co-partitioned tables in the database will increase join perfor-
mance by avoiding unnecessary communication, it might be more beneficial to keep
some tables partitioned by their primary key in order to allow fast access on succes-
sive tuples. There has to be made a trade-off between these two arguments for the
specific tables in a database.
For an example were we use the possibility to repartition tables in this way see
Section 5.2.1.

4.2. Global result reduction for top k selection queries

An important factor in designing parallel algorithms is avoiding bottlenecks which
is achieved by algorithms with an optimal load balance.
In order to accomplish that target all of our top k selection algorithms construct a
local result on every node, aiming not to result in a bottleneck, and then derive the
global result for the query via a final global reduce operation: Every node selects the
first k elements from its partition of the tuples in the result set - then the global top k
tuples get derived from the local top k results by a global reduce operation. Figure 3
illustrates this technique for a possible implementation of a reduce operation as a
binary tree.

[9, 8, 8]

[9, 8, 5]

[8, 3, 2] [9, 5, 3]

[8, 7, 5]

[7, 4, 2] [8, 5, 1]

Figure 3: Local result to global result reduction using a binary tree. The global top
3 results get derived from the local top 3 results on 4 nodes using a reduce
operation.

Let P be the number of nodes, size the amount of data to transfer for every tu-
ple and m the number of tuples in the result set before eliminating all of them
except the first k. Then, using the lower bounds proven in [9], the total costs for
deriving the global result from local results using the described reduce function are
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4.3 Late joins

log2(P ) · k · size compared to (P − 1) · k · size for gathering all local results on one
node and selecting the first k tuples from it, or even (P − 1) ·m · size for gathering
the entire result set on one node and then eliminating all tuples but the top k.

This technique was already used in [26] and we use it for all of our implemented
queries (Sections 5.1, 5.2 and 5.3).

4.3. Late joins
An approach often used to reduce computation time is to do a semi-join reduc-
tion [1] early and only materialize the results yielding from the calculations on the
reduced tuples. To do this for remote join paths in a distributed setting for example
a full bitset [26] or a bloom filter [16] for all tuples fulfilling the filter condition is
replicated among all nodes (possibly compressed). This approach aims to reduce
local calculation time. However, Rödiger et al. [19] mentioned that CPU speed grew
way faster than network speed over the last decades and predicts this to continue
in the near future, thus saving communication time is going to be more important
than saving CPU clock cycles. To reduce communication volume for queries with a
locally evaluable and a remote filter condition, the local result can be partly calcu-
lated without joining the tables and after that a bitset for the filter on the remaining
keys lying on the remote join path can be requested explicitly if the remote loca-
tion of the corresponding tuples is known. While this technique can often save high
degrees of communication it does cost more computation time and storage on each
node because tuples that get filtered out by the remote filter condition have to be
processed and stored first.

Figure 4 illustrates the technique using an example query on an example database:
There is a filter condition on the remote join path between l and r that has to be
evaluated efficiently. First the values get aggregated by the join key and filtered
locally. Then they are joined on the remote path which acts as a filter. No node
has to communicate all of its information to every other node, e.g. node j does not
need any information about the remote filter on join keys w and z because it has
filtered out z locally.
It is not shown in the illustration how the join would be processed: The nodes on
the left would send the join keys for which they hold results to the nodes on the
right. The nodes on the right would return a bitset containing information about
which of the requested keys fulfill the filter condition.

We analyze this approach in comparison to distributing a bitset for the remote filter
over all nodes. We don’t compare our solution to the version using Bloom filters
because Bloom filters are only profitable for very small selectivities.
Theorem 4.1. Requesting the required keys for a remote join and answering a bitset
is more efficient regarding communication complexity if the inequation f < 1

8k+1
holds where f is the selectivity on the locally evaluable filters and k is the amount
of bytes that have to be send for every key in order to request the remote filter on it.

Proof. For the full bitset distributed over all P nodes, one allgather operation is
needed with n

8·P bytes of data to be sent from every node where n is the size of the ta-
ble used for the filter on the remote join path (assuming the locations of every tuple
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in the bitset can be determined in some way on every node). According to Bruck et
al. [3] the lower bound on communication complexity for this is Cfull = n

8·P · (P − 1)
bytes.

Our approach needs two phases: An alltoall operation to request the required join
keys and another alltoall operation to return a bitset for the filter on the requested
keys.
Because the table was already filtered locally thus not every tuple has to be filtered
on the remote join path, each node only has n·f ·k

P
bytes of data to sent. Again, ac-

cording to [3] the lower bound on communication complexity for this is ClateRequest =
n·f ·k

P
·(P−1) bytes. For the answered bitset this yields ClateAnswer = n·f

8·P ·(P−1) bytes

In order to find the point where our approach performs better than the variant of

Node j

Node i

l.
jo
in
k
ey

··
·

x
y
z
x

··
·

··
·

y
z
z
y

l.
v
a
lu
e

··
·

3
1
6
2

··
·

··
·

3
1
4
2

l.
f
il
te
r

··
·

a
a
c
a

··
·

··
·

c
a
a
a

l.filter == a

l.filter == a

l.
jo
in
k
ey

··
·

x
y

··
·

··
·

y
z

su
m

(l.
v
a
lu
e)

··
·

5
1

··
·

··
·

2
5

Node n

Node m

r.
jo
in
k
ey

··
·

w
x

··
·

··
·

y
z

r.
f
il
te
r

··
·

1
1

··
·

··
·

0
1

Request for a filter result (not joined)
Request for a filter result (joined)

Figure 4: Example of a late join for the query
SELECT l.joinkey, sum(l.value) FROM l, r WHERE l.joinkey
= r.joinkey AND l.filter = a AND r.filter = 1 GROUP BY
l.joinkey.
l is not partitioned after joinkey but r is, thus the join between l and r
is on a remote path.
First the values get aggregated by the join key and filtered locally. Then
the filter on the remote join path is evaluated.
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replicating a full bitset we evaluate the inequation ClateRequest+ClateAnswer−Cfull < 0:

(n·f ·k
P

+ n·f
8·P −

n
8·P ) · (P − 1)

= n · f · (8k + 1)− n
8P · (P − 1) < 0

P >1⇒ n · f · (8k + 1) < n
n>0⇒ f · (8k + 1) < 1

⇒ f <
1

8k + 1

Figure 5: Proof for the break even point of early and late joins.

We ignored latencies and startup times for this comparison due to very large data
sizes, Bruck et al. [3], however, showed that the lower bound on the number of
communication rounds for alltoall operations is way higher when reaching the lower
bound on the data transferred in a sequence (P − 1 in comparison to the overall
lower bound of log2 P ).

Note that in many cases most of the communicated information can be compressed,
e.g. by using differential- or run-length encoding in combination with Golomb cod-
ing [11].

An example for the application of this technique can be found in Sections 5.1 and 5.3.

4.3.1. Exploiting previously communicated information

In some query execution plans we can save communication volume by exploiting
previously communicated information. An example for this are special cases of
query plans where a semi-join as described in Section 4.3 is done:
When Node A requests a remote filter on node B, it has to send the join keys to node
B. After receiving the result and computing the next intermediate result using that
information on node A, we might need to send more information to node B which
belong to some or all of the join keys transferred earlier. Here we can skip sending
the join keys again by sending the additional information in a way that allows us to
match the new data with the previously sent join keys e.g. by using the same order.
We exploit previously communicated information in Section 5.1 to determine tu-
ples in the result set and in Section 5.3 to send additional data, where we provide
additional explanations for this technique relevant to the specific examples.

4.3.2. Lazy top-k filtering

A common pattern in decision support queries is to aggregate values by a key and
return only the top k results filtered by a join attribute on the aggregated values.
A special case of this problem in a distributed Database is when the tables to be
aggregated are partitioned by the aggregation key but not by the join key.
This thesis provides an efficient solution for this problem by evaluating the remote
filter lazily thus only needing to get the remote filter results for a number of Elements
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expectable linear in k.
First the aggregated values for the whole table grouped by the aggregation key
have to be calculated and sorted locally needing no communication. Second, the
remote filter has to be evaluated for single keys in the sorted aggregate result set
until the filtered top k elements are determined. Last, the local top k results have
to be reduced to get the global top k elements (see Section 4.2). As this yields a
communication volume independent from the number of tuples in the database, we
expect this technique to scale fairly well. Figure 6 illustrates the algorithm.
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Figure 6: Example of a lazy filter on the top 2 results of the query
SELECT l1.local, sum(l2.value) FROM l1, l2, r WHERE l1.local
= l2.local AND l1.remote = r.remote AND r.filter = 1 GROUP BY
l1.local ORDER BY sum(l2.value)
First the values are aggregated locally and sorted by their sum. To
determine the local top 2 results, the filter results on the remote path
are requested one after another until the top 2 sums matching the filter
condition are found.

Theorem 4.2. Filtering the aggregates until the top k elements are found needs
expected k

p
remote accesses on each node where p is the probability of getting a positive

filter result.
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4.3 Late joins

Proof. We consider the application of a filter to be a Bernoulli experiment where a
match on the filter condition is a success. We denote the probability for a success
with p. As we need to evaluate a sequence of Bernoulli experiments we get a bino-
mial distribution.
We have to find the number of trials n needed to have at least k successes.
The expectation of a binomial distribution is n ·p, thus we have to solve the inequa-
tion n · p ≥ k ⇒ n ≥ k

p
.

As every communication yields some startup overhead, a filter on more than one
key should be requested at a time. By starting with requesting the filter on 2 keys
and doubling that value until the top k results are determined, the number of keys
requested is at most double of the minimum amount (the worst case would be if
the minimum amount of requested keys is 2i + 1 for some i where this method
would result in requesting 2i+1 keys) while saving most of the startup overhead. As
the minimum number of tuples to filter is k, this can also be used as a starting value.

For a sample application of this algorithm see Section 5.2.2
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5. Application in TPC-H
The TPC-H benchmark [24] is an OLAP benchmark provided by the Transaction
Processing Performance Council (TPC). It provides a Database schema, a data
generation tool, 22 decision support queries and 2 refresh functions. The amount
of data generated can be modified by a scale factor SF , specifying the size of the
uncompressed data in GB. A graphical representation of the schema can be found
in Figure 7.

Orders
SF ∗ 1.5M

Customer
SF ∗ 0.15M

Lineitem
SF ∗ 6M

Nation
25 (replicated)

Region
5 (replicated)

Partsupp
SF ∗ 0.8M

Part
SF ∗ 0.2M

Supplier
SF ∗ 0.01M

Local access (one-to-many)
Remote access (one-to-many)

Figure 7: Partition graph (see Section 4.1) of the TPC-H tables. All tables are
presented with their name, size in million and if the size depends on the
scale factor SF . Transitive relations are not illustrated. Source: [26]

We replicate the Region and Nation tables over all nodes because of their small
size (5 and 25 tuples) and the frequent access on them in the benchmark queries.
Furthermore, for Query 3 (Section 5.2), we make an adjustment to the partition
graph. We do not do this for any other query because it is not needed, however all
other algorithms would still work with the changed partitioning of the tables.



5 Application in TPC-H

5.1. Query 2
Query 2 of the TPC-H benchmark finds for each part of given size and type the
supplier from a given region with the lowest price for that part and returns the top
100 results ordered by the suppliers account balances.

part0.4%
p_size = [SIZE] and
p_type like ’%[TYPE]’

partsupp0.4%20% 0.08%
s_suppkey =
ps_suppkey

p_partkey =
ps_partkey

min. cost supplier
remote join path result

sort

supplier20%

nation20%

region20%

s_nationkey =
n_nationkey

s_nationkey =
n_nationkey

r_name =
’[REGION]’

Figure 8: Joins in Query 2. Tables are illustrated as sets and joins as projections
from one subset into another. Percentages in subsets are ratios in com-
parison to the outermost set. Visualized as presented in [13]

For this query there is a remote join path between partsupp and supp (see Figure 8)
where a communication efficient algorithm is to be used.

Our implementation for Query 2 saves communication volume by joining the two
tables as late as possible, thus not needing to join every tuple in the two tables. It
also utilizes that some information transfered for a semi join can be reused to reduce
communication volume in a later stage of the execution (line (iv)).
(i) Filter all parts by their size and type and find the corresponding suppliers

from the partsupp table
(ii) Send the left supplierkeys (0.4% of the partsupp table) to their corresponding

nodes, filter them by their region and return a bitset for the filter result to the
requesting node

(iii) For each left part find the minimum cost suppliers from the remaining suppliers
using an adapted version of the algorithm from [5]
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5.1 Query 2

(iv) Send a bitset, specifying for each positively filtered supplier whether it is in
the result set or not, to the corresponding nodes

(v) Compute a local result and derive a global result using a global reduce oper-
ation

Doing a late join here is more efficient than distributing a bitset for the entire supplier
table because it can be derived from the specification of the TPC-H Benchmark [24]
that the local filter on p_size and p_type has a selectivity of 1

250 , thus the amount
of data that is communicated for requesting the remote filter on each supplier can
be up to 31 bytes without having a larger communication volume than for the full
bitset (see Section 4.3) and the supplier key is only 4 bytes.
As steps (ii) and (iv) are highly dependent on the size of the tables, we expect this
algorithm to require more time when adding more nodes but keeping the amount of
data on each node.
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5.2. Query 3
Query 3 retrieves the top 10 unshipped orders at a given date with the highest
revenues filtered by the customers market segment.
Figure 9 illustrates the joins and filters done by Query 3 for the default data parti-
tioning of the TPC-H tables.
We implement Query 3 in two different ways. By using another partitioning of some
tables and by evaluating the remote filter lazily.

customer20%
c_mktsegment =
’[SEGMENT]’

remote join path

orders

20% c_custkey =
o_custkey

l_orderkey =
o_orderkey

o_orderdate <
date ’[DATE]’

lineitem

20%

2.5%
0.5%

l_shipdate >
date ’[DATE]’

group, sum, sort
⇒ result

Figure 9: Joins in Query 3. Tables are illustrated as sets and joins as projections
from one subset into another. Percentages in subsets are ratios in com-
parison to the outermost set. Visualized as presented in [13]

5.2.1. Repartitioning

One variant of implementing Query 3 is by repartitioning the orders and lineitems
table to be copartitioned with their corresponding customers. This does not re-
move any copartitioning of the other tables, hence it is possible to execute all other
queries in the same way as they would be executed without the repartitioning. Also
sequential access on subsequent orders is never needed in the TPC-H Benchmark.
After repartitioning the tables, the ten orders with the highest revenue can be deter-
mined locally using the algorithm from [5]. Finally the local results have to used to
find the global top ten orders using a global reduce function. Using this algorithm
the only communication needed is the communication effort for the reduction to a
global result.
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5.2.2. Lazy Evaluation

The second variant for Query 3 uses the lazy top-k filtering algorithm described in
Section 4.3.2 so the query consists of three sub-queries:
(i) Calculate the revenues of all orders filtered by date locally and sort the result

by revenue.
(ii) Filter the top orders until the top ten local results are determined
(iii) Use a global reduce operation to derive the global top ten orders from the local

top ten orders on every node
Using this algorithm every PE only has to communicate to get the filters on expected
50 orders plus the communication needed to reduce the local results to a global result,
i.e. the communication effort is independent from the database size. However, it is
not independent from the number of nodes used as the number of filter results every
node has to retrieve does not change (but is fairly low).
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5.3. Query 21
Query 21 identifies the suppliers form a certain nation who have failed to ship parts
of an order on time where all other suppliers shipped on time and returns the top
100 suppliers with the highest number of delayed shipments. We illustrate the joins
and filters necessary for this query in Figure 10.

orders49%o_orderstatus = ’F’

lineitem

49%

4%

3.4% 0.07%

o_orderkey =
l1.l_orderkey

s_suppkey =
l1.l_suppkey

count

delayed shipp-
ment

remote join path

group
sort ⇒ result

supplier

4%
s_nationkey =
n_nationkey

nation
4%

n_name =
’[NATION]’

Figure 10: Joins in Query 21. Tables are illustrated as sets and joins as projec-
tions from one subset into another. Percentages in subsets are ratios in
comparison to the outermost set. Visualized as presented in [13]

In this query the remote join path between lineitems and suppliers causes a high
communication volume, however we can still save some communication overhead
over naïve solutions. Because in a large cluster with many nodes not every node
holds information for every supplier we can request the required suppliers explicitly
thus only have to communicate a bitset for the suppliers required on a node and
not for the entire suppliers table.
Using this technique our algorithm for Query 21 works like this:
(i) Find the number of delayed shipments for each supplier locally using the

algorithm from [5] without the filter on the suppliers nation
(ii) Request the filter information for the nation key of all suppliers with at least

one delayed shipment from the corresponding nodes
(iii) Return an individual bitset for the requested suppliers to each node
(iv) Send the locally computed number of delayed shipments for suppliers with a

positive filter result to the node holding the corresponding supplier information
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(v) Determine the local top 100 results with the fully aggregated number of delayed
shipments for each supplier

(vi) Reduce the local top 100 to the global top 100 results and completely ma-
terialize the result by requesting the names for the suppliers in the result
set

Note that when sending the partial aggregated number of delayed deliveries in
line (iv) it is not necessary to send the corresponding supplier keys as the receiving
node has the information about which suppliers are going to be sent from lines (ii)
and (iii). Therefore it is important to send the information in lines (ii) and (iv) in
the same order so the receiving node can match pairs of supplier keys and values
belonging together.
To show that evaluating the remote filter condition at this later stage instead of as
the first step (like Weidner [26] did in his work) we use the inequation from Sec-
tion 4.3:
We found the selectivity of the filter conditions that can be evaluated locally em-
pirically. In Figure 10 we can see that see that 3.4% of the orders have a delayed
shipment by a singe supplier and 49% of the orders remain after filtering by the
orderstatus. As these two filters are uncorrelated (which we validated by experi-
ments), the selectivity of the filters that get evaluated locally is 3.4% · 49% ≈ 1.7%.
By solving the inequation we find that the amount of data communicated for re-
questing the filter on each supplier can be up to 7 bytes and even sending the entire
supplier key only takes 4 bytes.
To achieve a communication volume closer to the theoretical minimum both the
requests for filter information and the answered bitsets might be compressed using
Golomb coding [11] in combination with run-lenght- and differential coding.
Just like in Section 5.1, the communication time of this algorithm is highly dependent
on the input size. Also, due to the implementation for step (i) we adopted from
Weidner [26], the local computation time is dependent on the overall table sizes too
even if the amount of data each node holds doesn’t change.
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6. Implementation Details
We implement our algorithms for Queries 2,3 and 21 of the TPC-H benchmark in
a prototype of a distributed main memory column-stored database. We extend the
C++ implementation from Weidner [26] with our algorithms, hence we also use
the MPI implementation OpenMPI for inter node parallelism and Intel TBB for
intra node parallelization. In some cases, i.e. parallelization of simple loops we use
OpenMP for thread parallelism. For efficient communication via MPI we use custom
data types and reduction functions to avoid unnecessary startup overhead for multi-
ple communication rounds. Also, for large alltoall communications we exchange the
OpenMPI implementation with the algorithm from Sanders and Träff [21] which, in
most cases, performs better than the standard implementation for large data sizes
in our experiments.
We also use Weidners extended data generator for in-memory output of the gener-
ated data.
For compression we use our own implementation of Golomb coding [11] using boosts
dynamic_bitset which might lack optimal performance, thus by using more perfor-
mant implementations or other compression algorithms, runtimes might improve by
some degree.
For thread parallel construction of messages to send, we construct each message on
a different thread. This results in adequate runtimes for cases where there are more
messages to construct than hardware threads available. However, if that is not the
case, i.e. small numbers of nodes, there will be idle threads resulting in suboptimal
performance of our implementation.

6.1. Limitations

As we extended the implementation developed by Weidner [26], our prototype still
does not fulfill the requirements of a full database management system (DBMS).
The limitations are the same as in their work (directly adopted):

• No transaction and session handling
• No updates and inserts
• No fault tolerance
• No execution of arbitrary SQL

In particular we translated the queries into C-Code manually, so our implementation
consists of hard-coded execution plans for all three queries.





7. Evaluation

7.1. Experimental environment

We evaluate our algorithms on the Institutscluser II of the Karlsruhe Institute of
Technology at the Steinbruch Centre for Computing. The cluster consists of 400
nodes with two E5-2670 Intel Xeon octa-cores with 2.6 GHz, 8 · 256 KB L2 cache,
20 MB L3 cache and 64 GB of main memory each, connected by an InfiniBand 4X
QDR. For our experiments we use up to 128 nodes as that is the maximum number
of nodes a user can use for a job on the cluster. In a micro benchmark we achieved
a runtime of 0.0405 seconds for an alltoall communication (which is the most used
communication operation in our algorithms) on 128 nodes with 50 MB of data on
each node.
We compiled our implementation using GCC 4.8.2 with optimizations and used
version 1.6.5 of the OpenMPI library.

7.2. Weak scaling experiments

We evaluate our algorithms with two different types of scaling experiments, the first
being the weak scaling experiments, where we increase the number of nodes and
the size of the database simultaneously, i.e. linear. This kind of experiment lets
us evaluate the growth of parallel overhead dependent on the size of the problem.
This gives us an insight on the behavior of the system when scaling it out on more
machines in order to handle larger problems, which is the easiest solution to react
to growing database sizes in a real world scenario.
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Figure 11: Query 2 weak scaling experiment. Runtime and communication time for
different numbers of nodes P and SF = 1000 · P

In Figure 11 we see that our implementation for Query 2 scales well in a weak scaling
experiment. The local part of the execution is independent from the local database
size. Only the remote join path and the global result reduction causes some depen-
dency from the number of nodes and the database size: By adding more nodes and
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increasing the table sizes, the filter results on more suppliers have to be requested
over the network, which is why we see a slight increase in runtime for increasing
numbers of nodes. This additional time needed is mostly caused by communication
to perform the remote join between supplier and partsupp, leading to larger com-
munication volume and also more communication rounds of the Alltoall-algorithm
(from Sanders and Träff) which results in more communication startup overhead.
Additionally for more nodes, some more work has to be done for construction of the
the messages and preparation of the communication.

1 2 4 8 16 32 64 1280

200

400

600

Number of Nodes P

T
im

e
[m

s]

Communication time
Local runtime

Figure 12: Query 3 with lazy filter evaluation weak scaling experiment. Runtime for
different numbers of nodes P and SF = 1000 · P

1 2 4 8 16 32 64 1280

200

400

600

Number of Nodes P

T
im

e
[m

s]

Communication time
Local runtime

Figure 13: Query 3 with repartitioned tables weak scaling experiment. Runtime for
different numbers of nodes P and SF = 1000 · P

Figures 12 and 13 present our weak scaling results for Query 3.
The version with the optimized partitioning of the tables has - as expected - al-
most constant runtime with increasing number of nodes, as the only communication
needed is for the reduction used to determine the global result based on local results.
Also the local calculations are completely independent from the overall table sizes
and no time is used to construct messages or determining which nodes a tuple lies
on because it is known that all tuples needed are located on the same node.
For the version with the lazy filter evaluation, we also see pretty good scaling be-
havior, there is an increase in runtime for large numbers of nodes, which is caused
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7.2 Weak scaling experiments

by the communication needed to evaluate the remote filter. As the number of nodes
increases, there are more nodes to request filter results from resulting in smaller, but
more messages to construct and send. Furthermore every additional node also has to
request for filter results, so both the overall communicated data and the number of
communication rounds increase in the weak scaling experiments. However, as every
node only has to request the filter results on a small (almost) constant amount of
orders, communication doesn’t become a large proportion of the query runtime.
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Figure 14: Query 21 with compression weak scaling experiment. Runtime and com-
munication time for different numbers of nodes P and SF = 1000 · P
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Figure 15: Query 21 without compression weak scaling experiment. Runtime and
communication time for different numbers of nodes P and SF = 1000 ·P

In Figures 14 and 15 we see that Query 21 does not scale as well as the other
queries. This is mainly caused by the implementation of the first step of our algo-
rithm that we adopted from Weidners implementation: Like Weidner, we construct
an array with one entry per supplier in the database on every node. In this array we
store the number of delayed shipments for every supplier. As the array gets larger
with larger scale factors, cache-efficiency decreases drastically, resulting in higher
execution times. Also, the construction of the messages for alltoall communication
becomes more expensive for larger numbers of nodes.
For higher numbers of nodes, the runtime does not increase that fast any more. We
assume the reason for this to be that not every node needs to access every memory
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page of the large array, resulting in the cache efficiency not getting worse anymore.
For scale factor 12 800 on 128 nodes, about 10% of the runtime is used for compres-
sion, so by using more performant compression algorithms, the runtime could be
decreased by a considerable degree.

Table 1: Runtimes and communication times in ms for weak scaling experiments.
SF = 100 · Nodes for Query 3 and Query 21 and SF = 1000 · Nodes for
Query 2.
Nodes Query 2 Query 3 (lazy) Query 21 (compr.)

Overall
runtime

Comm.
time

Overall
runtime

Comm.
time

Overall
runtime

Comm.
time

1 287.90 – 254.19 – 261.84 –
2 315.35 12.43 256.30 0.04 256.70 0.62
4 283.13 10.20 287.56 0.13 504.53 0.91
8 289.77 10.49 295.98 0.40 564.58 2.08
16 310.45 13.25 309.04 0.36 654.53 4.64
32 331.14 20.80 319.05 1.67 619.30 6.03
64 345.26 25.23 328.01 6.14 586.40 10.93
128 367.05 32.41 392.25 20.15 655.15 18.63

Nodes Query 3 (repart.) Query 21 (uncompr.)
Overall
runtime

Comm.
time

Overall
runtime

Comm.
time

1 211.77 – 162.44 –
2 210.54 0.01 262.26 4.89
4 220.53 0.01 504.83 8.38
8 216.77 0.02 647.48 13.97
16 225.31 0.02 733.44 19.44
32 231.74 0.03 715.57 33.22
64 234.36 0.03 674.49 37.62
128 230.38 0.06 713.39 55.88

For better comparison we provide the absolute runtimes and the absolute commu-
nication times in weak scaling experiments for all queries in Table 1.
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7.3 Strong scaling experiments

7.3. Strong scaling experiments

In this section we evaluate our algorithm in strong scaling experiments, where we
increase the number of nodes used to evaluate the queries on a fixed size of the
database. These tests let us observe the overhead yielded by inter-node paralleliza-
tion in our algorithms dependent on the number of nodes. This allows us to study
the impact of using more smaller machines in comparison to using less big machines
to solve fixed problems, which is a critical factor when evaluating costs and benefits
of an investment in a new system.
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Figure 16: Query 2 strong scaling experiment. Efficiency E(P ) = T1/(P · TP ) and
percentage of communication time on the overall runtime for different
numbers of nodes P and SF = 1000. TN is the runtime on N nodes.

In Figure 16 we see that our algorithm for Query 2 keeps high degrees of efficiency
when increasing the number of nodes used on the fixed-sized database. All of the
local computations in the algorithm scale linearly with the size of the database
which gets smaller on every node by adding more nodes. Also the amount of data to
be transferred over the network gets smaller for every node as they hold less data.
From 4 to 32 nodes we even see an efficiency higher than one, which might result
from better cache efficiency. However, the startup overhead for communication gets
higher for larger numbers of nodes while the overall runtime gets lower resulting in
less efficiency for high amounts of nodes. Also the construction of the messages gets
more expensive when more nodes are added to the database cluster.

While we still expect our lazy evaluation algorithm for Query 3 to scale fairly well
in weak scaling experiments, we see a drastic decrease in efficiency with increasing
number of nodes in Figure 17. We see that the numerous communication rounds
make a larger proportion of the runtime as the number of nodes increases getting
to 45% communication on the overall runtime. The reason being that the commu-
nication cost of every node is independent from the size of the input data in this
algorithm, but the overall communication cost is linear in the amount of nodes used
to execute the query as mentioned in Section 5.2.2. So while for other queries, the
communicated volume per node decreases with increasing numbers of nodes, this is
not the case for this algorithm.
In the results of our second implementation we see that, when repartitioning the
tables to allow the join between orders and customer to be performed without any
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Figure 17: Query 3 strong scaling experiment. Efficiency E(P ) = T1/(P · TP ) and
percentage of communication time on the overall runtime for different
numbers of nodes P and SF = 100. TN is the runtime on N nodes.

communication, the scaling behavior is, as expected, exceptionally good and there is
almost no communication taking place. The efficiency even rises above 1, which we
explain by better cache efficiency. For high numbers of nodes, however, we observe
a drastic decrease in efficiency. We assume this to be a result of random variations
as the runtimes here are very low (see Table 2), albeit we did not find a satisfactory
explanation for this behavior. Our exact implementation is just a change of a few
lines of codes from Weidner [26], who also observed similar behavior.
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Figure 18: Query 21 strong scaling experiment. Efficiency E(P ) = T1/(P · TP ) and
percentage of communication time on the overall runtime for different
numbers of nodes P and SF = 100. TN is the runtime on N nodes.

Figure 18 shows our results for our weak scaling experiments of Query 21. We ob-
serve a decrease of efficiency with increasing number of nodes. The reason for this
is again the implementation of the first step of our algorithm (see Section 7.2). As
the array remains the same size for any number of nodes on a fixed sized database,
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we still have to traverse over the entire array which costs a lot of time. Also, for
larger numbers of nodes, communication time increases and local computation time
decreases, leading to a higher relative impact of communication time on the overall
runtime. We also see that for higher numbers of nodes, the uncompressed version
uses less communication time than the compressed version because our compression
algorithms perform better for high amounts of data which is not given when the
database is split among a large number of nodes.

Table 2: Runtimes and communication times in ms for strong scaling experiments.
SF = 100 for Query 3 and Query 21 and SF = 1000 for Query 2.
Nodes Query 2 Query 3 (lazy) Query 21 (compr.)

Overall
runtime

Comm.
time

Overall
runtime

Comm.
time

Overall
runtime

Comm.
time

1 290.20 – 287.93 – 285.88 –
2 157.59 3.27 149.09 0.04 172.03 0.65
4 71.50 1.55 80.02 0.06 143.67 1.14
8 31.21 1.04 50.60 0.18 101.35 1.92
16 14.83 0.66 34.07 0.65 57.29 2.31
32 8.68 0.67 28.77 3.05 39.04 3.51
64 5.25 0.55 34.03 8.96 41.60 7.65
128 4.12 0.86 37.59 17.05 41.53 10.25

Nodes Query 3 (repart.) Query 21 (uncompr.)
Overall
runtime

Comm.
time

Overall
runtime

Comm.
time

1 211.77 – 231.73 –
2 88.25 0.01 174.40 2.33
4 40.46 0.01 146.58 3.09
8 20.37 0.02 109.41 3.14
16 10.92 0.02 70.34 4.32
32 5.90 0.02 47.13 4.51
64 17.68 0.05 39.41 5.49
128 14.08 0.15 33.48 9.40

For better comparison we provide the absolute runtimes and the absolute commu-
nication times in strong scaling experiments for all queries in Table 2.
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7.4. Comparison with other work

We compare our results to the results from Weidner [26] and to the current record
holder of the TPC-H benchmark.
For the comparison to Weidner, we use scale factor 30 000 (30 TB of uncompressed
data) and run our experiments on the same system.
For comparison to official TPC-H results, we chose scale factor 10 000 (10 TB of
uncompressed data) where EXASolution 4.0 is the current record holder, because
there are no comparable clustered results for higher scale factors that we can sup-
port. Their runtimes come from a different system than our experiments are run
on, which has to be taken on account when comparing the results.
They ran the benchmark on 60 Dell Power Edge R710 with 72 GB memory each.
Every node uses two hexa-core Intel Xeon X5690 QC 3.46 GHz and their linking
network is the same as in our cluster.
In order to allow a best possible chance of a fair comparison we also run our ex-
periments on 60 nodes and provide SPECintrate number of the 2006 SPEC bench-
mark [14] like Weidner did in his work.
We provide an overview of the comparison in Table 3. Here we can see that we
have better running times than EXASol by a factor of 11 to 35 and by a factor of
1.5 to 3.2 faster than Weidner, which is still a good speedup considering that those
solutions were already optimized for these special queries of the TPC-H benchmark.

Table 3: Comparison to EXASolution on 60 nodes and scale factor 10 000 and Wei-
dners results on 128 nodes and scale factor 30 000.

SF = 10 000 SF = 30 000

Query We EXASol factor We Weidner factor
in [s] in [s]

2 0.063 1.1 17.5 0.093 – –
3 0.610 6.9 11.3 0.867 2.786 3.2
21 0.869 30.6 35.2 1.501 2.306 1.5
SPECintrate[22] 625 419 0.7 625 625 1.0
Nodes 60 60 1.0 128 128 1.0
Total RAM 3840GB 4320GB 1.1 8192GB 8192GB 1.0

When comparing the scaling behavior for Queries 3 and 21 with Weidners results
(Figure 19), we also notice that our algorithms scale better in weak scaling experi-
ments. While we do not achieve such low runtimes as they do for smaller numbers
of nodes in weak scaling experiments, we have way better behavior with increasing
numbers of nodes. This can be ascribed to the higher communication volume needed
by their algorithms: In Section 5.3 we showed that our algorithm for Query 21 uses
less communication volume than Weidners and the communication volume of our
implementation of Query 3 is not even dependent on the database size but only on
the number of nodes used because every node only needs to communicate an almost
constant amount of data.
For lower numbers of nodes however, our algorithms perform worse than theirs be-
cause we decide the trade-off between local computation time and communication
time in favor of communication time. As the impact of communication time is fairly
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7.4 Comparison with other work

low for low numbers of nodes (or even 0 for 1 node), this does not become beneficial
before a large number of nodes is used for execution. Both Queries (3 and 21) have
to compute local results without the filter on the remote path in our implementation
leading to more work to do. This can be seen best at the execution times for one
node, where Weidner has considerable better running times than we do.
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Figure 19: Comparison to Weidner [26] on weak scaling experiments (SF = 100 ·P ).
Implementations used for comparison: Lazy filter evaluation for Query 3
and compressed version for Query 21.
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8. Conclusion
We showed that communication time is one of the most straitening factors of dis-
tributed query execution and presented solutions to bypass these restrictions as far
as possible.

To get a deeper insight in the current state of the art, we surveyed research papers on
the topics of current database technology, distributed databases and communication
efficiency.
We successfully developed several algorithms to improve communication efficiency
for distributed OLAP query execution and improved the techniques previous work
presented. We analyzed these algorithms by using proven lower bounds on sophis-
ticated group communication primitives and compared our algorithms to those of
previous work. In order to evaluate our algorithms, we analyzed three queries of the
TPC-H benchmark and applied our techniques to solve them. We then implemented
all three queries in a prototype of a distributed in-memory column-stored database
and ran extensive scaling tests on a large cluster with up to 128 nodes on a database
with up to 30 000 GB of uncompressed data (128 000 GB for Query 2).
Our main results are techniques to find better partitionings of tables in a database
and algorithms that exploit common structures of data partitionings and queries
in order to reduce the total communication time used for query execution to a
minimum.
We can see that our algorithms do not require much communication time when
scaling the system out to support larger databases. Furthermore, for two of our
three implemented queries the overall runtime did not increase too much in weak
scaling experiments and at least better than previous work for all three queries. As
the goal of this work was to design algorithms that allow fast execution of queries
in a distributed database to support the increasing amount of data held by todays
companies, we consider this a success.
However, we observe that our implementation lost efficiency in strong scaling ex-
periments for all three queries, thus the amount of machines used for computations
on smaller datasets should not be too big as most of the runtime will be yielded by
parallelization overhead and communication time prevails.

In order to use our algorithms in a productive system, heuristics have to be found to
determine whether our results should be applied or not. For the partitioning of the
tables this can be done by hand because the tables in a database are mostly invariant
and the kinds of queries that are going to be run on the tables are predictable by
some degree. However, the decision whether a remote join path should be evaluated
early or late via a semi-join reduction is not that easy. We provide a proven break-
even point where the communicated data evens out using the selectivity of the
filter conditions that can be evaluated locally. In a real-world environment this
information is usually not easy to calculate. Furthermore, for the overall query
runtime it is not always best to use the solution with the least communication time
because the runtime is also influenced by local calculation time. It can be seen
by comparison of Weidners and our results, that the local calculation time became
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longer by applying the join at a later stage of the query execution. We assume
this to happen in most cases, so the point at which the decision between an early
and a late semi-join reduction is decided should not be the point we showed, where
just communication time would be equal. If the amount for communicated data is
similar for both solutions, the join should rather be solved very early in most cases.
As a result of these conditions, this is not a trivial problem to solve but requires
sophisticated solutions in order to boost query execution time to the best.
The algorithm that evaluates remote filters lazily can be applied without knowledge
of the structure of the data. The decision whether it can be applied or not can be
made entirely by knowledge of the data partitioning and should not be too much of
a problem for a modern database. However, in order to minimize startup overhead
for multiple communication rounds, knowledge of the selectivity of the remote filter
condition can be beneficial and should be used if available.
While most current databases do not do it, it should be fairly easy to detect the
possibility of saving communication volume by using information that was previously
communicated like we described. As the benefits of this techniques can be quite big,
as for example sending just one bit per tuple instead of a full 64 bit key, it should be
used more extensively in order to boost query runtimes without changing too much
of the general execution plan for a query.
Conclusive, we have developed algorithms that behave very well in realistic scaling
scenarios and achieved runtimes faster than current record holders by orders of
magnitudes. Further research has to be done on the techniques to find queries
where our algorithms can be applied in order to integrate them into productive
database systems.
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A. SQL queries
We provide the SQL code for the implemented queries as specified in [24].

A.1. Query 2

Return the first 100 selected rows

SELECT
s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment

FROM
part,
supplier,
partsupp,
nation,
region

WHERE
p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND p_size = [SIZE]
AND p_type like ’%[TYPE]’
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ’[REGION]’
AND ps_supplycost = (

SELECT
MIN(ps_supplycost)

FROM
partsupp, supplier,
nation, region

WHERE p_partkey = ps_partkey
AND s_suppkey = ps_suppkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ’[REGION]’

)
ORDER BY

s_acctbal desc,
n_name,
s_name,
p_partkey;
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A.2. Query 3

Return the first 10 selected rows

SELECT
l_orderkey,
SUM(l_extendedprice*(1-l_discount)) AS revenue,
o_orderdate,
o_shippriority

FROM
customer,
orders,
lineitem

WHERE
c_mktsegment = ’[SEGMENT]’
AND c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND o_orderdate < date ’[DATE]’
AND l_shipdate > date ’[DATE]’

GROUP BY
l_orderkey,
o_orderdate,
o_shippriority

ORDER BY
revenue desc,
o_orderdate;
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A.3. Query 21

Return the first 100 selected rows

SELECT
s_name,
COUNT(*) AS numwait

FROM
supplier,
lineitem l1,
orders,
nation

WHERE
s_suppkey = l1.l_suppkey
AND o_orderkey = l1.l_orderkey
AND o_orderstatus = ’F’
AND l1.l_receiptdate > l1.l_commitdate
AND EXISTS (

SELECT
*

FROM
lineitem l2

WHERE
l2.l_orderkey = l1.l_orderkey
AND l2.l_suppkey <> l1.l_suppkey

)
AND NOT EXISTS (

SELECT
*

FROM
lineitem l3

WHERE
l3.l_orderkey = l1.l_orderkey
AND l3.l_suppkey <> l1.l_suppkey
AND l3.l_receiptdate > l3.l_commitdate

)
AND s_nationkey = n_nationkey
AND n_name = ’[NATION]’

GROUP BY
s_name

ORDER BY
numwait desc,
s_name;
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