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1. Introduction

The problem of computing the maximum flow in a network plays an important role in many
areas of research such as resource scheduling, global optimization and computer vision.
It also arises as a subproblem of other optimization tasks like graph partitioning. While
the existing algorithms all have at least quadratic worst-case time bounds, in practice it is
possible to solve most real-world instances in a reasonable amount of time using modern
algorithms, even those with hundreds of millions of nodes and billions of edges. It is only
natural to ask how we can exploit readily available multi-processor systems to further
decrease the computation time.

While a large part of the previous work has focused on distributed and parallel implemen-
tations of the algorithms used in computer vision, fewer publications address the problem
of finding efficient parallel algorithms to solve the problem on general graphs. Existing
material suggests that it is not an easy task to achieve good speedups over well-optimized
sequential implementations. The proposed algorithms are almost exclusively variations of
the well-known push–relabel algorithm invented by Goldberg and Tarjan in 1988, due to
the localized nature of its primitive operations. However, for efficient implementations,
global heuristics are absolutely necessary.

We examined the current state of art of sequential and parallel maximum flow solvers. To
assess the practical efficiency of existing algorithms, we compiled a number of benchmark
instances, some of which have already been used in related research. We integrated the
algorithm implementations into the “Problem Based Benchmark Suite” maintained by
CMU professor Guy Blelloch et al. Using the information gathered from the evaluation of
these benchmarks, we drew conclusions about what techniques work well in the context of
maximum flow, in particular for large, sparse graphs. We identified some problems with
existing parallel implementations and tried to solve them.

With these preparations, we proceeded to design and implement our own shared memory-
based parallel algorithm for the maximum flow problem. We built our design on the
push–relabel based family of algorithms, which turned out to be an overall good method
in the sequential case.

We adapted the optimization techniques that we found to be effective earlier to the paral-
lel case. We assessed the performance of our implementation by comparing it to existing
max-flow solvers using the assembled benchmark suite. A comparison of different config-
urations of our algorithm also allowed us to determine the effectiveness of the individual
optimizations and heuristics in the parallel case.
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3. Preliminaries

Let G = (V,E, c) be a graph with vertices V , directed edges E ⊆ V ×V and a cost function
c : E → N0. By convention we will use n to denote the number of vertices in a graph and
m to denote the number of edges when it is clear from the context which graph we are
referring to. We will further assume that for each (v, w) ∈ E, we also have (w, v) ∈ E.
This does not restrict generality, because we can just set zero capacities for all the edges
that are not in the original graph. Let further s, t ∈ V be two distinguished vertices in
the graph, called the source and sink, respectively.

A flow in the graph G with regard to source s and sink t is a function f : E → N0 that
fulfills two constraints:

• capacity constraint : For all edges (v, w) ∈ E, we have f(v, w) ≤ c(v, w)

• flow conservation constraint : For all vertices v ∈ V \ {s, t}, we have

∑
(u,v)∈E

f(u, v) =
∑

(v,w)∈E

f(v, w)

The value of a flow f is the cumulative flow on source-adjacent edges:

|f | :=
∑

(s,w)∈E

f(s, w)

Due to the flow conservation property, we also have

|f | =
∑

(v,t)∈E

f(v, t)

The maximum flow problem is the problem of finding a flow f that maximizes |f |.

The residual graph Gf of G with regard to a flow f is the graph Gf := (V,Ef ) consisting
of non-saturated edges:

Ef := {(v, w) ∈ E | cf (v, w)},
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6 3. Preliminaries

where the residual capacity of an edge is defined as:

cf (v, w) := c(v, w)− f(v, w) + f(w, v)

An augmenting path is a path in Gf from s to t.

An s-t cut in the graph G is a partition (S, V \ S) of the graph with s ∈ S, t /∈ S. The
capacity c(S) of an s-t cut (S, S \ V ) is defined as the cumulative capacity of edges that
leave the set S:

c(S) :=
∑

(v,w)∈E
v∈S
w/∈S

c(v, w)

A minimum s-t cut is one that minimizes c(S) and the minimum cut problem is the
problem of finding such a cut.

3.1 Important Theorems

Let G = (V,E) be a graph. Let f be a flow in G with regard to source s and sink t.

Theorem 3.1.1 (Ford–Fulkerson) f is a maximum flow iif there is no augmenting path
in Gf .

Proof Can be found in [FF62, §5, Corollary 5.2].

Theorem 3.1.2 (Max-Flow Min-Cut) Let S be the set of vertices reachable from s in
Gf . Then (S, V \ S) is a minimum s-t cut iif f is a maximum flow. In that case we also
have c(S) = |f |.

Proof Can be found in [FF62, §5].

The latter theorem gives a simple reduction from the s-t minimum cut problem to the
maximum flow problem. The reverse reduction is not as straightforward, there is no
simple way known to reconstruct a valid flow function from merely an s-t cut in the graph.
If one is only interested in the value of the flow, then obviously solving the minimum cut
problem is sufficient.

3.2 Algorithms for the Maximum Flow Problem

There are two main families of maximum flow algorithms that play a role in the context
of this work.

6



3.2. Algorithms for the Maximum Flow Problem 7

3.2.1 Augmenting Path-Based Algorithms

This family of algorithms makes direct use of Theorem 3.1.1: While there are augmenting
paths in the residual graph, these algorithms find such a path and increase the flow along
the path as much as possible. The following pseudocode shows a high-level overview of
the algorithm.

1 AugmentingPathMaxFlow(G = (V, E), c, s, t):
2 initialize f ≡ 0
3 while ∃ augmenting path P = (s = p0, p1, . . . , pk−1, pk = t) with non−zero capacity:

4 ∆ := mink−1
i=0 cf (pi, pi+1)

5 for i := 0 to k − 1:
6 cf (pi, pi+1) −= ∆
7 cf (pi+1, pi) += ∆
8 return f

If a depth-first search is used to implement line 3 of the above algorithm, we get the
Ford–Fulkerson algorithm. An augmenting path can be found in O(m) and every iteration
increases the flow value by at least one. The total runtime is thus bounded by O(m · F )
where F is the maximum flow value of the graph.

A polynomial-time version called the Edmonds–Karp algorithm uses breadth-first search
to find an augmenting path in each iteration that has the smallest number of edges. With
this small modification the number of iterations can be bounded by O(nm), thus yielding
a total time complexity of O(nm2).

One of the most efficient augmenting path algorithms is Dinic’s algorithm [Din06]: It
makes use of the concept of blocking flows to speed up the search for augmenting paths
and achieves a runtime of O(n2m) on general graphs and O(m ·min(n

2
3 ,
√
m)) if all the

edge capacities are zero or one. For graphs arising from bipartite matching problems, it
achieves an O(m

√
n) bound.

Another very prominent algorithm family falls under this category: [BK04] present a new
augmenting path-based algorithm that they showed to outperform existing algorithms for
the special application of global energy minimization in computer vision. The graphs typ-
ically found in this context have a very particular, undirected grid structure, representing
adjacency of pixels in a 2- or 3-dimensional computer image. The goal here is to find
a global minimum s-t cut, after connecting both source and sink to certain subsets of
vertices.

Their algorithm, which is referred to in subsequent publications as the BK algorithm,
named after its inventors, grows two spanning trees from source and sink concurrently. At
some point the trees intersect and an augmenting path is found. The edges on the path
are saturated, causing some vertices to become disconnected from their respective trees.
The key idea now is to reuse as much as possible from the original trees, by trying to
reconnect the disconnected orphan subtrees via newly found paths to one of the two trees.
Now they continue to grow until a new augmenting path is found.

Curiously, because the algorithm does not augment on shortest paths, no strongly poly-
nomial bound could be established for the runtime of the algorithm as of today. Still it
performs remarkably well on real-world image instances and is still the algorithm of choice
in the computer vision community. [GHK+11] propose a modification of the algorithm
that maintains valid breadth-first trees and thus enjoys the same bounds as the above
mentioned Edmonds–Karp algorithm. It is called incremental breadth-first search (IBFS)
and has been shown to achieve performance comparable to and often better than BK.

7



8 3. Preliminaries

3.2.2 Preflow-Based Algorithms

A notable family of maximum flow algorithms that is often used in practice is based on
Goldberg and Tarjan’s push–relabel algorithm [GT88], named after the two key operations
it uses. In contrast to traditional augmentation-based solutions, this algorithm does not
maintain a balanced flow during its execution, but merely a preflow.

A preflow is a function f : E → N0 that obeys the edge capacities but might not be strictly
balanced (it might violate flow conservation). Instead it maintains the following, weaker
invariant for all vertices v ∈ V \ {s, t}:

∑
(u,v)∈E

f(u, v) ≥
∑

(v,w)∈E

f(v, w)

In other words, the cumulative flow on ingoing edges is allowed to exceed the cumulative
flow on outgoing edges of a vertex. We call the (non-negative) difference between the left
and right hand side of the inequality the excess of the vertex v, denoted by e(v).

The basic push–relabel algorithm starts by saturating all source-adjacent edges, i.e. setting
f(s, v) = c(s, v) for all (s, v) ∈ E. The set of adjacent vertices will end up with positive
excess. Such vertices are called active. The algorithm then proceeds to transfer the excess
flow towards the sink via a series of push operations:

1 Push(v, w):
2 ∆ := min(e(v), cf (v, w))
3 cf (v, w) −= ∆
4 cf (w, v) += ∆

Pushes obviously preserve the preflow property of f . To ensure that as much excess flow
as possible will reach the sink, the algorithm maintains distance labels d : V → N0. The
distance label of a vertex v represents a lower bound on the distance dist(v, t) in the
residual graph with regard to the number of non-zero capacity edges one has to traverse
to get from v to t. More precisely, the invariant d(t) = 0 and d(v) ≤ d(w)+1 is maintained
for all residual edges (v, w) ∈ Ef with v 6= s. The label of the source vertex has the fixed
value d(s) = n. Any vertex v from which the sink can be reached in the residual graph
will have d(v) < n because n− 1 is the maximum length of a shortest path.

Excess can only ever pushed from a higher-label vertex to a lower-label vertex if their
labels differ by exactly one. A residual edge (v, w) ∈ Ef is thus admissible for a push if
and only if v is active, d(v) = d(w) + 1 and cf (v, w) > 0.

An active vertex without outgoing admissible edges has to be relabeled to maintain the
label invariant. The associated primitive looks like follows:

1 // precondition: e(v) > 0 and there is no admissible edge (v, w) ∈ Ef

2 Relabel(v):
3 d(v) := min

(v,w)∈Ef
cf (v,w)>0

d(w) + 1

The relabel operation maintains the label invariant. The complete push–relabel algorithm
in pseudocode looks like this:

1 PushRelabel(G = (V, E), c, s, t) :
2 d(v) := 0 for all s 6= v ∈ V
3 d(s) := n
4 f(s ,v) := c(s ,v) for all (s, v) ∈ E
5 f(v,w) := 0 for all other edges (v, w) ∈ E

8



3.2. Algorithms for the Maximum Flow Problem 9

6 while ∃ active vertex v ∈ V \ {s, t} :
7 while e(v) > 0:
8 for all edges (v, w) ∈ Ef , while e(v) > 0:
9 // admissibility check

10 if cf (v, w) > 0 and d(v) = d(w) + 1:
11 Push(v,w)
12 if e(v) > 0:
13 // v is still active , needs to be relabeled
14 Relabel(v)

The inner loop started at line 7 is called a discharge of the vertex v. A series of push and
relabel operations is applied until the vertex is no longer active.

In this basic formulation, with arbitrary vertices selected in line 6, we can already prove
a runtime bound of O(n2m), provided that all the operations can be implemented in
constant time. The latter is easily possible using an adjacency list representation of the
graph, with explicit reverse edges.

3.2.2.1 Selection Strategies and Global Heuristics

Two common selection rules yield a better asymptotic complexity:

• With the FIFO selection rule, the active vertices are maintained in a first-in first-out
queue: the front vertex is always selected in line 6. If a new vertex gets activated
during a push, it is appended to the back of the queue. This rule results in an O(n3)
runtime bound, which is asymptotically better than the basic algorithm for dense
graphs.

• With the highest label selection rule, one of the vertices with maximal distance label
among all the active vertices is selected in line 6. This yields an O(n2√m) runtime,
which is again an asymptotic improvement over FIFO selection since m ∈ O(n2).

[GT88] also describe how dynamic tree data structures can be used to speed up the algo-

rithm, achieving a runtime bound of O(nm · log n2

m ).

It has to be noted that the worst case bounds do not necessarily reflect the actual behaviour
of the algorithm on real-world graph instances. Previous work has shown that on a lot of
important graph families, the algorithm scales almost linearly in the size of the graph if
additional global heuristics are employed. Our experiments confirm this.

One such heuristic is already mentioned in [GT88] without a specific name and called
global relabling or global update in subsequent literature. With this addition, a reverse
breadth-first search from the sink is initiated regularly to set every vertex label to the
exact distance of the sink from that vertex.

If we are only interested in the minimum cut of the graph, rather than the complete flow
function of maximum value, we can employ another heuristic that was proposed by [DM89]
(amongst others) and works especially well in conjunction with highest-label selection: The
key observation is the fact that if at any point during the execution of the algorithm there
exists a label k such that d(v) 6= k for all vertices v, we can conclude that there exists no
residual edge (v, w) ∈ Ef with d(v) > k and d(w) < k. This is a direct consequence of the
label invariant d(v) ≤ d(w) + 1 ∀(v, w) ∈ Ef .

In particular, this means that there can be no residual path from a vertex above label k
to a vertex below label k. For this reason, none of the vertices above label k will ever be
able to push their excess flow to the sink, which has label zero. We are thus free to simply
remove all the vertices v with d(v) > k from the graph and not consider them during the

9



10 3. Preliminaries

remaining execution of the algorithm. A label k with the above mentioned property is
called a gap and the resulting heuristic called a gap heuristic.

Of course with this modification of the algorithm, the final flow assignment is only valid
in the sink partition of the resulting cut. Flow conservation might be violated in the
source partition. It has been shown in [CG97] that gap heuristics do not give a significant
speedup in conjunction with FIFO selection and global relabeling in most cases. They are
however very effective when combined with highest-label selection. The authors also give
an informal explanation of this behaviour.

3.2.3 Notable Implementations

The current state of generic maximum flow solvers is established by at least two open-
source implementations of preflow-based algorithms that were repeatedly used as a com-
parison in previous research:

• The first one is the HIPR program published by Andrew Goldberg at http://www.
avglab.com/andrew/soft.html. It is an improved version of the H PRF algorithm
variant described in [CG97].

It uses highest-label selection in conjunction with global relabeling and gap heuris-
tics. After a maximum preflow is determined (i.e. a preflow where the sink is not
reachable from any of the active vertices), a second stage employs a greedy flow
decomposition algorithm to reconstruct a complete flow assignment, if needed. Note
that to determine the maximum flow value and even to find a minimum cut, a
maximum preflow assignment is sufficient.

• The second one is an implementation of the more recent pseudoflow algorithm pre-
sented first by [Hoc08]. It can be obtained from http://riot.ieor.berkeley.edu/

Applications/Pseudoflow/maxflow.html. We will call it HPF in the remainder
of this document. During its execution, flow conservation is weakened in both di-
rections: Vertices are also allowed to have deficit, which occurs when the cumulative
outflow exceeds the inflow. It uses an advanced data structure to maintain a forest
of groups of vertices with same-sign flow balance. [CH09] formulate the algorithm
in terms of preflows, to highlight the differences to the push–relabel method.

The published implementation includes several variants, including a version with
highest-label selection and gap heuristics. A global relabeling heuristic is not needed
for efficiency. Just as HIPR, it also only finds a maximum preflow in the first
execution stage and then uses a greedy algorithm to reconstruct the complete flow
function if necessary.

10
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4. Related Work

As already shown by [GSS82], the problem to find the value of a maximum flow is
P-complete. This suggests that there is likely no inherent way to split the problem into
subproblems that can be solved independently. Still in practice several approaches have
been explored that aim to speed up flow and cut computations on parallel and distributed
computer architectures.

[Sib97] present an overview over previous research results regarding the maximum flow
problem in the PRAM model. For most of these approaches, we do not feel that they are
likely to yield practical implementations that are able to solve the kind of large, sparse
graphs found in many real-world applications today. Often they rely on adjacency matrix
representations that are out of the question for the type of graphs we are interested in.

Existing work is generally split into two categories: Most of the algorithms that work well
for the type of grid graphs found in computer vision tend to be inferior for other graph
families and vice versa. We will consider these categories separately.

4.1 Minimum Cut Algorithms for Computer Vision Applica-
tions

[FHM10] provide an overview and comparison of different sequential approaches to solve
large vision instances. The results indicate that both the BK algorithm and HPF perform
reasonably well for the types of problems, while a standard push–relabel implementation
does noticably worse in most cases (often around a factor of two).

[VB12] likewise compare different sequential implementations, including HPF, different
push–relabel variants, BK and the newer IBFS algorithm. IBFS and HPF outperform BK
in some of the benchmarks, often by a significant margin. In the cases where BK proved
superior, IBFS and HPF were not nearly as far behind.

After the publication of [BK04], several attempts have been made to utilize the readily
available parallel computing power found in modern processing units.

[DB08] present one of the first attempts to specifically design an algorithm that is both
able to solve common vision instances efficiently and scalable in nature. They achieve this
by exploiting the grid structure of the graphs involved to derive an efficient partitioning
scheme. An algorithm called region push–relabel is described that solves a sequence of

11



12 4. Related Work

maximum flow subproblems in the different regions of the graph. Independent subproblems
can be solved simultaneously by using parallel or distributed processors.

A second positive effect of this approach is that not all of the graph has to be kept in main
memory during the entire execution of the algorithm. Instead, the different regions can be
swapped in and out on demand in an efficient manner, without the thrashing effect that is
common for previous algorithms with disadvantageous memory locality. Their experiments
verify near-linear speedup for up to eight processing cores on the tested instances.

[LS10b] present a parallel variant of the BK algorithm that is reported to give almost
linear speedups over the original version with up to four processing cores on a multi-core
Intel machine.

[SK10] choose an exotic approach: They use a formulation of the minimum cut problem
as a linear program. The dual of the resulting linear program is decomposed into multiple
parts by partitioning the graph. The resulting subproblems are largely independent and
solved using a BK variant. Dependencies are resolved by performing a series of iterations
called sweeps. The experiments presented in paper indicate good speedups on different
graph families. However, [SH13] note that the heuristics used to solve the real-valued max-
flow instances arising during the construction are not guaranteed to terminate. In practice,
for some larger instances the algorithm did not terminate after a reasonable amount of
sweeps during their experiments. Furthermore, [SH13] note that the construction does
not seem to work well with more than two partitions. For their experiments they test two
and four regions and their results indicate that the speedup between two and four is not
as good as would be expected.

[SH13] themselves present significant improvements to the region push relabel algorithm
by [DB08]. In particular, augmenting path-based algorithms are used to solve the max-
flow subproblems found in the separate regions. It also adds various improvements to
several aspects of the algorithm, such as the partitioning scheme used and the scheduling
strategy.

Judging from the benchmark results found in the various papers, we consider the imple-
mentations presented in [SH13] and [LS10b] to be the state of the art in parallel minimum
cut algorithms in computer vision today, with the latter probably being superior in most
cases if the instance fits into memory.

4.2 Generic Maximum Flow Algorithms

Research regarding parallel maximum flow or minimum cut algorithms for general graphs
seems to be less active and the contributions are less recent than those for vision-specific
instances.

Interestingly, almost all of the existing work has been based on the push–relabel family
of algorithms. This is by no means coincidence: For one thing, the well-known HIPR im-
plementation seems to be one of the fastest publicly available maximum flow solvers, only
challenged by the more recent HPF implementation. But there is also a fundamental, dis-
tinct advantage of push–relabel algorithms over augmenting-path based algorithms when
it comes to parallelization: While multiple augmenting paths can be found concurrently,
the tasks of saturating the different paths are not independent. For this reason it seems
to be hard to design a good parallel path-augmenting algorithm. The push and relabel
operations on the other hand are inherently local and mostly independent.

In the original push–relabel paper, [GT88] already mention a parallel version of their algo-
rithm for the PRAM model. In this synchronous formulation, the algorithm proceeds in a

12



4.2. Generic Maximum Flow Algorithms 13

series of pulses in which all the active vertices are processed in parallel and relabeled once if
necessary. We are not aware of an actual implementation of this straightforward algorithm,
so we chose it as the base of our first prototype. Surprisingly, with the addition of parallel
global relabeling, it does remarkably well on our benchmark graphs (see subsection 5.2.5).

[AS95] is perhaps the first successful attempt at designing and implementing an efficient,
practical algorithm to solve maximum flow in parallel. It essentially uses a global queue of
active vertices to approximate the FIFO selection order of the basic push–relabel algorithm.
There is a hardcoded number of threads that fetch vertices from the queue and discharge
them completely, adding newly activated vertices to the queue as they go along. The
algorithm works in an asynchronous manner, resolving shared access to vertices using
locking. The authors report speedups over a sequential FIFO push–relabel implementation
of up to factor 7 with 16 processors, on a 1995 computer architecture.

This implementation is also the first to include a concurrent version of global relabeling
that works in parallel to the asynchronous processing of active vertices. For that to work,
some extra information about the global relabeling state needs to be maintained inside
the vertex data structure. We will call this technique concurrent global relabeling below.

[JW98] propose a distributed implemenentation of push–relabel, which partitions the graph
using breadth-first search and uses ideas similar to those found in [DB08] to solve the global
problem in a series of passes where the partitions are independently solved using the HIPR
solver.

[BS06] improve upon [AS95] by providing the first parallel algorithm that approximates
the highest-label selection order found in the HIPR implementation. The algorithm is also
asynchronous in nature and work-stealing priority queues are used to avoid the contention
introduced by a globally shared queue. The authors also report significant speedups by
using a concurrent gap heuristic. We were unable to grasp the workings of that mechanism
however, please refer to subsection 5.2.4 for details.

[Hon08] propose an asynchronous implementation that completely removes the need for
locking. Instead it makes use of atomic read–update–write operations readily available in
modern processors. The basic algorithm does not incorporate global relabeling, which we
know to be essential for a good performance on real-world graphs.

[HH10] extend the algorithm described in [Hon08] by global relabeling, a CUDA-based
GPU implementation and dynamic switching between the different modes (GPU parallel
and CPU sequential). They observe speedups of up to factor 2 over HIPR using an
eight-core GPU, on rather small graphs with vertex and edge counts in the order of few
millions. What’s notable is that the global relabeling scheme used is sequential and not
executed concurrently with the rest of the algorithm. Also, for working sets below a
certain threshold, where the overhead of copying memory to and from the GPU would be
too high, HIPR is used instead of a parallel CPU-based implementation. We think that
both of these decisions inhibit the potential speedup significantly.

[HH11] present the first efficient CPU-based implementation of [Hon08], including the
concurrent global relabeling proposed by [AS95], along with an experimental evaluation.
They report good speedups over a FIFO push–relabel implementation due to Goldberg,
but no speedup over HIPR. We will show later in this document however that the FIFO-
based approach seems to do better for a lot of real-world graphs. An implementation
of [AS95] is also compared to their algorithm and scales worse on a lot of graphs due to
locking overhead, as expected.

The authors also experimented with a version of the algorithm that does not necessarily
obey the rule that excess can only be pushed between vertices with labels differing by at
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most one. Instead the changed semantics here allow excess to be pushed to any vertex
with a lower label. This modification is reported to decrease the runtime by as much as
50% in some cases.

Galois [PMLP+11] is a framework to make it easier to write parallel algorithms, by pro-
viding a high-level library of common data structures and execution patterns. It ex-
ploits data-parallelism inherent in the problem structure to achieve speedup. As one of
the many examples, it contains a FIFO-like push–relabel implementation, described at
http://iss.ices.utexas.edu/?p=projects/galois/benchmarks/preflow_push. The
website claims that it incorporates global relabeling and a gap heuristic, although only
the former is actually implemented in the shipped source code.

Pmaxflow [SO13] is an open-source parallel FIFO-like push–relabel implementation. It
does not use the concurrent global relabeling proposed by [AS95] and instead regularly
runs a parallel breadth-first search on all processors.

[HYW11] choose a totally different approach, providing an implementation of the tra-
ditional Ford–Fulkerson augmenting path algorithm on top of MapReduce [DG08]. The
result is a distributed algorithm to solve maximum flow problems on large graphs such as
social networks or the internet. It employs several optimizations similar to those used in
the BK algorithm, such as bidirectional search and reusing partial residual paths. Their
results indicate that the algorithm scales within a constant factor of the BFS algorithm
built into the MapReduce framework, which is impressive. Still we do not feel that for the
scenario we are mainly interested in, when the graphs fit into main memory, this approach
will lead to the kind of speedup we are hoping for.

The way we understand it, [BS06] and [HH11] can be considered the current state of the
art with regard to asynchronous, parallel maximum flow algorithms for general graphs.
[HYW11] seems to be the only viable distributed algorithm as of today.
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5. Algorithms for the Maximum Flow
Problem

5.1 Max-Flow/Min-Cut Applications and our Test Suite

The best known maximum flow algorithms all have at least complexity Ω(nm) and the algo-
rithms used in practice usually have almost cubic worst-case runtime behaviour Ω(n2√m)
or worse. Nevertheless, optimized solvers with global heuristics, like HIPR and the newer
HPF have proven themselves in practice, making it possible to solve maximum flow prob-
lems even on very large graph families with near-linear runtime asymptotics.

Our ultimate goal is to speed up costly maximum flow computation on large graphs for
real-world applications, so our first course of action was to try and identify the key scenarios
where flow and cut problems occur in practice.

5.1.1 Minimum Cuts in Computer Vision

In computer vision, a lot of different problems reduce to minimum cut: This includes
the obvious image segmentation problem, where one wants to optimize some property of
the border between two partitions of the image, but also more complex applications like
multi-view reconstruction, where multiple 2D views of an object need to be matched to
form a 3D representation of the object. There are various other examples, which we will
not go into here because computer vision is not the main focus of our interest. Instead
we refer to [FHM13, Section 3.2] for an overview over the standard benchmark collection
from the Computer Vision Research Group of the University of Western Ontario and to
[VB12] for references to more recent applications.

The graphs are typically represented implicitly, with vertexes representing pixels and edges
connecting pixels that are adjacent to each other in the original image.

5.1.2 Graph Partitioning with Flows and Cuts

[SS11] describe a local search technique for the graph partitioning problem (stated in the
paper) that is based on minimum cuts. Specifically, the adaptive flow iterations method
applies a series of minimum cut computations to improve a two-partition of the graph
under the restrictions of the partitioning problem. The balanced adaptive flow iterations
tactic uses the residual network after a minimum cut is found to optimize the balance of the
cut in each iteration. The algorithm uses a multi-layered approach, resulting in different
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graphs with decreasing number of vertices, representing hierarchies of vertex sets. Graphs
of higher hierarchies contain fewer vertices and have larger edge capacities, representing
the number of edges between two sets of vertices.

The algorithm described in the paper is implemented by the KaHIP (Karlsruhe High
Quality Partitioning) program [SS13] maintained by Christian Schulz, when used with
one of the configurations Strong or Eco.

Conveniently, the KaHIP website at http://algo2.iti.kit.edu/documents/kahip/ pro-
vides a comprehensive selection of flow graphs for research purposes which we will use as
part of our test suite. According to the author, KaHIP uses HIPR internally to solve the
arising flow subproblems.

5.1.3 Analysis of Social Networks and Web Graphs

[FLG00] describe a minimum cut-based approach to identify communities in the web. A
community is a set of sites that have more links to members of the community than to
the rest of the web.

They propose a cut-based approach to find the community around an initial set (seed) of
known members: Essentially, all links are bidirected by introducing a reverse edge if none
exists. Unit capacities (edge capacities of value one) are assigned to the now undirected
edges. The seed vertices are connected to a newly introduced super-source via edges of
infinite capacity. A well-connected, known non-member site is used as the sink. The source
partition of a minimum cut in the resulting graph are used as the community around the
seed.

[STKA07] propose a similar approach to identify spam sites in the web. They observe that
spam sites link to non-spam sites a lot while the reverse is rarely the case. Therefore the
connectivity of “good” sites to spam sites is small and a minimum cut algorithm can be
applied to identify new spam sites based on a smaller set of known spam sites: A super-
source is connected to a known set of good sites via edges of capacity infinity. The seed set
of spam sites is connected to a super-sink, again via infinite-capacity edges. The authors
show that the sink partition of a minimum cut in the graph constructed in this manner
tends to contain almost only spam sites. One can imagine that the same technique can be
applied on similar types of graphs, such as social networks which tend to be very large as
well.

[YKGF06] make the observation that a sybil attack on a decentralized communication
network exhibits a structure that can be detected using minimum cut techniques: In this
attack scenario, a single user acquires multiple identities and pretends to be multiple,
distinct nodes, thus increasing their voting power inside the network illegitimately. The
authors observe that while it is often reasonably easy to obtain new identities, it is harder
to establish trust relationships to honest users. Thus the graph cut induced by a rogue
user’s fake identities tends to have a small value and such cuts can be found using maximum
flow techniques.

It has been shown that the graphs particularly interesting in these scenarios, social net-
works and the web, expose certain common characteristics, in particular“small-worldness”.
We say a graph exhibits a small-world structure if the length of the shortest path between
a pair of vertices in the graph tends to be small. [HYW11] refer to a comprehensive col-
lection of references that observe this property for different types of graphs, such as the
web, social networks and document graphs from Wikipedia. In the context of parallel
max-flow, small-worldness is a desirable property because such graphs tend to have short
augmenting paths, leading to fewer dependencies between the applicable operations. Also,
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in almost all cases, the relevant graphs are sparse, with average vertex degrees ranging in
the order of dozens to hundreds.

5.1.4 The Test Suite

Interestingly, when comparing maximum flow algorithms, most references that do not
specifically target computer vision applications use problem families from the twenty-
year-old first DIMACS implementation challenge [JM93] for experimental evaluation.

Examples of papers that use these graph families more or less exclusively are [AS95],
[CG97], [JW98], [BS06], [CH09], [Gol09], [HH10] and [HH11]. Please note that these in-
clude the evaluations of HIPR, HPF and of almost all of the algorithms described in sec-
tion 4.2, except for [HYW11], which uses the Facebook graph with multiple billions of
edges. We ask whether these experiments really justify the dominance of HIPR for the
graphs modern research is interested in. Our test suite tries to cover at least a subset
of the original graph families from the DIMACS challenge as a control, but also aims to
include graphs from the real-world applications we mentioned above.

Since a lot of work has already been published in the context of computer vision ap-
plications, our main focus lies on non-vision instances. We will use the following graph
families:

• As a control, two instances from the from the DIMACS max-flow challenge:

– RMF-Wide is reported by [Gol09] to be the hardest of the DIMACS graph
families for modern push–relabel algorithms. It also happens to be the in-
stance family with the lowest speedup for Anderson’s parallel algorithm [AS95].
[HH11] also seems to struggle on this family, doing worse then HIPR even with
24 processors.

The instances are generated by the genrmf program, using an algorithm due to
[GG87]: The program takes as its input four integers a, b, c1, c2 and creates a
graph consisting of b square grids (called frames) of size a×a each. Each vertex
is connected to its four grid neighbors. Furthermore, the vertices in frame i are
connected one-to-one with the vertices in frame i+1. The permutation between
the vertices is chosen randomly. Capacities between vertices inside the same
frame are set to c2 · a2, the other edge capacities are set to integers randomly
sampled from the range [c1, c2]. The source is a corner of the first frame, the
sink is the opposite corner of the last frame.

For the wide family, we choose some integer x and use b = 2x and a = b2 as
the parameters for the program, along with c1 = 0 and c2 = 104. For our
experiments, we used x = 4, resulting in the graph genrmf wide 4, with 220

vertices and around five times as many edges.

– Washington-RLG-Wide is an easy family of random level graphs generated by
the washington program. It constructs a grid of a rows of b vertices each where
every vertex is connected to three randomly chosen vertices in the next row.
The source is connected to all the vertices in the first row and all the vertices
in the last row are connected to the sink. All edge capacities are randomly
sampled from the range [1, 104].

For the RLG-Wide family, we have 64 rows of 2x vertices each. We use x = 16
in our experiments, resulting in the graph washington rlg wide 16 with 222

vertices and about three times as many edges.
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During the execution of a push–relabel algorithm on this graph family, there
tend to be a lot of active vertices and low contention, which is very favorable for
parallel implementations. We use it as an example of best-case input in terms
of self-relative speedup.

• KaHIP instances from different graph partitioning applications:

These instances were provided by the maintainer Christian Schulz. Some of them are
available at the KaHIP web page http://algo2.iti.kit.edu/documents/kahip/.
The problem here is to partition a graph into two parts with a small number of
crossing edges, while maintaining a certain balance between the partition sizes (the
exact value of the ε parameter is varying from case to case and chosen so that
approximately half of the original graph remains in the flow problem). Graphs from
the 10th DIMACS implementation challenge about graph partitioning [BMSW13] are
used as inputs. A multi-layered approach is applied, with the solution from higher
hierarchies being used as the initial solution for the next smaller hierarchy. The
initial solution is then improved using the method adaptive flow iterations described
briefly above. At this point flow instances arise.

The instances share a number of common characteristics, such as small capacities
and the fact that both source and sink have a large degree. We chose some of the
largest graphs and graph families for our experiments:

– delaunay is a family of graphs representing the Delaunay triangulations of
randomly generated sets of points in the plane. Instance sizes range up to
billions of edges. We included the first hierarchy for each graph, which has
edge capacities of one. We also included the fourth hierarchy of the large
delaunay 28 graph, which features larger edge capacities (between 1 and 31).

– rgg is a family of random geometric graphs generated from a set of random
points in the unit square. Points are connected via an edge if their distance is
smaller than 0.55 · lnn

n . Instance sizes again range into the order of billions of
edges. We included the first hierarchy of each graph.

– europe.osm is the largest amongst a set of street map graphs. It has about
50 million vertices and edges, representing the largest connected component in
the European street network provided by the OpenStreetMap project [HW08].

– nlpkkt240 is the graph interpretation of a large sparse matrix arising in non-
linear optimization. It has 27 million vertices and 373 million edges.

– grid is based on a regular, eight-connected grid graph. We included the graph
representing the fourth partitioning hierarchy of a large grid.

• A manually created benchmark instance for spam detection in the Internet:

We used the construction described in [STKA07] to implement a min-cut based spam
detection in a web graph. [MVLB14] provide a hyperlink graph extracted from a
comprehensive web crawl performed as part of the Common Crawl project in 2012.
The version of the graph that considers a set of web pages with the same top-level
domain as one vertex is called pay level domain graph or pld, as we will refer to it.
To this graph, we added a super-source and super-sink, connected to a seed set of
non-spam and spam sites, respectively. For the “good” seed we used the top list of
Internet sites provided by Quantcast and available at https://www.quantcast.com/
top-sites. For the “spam” seed we used a spam blacklist obtained from joewein.de
LLC, at http://www.joewein.de/sw/blacklist.htm. We created two versions of
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the resulting network, called pld spam 100 and pld spam 5000, with seed sizes
100 and 5000, respectively.

Since social networks and the web share a lot of common characteristics, we be-
lieve that this benchmark is representative of the more general class of community
detection algorithms based on minimum cuts.

• A 3D segmentation instance from computer vision: For completeness, we also in-
cluded BL06-camel-lrg, an instance of multi-view reconstruction. It is part of the
vision benchmark suite of the University of Western Ontario, located at
http://vision.csd.uwo.ca/data/maxflow/

We do not expect to do be able to do particularly well with our push–relabel-based
approaches on this graph, seeing as multiple sources, including [VB12], report poor
performance of both HIPR and F PRF on such instances.

5.2 Experiences with Existing Algorithms and Implementa-
tions

5.2.1 Sequential Competition

To establish a base line and get an initial idea of the performance of different approaches,
we executed the test suite on a few different sequential solvers:

• HPF, obtained from http://riot.ieor.berkeley.edu/Applications/Pseudoflow/

maxflow.html. We used the pseudo fifo variant because it seems to be the overall
fastest of the alternatives.

• HIPR, due to Goldberg and obtained from http://www.avglab.com/andrew/soft.

html. Details about the workings of both HPF and HIPR can be found in subsec-
tion 3.2.3.

• F PRF, also available from http://www.avglab.com/andrew/soft.html, a simple
FIFO-based push–relabel implementation.

• The push–relabel example included in the dtree library written and maintained
by David Eisenstat and available at http://www.davideisenstat.com/dtree/. It
serves as an example of an implementation using dynamic trees, which in theory has
better asymptotic bounds than all the other implementations. The example reimple-
ments HIPR in two different variants, with dynamic trees and without. The version
without dynamic trees is competitive with Goldberg’s implementation according to
the author, which we confirmed in preliminary experiments.

The sequential timings can be found in Table 7.2. Perhaps surprisingly, F PRF shows
superiour performance compared to HIPR although it uses a suboptiomal graph represen-
tation, except for the DIMACS instances where HIPR does in fact do significantly better,
as expected. We can also see that HPF has the best overall performance, but performs
significantly more than twice as good as F PRF only in a few cases, including the selected
DIMACS challenges and the computer vision instance. It performs worse than F PRF in
the spam detection benchmarks.

Both of these observations are very good news from a parallelization standpoint: FIFO
selection is much easier to approximate in a parallel setting than highest-label selection.
Also, it seems likely that the complexity of HPF is not necessary to get good performance
on real-world, non-vision graphs.
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5.2.2 Galois

We obtained the Galois framework from http://iss.ices.utexas.edu/?p=projects/

galois/benchmarks/preflow_push in version 2.2.1 and were somewhat disappointed by
the included push–relabel implementation. It uses FIFO selection and a global relabeling
amortization scheme that tries to mimick the one used by HIPR for comparison purposes.

Even in the smallest of our test suite instance, the program did not terminate at all with
one or more threads. We assume that it infinitely loops due to some unforseen pattern
of active vertices. [Hon08] and [SO13] both demonstrate that it is non-trivial to get the
invariants right for an asynchronous implementation and we could not identify any attempt
at solving the correctness challenges described and solved in those papers in the Galois
source code.

To get an idea of the performance in the case of termination, we had to use another graph
instance. On randLocalGraph 5 500000, a test graph from the PBBS, we were able to
compute the correct flow value using the Galois program.

However, with one thread the program took 20 seconds to find a maximum preflow, while
F PRF uses a very similar algorithm (push–relabel with FIFO selection and global rela-
beling) and finished in under a second. The run time did improve to 12 seconds with two
threads, but beyond that we could not get any speedup. We know from other experiments
with similar algorithms that the graph has a lot of active vertices at every point during
the execution of the algorithm, so the Galois implementation is clearly not optimal. We
conjecture that the speculative execution model with rollbacks induces a lot of overhead
that makes the approach unfeasible for the application of maximum flow.

5.2.3 Anderson et al.’s Algorithm

[AS95] propose an asynchronous parallel algorithm for the maximum flow problem, based
on the push–relabel approach. Shared access to vertices is resolved using locks, and an
approximate FIFO order of active vertices is maintained using a sophisticated queue data
structure, with local queues for fast access and an global queue for work distribution.

It introduces a concurrent global relabeling scheme that can run in a dedicated thread.
Every vertex stores additional information about it’s relabeling state and the push oper-
ation is modified to take this into consideration to prevent pushes that would violate the
distance invariant.

We are not aware of a publicly available existing implementation of the algorithm for
experimenting. We have tried to come up with an efficient implementation ourselves,
based on TBB’s work-stealing queues and spinlocks, but performance was bad.

We have done some experiments with Pmaxflow, a solver which uses similar ideas but a
slightly different implementation. It is available at https://code.google.com/p/pmaxflow/
and [SO13] describe the approach and implementation. The most notable difference is that
it does not use the concurrent global relabeling scheme. Instead it regularly runs a parallel
breadth-first search to restore exact labels. The results were not very encouraging: In the
cases we tested (including europe.osm and the delaunay family), the sequential perfor-
mance was worse even than that of F PRF. With two threads we never saw more than
a 20% decrease in runtime and with four threads it was always slower than with one. In
some random runs it did not finish at all. The fact that we could not achieve any speedup
indicates that maybe we used the tool improperly, but how to fix this is beyond us. We
feel that Pmaxflow is not a particularly good implementation overall, especially because it
uses a global queue, which obviously experiences a lot of contention for the push–relabel
algorithm, where a vertex discharge is a very cheap operation.
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It might be worth looking at a modern, optimized implementation of the original [AS95]
or the lock-free [HH11] algorithm, which uses slightly different semantics, and compare
them to our synchronized implementations, described later in this work. We believe that
for small graphs, they have an inherent advantage because they can utilize the available
parallelism well when only a small number of vertices is active. [AS95] reports speedup
even with as few as hundreds of active vertices, while our algorithm usually needs ten times
more than that to be efficient (please refer to subsection 7.1.7 for details). It remains to be
seen whether this is reproducible on modern architectures where cache coherency overhead
and lock contention might be a bigger factor than on 1995 systems.

5.2.4 Bader et al.’s Algorithm

Since the main contribution of [BS06] over [AS95] is the use of a priority queue instead of
a FIFO queue to approximate the highest-label selection heuristic used by HIPR, we do
not consider it to be a good candidate for our purposes, seeing as HIPR itself performs
worse than F PRF on our test suite, which uses FIFO-based selection.

One other key contribution of the paper is their implementation of the gap heuristic:
According to the description and the pseudocode, the algorithm maintains a global counter
for every possible label from 0 to n − 1. Whenever a counter is decreased to zero, a gap
has occured and the algorithm stores the gap label in a global variable. Vertices above
the gap are then lazily removed the next time they are relabeled.

We see a fundamental correctness problem here: It can happen that after a gap is found, a
vertex legitimately gets relabeled from below the gap to above the gap. In such a case, the
algorithm described in [BS06] would remove that vertex the next time it gets relabeled,
which is incorrect.

Unfortunately the authors were unable to provide us with the implementation they used
for their final experiments, so we could neither verify the problem or examine the means
by which the algorithm avoids it. Our proposed solution would be to keep a list of gaps,
ordered by their detection time. If we store the current length of the list in each vertex
after every relabel operation, we can look up the gaps that have been found since the last
relabeling of a vertex. This approach would definitely increase the work necessary for the
gap heuristic significantly, which makes it harder to achieve absolute speedup over a good
sequential implementation that naturally does not have to deal with this issue.

5.2.5 Goldberg et al.’s Algorithm

[GT88] already mention a basic synchronized, deterministic version of the FIFO-based
push–relabel algorithm. It proceeds in a series of pulses, each of which consists of four
phases.

1. phase 1 : All the edges of the graph are tested for admissibility in parallel. Flow
is pushed in parallel from active vertices along the admissible edges. However, the
excess of the receiving vertices is not immediately increased. Instead the changes
are applied to copies of the memory locations representing the vertex excesses.

2. phase 2 : The new labels of all the vertices that are still active get computed in
parallel (but not yet applied).

3. phase 3 : The new labels are applied in parallel.

4. phase 4 : The excess changes recorded in phase 1 get applied.
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The algorithm terminates as soon as there are no longer any active vertices. Interestingly,
we are not aware of any straightforward implementation of this very simple algorithm,
so we implemented our own. We made a series of addition to bring it up to date with
techniques found in modern push–relabel implementations:

• An amortization scheme is used to trigger global relabeling after a certain amount
of work has been performed during the pulses. We use the same scheme as the one
used by HIPR for comparison purposes.

• The active vertices are maintained in an array, so that in each pulse only the active
vertices are actually considered. Newly discovered vertices and vertices that still have
excess after phase 1 are stored locally inside an array associated with each vertex.
Duplicate additions are avoided through atomic test-and-set instructions. At the
end of a pulse all the still active and newly activated vertices are concatenated to
form the new working set array.

• A very similar algorithm is used to implement parallel global relabeling: A standard
parallel breadth-first search is performed by processing the graph layer by layer.
Test-and-set is used here as well to prevent duplicate discoveries.

5.2.5.1 Pseudocode

In the following pseudocode and in future sections as well we will use parallel list compre-
hensions of the form [ f (x) | x ← A, P(x) ] where f is a function, A is an array and P is a
predicate. The result is a new array B consisting of the values of the function f applied
to all the elements in A that fulfill the predicate P . Parallel list comprehensions can be
implemented using other parallel primitives such as map, which maps a function over an
array and filter, which filters an array using a predicate.

Figure 5.1 shows a pseudocode representation of Goldberg et al.’s algorithm, which uses
the subroutine shown in Figure 5.2 for global relabeling.

5.2.5.2 Implementation

We integrated PRSyncDet into the Problem Based Benchmark Suite (PBBS) [SBF+12]
maintained by professor Guy Blelloch et al. from Carnegie-Mellon University in Pitts-
burgh, PA. It is available at http://www.cs.cmu.edu/~pbbs/.

The benchmark suite provides an comprehensive and highly-tuned library for parallel
primitives like prefix sums, map, filter and semi-group reducers. It also includes random
graph generators that we used a lot for prototyping. PBBS is built to work with both
Cilk and OpenMP, two C++ language extensions to simplify parallel programming. As
our main compiler we used G++ 4.8, which supports both extensions.

Cilk uses a thread pool and together with a work-stealing scheduler. It allows the explicit
generation of tasks using the cilk spawn primitive that allows the developer to call a function
asynchronously. cilk sync allows a function to explicitly wait for all the asynchronous tasks
it has spawned to finish before execution is continued. A parallel loop implementation
is provided by cilk for , allowing iteration over a range of integers in parallel. This is
implemented in a divide-and-conquer fashion: The range is split until it reaches a certain
granularity. For each resulting subrange, a task is created. Since cilk for internally uses
the cilk spawn primitive, nested parallelism is well-supported.

The only OpenMP feature we used is a parallel for loop, similar to cilk for . The OpenMP
implementation included in G++ uses a static loop scheduling algorithm that assumes the
loop iterations to be reasonably balanced. In the case where this works, it seems to induce
much less overhead than the Cilk approach, so we used it for most of our implementations.
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1 // Input: G = (V, E), c, s, t
2 PRSyncDet():
3 for all vertices v ∈ V in parallel :
4 d(v) := 0
5 e(v) := 0
6 v.addedExcess := 0
7 v.isDiscovered := 0
8 d(s) := n
9 f(v,w) := 0 for all edges (v, w) ∈ E in parallel

10 // initially saturate all source−adjacent edges
11 for each edge (s, v) ∈ E in parallel :
12 f(s ,v) := c(s ,v)
13 e(v) := c(s ,v)
14 workingSet := [ v | (s , v) ← E, e(v) > 0 ]
15 while workingSet 6= ∅:
16 if first pulse or work threshold for global update is exceeded:
17 GlobalRelabel()
18 // Label n means that the sink is not reachable from a vertex.
19 // Global relabeling might have identified such vertices
20 workingSet = [ v | v ← workingSet, d(v) < n ]
21

22 for each v ∈ workingSet in parallel : // phase 1 (push)
23 v.discoveredVertices := []
24 for each residual edge (v, w) ∈ Ef :
25 if e(v) = 0: // vertex is already discharged completely
26 break
27 if d(v) = d(w) + 1 and cf (v, w) > 0: // edge is admissible
28 ∆ := min(cf (v, w), e(v))
29 f(v,w) += ∆
30 e(v) −= ∆
31 w.addedExcess += ∆ // atomic fetch−and−add
32 if w 6= sink and TestAndSet(w.isDiscovered):
33 v.discoveredVertices .pushBack(w)
34

35 for each v ∈ workingSet in parallel : // phase 2 ( relabel )
36 if e(v) > 0: // relabel still active vertex
37 v.newLabel := n
38 for each edge (v, w) ∈ Ef with cf (v, w) > 0:
39 v.newLabel := min(v.newLabel, d(w))
40 if TestAndSet(v.isDiscovered):
41 v.discoveredVertices .pushBack(v)
42 else:
43 v.newLabel := d(v)
44

45 // phase 3 (apply new labels) + phase 4.1 (apply excess changes for old working set)
46 for each v ∈ workingSet in parallel :
47 d(v) := v.newLabel
48 e(v) += v.addedExcess
49 v.addedExcess := 0
50 v.isDiscovered := 0
51

52 // Build the new working set. The concatenation can be implemented using parallel prefix sums
53 // to find for every list the offset in the final array
54 workingSet := Concat([ v.discoveredVertices | v ← workingSet ])
55 // We filter out vertices of distance n, those are unreachable from the sink in the reverse
56 // residual graph.
57 workingSet = [ v | v ← workingSet, d(v) < n ]
58

59 for each v ∈ workingSet in parallel : // phase 4.2 (apply excess for new working set)
60 e(v) += v.addedExcess
61 v.addedExcess := 0
62 v.isDiscovered := 0

Figure 5.1: Pseudocode implementation of Goldberg et al.’s parallel maximum flow
algorithm
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1 GlobalRelabel():
2 d(v) := n for all v ∈ V in parallel
3 d(t) := 0
4 Q := [t]
5 while Q 6= ∅:
6 for each v ∈ Q in parallel :
7 v.discoveredVertices := []
8 for each edge (v, w) ∈ Ef with w 6= s and cf (v, w) > 0:
9 // this branch must be implemented atomically using compare−and−swap

10 if w 6= t and d(w) = n:
11 d(w) := d(v) + 1
12 v.discoveredVertices .pushBack(w)
13 // concatenation again in parallel , see above
14 Q := Concat([ v.discoveredVertices | v ← Q ])

Figure 5.2: Simple global relabeling implementation

5.2.5.3 What we Learned

• The amortization scheme to trigger global relabeling used by HIPR is not optimal,
because it does not consider the work performed by global relabeling. It might
seem like global relabeling does the same amount of work every time it runs (linear
in the number of vertices and edges), but that is not the case. In fact the actual
work can vary noticably between the runs, depending on the size of the residual
subgraph induced by the sink. In a parallel context the effect is even more apparent,
because the available parallelism might differ between the normal execution and
global relabeling.

In our experiments, the overall performance was better with an introspective scheme
that ensures a certain fraction of the total runtime being spent during global rela-
beling, relative to the total time. The optimal fraction for most of our test instances
was between 1

3 and 1
2 . The timings reported here will however use the deterministic

HIPR amortization scheme.

• Initially we thought it would be trivially possible to combine phases 1 and 2 into one,
increasing the amount of work per vertex and avoiding one synchronization point.
However, as it turns out, the separation is crucial if one wants to keep deterministic
behaviour, since the residual capacity of “uphill” edges is dependent on the push
phase of the higher of the two adjacent vertices. In chapter 6 we describe our design
of a non-deterministic algorithm that works around this issue.

• We experimented with different ways to avoid the separation between phases 1 and 4.
One obvious variation is to apply the excess changes directly in phase 1, eliminating
phase 4 entirely. This introduces non-determinism and decreases the number of
pulses in some cases, but increases it in others. We also tried to combine this with
presorting the working set of vertices by decreasing label, in an attempt to get as
much excess as possible towards the sink in every pulse.

Both modifications did not have as significant of an effect as we had hoped for, so
for consistency, we sticked with the original, deterministic version when collecting
the timings.

• The algorithm can be implemented completely without atomic operations, by record-
ing excess changes induced by every vertex and assigning those in a second pass.
However, we found that since the number of pushes is much lower than the number
of edge scans, the contention is low on the excess values associated with the vertices.
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On the Intel platform we used for testing, a fetch-and-add does not have any overhead
if there is no contention, so it can be used to synchronize access to these memory
locations rather efficiently. This turned out to be more efficient than to record the
pushes and group them by target vertex in an additional phase.

• The Cilk language extension is not ideal for this algorithm. It shines when there is
a number of reasonably large, possibly imbalanced tasks to be performed. OpenMP
does much better for loops with less parallelism, a predictable balancing and little
work per iteration, the situation found in most of our test instances. The one ex-
ception to this is the pld spam family, where there is a lot of parallelism in every
pulse. The Cilk scheduler can provide very good load balancing in this scenario and
outperforms OpenMP.

• The admissible edge data structure used by HIPR – essentially just a pointer to the
first edge not known to be admissible or inadmissible – is only marginally useful.
The situation where it is effective is when a vertex gets discharged completely and
not relabelled at all, but this is less likely to happen for low-degree vertices with
small capacities, as often encountered in practice (and in our test suite).

• We experimented with different implementations of parallel breadth-first search such
as PBFS by [LS10a], which uses the bag data structure. We were not able to achieve
overall significantly faster results with those.

• Parallelization on an edge level does not yield good results. One reason for this
is that vertex degrees are usually low on average. Also, nested parallelism is not
handled gracefully by either Cilk or OpenMP. Cilk supports it but uses the same
range splitting threshold even if there is already a lot of tasks created by outer loops.
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6. A Semi-Synchronous Push–Relabel
Algorithm with Parallel Discharge

While PRSyncDet already worked surprisingly well in practice, the restriction that only
one relabel operation can be performed per vertex and pulse is problematic. We conjec-
tured that this might have at least two negative consequences:

• The possible parallelism is restricted: A low-degree vertex can only activate so many
other vertices before getting relabelled. It would be preferrable to completely dis-
charge a vertex in one pulse. What’s more, the analysis of the FIFO selection rule
assumes a complete discharge of a vertex before the next vertex is processed, so the
theoretical bound of O(n3) does not hold for our implementation, but the amount
of edge scans did not differ significantly between PRSyncDet and F PRF in our
experiments.

• The per-vertex work is small. This puts an upper bound on the effective speedup
because the mechanisms needed to implement the parallelism induce a certain over-
head which is harder to amortize if the total amount of work is not particularly high.
This is especially a problem if there are not a lot of active vertices to begin with,
which is often the case towards the end of the algorithm’s execution.

We soon realized that in order to achieve multiple relabels per vertex in one pulse, it
would not be possible to stick with the requirement of determinism. The interleaving of
relabel operations influences the outcome and makes it necessary to synchronize access to
the edges that are shared by two active vertices. We implemented two variants:

• PRSyncNondetMutex uses spinlocks to synchronize access to edges shared between
active vertices. Figure 6.1 shows a pseudocode representation of the algorithm.

• PRSyncNondetWin uses a different approach: The algorithm works on copies d′ of
the distance labels, so that the original labels can still be read. When looking for
admissible edges (v, w) ∈ Ef , the old label of w is considered, while the current label
of v is used. The admissibility condition becomes d′(v) = d(w) + 1. For an edge
(v, w) ∈ E where both v and w are active, a winning criterion determines which one
of two the adjacent vertices can push along the edge in the next pulse: v wins the
competition if d(v) < d(w)− 1 or d(v) = d(w) + 1 or v < w (the latter condition is
a tie-breaker in the case where d(v) = d(w)).

Figure 6.2 shows a pseudocode representation of the algorithm.
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1 // Input: G = (V, E), c, s, t
2 PRSyncNondetMutex():
3 // initialization and saturation of source−adjacent edges as in PRSyncDet Figure 5.1
4 while true:
5 if first pulse
6 or work threshold for global update is exceeded
7 or workingSet = ∅
8 GlobalRelabel() // implementation shown in Figure 5.2
9

10 workingSet = [ v | v ← workingSet, d(v) < n and e(v) > 0 ]
11 if workingSet = ∅:
12 break
13

14 for each v ∈ workingSet in parallel :
15 v.discoveredVertices := []
16 if TestAndSet(v.isDiscovered):
17 v.discoveredVertices .pushBack(v)
18 while e(v) > 0:
19 newLabel := n
20 for each residual edge (v, w) ∈ Ef :
21 if e(v) = 0: // vertex is already discharged completely
22 break
23 ∆ := 0
24 if d(v) = d(w) + 1 and cf (v, w) > 0: // edge is admissible
25 with mutex for undirected edge {v,w}:
26 ∆ := min(cf (v, w), e(v))
27 f(v,w) += ∆
28 if ∆ > 0:
29 e(v) −= ∆ // atomic fetch−and−add
30 e(w) += ∆ // atomic fetch−and−add
31 if w 6= t and TestAndSet(w.isDiscovered):
32 v.discoveredVertices .pushBack(w)
33 if cf (v, w) > 0 , %and d(w) ≥ d(v):
34 newLabel := min(newLabel, d(w) + 1)
35 if e(v) = 0:
36 break
37 d(v) := newLabel
38 if d(v) = n:
39 break
40

41 workingSet := Concat([ v.discoveredVertices | v ← workingSet ])
42 for each v ∈ workingSet in parallel :
43 v.isDiscovered := 0

Figure 6.1: Pseudocode implementation of PRSyncNondetMutex

Due to deliberate race conditions, both algorithms do not maintain correct labels at all
times. Since for a good performance of the algorithm correct labels are crucial, we address
this issue by running global relabeling more often. We also run a global relabeling phase
if the working set becomes empty, to ensure correctness.

6.1 Implementation

As with the PRSyncDet algorithm variant, we integrated PRSyncNondet* into the Prob-
lem Based Benchmark Suite (PBBS) [SBF+12] maintained by professor Guy Blelloch et
al. from Carnegie-Mellon University in Pittsburgh, PA.

The included library provides the necessary primitives to implement the algorithms in
a straightforward manner. We used OpenMP for parallel iteration and TBB’s spinlock
implementation (tbb::spin mutex) for the mutexes used by PRSyncNondetMutex.
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1 // Input: G = (V, E), c, s, t
2 PRSyncNondetWin():
3 // initialization and saturation of source−adjacent edges as in PRSyncDet Figure 5.1
4 while true:
5 if first pulse
6 or work threshold for global update is exceeded
7 or workingSet = ∅
8 GlobalRelabel() // implementation shown in Figure 5.2
9 workingSet = [ v | v ← workingSet, d(v) < n ]

10

11 if workingSet = ∅:
12 break
13

14 for each v ∈ workingSet in parallel :
15 v.discoveredVertices := []
16 d’(v) := d(v)
17 e := e(v) // local copy
18 while e > 0:
19 newLabel := n
20 skipped := 0
21 for each residual edge (v, w) ∈ Ef :
22 if e = 0: // vertex is already discharged completely
23 break
24 admissible := (d’(v) = d(w) + 1)
25 if e(w): // is the edge shared between two active vertices ?
26 win := d(v) = d(w) + 1 or d(v) < d(w) − 1 or (d(v) = d(w) and v < w)
27 if admissible and not win:
28 skipped := 1
29 continue // skip to next residual edge
30 if admissible and cf (v, w) > 0: // edge is admissible
31 ∆ := min(cf (v, w), e(v))
32 f(v,w) += ∆
33 e −= ∆
34 w.addedExcess += ∆ // atomic fetch−and−add
35 if w 6= t and TestAndSet(w.isDiscovered):
36 v.discoveredVertices .pushBack(w)
37 if cf (v, w) > 0 and d(w) \geq d’(v):
38 newLabel := min(newLabel, d(w) + 1)
39 if e = 0 or skipped:
40 break
41 d’(v) := newLabel
42 if d’(v) = n:
43 break
44 v.addedExcess := e − e(v)
45 if e’(v) and TestAndSet(v.isDiscovered):
46 v.discoveredVertices .pushBack(v)
47

48 for each v ∈ workingSet in parallel :
49 d(v) := d’(v)
50 e(v) += v.addedExcess
51 v.addedExcess := 0
52 v.isDiscovered := 0
53

54 workingSet := Concat([ v.discoveredVertices | v ← workingSet ])
55 workingSet = [ v | v ← workingSet, d(v) < n ]
56

57 for each v ∈ workingSet in parallel :
58 e(v) += v.addedExcess
59 v.addedExcess := 0
60 v.isDiscovered := 0

Figure 6.2: Pseudocode implementation of PRSyncNondetWin
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6.2 Unresolved Issues

It seems that PRSyncNondetMutex is not correct in its current form. Similar to the Galois
implementation (which coincidently uses a similar algorithm), it does not terminate on all
instances we tested. We are not sure whether this is due to an implementation bug or a
more fundamental problem. Our experiments on other graphs show that it does a similar
amount of edge scans as the PRSyncDet implementation. However, it does not scale nearly
as well with the number of threads (only up to a self-relative speedup of 2 to 3) and the
timings vary a lot due to mutex contention.

We instead tried to incorporate the vertex-based locking known from [AS95] with similar
results (non-termination in some cases and disappointing timings in other cases). Based
on this lack of success, we decided to not persue the idea further and did not bring the
version up to a state where it could be included in the final evaluation.

6.3 Techniques to Increase Parallelism

For the proposed parallel push–relabel implementations, the available parallelism (i.e. the
average size of the working set) is partly dependent on the number of non-saturating
pushes the algorithm makes. The reason for that is that the less excess is pushed across
an edge, the more is left on the source vertex to activate other vertices.

Unfortunately in networks with small capacities, which constitute the vast majority of
graphs in our test suite, most pushes are saturating, so the observation is not helpful in
this case. Of course for other graphs, it might be useful to investigate techniques that help
increase the number of non-saturating pushes.

6.3.1 Excess Scaling

[AO89] describe an O(nm+ n2 logU) approach to the maximum flow problem, where the
edge capacities are integers bounded by U . In the case of unit capacities, this yields an
O(nm) algorithm.

The idea is to maintain an excess upper bound ∆ = 2k such that ∆ ≥ e(v) for all vertices
v. Only active vertices with an excess value between ∆

2 and ∆ are considered. For an edge
(v, w) ∈ Ef , the maximum amount of flow that can be pushed across the edge from v to
w is ∆− e(w). At some point all the vertices will have e(v) ≤ ∆

2 . If that happens, we set
∆ := ∆

2 and continue.

We implemented this technique in PRSyncNondetWin, but with a slight modification: We
do process active vertices v with an excess e(v) < ∆

2 , because otherwise we would give up
a lot of the parallelism we have available.

Unfortunately, experiments showed that while the parallelism was increased a bit by this
technique in randomly generated graphs with large edge capacities, the algorithm per-
formed more work overall (more pulses and edge scans) and there was no observable
speedup overall.

6.3.2 Two-Level Pushes

Inspired by the push two layers (P2L) push–relabel variant presented by [Gol09], we
implemented a simple heuristic to counter a problematic case where flow is pushed back
and forth between two vertices. By maintaining the sum of outgoing residual capacities of
each vertex, we can compute an upper bound on the flow pushed along an edge (v, w) ∈ Ef

with w 6= t:
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∑
(w,x)∈Ef

x6=v

c(w, x) =

 ∑
(w,x)∈Ef

c(w, x)

− c(x,w)

If more than this amount of flow is pushed along the edge, some of it will necessarily return
to v at a later point of the algorithm’s execution. If at most this amount is pushed, it can
certainly be pushed on to a third vertex x 6= v.

We also added a modification timestamp to each edge to ensure that flow is pushed to the
neighbor from which flow was received the least recently, to prevent pushing flow back to
where it came from.

In most of our experiments this optimization had no effect at all because the problematic
cases never occurred. This leads us to believe that it is not very useful for a large class of
real-world graphs (including those in our test suite) that tend to be very easy to solve.

6.4 A Word about Gap Heuristics

In both PRSyncDet and an earlier modification of it similar to PRSyncNondetWin, we
implemented contention-free gap heuristics. In both cases, while gaps occured occasionally,
the overhead of finding them was not offset by the time savings due to removed vertices,
and the total runtime was increased in all the tested cases (which did not cover the whole
test suite).

This is a bit different from the sequential case, where gap heuristics also do not have
a great effect when combined with FIFO selection and global relabeling, but where the
cost of finding them is smaller and thus overall the performance can be improved slightly,
according to [CG97].
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7. Experimental Evaluation

7.1 Test Setup

7.1.1 The Hardware

All of the timings presented in this work were collected on a NUMA Intel machine, to
which I was generously provided access by the research group around CMU professor
Guy Blelloch. It hosts four Xeon E7-8870 at 2.40GHz per core, making for a total of 40
physical cores and 80 logical cores with hyperthreading. Every processor has 64 GiB of
RAM associated with it, for a total of 256 GiB. Due to the nature of the architecture, the
memory bank of the processor where a thread is currently running at has a lower latency
and higher bandwidth than the other three banks.

The scheduling of allocations is left to the operating system, but in the case of multi-
threaded timings we force a certain pattern: Large blocks of memory, such as arrays, are
allocated in a striped fashion: The pages are allocated on all four banks alternatingly. In
our experiments this helped to get much more consistent timings because the allocation is
deterministic, although this approach slightly penalizes executions on less than four cores,
which should be kept in mind when interpreting the results. The differences are marginal
from what we’ve seen.

7.1.2 Graph Representations and Comparability

When comparing different algorithms, we tried to use internal representations of the graph
as similar as possible to each other. For simplicity, we used 64-bit integers for vertex and
edge indices as well as capacities.

The most widely employed representation of the graph in memory seems to be adjacency
lists. Outgoing edges for a single vertex are stored contiguously in memory, allowing for
cache-efficient scans. Only if the flow on an edge is actually changed, the reverse edge
needs to be looked up (via a pointer in the original edge) and modified as well.

One additional optimization is described by [BS06]: Along with the own residual capacity,
every edge also stores the residual capacity of its reverse. This speeds up reverse breadth-
first searches in the residual network, such as the one employed by the global relabeling
heuristic. We used this optimization by default for all our own implementations and added
it to HIPR as well for fairness.
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When timing max-flow algorithms, we usually only measure the time needed to compute
a minimum cut, which in the case of preflow–push based implementations is the time
to compute a maximum preflow (that is, a preflow with no augmenting path from any
active vertex to the sink). The time needed to read the graph from disk and build up the
internal representation is not included. As mentioned earlier, both HIPR and HPF use a
flow decomposition algorithm to compute the actual flow on each edge only in a second
stage. However, for almost all of our real-world test graphs, only the minimum cut is of
interest, which can already be reconstructed from the result of the first stage.

One exception is the graph partitioning application: To employ the balanced adaptive
flow iterations method, the actual flow function is needed. In our experiments with the
KaHIP instances, HIPR only spent a very small fraction of its total runtime (usually well
below 2%) on the second stage. Simply using HIPR’s second stage on top of any other
implementation of the first stage is thus a reasonable option in practice. We did not
attempt to parallelize the second stage, which could be non-trivial seeing as it is based on
a modified depth-first search.

In every experiment we verified the correctness of the resulting flow value manually. In the
case of HIPR, HPF and our own implementations, we also enabled routines that verify the
maximality of the final computed flow or preflow function via an augmenting-path search.

7.1.3 The Competition

The different algorithms we ran our test suite on are named as follows:

• hipr is the sequential HIPR program in its default configuration, with the GLOB REL FREQ
set to 0.5. The parameter regulates the frequency in which global relabelings are run
(a higher value means a higher frequency). We modified it to use 64-bit integers and
the reverse residual capacity cache optimization mentioned above. It was strictly
faster than HIPR in all the cases we checked, but only by a small margin.

• hipr3.0 is hipr with GLOB REL FREQ set to 3.0.

• hpf is the sequential pseudo fifo variant of HPF. We modified it the same way as
HIPR.

• f prf is the sequential F PRF in its default configuration. We modified it to work
with 64-bit integers, but unfortunately it uses a suboptimal internal graph represen-
tation using linked lists instead of arrays, so the runtime could probably be improved
by a noticable constant factor (up to 20–30% by our estimation). It also uses a differ-
ent (and worse) method of determining when to run a global relabeling, but we took
it as it is just to demonstrate the surprising point that FIFO-based vertex selection
can easily outperform highest-label selection on most of the graphs in our test suite.

• dtree is David Eisenstat’s sequential dynamic tree-based push–relabel implementa-
tion. We modified it to use 64-bit integers.

• PRSyncDet is an implementation of the algorithm described in subsection 5.2.5,
with GLOB REL FREQ set to 3.0. This value yielded overall good results for our
test suite.

• PRSyncNondetWin is an implementation of the algorithm described in chapter 6,
with GLOB REL FREQ set to 3.0.

For more details about the sequential implementations and their respective sources, please
refer to subsection 5.2.1.
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graph name num. vertices num. edges max. capacity

genrmf wide 4 1,048,576 5,160,960 10000
washington rlg wide 16 4,194,306 12,517,376 30000
delaunay 24 10,066,330 60,378,613 1
delaunay 25 20,132,660 120,768,109 1
delaunay 26 40,265,322 241,552,557 1
delaunay 27 80,530,640 483,126,599 1
delaunay 28 161,061,274 966,286,764 1
delaunay 28 hier4 17,290,574 100,463,233 31
rgg 24 10,066,332 159,076,553 1
rgg 25 20,132,661 331,386,145 1
rgg 26 40,265,320 689,424,569 1
rgg 27 80,530,639 1,431,907,505 1
grid 28 hier4 11,754,212 47,006,759 4
europe.osm 15,273,606 32,521,077 1
nlpkkt240 8,398,082 222,847,493 1
pld spam 100 42,889,802 623,056,513 1
pld spam 5000 42,889,802 623,066,313 1
BL06-camel-lrg 18,900,002 93,749,846 16000

Table 7.1: Properties of our benchmark graph instances. The maximum edge capacity is
excluding source or sink adjacent edges

7.1.4 The Benchmarks

The different graph families in our test suite have been described in detail in subsec-
tion 5.1.4. Table 7.1 lists the graphs with their precise vertex and edge counts.

7.1.5 Testing methodology

We ran every solver multiple times on every instance, each time measuring the time to find
a maximum preflow after the graph representation has been built up in memory. For the
deterministic algorithm variants hipr, hpf, f prf, dtree and PRSyncDet, we averaged
the timings over at least three different runs. For PRSyncNondet, we performed at least
five runs because the variance is higher due to a non-deterministic number of pulses.

7.1.6 Results

A comprehensive matrix of all the sequential test results can be found in Table 7.2. As
mentioned above, HPF seems to be the overall best performer, but PRSyncDet with
one thread often achieves timings within a factor of two. Exceptions are the DIMACS
graphs, the vision instance and the three smallest KaHIP instances. On the spam detection
benchmarks, HPF is outperformed by the others.

We chose the global relabeling frequency for PRSyncDet in an attempt to get the best
performance on our test suite. To show that this does not give an unfair advantage over
HIPR, we showed the influence of the parameter using the hipr3.0 configuration. In all
but one cases, increasing the frequency yields worse results in the case of HIPR. Overall,
on our test suite, HIPR is inferior to both HPF and F PRF. We conclude that FIFO-
based selection is superior to highest-label selection for the type of applications we tried
to capture in our test suite.

For our test instances, dynamic trees do not improve the actual run time of the push–
relabel algorithm. This is shown by the timings from the dtree implementation.
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Table 7.3 and Table 7.4 show how the PRSyncDet and PRSyncNondetWin algorithm
variants scale with the available number of threads. We can see that on the largest
delaunay and rgg instances, on the spam detection instances as well as on the nlpkkt240,
BL06-camel-lrg and washington rlg wide 16 graphs, self-relative speedups of over 8 could
be achieved with 16 threads. In most cases, the difference between 16 and 32 threads
is small, indicating either a lack of available parallelism or possibly that main memory
becomes the bottleneck beyond a certain point of concurrency. In some cases the runtime
even increases when switching from 16 to 32 threads, an effect that is probably due to a
suboptimal use of OpenMP.

For all but the smallest instance of the delaunay and rgg family, two threads are sufficient
to beat the best sequential solution time. For nlpkkt240 it takes four threads and for wash-
ington rlg wide 16 as well as BL06-camel-lrg it takes eight. europe.osm, genrmf wide 4
and grid 28 hier4 exhibit too little average active vertices per pulse to be parallelized
efficiently using our method. Figure 7.1 and Figure 7.2 show how PRSyncDet scales on
the rgg 27 graph, compared to HPF, the solver achieving the best sequential time.

We want to point out especially the promising results for the pld spam family, which we
specifically designed to be a practical application of a minimum cut technique. An absolute
speedup over HIPR of almost 12 is achieved with 32 threads, as can be seen in Figure 7.4.
These graphs have a large number of active vertices on average in each pulse, which we
attribute to the small diameter of the graph. This allows for very efficient parallelization.
For comparison purposes, the numbers presented here are measured with OpenMP, but
even better timings are achieved in this particular case with Cilk (pld spam100 is solved
by PRSyncNondetWin in under 30 seconds with 32 threads and Cilk scheduling).

For the delaunay and rgg families, the self-relative and absolute speedups are better for
the larger instances, again because there are more vertices active in each pulse on average.

On the vision instance BL06-camel-lrg, it takes 8 threads for PRSyncNondetWin to beat
the performance of HPF. Nevertheless, with 32 threads we still achieve an absolute speedup
of almost 4, due to the near-perfect linear scaling on this instance.

Our hope was that the modifications introduced in PRSyncNondetWin allow for more
effective parallelization. This has turned out to be partly successful, seeing as for all but
one of the tested graphs, the best average time achieved by PRSyncNondetWin is at least
as good as the best average time achieved by PRSyncDet. Sometimes the difference is very
noticable, especially on the medium-sized KaHIP instances: in the case of delaunay 26, the
difference is almost a minute, or 30% of the total time. What’s notable is that with only
one thread, PRSyncDet is often faster, so the self-relative speedups of PRSyncNondetWin
are slightly better than those of PRSyncDet. Overall, the difference is not significant in
most cases. We would thus recommend the conceptionally simpler PRSyncDet variant in
practice, especially if only a small number of threads is available.

7.1.7 Speedup as a Function of the Number of Active Vertices

Intuition tells us that for our synchronized algorithm implementations, the achievable
speedup will be better the more active vertices there are on average in each pulse. This
assumption was confirmed by our experiments. For the delaunay 28 graph, Figure 7.5
shows the self-relative speedup with regard to the number of active vertices in a pulse,
with 8 threads enabled. We can see that decent speedups of over 4 are achieved when
there are more than 3000 active vertices. Below that, speedups are much worse. Below
1000 active vertices, the synchronization overhead becomes too much to get any speedup
at all. Of course the exact thresholds are dependent on the vertex degrees (and thus the
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38 7. Experimental Evaluation

amount of work per vertex), but these numbers seem to be consistent across our benchmark
instances.

Figure 7.6 shows the number of active vertices during the course of the algorithm’s exe-
cution in the case of the delaunay 28 graph. We can see that in this case, only during
a small fraction of the total runtime (about 200 seconds) the number of active vertices
drops below the threshold of 3000. This tail is hard to parallelize and the reason for the
non-linear speedup seen on this graph.
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graph hipr hipr3.0 hpf f prf dtree PRSyncDet PRSyncNondetWin

genrmf wide 4 41 104 11 81 49 275 260
washington rlg wide 16 88 68 26 118 66 168 194
delaunay 24 361 664 77 194 372 154 152
delaunay 25 1193 1680 208 494 1021 312 316
delaunay 26 2502 4142 562 1028 2452 826 804
delaunay 27 8032 13,308 1180 2648 9073 1715 1780
delaunay 28 21,564 35,008 2905 8124 * 4359 4665
delaunay 28 hier4 965 1757 269 449 976 539 568
rgg 24 643 1108 259 355 521 257 245
rgg 25 1468 2575 543 980 1245 536 573
rgg 26 4737 6648 1338 3321 3985 1363 1403
rgg 27 13,082 19,419 2433 6937 * 3574 3807
grid 28 hier4 1015 1649 64 372 594 125 119
europe.osm 359 445 22 76 372 59 46
nlpkkt240 521 1119 218 711 1418 609 752
pld spam 100 443 508 907 405 1475 293 405
pld spam 5000 486 514 614 444 * 443 709
BL06-camel-lrg 259 491 56 220 ** 317 358

Table 7.2: Sequential benchmark results. The numbers represent the time in seconds to find a maximum preflow (excluding initialization time).
Timings are averaged over multiple runs. We skipped the runs marked with (*) because the results would not have been particular
interesting and our computation time on the machine was limited. The run marked with (**) raised an error because there are multiple
edges between the same vertices in this instance, which dtree cannot handle. For each instance, the best timeing is presented underlined.
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graph
number of threads

1 2 4 8 16 32

genrmf wide 4 275 195 (1.4) 134 (2.1) 106 (2.6) 114 (2.4) 181 (1.5)
washington rlg wide 16 168 84 (2.0) 41 (4.1) 22 (7.6) 13 (12.9) 10 (16.8)
delaunay 24 154 86 (1.8) 57 (2.7) 43 (3.6) 40 (3.9) 56 (2.8)
delaunay 25 312 184 (1.7) 111 (2.8) 81 (3.9) 75 (4.2) 94 (3.3)
delaunay 26 826 438 (1.9) 282 (2.9) 203 (4.1) 191 (4.3) 233 (3.5)
delaunay 27 1715 979 (1.8) 592 (2.9) 411 (4.2) 357 (4.8) 404 (4.2)
delaunay 28 4359 2082 (2.1) 1065 (4.1) 616 (7.1) 478 (9.1) 574 (7.6)
delaunay 28 hier4 539 285 (1.9) 162 (3.3) 110 (4.9) 100 (5.4) 124 (4.3)
rgg 24 257 145 (1.8) 89 (2.9) 62 (4.1) 55 (4.7) 62 (4.1)
rgg 25 536 312 (1.7) 177 (3.0) 114 (4.7) 96 (5.6) 114 (4.7)
rgg 26 1363 683 (2.0) 347 (3.9) 196 (7.0) 137 (9.9) 154 (8.9)
rgg 27 3574 1826 (2.0) 929 (3.8) 550 (6.5) 406 (8.8) 399 (9.0)
grid 28 hier4 125 105 (1.2) 95 (1.3) 89 (1.4) 93 (1.3) 119 (1.1)
europe.osm 59 44 (1.3) 35 (1.7) 32 (1.8) 34 (1.7) 45 (1.3)
nlpkkt240 609 340 (1.8) 170 (3.6) 93 (6.5) 56 (10.9) 46 (13.2)
pld spam 100 293 164 (1.8) 101 (2.9) 62 (4.7) 43 (6.8) 37 (7.9)
pld spam 5000 443 305 (1.5) 170 (2.6) 96 (4.6) 60 (7.4) 49 (9.0)
BL06-camel-lrg 317 156 (2.0) 77 (4.1) 44 (7.2) 29 (10.9) 29 (10.9)

Table 7.3: Parallel benchmark results for PRSyncDet. The numbers outside parantheses
represent the time in seconds to find a maximum preflow (excluding initializa-
tion time). The number in parens represents the self-relative speedup over the
run with only one thread. Timings are averaged over multiple runs.

graph
number of threads

1 2 4 8 16 32

genrmf wide 4 260 202 (1.3) 139 (1.9) 102 (2.5) 93 (2.8) 109 (2.4)
washington rlg wide 16 194 98 (2.0) 48 (4.0) 24 (8.1) 14 (13.9) 9 (21.6)
delaunay 24 152 90 (1.7) 55 (2.8) 41 (3.7) 38 (4.0) 40 (3.8)
delaunay 25 316 182 (1.7) 99 (3.2) 70 (4.5) 52 (6.1) 54 (5.9)
delaunay 26 804 420 (1.9) 241 (3.3) 154 (5.2) 133 (6.0) 152 (5.3)
delaunay 27 1780 920 (1.9) 526 (3.4) 320 (5.6) 253 (7.0) 251 (7.1)
delaunay 28 4665 2151 (2.2) 1180 (4.0) 619 (7.5) 560 (8.3) 493 (9.5)
delaunay 28 hier4 568 290 (2.0) 169 (3.4) 98 (5.8) 80 (7.1) 85 (6.7)
rgg 24 245 131 (1.9) 78 (3.1) 49 (5.0) 35 (7.0) 35 (7.0)
rgg 25 573 320 (1.8) 182 (3.1) 111 (5.2) 90 (6.4) 86 (6.7)
rgg 26 1403 680 (2.1) 345 (4.1) 189 (7.4) 128 (11.0) 105 (13.4)
rgg 27 3807 1970 (1.9) 951 (4.0) 503 (7.6) 362 (10.5) 358 (10.6)
grid 28 hier4 119 101 (1.2) 80 (1.5) 72 (1.7) 74 (1.6) 83 (1.4)
europe.osm 46 37 (1.2) 28 (1.6) 23 (2.0) 22 (2.1) 26 (1.8)
nlpkkt240 752 388 (1.9) 189 (4.0) 101 (7.4) 60 (12.5) 38 (19.8)
pld spam 100 405 233 (1.7) 135 (3.0) 84 (4.8) 52 (7.8) 37 (10.9)
pld spam 5000 709 395 (1.8) 218 (3.3) 123 (5.8) 78 (9.1) 46 (15.4)
BL06-camel-lrg 358 172 (2.1) 87 (4.1) 46 (7.8) 25 (14.3) 15 (23.9)

Table 7.4: Parallel benchmark results for PRSyncNondetWin. The numbers outside paran-
theses represent the time in seconds to find a maximum preflow (excluding ini-
tialization time). The number in parens represents the self-relative speedup
over the run with only one thread. Timings are averaged over multiple runs.
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8. Future Work

There are some ideas and problems leftover that we have not followed up on during the re-
search for this thesis due to time constraints. We will document those here in an unordered
manner and might investigate them in the future.

8.1 Improvements for PRSyncDet

A straightforward observation is that due to the simplicity of the PRSyncDet algorithm
variant presented in subsection 5.2.5, it lends itself to a MapReduce-based distributed
implementation similar to the Ford–Fulkerson implementation from [HYW11]. This might
make it possible to solve even larger graphs than the ones we experimented with, where
the instances cannot be held in main memory completely. We expect this to yield worse
total runtimes due to communication overhead.

With regard to the algorithm itself, we feel that it would be worth looking at the kind of
bidirectional approach used by the BK algorithm and [HYW11], where partial augmenting
paths are found forward from the source and backward from the sink simultaneously. The
analogue in the push–relabel world is to introduce additional labels that approximate the
distance to the source and potentially to also allow for node deficits. The pseudoflow
algorithm takes this but approach but uses quite complicated data structures that might
be hard to parallelize efficiently. We feel that a simpler implementation can still improve
our simpler push–relabel algorithm and help increase the number of active vertices to work
with.

We noted in subsection 7.1.7 that even for large graphs, a considerable part of the algo-
rithm’s execution time is spent in a phase where there is just not enough active vertices
for the synchronized approach to be really efficient. It might be worth incorporating the
[AS95] or [HH11] approach into our algorithm and swtich to it when the number of active
vertices drops beyond a certain threshold. We believe these to be less efficient when many
vertices are active but potentially more efficient on small graphs or in the late stages of
the algorithm on large graphs.

8.2 Flow Decomposition

Since in most applications only a minimum cut is interesting, the explicit flow assignment
function is often not needed. If it is, however, our algorithm performs the second stage of
transforming a maximum preflow into a maximum flow sequentially.
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42 8. Future Work

The algorithm used by HIPR and HPF is basically a greedy depth-first search to push the
excess flow back to the source. It might be possible to use a modified breadth-first search
to replace it, which would be easier to parallelize. We have not looked into the details so
far.
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9. Conclusion

In this work, we presented a comprehensive overview of current applications of and solu-
tions to the maximum flow problem. We re-evaluated the performance of existing sequen-
tial algorithms on a test suite meant to represent real-world applications and were able to
show that the often used HIPR program is not necessarily the best choice when working
with these kinds of graphs. It has been shown in earlier work to outperform most other
solvers on the graph families represented in the DIMACS maximum flow challenge, but
this superiority does not extend to the range of instances we tested.

Where an implementation was available, we measured the performance of existing parallel
solvers and dismissed most of them because they were barely able to outperform efficient
sequential implementations.

Based on our observation that push–relabel with FIFO-based selection is a very simple
and also efficient solution to the max-flow problem, we chose it as the basis of a first
parallel implementation. Seeing as this prototype yielded very promising results, we added
non-determinism to increase the work between synchronization points, in an attempt to
amortize the relative overhead of synchronization barries and to allow for better overall
parallelism. This was only partly successful, the difference in run time is not as significant
as we had hoped.

Where applicable, we analyzed the effectiveness of different techniques like gap heuris-
tics and excess scaling. Our experiments indicate that vanilla push–relabel without gap
heuristics constitutes a very good compromise between simplicity and performance.

Our final implementation is able to achieve almost linear relative speedups on some graph
families, and respectable relative speedups in other cases. Absolute speedups are good, in
a lot of cases only two processors are needed to achieve the speed of the best sequential
solver. On larger graphs we tend to get better speedups, which we consider to be promising
because it shows our algorithms scale well with the size of the data. More often than not,
the time to initialize the graph representation in memory, even when massively parallelized,
represents a considerable fraction of the total runtime and puts an upper bound on the
overall performance.

We believe to have shown that parallel maximum flow is not as hard a problem as was con-
jectured in previous work, if applied to modern, large, real-world graph families as opposed
to small, artificial benchmark instances. We further believe that our implementations are
of real practical value in many areas where large maximum flow or minimum cut problems
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44 9. Conclusion

arise as subproblems, for example in graph partitioning and social network analysis. The
small-worldness property of a large web graph has turned out to be especially favourable
for our parallel approach.

The deterministic algorithm variant presented in subsection 5.2.5 is a surprisingly sim-
ple, synchronized parallel algorithm performing well in practice and could be used as an
example in academic teaching.
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