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CHAPTER 1

Introduction

This thesis presents experiments on electronic transport properties of mesoscopic graphene

samples. Recent advancements in sample fabrication techniques, specifically the use of hexago-

nal boron nitride (hBN) as a substrate [Dea10] and the residue free encapsulation of graphene

in hBN [May11; Wan13], have improved the sample quality up to a point where the mean free

path is larger than the geometric sample dimensions. In this work, high frequency shot noise

was measured in parallel to the conductance of such samples. Shot noise describes current

fluctuations that are caused by the fundamental, quantum mechanical randomness of charge

transmission. While technically challenging, its measurement reveals information about the

charge carrier statistics and the underlying charge transport mechanisms that cannot be found

from measurements of the conductance alone.

Graphene, a two dimensional allotrope of sp2-hybridized carbon, has attracted a lot of attention

since its first experimental isolation in 2004. Due to the linear electronic band structure, charge

carriers in graphene can be described as massless Dirac fermions, which leads to a variety of

unique phenomena. One example presented in chapter 4.1 is the pseudo-diffusive transport

regime at vanishing charge carrier density in graphene, where transport through evanescent

modes has been predicted to cause a minimum conductivity despite a vanishing density of states,

as well as shot noise comparable to a diffusive conductor, described by a Fano factor of 1/3. The
expected Fano factor and minimum conductivity were found in one sample of graphene on

SiO2 by Danneau et al. [Dan08], but with a weaker than expected gate dependence of the shot

noise. On the other hand, DiCarlo et al. [DiC08] found ℱ ≈ 1/3 independent of the density (as
would be expected for diffusive transport). Recently, Mostovov [Mos14] attempted to clarify this

disagreement using an improved measurement setup, yet failed to reach the ballistic regime in

their SiO2-supported samples.

The wave-particle duality is one of the basic concepts of quantummechanics. While shot noise

is based on the discreteness of charge transport, interference is a hallmark of the wave character.

In our clean hBN encapsulated samples, experiments with analogy in optics can be performed,

considering both wave optics, as demonstrated by the observation of Fabry-Pérot interference

in chapter 4.2, and geometrical optics, where charge transport is described by semi-classical

1



2 1 Introduction

trajectories that can be manipulated by electrostatic gating and magnetic fields, as presented

in chapter 4.2.4. Here, the peculiar properties of graphene come into play, where unimpeded

transmission through a p-n barrier is possible due to a relativistic effect called “Klein tunneling”

[Kat06b].

Chapter 4.3 presents experiments in a strong magnetic field, where the density of states splits

into Landau levels, and charge transport occurs solely through topologically protected edge

channels. Due to the ambipolar field effect in graphene, the direction and number of these

channels can be tuned using electrostatic gating. In chapter 4.3.2, a graphene p-n junction

sample is investigated, where modes can mix at the p-n interface and a transition from ballistic,

noiseless conduction in the unipolar regime to enhanced noise in the bipolar regime is expected.

Finally, chapter 4.4 discusses effects of proximity induced superconductivity.



CHAPTER 2

Theoretical Background

2.1 Graphene

2.1.1 Basic Properties

Graphene is an allotrope of sp2-hybridized carbon. The three in-plane 𝜎-bonds with bonding

angles of 120° form a strictly two-dimensional honeycomb lattice which can be described with a

triangular Bravais lattice

𝑅 = ∑
𝑖=1,2

𝑛𝑖𝑎𝑖 ; 𝑛𝑖 ∈ ℤ (2.1)

with primitive lattice vectors

𝑎1 =
𝑎𝑏
2 (3, √3) 𝑎2 =

𝑎𝑏
2 (3, −√3) (2.2)

and a two atomic basis

𝛾1 = (0, 0) 𝛾2 =
𝑎𝑏
2 (1, √3) , (2.3)

where 𝑎𝑏 = 0.142 nm is the carbon-carbon distance and |𝑎| = √3𝑎𝑏 = 0.246 nm is the lattice constant.

Since the two carbon sites in each primitive cell are not equivalent, they form two sublattices,

labeled A and B. The nearest neighbor vectors, connecting the sublattices, are given by

𝛿1 =
𝑎𝑏
2 (1, √3) 𝛿2 =

𝑎𝑏
2 (1, −√3) 𝛿3 = 𝑎𝑏 ( − 1, 0) . (2.4)

This leads to a hexagonal reciprocal lattice with basis vectors

𝑏1 =
2𝜋
3𝑎𝑏

(−1, −√3) 𝑏2 =
2𝜋
3𝑎𝑏

(−1, √3) . (2.5)

3
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Figure 2.1: Graphene lattice in real space and reciprocal lattice. Red and blue dots indicate A and B
sublattices. The reciprocal lattice is shown with an overlay of the first Brillouin zone and a contour
plot of the gap between conduction and valence bands.

Compared to the real space lattice, the reciprocal lattice is rotated by 90°, which turn the ”zigzag”

direction into ”armchair” and vice versa.

2.1.2 Electronic Transport, Dirac Fermions, Chirality

Band Structure

The electronic transport properties are governed by the delocalized 𝜋-electrons. Their band
structure, shown in figure 2.2, can be calculated using the tight-binding approach [Wal47][Rei02].

With nearest-neighbor hopping energy 𝑡 ≈ 2.8 eV and next nearest-neighbor hopping energy

𝑡′ ≈ 0.1 eV, it can be approximated as (2.2)[Cas09]

𝐸(𝑘) = ±𝑡√3 + 𝑓(𝑘) − 𝑡′𝑓(𝑘) (2.6)

𝑓(𝑘) = 2 cos (√3𝑘𝑦𝑎𝑏) + 4 cos
(

√3
2

𝑘𝑦𝑎𝑏)
cos (

3
2

𝑘𝑥𝑎𝑏) . (2.7)

Here, the plus sign denotes the 𝜋⋆ or conduction band, and the minus sign the 𝜋 or valence band.

The two bands touch each other at two distinct, inequivalent points at the corners of the first

Brillouin zone, called 𝐾 and 𝐾′ and given by

𝐾 =
2𝜋
3𝑎𝑏 (

1,
1

√3)
𝐾′ =

2𝜋
3𝑎𝑏 (

1, −
1

√3)
. (2.8)

Due to the single electron left in the 𝑝𝑧 orbital, the Fermi energy 𝐸F lies exactly in between the

bands in undoped graphene (half filling), which makes single layer graphene a zero bandgap

semiconductor. The electronic transport properties are governed by the band structure in the

vicinity of the 𝐾 points. At low energies (≲ 1 eV), it can be approximated as linear

𝐸(𝑘) = ±𝑣Fℏ𝑘, (2.9)

where the Fermi velocity is 𝑣F = 3𝑡𝑎𝑏
2ℏ

≈ 𝑐/300 ≈ 1 × 106 m s−1. The linear dispersion relation means

that the charge carriers in graphene can be treated as massless particles, analogous to the
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Figure 2.2: Band structure of graphene

dispersion relation of light 𝐸(𝑘) = 𝑐ℏ𝑘. The two independent sublattices cause an additional

degree of freedom (“sublattice pseudospin”), which can be treated like the spin by using a two

component spinor wave function

|𝛹±,𝐾⟩ =
1

√2
(e−𝑖𝜃𝑘/2, ± e𝑖𝜃𝑘/2) e𝑖𝑘𝑟 . (2.10)

Within the linear approximation, the Hamiltonian can be written as

ℋ𝐾 = 𝑣F𝜎 ⋅ 𝑝 ℋ𝐾′ = −𝑣F𝜎∗ ⋅ 𝑝 (2.11)

where 𝜎 = (𝜎𝑥, 𝜎𝑦) is the pseudospin. [Cas09]

The density of states can then be derived as [Cas09; Das11a]

𝜌(𝐸) =
d𝑁(𝐸)

d𝐸
=

𝑔es𝑔ps

2𝜋(ℏ𝑣F)2 𝐴𝐶 |𝐸| with 𝐴𝐶 = 3
√3𝑎2

𝑏
2

(area of unit cell). (2.12)

From the density of states (2.12) we find the relation of charge carrier density and Fermi energy

as

𝑛 =
𝑁
𝐴𝐶

=
1

𝐴𝐶

𝐸F

∫
0

𝜌(𝐸) d𝐸 =

𝐸F

∫
0

2
𝜋(ℏ𝑣F)2 𝐸 d𝐸 =

𝐸2
F

𝜋(ℏ𝑣F)2 ⇒ 𝐸F = ℏ𝑣F√𝑛𝜋 (2.13)

and

𝑘F = √𝑛𝜋, 𝜆F =
2𝜋
𝑘F

= 2√
𝜋
𝑛

. (2.14)
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Klein Tunneling

Following the analogy to spin, we can define a helicity operator ĥ as the projection of pseudospin

𝜎 on the direction of motion:

ℋ |𝛹⟩ = 𝐸 |𝛹⟩ ⇒ 𝜎 ⋅ 𝑝 |𝛹⟩ = ±𝑝 |𝛹⟩ ⇒ 𝜎 ⋅
𝑝
𝑝⏟

=∶ĥ

𝛹 = ± |𝛹⟩ . (2.15)

For massless particles, helicity is equal to chirality. In graphene, ĥ and ℋ are proportional

to each other and share their eigenstates, so chirality is conserved. Chirality/pseudospin is

positive for electrons (holes) residing in the 𝐾 (𝐾′) valley, and negative for holes (electrons) in

the 𝐾′ (𝐾) valley. In this sense, charge carriers in graphene are often referred to as “massless

chiral particles”, and in many cases their behavior is fundamentally different than in “ordinary”

materials with massive charge carriers. An intriguing example is Klein tunneling, a mechanism

that was theoretically proposed for relativistic particles by Klein in 1929 [Kle29], adapted for

graphene by Katsnelson et al. [Kat06b] and experimentally observed by Young et al. [You09] and

others. It allows relativistic particles to be transmitted through a high barrier with a transmis-

sion probability of one. For a potential step that is smooth on the scale of the lattice constant,

intervalley scattering 𝐾 → 𝐾′ and vice versa (called “Umklapp” scattering) is suppressed and

chirality conserved. Therefore, particles cannot be backscattered 𝑘 → −𝑘, since chirality con-
servation would require their sublattice pseudospin to flip, too 𝜎 → −𝜎, which would require

an external potential that acts differently on the sublattices. For non-perpendicular incidence

𝑘𝑦 ≠ 0, backscattering is allowed with a angle dependent transmission coefficient [Kat06b].

Ambipolar Electric Field Effect

Such a potential barrier can easily be created experimentally. The charge carrier density, and

therefore the Fermi energy 𝐸F, can be tuned by applying a voltage 𝑉𝐺 to a gate electrode. The

gate and the graphene sheet form a plate capacitor, so the induced charge carrier (number)

density can be estimated as

𝑛 =
𝑄

|𝑒|𝐴
=

𝐶G𝑉G
|𝑒|𝐴

=
𝜖0𝜖𝑟
|𝑒|𝑑⏟
=∶𝛼G

𝑉G, (2.16)

where 𝐶G = 𝜖0𝜖𝑟
𝐴
𝑑
is the gate capacitance, 𝐴 is the gate area, 𝜖𝑟 is the dielectric constant, and 𝑑 is

the thickness of the gate dielectric. The field effect in graphene is “ambipolar”, so by applying

a positive or negative gate voltage, either electrons or holes can be induced. In the following,

negative 𝑛 refers to holes, and positive 𝑛 refers to electrons.

Minimum Conductivity

At 𝑉𝐺 = 0, where no charge carriers should be present, onemight expect a vanishing conductivity.

But this is not what is being observed in experiments, and the charge transport mechanisms

at vanishing density of states are still not fully understood. It is important to distinguish two

cases: diffusive transport in large, disordered samples, and ballistic transport in short and wide

samples.
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In the first case, the minimum conductivity is caused by a finite local charge carrier density

(“charge puddles”) at the global charge neutrality point, created by an inhomogeneous impurity

potential. Already in 1998, Shon and Ando [Sho98] calculated a minimum conductivity of

𝜎min = 4𝑒2

𝜋ℎ
for disordered graphene with impurities with short range potential, independent of

scattering strength. In the early experiments, a larger value of 𝜎Exp
min ≈ 4𝑒2

ℎ
= 𝜋𝜎Theory

min was found

instead. The discrepancy is attributed to experimental deficiencies, like probe geometry and

invasive contacts [Per10].

The finite conductivity of pristine graphene without disorder or in experimental terms, clean,

short and wide samples within the ballistic regime has a different origin [Two06]. Here, the

transport mechanism changes and charge is transmitted through evanescent modes, which will

be explained in more detail in section 4.1.2.

2.1.3 Graphene in Magnetic Fields

Particles with charge 𝑞 = 𝑒 moving in a magnetic field 𝐵 are subject to the Lorentz force

𝐹 L = 𝑒𝑣 × 𝐵. Charge carriers in graphene are confined into a two dimensional electron gas

(2DEG), so if the field is applied perpendicular to the graphene plane, it is always perpendicular

to the velocity. In semi classical terms, this leads to a circular trajectory. Setting the Lorentz

force equal to the centripetal force 𝐹C = 𝑚𝑣2

𝑟
, we get

𝐹L = 𝐹c ⇒ 𝑒𝑣𝐵 =
𝑚𝑣2

𝑟C
=

ℏ𝑘𝑣
𝑟C

⇒ 𝑒𝐵 =
ℏ𝑘
𝑟C

⇒ 𝑟C =
ℏ𝑘
𝑒𝐵

. (2.17)

So the charge carriers move along a circular trajectory with cyclotron radius 𝑟C and at the

cyclotron frequency

𝜔C =
2𝜋
𝑇

=
2𝜋𝑣F
2𝜋𝑟C

=
𝑒𝐵
𝑚∗ =

𝑒𝐵𝑣F

ℏ√𝜋𝑛
, (2.18)

with 𝑣 = 𝑣F, and the “relativistic” dynamical mass 𝑚∗ = 𝐸
𝑣2

F
= 𝑣Fℏ𝑘F

𝑣2
F

=
ℏ√𝜋𝑛

𝑣F
.

Further increasing the field, the cyclotron diameter shrinks below the sample dimensions.

When the circumference falls below the mean free path and charge carriers can complete one

orbit without scattering, the density of states starts to splits into Landau Levels and Shubnikov-

de Haas oscillations appear in the conductance. The Bohr-Sommerfeld quantization conditions

require the flux 𝜙 = 𝐵𝐴 = 𝐵𝜋𝑟2
C which is enclosed by the orbit to be quantized in units of the

flux quantum 𝜙0 ∶= ℎ
𝑒
. This quantization condition only allows cyclotron radii of

𝑟C,N = √
𝜙0𝑁
𝐵𝜋

= √
2ℏ𝑁
𝑒𝐵

= √2𝑁 𝑙B 𝑁 ∈ ℕ (2.19)

with the magnetic length 𝑙B ∶= √
ℏ

𝑒𝐵
and the density of states splits into Landau levels. In
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graphene, the spectra for the two sublattices are given by [Nov05a; Zha05][Goe11]

𝐸𝑁 = ±√2𝑒ℏ𝑣2
F𝐵 (𝑁 +

1
2

±
1
2) 𝑁 = 0, 1, 2 … (2.20)

where the first ± denotes electrons/holes and the second ± denotes the sublattice pseudospin.

The level degeneracy is given by 𝑛L = 𝑒𝐵
ℎ
, and additionally each state is fourfold degenerate with

respect to spin (𝑔es = 2) and pseudospin (𝑔ps = 2), leading to a total of 4𝑛L states at each energy

level. The filling factor 𝜈 can be calculated from the charge carrier density as

𝜈 =
𝑛
𝑛L

=
𝑛ℎ
𝑒𝐵

. (2.21)

Fig. 2.3: Hall conductivity 𝜎𝑥𝑦 and longitudi-
nal resistivity 𝜌𝑥𝑥 of the anomalous QHE in
graphene (main image) and QHE in graphene
bilayer with normal plateau positions except for
a missing plateau at 𝜈 = 0 (inset) at 𝐵 = 14 T and
𝑇 = 4 K. Source: [Nov05a]
©2005 Nature Publishing Group

Compared to a 2DEG of massive fermions, an

additional Landau level appears at zero en-

ergy, including both hole and electron like

states. Since it is half filled at charge neu-

trality, it causes a shift of
1
2
4 = 2 in 𝜈. This

is reflected in the plateaus of the quantum

Hall effect (QHE) (fig. 2.3). Due to the fourfold

degeneracy, they appear at

𝜎𝑥𝑦 = 4
𝑒2

ℎ (𝑁 −
1
2) 𝑁 ∈ ℕ, (2.22)

i.e. at filling factors 𝜈 = ±2, ±6 …, which is re-

ferred to as “anomalous quantum Hall effect”.
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2.2 Proximity Induced Superconductivity

In superconducting materials, a fraction of the electrons can condense into a macroscopic

quantum state by forming Cooper pairs, as described by the BCS theory[Bar57]. Their collective

behavior can then be described by a macroscopic wave function (the order parameter of the

phase transition)

𝛹(𝑟, 𝑡) = 𝛹0(𝑟, 𝑡) e𝑖𝜃(𝑟,𝑡), (2.23)

normalized to the total number of Cooper pairs ∫ 𝛹 ∗𝛹 d𝑉 = 𝑁S, such that the absolute square

|𝛹(𝑟, 𝑡)|2 = 𝛹 ∗(𝑟, 𝑡)𝛹(𝑟, 𝑡) describes the local Cooper pair density 𝑛S.

When two superconductors are weakly connected, for example separated by a tunnel junction

or a short normal conducting area, a Josephson junction is formed. Their wave functions

remain separate, but Cooper pairs can be transmitted from one to the other. Below the critical

current, the current density across the junction is defined by the phase difference 𝜑 = 𝜃2 − 𝜃1
according to the first Josephson equation

𝐽S(𝜑) = 𝐽C sin 𝜑, First Josephson equation (2.24)

where 𝐽C is the critical Josephson current density. The phase difference evolves according to the

second Josephson equation

𝜕𝜑
𝜕𝑡

=
2𝜋
𝜙0

𝑈, Second Josephson equation (2.25)

so that a constant bias𝑈 causes an oscillating currentwith frequency
𝑓
𝑈

= 1
𝜙0

≈ 483.597 898 MHz μV−1.

Resistively and Capacitively Shunted Junction Model

𝐼 𝐿𝑆 𝑅
𝐶

𝐼𝐹

Fig. 2.4: RCSJ model.

In a real junction, if the current is increased

above the critical current 𝐽 > 𝐽C, a part of it

has to be transmitted through additional chan-

nels of unpaired quasiparticles (resistive chan-

nel, 𝐼N) and as displacement current through

the capacitive channel (𝐼D). Furthermore, the

junction dynamics can be influenced by the

noise current 𝐼𝐹 , so the total current is given

by the sum 𝐼 = 𝐼S + 𝐼N + 𝐼D + 𝐼F. Following

[Gro10], this situation can be described by the

Resistively and Capacitively Shunted Junction

(RCSJ) model, with an equivalent circuit as shown in fig. 2.4. Assuming constant resistance 𝑅,
the dynamics of the phase difference, and therefore the current and voltage, are determined by
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an equation of motion

𝛽𝐶
d2𝜑
d𝜏2 +

d𝜑
d𝜏

+ sin 𝜑 −
𝐼
𝐼C

−
𝐼F(𝜏)

𝐼C
= 0 (2.26)

with the Stewart-McCumber paramter 𝛽𝐶 ∶= 2𝑒
ℎ

𝐼C𝑅2
N𝐶 and normalized time 𝜏 ∶= 𝑡ℏ

2𝑒𝐼C𝑅
.
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Figure 2.5: The tilted washboard potential of a Josephson junction given by the RCSJ model for various
values of 𝐼/𝐼C

The equation is equivalent to a particle with mass 𝑀 = (
ℏ
2𝑒 )

2
𝐶 and damping 𝜂 = (

ℏ
2𝑒 )

2 1
𝑅
, mov-

ing in a “tilted washboard potential” 𝐸pot = 𝐸𝐽0 [1 − cos 𝜑 − 𝑖𝜑 + 𝑖F(𝑡)𝜑], with Josephson coupling

energy 𝐸𝐽0 = ℏ𝐼C
2𝑒

(fig. 2.5). The slope of the potential then is given by
𝜕𝑈
𝜕𝜑

= 𝐸𝐽0 [sin 𝜑 − 𝐼
𝐼C

+ 𝐼F
𝐼C ] =

ℏ
2𝑒 [𝐼F − 𝐼 + 𝐼C sin 𝜑]. So, opposed to the ideal Josephson junction in zero voltage state, where

the phase continuously increases, the slope of this potential can reach
𝜕𝑈
𝜕𝜑

= 0 if 𝐼 < 𝐼C and the

phase can get stuck in local minima for 𝐼 < 𝐼C. To restart the motion (i.e. phase evolution), the

current has to be increased above 𝐼C, while when the current is decreased from 𝐼 > 𝐼C, the zero

voltage state with constant phase difference is reached at a smaller effective 𝐼C. In the picture

of the moving particle, the inertia related to the mass term can push the phase difference across

the local minima. This behavior shows as hysteresis in the IV-curves. The noise current 𝐼F, for

example caused by thermal fluctuations, additionally “shakes” the washboard potential and can

make the phase leave a local minimum. Using an externally applied periodic RF signal (typically

by exposing the junction to RF radiation), resonance effects called “Shapiro steps” or “Shapiro

spikes” can be induced.

Andreev Reflection

The considerations of the previous section hold true for any “weak link”, as long as the trans-

mission occurs in a coherent way. In a junction of two superconductors separated by a normal

conducting section (SNS junction), for example a piece of graphene, charge transport through
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Andreev Reflection [And64] can fulfill this requirement. Looking at a single normal conductor-

superconductor interface, an electron within the normal conducting area cannot enter the

superconducting lead if its energy is lower than the superconducting gap 𝛥, since there are

no quasiparticle states available. But instead, it can generate a Cooper pair with charge 2𝑒,
while being retro-reflected as a hole with opposite spin, preserving conservation charge and

momentum. Due to time-reversal symmetry, the same process works for an incident hole, which

can be reflected as an electron while annihilating a cooper pair in the superconductor. In a

confined region between two superconducting leads, electrons and holes can then be reflected

back and forth continuously, forming Andreev bound states that mediate the supercurrent

across the normal conductor.

Multiple Andreev Reflection

If the current is increased above 𝐼C, in the voltage state, the charge carriers gain an energy of

𝛿𝐸 = 𝑒𝑉DS each time they are transmitted through the normal conductor, and hence can reach

the quasiparticle continuum after being transmitted 𝑁 times, if 𝑁 × 𝑒𝑉DS > 2𝛥 (see fig. 2.6).

This process, called multiple Andreev reflection (MAR), allows quasiparticle transmission for

energies smaller than 𝑉DS = 2𝛥 and is responsible for the “subharmonic gap structure” (SGS), i.e.

features in the IV curve at positions 𝑉DS = 2𝛥
𝑁
.

2𝛥
𝑒𝑉
𝑒𝑉
𝑒𝑉

S SN

𝑉DS

𝐼DS

2𝛥𝛥2𝛥/3

2𝛥 𝑒𝑉

S SN

2𝛥
𝑒𝑉

𝑒𝑉

S SN

𝑉DS = 2𝛥/3 𝑉DS = 2𝛥/2 𝑉DS = 2𝛥

Figure 2.6: Schematic representation of multiple Andreev reflection (MAR). The images on the left
showMAR processes for increasing energy 𝑉DS = 2𝛥/𝑁 . The red process corresponds to 𝑁 = 3, where a
total charge of 𝑄 = 3𝑒 is transmitted in the form of one Cooper pair and one quasiparticle. At energies
above 2𝛥 direct transmission of quasiparticles becomes possible (blue). The right image shows a
schematic plot of the contributions to the current of each process. For small transmission probabilities,
higher order processes are less likely and contribute less (not to scale, based on [Cue99b]).
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2.3 Noise
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Figure 2.7: The current in a measurement fluctuates around a time averaged value ⟨𝐼⟩ with fluctua-
tions 𝛿𝐼 following a gaussian distribution

Whenever one performs a measurement of a physical quantity, it will be accompanied by

random, time dependent fluctuations. For example, the current 𝐼 through a resistor 𝑅 could be

written as

𝐼(𝑡) = ⟨𝐼⟩ + 𝛿𝐼(𝑡), (2.27)

where ⟨𝐼⟩ denotes the constant average current, with fluctuations 𝛿𝐼(𝑡). In reality, the average

will most likely be the average over a number of measurements at different times, but since the

systems we are looking at are assumed to behave “ergodic”, it could just as well be the average

over many copies of the system, measured at the same time. Most often, we are not interested

in the fluctuating part. In these cases, the fluctuations define the limit of the accuracy of our

measurement, and they can even make it impossible if the signal is swallowed by the noise.

Sometimes, the term ”noise” is being used complementary to ”signal”, as something annoying

that should be reduced as much as possible. With this definition, it may seem strange to try to

measure noise on purpose. But as Landauer stated in 1998 [Lan98], sometimes “the noise is the

signal”. To understand why, we have to take a look at where the fluctuations are coming from.

2.3.1 1/f Noise, Thermal Noise and Shot Noise

The first distinction has to be made concerning the source of the measured noise. External

noise, which is introduced from sources like electromagnetic radiation and the measurement

setup itself, obviously is not of interest and thus has to be reduced as much as possible, for

example by shielding the measurement setup and by using lock-in techniques. What remains

is the internal noise that is generated by the sample itself. It can be characterized by looking
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at the probability density distribution of the amplitude of the fluctuations, the autocorrelation

function 𝐶(𝛿𝑡), the spectral density function 𝑆(𝜈) and the Fourier spectrum of the fluctuations

themselves 𝑖(𝜔) [Ihn10].
The probability distribution, as shown in figure 2.7, is the histogram of amplitudes of the

current. While individual processes can lead to noise with different probability distributions,

the total noise will most likely follow a Gaussian distribution. This was pointed out by Landon

[Lan41] with respect to the noise in electronics. It is similar to the central limit theorem, which

states that the sum of independent random variables with the same arbitrary distribution

function will follow a gaussian distribution function. Therefore, the probability distribution of

the fluctuation amplitudes will not help distinguishing different components of the total noise.

The autocorrelation function𝐶(𝛿𝑡) ∶= ⟨𝛿𝐼(𝑡)𝛿𝐼(𝑡+𝑡𝛿𝑡)⟩ = ⟨𝛿𝐼(𝑡 = 0)𝛿𝐼(𝛿𝑡)⟩ tells us how fluctuations

at one point in time are connected to fluctuations at other times. It can only depend on the time

difference between these points, since 𝛿𝐼(𝑡) is a random function. For large 𝛿𝑡, lim
𝛿𝑡→∞

𝐶(𝛿𝑡) = 0, and
𝐶(𝛿𝑡 = 0) = ⟨𝛿𝐼(𝑡)2⟩. After Fourier transforming the autocorrelation function, we get the spectral

density of the current noise

̃𝑆𝐼 (𝜔) = ∫

∞

−∞
e−𝑖𝜔𝑡 𝐶(𝛿𝐼) d𝑡 = ∫

∞

−∞
e−𝑖𝜔𝑡⟨𝛿𝐼(0) 𝛿𝐼(𝛿𝑡)⟩ d𝑡, (2.28)

or with 𝑆𝐼 (𝜈) = 2 ̃𝑆𝐼 (2𝜋𝜈), where 𝜔 = 2𝜋𝜈

⟨𝛿𝐼2⟩ = ∫

∞

0
𝑆𝐼 (𝜈) d𝜈. (2.29)

For gaussian white noise, 𝜎𝐼 = √⟨𝛿𝐼2⟩ = 𝛥𝜈𝑆𝐼 . The spectral density can be used for a first

classification of the measured noise. Typically, it shows a frequency dependence. In analogy to

the colors of light, the 1/f part is commonly referred to as “pink noise”, while noise with a constant

spectral density is called “white noise”. In a real measurement, noise cannot be absolutely white,

as the lowest frequency will be limited by the measurement time and there will be a cut off at

high frequencies when ℎ𝜈 ≫ 𝑘B𝑇 , 𝑒𝑉 . In practical measurements, it is more likely to be limited

by the bandwidth of the measurement setup.

1/f noise is merely a phenomenological classification. First observed in vacuum tubes by

Johnson in 1925 [Joh25], it generally describes noise with a spectral density proportional to 1/𝑓 𝛼,

with 𝛼 typically ranging from 0.5 to 1.5. 1/f noise seems to be ubiquitous in nature and it can be

observed in examples as diverse as the water level of the nile, stockmarkets, heart beat intervals,

and music. It is not determined by a single physical process, but it originates from a more

fundamental mathematical reason related to the fractal nature of many phenomenons in nature.

While the original data from vacuum tubes was explained by Schottky with relaxation processes

of trapped surface charges, Bak et al. [Bak87] explain 1/f noise more generally by ”self-organized

criticality”, causing processes where the lifetime of events is linked to their size. Thus, it is hard

to directly relate the observed noise in an experiment to physical mechanisms within the sample.

A study about 1/f noise in graphene has been published by Balandin [Bal13]. While it can be

dominant at low frequencies, 1/f noise can be avoided by measuring at higher frequencies.

The remaining thermal and shot noise originate from distinct physical processes: Random
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energies of charge carriers incident to the sample, and quantum mechanical randomness of the

transmission of discrete charge carriers through the sample.

Thermal noise was first investigated by Johnson [Joh27], who reported voltage fluctuations

resulting from “thermal agitation of the electric charges in the material of the conductor”, and

theoretically explained by Nyquist in 1928 [Nyq28]. Using a simple gedankenexperiment of

two arbitrary resistors connected in parallel, Nyquist showed that the voltage fluctuations can

only be a universal function of frequency, resistance, and temperature, independent of any

material properties. If the noise power would depend on any other variable, the second law

of thermodynamics could be violated as energy could be transferred from one resistor to the

other. The spectral density of the voltage fluctuations caused by thermal noise can be derived

from the black-body radiation law [Poz12]

𝜎𝑉 = √⟨𝛿𝑉 2⟩ = √
4ℎ𝜈𝑅 BW
eℎ𝜈/𝑘B𝑇 −1

≈ √4𝑘B𝑇 𝑅 BW, (2.30)

with Boltzmann constant 𝑘B = 1.380 65 × 10−23 J K−1, temperature 𝑇 and resistance 𝑅. which is

frequency independent (”white”) for ℎ𝜈 ≪ 𝑘B𝑇 (Rayleigh-Jeans approximation). With ⟨𝛿𝑉 2⟩ =
𝑅⟨𝛿𝐼2⟩, this leads to the spectral density of current noise

𝑆Th
𝐼 = ⟨𝛿𝐼2⟩ BW−1 = 4𝑘B𝑇 𝐺 Thermal (Johnson-Nyquist) Noise (2.31)

Thermal noise and conductance are linked by the fluctuation-dissipation theorem, which relates

equilibrium fluctuations (current noise) to a linear response function (conductance 𝐺 = 𝑅−1).

While the conductance can usually be measured in an easier way, there are only few methods

to access the electronic temperature 𝑇e, so the measurement of thermal noise is a valuable

primary thermometer (see chapter 3.2.4). Thermal noise is always present in a resistor at finite

temperature, and it appears both in and out of equilibrium.

Shot noise, on the other hand, originates from the transmission of discrete charge quanta

through the sample. It only appears out of equilibrium and it typically is proportional to the

current passing through the sample. It was first measured by Walter Schottky in 1918 [Sch18],

who investigated current flucuations in vacuum tubes. The basic mechanism can be understood

from a simple model of a particle hitting a barrier with transmission probability 𝑇 and reflection

probability 𝑅 = 1 − 𝑇 . If the transmission events of individual particles are independent of one

another, the probability of finding 𝑛 transmitted particles out of 𝑁 total particles incident on the

barrier is given by the binomial distribution

𝑃𝑁 (𝑛) = (
𝑁
𝑛 )𝑇 𝑛(1 − 𝑇 )𝑁−𝑛 (2.32)

where (𝑁
𝑛 ) = 𝑁!

(𝑁−𝑛)!𝑛!
. The mean value and variance are:

⟨𝑛⟩ = 𝑛𝑇 (2.33)

⟨𝛿𝑛2⟩ = ⟨𝑛2⟩ − ⟨𝑛⟩2 = 𝑛𝑇 (1 − 𝑛𝑇 ) (2.34)
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For 𝑇 ≪ 1, the discrete binomial distribution can be approximated by the Poisson distribution

𝑃 (𝑛) =
𝜇𝑛

𝑛!
eV−𝜇 Poisson distribution (2.35)

where the mean value 𝜇 = ⟨𝑛⟩ = 𝑛𝑇 is equal to the variance 𝜎2 = 𝜇 = 𝑛𝑇 . The mean current then

follows as

𝐼 = 𝑞⟨𝑛⟩
1
𝑡0

=
𝑞𝑛𝑇
𝑡0

(2.36)

with integration time 𝑡0, or bandwidth 𝛥𝜈 = 1
2𝑡0
. From the fluctuations of the number of transmit-

ted particles

(𝛿𝑛)2 = ⟨(𝑛 − ⟨𝑛⟩)2⟩ = 𝜇 = 𝑛𝑇 (2.37)

we get the noise current

⟨𝛿𝐼2⟩𝑡0 = ⟨(𝐼 − ⟨𝐼⟩)2⟩ = ⟨𝐼2⟩ − ⟨𝐼⟩2 = 𝑞2𝛿𝑛2
T

1
𝑡2
0

=
𝑞2

𝑡2
0

𝑛𝑇 =
𝑞
𝑡0

|⟨𝐼⟩| = 2𝑞|⟨𝐼⟩|𝛥𝜈 (2.38)

and the spectral density of shot noise

𝑆P
𝐼 = 2𝑞|⟨𝐼⟩| Poisson Value of Shot Noise (2.39)

which is also referred to as the Poisson value of shot noise, or as Schottky formula [Sch18].

2.3.2 Electronic Transport in Mesoscopic Samples

Eq. 2.39 was derived in a purely classical way, assuming independent particles and a single,

defined barrier. On the other hand, a mesoscopic sample is not a single barrier in vacuum. The

analogy of charge transmission through a mesoscopic sample to the classical transmission of

electrons through a vacuum tube relies on the description of charge carriers as free quasiparticles

which get transmitted through the sample as a whole through parallel transmission channels,

each with a transmission probability 𝑇𝑛 according to the Landauer-Büttiker formalism. The total

conductance of a two lead conductor is given by

𝐺 = 2
𝑒2

ℎ ∑
𝑛

𝑇𝑛 Two-terminal Landauer Formula (2.40)

With conductance quantum 𝐺0 ∶= 𝑒2

ℎ
. Its first version was derived by Rolf Landauer in 1957 and

it was further developed and extended by Büttiker and others, especially after the observation

of systems with few and perfectly transmitting channels, leading to conductance quantization.

From the experimental point of view, according to Landauer’s formula (2.40) measuring the

conductance of a sample means measuring the total sum of the transmission probabilities of

all channels. The total shot noise of the sample is generated by the “parallel connection” of all

transmission channels. Here, the approach following [Bla00] is outlined.
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Figure 2.8: Reservoirs and scattering states in a two lead conductor. Source: Adapted from [Bla00]

2.8 shows the schematic image of a two lead sample. The sample is connected to the reservoirs

denoted by L and R, each characterized by their total number of channels 𝑁L/R, temperatures 𝑇L/R
and electrochemical potentials 𝜇L/R, where a bias voltage can be introduced as 𝑒𝑈 = 𝜇L − 𝜇R.

States in the reservoirs are occupied according to the Fermi distribution function

𝑓𝛼(𝐸) = (e
𝐸−𝜇𝛼
𝑘B𝑇 +1)

−1

𝛼 = L, R. Fermi distribution function (2.41)

The creation and annihilation operators of incoming states â
(†)
L,R and outgoing states b̂

(†)
L,R are

related by the (𝑁L + 𝑁R) × (𝑁L + 𝑁R) dimensional scattering matrix 𝑠 (𝑠†):

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b̂L1
⋮

b̂L𝑁L

b̂R1
⋮

b̂R𝑁R

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 𝑠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

âL1
⋮

âL𝑁L

âR1
⋮

âR𝑁R

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with 𝑠 =
(

𝑟 𝑡′
𝑡 𝑟′)

(2.42)

For the charge transport, the off-diagonal block 𝑡 of the scattering matrix which links incom-

ing states from the left lead to outgoing states in the right lead is crucial. The transmission

probabilities 𝑇𝑛 in eq. 2.40 are the eigenvalues of 𝑡 (at the Fermi energy 𝐸F)

∑
𝑛

𝑇𝑛 = Tr [𝑡†𝑡] (2.43)

The eigenstates corresponding to the 𝑇𝑛, i.e. the transmission channels, are superpositions of

the incoming and outgoing states â
(†)
L,R and b̂

(†)
L,R.
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Noise and Transmission Probabilities

The spectral density of current fluctuations can be calculated in analogy to eq. (2.28) as the

Fourier transform of the correlation function (𝛼, 𝛽 ∈ {L, R})

2𝜋𝛿(𝜔 − 𝜔′)𝑆𝛼𝛽
𝐼 (𝜔) ∶= ⟨𝛥 ̂I𝛼(𝜔)𝛥 ̂I𝛽(𝜔′) + 𝛥 ̂I𝛽(𝜔′)𝛥 ̂I𝛼(𝜔)⟩. (2.44)

For a two lead conductor, it is given by

𝑆𝐼 = 2
𝑒2

ℎ ∑
𝑛 ∫ d𝐸 {𝑇𝑛(𝐸) [𝑓L(1 ∓ 𝑓L) + 𝑓R(1 ∓ 𝑓R)] ± 𝑇𝑛(𝐸) [1 − 𝑇𝑛(𝐸)] (𝑓L − 𝑓R)2} (2.45)

where 𝑓 denotes either the Fermi (upper signs) or the Bose-Einstein distribution function (lower

signs).

In the simplest case of zero temperature (𝑇 = 0, 𝑓 = 𝜃) and zero frequency (𝜔 = 0)

𝑆𝐼 = 2
𝑒2

ℎ
Tr [𝑟†𝑟𝑡†𝑡] 𝑒|𝑈| (2.46)

or in the basis of eigen channels

𝑆LL
𝐼 = 2

𝑒2

ℎ
𝑒|𝑈| ∑

𝑛
𝑇𝑛(1 − 𝑇𝑛) = 2𝑒⟨𝐼⟩

∑
𝑛

𝑇𝑛(1 − 𝑇𝑛)

∑
𝑛

𝑇𝑛
. (2.47)

Comparing eq. (2.47) to the conductance 𝐺 = 2 𝑒2

ℎ
∑
𝑛

𝑇𝑛 (2.40), we see that the shot noise at zero

temperature contains information about transmission probabilities beyond the total sum given

by the conductance. A practical key figure called the Fano Factor ℱ can be defined as the ratio

of actual shot noise versus the Poissonian value 𝑆P
𝐼 = 2𝑒⟨𝐼⟩ (2.39).

ℱ ∶=
𝑆𝐼

𝑆P
𝐼

=
𝑞
𝑒

∑
𝑛

𝑇𝑛(1 − 𝑇𝑛)

∑
𝑛

𝑇𝑛
Fano Factor (2.48)

Thus, ℱ = 0 for 𝑇𝑛 ≡ 0 or 𝑇𝑛 ≡ 1, and ℱ ≤ 1. The factor 𝑞
𝑒
appears because the quasiparticle

charge 𝑞 may be different from the electron charge 𝑒, a fact that was neglected in the derivations

so far. This proportionality of the spectral density of shot noise to the size of the transmitted

charge quanta can be used to directly measure the quasiparticle charge. The right hand side

of (2.48) is only valid for energy independent 𝑇𝑛. in the general case, the Fano factor cannot be

expressed in the form of transmission probabilities.

Finite Temperature

By taking the Fermi distribution of the occupation number of the incident states into account,

and for energy independent transmission probabilities, a formula combining thermal noise and
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shot noise can be derived [Khl87].

𝑆𝐼 = 2
𝑒2

ℎ [2𝑘B𝑇 ∑
𝑛

𝑇 2
𝑛 + 𝑒𝑉 coth (

𝑒𝑉
2𝑘B𝑇 ) ∑

𝑛
𝑇𝑛(1 − 𝑇𝑛)] (2.49)

= 4𝑘B𝑇
1
𝑅 [(1 − ℱ ) + ℱ

𝑒𝑉
2𝑘B𝑇

coth (
𝑒𝑉

2𝑘B𝑇 )] (2.50)

At zero temperature, (2.47) is recovered, and at zero bias 𝑉 = 0 we recover the thermal noise

(2.31)

lim
𝑒𝑉 →0

𝑆𝐼 = 2
𝑒2

ℎ (2𝑘B𝑇 ∑
𝑛

𝑇 2
𝑛 + 2𝑘B𝑇 ∑

𝑛
(𝑇𝑛 − 𝑇 2

𝑛 )) = 4𝑘B𝑇 𝐺 (2.51)

since lim
𝑥→0

{𝑥 coth (𝑥)} = 1.
Using equation (2.50), the electronic temperature 𝑇𝑒 can be derived from the shape of the noise

curve [Spi03].

2.3.3 Noise at High Frequencies

Figure 2.9: Frequency dependence of shot noise at finite (2) and zero temperature (1 and 3). (1) and
(3) correspond to the lower and upper line of equation (2.54). Source: [Bla00] ©2000 Elsevier Science B.V.

In the previous section, the noise was calculated in the “zero frequency limit” at 𝜔 = 0. But the
typical bandwidth in our measurement setup is 4 GHz to 8 GHz, corresponding to a temperature

of approximately 𝑇 = ℎ𝜈
𝑘B

= 190 mK to 380 mK, which is in the same order of magnitude as the

temperatures we can expect to reach in our experiments. For arbitrary frequencies, voltages

and temperatures, the spectral density of current noise is given by [Bla00; Büt92]

𝑆𝐼 (𝜔) = 2
𝑒2

ℎ {2ℏ𝜔 coth (
ℏ𝜔

2𝑘B𝑇 ) ∑
𝑛

𝑇 2
𝑛 + [(ℏ𝜔 + 𝑒𝑉 ) coth (

ℏ𝜔 + 𝑒𝑉
2𝑘B𝑇 ) +

+(ℏ𝜔 − 𝑒𝑉 ) coth (
ℏ𝜔 + 𝑒𝑉

2𝑘B𝑇 )] ∑
𝑛

𝑇𝑛(1 − 𝑇𝑛)} .
(2.52)

While 𝜔 = 0 reproduces equation (2.49), setting 𝑉 = 0 leads to the frequency dependent thermal
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noise

𝑆eq
𝐼 (𝜔) =

𝑒2𝜔
𝜋

coth (
ℏ𝜔

2𝑘B𝑇 ) ∑
𝑛

𝑇𝑛 =
ℏ𝜔
𝑅

coth (
ℏ𝜔

2𝑘B𝑇 ) (2.53)

and 𝑇 = 0 results in

𝑆𝐼 (𝜔) = 2
𝑒2

ℎ

⎧⎪
⎨
⎪⎩

ℏ|𝜔| ∑
𝑛

𝑇 2
𝑛 + 𝑒𝑉 ∑

𝑛
𝑇𝑛(1 − 𝑇𝑛), ℏ|𝜔| < 𝑒𝑉 ,

ℏ|𝜔| ∑
𝑛

𝑇𝑛 = ℏ|𝜔|𝐺, ℏ|𝜔| > 𝑒𝑉 .
(2.54)

Thus, at very high frequencies, the shot noise is no longer “white”, as shown in fig. 2.9.

2.3.4 Examples

Figure 2.10 shows the conductance and shot noise of aquantumpoint contact, i.e. a constriction

in a 2DEG where the conductance can be controlled to single conductance quanta by tuning

the potential of a split gate structure. For ballistic transport, the transmission probability is

𝑇𝑛 = 1, so we expect noiseless conduction within the conductance plateaus. Maxima in the noise

appear only during the transition from one plateau to the next, where a new channel appears.

Experiments confirming this prediction by Lesovik [Les89] were carried out by Reznikov et al.

[Rez95] and Kumar et al. [Kum96].

Figure 2.10: (a) Calculated and (b)measured conductance (dashed) and shot noise (solid) of a QPC
with respect to Fermi energy / gate voltage. Source: Unpublished data from Reznikov et al. (similar to
[Rez95]), cited from [Jon97] ©1997 Springer Science+Business Media Dordrecht

The use of the noise of a tunnel junction as a primary thermometer was investigated by

Spietz et al. [Spi03]. While the electronic temperature can also measured using only the thermal

noise 𝑆Th
𝐼 = 4𝑘B𝑇

𝑅
, measuring the shot noise has the advantage that no separate calibration of

additional noise, gain and bandwidth of the amplifier chain are required, since these values can

be deduced from the shot noise measurement itself.

Examples for determination of quasiparticle charge are the observation of superpoissonian

noise in superconductor-normal metal junctions (Nb-Cu), where the cooper pair charge of 𝑞 = 2𝑒
causes doubling of the noise power [Jeh00], and the experiments by Saminadayar et al. and

De-Picciotto et al. proving the 𝑒⋆ = e/3 Laughlin quasiparticle charge in the Fractional Quantum
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Hall Effect [DeP98; Sam97].

Another interesting example is amesoscopic diffusive nanowire [Bla00]. Macroscopic con-

ductors don’t show shot noise because current fluctuations are smoothed out by electron-phonon

scattering. But if the size of the system is reduced, different regimes can be identified from the

shot noise. The relevant length scales are the elastic mean free path 𝑙mfp, the dephasing length

𝐿𝜑, the electron-electron scattering length 𝐿ee, and the electron-phonon scattering length 𝐿ep,

where usually 𝑙mfp < 𝐿𝜑 < 𝐿ee < 𝐿ep. Typical values for these lengths are 50nm, 1 μm, 10 μm, and

10mm for metal at 50mK. Figure 2.11 shows the calculated shot noise of a metallic thin film

resistor with respect to its length 𝐿. For ballistic transport at 𝐿 ≪ 𝑙mfp and for 𝐿 ≫ 𝐿ep, the shot

noise disappears. For 𝐿ee ≪ 𝐿 ≪ 𝐿ep electron heating and thermalization through the contacts

lead to thermal noise, giving rise to ℱ = √3
4
. Within the metallic diffusive regime 𝑙mfp ≪ 𝐿 ≪ 𝐿𝜉 ,

with elastic mean free path 𝑙mfp, localization length 𝐿𝜉 = 𝑁T𝑙 and number of transverse channels

𝑁T, the transmission probabilities follow the distribution function

𝑃 (𝑇 ) =
𝑙mfp

2𝐿
1

𝑇 √1 − 𝑇
, 𝑇min < 𝑇 < 1 with 𝑇min = 4 e−2𝐿/𝑙mfp and 𝑃 (𝑇 ) = 0 otherwise. (2.55)

This leads to a universal result of ℱ = 1
3
for metallic diffusive wires, which has been observed

experimentally by [Bee92],[Lie94; Ste96]. Coincidentally, the same Fano factor is expected for a

ballistic graphene strip, as will be explained in more detail in section 4.1.2.

Figure 2.11: Calculated shot noise of a metallic nanowire. Source: [Ste96]
©1996 American Physical Society



CHAPTER 3

Experimental Methods

3.1 Sample Fabrication

3.1.1 Graphene Sample Fabrication

Soon after the first successful isolation of graphenemonolayers in 2004, Novoselov et al. [Nov05b]

started applying the “Scotch-Tape” technique to other layered materials, already including hBN.

At that time, silicon wafers with 300 nm thermally grown SiO2 were the substrate of choice, since

interference in the oxide layer increases the optical contrast of graphene, allowing the identifi-

cation of monolayers among thicker graphite pieces after exfoliation. With the development of

transfer techniques for graphene, starting in 2008 [Rei08], new possibilities to investigate the

influence of different substrates on graphene were opened up. A tremendous improvement of

sample quality was reached by Dean et al. [Dea10] by combining graphene and hexagonal boron

nitride, an atomically flat, insulating isomorph of graphite. Since it can only be synthesized

as powder of millimeter size crystals [Tan07][Wat04], direct exfoliation onto hBN would not

have been practically possible. With this breakthrough, the possibilities and the importance of

the ability to transfer and manipulate 2d crystals became obvious, eventually giving rise to a

new research field of “van-der-Waals heterostructures” [Gei13]. Mayorov et al. encapsulated

graphene in hBN by transferring first graphene onto a hBN crystal, and then another hBN crystal

on top of graphene. While the deposition of material onto graphene generally deteriorates its

properties, hBN ecapsulation was shown to not only protect the graphene from the environment,

but to even further improve the mobility [May11]. The latest advancement was introduced

by Wang et al., who found a way to encapsulate graphene in hBN without introducing any

impurities in the process. This technique, which was employed for the sample fabrication in

this thesis, works by starting the stack from the top hBN and using it to pick up the graphene

and bottom hBN. Using this technique, a mean free path of up to 15 μmwas found[Wan13].

21
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Figure 3.1: Manufacturing graphene by exfoliation of a natural graphite crystal using the “Scotch
Tape Technique”

Mechanical Exfoliation

Even though more than 10 years have passed since the first isolation of graphene by André

Geim and Konstantin Novoselov using the “Scotch Tape Technique” [Nov04][Zha05], this original

manufacturing technique remains the source of the cleanest, highest quality graphene. In short,

first, a macroscopic, single crystal of natural graphite is attached to an adhesive tape1 (fig. 3.1

panel 1), and thinned down by repeatedly exfoliating it with further pieces of tape (panel 2).

Once the graphite on the tape starts to become transparent, it is pushed against the surface of a

Si wafer with 300 nm of thermally grown SiO2. Due to the van-der-Waals interaction between the

wafer surface and the graphite, parts of the graphite get stuck on the surface and are separated

from the bulk crystal (panel 3). The amount of graphite that is exfoliated in this step was found

to heavily depend on the humidity and the cleaning process of the wafer. The standard cleaning

process using O2 plasma renders the surface hydrophilic due to the creation of polar silanol

(SiOH) groups, which reduces the adhesion of graphite. In this work, an additional cleaning step

using a CO2 snow jet [She94] was introduced to lower the hydrophilicity. Here, liquid CO2 is

released from a small nozzle and immediately solidifies into a high pressure stream of gas and

tiny CO2 crystals. This stream is directed onto the heated (about 100 ∘C) substrate, passivating and
mechanically cleaning its surface. This turns the surface hydrophobic, reduces the dependency

on humidity and drastically increases the yield of graphite and graphene. After the exfoliation,

the wafer is inspected using an optical microscope, where the SiO2 layer helps increasing the

contrast through interference effects [Rod07] and makes it possible to easily distinguish crystals

of one, two or more layers. The number of layers and the cleanliness of the crystal are verified

using Raman spectroscopy and AFM.

The samemechanical exfoliation process was used for the fabrication of thin hBN crystals. The

raw material of the presented samples was produced by Kenji Watanabe and Takashi Taniguchi

at high pressure (1.5 GPa) and high temperature (1500 ∘C) at the National Institute for Materials

Science (NIMS), Japan [Tan07][Wat04]. In other samples, commercially available hBN powder

was used (produced byMomentive, product PT110) with no negative effect on the sample quality.

1 Nitto Denko “elp bt-150E-CM”
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Fabrication Process, Transfer of 2D Crystals, One Dimensional Contacts

Optical Microscope

x,y

z
Hotplate

XY-Stage
Z-Stage

Target

2D Crystal

Rotational Stage

Figure 3.2: Alignment Setup [Moh11].

Before the fabrication of the van-der-Waals heterostructure started, sapphire wafers which

were to be used as substrates for the final sampleswere prepatternedwithAuback gate structures
and markers using electron beam lithography and PVD of a double layer of 5 nm Cr and 30 nm Au
in an electron-beam evaporation system. The back gate structures were then covered by 20 nm
of Al2O3 grown by atomic layer deposition (ALD) (182 cycles at 200 ∘C) to prevent gate leakage
through cracks in the lower hBN layer. The sapphire wafers and additional Si/SiO2 wafers were

cleaned by rinsing them in acetone and isopropanol, oxygen plasma cleaning and further CO2
snow jet cleaning for the Si/SiO2 substrates that were to be used for exfoliation.

Our standard ”pick-up” process for making van-der-Waals heterostructures by stacking 2d

crystals [Moh11][Bor13][Du15], based on [Dea10][Wan13], follows these steps:

The rawmaterial is exfoliated onto Si/SiO2 wafers. The 300 nm SiO2 layer

enhances the contrast for single layer graphene and helps estimating

the thickness of hBN. After exfoliation, suitable crystals are selected

by optical inspection and AFM. To make room for the metal leads in

the final sample, unwanted surrounding graphite and hBN crystals are

carefully removed using a piece of paper and a toothpick.

The wafer piece with the hBN crystal that was chosen as the top layer is

spin coated with 7% wt. PPC in Ethyl-Acetate at 4000 rpm and baked at

100 ∘C for 10 minutes to evaporate the solvent.
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The PPC then forms a relatively rigid, thick layer. After scratching away

PPC around the edges of the wafer piece to remove PPC that had flown

around them, a roughly 0.5 mm thick PDMS stamp prepared in advance

is pressed on the wafer piece with a glass slide.

The PDMS sticks to the PPC, and the 2d crystal can be lifted from the

substrate by carefully pulling away the PPC/PDMS stack.

This 2d-crystal/PPC/PDMS stack is then attached to a glass slide and

mounted into the transfer setup (fig. 3.2), where it can be aligned onto

the target substrate, which is attached to a hotplate underneath, using

a xy-stage.

The 2d crystal/PPC/PDMS stack is slowly lowered onto the target, while

continuouslymonitoring through the opticalmicroscope and re-aligning.

Once contact is made, the hotplate is heated to 140 ∘C, which softens the

PPC and flattens out remaining wrinkles or bubbles.

The heat also weakens the bond between PDMS and PPC and allows to

detach the PDMS and glass slide.

The PPC can now be picked up again, together with the stack of 2d-

crystals (back to step 3). If it shows cracks or other damage, it is dissolved

in acetone and new PPC is spin-coated for the next transfer step (back

to step 2).

The process is repeated with different materials until the desired het-

erostructure is completed. The final structure is annealed at 280 ∘C in

air for about 3 h.
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Figure 3.3: AFM images of hBN-graphene-hBN triple layer on metal back gate showing “bubbles” of
accumulated impurities and the effect of annealing. The bright, square area is the Au back gate, other
edges are edges of top and bottom hBN crystals. The graphene covers almost the entire back gate, the
substrate is only visible in the lower left corner. (l) after transfer (r) after annealing in air at 280 ∘C
for 3h

The product of the stacking process is a triple-layer hBN-graphene-hBN “sandwich” on top

of an Au back gate. As was shown in a study using transmission electron microscopy (TEM) by

Haigh et al. [Hai12], the interfaces of hBN and graphene turn out to be surprisingly clean, thanks

to a self-cleaning effect which is further enhanced by thermal annealing. Remaining residues,

mostly hydrocarbons, accumulate in distinct regions that are easily visible as “bubbles” in AFM

images (fig. 3.3). By simply designing the structures within the atomically flat and clean areas

in between them, perfectly clean and flat samples can be made. While this process leads to

the best quality substrate-supported graphene, the downside is that the random distribution

and shapes of exfoliated crystals and the random appearance of wrinkles and bubbles after the

transfer make every sample unique. Therefore, every sample requires individual planning and

design of the metallic contact and gate structures.

a b c d

Figure 3.4: One-dimensional edge-connections. (a) reactive ion etching (RIE) of trenches into hBN.
(b)Metal deposition. (c) Conected device. (d) Close up of 1-d contact

The electrical connections to the graphene layer were made through “one-dimensional edge-

contacts” [Wan13]. Since the graphene is completely encapsulated, it cannot be connected

directly. Instead, RIE was used to etch trenches or holes into the hBN-graphene-hBN triple

layer, followed by physical vapor deposition (PVD) of 10nm Ti / 80nm Al. While [Wan13] used

a separate lithography step and a hydrogen-silsesquioxane (HSQ) mask for the etching step,

here etching and metal deposition were done using the same PMMA mask, and only a single

lithography step. This ensures that there is no overlap of the contact metal and the active area,

allowing a top gate that is effective up to the edge of the graphene. For sample B, the lithography

was divided into two sub-steps in an attempt to create a sample with Corbino geometry, which
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typically requires an air bridge to connect the center electrode. In the first step, only the regions

where the graphene was to be connected were exposed, and holes were etched through the

top hBN layer, graphene and part of the lower hBN layer using RIE (40 sccm CHF3, 4 sccm O2,

60 mTorr, 60 W, 2.5 min, etch rate 48 nm min−1 PMMA, 23 nm min−1 hBN).Then, the same PMMAmask

was exposed again, this time defining the leads and bonding pads, followed by a short O2 plasma

to clean the exposed edge and finally the metal deposition. The leads defined in the second

lithography step are isolated from the graphene by the top hBN layer and thus could be used

instead of air-bridges to connect a center electrode.

After depositing the contacts, another electron beam lithography step and RIE was used to

etch the triple layer into the desired rectangular shape. In sample B, a top gate covering half

of the length of the channel was added by growing another 20nm of Al2O3 using ALD, defining

the pattern using electron beam lithography and depositing 10nm Ti/80nm Al. Due to the edge-

connection and reusing the PMMA mask, the top gate can be effective up to the edge of the

graphene channel, forming only a single p-n junction. The Al2O3 layers are separated from the

graphene channel by the hBN crystals, so charge traps that typically impair the carrier mobility

cannot influence the transport. Since the top gate and one of the electrodes are only separated

by the Al2O3 layer, the thickness of this layer (20 nm) limits the maximal possible gate voltage,

independent of the hBN thickness.

Figure 3.6 shows AFM images of the devices “A” and “B” whose data is presented in this thesis,

table 3.2 shows the sample parameters.
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Figure 3.5: Schematic cross-sections of samples A and B

Figure 3.6: AFM images of samples A and B

Parameter Sample A Sample B

Width 3.0 μm 5.0 μm

Length 350 nm 1.0 μm

Top Al2O3 - 20 nm

Top hBN 45 nm 55 nm

Bottom hBN 35 nm 45 nm

Bottom Al2O3 20 nm 20 nm

Table 3.2: Geometric sample parameters
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3.1.2 Tunnel Junction Fabrication

Figure 3.7: (a) Schematic cross section of Niemeyer-Dolan technique with resist double layer of
MMA/MAA (green) and PMMA(brown), first metal deposition (red), oxide layer (yellow), and second
metal deposition (blue). (b) AFM image of a tunnel junction
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Fig. 3.8: Resistance versus inverse
area of tunnel junctions

The tunnel junction reference samples for the noise

measurements were made using the Niemeyer–Dolan

technique [Dol77; Nie76; Nie74], i.e. a suspended re-

sist mask and metal evaporation under two different

angles as shown in fig. 3.7. First, a resist double-layer

of 800 nm of MMA/MAA and 200 nm of PMMA was spin

coated onto a sapphire substrate. The pattern, consist-

ing of an array of strips of varying width, each with

a gap of 300 nm to 500 nm was written into the resist us-

ing an electron beam with a dose of 440 μA s cm−2. For

junctions with smaller area, the region of the gap was

additionally exposedwith a smaller dose of 130 μA s cm−2.

Due to the higher sensitivity against electron exposure

of the bottom resist layer and the proximity effect, this led to a suspended bridge of PMMA in

the gap after developing the resist in IPA/MIBK. The metal deposition was performed in an UHV

MBE system, where the sample can be tilted with respect to the metal source. After the first

deposition of 50 nm Al, the sample was moved from the main evaporation chamber into the load

lock. Here, it was exposed to 400 Pa of pure O2 for 30 min to 60 min to create the oxide barrier,

before it was moved back to the main chamber for deposition of the second layer of 80 nm Al. The

two evaporations were done with the sample tilted in opposing directions, shifting the pattern by

700nm (350nm in either direction), and creating the overlap. The final junction area is defined

by the width of the strip, the length of the gap, and the angle of the two evaporations. In the

junctions used here, the shift and the parameters for oxidization were kept constant, and only

the junction area was tuned to create junctions of varying resistance. The junction resistance is

inversely proportional to the overlap area with 𝑅 = 1.888 kΩ μm2 1
𝐴
, as shown in fig. 3.8.
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3.2 Measurement Setup

3.2.1 Cryostat

The measurements were performed in a BlueFors LD250 cryogen-free dilution refrigerator.

It reaches a cooling power of 350 μW at 100mK, and a base temperature below 7mK for the

empty cryostat. With the additional thermal load of the multiple coaxial lines used for RF

measurements, the base temperature reaches 10mK to 20mK. The cryogen free system makes

use of two closed helium circuits and does not require any additional cryogen. Instead of a

liquid helium bath, it is cooled down to about 4K using a two stage pulse tube cooler. Since this

temperature is not low enough to condense the 3He/4He mixture, a compressor has to be used

during the cooldown. The two stages of the pulsetube at about 50K and 4K, the still at about

800mK, a heat exchanger at about 50mK, and the mixing chamber at base temperature define

the temperatures of the plates where equipment can be installed.

The shot noise measurements were performed simultaneously with standard conductance

measurements. This required using two separate cable systems for RF and DC signals. At the

time of themeasurements, the cryostat was equipped with 24 DC lines at the 4K level, 48 DC lines

at the mixing chamber level, and 8 coaxial RF lines. It has since been upgraded with another set

of 24 DC lines, optionally ending at the 4K or mixing chamber level. When installing cables, care

has to be taken to ensure good thermalization at each temperature level, and to reduce thermal

conduction in between the different plates. This reduces the heat load on the low temperature

plates and thus the base temperature. For the DC cabling, thermalization can easily be achieved

by winding the cables around a pin on each plate. For normal conducting metal wires, the

thermal decoupling between the plates is hindered by the Wiedemann-Franz law, which states

that thermal and electrical conductivity are proportional at low temperature. Thin phosphor

bronze wires, whose conductivity shows little temperature and magnetic field dependence are

used as a compromise down to the mixing chamber plate. Within the constant temperature

domains at 4K and at base temperature, copper wires are used.

For the coaxial RF cables, the central conductor is both electrically and thermally insulated

from the outer conductor by the dielectric. To thermalize it, 1 dB attenuators were added at each

plate. As an additional complication, the stainless steel cables designed for low temperature use

are very rigid. To make use of their low thermal conductivity while keeping flexibility when

connecting and rearranging parts, we combined softer, thermally conductive cables with short

segments of stainless steel cable.

3.2.2 DC Measurement

Filtering

Besides lowering the phononic temperature by thermally anchoring the cables, the electronic

temperature has to be reduced using low pass filters. In our setup, we use a combination of

RC filters and PCB copper powder filters which take over for frequencies above the RC filter’s

re-entry frequency (> 5 GHz). The RC Filters consist of three resistors with 𝑅1 = 330 Ω, 𝑅2 = 220 Ω,
and 𝑅3 = 100 Ω, with 𝐶 = 100 nF capacitors to ground before and after each resistor, leading to a
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Fig. 3.9:
Overview
of Cryo-
stat. Only
2/8 RF
lines and
5/48 DC
lines are
shown.
Not to
scale.

Still Pumping Line

-10dB 𝑉Noise

𝑉DS

𝑉G-1
0
d
B

Still

Mixing Chamber

Bias Tee Box

RC Filters

Copper Powder Filters

Magnet

Sample Holder

Condensing Line

Pulse Tube

LT Amplifier

Circulator

RF Switch

𝑉𝑔

Heat Exchanger



3.2 Measurement Setup 31

transfer function given by [Bor13]

𝐻 =
1

1 + 𝑖𝜔𝐶𝑍1 + (𝑖𝜔𝐶)2𝑍2 + (𝑖𝜔𝐶)3𝑅1𝑅2𝑅3
, (3.1)

with 𝑍1 = 3𝑅1 + 2𝑅2 + 3𝑅3 and 𝑍2 = 2𝑅1𝑅2 + 2𝑅3𝑅1 + 𝑅2𝑅3. The cutoff frequency was designed to

be around 1kHz. While the isolated filter shows the expected behavior, the cutoff frequency is

much lower in the actual measurements. Fig. 3.10 shows the calculated real part (solid line)

and phase shift (dashed line) of the RC filters. The dots show the phase shift of the AC current

through the complete measurement setup (with a tunnel junction sample) versus the frequency

of the AC excitation, measured using the lock-in amplifier. Compared to the expected behavior

of the isolated filters, the cut-off frequency is reduced due to the additional sample resistance,

capacitance, and impedance of the twisted pair wiring (using one wire, while the other one is

grounded). The phase shift reaches 90° already at 50Hz. The DC properties weremeasured using

100 101 102 103 104

Frequency [Hz]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Tr
an

sf
er

 F
un

ct
io

n 
H

 [d
B

]

140

120

100

80

60

40

20

0

Ph
as

e 
Sh

if
t [

de
g]

Phase shift
calculated
measured

Figure 3.10: Calculated transmission function (solid line) and phase shift (dashed line) of the RC filters
and measured phase shift of the full setup (dots) with a tunnel junction sample

a combination of direct measurement with multimeters (Agilent 34410) and lock-in amplifiers.

Therefore, the lock-in measurements were performed at frequencies between 10Hz to 20Hz.

3.2.3 Shot Noise Measurement

Practical Noise Measurement Techniques

The purpose of the RF measurement setup is finding the spectral density of the current fluc-

tuations generated by the sample, 𝑆𝑆
𝐼 , which can be related to the transport mechanisms as

described in section 2.3.2. At typical currents of micro amperes, 𝑆𝑆
𝐼 ≈ 2𝑒⟨𝐼⟩ is in the order of

1 × 10−24 A2 Hz−1, and the main challenge of measuring the shot noise signal is its tiny amplitude.

Thus, the signal has to be heavily amplified. At the same time, the measured noise power, i.e.

the integrated spectral power density, can be increased by measuring with a large bandwidth.

But trying to improve these two parameters – gain and measurement bandwidth – comes at the

cost of technical complications. Using standard low-noise techniques only allows measurements
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up to 10kHz due to the RC cut-off problems [Wu07]. At these low frequencies, 1/f noise is still

prevalent. On the other hand, commercially available microwave equipment suitable for MHz
to GHz frequencies is standardized to a wave impedance of 𝑍0 = 50 Ω, which does not match

mesoscopic samples with a varying resistance of up to several kΩ. The mismatch leads to reflec-

tion of a part of the signal, further obstructing the measurement. Techniques that try to solve

this issue include the use of resonator circuits [Gla09] and impedance matching networks. But

the design of a matching network for a large bandwidth is challenging, especially considering

the variable sample impedance and the limited space available on the sample holder [Thü12].

The measured noise power at the end of the amplifier chain typically is accompanied by a

noise floor that is orders of magnitude higher than the pure shot noise signal. But this additional

noise is not proportional to 𝐼DS and can be substracted, resulting in the excess noise

𝑆exc
𝐼 = 𝑆𝐼 (𝐼) − 𝑆𝐼 (0). (3.2)
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Figure 3.11: Cross correlationmeasurement scheme. Source: [Gla09]©2009 EDP Sciences, Springer-Verlag

Nevertheless, because of the uncertainty of the real gain and bandwidth of the measurement

setup, which may even change between cool downs, the absolute noise power generated by the

sample cannot be easily recovered from the amplified signal.

One method to reduce or eliminate these spurious influences is the measurement of the cross-

correlated signal of two separate amplifier chains [Gla09] as shown in figure 3.11. The noise

power is retrieved using a correlator and Fast Fourier Transformation. Since the amplifier noise

is uncorrelated, the amplifier voltage noise, and in special cases even the current noise, can be

completely eliminated from the signal, similar to the DC four point measurement technique. On

the other hand, this method effectively requires doubling the entire measurement setup, and

due to the computing power needed for the correlation and FFT it limits the bandwidth to 2 GHz
[Gla09].

In this work an alternative approach using a RF switch at low temperature to toggle between

a reference sample with a known Fano factor and the device under test was used.

RF Measurement Setup

The RF circuit is shown in figure 3.12. The noise generated at the sample is coupled into coaxial

cables with wave impedance 𝑍0 = 50 Ω. Using bias-tees on the mixing chamber plate, the
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Figure 3.12: Schematic of the shot noise detection method.

RF and DC signal are separated. The RF lines are thermalized with 1dB attenuators on the

intermediate and still plates at 50mK and 800mK respectively. at the 4K level, the RF switch

connects either line to the amplifier chain. In between of the switch and the low temperature

first stage amplifier a circulator was installed, a passive three terminal component that transmits

the signal in clockwise direction from one port to the next, but suppresses the reverse direction.

Thus, the back-action noise coming from the amplifier is directed to a 50 Ω shunt resistor installed

on the still plate at 800mK, where it is absorbed.

The RF setup was characterized at room temperature using a vector network analyzer (VNA)

with a bandwidth of 0GHz to 6GHz.1 Fig 3.13 (left) shows the transmission 𝑆21 from the sample

to the top of the cryostat for either setting of the RF switch, labeled “Green” and “Red” and

indicated by a corresponding LED on the controller box. This includes the 42dB gain of the

low temperature amplifier. The average transmission 𝑆21 from 4GHz to 6GHz is 31dB. 𝑆21 and

𝑆12 of the first part of the setup, from the sample holder to the input of the low temperature

amplifier, are shown in fig 3.14. The effect of the circulator can be seen by comparing 𝑆21 and

𝑆12, where the transmission from the amplifier to the sample, 𝑆12, is suppressed by ≈ −13 dB
compared to the reversed direction. The circulator 2 is specified for operation at 0.1K to 77K,

with a minimum isolation of 18dB and a maximum loss of 0.4 dB, so the S-parameters of this

section are expected to change for the operation at low temperature. The mean loss of this first

stage of the measurement setup in the range of 4GHz to 6GHz is ≈ 2.8 dB, not including loss

on the sample holder itself. 2 dB can be attributed to the attenuators used for thermalization.

Fig 3.15 shows the transmission from the output of the low temperature amplifier to the top

of the cryostat, where the average loss within the range of 4GHz to 6GHz is ≈ 4.9 dB. The gain
of the room temperature amplifiers was measured as 37.6 dB for model 018B and 36dB for

model 942B. The expected gain of the complete measurement setup can then be estimated as

1 The VNA was not calibrated for the long measurement cables that were used, but the attenuation measured sepa-
rately and has been substracted from the data, along with additional 20dB attenuation that was installed during
measurements with amplifiers.

2 Pamtech CTH0408KC
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Figure 3.13: Left: 𝑆21 from the sample holder to the top of the cryostat, including the 42dB LT LNA,
for either position of the RF switch, measured at room temperature. Right: Spectral analysis of tunnel
junction noise with and without bandpass filter at 3MHz resolution bandwidth, measured at low
temperature
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Figure 3.14: 𝑆21 and 𝑆12 from the sample holder to the input of the low temperature amplifier, showing
the effect of the circulator. Measured at room temperature (outside of the operating temperature
range of the circulator 0.1K to 77K)
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Figure 3.15: 𝑆21 and 𝑆12 from the output of the low temperature amplifier to the top of the cryostat
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𝑔 = (31 − 10 + 37.6 − 10 + 36)dB = 84.6 dB using all three amplifiers, and 𝑔 = 58.6 dB using only one

room temperature amplifier. After amplification, the RF signal passes a bandpass filter. Typically,

themeasurementswere performed at the largest possible bandwidth of 4.6 GHz to 7.2 GHz. At this
bandwidth, the expected product of gain and bandwidthGBW is 7.50 × 1017Hz and 1.88 × 1015Hz,

respectively. Note however, that the measurements were performed at room temperatures,

and the properties of the amplifier, the low temperature coaxial cables, and the circulator can

change drastically when cooled down. The amplified signal is finally fed into a Schottky noise

detector diode1, which integrates the bandwidth selected by the bandpass filter and outputs

a (negative) DC voltage with a sensitivity of 𝛼D = 0.5 mV μW−1, which can be measured as a DC

signal using a multimeter (𝑉Noise), or as a differential signal d𝑉Noise measured using a lock-in.

Impedance Mismatch

It is common to express the power of a noise source with constant (white) current spectral

density 𝑆𝐼 in terms of an equivalent temperature of thermal noise given by 𝑇 ∶= 𝑅
4𝑘B

𝑆𝐼 . Using

eq. (2.50), the sample can then be represented by a thermal noise source with

𝑇𝑠 =
𝑅𝑑
4𝑘B

𝑆𝐼

=
𝑅𝑑
4𝑘B (4𝑘B𝑇𝑒

1
𝑅𝑑 [(1 − ℱ ) + ℱ

𝑒𝑉
2𝑘B𝑇

coth (
𝑒𝑉

2𝑘B𝑇𝑒 )])

= 𝑇𝑒(1 − ℱ ) +
𝑅𝑑
4𝑘B

ℱ 2𝑒𝐼 coth (
𝑒𝑉

2𝑘B𝑇𝑒 ) (3.3)

where 𝑅𝑑 = d𝑉
d𝐼

is the sample’s differential resistance and 𝑇𝑒 is the electronic temperature.

𝑅𝑑 𝑍0𝛿𝐼s 𝛿𝐼m

Fig. 3.16: Simple model of the cou-
pling to the measurement setup

Special attention has to be paid to the coupling of

this noise signal to the measurement setup. The prob-

lem of impedance mismatch can be understood from

the simplified model shown in fig. 3.16. The sample is

modeled as a noiseless resistor in parallel to an ideal

current noise source 𝛿𝐼S, and the detector (i.e. the first

amplifier) is represented as a resistor 𝑍0 = 50 Ω. The
mean power transferred to the detector is given by

𝑃𝑚 = ⟨𝛿𝐼2
𝑚⟩𝑍0, and with 𝛿𝑈 = (

1
𝑅𝑑

+ 1
𝑍0 )

−1
𝛿𝐼𝑆 we get

𝑃𝑚 =
⟨(

𝛿𝑈
𝑍0 )

2

⟩
𝑍0 = (

𝑅𝑑
𝑅𝑑 + 𝑍0 )

2

⟨𝛿𝐼2
𝑆⟩𝑍0

=
4𝑅𝑑𝑍0

(𝑅𝑑 + 𝑍0)2
1
4

⟨𝛿𝐼2
𝑆⟩𝑅𝑑 (3.4)

Maximumpower transfer is achieved for 𝑅𝑑 = 𝑍0 (more generally 𝑍𝑑 = 𝑍∗
0 ), where 𝑃𝑚 = 1

4
𝑃𝑆 . For

mismatched samples 𝑅𝑑 ≠ 𝑍0, only a fraction of the available noise is coupled into the detector.

1 Krytar 201B
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The same effect can be described in terms of transmission and reflection coefficients for the

electromagnetic waves traveling between the sample and the detector, taking into account the

transmission line in between. While the amplifier is matched to the wave impedance of the

coaxial cable, the impedance mismatch on the sample side leads to an amplitude reflection

coefficient 𝛤 (𝑅𝑑) ∶= 𝑅𝑑−𝑍0
𝑅𝑑+𝑍0

[Poz12]. The coeffcient for the transmitted power is given by

1 − |𝛤 |2 = 1 − (
𝑅𝑑 − 𝑍0
𝑅𝑑 + 𝑍0 )

2

=
4𝑅𝑑𝑍0

(𝑅𝑑 + 𝑍0)2 , (3.5)

as derived from the simple model in eq. (3.4). For a sample with conductance in the order of the

conductance quantum 𝐺0, (1 − |𝛤 ( ℎ
2𝑒

)|2) ≈ 1.5 %, while low resistance graphene samples can reach

(1 − |𝛤 (200 Ω)|2) ≈ 64 %. For shot noise, this reduction of transmission gets partly compensated

by increased noise power, since the spectral power density 𝑆𝐼𝑅𝑑 scales with 𝑅𝑑. Thus, despite

the mismatch, more power is delivered to the amplifier for increased sample impedance at a

fixed current. The noise power originating from the sample that is coupled into the detector is

given by

𝑇𝑚,𝑠 = (1 − |𝛤 |2) 𝑇𝑠

=
4𝑅𝑑𝑍0

(𝑅𝑑 + 𝑍0)2 (𝑇𝑒(1 − ℱ ) +
𝑅𝑑
4𝑘B

ℱ 2𝑒𝐼 coth (
𝑒𝑉

2𝑘B𝑇 ))

= (1 − |𝛤 |2) 𝑇𝑒(1 − ℱ ) +
1

𝑘B (
𝑅𝑑

𝑅𝑑 + 𝑍0 )

2

ℱ 2𝑒𝐼 coth (
𝑒𝑉

2𝑘B𝑇 ) 𝑍0 (3.6)

A more realistic model of the setup, including spurious noise sources, is shown in figure 3.17.

To understand the final measurable signal (𝑉Noise) at the output of the amplifier chain, the role

of this additional noise has to be understood. Assuming an ideal circulator and lossless (and

therefore noiseless) transmission lines in between the components, three main sources of noise

remain: the sample itself (𝑇𝑆), the shunt resistor (𝑇𝑁 ), and the first amplifier (𝑇0). The sample

noise 𝑇𝑆 is coupled to the amplifier through the transmission coefficient (1 − |𝛤 |2) as describes
above. But besides reducing the transmitted signal, the mismatch also causes back-reflection

of noise at the sample which is coming from the direction of the detection setup, mostly the

thermal noise generated at the shunt resistor 𝑇𝑁 , with a coefficient |𝛤 |2. Lastly, the amplifier

noise 𝑇0 is coupled to the matched shunt resistor, adding a constant offset 𝑇0. The total noise

sensed by the detector then reads

𝑇𝑚 = (1 − |𝛤 |2) 𝑇𝑠 + |𝛤 |2 𝑇𝑁 + 𝑇0. (3.7)

While the incident noise power 𝑇𝑁 is constant, a variation of the sample resistance changes

the reflection coefficient |𝛤 (𝑅𝑑)|2 and can distort the measured signal. The third term, 𝑇0, also

includes additional amplifier noise, i.e. noise that is added after the first amplification stage.

It accounts for the biggest part of the absolute measured signal, yet being constant (except for

some drift on longer timescale) it can easily be subtracted.



3.2 Measurement Setup 37

𝑅𝑑 𝛿𝐼s 𝑍0

𝑍0

𝛿𝐼N

𝑍0 𝛿𝐼0

𝛿𝑈0

Shunt resistor, 𝑇𝑁

First amplifier, 𝑇0Sample, 𝑇𝑆

(1 − |𝛤 |2) 𝑇𝑆

|𝛤 |2 𝑇𝑁

Figure 3.17: Noise sources in the measurement setup.

The output voltage of the noise detector diode then is given by

𝑉Noise = 𝛼D × GBW × 𝑘B𝑇𝑚

= 𝛼D × GBW ((1 − |𝛤 |2)
1
4

𝑆𝐼,𝑠𝑅𝑑 + |𝛤 |2𝑘B𝑇𝑁 + 𝑘B𝑇0) (3.8)

where 𝛼D is the sensitivity of the diode (𝛼D = 0.5 mV μW−1) and GBW is the product of gain 𝑔 and

bandwidth BW. The spectral density of current fluctuations was given by (2.50) as

𝑆𝐼,𝑠 = 4𝑘B𝑇
1
𝑅 [(1 − ℱ ) + ℱ

𝑒𝑉
2𝑘B𝑇𝑒

coth (
𝑒𝑉

2𝑘B𝑇𝑒 )] (2.50)

=
4𝑘B𝑇𝑒

𝑅𝑑
+ ℱ

4𝑘B𝑇𝑒
𝑅𝑑

(𝑥 coth(𝑥) − 1) with 𝑥 ∶=
𝑒𝑉

2𝑘B𝑇𝑒
(3.9)

=∶ 𝑆Th
𝐼,𝑠 + 𝑆Shot

𝐼,𝑠 . (3.10)

The aim of the next sections is recovering 𝑆𝐼,𝑠 and ℱ , theoretically given by (2.50), from the

experimentally measured signal 𝑉Noise.

Samples with Linear IV Characteristic

For linear samples with 𝑅𝑑(𝐼) = 𝑅𝑑(0) = const (i.e. normal conducting graphene or a tunnel

junction), 𝛤 is constant, the only bias dependence is caused by 𝑆𝐼,𝑠, and all of the additional

noise can be subtracted by subtracting the noise at zero bias (in graphene, 𝑅𝑑 may still depend
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on the gate voltage, which stays constant during bias sweeps).

𝑉Noise(𝐼) − 𝑉Noise(0) = 𝛼𝐷 GBW (1 − |𝛤 |2)
1
4

𝑅𝑑 (𝑆𝐼,𝑠(𝐼) − 𝑆𝐼,𝑠(0))

= 𝛼𝐷 GBW (1 − |𝛤 |2)
1
4

𝑅𝑑 ℱ (2𝑒𝐼 coth (
𝑒𝑉

2𝑘B𝑇𝑒 ) −
4𝑘B𝑇𝑒

𝑅𝑑 )

= 𝛼𝐷 GBW (1 − |𝛤 |2)
1
4

𝑅𝑑 2𝑒𝐼 ℱ (coth (
𝑒𝑉

2𝑘B𝑇𝑒 ) −
4𝑘B𝑇𝑒
2𝑒𝑉 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐹

= 𝛼𝐷 GBW (1 − |𝛤 |2)
1
4

𝑅𝑑 𝑆exc
𝐼,𝑠 , (3.11)

with excess noise

𝑆exc
𝐼,𝑠 = (𝑆𝐼,𝑠(𝐼) − 𝑆𝐼,𝑠(0)). (3.12)

A bias dependent “full” Fano factor 𝐹 that includes the effects of thermal noise at low bias can

be defined as [Wu07]

𝐹 (𝐼) ∶=
1

2𝑒𝐼
𝑆exc

𝐼,𝑠 . Full Fano factor (3.13)

For 𝑒𝑉 ≫ 𝑘B𝑇 , it is equal toℱ . Since 𝑅𝑑 , 𝛤 and 𝐼 are known from simultaneous DC conductance

measurement, only the proportionality constant given by the diode sensitivity 𝛼𝐷 = 0.5 mV μW−1

and the gain bandwidth product GBW are needed to recover 𝐹 . This calibration constant is the

main parameter that has to be measured on the reference tunnel junction sample with known

Fano factor.

Using the Lock-Inmeasurement, the differential noise output voltage can bemeasured directly.

With d𝑅𝑑 = 0, the measured signal is given by

d𝑉Noise = 𝛼D × GBW (1 − |𝛤 |2)
1
4

𝑅𝑑 d𝑆𝐼,𝑠. (3.14)

By defining the “differential” Fano factor 𝐹𝑑 as [Wu07]

𝐹𝑑 ∶=
1
2𝑒

d𝑆𝐼,𝑠

d𝐼
⇒ d𝑆𝐼,𝑠 = 2𝑒𝐹𝑑 d𝐼, (3.15)

we get

d𝑉Noise
d𝐼

= 𝛼D × GBW (1 − |𝛤 |2)
1
4

𝑅𝑑 2𝑒𝐹𝑑 , (3.16)

where again 𝐹𝑑 = 𝐹 = ℱ for 𝑒𝑉 ≫ 𝑘𝐵𝑇 . The full Fano factor can be found by integration of the

differential Fano factor as

𝐹 =
1
𝐼

𝐼

∫
0

𝐹𝑑 d𝐼 =
1

2𝑒𝐼
(𝑆𝐼 (𝐼) − 𝑆𝐼 (0)), (3.17)



3.2 Measurement Setup 39

and the spectral current density is given by

𝑆AC
𝐼,𝑠 = (𝛼𝐷 GBW (1 − |𝛤 |2)

1
4

𝑅𝑑)

−1 𝐼

∫
0

d𝑉Noise
d𝐼

d𝐼 + 𝑆𝐼,𝑠(0). (3.18)

The integration constant 𝑆𝐼,𝑠(0) has to be taken from the DC 𝑉Noise data.

Samples with Non-Linear IV Characteristic

For the measurements at high magnetic fields in section 4.3.2 and with proximity induced

superconductivity in section 4.4.3, 𝑅𝑑 is bias dependent and can no longer be considered constant.

This leads to changes of the measured signal due to the changing transmission and reflection

coefficients, and we have to take another look at the equation for the measured voltage,

𝑉Noise = 𝛼D × GBW ((1 − |𝛤 |2)
1
4

𝑆𝐼,𝑠𝑅𝑑 + |𝛤 |2𝑘B𝑇𝑁 + 𝑘B𝑇0) . (3.8)

The nonlinearity in𝑅𝑑(𝐼) influences the signal in a complicatedway, depending on the impedance

mismatch 𝛤 , the magnitudes of sample noise 𝑇𝑆 and thermal noise 𝑇𝑁 , and the strength of the

nonlinearity itself. Additionally to the effect of changing 𝛤 , the spectral power density of thermal

noise generated by the sample 𝑆Th
I,s also depends on 𝑅𝑑 . Finding a completely accurate model is

a difficult task, since the exact values of these parameters may depend on details that have not

been considered so far and may even be hard to determine, for example the effect of additional

loss (and noise) in the bias tees, switch and transmission lines, and the actual behavior of the

circulator in mismatched condition. Anyhow, a rough estimation shall be made.

Themeasured voltage (3.8) can bewritten as a function of sample noise and sample impedance,

with a differential

d𝑉Noise(𝑆𝐼,𝑠, 𝑅𝑑) = 𝛼𝐷 GBW [ (1 − |𝛤 |2)𝑅𝑑
1
4

d𝑆𝐼,𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
1©

+ d ((1 − |𝛤 |2)𝑅𝑑)
1
4

𝑆𝐼,𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2©

+ d(|𝛤 |2)𝑘B𝑇𝑁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
3©

]

= 𝛼𝐷 GBW [(1 − |𝛤 |2)𝑅𝑑
1
4

d𝑆𝐼,𝑠 +
2𝑍0

(𝑅𝑑 + 𝑍0)3 (𝑅𝑑𝑍0𝑆𝐼,𝑠 + 2(𝑅𝑑 − 𝑍0)𝑘B𝑇N) d𝑅𝑑]
(3.19)

Term 1© is equal to (3.14) and describes change due to actual variation of the sample noise 𝑆𝐼,𝑠.

Term 2© describes the variation of transmission from the sample, term 3© is the variation of the

reflection of noise incident on the sample. We can now recover 𝑆𝐼,𝑠 by integration of d𝑉Noise. To

calculate the compensation term, 𝑆𝐼,𝑠 in term 2© can be taken from the DC measurement and 𝑇𝑁
can be taken as the temperature of the shunt resistor connected to the circulator.

Another small distortion caused by nonlinear 𝑅𝑑 could come from the thermal noise baseline
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of the sample noise, 𝑆Th
I,s . From (3.10) we get

𝑆𝐼,𝑠 = 𝑆Shot
𝐼,𝑠 + 𝑆Th

𝐼,𝑠 = 𝑆Shot
𝐼,𝑠 +

4𝑘B𝑇𝑒
𝑅𝑑

(3.20)

d𝑆𝐼,𝑠 = d𝑆Shot
𝐼,𝑠 −

4𝑘B𝑇𝑒

𝑅2
𝑑

d𝑅𝑑 , (3.21)

and for the differentially measured noise voltage

d𝑉Noise(𝑆𝐼,𝑠, 𝑅𝑑) = 𝛼𝐷 GBW[(1 − |𝛤 |2)𝑅𝑑
1
4 ( d𝑆Shot

𝐼,𝑠 −
4𝑘B𝑇𝑒

𝑅2
𝑑

d𝑅𝑑) +

2𝑍0
(𝑅𝑑 + 𝑍0)3 (𝑅𝑑𝑍0𝑆𝐼,𝑠 + 2(𝑅𝑑 − 𝑍0)𝑘B𝑇N) d𝑅𝑑]. (3.22)

We finally reach the formula to recover the shot noise of the sample, compensated for the

distortion caused by nonlinear 𝑅𝑑:

d𝑆Shot
𝐼,𝑠 =

4
(1 − |𝛤 |2)𝑅𝑑 {

1
𝛼𝐷 GBW

d𝑉Noise−

⎡
⎢
⎢
⎢
⎢
⎣

2𝑅𝑑𝑍2
0

(𝑅𝑑 + 𝑍0)3 𝑆DC
𝐼,𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
1©

+
4𝑍0(𝑅𝑑 − 𝑍0)𝑘B𝑇𝑁

(𝑅𝑑 + 𝑍0)3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2©

− (1 − |𝛤 |2)
𝑘B𝑇𝑒
𝑅𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

3©

⎤
⎥
⎥
⎥
⎥
⎦

d𝑅𝑑}, (3.23)

where the corrections consists of a term 1© proportional to the noise itself, term 2© corresponding

to noise from the shunt resistor that is reflected at the sample, and term 3© corresponding to

the transmission of thermal noise from the sample. Ideally, term 2 and 3 should be as small as

possible, or cancel each other. From (3.9), a compensated Fano factor can be defined as

𝐹𝐶 ∶=
1

2𝑒𝐼
𝑆Shot

𝐼,𝑠 (3.24)
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3.2.4 Tunnel Junction Reference Measurements

To find the gain bandwidth product (GBW) of the measurement setup, the shot noise of tunnel

junction reference samples was measured. In the normal state, the Fano factor of a tunnel

junction is ℱ = 1. With constant 𝑅𝑑 , the noise voltage is given by (3.8), and using (3.9) we get

𝑉Noise = 𝛼D GBW {(1 − |𝛤 |2) 𝑅𝑑 [
4𝑘B𝑇

𝑅𝑑
+ ℱ 4𝑘B𝑇

𝑅𝑑 [
2𝑒|𝑉 −𝑉0|

4𝑘B𝑇
coth (

2𝑒|𝑉 −𝑉0|
4𝑘B𝑇 ) − 1]] + 𝑘B𝑇Noise} . (3.25)

Since the tunnel junction has a constant resistance, the noise components of the shunt re-

sistor 𝑇𝑁 and the amplifier 𝑇0 can’t be distinguished and have been combined to a total noise

background 𝑇Noise.
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Figure 3.18: Calibration measurement of a tunnel junction at 4 K, showing the direct measurement of
the noise detection diode (red dots), the differentially measured and integrated values (green dots)
and fitted curves according to equation (3.25)

Figure 3.18 shows example data of a tunnel junction that wasmeasured togetherwith sample A

in normal state at 4 K (corresponding to the first line in table 3.3). The red dots show the voltage

output of the noise detection diode, measured using the multimeter (𝑉 DC
Noise). The differential

of this output voltage d𝑉 AC
Noise was measured at the same time using a lock-in amplifier and a

small AC excitation of d𝑉 = 37 μV. The green dots show d𝑉 AC
Noise divided by the simultaneously

measured differential current change d𝐼AC and integrated1 over the current step between two

1 Cumulative trapezoidal numerical integration
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data points ∫ d𝑉 AC
Noise

d𝐼AC d𝐼 , where the integration constant was set such that the minimum of the

integrated data aligns with the minimum of the fit to the DC data. As shown in the inset of fig.

3.18, the lock-in measurement drastically improves the measurement accuracy. The red and

blue lines show the fit of the DC and lock-in measured data to 3.25. Each of the fit parameters

is responsible for a characteristic feature: 𝑉0 is equivalent to adjusting the zero offset on the

voltage amplifier for 𝑉DS, it shifts the entire curve along the abscissa. GBW determines the slope

at higher bias, and GBW and 𝑇Noise determine the overall 𝑉Noise floor. The electronic temperature

𝑇e defines the shape at low bias and is independent of the other variables, so it can be extracted

even if there is uncertainty about GBW and ℱ .

ℱ 𝑇MC [K] 𝑇Still [K] 𝑇4 [K] BW [GHz] 𝑔 [dB] GBW [Hz] 𝑉 min
Noise [mV] 𝑇Noise [K] 𝑇e [K]

#17

TJ-C4 1 4,182 4,325 3,8 2,6 79,86 2,49E+17 2,3 1,33 4,154

#19

TJ-C4 1 0,015 0,835 3,008 2,6 75,75 8,88E+16 1,2 2,03 0,246

TJ-C4 1 0,014 0,834 3,008 0,9 94,97 2,58E+18 28,8 1,44 0,254

TJ-C4 1 0,014 0,83 3,027 2,6 91,37 3,16E+18 56,4 2,58 0,261

TJ-C4 1 0,015 0,831 3,024 2,6 91,13 3,22E+18 58,1 2,61 0,333

#22

TJ-B7b 1 4,172 4,366 3,86 2,6 78,49 1,85E+17 51,7 40,28 9,054

TJ-B7b 1 0,013 0,832 3,119 2,6 79,57 2,35E+17 34,3 21,19 0,301

TJ-B7b 1 0,931 1,291 3,151 2,6 78,95 2,21E+17 37,0 24,20 2,0167

TJ-B7b 1 0,02 0,833 3,155 2,6 79,96 2,65E+17 34,3 18,73 0,296

Table 3.3: Fit parameters for tunnel junction reference measurements, assuming ℱ = 1. The blocks
correspond to cool downs #17,#19,#22 (see text)

The data presented in this thesis was mostly recorded during two cool downs1. During the first

cool down, the setup was modified by adding a second room temperature amplifier (increasing

the expected gain at room temperature from ≈ 59 dB to ≈ 85 dB), and before the second cool down

the shunt resistor at the circulator was moved from the ”4 K stage” (the actual temperature is

closer to 3 K) to the still stage at 800 mK. Table 3.3 shows fit results of calibration measurements,

naïvely assuming ℱ = 1.
The number that is given for the gain in table 3.3 was calculated by dividing the GBW by the

given bandwidth. This does not take into account the slight ”pink” filter, as higher frequencies

feel more attenuation in the caoxial cables due to the skin effect, which can already be seen in the

measurement up to 6 GHz in figure 3.13. This reduces transmitted power at higher frequencies,

so the gain will be underestimated by this calculation. Furthermore, during the measurement of

the attenuation the cryostat was done at room temperature, so the actual gain at low temperature

can be higher than the estimated value, and in conclusion, the values of GBW for the calibration

using TJ-C4 are reasonable.

1 cooldown serial numbers 19 and 22
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The noise temperature of the amplifier1 is specified to be ≈ 2 K at 𝑇 = 12 K, which would

roughly translate into ≈ 0.5 K at 𝑇LNA = 3 K during the measurement. Additionally, the shunt

resistor at the circulator, whose noise is almost entirely reflected at the sample due to |𝛤 |2 ≈ 1,
was at 3 K, but its contribution is reduced by cold attenuators.

On the other hand, the second tunnel junction ”B7b” which was used during the measurement

of the pn-junction sample, shows very different behavior. Besides moving the shunt resistor to

800 mK, the setup was not changed, so the fit parameters seem unrealistic. While the calculated

GBW is smaller than expected, 𝑇Noise is much higher. The noise temperature is calculated from the

measured noise voltage as 𝑇Noise = 𝑉 min
Noise

𝛼𝐷GBW
, so both discrepancies can be explained by a reduced

noise source power. To understand this behavior, IV curves were recorded at low temperature,
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Figure 3.19: Left: Calibration measurement of tunnel junction TJ-B7b at 15 mK, with a magnetic field
of 30mT. Right: IV characteristic of the tunnel junction at 15 mK in a constant current measurement
without magnetic field. Red and blue curves correspond to up and down sweeps. In the gray curve, a
constant series resistance of 1.7 kΩ was subtracted.

where it behaves as a Josephson junction. Figure 3.19 shows the IV characteristic, measured

at 15mK in constant current configuration. The junction has a very strong hysteresis where

the zero voltage state is only entered at zero bias, so it is highly underdamped due to the large

junction area 2.2. But it shows several features which indicate that the assumption of ℱ = 1
cannot be correct. In the superconducting state, a residual series resistance of ≈ 1.7 kΩ remains,

and it shows two different critical currents. Furthermore, the differential resistance should be

reduced at the peaks in the density of states at 2𝛥Al = 360 μeV, while twice of this value is found

in the IV. This behavior could be explained by assuming two or more junctions in series, so that

the bias voltage is divided. The shot noise of two identical junctions in series would be half,

additional series resistance further reduces ℱ , and the actual Fano factor is unknown.

In conclusion, the calibration data unfortunately is not reliable, at least for cool down #22, i.e.

the data of sample B. At the time of the measurement, exchanging the reference sample was

no option, since this would have put the graphene sample at risk. In the following, noise data

will be presented using GBW from the earlier calibration, but the resulting values for the Fano

factor and the current spectral density can only be seen as an rough estimation.

1 Model: LNF-LNC4_8A s/n 083
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Figure 4.1: Overview of the data presented in this chapter, schematically arranged by measurement
conditions. Left: with respect to charge carrier density imbalance 𝛥𝑛 and field 𝐵, right: with respect
to 𝐵 and temperature 𝑇 .

Despite the simple geometry of samples presented in the last chapter, a rich variety of physics

can be accessed by varying the measurement conditions. The adjustable parameters are

𝑉DS source drain bias,

𝑉BG back gate voltage,

𝑉TG top gate voltage,

𝑇 = 𝑇MC mixing chamber temperature,

𝐵 = 𝐵⟂ perpendicular magnetic field.

The back gate potential adjusts the global Fermi level 𝐸F, along with the Fermi wavelength 𝜆F,

charge carrier density 𝑛 and other associated values. The top gate potential 𝑉TG only acts on half

of the sample where 𝐸F can be controlled independently, allowing to introduce a p-n junction by

increasing 𝛥𝑛 = 𝑛BG − 𝑛TG. By lowering the temperature 𝑇 , the Ti/Al contact leads can turn super-

conducting and effects of proximity induced superconductivity in graphene can be investigated.

45
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Finally, the magnetic field 𝐵 allows bending the semi classical trajectories of the charge carriers,

and by increasing it further, entering the Quantum Hall regime.

4.1 Ballistic Graphene

4.1.1 Basic Characterization

An instructive and typical initial measurement on any graphene device consists of sweeping the

gate voltage 𝑉G while measuring the resistance across the graphene channel. The electrostatic

field tunes the charge carrier density 𝑛 = 𝜖0𝜖𝑟
|𝑒|𝑑

𝑉G = 𝛼G𝑉G and the Fermi level 𝐸F = ℏ𝑣F√𝑛𝜋 in the

graphene as described in section 2.1.2.
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Figure 4.2: Gate sweep of sample A at 𝑇MC = 18 mK, 𝐵 = 20 mT to suppress superconductivity.
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Figure 4.3: Gate sweeps of sample B at 𝑉TG = 0 and 𝑉TG = 5 V, 𝑇MC = 4.2 K

The resulting plots of gate voltage and resistance of sample A and sample B are shown in figure

4.2 and 4.3. The upper x-axis shows the charge carrier density, calculated using 𝛼𝐺 extracted

from Shubnikov-de Haas measurements as will be described in detail in section 4.3.1. Evidently,

the resistance is asymmetric with respect to electron (𝑉G > 0) and hole conduction (𝑉G < 0). This
can be explained by the influence of the TI/Al contact leads. Due to a difference of the work
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functions of the metal and graphene, the contact leads cause local n-doping. At negative gate

voltages, the graphene channel is p-doped and pn-junctions emerge at the contacts, increasing

the sample resistance. This charge transfer also affects the overall doping, as can be seen from

the shift of the charge neutrality point (“Dirac point”) towards negative gate voltages. In both

samples, a small negative gate voltage is required to compensate the p-doping. The charge

neutrality point of sample A is at 𝑉 A
D = −1.05 V, corresponding to a residual charge carrier

density of 𝑛A
0 = 3.73 × 1011 cm−2 at 𝑉G = 0. For sample B we find 𝑉 B

D = −0.4 V, corresponding to
𝑛B

0 = 1.13 × 1011 cm−2.

The contact resistance 𝑅C can be estimated from the lowest resistance at high positive charge

carrier densities. Sample A was measured up to 𝑛 = 1 × 1012 cm−2, where the resistance tends to

𝑅 = 150 Ω. To calculate the extrinsic contact resistance, we can subtract the quantum resistance

𝑅𝑄 = ℎ
4𝑒2

1
𝑀
, with 𝑀 = [

2𝑊
𝜆F(𝑛) ] the number of conduction modes, to get 𝑅A

C = 1
2
(𝑅min − 𝑅𝑄)𝑊 =

1
2
(150 − 38) ∗ 3 Ω μm ≈ 168 Ω μm for sample A and 𝑅B

C = 1
2
(175 − 16) ∗ 5 Ω μm ≈ 397 Ω μm for sample B.
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Figure 4.4: Left: Conductivity 𝜎 in sample A. Right: Saturation density in log-log plot of conductivity,

the red dashed line shows the theoretical minimal conductivity at
4𝑒2

𝜋ℎ

An often mentioned figure of merit for the “quality” of graphene in the diffusive regime

is the mobility of charge carriers 𝜇. Within the Drude-Boltzmann model, it is related to the

conductivity and charge carrier density via 𝜎 = 𝜇𝑛𝑒. Using this formula leads to a mobility

of 𝜇 ≈ 26 × 103 cm2 V−1 s−1 at the saturation density 5 × 1010 cm−2 on the electron side (using

𝜎 = (𝑅 − 𝑅C)−1 𝐿
𝑊

excluding 150 Ω contact resistance). Below this saturation density, the gate

is no longer effective as transport is determined by residual disorder, as shown in fig. 4.4

[Du08]. In the top gated sample B, a mobility of 𝜇 ≈ 120 × 103 cm2 V−1 s−1 at saturation density

of 1.2 × 1010 cm−2 is found by the same analysis. Compared to sample B and reports in the

literature, where 𝜇𝐶 ≈ 7 × 104 cm2 V−1 s−1 for un-encapsulated graphene on hBN [Dea10] and

𝜇 ≳ 1 × 106 cm2 V−1 s−1 for encapsulated graphene [Wan13] have been reported, the mobility of

sample A seems relatively low. However, both devices show clear Fabry-Pérot interference

patterns for hole doping (sample A) or in the bipolar regime (sample B) which indicates ballistic

transport and questions the full applicability of the Drude-Boltzmann model.

At the charge neutrality point, a residual conductivity of 𝜎A
min = 3.71 𝑒2

ℎ
remains in sample A,

and 𝜎B
min = 5.58 𝑒2

ℎ
in sample B.
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4.1.2 Shot Noise

In section 2.3.2, ballistic transport was associated with noiseless conduction because transmis-

sion channels with 𝑇𝑛 ∈ {0, 1} don’t contribute to the shot noise signal. Therefore, a clean, short

and wide graphene strip in the ballistic regime should show noiseless transport as well. But

due to the relativistic nature of the charge carriers in graphene, at vanishing charge carrier

density around the Dirac point, transport occurs via evanescent modes. This leads to a universal

finite minimum conductivity [Kat11; Kat06a] and sub-poissonian shot noise with Fano factor

ℱ = 1
3
, equal to the one of a disordered metal [Two06]. Due to this analogy, where the transport

properties of ballistic graphene become identical to a diffusive system, this novel transport

regime is also called “pseudo-diffusive”. Figure 4.5 shows the theoretically expected dependence

of the minimum conductivity 𝜎min and the Fano factor ℱ on the width over length ratio (a,b)

and Fermi level (c,d) of a graphene strip. For wide and short samples, the noise is predicted

to be gate dependent with a maximum of ℱ = 1
3
at the charge neutrality point and ℱ ≈ 0.12

at higher density. The theoretical predictions were investigated experimentally by Danneau

W/ L = 5 (c)
7
6
5
4
3
2
1
0

W/L = 5 (d)

µW/ h̄

F

403020100-10-20-30-40

0.4

0.3

0.2

0.1

0

σ
[4
e2
/
h
]

π

υ

= 0 (a)

σ
[4
e2
/
h
]

3.5
3
2.5
2
1.5
1
0.5
0

µ

µ

= 0 (b)

W/ L

F

6543210

1

0.8

0.6

0.4

0.2

0

π
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et al. [Dan08] and DiCarlo et al. [DiC08] in 2008, and more recently by Mostovov [Mos14]. All

of these previous studies used graphene supported by thermally grown SiO2 on Si. Until now,
the theoretical predication of gate dependent F=1/3 has only been observed in one sample by

Danneau et al. [Dan08], where the width of the peak in the shot noise was much larger than
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theoretically expected[Lew08]. DiCarlo et al. [DiC08] didn’t observe any gate voltage dependence

and Mostovov [Mos14] didn’t reach the ballistic regime.

In this thesis, the graphene is encapsulated in hBN, which ensures ballistic transport, proven

by the observation of a clear Fabry-Pérot pattern, as shown in figure 4.2 and in section 4.2.1. The

measurementwas performed at a higher frequency range and larger bandwidth, which improves

the signal level and makes faster and more sensitive measurements possible. The following

data for sample A was analyzed using the calibration data of a tunnel junction with ℱ = 1, the
bandwidth was 4.6 GHz to 7.2 GHz, and the gain bandwidth product GBW = 3.17 × 1018 Hz.

At
𝑊
𝐿

= 8.6 for sample A, it can be considered “wide and short”, and thus should showℱ Th
max = 1

3

and 𝜎𝑇 ℎ
min = 4𝑒2

𝜋ℎ
according to the theory. Figure 4.6 shows data of a 𝑉G and 𝑉DS double sweep,

where for each gate value a bias curve was recorded. The left panel shows the raw data of |𝑉Noise|
for a selection of these bias sweeps. The slope 𝛥𝑉Noise/𝛥𝐼DS is related to the Fano factor by (3.16)

and a clear gate dependence is visible. For every bias sweep, the bias dependent Fano factor

𝐹 (𝐼) was calculated by integration of the differentially measured noise voltage d𝑉Noise according

to (3.17). The red curve in the right panel shows the average of 𝐹 (𝐼) at high bias.

Opposed to [DiC08], and qualitatively in agreement with [Dan08], the shot noise signal does

show a gate dependence, but the peak in the noise at the Dirac point is less sharp than expected.

The asymmetry of the electron and hole side could be explained by the p-n junctions that appear

due to doping from the contacts for a hole doped channel. However, with only ℱmax = 0.016,
the maximal Fano factor at the Dirac point is much lower than expected for pseudo-diffusive

transport. It is reduced by 80% at high charge carrier density on the electron side, which is

more than the theoretically expected relative change of about 64% fromℱ Th
Dirac = 0.33 toℱ = 0.12

[Two06], but in agreement with [Dan08], who also observed vanishing ℱ at high density, as

expected for ballistic transport with propagating states. The minimum conductivity is given by

𝜎min = 3.71 𝑒2

ℎ
≈ 2.9𝜎𝑇 ℎ

min.

Figure 4.7 shows data of another sample made from the same graphene sheet as sample A,

but with square geometry 𝑊 = 𝐿 = 1.5 μm. This measurement was performed in a separate cool-

down at 𝑇 = 4 K, with only one room temperature amplifier (hence the reduced level of 𝑉Noise),

and using the same reference tunnel junction as for the measurement of sample A. The sample

and the tunnel junction remained on the sample holder in between the two cool downs, only the

connection of the sample holder to the cryostat was changed. Despite the different geometry,

the Fano factor is very similar to the data of the short and wide sample, with a maximum of

ℱ ≈ 0.015 at the Dirac point. The minimum conductivity is given by 𝜎min = 11.37 𝑒2

ℎ
≈ 8.9𝜎𝑇 ℎ

min.

The increased 𝜎min compared to the theoretical value can be attributed to charge puddles

[Das11b], i.e. inhomogeneous areas of p and n doping at the overall charge neutrality point.

These puddles are strongly suppressed in hBN-supported samples compared to samples sup-

ported by SiO2, as proven in STM measurements [Dec11]. However, even in very clean hBN-

supported or encapsulated samples, the minimum conductivity is regularly larger than the

theoretical value. For example in the data of [Cal15], who observe ballistic transport as proven

by the observation of Fabry-Pérot interference, the minimum conductivity is 𝜎min =≈ 6.68 𝑒2

ℎ
,
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Figure 4.6: Shot noise of sample A at 𝑇MC = 15 mK and 𝐵 = 20 mT to suppress superconductivity. Left:
Raw data of noise voltage 𝑉Noise for various gate voltages. Right: Conductivity (blue) and Fano factor
(red), 𝐹max = 0.069 (see text)
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Figure 4.7: Shot noise of a 1.5 μm × 1.5 μm square sample, otherwise similar to sample A, at 𝑇MC = 4 K.
Left: Raw data of noise voltage 𝑉Noise for various charge carrier densities. Right: Conductivity (blue)
and Fano factor (red), 𝐹max = 0.016 (see text)

i.e. 5.24 times the theoretical minimum 1, and [Kre14] find 𝜌max ≈ 3.7 kΩ 2, corresponding to

𝜎min = 6.98 𝑒2

ℎ
≈ 5.5𝜎𝑇 ℎ

min, while reporting a mean free path of 𝑙mfp ≈ 4 μm. Thus, the minimum

conductivity measured in our samples does not contradict ballistic transport.

In the shot noise data, a very small Fano factor, a stronger-than-expected gate dependence,

and no change inℱmax for the square sample compared to the short andwide sample were found.

While the reduced ℱ could potentially be explained from an unidentified, spurious attenuation

in the measurement setup, the qualitative disagreement might indicate that transport does

indeed not occur via evanescent states in these samples at the investigated densities. However,

in the diffusive regime, one would expect an even larger, density independent Fano factor

ℱ > 1/3 [Lew08].

1 calculated from the data shown in fig. 1 d) in [Cal15]
2 calculated from the data shown in fig. 1 d) in [Kre14]
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4.2 Dirac Fermion Optics

Many devices that take advantage of Dirac electron dynamics have been proposed, including

a Veselago lens with negative refraction index [Che07] (recently observed in encapsulated

graphene [Lee15]), electronic wave guides (observed in suspended graphene [Ric15a]), and

transformation optical devices [Vak11]. These Dirac fermion optical experiments are only

possible when the elastic mean free path 𝑙mfp, or at least the phase coherence length 𝐿𝜑, is of the

order of the geometric sample structure size. In early Fabry-Pérot interference experiments with

graphene on SiO2, where 𝑙mfp < 𝐿, only weak oscillations were found [Cho11; Mia07]. A clearer

pattern was observed by Young et al. [You09] by using extremely short gate-defined cavities

with length 𝑙 ≈ 20 nm, where 𝑙mfp ≳ 100 nm. For more advanced devices, 𝑙mfp in SiO2-supported

graphene is not long enough. By using suspended, current-annealed graphene, the mean free

path could be increased to micrometer scale [Bol08; Du08]. But although promising results have

been shown in suspended graphene samples [Gru13; Ric15a; Ric15b; Ric13], sample fabrication

is challenging and mechanical stability of the graphene membrane puts tight restrictions on

possible device layouts. In substrate-supported graphene, only the improvements of sample

quality within the last years, using hBN supported or encapsulated graphene, have made it

possible to create complex structures on the length scale of the mean free path. These devices

are much more robust and easier to structure than suspended samples, opening up possibilities

of making use of Dirac fermion dynamics in technological applications.

4.2.1 Fabry-Pérot Interference

𝐿

2𝜃

Fig. 4.8: Classical Fabry-Pérot inter-
ference in an optical cavity.

While the shot noise measurements are a proof of

charge transmission by discrete “particles”, this chapter

will stress the wave nature of ballistic charge carriers

in graphene by demonstrating Fabry-Pérot interference

effects. This simplest realization of electron optics is

based on interference in between two partially reflect-

ing mirrors as shown in 4.8. The phase shift of two

neighboring rays is given by 𝛥𝜑 = 2𝜋 2𝐿 cos 𝜃
𝜆

. Construc-

tive interference occurs at 𝛥𝜑 = 𝑁2𝜋, resulting in the

resonance condition

2𝐿 cos 𝜃
𝜆

= 𝑁 𝑁 ∈ ℕ. (4.1)

In our case, the relevant wavelength is the Fermi wavelength 𝜆F = 2𝜋
𝑘F
, which is related to the

Fermi energy through the relativistic dispersion relation 𝐸F = ℏ𝑣F𝑘F (2.9). By tuning the gate

voltage, the Fermi level is shifted and the Fermi wavelength changes. From (2.14)

𝑘F = √𝜋𝑛 ⇒ 𝜆F =
2𝜋
𝑘F

=
2𝜋

√𝜋𝑛
=

2𝜋
√𝜋𝛼(𝑉G − 𝑉Dirac)

(4.2)
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The wavelength also depends on the source-drain bias 𝑉DS, which can be taken into account

through a change of the potential at each contact by ± 𝑉DS
2
. This directly alters the charge carrier

energy by 𝛥𝐸 = 𝑒𝑉DS
2

[Cho11] and the wave number by 𝛿𝑘 = 𝑒𝑉DS
2ℏ𝑣F

. Considering both charge carrier

density 𝑛 and source drain bias 𝑉DS, the resonance condition (4.1) at perpendicular incidence

(𝜃 = 0) then takes the form

𝑁 =
2𝐿
𝜆

=
2𝐿
2𝜋

(𝑘F + 𝛿𝑘) =
2𝐿
2𝜋 (√𝜋𝑛 +

𝑒𝑉DS
2ℏ𝑣F ) =

𝐿
√𝜋

√𝑛 +
𝐿

2𝜋ℏ𝑣F
𝑉DS (4.3)

= 𝐿√
𝛼BG
𝜋

√|𝑉BG − 𝑉Dirac| +
𝐿

2𝜋ℏ𝑣F
𝑉DS (4.4)

At first, sample A is considered, where no top gate is present. In this situation, charge carriers

propagate freely within the graphene sheet, and are only reflected at the edges and contacts,

which is referred to as “massless Dirac fermion billiard” [Mia07]. In the sample presented here,

this reflection only occurs for hole doping, at negative gate voltages. The reason lies in the

work function difference of graphene and the Ti/Al contact leads [Gio08], which creates a thin

electron doped area. When the back gate is tuned to negative voltages, the bulk of the graphene

sheet is hole doped, and p-n junctions form at the contacts. These p-n junctions act as mirrors

in the Fabry-Pérot interferometer. For positive gate voltages, the junctions are absent, and no

oscillations can be observed.
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Figure 4.9: (a) Fabry-Pérot oscillations for 𝐵 = 200 mT, 150 mT, 100 mT (top to bottom) at zero bias. (b)
The interference pattern is clearly visible in the differential resistance d𝑉 / d𝐼 vs. back gate 𝑉BG and
bias 𝑉DS at 200mT.

In the sample without top gate, without magnetic field (20mT were applied to suppress

superconducivity) only very small oscillations are visible, and the interference pattern only

showed after applying 100 mT to 200 mT as shown in figure 4.9 (a). This effect might be related to

Klein tunneling. The contact induced p-n junctions are more transmissive for charge carriers at

perpendicular incidence. Without field, the collimated charge carriers can pass through the

junction at the opposing contact with 𝑇 = 1, and without reflection the Fabry-Pérot pattern

doesn’t appear. A small field bends the trajectories, where 𝑟𝐶 ≈ 500 nm to 150 nm for the gate

range shown in 4.10 at 200mT. Besides the increasing oscillation amplitude, the oscillations
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show a phase shift with increasing field. [You09]

The units in figure 4.10 (bottom) were chosen in such a way that the main interference pattern

can be directly related to (4.4). In these units, the resonance condition describes lines

𝑉DS = ± (2ℏ𝑣F√𝜋𝛼BG/𝑒) √|𝑉BG − 𝑉Dirac| + 𝑁
2𝜋ℏ𝑣F

𝑒𝐿
𝑁 ∈ ℕ. (4.5)

The y-intercept only depends on the cavity size 𝐿 and constants, and the slope only on the gate

efficiency 𝛼BG and constants, so we can use the Fabry-Pérot interference pattern to extract these

values. The white lines (larger pattern) in 4.10 (bottom) are plotted with parameters

𝛼A
BG = 6.75 × 1011 V−1 cm−2 and 𝐿 = 300 nm (4.6)

and capture themain pattern quitewell. Despite the increasing cyclotron radius 𝑟𝐶 for decreasing

charge carrier density, it remains very regular. 𝑟𝐶 reaches
𝐿
2
at √|𝑉BG − 𝑉Dirac| ≈ −0.5 √V. At low

charge carrier densities and low bias, a second pattern with smaller periodicity emerges which

can be described by a cavity with 𝐿 ≈ 690 nm (white lines at lower charge carrier density). The

geometric dimensions of the sample measured by AFM are 𝐿 ≈ 350 nm and 𝑊 ≈ 3 μm.
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Figure 4.10: Fabry-Pérot iInterference pattern at 200mT. The plot shows the differential resistance
d𝑉 / d𝐼 , differentiated vs back gate to enhance the visibility (a.u.). Top: distorted pattern with respect
to back gate voltage. Bottom: regular pattern with respect to square root of gate voltage offset and in
𝑘-space. 𝑘BG was calculated from the gate efficiency found in (4.6)
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4.2.2 Fabry-Pérot Interference in a p-n Junction

In sample B, an additional p-n junction can be introduced in the center between the contacts

when the gates are tuned to opposing polarities, with the top gate overcompensating the charge

carrier density that is introduced from the back gate. Figure 4.11 shows a map of the differential

resistance with respect to top gate and back gate potentials at zero field and zero bias at 𝑇 = 4 K.
Themap is divided into four regions. The vertical line at 𝑉BG = 0 corresponds to charge neutrality
in half of the sample, where the top gate has no influence. The second, diagonal line of high

resistance corresponds to charge neutrality in the top-gated region, where both the back gate and

the top gate control the charge carrier density. In the lower left area, both regions are p-doped,

and in the upper right area both regions are n-doped. The remaining regions in between of the

two resistance peaks correspond to n-p and p-n doping.

The situation becomes clearer when the gate potentials are converted to charge carrier densi-

ties using

𝑛BG = 𝛼BG(𝑉BG − 𝑉Dirac) + 𝛼′
TG𝑉TG (4.7)

𝑛TG = 𝛼BG(𝑉BG − 𝑉Dirac) + 𝛼TG𝑉TG, (4.8)

where 𝑛BG refers to the area that is only affected by the back gate (a small effect shows as a

slight slope in the gate map, and is described by 𝛼′
TG), and 𝑛TG refers to the area that is affected

by both top gate and back gate. The exact gate efficiencies 𝛼B
BG and 𝛼TG were extracted from

Shubnikov-de Haas measurements, which will be presented in detail in section 4.3.1.
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Figure 4.11: Differential resistance d𝑉 / d𝐼 versus top gate and back gate.
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Fig. 4.12: Gate map of d( d𝑉 / d𝐼)/ d𝑉BG (a.u.) plotted versus
charge carrier density

In this representation, shown in

figure 4.12, the four different re-

gions are mapped to the plot quad-

rants. The plot shows the differen-

tial resistance, numerically differen-

tiated with respect to the back gate

voltage (i.e. the sweep parameter) to

enhance the visibility of the Fabry-

Pérot oscillation pattern. Oscilla-

tions can be observed in the p-n (top

left) and n-p (lower right) regions,

but are absent in both n-n (top right)

and p-p (lower left) doping. In the

p-n and n-p regions, the potential

on the top gate has to be twice as

strong as the potential on the back

gate. This restricts themeasurement

parameter space, and the missing data is shown as white areas.

Analogous to the examination of the Fabry-Pérot pattern in section 4.2.1, we can transform

the data to account for the physical background. With 𝑉DS = 0, the resonance condition 4.5 is

simplified to

𝑁 =
2𝐿
𝜆F

=
𝐿
𝜋

√𝜋𝑛 =
𝐿
𝜋

𝑘F (4.9)

for each half of the sample, so the oscillation pattern is periodic in 𝑘F = √𝜋𝑛. The plots in figure
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Figure 4.13: Fabry-Pérot pattern in p-n and n-p regions, plotted versus wave number. Color scale is
identical to 4.12.

4.13 show the Fabry-Pérot pattern in the p-n and n-p regions in k-space. Since the measured data

points are equally spaced in terms of the gate voltages, few points were recorded at very small 𝑘F.

In each regions, one can find oscillation versus both 𝑘BG and 𝑘TG. The vertical lines correspond
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to oscillations that are independent of 𝑘TG, so they can be attributed to the non-top gated cavity,

and horizontal lines accordingly originate from interference below the top gate. In some regions,

for example region 1, both vertical and horizontal lines are visible. Opposed to the situation in

4.2.1, these oscillations don’t originate from the same cavity. The interference pattern is again

regular, but the periodicity is not entirely constant, as can be seen by comparing the horizontal

lines in regions 3 and 4.

To investigate the oscillations further, the periodic pattern can be Fourier transformed. The

resonance condition 4.9 leads to a periodicity of 𝛥𝑘 = 𝜋
𝐿Cavity

in k-space. Fourier transformation

results in a plot with units of 𝑘−1 = 𝜆
2𝜋
, so the resonance condition is fulfilled at

𝐿Cavity

𝜋
. Thus,

by scaling the axes of the Fourier transformed plot by 𝜋, the cavity size corresponding to an

interference pattern can be directly found from the coordinates of a peak in the plot.

0.5 0.6 0.7 0.8 0.9 1.0

kBG [m−1 ] 1e8

2.0

1.9

1.8

1.7

1.6

1.5

k
T

G
 [m

−
1

]

1e8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

π λ
2π

=LBG
Cavity

1e 6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

π
λ 2π

=
L

T
G

C
av

it
y

1e 6

0.5 0.6 0.7 0.8 0.9 1.0

kBG [m−1 ] 1e8

2.0

1.9

1.8

1.7

1.6

1.5

k
T

G
 [m

−
1

]

1e8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

π λ
2π

=LBG
Cavity

1e 6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

π
λ 2π

=
L

T
G

C
av

it
y

1e 6

Figure 4.14: TL:Measured differential conductance d𝐼/ d𝑉 in region 3. TR: Two dimensional fourier

transform, scaled with 𝜋 to show cavity size 𝜋 𝜆
2𝜋
. BL: Simulated pattern for the peak at 𝐿TG = 0.55 μm

(and 𝐿∗
BG = 0.15 μm). BR: Fourier transform of the simulated pattern

Figure 4.14 shows the process for region 3 of figure 4.13. The measured differential conduc-

tance d𝐼/ d𝑉 was Fourier transformed, leading to the top right plot. A peak can be found at

coordinated 𝐿TG ≈ 0.55 μm and 𝐿∗
BG ≈ 0.15 μm. Here, the component in the direction of 𝐿BG is

responsible for the slope of the oscillation pattern, which could be caused by stray fields and

inhomogeneous charge carrier density in the channel, which is not taken into account in the

calculation of 𝑘. Since the identification of the peak in the Fourier transformed data is a little

ambiguous, an oscillation pattern using the extracted cavity size was simulated. It is shown

together with its Fourier transform in the lower row of figure 4.14, and evidently reproduces the

observed oscillation pattern. The procedure was repeated for each of the four regions shown in
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figure 4.13. In region 1 and 2, oscillations in both cavities can be found, while region 3 and 4

only show oscillation below the top gate.

Region 𝐿BG 𝐿TG

1 350 nm 510 nm

2 450 nm 350 nm

3 550 nm -

4 380 nm -

Table 4.1: Fabry-Pérot cavity
sizes

The sizes of the Fabry-Pérot cavities are shown in 4.1. Compar-

ing the cavity size of the interference pattern in the top gated part,

one can find an increase in 𝐿TG with increasing top gate potential,

i.e. from region 1 to 2 or from region 4 to 3. This effect can be

attributed to electrostatic effects that shift the p-n junction within

the channel depending on the top gate and back gate potentials,

as the hBN and Al2O3 double layer dielectric that separates the

graphene from the top gate has a total thickness of 75 nm, and the

back gate dielectric 65 nm (see table 3.2).

4.2.3 Shot Noise of a p-n Junction

A smooth graphene pn-junction acts as an angle dependent filter for Dirac electrons, with a

transmission probability [Che06]

𝑤(𝜃) = e−𝜋(𝑘F𝑑) sin2 𝜃, (4.10)

where 𝑑 is the length of the potential step and 𝜃 the angle of incidence. For perpendicular

incidence, charge carriers can pass trough the barrier with 𝑇 = 1 due to Klein tunneling [Kat06b].

This selection of charge carriers was predicted to result in an universal Fano factor of ℱ =

1 − √
1
2

≈ 0.29, close to the one of graphene at the Dirac point, yet without the gate dependence

[Che06]. Due to the failed calibration for the measurement of sample B, the following noise data

will be presented using calibration data of a previous cool down with GBW = 3.16 × 1018 Hz at a
bandwidth of BW = 4.6 GHz to 7.2 GHz. Figure 4.15 shows the differential resistance of sample
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Figure 4.15: Fabry-Pérot resonances in the pn-junction vs. charge carrier density and bias. Left panel
shows resistance, right panel is differentiated to enhance the visibility. The black lines follow constant
𝜆𝐹

B at 𝑉TG = 2 V at 4 K. The back gate was swept from −2.5 V to 0 V, and for each back gate value

a bias sweep was performed, so that a horizontal slice at 𝑉DS = 0 is equivalent to a horizontal
slice at 𝑉TG = 2 V in figure 4.11. The black lines correspond to constant Fermi wavelengths 𝜆F
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according to 4.5 with 𝐿 = 450 nm from the previous section (region 2). Most interestingly, the

sample shows asymmetric behavior with respect to the applied bias. At higher negative bias, a

resistance peak connects the two Dirac points. The interference pattern helps understanding the

reason for the resistance peak. Since the top gated contact is grounded, decreasing the applied

bias to negative voltages means injecting electrons in the back gated region. By decreasing the

back gate voltage, the additional charge can be compensated and the Fermi level and Fermi

wavelength stay constant, which shows as resonance line in the plot. In this sense, the x-axis

label is misleading, it only shows the actual charge carrier density at zero bias. Since the lines

show lines of constant charge carrier density, there is a density gradient when crossing them in

the vertical direction. The Dirac point with respect to the applied bias is the overall resistance

maximum. It is defined by both the top gated and the back gated parts of the sample. When

tuning the junction from pn to np, the resistance peak moves to positive bias.
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Fig. 4.17: 𝑉Noise raw data

The overall noise level is again much lower

than expected, yet due to themissing calibration

data, it can’t be excluded that the attenuation

of the system was changed in between the cool

downs, especially since the calibration measure-

ment and the sample measurement were sep-

arated by 2 months.Yet, even qualitatively, the

shot noise of the p-n junction shows the opposite

of the expected behavior, where the Fano factor

has minima at the Dirac points of each half of

the sample. This is already visible in the 𝑉Noise
raw data, as shown in figure 4.17.
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4.2.4 Snake States

While the Fabry-Pérot interference presented in the previous chapter has a direct analogy in

light optics, the experiment presented in this chapter makes direct use of the unique properties

of Dirac fermions. Opposed to photons, the trajectories of Dirac fermions can be manipulated

using magnetic fields, where a (moderate) field 𝐵 perpendicular to the graphene plane forces

the charge carriers onto circular trajectories with cyclotron radius (2.17)

𝑟C =
ℏ𝑘
𝑒𝐵

. (4.11)

The key advantage of Dirac fermion optics compared to normal electron optics is the possibility

to seamlessly tune the Fermi level from conduction to valence band, switching the sign of the

carrier charge and thus inverting the direction of the Lorentz force. In normal 2DEG, this would

require manipulation of the local magnetic field on the scale of the mean free path, which is

extraordinarily more difficult than local electrostatic gating [Ye95]. Furthermore, the missing

gap in the band structure, minimal conductivity, and Klein tunnelingmake the interface between

n and p regions transparent. With the recent advances in sample quality, the mean free path

increased far into the micrometer range. This enables designing electrostatic gate structures

which guide Dirac fermions from one region to the other with little loss.

⊙𝐵
𝑅C

⊙𝐵

𝑅C

Fig. 4.18: Snake States at a p-n inter-
face cause oscillations in the conduc-
tance when 𝑟C is varied.

The simplest geometry showing this effect is realized

in the p-n junction in sample B. In a magnetic field, and

for opposite doping in the two halves of the sample,

the charge carriers follow circular trajectories in oppo-

site directions. When they get transmitted through the

p-n interface, the direction of the curvature is inverted.

This directs the trajectories back to the p-n interface,

where the process is repeated (fig 4.18). In this way,

the p-n interface guides the charge carriers, creating

current carrying states called “Snake States” [Ric15b;

Tay15; Wil11]. In the two lead sample, the p-n junction

ends at the sample edge. Here, depending on the value of 𝑟C, the states end either within the P or

the N region, where they continue as skipping orbits into the contact leads. This process causes

oscillations in the conductance when changing the cyclotron radius 𝑟C, or constant conductance

along lines of constant 𝑟C.

With 𝑟C = ℏ𝑘
𝑒𝐵

=
ℏ√𝜋𝑛

𝑒𝐵
and hence 𝑛 = 1

𝜋 (
𝑟C𝑒
ℏ )

2
𝐵2, lines of constant 𝑟C are parabolas in a

plot versus charge carrier density 𝑛 and perpendicular magnetic field 𝐵. Figure 4.19 shows a

measurement where these two parameters were tuned, analogous to recent measurements in

suspended graphene [Ric15b] and encapsulated graphene [Tay15]. The absolute charge carrier

density was kept equal in the p and n regions during the measurements by adjusting the gate

voltages according to 𝑉TG = 2.33(𝑉BG − 𝑉Dirac) (measuring along the dashed line in figure 4.23).

The top half of the plot has been overlayed with lines of constant 𝑟C. The dashed green and blue

lines define the parameter space where snake states can exist. The dashed green line indicates

a cyclotron radius that is equal to half of the sample length. For larger 𝑟C, the trajectories collide
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Figure 4.19: Differential conductance, differentiated vs 𝑉TG. The dashed green line shows 𝑟C = 𝐿/2.
The solid blue and green lines, and the grey lines in between, show lines of constant 𝑟C, where the
lightest lines are located at integer divisions of the sample width, 𝑟C = 𝑊 /𝑁, 𝑁 ∈ ℕ. The dashed red
line marks the magnetic length 𝑟C = 𝑙b, the border to the quantum Hall regime. The plot was combined
from three measurements, with seams at 250mT and 400mT

with the contact leads, where they are either absorbed or reflected, leading to Fabry-Pérot

interference (see section 4.2). When 𝑟C gets into the order of the magnetic length 𝑙B ∶= √
ℏ

𝑒𝐵
, the

sample enters the Quantum Hall regime.

These two bordering lines can easily be identified in the measured data. In the intermediate

region, the gray lines indicate constant 𝑟C at integer fractions of the sample width, i.e. the

expected periodicity of the snake state pattern. Here, oscillations can be found in the data that

roughly follow the expected parabolas, with similar periodicity, albeit at a slightly smaller slope.

In figure 4.20 (top left), the upper half of the data shown in 4.19 is plotted again, but versus the

wave number 𝑘 = √𝜋𝑛 instead of the charge carrier density, so that the lines of constant 𝑟C show

as straight lines 𝑘 = 𝑟C𝑒
ℏ

𝐵. The color map shows the differential conductance, differentiated

versus back gate voltage instead of top gate voltage. This enhances the visibility of the Fabry-

Pérot interference pattern that is clearly visible for 𝑟C < 𝐿
2
and abruptly ends at the expected

line. The bottom figure shows an extension of the measurement up to 3T. Clear lines are
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Figure 4.20: Additional plots of snake states. Top left: Snake states plotted versus 𝑘 and 𝐵, green
and blue lines correspond to the ones in 4.19. Top right: Line plots of the differential conductance
d𝐼/ d𝑉 for 𝐵 = 0 mT to 700 mT (top to bottom). Bottom: Extended measurement up to 3T.

visible up to ≈ 1 T, but signs of snake states are still visible at 𝑘 = 1.4 × 108 m−1 and 𝐵 = 2.5 T,
corresponding to 𝑟C ≈ 37 nm. In these conditions, particles have to be transmitted 𝑊 /𝑟C ≈ 135
times through the interface to travel along the entire width of the p-n interface in the simplified

model, where the junction is assumed perfectly sharp. Smoothing of the potential step causes an

additional electrical field that elongates the trajectory along the interface, reducing the number

of necessary orbits [Ric15b].

Since the conductance oscillations are caused by a partitioning process, one could expect a

signature of snake states in shot noise measurements. But due to the small amplitude of the

oscillations in this sample, attempts to measure it remained without result.
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4.3 High Magnetic Fields

4.3.1 Shubnikov-de Haas Oscillations

If the magnetic field 𝐵⟂ is increased further, the cyclotron orbits that were investigated in the

previous chapter become quantized and charge carriers in the bulk become localized. The

sample undertakes a phase transition and enters the quantum Hall regime, a topological state

where the bulk of the 2DEG turns insulating and charge transport occurs only through edge

channels that emerge from the skipping orbit trajectories. In this situation, the density of states

splits into Landau Levels, which are located at energies given in graphene by (2.20) as

𝐸𝑁 = ±√2𝑒ℏ𝑣2
F𝐵 (𝑁 +

1
2

±
1
2), 𝑁 = 0, 1, 2 …

where the square-root dependence is unique to relativistic massless fermions. This change in

the density of states is reflected in many quantities, and its effect on the conductivity is known

as Shubnikov-de Haas effect.

Calculation of charge carrier densities

The filling factor depends on the charge carrier density and field strength as given by (2.20)

𝜈 =
𝑛

4𝑛L
=

𝑛ℎ
𝑒𝐵

.

While a multi-terminal Hall bar structure would show the well known quantum Hall effect

– exactly quantized plateaus in 𝜎𝑥𝑦 and vanishing conductivity 𝜎𝑥𝑥 within the plateaus – the

two-terminal conductance 𝐺 considered here shows a different behavior and depends on both

𝜎𝑥𝑦 and 𝜎𝑥𝑥 [Aba08; Wil09]. Furthermore, opposed to 𝜎𝑥𝑦 and 𝜎𝑥𝑥, 𝐺 depends on the sample

geometry, i.e. the width over length ratio. Figure 4.21 (a) shows the calculated conductance
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Figure 4.21: (a) Calculated two terminal conductance versus filling factor for various ratios for
𝑊 /𝐿 = 0.25, 0.5, 1, 2, 4 (top to bottom). Source: [Aba08], ©2008 American Physical Society (b)Measured
conductance versus gate voltage 𝑉BG for 𝐵 = 1.5 T to 3 T (top to bottom).
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versus filling factor 𝜈. The red curve corresponds to a square sample, where 𝐺𝐿=𝑊 = √𝜎2
𝑥𝑥 + 𝜎2

𝑥𝑦,

so 𝐺 = 𝜎𝑥𝑦 within the plateaus of 𝜎𝑥𝑦. When deviating from the square shape, there is a quali-

tative difference whether the sample is elongated or widened, where in the first case minima

appear between the points of incompressible densities (where no partially filled Landau levels

exist), while in the latter case maxima appear. In either case, the conductance at the points

of incompressible densities is independent of 𝑊 /𝐿 and given by 𝐺𝜈 = 𝜈 𝑒2

ℎ
. In measurements

presented here, the sample has a width over length ratio of
𝑊
𝐿

= 5 μm
1 μm

= 5, and the points of

incompressible density are located at the minima of 𝐺. By determining the filling factor 𝜈 that
corresponds to a certain gate voltage 𝑉BG (charge carrier density 𝑛) and the external field 𝐵, this
allows a precise measurement of the gate efficiency 𝛼BG (defined as 𝑛 =∶ 𝛼BG𝑉BG, where negative

n corresponds to hole conduction). Figure 4.21 (b) shows a measurement of the conductance 𝐺
versus the back gate voltage 𝑉BG for 𝐵 = 1.5 T to 3 T. The plateaus on the hole side (negative 𝑉BG)

are much less pronounced and show lower conductance than on the electron side, which can

be explained from p-n junctions forming at the contacts due to the different work functions of

graphene and Ti/Al. Thus, only electron conduction is considered for the determination of 𝛼BG.

Figure 4.22 shows the conductance of sample B at 𝑉TG = 0, differentiated with respect to the

back gate voltage d𝐺/ d𝑉BG to enhance the visibility of Shubnikov-de Haas oscillations, versus a

double sweep of back gate 𝑉BG and field 𝐵. The three horizontal black lines indicate the sweeps

shown in figure 4.21 (b), the line at 𝐵 = 0 is due to the sample becoming superconducting. In

6 4 2 0 2 4 6

Back gate VBG [V]

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ag

ne
ti

c 
Fi

el
d 
B

 [T
]

ν
2

6

10

14

18

22

26

30

34

Figure 4.22: Landau fan: d𝐺/ d𝑉BG (A.U.) versus gate voltage 𝑉BG and magnetic field 𝐵.
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this representation, called Landau fan, the positions of the minima in conductance follow

𝑉 min
BG =

𝜈𝑒
ℎ𝛼BG

𝐵, (4.12)

so 𝛼BG can be precisely determined from the slope of linear fits. The positions of the local minima

in 𝐺(𝑉BG) are found automatically for each curve (as shown by the blue crosses in fig. 4.21 (b)),

assigned to filling factors and fitted linearly. Segments of these fitted lines and respective filling

factors are shown in fig. 4.22. Note that the positions of minima in the conductance appear at

zero crossings of the plotted d𝐺/ d𝑉BG. For the slope 𝑚𝜈 of each line, 𝛼BG = 𝜈𝑒
ℎ𝑚𝜈

is calculated, with

an average of

𝛼BG = 2.80 × 1015 V−1 cm−2 (4.13)

Using this value for 𝛼BG, 𝛼TG can be determined from the slope of the charge neutrality lines

in the gate map 4.23, where

𝛥𝑉TG
𝛥𝑉BG

=
𝛼TG
𝛼BG

= 𝑚TG ⇒ 𝛼TG = 2.40 × 1015 V−1 cm−2, (4.14)

and equivalently for the contribution of 𝑉TG to 𝑛BG, given by 𝛼′
𝑇 𝐺 = 1.32 × 1014 V−1 cm−2. The gate

efficiency of sample A was found by comparison of the hBN thickness.
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Paramter Sample A Sample B

𝛼B
BG 3.55 × 1011 V−1 cm−2 2.80 × 1011 V−1 cm−2

𝛼′
TG 1.32 × 1010 V−1 cm−2

𝛼TG 2.40 × 1011 V−1 cm−2

𝑉Dirac −1.05V −0.40V

𝑉 TG
Dirac −0.42V

Table 4.2: Gate efficiencies

Contact Resistance

Figure 4.24 (a) shows the measured minimal conductance along the lines of incompressible

density in fig. 4.22 with respect to the field 𝐵. For these lines, the conductance should be given

by 𝐺𝜈 = 𝜈 𝑒2

ℎ
. The horizontal lines indicate the theoretical value, the dots of the same color show

the measured values. For small filling factors or at small fields, the measured conductance

is higher than 𝜈 𝑒2

ℎ
. This can be explained from Landau level broadening, which smears the

quantization so that the conductance minimum is not reached anymore. Higher levels at larger

fields show a reduced conductance compared to the theoretical value, where the deviation

seems to increase with 𝜈. This deviation can be explained from an approximately constant series

resistance, consisting of the contact resistance 𝑅co and resistance of the leads 𝑅l. Figure 4.24 (b)

shows the deviation 𝛿𝑅 = 𝑅𝜈 − ℎ
𝜈𝑒2 in units of resistance. For levels 𝜈 > 10, the series resistance is

in the order of 100 Ω to 200 Ω and seems to increase with field and charge carrier density. The

drop towards smaller fields, reaching 0 at 1T, is most likely not caused by a vanishing contact

resistance, but by increased conductance from broadened Landau levels. The actual contact

resistance could then be estimated from the asymptotic behavior for larger fields, yielding

𝑅co ≈ 200 Ω.
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Figure 4.24: (a) Values of conductance minima along the lines of incompressible densities in fig. 4.22.
Colored lines show theoretical values for the equally colored dots. (b) Deviation in units of resistance,
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66 4 Results and Discussion

4 2 0 2 4

Charge carrier density nBG [cm−2 ] 1e11

2

6

10

14

18

22

26

30

Co
nd

uc
ta

nc
e 

G
 [e

2 h
]

B [T]
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 4.25: Onset of Shubnikov-de Haas oscillations at small fields.

Onset of Shubnikov-de Haas Oscillations

Looking at the onset of Shubnikov-deHaas oscillations at small fields, we can estimate a scattering

time 𝜏 in a semi classical model, assuming that the oscillations appear when the charge carriers

start to self-interfere after completing one cyclotron orbit without scattering [Bol08]. This

condition translates into 𝜔C𝜏 ≈ 1. The cyclotron frequency is given by (2.18) as 𝜔C = 2𝜋
𝑇

= 𝑒𝐵𝑣F

ℏ√𝜋𝑛
,

so we get

𝜏 ≈
1

𝜔C
=

ℏ√𝜋𝑛SdH

𝑒𝑣F𝐵SdH
. (4.15)

In the data shown in 4.25, the oscillations in the conductance start to emerge at a field of

𝐵SdH ≈ 400 mT and a charge carrier density of 𝑛SdH ≈ 2 × 1011 cm−2, which translates into 𝜏 ≈

1.3 × 10−13 s and 2𝜋𝑟C = 2𝜋
ℏ√𝜋𝑛SdH

𝑒𝐵
≈ 820 nm. 𝜏 can be seen as a measure of sample quality, but it

is not equivalent to transport scattering times. For suspended graphene, Bolotin et al. found

𝜏 = 2 × 10−13 s [Bol08].
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4.3.2 Edge Mode Mixing
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Fig. 4.26: Edge modes along a graphene p-n interface
in the quantum Hall regime. Left: Independent modes,
ballistic transport. Right: Full equilibration

In the previous section, the sam-

ple was investigated in the unipolar

regime, where the conductance at

integer filling factor is defined by

𝜈 = 𝑛ℎ
𝑒𝐵
. Using the local top gate,

the charge carrier density can be ad-

justed separately in either half of the

sample. And like the direction of the

skipping orbit trajectories in section

4.2.4, the direction of edge modes in

the quantum Hall regime can be in-

verted by electrostatic gating, while

keeping 𝐵 constant. As shown in fig-

ure 4.26, this leads to a qualitative

difference in the conduction mech-

anism for the unipolar and bipolar regimes. In the unipolar case, with filling factors 𝜈1, 𝜈2 of

the same sign, the conductance is ballistic and limited by the number of edge modes that travel

along the entire sample, i.e.

𝐺 = min(|𝜈1|, |𝜈2|)
𝑒2

ℎ
(4.16)

On the other hand, in the bipolar regime, no channels are directly connecting the contacts, and

the conduction happens only due to disorder induced equilibration of the edge modes along

the p-n interface. At the end of the p-n interface, the charge carriers are distributed into the

available channels in either direction with equal probability, and the sample conductance is

given by the simple ohmic sum of the resistance of either side,

𝑅 = 𝑅𝜈1 + 𝑅𝜈2 ⇒ 𝐺 = (
1

|𝜈1|
+

1
|𝜈2|)

−1 𝑒2

ℎ
=

|𝜈1||𝜈2|
|𝜈1| + |𝜈2|

𝑒2

ℎ
. (4.17)

These relations were found by D. A. Abanin et al. [Aba07], describing the experimental data of

J. R. Williams et al. [Wil07] in a graphene sample on SiO2.

The edge mode mixing relies on disorder and depends on the spatial separation of the edge

modes at the p-n interface, but the exact mechanism is a matter of debate [Low09]. So far, most

experimental data was measured in samples on SiO2, typically with additional oxide or PMMA

layers as top gate dielectric [Wil07][Mat15], using chemical doping [Loh09] or by introducing

doping and disorder by scratching the graphene with an AFM tip [Sch13]. While the data of

these disordered samples could mostly be explained by full edge mode mixing, more recent

experiments on cleaner samples show deviations that are explained by incomplete mode mixing.

Amet et al. [Ame14] investigated a graphene p-n-p junction on hBN with a suspended top gate,

and found the mixing dependent on spin polarization of the edge modes. [Kli15] found very

clear mixing of only the lowest Landau level in a multi terminal Hall bar sample on specially
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prepared atomically smooth SiO2 with buried split back gates. In this case, only the number of

modes participating in the equilibration contribute to (4.17). In a very recent study by Kumada

et al.[Kum15], shot noise measurements were performed, showing that the mode mixing is

indeed quasi-elastic in short junctions and can be used as an electronic beam splitter. A review

of experiments and theory can be found in [Mac15].
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Figure 4.27: Conductance of p-n junction in quantum Hall regime. Left: Calculation for full mode
mixing according to (4.17). Right: Measured d𝐼/ d𝑉 . The color scales are equal, the conductance in
the calculated data for unipolar doping can serve as a reference
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𝑉TG (same data as the color map). The thin lines shows the
calculation assuming full equilibration.

Figure 4.27 shows the theoretical

conductance for full equilibration

and the measured data at 4.2K and

4T. The filling factor was calcu-

lated as 𝜈 = 𝑛ℎ
𝑒𝐵
, with charge car-

rier densities calculated using the

gate efficiencies 𝛼BG,TG that where

derived in the previous section. The

charge neutrality point was adjusted

to 𝑉BG = −1.2 V, 𝑉TG = −0.49 V to

align the position of the pattern with

respect to the indicated filling fac-

tors. Filling factor 𝜈1 corresponds to

the region without topgate, and 𝜈2
respectively corresponds to the top

gated region. The measured data

matches the expectation in the re-

gions of unipolar doping (𝜈1𝜈2 > 0).
The plateaus for electron doping

(𝜈1, 𝜈2 > 0, top right) are well defined except for 𝜈2 = 2, whereas the plateaus for hole con-

duction (𝜈1, 𝜈2 < 0, bottom left) are smeared out, as already observed in the Shubnikov-de Haas

oscillation pattern at 𝑉TG = 0 V.

Due to the lower conductance, the behavior in the bipolar regions is better visible in figure
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4.29, where the color scale shows the differential resistance d𝑉 / d𝐼 . Here, the plateaus are not
as well defined as in the unipolar electron doped region, and they show additional structure.

Nevertheless, a clear, qualitative deviation of the data compared to the behavior expected for

full mode mixing can be seen. The plot shows an unexpected asymmetry with respect to either

diagonal, i.e. different behavior for p-n and n-p doping, and different behavior in terms of

switching 𝜈1 ↔ −𝜈2.

In the p-n region (𝜈1 < 0, 𝜈2 > 0), the overall resistance is lower than expected. Nevertheless,

signs of the plateaus are visible. In the n-p region (𝜈1 < 0, 𝜈2 > 0), the conductance for the single
edge mode 𝜈1 = 2 is independent of 𝜈2, leading to the vertical red line. This can be interpreted by

assuming that only the first (and maybe the second) mode of 𝜈2 take part in the equilibration,

while further increase of 𝜈2 only adds modes that don’t contribute to the conductance, as shown

in the bottom right figure of 4.29. The resulting conductance, assuming only mixing of the first

two modes 𝜈mix
2 = 6, is given by

𝐺(𝜈1 = 2) =
𝜈1𝜈mix

2
𝜈1 + 𝜈mix

2

𝑒2

ℎ
=

2 ⋅ 6
2 + 6

𝑒2

ℎ
=

3
2

𝑒2

ℎ
, (4.18)

which corresponds to 𝑅 ≈ 17.2 kΩ and is in agreement with the data, as shown in the top figure

of 4.30, where the resistance is plotted along the magenta dashed line in figure 4.29.

Both the color map 4.29 and the plot of resistance along the magenta line 4.30 show deviation

from the theoretical expectation even in the unipolar regime for |𝜈2| = 2, where the measured

conductance is higher than expected (in the color plot 4.29, compared to theory, the green

horizontal lines are missing). Only starting at the second mode 𝜈2 = 10, it starts aligning with the

calculation, as visible in the plot of conductance, 4.28.

On the other hand, when increasing the number of modes 𝜈1 in the n-p region, the conductance

drops, and for example 𝐺(𝜈1 = 10, 𝜈2 = −2) ≫ 𝐺(𝜈1 = 2, 𝜈2 = −10).
In addition to the explanation of the fractional conductance plateaus in the bipolar regime,

D. A. Abanin et al. proposed that the partitioning at the end of the p-n interface should lead to

shot noise, described by a Fano factor of

ℱ =
|𝜈1||𝜈2|

(|𝜈1| + |𝜈2|)2 , (4.19)

for full mixing, while the dissipation free conduction in the unipolar regime should be noiseless.

The measurement of shot noise thus can serve as a tool to investigate this qualitative change

in the conductance mechanism, which is not as obvious from the conductance data, and it

would help understanding edge mode mixing. At the time of the measurements presented here,

this prediction had not yet been confirmed, but in the very recent publication by Matsuo et al.

[Mat15], the expected result for full mode mixing was found in a disordered sample on SiO2.

Measuring shot noise requires sweeping the DC bias 𝑉DS, so the data was recorded in a separate

measurement and at a field of 𝐵 = 5 T. Sweeps of 𝑉DS were recorded for each point along the

magenta line in 4.29, the green line in fig. 4.30 is a slice of the data at 𝑉DS = 0. Figure 4.31

shows the resulting plots for resistance and differential Fano factor (3.15) 𝐹𝑑(𝑉DS) = |
1
2𝑒

d𝑆𝐼
d𝐼 |,

normalized with the maximum value of 𝐹 max
𝑑 = 0.008 and calculated using GBW = 3.16 × 1018 Hz
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Figure 4.31: Bias sweeps along the magenta line in 4.29. Left: Resistance. Right: Differential Fano
Factor as defined in 3.15, normalized with the maximum value of 𝐹 max

𝑑 = 0.008

from a previous cool down.

Independent of the calibration, the expectation of a finite Fano factor in the bipolar regime

(given by (4.19)), and noiseless conduction in the unipolar regime should be visible in the data.

Although the overall noise level is very low, two features can be seen in the plot of 𝐹𝑑. First, at

filling factor 𝜈1 = −6, a sharp peak appears for high positive bias of about 40mV. The peak in

the differential noise corresponds to a peak in the resistance that is visible for 𝜈 = −6 in 4.30.

At positive 𝜈1 ≈ 12 and zero bias, a sharp drop of the noise is observed, when the conductance

shown in figure 4.30 starts aligning with the expectation for the unipolar regime. This could

indicate that the first edge mode 𝜈2 = 2 of the top gated area is not fully ballistic.
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Figure 4.32: IV characteristic of sample A at 𝑇MC = 15 mK, 𝐵 = 0 T.

At very low temperature and field, the Ti/Al contact leads turn superconducting and supercur-

rent can be transmitted via Andreev bound states if the current is below the critical current 𝐼C, as

described in 2.2. Figure 4.32 shows the IV characteristic of sample A at 15mK at 𝐵 = 0 T, together
with the differential resistance. Multiple features that will be investigated in the following

chapter can be identified. Most prominently, up to a current 𝐼C, there is not voltage drop, and the

sample is superconducting. Outside of the superconducting region, multiple steps in the current

can be observed, that show as peaks in the differential conductance. These peaks are caused

by multiple Andreev reflection, and will be investigated in section 4.4.3. At a bias of 𝑉DS = 2𝛥𝑒,
direct transmission of quasiparticles starts being possible. Extrapolating the lines back to zero

bias, one can find the excess current 𝐼exc, which originates from MAR processes.The big dips in

the differential conductance above 2𝛥 are most likely caused by effects in the electrodes.

Graphene Josephson junctions were first investigated by Heersche et al. [Hee07]. They are

especially interesting due to the effect of specular Andreev reflection. [Bee08] The observation

of these effects requires transport of Josephson current in the ballistic regime [Du08], which has

first been reached recently in hBN encapsulated graphene [Cal15][Miz13].

4.4.1 Gate and Temperature Dependence of the Critical Current

The features identified in the IV curve depend on the charge carrier density. Figure 4.33 shows

the differential resistance with respect to the current 𝐼DS and the gate voltage 𝑉BG, so every

vertical line corresponds to a bias sweep as shown in figure 4.32. In the plot against current, 𝐼C
can be clearly identified as an area of zero resistance, with a height equal to 2𝐼C. The conductance

dips at high bias turn into sharp peaks in the differential resistance when plotted versus current.

𝐼C was extracted by detecting the position of the peaks in the differential resistance and setting



74 4 Results and Discussion

0

200

400

600

800

1000

d
V

/d
I 

[Ω
]

-2.0 -1.5 -1.0 -0.5 0.0

VBG [V]

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

I D
S
 [
µ

A
]

-3 -2 -1 0 1 2 3
n [1011cm−2]

Figure 4.33: Gate dependence of the differential resistance of sample A at 𝑇 = 15 mK, white line
indicates extracted 𝐼C

-4 -3 -2 -1 0 1 2 3 4

n [1011cm−2]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I 
[µ

A
]

0

100

200

300

400

500

600

700

800

900
d

V
/d

I 
[Ω

]

IC

RN

Imin
C,Th

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

VDS [mV]

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

I D
S
 [
µ

A
]

n [1011cm−2]
-2

-1

0

1

2

Figure 4.34: Left: Critical current 𝐼C extracted from the data shown in fig. 4.33 and resistance in
normal state (with 𝐵 = 20 mT). Right: Selected IVs at low charge carrier density

a threshold at half of their height. The resulting 𝐼C are shown in figure 4.34. Due to reduced

transmission because of the contact doping, the supercurrent for hole conduction is smaller

than for electron conduction. The maximal critical current of 𝐼max
C = 2.38 μA was measured at

𝑛 = 1.8 × 1012 cm−1 (not shown). In this sample, a finite supercurrent of 𝐼min
C = 91 nA remains even

at the Dirac point.

In the short junction limit 𝑊 ≪ 𝐿, 𝜉, at low density 𝑛 = 0, Titov et al. predict a critical current

of [Tit06]

𝐼min
C,Th ≈ 1.33

𝑒𝛥0
ℏ

𝑊
𝜋𝐿

and 𝐼C,Th ≈ 1.22
𝑒𝛥0
ℏ

𝐸F𝑊
𝜋ℏ𝑣F

for 𝐸F ≫ ℏ𝑣F/𝐿. (4.20)

Using 𝛥0 = 92 μeV for sample A, found from the position of MAR peaks, the coherence length

𝜉 = ℏ𝑣F
𝛥0

≈ 7 μm is much larger than 𝐿 = 350 nm, and 𝐼min
C,Th = 81 nA, close to the measured value.

The critical current and the resistance in normal state are related, and in theory given by a

universal value of 𝐼C𝑅N = 2.08 𝛥
𝑒
at the Dirac point with 𝐸F ≪ ℏ𝑣F

𝐿
, and 𝐼C𝑅N = 2.44 𝛥

𝑒
at higher

energies [Tit06]. Figure 4.35 shows the measured 𝐼C𝑅N product.

Figure 4.36 shows the gate dependence of 𝐼C in the dual-gated sample B. No supercurrent
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Figure 4.36: Left: Top gate and back gate dependence of critical current 𝐼C for the p-n junction
(sample B). Right: Slices at constant 𝑉TG

was observed in the bipolar p-n region. In the n-p region only a small supercurrent up to

𝐼NP
𝐶 = 128 nA was measured, the maximum for hole doping was 𝐼pp

𝐶 = 310 nA, and the overall

maximummeasured at 𝑉BG = 𝑉TG = 7 V was 𝐼nn
𝐶 = 2.25 μA.

The temperature dependence of 𝐼C and 𝐼C𝑅N in sample B are shown in figure 4.37. The normal

state resistance 𝑅N was taken from the gate map at 4K 4.11.
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4.4.2 Current Distribution Analysis

When applying a perpendicular magnetic field 𝐵⟂, a position dependent phase difference

𝛿𝜑(𝑥) =
2𝜋
𝛷0

𝐵𝑧(𝐿 + 2𝜆𝐵)𝑥 (4.21)

between the macroscopic wave functions of the superconducting leads is introduced, where

x is the coordinate across the width of the junction, 𝐵𝑧 is the perpendicularly applied field,

L is the length, and 𝜆𝐵 is an additional effective length due to the Meissner effect in the

leads. From the current-phase relation, this causes an oscillating supercurrent density 𝐽𝑠(𝑥) =
𝐽C(𝑥) sin (2𝜋 𝐵𝑧

𝛷0
(𝐿 + 2𝜆𝐵)𝑥 + 𝜑0) with respect x, and a characteristic oscillation pattern of the total

critical current versus the applied field 𝐼C(𝐵), which is associated with the real space distribution

of the Josephson current across the junction[Dyn71]. The total critical current is given by the

integral of the local maximum current density 𝐽C(𝑥)

𝐼C(𝐵) =
|
|
|
|

𝑊 /2

∫
−𝑊 /2

𝐽C(𝑥) e
2𝜋𝑖 𝐵𝑧

𝛷0
𝐿𝐵𝑥

d𝑥
|
|
|
|

(4.22)

with the flux quantum 𝛷0 = ℎ
2𝑒
, width of the junction 𝑊 and an effective length 𝐿𝐵 = 𝐿+2𝜆𝐵. This

integral is equal to the amplitude of a complex Fourier transformation of the real space current

distribution and can be used as a tool to probe it [Dyn71][Har14][All15]. For a homogeneous

𝐽C(𝑥), the interference pattern takes the shape of the Fraunhofer pattern

𝐼C(𝐵) = 𝐼0
C

|
|
|
||

sin 𝜋 𝛷
𝛷0

𝜋 𝛷
𝛷0

|
|
|
||
, (4.23)

equivalent to the interference pattern of waves passing a single slit.

Figure 4.38 shows this interference pattern as a color map of the
d𝑉
d𝐼
, measured on sample

A at 𝑉BG = 4 V, at 𝑛 = 1.8 × 1012 cm−2. The red line is a fit of 4.23 to the extracted critical current

𝐼C(𝐵), which is shown as black crosses. The fit perfectly describes the observed pattern, proving

completely homogeneous current distribution. The fit parameters are the critical current 𝐼C =
2.38 μA and the junction area 𝐴B = 2.53 μm2, which results in an effective length 𝐿eff

𝑊
𝐴B

= 842 nm.

Since themeasured value can only represent themagnitude of the Fourier transformed current

distribution, and phase information is lost, the imaginary part has to be recovered [Dyn71].

A simplification can be made by assuming a symmetric current distribution, in which case

𝐼C(𝐵) =
|
|
|
|

𝑊 /2

∫
−𝑊 /2

𝐽C(𝑥) cos (
2𝜋
𝛷0

𝐿𝐵𝐵𝑥) d𝑥
|
|
|
|
. (4.24)

A corresponding current profile is shown in figure 4.39.



78 4 Results and Discussion

0

20

40

60

80

100

d
V
/d
I 

[Ω
]

-4 -2 0 2 4

B [mT]

-2

-1

0

1

2

I 
[µ

A
]

VBG = 4. 00V
nBG = 1. 79e+ 12 IC|sinc(πφ/φ0)|

IC (data)

Figure 4.38: Field dependence of the critical current in sample A at 𝑉BG = 4 V

-4 -2 0 2 4

B [mT])

0.0

0.5

1.0

1.5

2.0

2.5

I C
 [
µ

A
]

-4 -2 0 2 4

x [µm])

0.0

0.2

0.4

0.6

0.8

1.0

J
x
 [
µ

A
/µ

m
]

Figure 4.39: Extracted critical current from 4.38 and Fourier transformation, revealing the real space
current distribution



4.4 Proximity Induced Superconductivity 79

4.4.3 Multiple Andreev Reflection

When the current is increased beyond the critical current 𝐼C, oscillations in the conductance

at characteristic bias voltages given by integer fractions of 𝑉DS = 2𝛥0
𝑁

can be observed. These

oscillations can be understood from the MAR process explained in 2.2, where quasiparticles that

cannot be directly transmitted due to the superconducting gap 𝛥 in the leads can successively

gain energy by reflecting back and forthwithin the junction until they can reach the quasiparticle

continuum. From the position of the MAR peaks in the differential conductance, we can estimate

𝛥0, as was done in the left panel of fig. 4.40 for sample A, where 𝛥0 ≈ 92 μeV was found. While

the peaks at 𝛥0, 2𝛥0/3 can be clearly identified, the peak at 2𝛥0 is obscured by the conductance

dip. For pure Al films, a gap of 𝛥Al = 200 μeV to 300 μeV was reported for thin films[Cou08], while

𝛥bulk
Al = 180 μeV for bulk aluminium[Gro14]. In the samples presented here, a Ti adhesion layer

was used, which lowers 𝛥0. The right panel of figure 4.40 shows a gate and bias sweep, where

each vertical slice corresponds to a measurement as shown on the left. In this representation

versus the bias voltage 𝑉DS, the gate independent, energy dependent position of the MAR peaks

becomes apparent.

In sample B, the oscillations in the conductance are even more pronounced for electron

conduction, while only very weak features are visible for hole conduction, as shown in the left

panel of figure 4.41. Here, peaks at 2𝛥0, 𝛥0 and
2
3
𝛥0 can be identified, with 𝛥0 ≈ 115 μeV. The

additional peak at lower bias is not aligned with
1
2
𝛥0 as expected, but located closer to

2
5
𝛥0. The

difference in the amplitude of the MAR signal for hole and electron conduction is also reflected

in the excess current, which is caused by the contribution of MAR to the current at high bias.

It is much larger for electron conduction, as shown in the right panel of 4.41. The very large

amplitude of MAR in both samples indicates a high transmission [Pos94].

Since the MAR are an indicator for the value of 𝛥0, it is interesting to study the temperature

dependence, as shown in figure 4.43 for sample B. The positions remain relatively stable up

to about 500mK, where both 𝛥 and the MAR amplitude start to decline. Figure 4.44 shows the

positions of the MAR peaks divided by 𝑁 = 2
3
, 1, 2, i.e. the value of 𝛥0 corresponding to each peak

position, versus the temperature.
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Figure 4.40: Multiple Andreev Reflection in sample A, 𝑇 = 15 mK. Left: At 𝑉BG = 3.36 V, with
𝛥0 = 92 μeV. Right: Double sweep of bias and gate voltage at low charge carrier density
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Shot Noise of Multiple Andreev Reflection

While no previous experimental work on shot noise of MAR in graphene exists, enhanced noise

due to the increased effective charge quanta 𝑞eff ≈ (1 + 2𝛥0
𝑒𝑉

)𝑒 that are coherently transferred

by each MAR process was observed in metallic systems. [Die97] investigated NbN/MgO/NbN
superconductor-insulator-superconductor (SIS) tunnel junctions. The shot noise was found to be

enhanced by MAR in pinholes in the oxide barrier, where the transmission of these pinholes is

estimated as 𝑇 ≈ 0.17. [Hos00] found MAR enhanced shot noise in diffusive Al wires, and [Cro01]

in atomic point contacts (break junctions) with varying transmission probabilities. The enhanced

shot noise agrees with theoretical predictions [Ave96; Bez99; Cue99a; Nav99]. Additionally to

these experimental studies performed on systems with relatively low transparency, [Cam05]

found MAR enhanced shot noise in a ballistic 2DEG, with 𝜇 = 3.5 × 105 V s cm−2, 𝑛 = 6.6 × 1011 cm−1,

and a corresponding mean free path of 𝑙mfp = 4.6 μm.

In contrast to previous experiments and theory, the raw data of our shot noise measurements

shows a clear suppression of the noise at the positions of MAR resonance. The suppression could

be qualitatively reproduced in a theoretical model by Ulf Briskot and Igor Gornyi, where the

noise can be reduced at the resonance due to the high transparency of the device. The directly

measured signal at the output of the noise detection diode, 𝑉Noise, is shown in fig. 4.45 in red for

sample A at 𝑉BG = −1 V, along with the differentially measured and integrated d𝑉Noise in blue

(with integration constant set to align with the DC data). Features of suppressed noise at the

MAR resonances at 2𝛥0 and 𝛥0 are very clear in the data of the lock-in measurement, and already

visible in the directly measured data.
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Figure 4.45: Noise measurement raw data. Conductance (black), DC measured 𝑉Noise and integrated,
d𝑉Noise from lock-in measurement.

The suppression is most obvious in sample A. It can be observed across the entire accessed

gate range, as shown in Figure 4.46, where the differential Fano factor, calculated from (3.16), is

plotted versus back gate and bias voltage around the Dirac point and at high electron density. In

the data of the top gated sample B, the MAR is even more pronounced in the conductance, but

less visible in the noise, as shown in fig. 4.47.
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Figure 4.46: Differential Fano factor 𝐹𝑑 of sample A at the Dirac point and at high density
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Correction of Nonlinear 𝑅𝑑 for MAR Shot Noise

Measuring the shot noise signal of MAR is particularly challenging, since they appear only at

fixed, small bias, which doesn’t allow increasing the current to improve the signal, and second,

because the nonlinearity in the conductance may change the coupling of the sample to the

measurement setup, thereby distorting the data.

The measured voltage at the detector diode is proportional to the power at the input of the

amplifier and can be converted using the gain bandwidth product GBW from a calibration

measurement and the diode sensitivity 𝛼D. Constant additional noise that is added after the first

amplifier only adds a small part to the signal and can be treated together with the noise of the

first amplifier. For a linear sample, the original noise 𝑆𝐼,𝑠 can then be recovered according to

(3.11) and (3.18).
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Figure 4.49: Spectral density of excess noise calculated assuming a sample with linear IV (blue)
and taking into account the nonlinear corrections given by (3.23) with naïve assumption 𝑇𝑁 = 3 K,
𝑇𝑒 = 300 mK, leading to an unphysical, overcompensated signal (red).

The correction term for samples with nonlinear IV (3.23) consists of three parts that are

proportional to the noise 𝑆𝐼,𝑠 itself, the shunt resistor noise temperature 𝑇N, and the electronic

temperature 𝑇𝑒. Finally, by integration of (3.23), the “corrected” noise 𝑆nlc
𝐼,𝑠 is found, and depend-

ing on the parameters used for the correction, it can lower, eliminate or overcompensate the

apparent noise suppression. The parameters used for the compensation shown in fig. 4.49

were an electronic temperature 𝑇𝑒 = 300 mK, extracted from a fit to the low bias shot noise of

the reference tunnel junction, and the actual shunt resistor temperature 𝑇N = 3 K. As a third
parameter, the gain bandwidth product GBW enters the equation, as it is required to find the

actual power of the shot noise originating from the sample. The effect of the correction terms

depends on the ratio of the power of the sample noise and the power of the spurious noise

sources. By overestimating GBW, the original signal is underestimated, and the compensation

terms get too big. This is the case for the data shown in figure 4.49, where the ”corrected”

data overcompensates the noise suppression, leading to an unphysical behavior. The most

important term in (3.23) is the correction with respect to 𝑇N, the noise power originating from
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the shunt resistor on the circulator. It enters the equation with a coefficient |𝛤 |2, and since the

MAR features appear at a low resistance close to or at 50 Ω, its variation cannot be neglected.

During the measurement of sample B, the shunt was mounted on the still plate at 𝑇N = 800 mK
instead of 𝑇N = 3 K during the measurement of sample A, which might explain the reduced

amplitude of the MAR in the noise signal. At higher bias, where
d𝑅𝑑
d𝑉

= 0, the data with and

without corrections are equal. A problem for the calculation of the corrections for nonlinear
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Figure 4.50: Using the noise in the superconducting state as a reference point, the effect of the
variation of |𝛤 |2 can be clearly seen. Left: The noise background of the curves at high bias is lower
than the noise in the superconducting state. Right: The difference between the background noise at
high bias, extracted by extrapolation of the linear part, and the zero bias noise in the superconducting
state and the sample resistance are plotted versus the gate voltage, showing the variation of the
background noise by varying 𝑅𝑑

IVs is finding the correct value for the noise power originating from the shunt resistor that

actually reaches the sample, where it is reflected. We can try to estimate it by considering the

noise at zero bias in the superconducting state as a fixed reference, where 𝑅𝑑 ≡ 0, |𝛤 |2 = 1
and all of 𝑇N is reflected. The measured noise background 𝑇Noise = 𝑇N + 𝑇0 (contributions by

shunt resistor and constant addition by the amplifier) becomes constant and maximal. This

behavior can be seen in the DC measured data in fig. 4.45, where 𝑉Noise is indeed increased at

zero bias when the sample turns superconducting. The additional noise cannot originate from

the sample, it must be caused by reflection of thermal noise. The left panel of 4.50 shows a

plot of 𝑉Noise at two different gate settings, i.e. for two different values for 𝑅𝑑. The noise in the

superconducting state was subtracted, it serves as a reference for the maximum background

noise level. By extrapolating the curve from high bias to zero, we can find the noise baseline of

𝑇Noise = 𝑇0 + |𝛤 |2𝑇N at the given sample resistance 𝑅𝑑. The shift between the two curves shows

the relatively large influence of 𝛤 in this particular measurement. The difference of the noise

background level at high bias (i.e. finite 𝑅𝑑) and in the superconducting state depends on 𝑅𝑑 ,

and the relation can be made visible by plotting the shift of the noise baseline versus sample

resistance 𝑅𝑑 , as shown in 4.51. The data can be fitted with 𝑇𝑁 ≈ 0.1 K, 𝑇0 ≈ 1.4 K, which indicates

that 𝑇𝑁 is reduced compared to the shunt temperature.

In conclusion, both samples show very strong MAR oscillations in the conductance, which

confirm a high transparency. The bare noise signal shows clear signs of noise suppression at the

positions of the MAR, which can be explained with the high transparency in a theoretical toy

model. However, the influence of spurious thermal noise that is reflected at the sample with a

resistance-dependent coefficient 𝛤 2 might be superimposed with the shot noise signal and could
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cause a similar pattern in the measured signal, depending on the values of the model parameters

𝑇𝑁 and GBW. While a naïve estimation leads to an overcompensation of the signal, 𝑇𝑁 might

effectively bemuch smaller than expected from the shunt temperature, and further investigation

is required. Furthermore, the sharp conductance dip outside of the gap (at ≈ 0.7 mV in fig. 4.45)

barely affects the measured noise data, which indicates that the measured noise is in fact not as

dependent on 𝑅𝑑 as expected from the model. To reduce the effect of the variation of 𝛤 2 on the

measured noise signal, in future measurements of samples with nonlinear IV characteristic, the

shunt resistor should be placed at mixing chamber temperature.



CHAPTER 5

Summary and Outlook

In this thesis, conductance and shot noise measurements of hBN encapsulated graphene were

presented. By adapting the residue free fabrication technique with one-dimensional edge

contacts, as first demonstrated in [Wan13], samples showing ballistic transport over distances in

the order of the sample dimensions were fabricated. The devices show a rich variety of physical

phenomena, which were investigated by tuning the charge carrier density through global or

local electrostatic gating, varying the perpendicular magnetic field, and the temperature.

The characterization in the normal state at low temperature showed clear Fabry-Pérot interfer-

ence patterns, which indicate ballistic transport. In this regime, theory predicts “pseudodiffusive”

transport at low charge carrier densities [Two06], i.e. ballistic graphene showing transport

properties of diffusive metal, which is reflected by a density dependent Fano factor withℱ = 1/3
and a minimum conductivity of 𝜎min = 4𝑒2

𝜋ℎ
at the Dirac point. The hBN encapsulated samples in

this work seem to be predestined for the investigation of transport at low charge carrier density,

but while ballistic transport was achieved, the measured shot noise level was much lower than

expected from theory. The Fano factor, which was determined by comparison to simultaneously

measured tunnel junction samples, was found to be only ℱ ≈ 0.016 at the Dirac point, instead
of ℱ = 1

3
. Similar values were found in measurements during three cool downs, using two

graphene samples with different W/L ratios, at 4K and at base temperature. This very small

value is in disagreement with theory for both ballistic and diffusive transport in graphene. To

exclude a problem of asymmetric attenuation of the sample and reference measurement lines,

the attenuation of the setup was measured at room temperature, where both lines were found

to be equal. Yet, the attenuation within the sample holder could not be measured, and it cannot

be excluded that a bad connection only became noticeable after cooling down. Apart from the

low absolute value, the Fano factor was found to be gate dependent with a maximum at the

Dirac point. However, qualitatively similar to [Dan08], the gate dependence was weaker than

expected from theory.

Due to the ambipolar field effect in graphene, electrostatic gates can introduce p-n junctions

that act as mirrors for Dirac fermions, creating a Fabry-Pérot interferometer, where the Fermi

wavelength can be tuned in either half of the sample by adjusting the bias voltage and the elec-
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trostatic gates. These interference patterns reveal information about charge carrier dynamics

and the effective size of the area affected by the local top gate.

Shot noisemeasurements on the graphenep-n junctionwere hamperedby technical difficulties.

Due to the failure of the reference sample, the shot noise data could not be calibrated accurately,

and the calibration data of a previous cool down was used instead. Thus, the noise data for

sample B cannot be directly compared to the unipolar sample A. While the noise background

was similar to the previous measurement, the signal was found to be even smaller than before.

Within the bipolar regime, introducing a perpendicular magnetic field causes charge carrier

trajectories to form “snake states” along the p-n interface, which lead to oscillations in the

conductance with respect to tuning the cyclotron radius 𝑟C =
ℏ√𝜋𝑛

𝑒𝐵
by varying either themagnetic

field or the charge carrier density. While the oscillations are small, the expected pattern of lines

along curves of constant 𝑟C could be clearly identified, which indicates ballistic transport on the

length scale of the sample width (𝑊 = 5 μm) in sample B.

Further increasing the field, the sample enters the quantum Hall regime, and transport occurs

solely through topologically protected, unidirectional edge states. In the unipolar regime, the

two-terminal conductance shows Shubnikov-de Haas oscillations that allow extracting the exact

gate efficiencies and charge carrier densities in the sample. The direction of edge states can be

inverted using electrostatic gating in graphene due to the ambipolar field effect, which causes

parallel states at either side of a p-n interface. Depending on the disorder in the sample, these

edge states can mix at the interface, making it serve as an “electronic beam splitter”. The

conductance data presented in this thesis shows partial mixing of only the lowest states in the

top gated region, while additional states don’t contribute to the conductance.

At low temperature, the Ti/Al leads turn superconducting, and effects related to proximity

induced superconductivity were investigated. The field dependence of the critical current

can serve as a probe for the real space current distribution, which was found to be perfectly

homogeneous in the non-top gated sample. Above the critical current, features of multiple

Andreev reflection were observed both in the conductance and the shot noise measurements.

However, the nonlinear conductance caused by MAR lead to changes in the coupling between

the graphene sample and the noise measurement setup that may have distorted the measured

signal. To discriminate effects of this varying coupling and actual changes in the noise signal, a

model was employed, but further investigation is required.

With a more sensitive, fully functional noise detection, the conductance oscillation caused

by the snake states at the p-n interface, as well as the partial mode-mixing in the quantum

Hall regime should show a characteristic signature in the shot noise that would help to better

understand the underlaying mechanisms, especially the role of disorder. In photon optics,

waveguides and beam splitters are the most fundamental building blocks. Charge carrier

guiding through snake-states and edge-mode mixing can be seen as respective realizations

for Dirac fermions, which may in the future be used for the fabrication of more sophisticated

devices.
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