
KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) 

IPD Tichy – Lehrstuhl für Programmiersysteme 

Identifying Ad-hoc Synchronization for 
Enhanced Race Detection 

IPDPS – 20 April, 2010 
Ali Jannesari / Walter F. Tichy 



Motivation 

!   Data races (unsynchronized accesses to share variables) 
are a common defect in parallel programs. 

!   They are difficult to find. 
!   Race detectors are impractical 

!   They produce thousands to millions of false warnings. 
!   Programmers are overwhelmed by false positives. 

!   Why false positives? 
!   Ad-hoc, programmer-defined synchronizations 
!   Unknown synchronization libraries 
!   Detectors cannot reason about these, causing many false positives 

!   Contribution: how to handle user-defined synchronization 
and unknown synchronization libraries, reducing false 
positives. 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 2 



What is a Data Race? 

!   Two or more concurrent accesses to a shared location, at 
least one of them a write.  

Identifying Ad-hoc Synchronization for Enhanced Race Detection 3 

Thread 1 

X = 0 
X++ 

Thread 2 

T = X 



Example – Data Race 

!   First Interleaving:  Thread 1  Thread 2 
    1.  X=0 
    2.    T=X 
    3.  X++ 

!   Second Interleaving: Thread 1  Thread 2 
    1.  X=0 
    2.  X++ 
    3.    T=X 

!   T==0 or T==1? 

Race Detection - Doktorandentreffen 28. Nov 2007 4 



5 

 Lock(m)     

 Unlock(m)  Lock(m) 

    Unlock(m) 

How Can Data Races be Prevented? 

!   Explicit synchronization between threads: 
!   Locks 
!   Critical Sections 
!   Barriers 
!   Mutexes 
!   Semaphores 
!   Monitors 
!   Events (signal/wait) 
!   Etc. 

Race Detection - Doktorandentreffen 28. Nov 2007 5 

 Thread 1  Thread 2 

 X=0   
 X++ 
       
    T=X 



6 

Detection Approaches 

!   Static: perform a compile-time analysis of the code, 
reporting potential races. 

!   Dynamic: use tracing mechanism to detect whether a 
particular execution of a program actually exhibits data-
races 
!   The program must be instrumented with additional instructions to 

monitor shared variables and synchronization operations. 
!   Every shared variable has a shadow cell in which the race 

detector stores additional information. 

Race Detection - Doktorandentreffen 28. Nov 2007 6 



Dynamic Data Race Detection 

!   Dynamic Data Race Detection 

!   Lockset analysis  
!   Happens-before analysis 
!   Hybrids (combining Lockset and Happens-before) 

Race Detection - Doktorandentreffen 28. Nov 2007 7 



Lockset Analysis 

!   Observe all instances where a shared variable is accessed 
by a thread. 

!   Check whether the shared variable is always protected by 
the same lock. 

!   If variable isn’t protected, issue a warning. 
!   The lockset for a variable is initially set to all locks 

occurring in program. 
!   Whenever a variable is accessed, remove all locks from 

the variable’s lockset that are not currently protecting the 
variable. 

!   When the lockset is empty, issue a warning. 

Race Detection - Doktorandentreffen 28. Nov 2007 8 



Lockset Analysis 

Thread 1 Thread 2 Locksetv 

 Lock( m1 ); 
  v = v + 1; 
 Unlock( m1 ); 

  v = v + 1; 

Lock( m1 );   
  v = v + 1; 
Unlock( m1 );   

{m1, m2, …} 

{m1} 

{m1} 

{ } 

Race Detection - Doktorandentreffen 28. Nov 2007 9 



Lockset - False Positives 

!   The lockset algorithm will produce a false alarm in the 
following simple case: 
!   Not able to detect signal-wait operation 

Race Detection - Doktorandentreffen 28. Nov 2007 10 

     

 Signal(CV)   
    Wait(CV) 

     

 Thread 1  Thread 2 
 X=0   
 X++ 
      

    T=X 



Happens-Before Relation 

!   Based on Lamport’s Clock 
!   Let event a be in thread A and event b be in thread B.  

!   If event a and event b are paired synchronization operations, 
construct a happens-before edge between them: 
!   E.g. If a = unlock(mu) and b = lock(mu) then 

 a hb → b  (a happens-before b) 

!   Shared accesses i and j are concurrent 
!   if neither i hb→ j nor j hb→ i holds. 

!   Data races between threads are possible if accesses to 
shared variables are not ordered by happens-before. 

Race Detection - Doktorandentreffen 28. Nov 2007 11 



Happens-Before - Example 1 

!   Happens-before analysis will eliminate the false alarm in 
the following simple case: 

Race Detection - Doktorandentreffen 28. Nov 2007 12 

     

 Signal(CV)   
    Wait(CV) 

     

 Thread 1  Thread 2 
 X=0   
 X++ 
      

    T=X 



Thread 1 

lock(mu); 

v = v + 1; 

unlock(mu); 

Thread 2 

lock(mu); 

v = v + 1; 

unlock(mu); 

The arrows represent happens-before. 
The events represent an actual execution of 
the two threads. 

Happens-Before - Example 2 

Race Detection - Doktorandentreffen 28. Nov 2007 13 



Helgrind+ 

!   Efficient hybrid dynamic race detector 
!   Introduces a new hybrid algorithm based on lockset algorithm and 

happens-before analysis 
!   Does runtime analysis and uses code and semantic information 

!   Different memory state machines for  
!   short-running applications (during development - unit test) 

!   More sensitive, but produces more false positives 
!   long-running applications (integration testing) 

!   Less sensitive, might miss a race on first iteration, but not on second 
!   Automatically handling of synchronization bug patterns 

related to condition variables without any source code 
annotation 
!   Lost signal detector 
!   Spurious wake-up detection 

On-the-fly Race Detection in Multi-Threaded Programs - PADTAD 
2008 

14 



Ad-hoc (User-defined) Synchronization 

!   Synchronization constructs implemented by user for  
performance reasons 
!   High level synchronizations (e.g. task queues) 
!   Spinning read loop instead of a library wait operation  

!   Ad-hoc synchronizations are widely used 
!   12 - 31 in SPLASH-2 and 32 - 329 in PARSEC 2.0 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 15 

Thread 1 
DATA++     

FLAG = 1 
... 

Thread 2 

… 
while(FLAG == 0) 
--do nothing 

DATA-- 

/*Initially FLAG is zero */  



Ad-hoc Synchronization 

!   Source of false positives 
!   Apparent races (e.g. DATA) 
!   Synchronization races (e.g. FLAG) 
!   Detectors should identify and suppress them 

!   We developed a dynamic method to detect ad-hoc 
synchronization 
!   Automatically without any user action 
!   Capable of identifying synchronization primitives of unknown 

libraries 
!   Eliminates false races (apparent and synchronization races) caused by 

unknown synchronization primitives of a library 
!   No need to upgrade the detector for a new library 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 16 



Common Pattern 

!   Spinning read loop (spin-lock) is a common pattern for ad-
hoc synchronizations 

!   Happens-before relation induced by spin-lock synchronization 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 17 

Thread 2 

… 
while(!CONDITION){ 

  /* do_nothing() */ 
  } 

  do_after(X) 

Thread 1 

do_before(X) 

Set CONDITION to TRUE 
… 
... 

 Counterpart write                                    Spinning read loop 



Common Pattern 

!   Implementation of different synchronization primitives in 
libraries follows the same pattern as in spinning read loop 
!   e.g. implementation of Barrier(): 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 18 

… 

Lock(L) 
  counter++ 
Unlock(L) 

while(!counter!=NUMBER_THREADS){ 
  /* do_nothing() */ 

  } 
… 



Detecting Ad-hoc Synchronizations 

!   General dynamic approach 
!   Instrumentation phase and 
!   Runtime phase 

!   Instrumentation phase (code/semantic analysis) 
!   Search the binary code to find all loops  

!   Control flow analysis on the fly 
!   Consider small loops (3 to 7 basic blocks) 

!   Detect the spinning read loop based on the following criteria: 
!   The loop condition involves at least on load instruction from memory 
!   The value of loop condition is not changed inside the loop 

!   Instrument the loop and mark the variables that affect the value of 
the loop condition to be treated specially. 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 19 



Detecting Ad-hoc Synchronizations 

!   Runtime phase 
!   Data dependency analysis  

!   Monitor all write/read accesses 
!   Identify the write/read dependency  

!   Between the variables of instrumented spinning loop condition and those in 
counterpart write 

!   Establish a happens-before relation between corresponding parts 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 20 

Thread 2 

… 
while(!CONDITION){ 

  /* do_nothing() */ 
  } 

  do_after(X) 

Thread 1 
do_before(X) 

Set CONDITION to TRUE 
… 
... 

Data dependency 

Counterpart write                                              Spinning read loop 



Detecting Unknown Synchronization Primitives 

!   Synchronization operations are ultimately implemented  by 
spinning read loops 

!   Identify unknown synchronization operations if based on 
spinning read loops. 

!   If this works, then we actually get a universal race 
detector  
!   Not limited to synchronization primitives of a particular library 
!   General approach to identify synchronization operations 

!   Information about libraries can be removed entirely from the detector 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 21 



Implementation 

!   We implement the presented approach into our race 
detector Helgrind+ 

!   Helgrind+  

!   A hybrid dynamic race detector  
!   Combines lockset algorithm and happens-before analysis 

!   It is open source and built on top of Valgrind (a binary 
instrumentation tool) 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 22 



Experiments & Evaluation 

!   The approach is evaluated on different benchmarks 
!   data-race-test  –  a test suite framework for race detectors 
!   PARSEC 2.0 Benchmarks 

!   All experiments were conducted on:  
!   2 * 1,86 GHz Xeon E5320 Quadcores, 8 GB RAM 
!   OS: Linux (Ubuntu 8.10.2) 

!   New features in Helgrind+ 

!   Reduces the number of false positives due to ad-hoc 
synchronizations and unknown libraries dramatically 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 23 



Test Suite – data-race-test 

!   120 different test cases (2-16 Threads) 
!   Test cases are racy or race-free programs (using Pthread)   

!   Includes difficult cases 
!   Spinning read loop detection of up to 7 basic blocks 

!   24 false positives and one false negative are removed 
!   Removing information about Pthread library (unknown library) 

!   Only one false positive more 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 24 

Tools False  
alarms 

Missed  
races 

Failed  
cases 

Correctly 
analyzed  
cases 

Helgrind+  lib 32 8 40 80 
Helgrind+  lib+spin(7) 8 7 15 105 
Helgrind+  nolib+spin(7) 9 7 16 104 
DRD 13 20 33 87 



Test Suite – data-race-test 

!   Best result achieved with seven basic blocks using 
spinning read loop detection as a complementary method  

!   In most cases spinning read loops contain more than 3 
basic blocks  
!   loop conditions use templates and complex function calls  

Identifying Ad-hoc Synchronization for Enhanced Race Detection 25 

Tools False  
alarms 

Missed  
races 

Failed  
cases 

Correctly 
analysed  
cases 

Helgrind+  lib+spin(3) 24 7 31 89 
Helgrind+  lib+spin(6) 23 7 30 90 
Helgrind+ lib+spin(7) 8 7 15 105 
Helgrind+  lib+spin(8) 8 7 15 105 



PARSEC 2.0 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 26 

Program Parallelization 
model LOC Synchronisation primitives Ad-hoc CVs Locks Barriers 

blackscholes POSIX 812 - - " - 
swaptions POSIX 4,029 - - - - 
fluidanimate POSIX 3,689 - " - - 
canneal POSIX 29,31 - " - - 
freqmine OpenMP 10,279 - - - - 
vips GLIB 1,255 " " -  
bodytrack POSIX 9,735  " "  
facesim POSIX 1,391 " " -  
ferret POSIX 2,706 " " -  
x264 POSIX 1,494 " " -  
dedup POSIX 3,228 " " -  
streamcluster POSIX 40,393 " " "  
raytrace POSIX 13,302 " " - "  



Programs without Ad-hoc Synchronizations 

•  No false positives for first 4 programs 
•  In case of using the unknown library OpenMP only 2 false 

positives remain 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 27 

Program Para. 
model LOC 

Racy Contexts 
Helgrind+  

 lib 
Helgrind+  
lib+spin 

Helgrind+  
nolib+spin DRD 

blackscholes POSIX 812 0 0 0 0 
swaptions POSIX 4,029 0 0 0 0 
fluidanimate POSIX 3,689 0 0 0 0 
canneal POSIX 29,31 0 0 0 0 
freqmine OpenMP 10,279 153.4 2 2 1000 



Programs with Ad-hoc Synchronizations 

!   In 5 out of 8 programs false positives are completely 
eliminated 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 28 

Program Para. 
model LOC 

Racy Contexts 
Helgrind+  

 lib 
Helgrind+  
lib+spin 

Helgrind+  
nolib+spin DRD 

vips GLIB 1,255 50.8 0 0 858.6 
bodytrack POSIX 9,735 36.8 3.6 32.4 34.6 
facesim POSIX 1,391 113.8 0 0 1000 
ferret POSIX 2,706 111 2 47 214.6 
x264 POSIX 1,494 1000 19 28 1000 
dedup POSIX 3,228 1000 0 2 0 
streamcluster POSIX 40,393 4 0 1 1000 
raytrace POSIX 13,302 106,4 0 0 1000 



Programs with Ad-hoc Synchronizations 

!   3 programs produce false positives (2 to 19 warnings) 
!   Function pointers for condition evaluation and obscure 

implementation of task queue (do not match the spin patterns) 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 29 

Program Para. 
model LOC 

Racy Contexts 
Helgrind+  

 lib 
Helgrind+  
lib+spin 

Helgrind+  
nolib+spin DRD 

vips GLIB 1,255 50.8 0 0 858.6 
bodytrack POSIX 9,735 36.8 3.6 32.4 34.6 
facesim POSIX 1,391 113.8 0 0 1000 
ferret POSIX 2,706 111 2 47 214.6 
x264 POSIX 1,494 1000 19 28 1000 
dedup POSIX 3,228 1000 0 2 0 
streamcluster POSIX 40,393 4 0 1 1000 
raytrace POSIX 13,302 106,4 0 0 1000 



Universal Race Detector 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 30 

Program Para. 
model LOC 

Racy Contexts 
Helgrind+  

 lib 
Helgrind+  
lib+spin 

Helgrind+  
nolib+spin DRD 

blackscholes POSIX 812 0 0 0 0 
swaptions POSIX 4,029 0 0 0 0 
fluidanimate POSIX 3,689 0 0 0 0 
canneal POSIX 29,31 0 0 0 0 
freqmine OpenMP 10,279 153.4 2 2 1000 
vips GLIB 1,255 50.8 0 0 858.6 
bodytrack POSIX 9,735 36.8 3.6 32.4 34.6 
facesim POSIX 1,391 113.8 0 0 1000 
ferret POSIX 2,706 111 2 47 214.6 
x264 POSIX 1,494 1000 19 28 1000 
dedup POSIX 3,228 1000 0 2 0 
streamcluster POSIX 40,393 4 0 1 1000 
raytrace POSIX 13,302 106,4 0 0 1000 

Happens-before detector  
•  false positives are  

   Slightly increased  
  in 4 cases 



Performance 

!   Minor overhead due to the new feature for spinning read 
detection 

!   Memory consumption: 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 31 



Performance 

!   Slight runtime overhead: 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 32 



Summary 

!   Knowledge of all synchronization operations are crucial for 
accurate data race detection 
!   Missing ad-hoc synchronizations causes a lot of false positives 

!   We present a dynamic method that is able to identify ad-
hoc and unknown synchronizations in programs 

!   Universal race Detector 
!   No need to upgrade the detector for unknown libraries 

!   Best results achieved when using it as complementary 
method (applicable for every race detector) 

!   Future work: Improving the accuracy of the universal race detector 
by identifying the lock operations (enabling lockset analysis). 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 33 



Thank you 

Questions? 

Identifying Ad-hoc Synchronization for Enhanced Race Detection 34 

This work: Ali Jannesari, Walter F. Tichy, Identifying Ad-hoc 
Synchronization for Enhanced Race Detection, to appear in 
 International Parallel & Distributed Processing Symposium (IPDPS'10), 
Apr 2010. 
Helgrind+: Ali Jannesari, Kaibin Bao, Victor Pankratius, Walter F. Tichy, 
Helgrind+: An Efficient Dynamic Race Detector, Proceedings of the 23rd 
international Parallel & Distributed Processing Symposium (IPDPS'09), 
2009. 
www.ipd.uka.de/Tichy/   


