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Unums	2.0	
An	Interview	with	John	L.	Gustafson	

by	Walter	Tichy	

Editor’s Introduction 

In an earlier interview (April 2016), Ubiquity spoke with John Gustafson about the unum, a new 
format for floating point numbers. The unique property of unums is that they always know how 
many digits of accuracy they have. Now Gustafson has come up with yet another format that, like 
the unum 1.0, always knows how accurate it is. But it also allows an almost arbitrary mapping of 
bit patterns to the reals. In doing so, it paves the way for custom number systems that squeeze the 
maximum accuracy out of a given number of bits. This new format could have prime applications 
in deep learning, big data, and exascale computing. 

Walter Tichy 
Associate Editor	
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Unums	2.0	
An	Interview	with	John	L.	Gustafson		

	
by	Walter	Tichy	

	

We	 recently	 interviewed	 John	 Gustafson	 about	 a	 new	 floating	 point	 format,	 the	 unum,	 or	
universal	number.	What’s	 interesting	about	the	unum	is	both	the	mantissa	and	the	exponent	
may	 vary	 in	 the	 number	 of	 bits	 during	 runtime,	 depending	 on	 accuracy.	 There	 is	 a	 bit	 that	
indicates	whether	the	unum	is	exact,	and	if	it	is	not,	then	the	number	is	only	inaccurate	in	the	
last	digit.	So	we	always	know	how	exact	a	result	is.	If	it	happens	to	be	exact	to	only	three	digits,	
then	there	will	be	only	three	digits	in	the	mantissa.	If	that’s	not	precise	enough,	we	may	have	to	
start	with	higher	accuracy	in	the	inputs	

Walter	Tichy:	Shortly	after	our	interview,	you	came	out	with	“unums	2.0.”	What	is	different	
about	them?	Apparently,	you	are	doing	away	with	exponents	altogether,	which	would	be	a	
radical	break	with	traditional	floating-point	numbers.	

John	Gustafson:	 I	started	out	calling	them	“unums	2.0,”	which	seemed	to	be	as	good	a	name	
for	the	concept	as	any,	but	 it	 is	 really	not	a	“latest	release”	so	much	as	 it	 is	an	alternative.	 It	
might	 be	more	 accurate	 to	 call	 them	 “Type	 2	 unums,”	 and	 the	 original	 ones	 “Type	 1.”	 They	
share	about	80	percent	of	the	mathematical	advantages	that	Type	1	unums	have,	such	as	the	
ability	 to	 avoid	 rounding	 error,	 overflow,	 and	 underflow.	 But	 they	 are	 crafted	 to	 a	 different	
esthetic:	speed	and	simplicity,	both	for	the	hardware	designer	and	the	programmer	who	wants	
to	 use	 them.	 They	 also	 allow	 a	 user	 to	 design	 a	 custom	 number	 system	 for	 a	 particular	
workload,	something	the	deep	learning	community	is	particularly	interested	in.	

People	universally	worry	about	the	variable	size	of	 the	original	unums,	and	 I	 fully	understand	
their	 worry.	 The	 new	 unums	 are	 fixed	 size	 but	 crafted	 to	 squeeze	 as	 much	 information	 as	
possible	into	every	bit.	They	have	some	very	attractive	properties,	like	decimal	representation	
with	no	performance	penalty,	 and	 the	ability	 to	 take	an	exact	 reciprocal	of	 a	number	 just	 as	
quickly	 and	 easily	 as	 we	 can	 negate	 a	 number	 now.	 Addition,	 subtraction,	 multiplication,	
division,	and	even	powers,	that	is,	x	to	the	y	where	both	x	and	y	are	real,	can	all	be	done	in	a	
single	clock	cycle.	There	is	only	one	way	to	represent	a	particular	real	value,	whereas	in	Type	1	
unums	 there	 are	 usually	multiple	ways,	 and	 that	 creates	 programming	 headaches	when	 you	
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want	to	check	if	two	unums	represent	the	same	value.	IEEE	floats	have	that	problem	too,	since	
there	are	two	ways	to	represent	zero.	

What	 I	 realized	 four	months	 ago	 was	 that	 I	 had	 put	 a	 great	 deal	 of	 effort	 into	maintaining	
compatibility	 with	 the	 IEEE	 754	 floating-point	 standard,	 making	 unums	 a	 superset	 of	 that	
format	and	able	to	do	the	same	things	as	a	subset	of	their	capabilities.	I	thought	the	best	way	to	
ease	people	into	a	new	way	to	compute	with	real	numbers	would	be	to	give	them	an	upward-
compatible	format	and	let	them	convert	codes	to	use	the	new	capabilities	in	a	gradual	way.	But	
then	I	noticed	that	a	“clean	slate”	design	of	a	number	system	crafted	for	2016-era	computers	
would	not	look	much	like	the	IEEE	Standard	from	over	thirty	years	ago.	No	surprise	there,	right?	
Computers	are	about	a	million	times	faster	(or	a	million	times	cheaper,	however	you	want	to	
think	about	it)	than	they	were	when	the	IEEE	754	rules	were	crafted,	so	it	seems	unlikely	that	
the	engineering	tradeoffs	we	have	now	would	be	decided	anything	like	the	way	they	were	over	
30	years	ago!	

Type	 2	 unums	 are	 a	 direct	 map	 of	 signed	 integers	 to	 the	 projective	 real	 number	 line.	 The	
projective	reals	map	the	reals	onto	a	circle,	so	positive	and	negative	 infinity	meet	at	 the	top.	
Here’s	a	picture	of	what	the	new	formulation	looks	like	if	you	only	had	four	bits	but	wanted	to	
represent	the	entire	extended	real	number	line.	
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It’s	ultra-low	accuracy,	but	mathematically	clean,	and	the	hardware	designers	are	going	to	love	
this	 one.	 To	 negate	 a	 unum,	 you	negate	 the	 integer	 associated	with	 the	 bit	 string,	 as	 if	 that	
integer	 was	 a	 standard	 two’s	 complement	 number.	 Flip	 the	 bits	 and	 add	 one,	 ignoring	 any	
overflow;	that	gives	you	the	negative	of	an	integer.	It	works	with	no	exceptions.	But	get	this:	To	
reciprocate	a	unum,	you	ignore	the	first	bit	and	negate	what	remains!	Geometrically,	negating	
is	 like	 revolving	 the	 circle	 about	 the	 vertical	 axis	 and	 reciprocating	 is	 revolving	 it	 about	 the	
horizontal	axis.	And	yes,	the	reciprocal	of	zero	is	±∞	and	vice	versa.	

No	more	 “negative	 zero”	 redundant	 representations	 to	 handle.	No	more	 “denormalized”	 (or	
“subnormal”)	values.	Dividing	becomes	as	simple	and	fast	as	multiplying,	just	as	subtraction	has	
the	same	cost	as	addition	 in	current	float	arithmetic.	And	you	don’t	have	to	make	exceptions	
for	dividing	by	zero.	That’s	rather	liberating,	don’t	you	think?	

Notice	 that	 exact	 numbers	 have	bit	 strings	 ending	 in	 zero	 and	open	 intervals	 between	 exact	
numbers	have	bit	strings	ending	in	one.	This	is	just	like	Type	1	unums.	Also,	the	first	bit	still	acts	
like	a	sign	bit,	so	long	as	you	remember	that	both	zero	and	±∞	are	unsigned.	Other	than	that,	
there	is	no	exponent	field,	like	you	say.	Instead	we	have	a	“u-lattice”	of	exact	numbers	between	
1	and	∞	that	defines	the	meaning	of	the	bit	strings.	Here,	that	u-lattice	 is	 just	the	number	2,	
but	I	can	show	you	some	more	interesting	u-lattice	choices	later	on.	

	

WT:	That	brings	up	a	 lot	of	questions.	First,	 I	noticed	you	also	did	away	with	time-honored	
radix	or	positional	representation:	The	value	of	a	bit	in	position	i	is	no	longer	2i.	I	also	noticed	
that	 every	 number	 and	 interval	 is	 complemented	 with	 its	 inverse,	 which	 makes	 inversion	
easy.	 But	 how	 do	 you	 choose	 the	 numbers	 and	 assign	 the	 bit	 patterns	 so	 negation	 and	
inversion	work	the	way	you	described?		

JG:	Here’s	the	thing:	 It’s	extremely	flexible,	and	can	be	defined	according	to	the	needs	of	the	
computer	user	instead	of	being	decided	by	a	vendor	or	a	standards	committee.	As	I	said,	I	call	
the	 selected	 set	 of	 exact	 real	 numbers	 between	 one	 and	 infinity	 the	 “u-lattice.”	 You	 can	
optimize	it	for	dynamic	range,	for	digits	of	accuracy,	or	even	to	include	numbers	important	to	a	
particular	application.	Suppose	you	work	with	π	a	lot.	Well,	π	is	an	exact	number,	just	one	that	
we	cannot	express	with	a	finite	string	of	decimals.	Just	define	it	as	one	of	the	points	in	the	u-
lattice,	and	now	you	can	work	with	π	as	an	exact	number.	
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I	was	just	talking	with	some	astrophysicists	in	Australia	working	on	the	Square	Kilometer	Array	
project,	and	they	are	doing	discrete	Fourier	transforms	on	data	that	is	ultra-low	precision.	Input	
data	 can	 be	 –1,	 0,	 or	 1,	 and	 that’s	 it.	 I	 understand	 the	 oil	 and	 gas	 people	 doing	 seismic	
exploration	 are	 similarly	 happy	 to	 use	 very	 low	 precision	 inputs,	 so	 long	 as	 the	 Fourier	
transform	is	accurate.	I	noticed	that	if	you	do	an	eight-point	FFT	on	every	possible	set	of	such	
data,	there	are	only	57	possible	answer	values!	Which	means	you	could	represent	the	answer	
exactly	with	only	 six-bit	data.	Do	you	 see	where	 I’m	going	with	 this?	We	can	have	 software-
defined	 number	 systems,	 and	 a	 compiler	 can	 generate	 them	 to	 be	 optimal	 for	 a	 particular	
application	program,	loading	in	the	tables	just	as	it	loads	in	the	binary	instructions	now.	

The	 catch,	 and	 it’s	 a	 big	 one,	 is	 that	 this	 works	 well	 for	 low	 precision	 but	 quickly	 becomes	
unwieldy	for,	say,	32-bit	and	64-bit	precision.	But	these	are	early	days	for	this	idea	and	I	think	
we	may	discover	ways	it	might	be	made	practical	for	higher-accuracy	computations.	

WT:	Could	there	be	unums	to	the	base	of	10?	Would	arithmetic	still	be	exact??	

JG:	 Yes,	 and	 that’s	 one	 of	 the	 best	 things	 about	 Type	 2	 unums.	 There	 is	 no	 performance	
penalty	for	using	base	10!	If	you	have,	say,	a	six-bit	unum,	you	might	choose	a	lattice	like	this	to	
cover	a	decent-sized	dynamic	range:	

1	<	{2,	5,	10,	20,	50,	100,	200}	<	∞	

That	sets	the	upper	right	quadrant	of	the	circle.	Looks	like	the	values	used	for	money,	doesn’t	
it?	The	reciprocals	are	all	easy	to	write	in	decimal,	notice:	

0	<	{0.005,	0.01,	0.02,	0.05,	0.10,	0.20,	0.5}	<	1	

This	gives	the	exact	numbers	in	the	lower	right	quadrant.	Combine	those	with	their	negatives	to	
get	the	left	half	of	the	circle,	and	finally,	include	the	open	intervals	between	the	exact	points,	so	
that	no	 real	numbers	are	 left	out.	That	creates	a	 total	of	64	numbers	or	number	 ranges	 that	
perfectly	cover	the	projective	real	numbers.	Not	that	 I’m	recommending	weird	data	sizes	 like	
six	bits,	but	I’m	trying	to	keep	things	simple	here,	and	that	means	using	very	low	precision.	

Here’s	 just	 a	 small	 excerpt	 of	 how	 these	 numbers	map	 to	 the	 unum	bit	 strings,	where	 I	 use	
some	color-coding	of	the	binary	values:	
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1	 010000 The	unum	for	exact	1	always	begins	with	“01”,	then	all	0s.	
(1,	2)	 010001 Open	intervals	between	exact	values	always	end	in	“1”.	
2	 010010 Positive	numbers	and	zero	start	with	“0”.	
⋮
200	 011110 This	is	the	largest	exact	positive	real	value.	
(200,	∞)	 011111 Instead	of	overflowing	to	infinity,	too-large	numbers	fall	here.	
±∞	 100000 Negative	numbers	and	±∞	start	with	“1”.	
(–200,	–∞)	 100001 Keep	counting	up	to	wrap	to	the	left	half	of	the	circle.	
⋮
–1 110000 The	unum	for	exact	–1	always	begins	with	“11”,	then	all	0s.	
⋮
(–0.005,	0)	 111111 The	unum	for	the	smallest	negative	range	is	always	all	1s.	
0	 000000 The	unum	bit	string	for	zero	is	always…	zero!	
(0,	0.005)	 000001 Instead	of	underflowing	to	zero,	too-small	numbers	fall	here.	

Now	we’re	climbing	back	up	the	right	half	of	the	circle.	

The	 arithmetic	 operations	 are	 not	 exact,	 though	 in	 a	 remarkable	 number	 of	 cases,	 you	 can	
perfectly	describe	the	result	using	these	values.	 If	you	ask	for	2	+	2	at	this	very	 low	precision,	
there	 is	 no	 exact	 representation	 for	 four,	 so	 you	 have	 to	 use	 the	 open	 interval	 (2,	5),	 for	
example.	

WT:	There	is	also	the	concept	of	sets	of	numbers.	What	is	this	for?	

JG:	 There	 are	 a	 lot	 of	mathematical	 problems	 for	which	 the	 answer	 is	 not	 a	 single	 number.	
Even	 something	 a	 simple	 as	 “What	 number,	 when	 squared,	 equals	 nine?”	 has	 two	 answers:	
positive	three	and	negative	three.	Or	“What	numbers	are	odd	integers?”	Or	“What	real	values	
are	 strictly	 less	 than	 ten?”	 You	may	 have	 heard	 of	 interval	 arithmetic,	 where	 you	 represent	
numbers	as	being	between	a	and	b,	where	a	and	b	are	values	that	have	an	exact	representation	
in	your	number	system.	Being	able	to	work	with	any	subset	of	the	real	number	line	as	if	it	were	
itself	a	numerical	quantity	is	a	powerful	thing.	

I	hate	showing	people	large	bit	strings,	but,	well,	I’m	going	to	show	you	a	large	bit	string,	64	bits	
long.	 I’ll	use	some	color-coding	and	spaces	 to	help	 the	readability.	You	know	that	 table	 I	 just	
showed	 you	 for	 the	 “currency”	 type	of	 unum?	There	 are	 64	possible	 quantities	 represented,	
right?	I	can	represent	a	set	of	them	by	using	a	1	if	the	quantity	is	present,	and	a	0	if	it	is	absent	
in	the	set.	I	call	them	SORNs,	for	Sets	Of	Real	Numbers.	Here	is	how	I	would	represent	a	SORN	
that	has	the	numbers	0,	2,	and	50,	and	also	the	open	interval	(2,	5):	

0000 0000 0000 0000 0000 0000 0000 0000 1000 0110 0000 0100 0000 0000 0000 0000 
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Negative	numbers	are	red,	positive	numbers	are	blue,	but	zero	and	±∞	are	black.	See	how	there	is	a	
black	1	in	the	center?	That	means	the	number	0	is	present	in	the	set.	A	few	bits	to	the	right,	there	are	
two	more:	11,	which	indicate	the	presence	of	the	number	2	and	the	open	interval	(2,	5).	The	presence	

of	the	number	50	in	the	set	is	that	rightmost	1	bit.	You	can	compute	with	SORNs	as	if	they	were	
numbers,	because	to	take	the	union	of	two	of	them,	you	OR	the	bits.	To	find	the	intersection,	you	AND	
the	bits.	It’s	very	close	to	native	computer	hardware	logic,	instead	of	requiring	symbolic	storage	and	

symbolic	manipulation	of	sets.	And	it	can	be	done	in	parallel.	It’s	not	like	adding	and	multiplying	bit	
strings,	where	you	have	to	propagate	carries	from	right	to	left,	which	means	SORN	operations	can	be	
very	fast.	

WT:	There	is	no	NaN,	or	Not-a-Number,	in	this	format.	What	happened	to	that?	

JG:	The	NaN	is	replaced	here	with	something	I	think	is	much	more	informative,	and	it	is	made	
possible	by	the	SORN	idea.	

Suppose	 I	 try	 to	 take	 the	 square	 root	 of	 negative	 one.	What	 real	 values,	when	 squared,	 are	
equal	to	negative	one?	There	aren’t	any,	so	in	floating	point	you	would	get	a	NaN.	Instead,	the	
SORN	result	is	the	empty	set:	

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000	

All	zero	bits.	There	are	no	quantities	in	the	set.	

What	if	I	try	to	compute	zero	divided	by	zero,	a	well-known	“indeterminate	form”?	If	you	take	
the	limit	of	x	divided	by	y	as	both	x	and	y	approach	zero,	you	get	every	possible	number	as	well	
as	±∞.	Well,	there’s	a	SORN	for	that,	too:	

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 

If	 you	 tried	 to	 compute	 1∞,	 again	 a	 float	 environment	 would	 return	 a	 NaN,	 Not-a-Number.	
There’s	not	a	 lot	of	 information	there.	What	if	 instead	you	could	at	 least	say	that	the	value	is	
any	non-negative	value?	Because	that’s	what	the	limit	of	x	to	the	y	is,	as	x	approaches	1	and	y	
approaches	infinity.	The	SORN	can	return:	

1000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 

because	now	we	have	the	vocabulary	to	describe	sets	of	real	numbers,	instead	of	having	to	pick	
a	single	rational	value	(a	floating	point	number)	as	the	answer	to	every	mathematical	question.	
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WT:	Does	it	matter	that	there	is	no	distinction	between	plus	and	minus	infinity?	

JG:	A	little,	yes.	I	take	some	comfort	in	the	fact	that	I	still	have	the	open	intervals	(maxreal,	∞)	
and	 (–∞,	 –maxreal).	 So	 as	 limits,	 I	 can	 still	 make	 the	 distinction.	 For	 example,	 if	 I	 take	 the	
logarithm	of	 the	 open	 interval	 (0,	1),	 I	 get	 the	 open	 interval	 (–∞,	0),	 and	 there’s	 a	 SORN	 for	
that.	But	 I	 lose	 the	ability	 to	compute	 the	 logarithm	of	exact	zero	as	negative	 infinity.	 I	 think	
that’s	 a	 small	price	 to	pay	 for	 the	elegance	of	 the	 formulation,	 and	 for	eliminating	 “negative	
zero,”	 one	 of	 the	most	 confusing	 and	 dubious	 entities	 in	 the	 IEEE	 754	 definition	 of	 floating-
point	arithmetic.	

WT:	Now	for	the	hard	stuff:	How	does	arithmetic	work?	Plus,	minus,	multiply,	divide,	all	 in	
one	cycle?	

JG:	Remember,	I	said	I	only	have	an	answer	for	low	precision,	and	it	leans	heavily	on	table	look-
up.	Let	me	show	you	what	the	addition	table	looks	like	if	you	only	have	two	bits	for	the	unums.	
With	two-bit	unums,	you	have	only	four	quantities	you	can	represent:	

00 01 10 11 
Zero	 Positive	reals	 ±	Infinity	 Negative	reals	

The	addition	table	shows	what	SORN	results	from	adding	all	16	possible	combinations	of	these	
four	 input	unum	values.	To	make	 it	a	 little	 less	confusing	whether	a	binary	string	describes	a	
unum	or	 a	 SORN,	 I’ll	 switch	 to	 a	 different	 notation	 for	 the	 SORN	 that	makes	 use	 of	 shapes.	
Rectangles	 are	 for	 exact	 values	 and	 circles	 are	 for	 the	 open	 intervals	 between	 exact	 values.	
They	are	filled	if	the	unum	is	present	and	hollow	if	the	unum	is	absent.	I	color	them	as	before,	
with	zero	and	±∞	black,	negative	unums	red,	and	positive	unums	blue.		
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Notice	the	three	entries	that	are	highlighted	in	light	green.	Those	indicate	where	the	SORN	has	
more	than	a	single	unum	present	in	the	sum.	

Now	remember	how	you	learned	to	do	multi-digit	multiplication	in	elementary	school.	You	do	it	
with	pairs	of	digits	in	each	number,	using	your	memory	of	multiplication	tables	for	zero	to	nine,	
and	then	sum	them	all	up.	If	we	want	to	do	an	operation	on	two	SORNs,	you	treat	each	present	
unum	as	a	digit,	look	up	in	the	table	what	the	operation	is	on	every	unum	pair,	and	then	OR	all	
the	table	entries	together.	Here’s	a	diagram	that	show	how	to	add,	say,	the	SORN	for	the	set	of	
nonzero	reals	▯●▯●	to	the	SORN	for	the	set	of	nonpositive	reals	▯●▮○:	

The	 higher	 the	 precision,	 the	more	 you	 have	 to	 use	 algorithmic	methods	 that	 look	 like	 float	
algorithms,	and	then	I	need	more	than	one	clock	cycle.	But	I	think	you	can	see	how	fast	these	
operations	can	be,	since	they	consist	of	independent	OR	gates	running	in	parallel.	

The	 prototype	 environment	 I	 am	 developing	 allows	 flexible	 definition	 of	 the	 u-lattice	 exact	
values,	 and	 then	 it	 automatically	 populates	 the	 tables.	 Table	 look-up	 in	 hardware	 can	 be	

▯●▯●

▯●▮●
▯○▯●
▯●▮●▯●▯○
▯●▯○

▯●▮○

Parallel (independent) bitwise OR operations

Parallel (or pipelined) table look-up

of each presence bit pair
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extremely	 fast,	 like	 three	gate	delays.	Here’s	what	 the	 function	generator	would	 look	 like	 for	
two-bit	unum	inputs	and	four-bit	SORN	addition:	

I’m	assuming	each	black	dot	in	the	circuit	is	simply	a	wired	connection,	not	a	switch.	If	it	were	a	
programmable	 table,	 it	would	 require	 far	more	 transistors,	of	course,	and	 it	would	 take	a	 lot	
more	electrical	power.	One	of	the	earliest	commercial	computers,	the	IBM	1620	Model	1,	used	
table	look-up	for	all	of	its	arithmetic.	That	came	out	in	1959;	IBM	used	the	internal	code	name	
“CADET”	for	the	computer,	and	when	customers	found	out	that	it	used	tables	instead	of	logic	to	
do	arithmetic,	they	joked	that	CADET	stood	for	“Can’t	Add,	Doesn’t	Even	Try.”	

That	can	all	be	done	in	parallel,	up	to	some	size.	There	are	shortcuts	you	can	use	as	the	size	of	
the	 operands	 gets	 larger,	 and	 finding	 the	 right	 balance	 of	 algorithmic	methods	 and	 look-up	
methods	is	what	I’m	working	on	now.	

WT:	I’m	confused—are	we	doing	arithmetic	in	unums	or	in	SORNs?	The	above	table	goes	from	
unums	to	SORNs.	Once	we	have	SORNs,	do	we	continue	with	SORNs?	

JG:	 The	 result	 of	 doing	 an	 arithmetic	 operation	 on	 a	 unum	might	 be	 another	 unum,	 but	 in	
general	 it	 is	a	contiguous	block	of	unums,	 like	an	interval.	The	answer	spreads	out	 in	general,	
though	there	are	things	that	can	shrink	the	interval,	too,	like	dividing	by	two.	So	you	do	not	get	
a	 closed	 system	 unless	 you	 go	 all	 the	 way	 up	 to	 SORN	 representation.	 The	 unum-unum	
operations	are	what	a	computer	uses	to	figure	out	a	SORN,	just	as	knowing	the	multiplication	
tables	 from	 zero	 times	 zero	 to	 nine	 times	 nine	 lets	 you	 multiply	 multiple-digit	 numbers	

SORN for x + y

x
unum

y
unum

sign signubit ubit

±∞
±∞
±∞
±∞

±∞

±∞

(–∞, 0)
(–∞, 0)

(–∞, 0)
0

±∞ (–∞, 0) 0 (0, ∞)

(–∞, 0) 0 (0, ∞)

(–∞, 0) 0 (0, ∞)
(0, ∞)
(0, ∞)

(0, ∞)

10+10
10+11
10+00
10+01
11+10
11+11
11+00
11+01
00+10
00+11
00+00
00+01
01+10
01+11
01+00
01+01
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together,	one	pair	of	digits	at	a	time.	Think	of	unums	as	digits,	but	digits	that	are	not	restricted	
to	being	counting	numbers.	

WT:	If	we	work	with	larger	unums,	the	SORNs	are	going	to	explode.	For	example,	if	we	have	
16	 bit	 unums,	 then	 we’ll	 need	 216	 bits	 for	 a	 single	 SORN.	 That’s	 eight	 Kbytes.	 Is	 there	 a	
compression	method	for	the	cases	when	there	are	few	intervals	or	they	are	contiguous?	

JG:	 If	you	have	a	single	 interval,	that’s	a	contiguous	set	of	unums.	 It	could	be	a	single	unum.	
Under	 plus-minus-times-divide,	 contiguous	 SORNs	 stay	 contiguous.	 That	 holds	 even	 if	 you	
divide	 by	 zero,	 	 because	 of	 the	 way	 the	 projective	 reals	 wrap	 around	 the	 top.	 To	 store	 a	
contiguous	SORN	with	n-bit	unums,	you	can	always	do	it	with	just	2n	bits,	not	2n	bits.	One	way	
is	to	store	the	first	unum	of	the	contiguous	block,	and	the	number	of	consecutive	1s.	Another	is	
to	 store	 the	 first	and	 last	unum	 in	 the	contiguous	block.	No	matter	how	you	do	 it,	 there	are	
enough	bit	patterns	in	2n	bits	to	store	all	the	possible	contiguous	SORNs	from	empty	set	to	the	
entire	set	of	extended	real	numbers.	By	the	way,	you	can	write	an	interval	like	(3,	2]	where	the	
left	endpoint	 is	greater	 than	the	right	endpoint.	 It	means	the	complement	of	 (2,	3].	You	start	
just	to	the	right	of	the	number	3,	go	clockwise	up	to	±∞	and	back	down	through	the	negative	
reals	to	zero,	then	up	to	two.	

So	 contiguous	 SORNs	 not	 only	 take	 a	 small	 number	 of	 bits	 to	 store,	 it’s	 always	 the	 same	
number.	Remember	that	was	part	of	the	idea	of	the	alternative	design	of	Type	2	unums:	Keep	
the	storage	format	a	constant	size.	

If	you	really	want	a	 fully	general	SORN,	 then	you	have	to	either	use	run-length	encoding	and	
have	variable	 size	 storage	 for	 the	SORNs,	or	bite	 the	bullet	and,	as	you	say,	use	8	Kbytes	 for	
each	 SORN,	 in	 the	 case	 of	 16-bit	 unums.	 I	 would	 argue	 that	 eight	 Kbytes	 really	 isn’t	 very	
expensive	 these	days,	and	you	could	 fit	 thousands	of	 such	SORNs	 in	on-chip	 level	one	cache.	
Maybe	you	use	 run-length	encoding	or	 something	even	more	efficient	 to	pack	up	 the	SORNs	
when	you	write	them	to	memory	or	mass	storage,	but	unpack	them	into	the	larger	fixed	size	for	
purposes	of	computing	with	them.	These	are	the	types	of	tradeoffs	we	need	to	work	out.	When	
you	think	about	it,	however,	it’s	pretty	amazing	to	be	able	to	perform	computations	on	subsets	
of	 the	 entire	 extended	 real	 number	 line	 as	 your	 input	 and	 output	 variables,	 with	 only	 eight	
Kbytes	for	each	variable.		

	

WT:	Can	you	also	give	us	an	 idea	about	exponentiation	 (with	 real	numbers	as	exponents)?	
Not	 that	 I	 need	 this	 every	 day,	 but	 exponentiation	 in	 a	 single	 cycle	 sounds	 absolutely	
amazing.	
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JG: Taking	x	to	the	y	power	is	simply	another	function	of	two	input	values,	so	the	same	look-up	
table	idea	works.	Also	with	a	SORN,	you	have	the	option	of	representing	multiple	output	values,	
like	x1/2	can	return	both	 𝑥	 	and	− 𝑥	 .	The	power	function	for	floats	is	littered	with	exception	
cases	 that	 library	 routines	 have	 to	 watch	 out	 for,	 so	 conditional	 branches	 slow	 down	
evaluation.	 The	 beauty	 of	 table	 look-up	 is	 that	 it	 pre-computes	 everything	 so	 you	 have	 no	
conditional	branches	at	run	time.	It	also	eliminates	“The	Table-Maker’s	Dilemma”	that	certain	
table	entries	take	much	longer	than	others	to	determine	correctly.	Once	they	are	determined,	
looking	 them	 up	 should	 only	 take	 one	 cycle.	 But	 remember,	 this	 only	 works	 up	 to	 a	 small	
number	of	decimals	of	precision	at	this	point.	

The	really	intriguing	thing	is	how	fast	and	easy	it	is	to	use	the	table	look-up	approach	for	single-
argument	functions	like	logarithms	and	trig	functions,	or	even	much	more	complicated	stuff	like	
Bessel	functions.	The	Deep	Learning	programmers	spend	a	large	amount	of	time	computing	this	
sigmoid	function:	

𝑆 𝑡 =
1

1 + 𝑒!!
	

and	that	can	easily	take	a	hundred	clock	cycles.	Many	Deep	Learning	tasks	only	need	about	16-
bit	 precision	 for	 the	 training	of	 the	neural	 net,	which	 is	why	 vendors	 are	 starting	 to	 support	
half-precision	floats	in	hardware.	But	with	type	2	unums,	in	16	bits,	I	can	compute	that	sigmoid	
in	a	single	clock	with	no	exception	handling	and	no	“Table	Makers	Dilemma,”	and	only	spend	a	
few	kilobytes	 for	 the	table.	The	tables	are	 tiny	compared	to	the	ones	 for	arithmetic,	because	
they’re	one-dimensional,	just	a	list,	instead	of	a	two-dimensional	table.	I	envision	a	standard	set	
built	into	a	chip,	and	some	RAM	for	user-definable	functions.	Imagine	that	you	have	some	very	
complicated	function	of	one	variable	that	you	use	over	and	over	 in	a	program,	and	 it	 takes	a	
hundred	 floating-point	 operations	 to	 evaluate.	 A	 low-precision	 float	 table	 won’t	 work	 well	
because	the	rounding	error	will	kill	you.	But	 if	you	can	guarantee	containment	of	 the	answer	
the	 way	 unums	 and	 SORNs	 do,	 then	 for	 some	 situations	 you	 might	 get	 a	 very	 acceptable	
answer,	 a	 hundred	 times	 faster	 than	 using	 floats.	 Which	 sounds	 to	 me	 like	 a	 shortcut	 to	
exascale	levels	of	computing.	

	

WT:	Could	unums	also	handle	good-old	decimal	numbers?	

JG:	What	if	I	told	you	that	decimal	unums	are	not	only	as	fast	as	binary	unums,	but	superior	in	
preserving	accuracy?	This	is	a	breakthrough,	because	as	you	know,	IEEE	Standard	decimal	floats	
are	 about	 half	 the	 speed	 of	 binary	 floats,	 at	 best,	 and	 they	 have	 a	 problem	with	 “wobble,”	
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meaning	 that	 the	accuracy	 is	uneven	 from	one	number	 to	another.	 For	 instance,	 if	 you	have	
three-decimal	floats,	then	near	the	number	100	you	have	99.6,	99.7,	99.8,	99.9	just	below	100,	
but	then	101,	102,	103	just	above	100.	The	spacing	jumps	from	0.1	to	1.0,	a	sudden	accuracy	
“wobble”	of	a	factor	of	ten.	Unless	you	know	where	on	the	real	number	line	your	application	
generates	 numbers,	 the	 best	 thing	 is	 to	 space	 numbers	 so	 the	 relative	 accuracy	 is	 constant,	
which	means	they	approximate	an	exponential	curve.	I	like	to	define	relative	decimal	inaccuracy	
as	the	 log	base	ten	of	the	ratio	of	adjacent	u-lattice	values.	For	example,	the	relative	decimal	
inaccuracy	 going	 from	 99.9	 to	 100	 is	 log10(100/99.9),	 which	 is	 about	 0.00043.	 The	 relative	
decimal	inaccuracy	going	from	100	to	101,	though,	is	log10(101/100),	which	is	about	0.0043,	ten	
times	more	inaccuracy.	You	can	also	define	the	number	of	decimals	of	accuracy	at	that	point,	as	
the	 negative	 log	 base	 ten	 of	 the	 relative	 decimal	 inaccuracy.	 For	 the	 same	 example,	 –
log10(0.00043)	is	about	3.4,	so	there	are	about	3.4	decimals	of	accuracy	going	from	99.9	to	100.	
But	that	drops	to	–log10(0.0043)	which	is	about	2.4	decimals,	going	from	100	to	101.		Here’s	a	
graph	of	single	digit	decimals	from	0.1	to	0.9	and	1	to	10	so	you	can	see	the	sharp	“kink”	in	the	
range:	

	

Remember	how	Type	2	unums	have	exact	reciprocals?	In	going	from	0.1	to	10,	single-decimal	
unums	have	some	exact	values	that	floats	do	not.	Since	the	number	3	 is	 in	the	u-lattice,	so	 is	
the	number	1/3,	exactly.	That’s	what	I	call	“reciprocal	closure.”	If	you	take	the	numbers	0.1	to	

Value represented

Set member

Relative accuracy
drops tenfold,

suddenly

Constant relative
accuracy

10

8

6

4

2
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0.9	and	1	to	10	and	unite	them	with	their	reciprocals,	and	sort	them	into	increasing	order,	you	
get	this	u-lattice:		

0.1,	1/9,	0.125,	1/7,	1/6,	0.2,	0.25,	0.3,	1/3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	
1,	10/9,	1.25,	10/7,	10/6,	2,	2.5,	3,	10/3,	4,	5,	6,	7,	8,	9,	10	

	

Guess	what	happens	when	you	plot	that	set	of	values?	As	a	side	effect	of	fixing	division,	we	also	
fix	most	of	the	“wobble”!	

	

	

I	was	 amazed	when	 I	 saw	 that,	 and	 I	 thought,	 “There	 has	 to	 be	 a	 catch.	What’s	 the	 catch?”	
Whenever	anyone	thinks	they’ve	found	a	better	way	to	represent	numbers,	there	always	seems	
to	be	a	downside.	I	figured	it	was	reduced	dynamic	range.	So	I	tried	comparing	16-bit	decimal	
unums	with	16-bit	binary	IEEE	floats,	the	“half	precision”	floats	that	Nvidia	has	pioneered.	

The	 binary	 floats	 have	 the	 equivalent	 of	 a	 little	more	 than	 three	 decimals	 of	 precision.	 The	
normalized	floats	have	a	dynamic	range	of	nine	orders	of	magnitude,	from	about	6	×	10–5	to	6	
to	104,	which	is	not	exactly	symmetrical	about	one.	To	compare,	I	created	a	u-lattice	of	three-
decimal	values	from	1.00	to	9.99,	made	them	closed	under	reciprocation	and	included	the	ubit	

Value represented

Set member

Reciprocal closure
almost eliminates

wobbling accuracy

Constant relative
accuracy

10

8

6

4

2
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to	distinguish	between	exact	values	and	the	open	intervals	between	them,	so	I	figured	Type	2	
unums	were	already	at	a	disadvantage.	But	I	was	amazed	again	when	I	found	that	they	had	a	
dynamic	 range	 from	1/0.389	 ×	 10–5	 to	 0.389	 ×	 105,	which	 is	 slightly	 larger	 than	 the	dynamic	
range	for	half-precision	floats.	Part	of	the	reason	is	that	unums	do	not	use	over	a	thousand	bit	
patterns	 to	 represent	 various	 types	 of	 NaN,	 and	 the	 other	 part	 is	 that	 unums	 are	 more	
information-efficient	in	being	closer	to	exponential	spacing	like	the	graph	shows.	

I’m	 really	 looking	 forward	 to	 experiments	 with	 16-bit	 Type	 2	 unums	 that	 are	 decimal,	 can	
represent	 the	 real	 number	 line	 with	 proper	 mathematics,	 never	 lose	 accuracy	 under	
reciprocation,	and	fast,	like	Ludicrous	Mode	on	a	Tesla	automobile.		

WT:	 The	 Type	 1	 unums	 have	 attracted	 quite	 a	 following	 already.	 What	 do	 you	 think	 will	
happen	to	Type	2	unums,	seeing	as	they	are	a	radical	departure	from	the	traditional	floating-
point	format?	

JG:	Right	now,	it	looks	tough	to	extend	Type	2	unums	to	high	precision,	which	means	we	still	
need	Type	1.	The	“killer	app”	for	Type	2	unums	looks	to	me	like	Deep	Learning.	Deep	Learning	
applications	are	 the	main	 reason	Nvidia	has	put	native	half-precision	 float	operations	 into	 its	
latest	generation	of	GPU	accelerators.	Not	only	do	Type	2	make	better	use	of	16	bits	than	floats	
do	for	the	training	of	neural	networks,	they	also	can	go	even	smaller	and	even	faster.	Also,	16-
bit	floats	have	more	dynamic	range	than	Deep	Learning	applications	require,	so	you	could	get	
better	accuracy	over	a	smaller	dynamic	range	with	Type	2	unums.	I	have	a	suspicion	that	even	
8-bit	unums	could	accomplish	much	of	 the	 training	 tasks,	 especially	 in	 the	beginning	of	each	
training.	After	all,	that’s	even	more	accuracy	than	our	own	brain	neurons	have,	isn’t	it?	But	I’m	
no	expert	in	deep	learning,	so	I	defer	to	those	who	have	been	working	in	that	area.	

	

WT:	Lookup	tables	certainly	make	arithmetic	faster,	but	we	could	use	tables	for	half-precision	
IEEE	formats	as	well.	How	big	are	the	tables	for	16-bit,	Type	2	unums?	Are	they	significantly	
smaller	than	for	IEEE	formats?	

JG:	That’s	complicated.	And	it’s	an	interesting	question!	With	unums,	you	only	need	entries	for	
the	exact	values,	so	the	two-argument	function	tables	are	one-fourth	the	number	of	entries	as	
if	 you	 had	 an	 entry	 for	 every	 bit	 pattern.	 Floats	 are	 designed	 to	 be	 easy	 to	 work	 with	 by	
algorithmic	methods,	where	you	have	separate	exponent	and	fraction	bits	and	know	how	much	
to	shift	and	how	to	apply	integer	operations	to	the	pieces;	it	might	be	faster	to	perform	16-bit	
float	operations	with	a	table,	but	the	table	might	take	more	space	on	chip	than	conventional	



Ubiquity,	an	ACM	publication	
	 September	2016	
	 	
	

	 	
	

http://ubiquity.acm.org	 16	 ©2016	Association	for	Computing	Machinery	

floating-point	 hardware.	 If	 I	 were	 still	 directing	 research	 at	 Intel,	 I’d	 get	 a	 team	 to	 try	 the	
experiment	and	find	out!	

	

WT:	What	do	you	see	as	the	future	of	Type	2	unums?	

JG:	I	think	the	Type	2	unum	approach	is	a	shortcut	to	the	exascale	performance	levels	we	need	
for	some	applications.	They	can	help	train	neural	networks	 for	artificial	 intelligence,	and	they	
might	save	millions	of	dollars	in	the	storage	needs	of	big	data	problems.	But	what	really	excites	
me	 is	 the	 idea	 of	 number	 systems	 customized	 to	 applications,	 systems	 that	 maximize	 the	
information	 from	 every	 bit	 of	 precision	 instead	 of	 the	 inefficient	 “one	 size	 fits	 all”	 fixed	
precision	and	dynamic	range	of	a	standard	float	type.	
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