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TRIGONOMETRIC TIME INTEGRATORS FOR THE

ZAKHAROV SYSTEM

SEBASTIAN HERR AND KATHARINA SCHRATZ

Abstract. The main challenge in the analysis of numerical schemes for the

Zakharov system originates from the presence of derivatives in the nonlinearity.
In this paper a new trigonometric time-integration scheme for the Zakharov

system is constructed and convergence is proved. The time-step restriction is

independent from a spatial discretization. Numerical experiments confirm the
findings.

1. Introduction

We consider the Zakharov system

i∂tE + ∆E = uE,

∂ttu−∆u = ∆|E|2,
(1.1)

with initial conditions

E(0) = E0, u(0) = u0, ∂tu(0) = u1, (1.2)

for given initial data E0, u0, u1 in appropriate Sobolev spaces. This system is a
scalar model for Langmuir oscillation in a plasma, see [23, 25]. Here, E : R1+d → C
denotes the (scalar) electric field envelope and u : R1+d → R the ion density
fluctuation in spatial dimension d ∈ N. We impose periodic boundary conditions,
i.e. both E and u are considered to be spatially periodic. While there are other
feasible settings, this choice allows for a simple implementation.

The Zakharov system has a Hamiltonian structure and conserved quantities.
More precisely, for strong solutions we have

d

dt

∫
Td
|E(t, x)|2dx = 0 (1.3)

and, if u1 has mean zero,

d

dt

∫
Td
|∇E(t, x)|2 +u(t, x)|E(t, x)|2 +

1

2
||∇|−1∂tu(t, x)|2 +

1

2
|u(t, x)|2dx = 0, (1.4)

where |∇| =
√
−∆ and Td = Rd/(2πZ)d. The latter is called conservation of energy.

Several time integrators for solving the Zakharov system numerically have been
proposed. Due to the outstanding performance of splitting methods for nonlinear
Schrödinger equations, see the recent papers [9, 10, 20] and references therein,
splitting methods for the generalized Zakharov system were constructed in [2, 1, 18].
In [22] finite differences for the time discretization and a pseudo spectral method for
the space discretization were used to simulate the Zakharov system. Numerically,
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the above schemes have been tested extensively. However, due to the difficult
structure of the system, as explained below in more detail, a convergence analysis
is missing.

For the one dimensional Zakharov equations fully-implicit and semi-explicit
Crank-Nicolson type approximations based on finite difference in time and space
were derived in [13, 14] and [7, 8], respectively. Numerical experiments [8] indicate
that the semi-explicit method (which is explicit in n and implicit in E) is preferable
over the fully implicit method (which is both implicit in n and in E) due to the
high computational costs of the latter. However, its convergence only holds under
the constraint ∆t = ∆x, where ∆t and ∆x denote the time and space discretization
parameters. Furthermore, due to the use of the Sobolev embedding theorem the
convergence results only hold in one dimension.

The main challenge in the construction and analysis of any numerical scheme
for the Zakharov system (1.1) originates from the presence of derivatives in the
nonlinearity: Mild solutions are given by

E(t) =eit∆E(0)− i
∫ t

0

ei(t−ξ)∆u(ξ)E(ξ)dξ,

u(t) = cos(t|∇|)u(0) +
sin(t|∇|)
|∇|

u′(0) +

∫ t

0

sin((t− ξ)|∇|)|∇||E(ξ)|2dξ.

(1.5)

However, it is not obvious how to bound the quadratic term |∇||E|2, since “naively”
estimating the solutions yields

‖E(t)‖s ≤ ‖E(0)‖s + c

∫ t

0

‖u(ξ)‖s‖E(ξ)‖sdξ, s > d/2,

‖u(t)‖l ≤ ‖u(0)‖l + ‖u′(0)‖l−1 + c

∫ t

0

‖E(ξ)‖2l+1dξ, l + 1 > d/2,

which amounts to a loss of derivatives, see Section 3.1 for a definition of ‖ · ‖s.
In order to avoid this, we follow the strategy presented in [21]: We reformulate

the Zakharov system as a system in (E, ∂tE, u, ∂tu). This allows us to construct
trigonometric time-integration schemes for the Zakharov system (1.1) without im-
posing any spatial-dependent time-step condition or too restrictive regularity as-
sumptions on the initial data (such as analyticity). In particular, their convergence
also holds in the limit ∆x→ 0.

For recent developments in trigonometric and exponential integration schemes
for wave-type equations we refer to [11, 15, 16, 17] and the references therein. For
local-wellposedness of the Zakharov system in Sobolev spaces of low regularity on
Td we refer to [6, 24, 19]. Concerning the well-posedness theory on Rd we refer to
[21, 5, 12, 3, 4] and references therein.
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2. Trigonometric integrators for the Zakharov system

To avoid the loss of derivatives we use the method devised in [21]: We reformulate
the Zakharov system (1.1) as

i∂tF + ∆F = uF + ∂tu

(
E(0) +

∫ t

0

F (ξ)dξ

)
∂ttu−∆u = ∆|E|2,

(−∆ + 1)E = iF − (u− 1)

(
E(0) +

∫ t

0

F (ξ)dξ

)
,

(2.1)

where F = ∂tE (cf. [21]), with initial conditions

F (0) = i
(
∆E(0)− u(0)E(0)

)
, u(0) = u0, ∂tu(0) = u1, E(0) = E0. (2.2)

Let

IF (t) := E0 +

∫ t

0

F (λ)dλ. (2.3)

Then the mild solutions of (2.1) at time tn+1 = tn + τ with t0 = 0 read

F (tn + τ) =eiτ∆F (tn)− i
∫ τ

0

ei(τ−ξ)∆
(

(uF + u′IF )(tn + ξ)
)

dξ

u(tn + τ) = cos(τ |∇|)u(tn) + |∇|−1 sin(τ |∇|)u′(tn)

+

∫ τ

0

|∇|−1 sin((τ − ξ)|∇|)∆|E(tn + ξ)|2dξ,

u′(tn + τ) =− |∇| sin(τ |∇|)u(tn) + cos(τ |∇|)u′(tn)

+

∫ τ

0

cos((τ − ξ)|∇|)∆|E(tn + ξ)|2dξ,

E(tn + τ) =(1−∆)−1
(
iF (tn + τ)− (u(tn + τ)− 1)IF (tn + τ)

)
.

(2.4)

In Section 3 we develop a first-order trigonometric integration scheme based on the
reformulation (2.4) and rigorously carry out its convergence analysis. Furthermore,
in Section 4 we indicate a generalization to a second-order trigonometric integration
scheme.

3. A first-order scheme

In order to construct a robust first-order scheme we approximate the exact solu-
tions (u, u′, F, E)(tn+ ξ) appearing in the integrals in (2.4) via Taylor series expan-
sion up to the first-order remainder term. This allows us to integrate eiξ∆, cos(ξ∆)
and sin(ξ∆) exactly. Furthermore, we use the following approximation for the
integrals over F : Note that for 0 ≤ ξ ≤ τ∫ tn+ξ

0

F (λ)dλ =

n−1∑
k=0

∫ tk+1

tk

F (λ)dλ+

∫ tn+ξ

tn

F (λ)dλ

=

n−1∑
k=0

∫ τ

0

F (tk + λ)dλ+

∫ ξ

0

F (tn + λ)dλ

= τ

n∑
k=0

F (tk) + Fτ,ξ,n,

(3.1)
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where

Fτ,ξ,n := (ξ − τ)F (tn) +

n−1∑
k=0

∫ τ

0

∫ λ

0

F ′(tk + r)drdλ+

∫ ξ

0

∫ λ

0

F ′(tn + r)drdλ.

We observe that

‖Fτ,ξ,n‖s ≤ τ‖F (tn)‖s + τtn sup
t∈[0,tn+1]

‖F ′(t)‖s, (3.2)

and it this sense we have, for 0 ≤ ξ ≤ τ ,∫ tn+ξ

0

F (λ)dλ ≈ τ
n∑
k=0

F (tk).

Recall the initial conditions (2.2). By setting

E0 = E0, u0 = u0, u′0 = u1, F 0 = i(∆E0 − u0E0), S0
F = E0 + τF 0, (3.3)

we obtain, for n ≥ 0, the first-oder trigonometric time-integration scheme

Fn+1 = eiτ∆Fn + iτ
1− eiτ∆

iτ∆
(unFn + u′nSnF ) ,

un+1 = cos(τ |∇|)un + |∇|−1 sin(τ |∇|)u′n + τ |∇|−1 1− cos(τ |∇|)
τ |∇|

∆|En|2,

u′n+1 = −|∇| sin(τ |∇|)un + cos(τ |∇|)u′n + τ
sin(τ |∇|)
τ |∇|

∆|En|2,

Sn+1
F = SnF + τFn+1,

En+1 = (−∆ + 1)−1
(
iFn+1 − (un+1 − 1)Sn+1

F

)
,

(3.4)

Remark 3.1. Note that for given (En, Fn, un, u′n, SnF ) we can compute the next
iteration without saving (Ek, F k, uk, u′k, SkF ) for any k < n.

Remark 3.2. For initial data of sufficiently high Sobolev regularity we will prove
that the scheme (3.4) is of first-order. Note that one can also use higher order
quadrature formulas to generate higher order schemes, given additional smoothness
of the initial data. We give a generalization to a second-order scheme in Section 4.

3.1. Error analysis. In this section we carry out the error analysis of the trigono-

metric time-integration scheme (3.4). In the following we set for f(x) =
∑
k∈Zd f̂(k)eik·x

and s ∈ R
|∇|sf(x) :=

∑
k∈Zd

|k|sf̂(k)eik·x, 〈∇〉sf(x) := |∇|sf(x) + f̂(0)

and define
‖f‖s := ‖〈∇〉sf‖L2(Td).

For s > d/2, we will exploit the fact that Hs(Td) is an algebra, with the standard
product estimate

‖fg‖s ≤ c‖f‖s‖g‖s,
where c only depends on d and s. Furthermore, we denote by L(X) the space of
bounded linear operators T : X → X, and sometimes we write ‖T‖s instead of
‖T‖L(Hs(Td)) for the sake of brevity.

In view of the structure of the Zakharov system

‖(E(t), u(t), u′(t))‖[s] := ‖E(t)‖s+2 + ‖u(t)‖s+1 + ‖u′(t)‖s
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is the natural norm for our error analysis, the auxiliary function F will be measured
in ‖ · ‖s then.

Theorem 3.3. Fix s > d/2 and 0 < γ ≤ 1. For any T ∈ (0,∞), suppose that

E ∈ C([0, T ];Hs+2+2γ(Td)), u ∈ C([0, T ];Hs+1+2γ(Td)) ∩ C1([0, T ];Hs+2γ(Td))

is a mild solution of (1.1) with

ms+2γ(T ) := sup
t∈[0,T ]

‖(E(t), u(t), u′(t))‖[s+2γ] <∞. (3.5)

Then, there exists τ0 > 0 such that for all 0 ≤ τ ≤ τ0 and tn = nτ ≤ T the
trigonometric time-integration scheme (3.4) is convergent of order γ, i.e.,

‖(E(tn)− En, u(tn)− un, u′(tn)− u′n)‖[s] ≤ ec1c2τγ ,

where c1 and c2 depend only on ms(T ) and ms+2γ(T ), respectively, as well as on
T , d and s.

Remark 3.4. Theorem 3.3 implies first-order convergence in the case γ = 1.

Remark 3.5. Note that the Zakharov system (1.1) is locally well-posed in the space

Hs(Td)×H`(Td)×H`−1(Td) 3 (E, u, u′),

provided that

0 ≤ s− ` ≤ 1, 1/2 ≤ `+ 1/2 ≤ 2s, for d = 1,

0 ≤ s− ` ≤ 1, 1 ≤ `+ 1 ≤ 2s, for d = 2,

0 ≤ s− ` ≤ 1, d− 1 < `+ d/2 ≤ 2s, for d ≥ 3,

(3.6)

see [19, 24]. Hence, for 0 ≤ γ ≤ 1 and

‖E(0)‖s+2+2γ + ‖u(0)‖s+1+2γ + ‖u′(0)‖s+2γ ≤Mγ

there exists a T0 = T0(Mγ) > 0 such that

E ∈ C([0, T0];Hs+2+2γ(Td)), u ∈ C([0, T0];Hs+1+2γ(Td))∩C1([0, T0];Hs+2γ(Td)),

which implies that (3.5) holds at least for T = T0.

Proof of Theorem 3.3. Let s > d/2. Due to the fact that Hs(Td) is an algebra it is
easy to see that the mild solution (E, u) of (1.1) satisfies ∂tE ∈ C([0, T ];Hs+2γ(Td))
and that (F,E, u) solves (2.4) for F = ∂tE, see above. In the following, c denotes a
generic constant which depends on d and s only. We will prove the claim for n+ 1
instead of n. Subtracting the numerical solutions (3.4) from the exact solutions
(2.4) yields

F (tn+1)− Fn+1 = eiτ∆(F (tn)− Fn)

+ iτ
1− eiτ∆

iτ∆

(
u(tn)(F (tn)− Fn) + (u(tn)− un)Fn

+ (u′(tn)− u′n)E(0) + u′(tn)
(
τ

n∑
k=0

(F (tk)− F k)
)

+ (u′(tn)− u′n)(τ

n∑
k=0

F k)
)

+ LnF ,

(3.7)
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and

〈∇〉(u(tn+1)− un+1) = cos(τ |∇|)〈∇〉(u(tn)− un)

+ sin(τ |∇|) 〈∇〉
|∇|

(u′(tn)− u′n)

+ τ
1− cos(τ |∇|)

τ |∇|
〈∇〉
|∇|

∆
(
|E(tn)|2 − |En|2

)
+ 〈∇〉Lnu,

(3.8)

as well as

u′(tn+1)− u′n+1 = − sin(τ |∇|) |∇|
〈∇〉
〈∇〉(u(tn)− un)

+ cos(τ |∇|)(u′(tn)− u′n)

+ τ
sin(τ |∇|)
τ |∇|

∆
(
|E(tn)|2 − |En|2

)
+ Lnu′ ,

(3.9)

and

E(tn+1)− En+1 = (−∆ + 1)−1
(
i(F (tn+1)− Fn+1)

− (u(tn+1)− un+1)
(
E(0) + τ

n∑
k=0

F k+1)
)

+ (1− u(tn+1))
(
τ

n∑
k=0

(F (tk+1)− F k+1)
)

+ ∆LnE

)
.

(3.10)

The local errors at time tn satisfy

‖LnF ‖s =
∥∥∥∫ τ

0

ei(τ−ξ)∆
(
u(tn + ξ)F (tn + ξ)− u(tn)F (tn)

+ u′(tn + ξ)IF (tn + ξ)− u′(tn)
(
E(0) + τ

n∑
k=0

F (tk)
))

dξ
∥∥∥
s
,

‖〈∇〉Lnu‖s =
∥∥∥ 〈∇〉|∇|

∫ τ

0

sin((τ − ξ)|∇|)∆
(
|E(tn + ξ)|2 − |E(tn)|2

)
dξ
∥∥∥
s
,

‖Lnu′‖s =
∥∥∥ ∫ τ

0

cos((τ − ξ)|∇|)∆
(
|E(tn + ξ)|2 − |E(tn)|2

)
dξ
∥∥∥
s
,

‖∆LnE‖s =
∥∥∥(1− u(tn+1)

)( ∫ tn+τ

0

F (λ)dλ− τ
n∑
k=0

F (tk+1)
)∥∥∥

s
.

(3.11)

By Lemma 3.6 below we have

max
0≤k≤n

{
‖LkF ‖s+‖〈∇〉Lku‖s+‖Lku′‖s+τ‖∆LkE‖s

}
≤ cτ1+γtn(1+ms+2γ(T ))4. (3.12)

Hence, the local errors (3.11) are of order τ1+γ .
In order to deduce convergence of order γ globally from (3.12) we need to analyze

the stability of the integration scheme (3.4). In the following we set

mn
s = max

0≤k≤n
{‖Ek‖s+2 + ‖F k‖s + ‖uk‖s+1}.

(i) Error in F : Note that for all s ∈ R

‖eiτ∆‖s ≤ 1, ‖(iτ∆)−1(1− eiτ∆)‖s ≤ 2. (3.13)
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Plugging the stability bound (3.13) into the error recursion (3.7) for F yields that

‖F (tn+1)− Fn+1‖s ≤
(
1 + τctnms(tn)

)
max

0≤k≤n
‖F (tk)− F k‖s

+ c(ms(0) + tnm
n
s ) (τ‖u(tn)− un‖s + τ‖u′(tn)− u′n‖s) + ‖LnF ‖s.

(3.14)

(ii) Error in (〈∇〉u, u′): We define the operator

Oτ =

(
cos(τ |∇|) sin(τ |∇|) 〈∇〉|∇|

− sin(τ |∇|) |∇|〈∇〉 cos(τ |∇|)

)
. (3.15)

Formulas (3.9) and (3.8) imply that(
〈∇〉(u(tn+1)− un+1)

u′(tn+1)− u′n+1

)
= Oτ

(
〈∇〉(u(tn)− un)

u′(tn)− u′n

)

+ τ

( 1−cos(τ |∇|)
τ |∇|

〈∇〉
|∇|

sin(τ |∇|)
τ |∇|

)
∆
(
|E(tn)|2 − |En|2

)
+

(
〈∇〉Lnu
Lnu′

)
.

(3.16)

Note that the error recursion in E given in (3.10) yields that

‖E(tn)− En‖s+2 ≤ (1 + ctnms(tn)) max
0≤k≤n

‖F (tk)− F k‖s

+ c
(
ms(0) + tnm

n
s

)
‖u(tn)− un‖s + ‖∆Ln−1

E ‖s,
(3.17)

which allows us to solve the error recursion in (〈∇〉u, u′) as no loss of derivative
occurs. More precisely, we have by (3.10) that

∇α(E(tn)− En) =
∇α

|∇|2 + 1

(
i(F (tn)− Fn)− (u(tn)− un)η(tn)

+ (1− u(tn))
(
τ

n∑
k=1

(F (tk)− F k)
)

+ ∆Ln−1
E

)
=
∇α

|∇|2 + 1
η(tn)〈∇〉−1

(
〈∇〉(u(tn)− un)

)
+ rατ,n

(3.18)

where, for any α = 0, 1, 2, ‖ ∇α
|∇|2+1‖s ≤ 1 and

‖rατ,n‖s ≤ (1 + ctnms(tn)) max
0≤k≤n

‖F (tk)− F k‖s + ‖∆Ln−1
E ‖s

‖η(tn)‖s = ‖E(0) + τ

n∑
j=1

F j‖s ≤ ms(0) + tnm
n
s .

(3.19)

Note that for all 0 < τ ≤ 1 we have∥∥∥∥ sin(τ |∇|)
τ |∇|

∥∥∥∥
s

≤ 1,

∥∥∥∥1− cos(τ |∇|)
τ |∇|

〈∇〉
|∇|

∥∥∥∥
s

≤ 2 (3.20)

and

∆
(
|E(tn)|2 − |En|2

)
=Re

{
(E(tn) + En)∆(E(tn)− En)

+ (∆E(tn) + ∆En)(E(tn)− En)

+ 2∇(E(tn) + En) · ∇(E(tn)− En)
}
.

(3.21)
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In particular,

‖∆
(
|E(tn)|2 − |En|2

)
‖s ≤ 4c‖E(tn) + En‖s+2‖E(tn)− En‖s+2

≤ 4c
(
ms(tn) +mn

s

)
‖E(tn)− En‖s+2.

Plugging (3.20), (3.21), (3.18) and (3.19) into (3.16) we obtain that(
〈∇〉(u(tn+1)− un+1)

u′(tn+1)− u′n+1

)
= (Oτ + Pτ,n)

(
〈∇〉(u(tn)− un)

u′(tn)− u′n

)
+Rτ,n, (3.22)

where

Pτ,k = τ

(
1−cos(τ |∇|)

τ |∇|
〈∇〉
|∇| 0

sin(τ |∇|)
τ |∇| 0

)
Re{p1

k + p2
k + p3

k}, (3.23)

with the operators

p1
k = (E(tk) + Ek)∆(|∇|2 + 1)−1η(tk)〈∇〉−1,

p2
k = (∆E(tk) + ∆Ek)(|∇|2 + 1)−1η(tk)〈∇〉−1,

p3
k = 2(∇E(tk) +∇Ek) · ∇(|∇|2 + 1)−1η(tk)〈∇〉−1.

(3.24)

The remainder satisfies

‖Rτ,n‖s ≤ c‖E(tn) + En‖s+2‖r2
τ,n‖s + ‖〈∇〉Lnu‖s + ‖Lnu′‖s

≤ cτ(ms(tn) +mn
s )
(
(1 + tnms(tn)) max

0≤k≤n
‖F (tk)− F k‖s + ‖∆Ln−1

E ‖s
)

+ ‖〈∇〉Lnu‖s + ‖Lnu′‖s.
(3.25)

Note that (3.19) implies that for all f ∈ Hs−1(Td) and j = 1, 2, 3 we have

max
0≤k≤n

‖pjkf‖s ≤ c max
0≤k≤n

‖E(tk) + Ek‖s+2‖η(tk)‖s‖f‖s−1

≤ c(ms(tn) +mn
s )(ms(0) + tnm

n
s )‖f‖s−1.

(3.26)

Thus, plugging (3.20) and (3.26) into (3.15) we obtain that

max
0≤k≤n

sup
0<τ≤τ0

‖τ−1Pτ,k‖L((Hs(Td))2) ≤ c(1 + tn)(ms(tn) +mn
s )2 =: qn, (3.27)

The bound (3.27) and Lemma 3.7 below yield the essential stability bound∥∥ n∏
k=k0

(Oτ + Pτ,k)
∥∥
L((Hs(Td))2)

≤ etn
(

1+qn

)
, (3.28)

for any 1 ≤ k0 ≤ n. Thus, solving the error recursion in (3.22) we obtain by the
stability bound (3.28) and the bound on Rτ,k in (3.25) that

‖u(tn+1)− un+1‖s+1 + ‖u′(tn+1)− u′n+1‖s

≤ 2n max
0≤k≤n

‖Rτ,k‖s max
1≤k0≤n

∥∥ n∏
k=k0

(Oτ + Pτ,k)
∥∥
L((Hs(Td))2)

≤
(
ctn
(
ms(tn) +mn

s

){
(1 + tnms(tn)) max

0≤k≤n
‖F (tk)− F k‖s

+ max
0≤k≤n

‖∆LkE‖s
}

+ 2n max
0≤k≤n

(‖〈∇〉Lku‖s + ‖Lku′‖s)
)

etn
(

1+qn

)
.

(3.29)
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The error bounds (3.14), (3.17) and (3.29) together with the bound on the local
errors in (3.12) yield

‖F (tn+1)− Fn+1‖s ≤
(
1 + τA1(mn

s )
)

max
0≤k≤n

‖F (tk)− F k‖s + τ1+γA2 (3.30)

and

‖E(tn+1)− En+1‖s+2 ≤ A1(mn+1
s ) max

0≤k≤n+1
‖F (tk)− F k‖s + τγA2, (3.31)

and

‖u(tn+1)− un+1‖s+1 + ‖u′(tn+1)− u′n+1‖s
≤ A1(mn

s ) max
0≤k≤n

‖F (tk)− F k‖s + τγA2,
(3.32)

where A1 = A1(·) is a continuous and monotonically increasing function which also
depends on ms(T ), A2 is a constant which depends on ms+2γ(T ), and both A1 and
A2 depend on T , d and s. From (3.30) we obtain

max
0≤k≤n+1

‖F (tk)− F k‖s ≤ A2

n∑
j=0

(
1 + τA1(mn

s )
)j
τ1+γ ≤ TeTA1(mns )A2τ

γ . (3.33)

Then, (3.32) implies

max
0≤k≤n+1

{‖u(tk)− uk‖s+1 + ‖u′(tk)− u′k‖s} ≤ (TeTA1(mns ) + 1)A2τ
γ . (3.34)

Similarly, (3.31) implies

max
0≤k≤n+1

‖E(tk)− Ek‖s+2 ≤ (A1(mn+1
s )TeTA1(mn+1

s ) + 1)A2τ
γ . (3.35)

Now, the assertion follows by a continuity argument: We obtain that

mn+1
s ≤ 2(A1(mn+1

s )TeTA1(mn+1
s ) + 1)A2τ

γ +ms(T )

The quantity mn+1
s depends continuously on τ and tends to zero as τ → 0. We

conclude that mn+1
s ≤ 2ms(T ) as long as

0 < τ ≤ ms(T )
1
γ (2(A1(2ms(T ))TeTA1(2ms(T )) + 1)A2)−

1
γ =: τ0.

The claimed estimate (for n+ 1) follows with the constants c2 = 4TA1(2ms(T ))A2

and c1 = TA1(2ms(T )). �

Lemma 3.6 (Local error). Let s > d/2. For 0 ≤ γ ≤ 1 the local errors defined in
(3.11) satisfy

max
0≤k≤n

{
‖LkF ‖s + ‖〈∇〉Lku‖s + ‖Lku′‖s + τ‖∆LkE‖s

}
≤ cτ1+γtn(1 +ms+2γ(T ))4,

where ms+2γ(T ) is defined in (3.5) and c depends on d and s.

Proof. In the following fix 0 ≤ γ ≤ 1 and let c denote a constant depending on s
and d only.
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The mild formulations (1.5) and (2.4) yield

E(tn + ξ)− E(tn)

=
eiξ∆ − 1

(−ξ∆)γ
(−ξ∆)γE(tn)− i

∫ ξ

0

ei(ξ−λ)∆(uE)(tn + λ)dλ,

F (tn + ξ)− F (tn)

=
eiξ∆ − 1

(−ξ∆)γ
(−ξ∆)γF (tn)− i

∫ ξ

0

ei(ξ−λ)∆(uF + u′E)(tn + λ)dλ,

(3.36)

and

|∇|(u(tn + ξ)− u(tn))

=
cos(ξ|∇|)− 1

(ξ|∇|)γ
ξγ |∇|1+γu(tn) +

sin(ξ|∇|)
(ξ|∇|)γ

(ξ|∇|)γu′(tn)

+

∫ ξ

0

sin((ξ − λ)|∇|)∆|E(tn + ξ)|2,

u′(tn + ξ)− u′(tn)

=
cos(ξ|∇|)− 1

(ξ|∇|)γ
(ξ|∇|)γu′(tn)− sin(ξ|∇|)

(ξ|∇|)γ
ξγ |∇|1+γu(tn)

+

∫ ξ

0

cos((ξ − λ)|∇|)∆|E(tn + ξ)|2.

(3.37)

Note that∥∥∥∥ sin(ξ|∇|)
(ξ|∇|)γ

∥∥∥∥
s

≤ 1,

∥∥∥∥1− cos(ξ|∇|)
(ξ|∇|)γ

∥∥∥∥
s

≤ 2,

∥∥∥∥1− eiξ∆

(−ξ∆)γ

∥∥∥∥
s

≤ 2. (3.38)

Plugging (3.38) into (3.37) yields for 0 ≤ ξ ≤ 1

‖u(tn + ξ)− u(tn)‖s+1 + ‖u′(tn + ξ)− u′(tn)‖s
≤ cξγ(‖u(tn)‖s+1+γ + ‖u′(tn)‖s+γ) + cξms(T )2

≤ cξγ(1 +ms+γ(T ))2.

(3.39)

We have

‖(−∆)γF (t)‖s = ‖(−∆)γE′(t)‖s
≤ ‖(−∆)γ+1E(t)‖s + c‖(−∆)γu(t)‖s‖(−∆)γE(t)‖s.

(3.40)

Hence, plugging (3.38) and (3.40) into (3.36) yields for 0 ≤ ξ ≤ 1

‖E(tn + ξ)− E(tn)‖s+2 + ‖F (tn + ξ)− F (tn)‖s
≤ cξγ‖E(tn)‖s+2+2γ + cξγ(1 +ms(T ))2 + cξ(1 +ms(T ))3

≤ cξγ(1 +ms+2γ(T ))3.

(3.41)

(i) Local errors 〈∇〉Lnu and Lnu′ : By the definition of 〈∇〉Lnu and Lnu′ in (3.11)
we obtain with the aid of (3.41) that

‖〈∇〉Lnu‖s + ‖Lnu′‖s ≤ cτ sup
0≤ξ≤τ

‖∆(|E(tn + ξ)|2 − |E(tn)|2)‖s

≤ cτms(T ) sup
0≤ξ≤τ

‖E(tn + ξ)− E(tn)‖s+2 ≤ cτ1+γ(1 +ms+2γ(T ))4.
(3.42)
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(iii) Local errors LnF and ∆LnE: By the definition of ∆LnE and LnF in (3.11) we
have

‖∆LnE‖s ≤ cms(T )‖
∫ tn+τ

0

F (λ)dλ− τ
n∑
k=0

F (tk+1)‖s,

‖LnF ‖s ≤ c
∫ τ

0

ms(T )
(
‖F (tn + ξ)− F (tn)‖s + ‖Fτ,ξ,n‖s

)
+ (1 +ms(T ))2

(
‖u(tn + ξ)− u(tn)‖s

+ (1 + tn)‖u′(tn + ξ)− u′(tn)‖s
)

dξ,

(3.43)

cf. (3.1) for the definition of Fτ,ξ,n. Note that by (3.36) we obtain for 0 ≤ ξ ≤ τ
that

Fτ,ξ,n =

∫ tn+ξ

0

F (λ)dλ− τ
n∑
k=0

F (tk)

=

n−1∑
k=0

∫ τ

0

(
F (tk + λ)− F (tk)

)
dλ+

∫ ξ

0

F (tn + λ)dλ− τF (tn)

=

n−1∑
k=0

∫ τ

0

eiλ∆ − 1

(−λ∆)γ
(−λ∆)γF (tk)dλ+RFτ,n,

where

‖RFτ,n‖s ≤ ‖
n−1∑
k=0

∫ τ

0

∫ λ

0

ei(λ−ξ)∆(uF + u′E)(tn + ξ)dξdλ‖s + τcms(T )2

≤ τctn(1 +ms(T ))3.

(3.44)

Hence, (3.38) together with (3.40) implies that for 0 ≤ ξ ≤ τ
‖Fτ,ξ,n‖s ≤ cτγtnms+2γ(T ) + cτγtn(1 +ms(T ))3. (3.45)

Plugging (3.39), (3.41) and (3.45) into (3.43) we obtain that

τ‖∆LnE‖s + ‖LnF ‖s ≤ cτ1+γtn(1 +ms+2γ(T ))4. (3.46)

Collecting the results in (3.42) and (3.46) yields the assertion. �

Recall the definition of the operator Oτ from (3.15).

Lemma 3.7 (Stability lemma). Let s ∈ R. For 0 < τ ≤ τ0, 1 ≤ k0 ≤ k ≤ n let
Pτ,k ∈ L((Hs(Td)2) such that

q := max
1≤k≤n

sup
0<τ≤τ0

‖τ−1Pτ,k‖L((Hs(Td))2) <∞.

Then, for all (f, g) ∈ (Hs(Td))2∥∥∥ n∏
k=k0

(Oτ + Pτ,k)

(
f
g

)∥∥∥
s
≤ enτ(1+q)

∥∥∥(f
g

)∥∥∥
s
.

Proof. Let

V =
1√
2

(
1 i
i 1

)
, Zτ :=

(
0 τ sin(τ |∇|)

τ |∇| (〈∇〉 − |∇|)
sin(τ |∇|)
τ〈∇〉 (〈∇〉 − |∇|) 0

)
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We have

Oτ = V −1diag(eiτ |∇|, e−iτ |∇|)V + Zτ .

Note that the action of Zτ is nothing but multiplication by τ of the zero mode of
the second component. For Qτ,k = V (Zτ + Pτ,k)V −1 we obtain

n∏
k=k0

(Oτ + Pτ,k) = V −1
{ n∏
k=k0

(
diag(eiτ |∇|, e−iτ |∇|) +Qτ,k

)}
V.

Hence,∥∥∥ n∏
k=k0

(Oτ + Pτ,k)

(
f
g

)∥∥∥
s
≤

n∏
k=k0

(
1 + ‖Qτ,k‖L((Hs(Td))2)

)∥∥∥(f
g

)∥∥∥
s

(3.47)

Due to

‖Qτ,k‖L((Hs(Td))2) ≤ ‖Zτ + Pτ,k‖L((Hs(Td))2) ≤ τ + τq

we conclude that
n∏

k=k0

(
1 + ‖Qτ,k‖L((Hs(Td))2)

)
≤
(

1 + τ(1 + q)
)n
≤ enτ(1+q),

and the claim follows from (3.47). �

3.2. Error analysis for strong solutions and in the energy space.

Remark 3.8. As lower order Sobolev norms are controlled by higher order Sobolev
norms Theorem 3.3 also yields a convergence result for strong solutions (i.e., in
H2(Td)×H1(Td)×L2(Td)) as well as in the energy space (i.e., in H1(Td)×L2(Td)×
H−1(Td)). More precisely, assume that for some γ > 0 the regularity assumptions
(3.5) hold with s = d/2 + ε for any ε > 0. Then there exists a τ0 > 0 such that for
all 0 ≤ τ ≤ τ0 and tn = nτ ≤ T the following convergence bounds hold:

‖(E(tn)− En, u(tn)− un, u′(tn)− u′n)‖[r] ≤ cτγ , r = −1, 0. (3.48)

However, the regularity assumptions on the data are quite strong.

In the following we will show that in dimensions d ≤ 3 the regularity assumptions
(3.5) with s = max(1, d/2 + ε) actually imply first-order convergence, i.e., (3.48)
holds with γ = 1. Here, we apply asymmetric product estimates and in order to
control the error of F and u′ in L2(Td) and H−1(Td), respectively, we need a priori
bounds on the numerical solutions in higher order Sobolev spaces, cf. [11, 20].

We will carry out the error analysis in detail only for the energy space as the
result for strong solutions follows along the same lines. Furthermore, for the sake
of clarity of the exposition, we restrict ourselves to dimensions d ≤ 3, where the
following product estimates are crucial for our analysis: For s1 + s2 ≥ 0 and 1 ≤
d ≤ 3 we have

‖fg‖s ≤ c‖f‖s1‖g‖s2 for all s ≤ s1 + s2 − d
2 with s1, s2 and − s 6= d

2

‖fg‖s ≤ c‖f‖s1‖g‖s2 for all s < s1 + s2 − d
2 with s1, s2 or − s = d

2

(3.49)

such that in particular we obtain for 1 ≤ d ≤ 3 and ε > 0 that

‖fg‖−1 ≤ c‖f‖−1‖g‖max(d/2+ε,1). (3.50)
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Theorem 3.9. Fix 1 ≤ d ≤ 3 and γ > 0. For any T ∈ (0,∞) and any ε > 0,
suppose that for δ := max(d/2 + ε, 1)

E ∈ C([0, T ];H2+δ+2γ(Td)), u ∈ C([0, T ];H1+δ+2γ(Td)) ∩ C1([0, T ];Hδ+2γ(Td))

is a mild solution of (1.1) with

mδ+2γ(T ) := sup
t∈[0,T ]

‖(E(t), u(t), u′(t))‖[δ+2γ] <∞. (3.51)

Then, there exists τ0 > 0 such that for all 0 ≤ τ ≤ τ0 and tn = nτ ≤ T the
trigonometric time-integration scheme (3.4) is first-order convergent in the energy
space, i.e.,

‖(E(tn)− En, u(tn)− un, u′(tn)− u′n)‖[−1] ≤ cτ,
where c depends only on mδ(T ), T and d.

Proof. In this proof we proceed similarly to the proof of Theorem 3.3. However,
we need to be more careful when estimating the nonlinear terms. In the following
fix 1 ≤ d ≤ 3, ε, γ > 0 and set δ = max(d/2 + ε, 1). First note that the regularity
assumptions (3.51) together with Theorem 3.3 (choosing s = δ) imply that there
exists a τ0 > 0 such that for all 0 ≤ τ ≤ τ0 and tn = nτ ≤ T we have

mn
δ := max

0≤k≤n
{‖Ek‖2+δ + ‖F k‖δ + ‖uk‖1+δ + ‖u′k‖δ} ≤ 2mδ(T ) <∞. (3.52)

In the following we assume that τ ≤ τ0 such that (3.52) holds. Furthermore,
we denote by c a constant depending only on mδ(T ), T , d and prove the claim for
n+ 1 instead of n.

The regularity assumptions (3.51) imply that the local errors defined in (3.11)
satisfy

max
0≤k≤n

{
‖LkF ‖−1 + ‖〈∇〉Lku‖−1 + ‖Lku′‖−1 + τ‖∆LkE‖−1

}
≤ cτ2, (3.53)

see Lemma 3.11 below. In order to deduce first-order convergence globally from
(3.53) we need to analyze the stability of the integration scheme (3.4) in the energy
space.

(i) Error in F in H−1: The error recursion in (3.7) together with the stability
bound (3.13), the bilinear estimate (3.50) and the local error bound (3.53) yields
that

‖F (tn+1)− Fn+1‖−1 ≤
(
1 + τctnmδ(tn)

)
max

0≤k≤n
‖F (tk)− F k‖−1

+ c
(
mδ(0) + tn max

0≤k≤n
‖F k‖δ

)
‖u′(tn)− u′n‖−1 + c‖Fn‖δ‖u(tn)− un‖1 + cτ2.

Furthermore, the a priori boundedness of the numerical solutions (3.52) implies
that max0≤k≤n ‖F k‖δ ≤ 2mδ(tn) <∞. Hence, we obtain that

‖F (tn+1)− Fn+1‖−1 ≤
(
1 + τc) max

0≤k≤n
‖F (tk)− F k‖−1

+ τc
(
‖u′(tn)− u′n‖−1 + ‖u(tn)− un‖−1

)
+ cτ2.

(3.54)

(ii) Error in E in H1: Similarly we obtain by the error recursion (3.10) together
with the bilinear estimate (3.50), the bound on the numerical solutions (3.52) and
the local error bound (3.53) that

‖E(tn+1)− En+1‖1 ≤ c max
0≤k≤n

‖F (tk)− F k‖−1 + c‖u(tn)− un‖−1 + cτ. (3.55)
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(iii) Error in (u, u′) measured in L2 × H−1: The a priori boundedness of the
numerical solutions (3.52) together with the bilinear estimate (3.50) implies that
for 0 ≤ α ≤ 2 we have

‖(|∇|2−αE(tn) + |∇|2−αEn)|∇|α(E(tn)− En)‖−1

≤ c‖E(tn) + En‖2+δ‖E(tn)− En‖1 ≤ 2cmδ(tn)‖E(tn)− En‖1.

Thus, similarly to (3.22) we obtain that(
〈∇〉(u(tn+1)− un+1)

u′(tn+1)− u′n+1

)
= (Oτ + Pτ,n)

(
〈∇〉(u(tn)− un)

u′(tn)− u′n

)
+Rτ,n, (3.56)

where

‖Rτ,n‖−1 ≤ cτ( max
0≤k≤n

‖F (tk)−F k‖−1 +‖∆LnE‖−1)+‖〈∇〉Lnu‖−1 +‖Lnu′‖−1 (3.57)

and Oτ , Pτ,n are defined in (3.15) and (3.23), respectively. The bilinear estimate
(3.50) together with the a priori boundedness of the numerical solutions (3.52) and
the definition of η(tk) in (3.19) furthermore implies that

‖(∆E(tk) + ∆Ek)η(tk)‖−1 ≤ c‖E(tk) + Ek‖1‖η(tk)‖δ ≤ 2c(1 + tn)m2
δ(T ).

Thus, by the definition of pjk in (3.24) we have for all f ∈ H−1(Td) that

max
j=1,2,3

max
0≤k≤n

‖pjkf‖−1 ≤ c‖f‖−1.

Together with (3.20) (which holds for all s ∈ R) this yields by the definition of Pτ,k
in (3.23) that

max
0≤k≤n

sup
0≤τ≤τ0

‖τ−1Pτ,k‖L((H−1(Td))2) ≤ c.

Hence, solving the error recursion in (3.56) we obtain with the aid of the stability
Lemma 3.7, the bound on Rτ,n given in (3.57) together with the local error bound
(3.53) that

‖u(tn+1)− un+1‖0 + ‖u′(tn+1)− u′n+1‖−1

≤ c max
0≤k≤n

‖F (tk)− F k‖−1 + cτ.
(3.58)

Collecting the results in (3.54), (3.55) and (3.58) yields the assertion. �

Remark 3.10. Note that in the limit τ → 0 Theorem 3.9 (together with Remark
3.5) implies first order-convergence in the energy space if for some ε > 0

‖(E(0), u(0), u′(0))‖[1+ε] <∞ for d = 1, 2,

‖(E(0), u(0), u′(0))‖[3/2+ε] <∞ for d = 3.

Lemma 3.11 (Local error in the energy space). Let 1 ≤ d ≤ 3. Then the local
errors defined in (3.11) satisfy for any ε > 0 and δ ≥ max(d/2 + ε, 1)

max
0≤k≤n

{
‖LkF ‖−1 + ‖〈∇〉Lku‖−1 + ‖Lku′‖−1 + τ‖∆LkE‖−1

}
≤ cτ2(1 +mδ(T ))4,

where mδ(T ) is defined in (3.51) and c depends on T and d.
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Proof. The strategy of proof is similar to the one of Lemma 3.6. In the following
fix ε > 0 and set δ = max(d/2 + ε, 1). Let c denote a constant depending only on
d . The local error representation (3.11) together with the bilinear estimate (3.50)
implies that

‖LnF ‖−1 ≤ c
∫ τ

0

mδ(T )
(
‖F (tn + ξ)− F (tn)‖−1 + ‖Fτ,ξ,n‖−1

)
+ (1 +mδ(T ))2

(
‖u(tn + ξ)− u(tn)‖−1

+ (1 + tn)‖u′(tn + ξ)− u′(tn)‖−1

)
dξ,

‖〈∇〉Lnu‖−1 + ‖Lnu′‖−1 ≤ cmδ(T )

∫ τ

0

‖E(tn + ξ)− E(tn)‖1dξ,

‖∆LnE‖−1 ≤ cmδ(T )‖
∫ tn+τ

0

F (λ)dλ− τ
n∑
k=0

F (tk+1)‖−1.

(3.59)

Choosing γ = 1 in (3.37) we obtain with the aid of (3.38) (which holds for all s ∈ R)
and the bilinear estimate (3.50) that

‖u(tn + ξ)− u(tn)‖0 + ‖u′(tn + ξ)− u′(tn)‖−1

≤ cξ(‖u(tn)‖1 + ‖u′(tn)‖0) + cξmδ(T )2

≤ cξ(1 +mδ(T ))2.

(3.60)

Note that

‖(−∆)F (t)‖−1 ≤ ‖F (t)‖1 = ‖E′(t)‖1 ≤ ‖E(t)‖3 + cmδ(T )2. (3.61)

Choosing γ = 1 in (3.36) we thus obtain by (3.38), (3.50) and (3.61) that

‖E(tn + ξ)− E(tn)‖1 + ‖F (tn + ξ)− F (tn)‖−1

≤ cξ‖E(tn)‖3 + cξ(1 +mδ(T ))3

≤ cξ(1 +mδ(T ))3.

(3.62)

Similarly we can show that for 0 ≤ ξ ≤ τ we have (see also (3.45))

‖
∫ tn+ξ

0

F (λ)dλ− τ
n∑
k=0

F (tk)‖s ≤ cτtn(1 +mδ(T ))3. (3.63)

Plugging (3.60), (3.62) and (3.63) into (3.59) yields the assertion. �

For strong solutions we obtain the following convergence result:

Theorem 3.12. Fix 1 ≤ d ≤ 3. For any T ∈ (0,∞), suppose that

E ∈ C([0, T ];H4(Td)), u ∈ C([0, T ];H3(Td)) ∩ C1([0, T ];H2(Td))
is a mild solution of (1.1) with

m2(T ) := sup
t∈[0,T ]

‖(E(t), u(t), u′(t))‖[2] <∞. (3.64)

Then, there exists τ0 > 0 such that for all 0 ≤ τ ≤ τ0 and tn = nτ ≤ T the scheme
(3.4) is first-order convergent in the sense that

‖(E(tn)− En, u(tn)− un, u′(tn)− u′n)‖[0] ≤ cτ,
where c depends only on m2(T ), T and d.
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Proof. Fix 0 < ε � 1. Note that the regularity assumptions (3.64) imply that
there exists a τ0 > 0 such that for all 0 ≤ τ ≤ τ0 and tn = nτ ≤ T the numerical
solutions satisfy for δ = d/2 + ε the a priori bound

mn
δ := max

0≤k≤n
{‖Ek‖δ+2 + ‖F k‖δ + ‖uk‖δ+1 + ‖u′k‖δ} ≤ 2m2(T ) <∞.

This follows from choosing s = d/2 +ε and γ = 1−s/2 in Theorem 3.3, whereupon
in particular γ = 1− d/4− ε/2 > 0 as d ≤ 3. Together with the L2(Td) estimate

‖fg‖0 ≤ c‖f‖0‖g‖δ, (3.65)

the proof can be completed along the lines of the proof of Theorem 3.9. �

4. Second-order Scheme

In this section we derive a second-order trigonometric integration scheme for the
Zakharov system (1.1) based on the mild solutions (2.4). In order to achieve this we
use a second-order exponential integrator in the approximation of F . Furthermore,
we approximate the integrals in (u, u′) with a trapezoidal rule, i.e., we use that

∫ τ

0

f(ξ)dξ =
τ

2
(f(τ) + f(0)) +Os(τ3 sup

0≤ξ≤τ
‖f ′′(ξ)‖s), (4.1)

where for notational simplicity we here use the notation Os(z) which denotes a
remainder term depending on z ≥ 0 when measured in Hs, i.e.,

f = g +Os(z) if ‖f − g‖s ≤ cz,

for some constant c > 0.
Using the second-order Taylor series expansion

(uF + u′IF )(tn + ξ) = (uF + u′IF )(tn) + ξ(uF + u′IF )′(tn)

+Os
(
τ2 sup

0≤ξ≤τ
‖(uF + u′IF )′′(tn + ξ)‖s

)

in the integral in F as well as the trapezoidal rule (4.1) for the approximation of
the integrals in u and u′ yields the following approximation to the solutions (2.4)
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of the Zakharov system: For sufficiently smooth solutions we have

F (tn + τ) =eiτ∆F (tn)− i
∫ τ

0

ei(τ−ξ)∆dξ(uF + u′IF )(tn)

− i
∫ τ

0

ei(τ−ξ)∆ξdξ
(
u′F + uF ′ + u′′IF + u′I ′F

)
(tn)

+Os
(
τ3 sup

0≤ξ≤τ
‖(uF + u′IF )′′(tn + ξ)‖s

)
u(tn + τ) = cos(τ |∇|)u(tn) + |∇|−1 sin(τ |∇|)u′(tn) +

τ

2

sin(τ |∇|)
|∇|

∆|E(tn)|2

+Os
(
τ3 sup

0≤ξ≤τ
‖|E|′′(tn + ξ)‖s+1

)
u′(tn + τ) =− |∇| sin(τ |∇|)u(tn) + cos(τ |∇|)u′(tn)

+
τ

2

(
∆|E(tn + τ)|2 + cos(τ |∇|)∆|E(tn)|2

)
+Os

(
τ3 sup

0≤ξ≤τ
‖|E|′′(tn + ξ)‖s+2

)
E(tn + τ) =(1−∆)−1

(
iF (tn + τ)− (u(tn + τ)− 1)IF (tn + τ)

)
.

(4.2)

In order to derive a robust scheme we integrate the terms involving eiξ∆ξδ with
δ = 0, 1 exactly, i.e., we will use that∫ τ

0

ei(τ−ξ)∆dξf = − 1

i∆

(
1− eiτ∆

)
f,∫ τ

0

ei(τ−ξ)∆ξdξf = − 1

i∆

(
τ +

1

i∆
(1− eiτ∆)

)
f.

(4.3)

Next we need to derive a suitable approximation to IF defined in (2.3). We have

IF (tn) = E0 +

∫ tn

0

F (λ)dλ = E0 +

n−1∑
k=0

∫ τ

0

F (tk + λ)dλ. (4.4)

Note that by (2.4) and (4.3) we have∫ τ

0

F (tk + λ)dλ =

∫ τ

0

eiλ∆F (tk)dλ− i
∫ τ

0

∫ λ

0

ei(λ−ξ)∆(uF + u′IF )(tk + ξ)dξdλ

=

∫ τ

0

eiλ∆F (tk)dλ− i
∫ τ

0

∫ λ

0

ei(λ−ξ)∆(uF + u′IF )(tk)dξdλ

+Os
(
τ3 sup

0≤ξ≤τ
‖(uF + u′IF )′(tk + ξ)‖s

)
=

1

i∆
(eiτ∆ − 1)F (tk)

+
1

∆

(
τ − 1

i∆
(eiτ∆ − 1)

)(
u(tk)F (tk) + u′(tk)(E0 + τ

k∑
j=0

F (tj))
)

+Os
(
τ3 sup

0≤ξ≤τ
‖(uF + u′IF )′(tk + ξ)‖s

))
.

(4.5)
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Plugging the above expansion into (4.4) yields that

IF (tn) = E0 − τD1(τ∆)

n−1∑
k=0

F (tk)

+ τD2(τ∆)

n−1∑
k=0

(
u(tk)F (tk) + u′(tk)(E0 + τ

k∑
j=0

F (tj))
)

+Os
(
τ2tn sup

0≤ξ≤tn
‖(uF + u′IF )′(ξ)‖s

)
,

(4.6)

where

D1(τ∆) :=
1− eiτ∆

iτ∆
, D2(τ∆) := ∆−1

(
1 +D1(τ∆)

)
. (4.7)

Using the differential equations (2.1) as well as the definition of IF in (2.3) we
furthermore obtain that(

u′F + uF ′ + u′′IF + u′I ′F
)
(tn)

=
(
u′F + u(i∆F − iuF − iu′IF ) + IF∆(u+ |E|2) + u′F

)
(tn).

(4.8)

Plugging the relations (4.3), (4.6) and (4.8) into (4.2) yields a second-order trigono-
metric time-integration scheme by setting

E0 = E0, u0 = u0, u′0 = u1,

F 0 = i(∆E0 − u0E0), S0
F = τF 0, I0

F := E0

(4.9)

and for n ≥ 0

Fn+1 = eiτ∆Fn + iτD1(τ∆)
(
unFn + u′nInF )

+ τD2(τ∆)
(

2u′nFn + iun(∆Fn − unFn − u′nInF ) + InF∆(un + |En|2)
)
,

un+1 = cos(τ |∇|)un + |∇|−1 sin(τ |∇|)u′n +
τ

2
|∇|−1 sin(τ |∇|)∆|En|2,

In+1
F = E0 −D1(τ∆)SnF + τD2(τ∆)

n∑
k=0

(
ukF k + u′k(E0 + SkF

))
,

En+1 = (−∆ + 1)−1
(
iFn+1 − (un+1 − 1)In+1

F

)
,

u′n+1 = −|∇| sin(τ |∇|)un + cos(τ |∇|)u′n +
τ

2

(
∆|En+1|2 + cos(τ |∇|)∆|En|2

)
,

Sn+1
F = SnF + τFn+1.

(4.10)

Remark 4.1 (Second-order convergence). For sufficiently smooth solutions the trigono-
metric integration scheme (4.10) is second-order convergent without imposing any
spatial-dependent time-step restriction, i.e., also in the limit ∆x → 0. More pre-
cisely, Theorem 3.3 holds for (4.10) with γ = 2. The ideas in the error analysis
are thereby similar to the ones used in Section 3.1. The only additional important
estimate is that

‖D2(τ∆)
(
(∆f)g

)
‖s ≤ c‖f‖s‖g‖s+2

for some constant c > 0. We omit the details of the proof and refer to [11] for the
analysis of second-order trigonometric integrators for semilinear wave equations and
to [17] for the analysis of higher-order exponential integrators.
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Remark 4.2. Note that for given (En, Fn, un, u′n, SnF , InF ) we can compute the next
iteration in (4.10) without saving (Ek, F k, uk, u′k, SkF , IkF ) for any k < n by setting

In+1
F := InF − τD1(τ∆)Fn + τD2(τ∆)

(
unFn + u′n(E0 + SnF )

)
, I0

F = E0.

(4.11)

5. Numerical experiments

In this section we numerically confirm the first-, respectively, second-order con-
vergence rate of the trigonometric time-integration schemes (3.4) and (4.10) towards
the exact solutions of the Zakharov system (1.1). Furthermore, we numerically test
the geometric properties of the trigonometric integration schemes, i.e., the conser-
vation of the L2 norm of E(t) (see (1.3)), the conservation of the energy (see (1.4))
as well as the shape preservation of solitary waves over “long times”.

Remark 5.1. Note that in the derived convergence bounds, the error constants de-
pend on T , which is natural in subcritical regimes. Nevertheless, the numerical find-
ings suggest that for a sufficiently small CFL number the geometric quantities are
preserved on “long” time intervals. Thereby, we define the value CFL := τ(∆x)−2

with τ and ∆x denoting the time- and spatial-step size, respectively.

Remark 5.2. In the numerical experiments we use a standard Fourier pseudo-
spectral method for the space discretization. For sufficiently smooth solutions the
fully discrete error then behaves like τ + K−r for the first-order scheme and like
τ2 +K−r for the second-order scheme for some r > 0 depending on the smoothness
of the solutions. For a fully discrete analysis of exponential-type time integrators
coupled to a spectral approximation in space for Schrödinger, respectively, semilin-
ear wave equations we refer to [9] and [11], respectively.

Example 5.3. We consider the Zakharov system (1.1) set on the one-dimensional
torus T with initial values

E(0, x) = (2− cos(x) sin(2x))−1 sin(2x) cos(4x) + i sin(2x) cos(x),

u(0, x) = (2− sin(2x)2)−1 sin(x) cos(2x), ∂tu(0, x) = (2− cos(2x)2)−1 sin(x)

(5.1)
normalized in H2, H1 and L2, respectively. In order to test the convergence rate
of the first-, respectively, second-order trigonometric time-integration scheme (3.4)
and (4.10) we take the numerical method presented in [1] as a reference solution.
For the latter we choose a very small time-step size to ensure to be sufficiently
close to the exact solutions. For the space discretization we choose the largest
Fourier mode K = 210 (i.e., the spatial mesh size ∆x = 0.0061) and integrate up to
T = 1. The error of (E, u) measured in the corresponding discrete H2 ×H1 norm
is illustrated in Figure 1.

Example 5.4 (Solitary waves). Exact solutions of the Zakharov system (1.1) are
explicitly given by so-called solitary wave solutions, which for the Zakharov system
set on R are described by

E(t, x) =
√

2B2(1− C2)sech(B(x− Ct)) exp
(
i
(
C/2x−

(
C2/4−B2

)
t)
) )
,

u(t, x) = −2B2sech2 (B(x− Ct)) ,

∂tu(t, x) = −4B3Csinh (B(x− Ct)) cosh−3 (B(x− Ct))

(5.2)
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Figure 1. Orderplot (double logarithmic). Convergence rates of
the first-order scheme (3.4) (blue, circle) and the second-order
scheme (4.10) (red, star). Left picture: Error in E measured in
H2. Right picture: Error in u measured in H1. The slope of the
dashed-dotted and dashed line is one and two, respectively.

with B,C ∈ R. For the numerical simulations we choose “a large torus” (more
precisely x ∈ [−10π, 10π]). In Figure 2 we simulate the soliton solution (5.2) with
the trigonometric integration schemes (3.4) and (4.10) up to T = 100. We carry
out the simulations for two different CFL numbers. Furthermore, we set B = 0.5
and C = 0.15.
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Figure 2. Simulation of solitary wave |En| at different times t
with first-order scheme (3.4) (red) and second-order scheme (4.10)
(yellow). Initial profile: blue. Left picture: CFL= 3.2. Right
picture: CFL= 32.

Example 5.5 (Energy conservation). In this example we numerically test the L2

conservation (1.3) and the energy conservation (1.4) of the first-and second-order
trigonometric time-integration scheme (3.4) and (4.10), respectively. The numerical
findings are illustrated in Figure 3 (left picture: first-order scheme, right picture:
second-order scheme). In both simulations we choose CFL≈ 5. For a too large
CFL number additional numerical findings suggest that the energy is no longer
conserved.
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Figure 3. Simulation of the deviation of the numerical energy

H(En, un, u′
n
)−H(E0, u0, u′

0
) and the L2 norm ‖En‖L2− ‖E0‖L2 .

Left picture: First-order scheme (3.4). Right picture: Second-order
scheme (4.10).
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