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Summary

Within the field of large volume metrology, kinematic tasks such as the movement
of an industrial robot have been measured using laser trackers. In spite of these kine-
matic applications, most research has focused on the uncertainty of static measurements.
Accordingly, only very rough estimates have been available regarding the uncertainty
of kinematic measurements and for this reason kinematic measurements merit further
research.

It is, however, crucial to have a reliable uncertainty of the kinematic measurements, in
order to assess spatiotemporal path deviations of the robot. As to potential applications,
an approach capable of real-time was developed, in order to determine uncertainties of
kinematic measurements. The approach estimates the uncertainties relying on Bayesian
filters, and is in accordance with the Guide to the Expression of Uncertainty in Measure-
ment which is widely accepted in this field.

The system model description within a Bayesian filter plays a very important role and
therefore must be chosen with regard to the application and its requirements. Generally,
a standard linear Kalman filter can be used to determine the uncertainty for simple
movements. However, to include more than one system model, a hybrid system model
filter can be applied, in order to cope with more complex movements. Nevertheless, all
issues arising from the approximation of the movement, both within a standard Kalman
filter or within a hybrid system model filter, can be avoided by including additional
information from a robot control system into the uncertainty analysis method.

Beside the system model description, the measurement model plays an equally important
role within the uncertainty determination along the trajectory. Therefore, a kinematic
measurement model for a Leica AT901 laser tracker, with a beam steering mirror, was
developed to entirely represent the measurements, given that experiments were done
with this kind of laser tracker. However, using this model the entire analysis method can
be demonstrated without any loss of generality. The kinematic model was developed by
augmenting the geometric model with a kinematic part and a meteorological part. As the
measurement uncertainty is entirely state dependent, it depends on the object’s current
position and velocity within the measurement volume. Therefore the measurement model
needs to be recalculated within each time step and cannot be calculated in advance.
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Summary

Even if the following work focuses on laser trackers, photogrammetric systems are also
briefly considered, to show that the proposed analysis approach for kinematic measure-
ments is equally valid for photogrammetric measurements.

Within this work, a kinematic measurement is taken to be the spatiotemporal mea-
surement of a moving object so that the spatial measurements can be linked to other
measurements through a common time axis. Prior methods to test kinematic laser tracker
measurements have solely focused on the internal synchronization of the subsystems of
a laser tracker i.e. the angle encoders and the distance measurement rather than on the
object’s trajectory. Consequently, the new derived probabilistic measurement model of
a laser tracker was verified using two new kinds of kinematic ground truth.

PTB’s multilateration system was used as a kinematic ground truth in conjunction with
a six axis industrial robot. The multilateration system was made up of four synchronized
laser tracers which are able to measure the same retro-reflector as the laser tracker.
However, only a very small part of the laser tracker’s capacity in terms of the velocity
and acceleration could be tested, due to some limitations of the laser tracers and the
robot in terms of its axis constellation. Because of the restricted space and the acceptance
angle of the retro-reflector, the standard analysis method was prone to error. Therefore,
the standard analysis method needed to be refined so that the multilateration system
provided a ground truth. The strengthening of the network’s geometry in general, was
accomplished by introducing a new requirement matrix into the free-network adjustment
of the standard analysis method. This new requirement matrix can also be applied to
any other free-network adjustment, where the standard approaches for strengthening the
geometry cannot be used. As the multilateration system could only deliver a ground
truth up to 200 mm/s a new ground truth was developed which consists of a linear rail
in conjunction with a glass scale. Consequently, no arbitrary trajectories can be chosen
in contrast when using the multilateration system, but different motion profiles can be
applied. Using this ground truth the derived probabilistic laser tracker measurement
model could be verified up to a maximum velocity of roughly 5 m/s.

The results reveal that the internal alignment errors of a laser tracker and the envi-
ronmental conditions are more important than additional kinematic influences if the
delay time is relatively short and the movement is rather slow. However, it is hard to
give a rule of thumb for which velocity or acceleration the kinematic influences play a
significant role in the uncertainty, as the uncertainty is completely state dependent. As
a result, it can be said that the uncertainty of the trajectory is smaller than compared
to the manufactures rough approximation of the laser tracker used, when using the
augmented measurement model in conjunction with the proposed method. Furthermore,
the proposed method delivers a much more authentic uncertainty representation than
the manufacturer’s approximation and so mitigates the risk of a poor approximation.
Therefore, deviations of a robot’s path can be reliably assessed in real-time and the
method has the potential to provide not only reliable corrections for robots during their
movement, but also delivers their uncertainty.
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Zusammenfassung

Im Bereich der Industrievermessung, auch bekannt unter der Bezeichnung large volume
metrology, gibt es eine Vielzahl von kinematischen Anwendungen, wie zum Beispiel die
Beobachtung von Industrieroboterbewegungen, wofür Laser Tracker eingesetzt werden.
Trotz diesen kinematischen Anwendungen lag bisher der Forschungsschwerpunkt auf der
Bestimmung von Unsicherheiten bei statischen Messungen, lediglich sehr grobe Schätz-
werte zur Abschätzung der Unsicherheit bei kinematischen Messungen sind vorhanden.
Somit gibt es einen großen Forschungsbedarf bei der Bestimmung von Unsicherheiten
bei kinematischen Messungen.

Besonders bei der Beurteilung von raumzeitlichen Bahnabweichungen von Industrierobo-
tern ist eine zuverlässige Angabe der Messunsicherheit wichtig, um Abweichung richtig
zu interpretieren. Mit besonderem Blick auf zukünftige Anwendungen wie zum Beispiel
einer sensorbasierten Bahnführung wurde ein echtzeitfähiger Ansatz zur Bestimmung
der Unsicherheit bei kinematischen Messungen entwickelt. Dieser Ansatz basiert auf
Bayes-Filtern und ist konform zu GUM, Guide to the Expression of Uncertainty in
Measurement, welche eine weitverbreitete Norm im Bereich der Industrievermessung ist.

Im Hinblick auf die Anwendung sowie auf deren Bedingungen ist das Systemmodell
in einem Bayes-Filter zu wählen. Im Allgemeinen kann ein herkömmlicher Kalman-
Filter gewählt werden, um für einfache Bewegungen eine Unsicherheit zu schätzen. Für
komplexe Bewegungen kann ein hybrider Filteransatz verwendet werden, der es erlaubt,
mehr als nur ein Systemmodell zu definieren, umso die komplexe Bewegung besser
beschreiben zu können. Alle Probleme, welche durch die Approximation der Bewegung
in einem Kalman-Filter oder einem hybriden Systemfilter bedingt sind, können durch
die Integration von Steuerinformation des Roboters vermieden werden.

Neben der Systemmodell-Beschreibung spielt auch das Messmodell eine wichtige Rolle
bei der Bestimmung der Unsicherheiten kinematischer Messungen entlang einer Bahn.
Daher wurde speziell für den Leica Laser Tracker AT901 ein kinematisches Messmodell
entwickelt, welches die Besonderheit des Ablenkspiegels für den Laserstrahl berücksich-
tigt. Da alle Messungen mit einem AT901 durchgeführt wurden, jedoch kann der gesamte
Auswerteansatz ohne Beschränkung der Allgemeinheit demonstriert werden. Die Mes-
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Zusammenfassung

sunsicherheit ist dabei abhängig von dem Zustand des Objektes, das bedeutet, sie ist
abhängig von dessen Position und Geschwindigkeit im Messvolumen.

Auch wenn die vorliegende Arbeit sich hauptsächlich auf Lasertracker konzentriert, so
werden auch photogrammetrische Messsysteme kurz angerissen und aufgezeigt, dass die
vorgeschlagene Auswertemethodik auch für kinematische photogrammetrische Messungen
übertragbar ist.

In dieser Arbeit wird eine kinematische Messung definiert als eine raum-zeitliche Messung
eines bewegten Objekts, die sich über eine gemeinsame Zeitachse mit anderen Messungen
verknüpfen lässt. Frühere Methoden zur Bestimmung der kinematischen Eigenschaft
von Lasertrackern zielten hauptsächlich auf die interne Synchronität zwischen Distanz-
und Richtungsmessung ab. Dem entsprechend musste das abgeleitete probabilistische
Messmodell mittels neu entworfenen kinematischen Referenzen verifiziert werden.

Das Multilaterationssystem der PTB wurde als Referenz zusammen mit einem Indus-
trieroboter genutzt und bestand aus vier Laser Tracern, welche untereinander sowie mit
dem Lasertracker synchronisiert wurden. Jedoch konnten nur geringe Geschwindigkeiten
getestet werden, bedingt durch die geringe Verfolgungsgeschwindigkeit der Laser Tracer
und durch Bewegungsrestriktionen der Roboterachsen. Durch den geringen Öffnungswin-
kel des Retro-Reflektors und dem beengten Raum um den Roboter konnten die Laser
Tracer nicht in einer für sie bestmöglichen Konstellation ausgerichtet werden. Dabei fiel
auf, dass die übliche Auswertemethode des Multilaterationssystem fehleranfällig ist bei
nicht optimalen Konstellationen. Deshalb wurde die Auswertemethode verbessert, indem
eine neue Bedingungsmatrix in die Freie-Netzausgleichung eingeführt wurde, um die
geometrische Struktur des Netzes zu stärken. Diese neue Bedingungsmatrix ist allgemein
einsetzbar, somit auch überall dort, wo herkömmliche Ansätze zur Stärkung der geo-
metrischen Struktur eines Netzes nicht anwendbar sind. Da die Höchstgeschwindigkeit
nur 200 mm/s betrug, wurde zusätzlich eine weitere Referenz entwickelt und aufgebaut,
welche aus einer präzisen Linearführung und einem Glasmaßstab besteht. Dadurch kön-
nen zwar keine beliebigen Trajektorien gewählt werden, jedoch können verschiedene
Bewegungsprofiele vorgegeben werden. Mittels dieser Referenz wurde das abgeleitete
probabilistische Messmodell bis zu einer Geschwindigkeit von 5 m/s verifiziert.

Die Ergebnisse zeigen, dass die internen Achsfehler eines Lasertrackers und die meteo-
rologischen Einflüsse wichtiger sind als kinematische Einflüsse, wenn die Totzeit relativ
klein ist und nur langsame Geschwindigkeiten beobachtet werden. Des Weiteren zeigte
sich, dass die Unsicherheit durch den vorgeschlagenen Ansatz in Verbindung mit dem
kinematischen Lasertracker Modell im Vergleich zu der groben Herstellerabschätzung
geringer wird. Wichtiger jedoch ist, dass der neue Ansatz die systematischen Abweichun-
gen besser repräsentiert als die Abschätzung des Herstellers und somit eine verlässlichere
Unsicherheit berechnet. Dieses wird dadurch erreicht, dass die Bewegung des Objekts
berücksichtigt wird. Demzufolge ist der neue Ansatz besser geeignet, um in Echtzeit
Roboterabweichungen zu beurteilen und bietet somit das Potenzial, auch Korrekturwerte
während einer Roboterbewegung liefern zu können.
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Chapter 1
Introduction

Within the field of industrial metrology, also known as large volume metrology (LVM),
there are different kinds of kinematic tasks such as the observation of an industrial robot’s
movement or the tracking of a hand-held surface scanner. According to [EN ISO 9283,
1998] an industrial robot, should be tested up to a speed of 1.6 m/s. While it is evident,
that the uncertainty of the resulting measurements must be smaller than the expected
uncertainty of the robot it is also important to note that, the measurement system to
perform the measurements is not further specified. The spatio-temporal synchronization
of two six axis industrial robots and one extrusion press to fly cutting off spatially curved
extrusion profiles was presented in [Munzinger et al., 2006]. Here, the dynamic behaviour
of the robots were identified as one of the main issues which decreases the accuracy and
accordingly the current behaviour should be taken into consideration.

However, to reliably assess a dynamic path deviation of an industrial robot, observed
during the movement, it is crucial to first answer the question: What’s the uncertainty
in a trajectory measured kinematically?

Because it is possible that the measurement uncertainty is not sufficient to do any
assessment of the deviation care should be taken to not defraud the robot by relying
upon the assumption that the measurement uncertainty is sufficient. There is a wide
range of industrial robots, including articulated robots, consisting of revolute (or rotary)
joints, and robots consisting of linear axis, also known as parallel kinematic, for example
as shown in Crothers et al. [2010]. In particular small hexapods are accurate to a few µm
[Phy, 2012] which makes the calibration of the motion process quite difficult. Due to the
fact that the measurement uncertainty is state dependent, as derived in the following,
it depends on the object’s velocity and position in the measurement volume. Therefore,
this might mean that there are parts along the trajectory which can be assessed and
others which cannot, as the path deviation of the robot is too small in comparison to
the uncertainty.
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In order to react in an appropriate way, by stopping the process or applying path
corrections, it is important that the method, to determine the measurement uncertainty, is
real-time capable. Furthermore, the analysis method should be able to include additional
information. This might be derived from additional sensors attached to the robot or
this could be the control information of the robot itself. In addition, the probabilistic
measurement system model must be extremely accurate in a great measure to determine
a thorough/authentic uncertainty in the trajectory.

Common LVM instruments for measuring kinematic movements are photogrammetric
systems and laser trackers [Loser, 2004; Luhmann et al., 2013]. Photogrammetric systems
are often made up of two or more cameras for observing kinematic movements. This is why
an initial guess about the uncertainty can be derived by taking into account the residuals,
resulting from the overdetermined equation system. Despite the kinematic applications,
most work to date on the evaluation of laser tracker measurement uncertainty has focused
on static measurements and the uncertainties in kinematic measurements remain unclear.
As a result, the following work focuses on laser trackers, however photogrammetric
systems are briefly revisited, in order to show how the previously mentioned approach
can be integrated into the proposed analysis method for kinematic measurements.

The laser tracker itself is a device which tracks and measures in spherical coordinates
the 3D positions of a moving retro-reflector. These spherical coordinates are made up of
the distance to the retro-reflector, which is measured by either an interferometer (IFM)
or an absolute distance meter (ADM), and the two directional components are measured
by two angle encoders. The outgoing laser beam is returned by the retro-reflector to
the laser tracker where a part of the beam is directed onto a position sensitive device
(PSD). Accordingly, any lateral movement of the reflector generates an offset signal on
the PSD which is then used in a control loop to point the laser beam automatically back
to the centre of the reflector, thereby generating real-time distance and angle readings to
the reflector. As the offset signal at the PSD is also used to improve the angle encoder
readings, the laser tracker is, in principal, able to measure kinematic movements.

Even if, laser trackers are capable of measuring kinematic movements, the current prod-
ucts are only specified for static measurements in terms of their uncertainty, but they
are specified in terms of the maximal object velocity and acceleration [Leica Geosystems
AG, 2009c; Hexagon Metrology, 2015; API Automated Precision Inc., 2011, 2013; FARO
Technologies Inc., 2010, 2012]. However, there are some kind of uncertainty estimates
for kinematic measurements but these are only very rough approximations, which even
may lead to false assumptions, as will be shown. This is why kinematic measurements
merit further research.

A major part of the analysis method’s deduction and some early experiments have already
been published in Ulrich [2013]; Ulrich and Irgenfried [2014]; Ulrich [2015]. However,
the verification of the derived measurement model as well as the realization of different
kinematic ground truths have not yet been published. In order to present the subject
entirely also the main parts of these publications will be revised in the following.
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In general the uncertainty of a kinematic measurement can be determined by using
Bayesian filters. However, in order to apply a Bayesian filter, a system model and a
measurement model must be available. The system model can be derived differently
and so it is governed by decisions made in advance, e.g. about the modelling and
approximations, as its result will be. As the focus is on laser trackers a static measurement
model was augmented in order to reflect its kinematic properties.

The entire analysis method was tested in experiments using a laser tracker in conjunction
with a six axis industrial robot, consisting of revolute (or rotary) joints. It can be said
that the analysis method can be used to improve the uncertainty determination and
delivers an authentic uncertainty of the robot’s trajectory.

Due to the fact that the analysis method is highly dependent on the measurement model,
it was verified using two different kind of ground truths. One ground truth was made up of
four laser tracer, the multilateration system of the Physikalisch-Technische Bundesanstalt
(PTB), which was synchronized with a laser tracker, and the retro-reflector was moved
along certain trajectories using an industrial robot. Because of a special configuration
of the laser tracers and the trajectory the standard analysis method was prone to error.
This was shown by the weak form analysis for geodetic networks which is based on
eigenvalue analysis. Because of that, a refined method needed to be developed, in order
to get reliable multilateration results which could be regarded as a ground truth for
laser tracker measurements. As only rather slow velocities could be tested using the
multilateration system, a second ground truth was developed, consisting of a linear rail
and a glass scale. Using this ground truth the measurement model could be tested and
verified up to velocities at 5 m/s.

As the entire analysis method could be verified the next steps would be to implement a
sensor guided robot experiment. Furthermore, the robot model used should be enhanced
in order to get a better understanding of the observed path deviations.

3



Chapter 2
Uncertainty and Kinematic
Measurements

In order to use a measurement to make an explicit assessment of a deviation, it is
vital to associate that measurement with a statement of reliability which expresses its
uncertainty, so that the occurred deviation can be checked for significance. A widely
accepted framework to evaluate measurement uncertainties is provided by the Guide to
the Expression of Uncertainty in Measurement (GUM).

There are a number of analysis techniques to determine the uncertainty of kinematic
measurements for different kinds of applications. However, the most of them cannot be
applied for real-time purposes or they have strong requirements about the kinematic
process [Ulrich, 2013].

2.1 Measurement Uncertainty

To make a thorough assessment of spatiotemporal deviations between the planed trajec-
tory and the one observed by a measurement instrument, e.g. laser tracker, it is essential
to have a statement of uncertainty expressing the reliability of the measurements. In
GUM a probability density function (PDF) is applied to express the uncertainty of a
quantity ζ. In general, the uncertainty evaluation can be divided into forward-uncertainty
evaluation and inverse-uncertainty evaluation [Sousa and Forbes, 2007]. According to
Ulrich [2015], the kinematic uncertainty evaluation belongs to the latter case. Thereby,
the desired parameter β is only indirectly related to the measured quantities ζ by a
function f (β). Here, the Bayesian paradigm can be used to derive a density of β with
respect to the observed information ζ. This results in the posterior density p (β|ζ) which
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2.2. Kinematic Measurements
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Figure 2.1: The kinematic measurement principle, relating the measurement space to the
object space including the common time axis, according to Ulrich [2015].

is based on the quantities observed and any prior information. By using the Bayesian
theorem this posterior can be determined as follows:

p (β|ζ) = p (ζ|β) p (β)
p (ζ) (2.1)

Here, p (ζ|β) is the likelihood function and p (β) is the prior density including all in-
formation about the parameter β available prior to the observations ζ or from other,
independent sources.

If systematic influences can be inferred, but cannot be measured directly, then the
Bayesian statistic is well-suited to determining the uncertainty, according to Lira and
Wöger [2006]. Therefore, the Bayesian statistic is ideally suited to the analysis of
kinematic measurements’ uncertainties given that the velocity of the object causes a
systematic effect which cannot be measured directly using a common LVM instrument
such as a laser tracker or a photogrammetric system.

2.2 Kinematic Measurements

The term ’kinematic measurement’ can be construed in different ways as Foppe et al.
[2004] showed. However, in this report it is taken to be the spatiotemporal measurement
of a moving object so that the spatial measurements can be linked to other measurements
through a common time axis, the principle can be seen in figure 2.1 as shown in Ulrich
[2015]. Generally, the analysis of the moving object is done in the object space or
any other space, which is different to the measurement space in terms of its reference
system definition. Therefore the measurements observed need to be transformed into
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2.2. Kinematic Measurements

the appropriate space. Besides the geometrical transformation, the alignment of the
time axis also needs to be taken in to account due to the fact that these may have
different zero points, scales or drifts. In figure 2.1 these time axes are aligned using a
synchronization impulse. A point in time is t, the superscript indicates the number of the
point, the subscript m stands for the measurement space and the subscript o stands for
the object space. The geometrical transformation between each of the spaces is defined
by the rotation matrix RRR and the translation vector TTT . Assuming that the geometrical
transformation parameters are known, then a first order approximation of a kinematic
measurement can be expressed as follows

ΨΨΨ = M (VVV ) + VVV · dt · · · . (2.2)

The time offset between the time axes is dt. The result of the vector function M are
the measurements, with respect to the velocity VVV and the final point on the trajectory
is ΨΨΨ. Using equation (2.2) it becomes clear, why the determination of the uncertainties
of kinematic measurements should be treated as an inverse uncertainty evaluation. This
is due to the fact that the process parameter VVV affects the desired quantity but cannot
be measured directly using a common LVM measurement instrument like a laser tracker
or a photogrammetric system. Accordingly, the uncertainty estimation of kinematic
measurements needs to involve the kinematic process.

In principle there are interferometers designed to measure solely velocity e.g. the velocity
interferometer system for any reflector (VISAR) [Neyer, 1986]. However, to date, no
commercially available laser tracker additionally includes a velocity interferometer. In
addition, a velocity interferometer does not measure a 3D velocity vector, which is needed
for the analysis, it measures solely a part of the velocity which is in line of sight.

For kinematic measurements there are a number of analysis methods for different ap-
plications. However, these often do not work in real-time or they do not track the
kinematic behaviour. Instead it is assumed that the kinematic behaviour is known in
advance [Ulrich, 2013]. For example that the object will move at a constant velocity.
Furthermore, as shown in Ulrich [2015] a straightforward approach, using the most recent
measurement and the measurement one time step earlier to derive the velocity results in
a velocity estimate which is too inaccurate. Especially when the measurement frequency
is higher than 1 Hz, which is quite common in the LVM to observe movements.

Nonetheless, a very common approach to include the object’s kinematic is called the
state-space approach. The state vector of this approach is made up of all relevant infor-
mation to describe the state of the object. Within kinematic laser tracker measurements,
this information could be e.g. the retro-reflectors position, velocity and acceleration. Ac-
cording to Ulrich [2015] the state space equations of a non-linear stochastic discrete-time
state space model can be expressed as

xxxt+1 = ft (xxxt,uuut, wt) (2.3)
zzzt = ht (xxxt, vt) . (2.4)

6



2.3. Bayesian Filtering

The system model function is f , its system process noise is denoted using w, xxx stands
for the state vector and uuu denotes the control input. The measurement function h, also
includes the measurement noise v. In general the state space approach can be analysed
using Bayesian filters while focussing on the state vector xxx under investigation.

2.3 Bayesian Filtering

Bayesian filters are optimal non-linear state estimators and so are ideally suited to
determining the PDF of the state vector xxx (t) conditioned on all information given
at time t. This information consists of the knowledge about the system’s prior state,
the control inputs as well as the measurements available. Accordingly, the requirements
postulated by GUM are fulfilled by a Bayesian filter and this filter therefore is particularly
suitable for determining uncertainties of kinematic measurements in real-time [Ulrich,
2015].

Using the information set It at time t the required conditional state PDF is p (xt|It).
The information set is made up of

It = {zzz1:t,uuu1:t−1} . (2.5)

Here, uuu1:t−1 are all control inputs up to time t−1 and zzz1:t are all measurements up to time
t [Bar-Shalom et al., 2001]. Taking into account independent process and measurement
noise sequences and further taking the state vector to be a Markov process then the
conditional PDF of the state vector xxx (t+ 1) at time t + 1 can be expressed using the
Bayes’ formula as

p (xxxt+1|It+1) = 1
c
p (zzzt+1|xxxt+1) p (xxxt+1|It,uuut) , (2.6)

here, c = p (zzzt+1|It,uuut) is the normalization constant as shown in Ulrich [2015]. Equation
(2.6) is known as the state update equation of a Bayesian filter [Bar-Shalom et al., 2001;
Thrun et al., 2005]. As a Markov process it is assumed that the state xxxt is complete
and that no future state is influenced by a variable prior to xxxt [Thrun et al., 2005].
However, for the following analysis it is worth mentioning that state-dependent process
and measurement noise are permitted. For the common LVM instruments, like laser
trackers and photogrammetric systems this is especially important as their measurement
uncertainty is highly state depended, as can be seen in chapter 4. According to Bar-
Shalom et al. [2001] the Chapman-Kolmogorov equation can be used to calculate the
PDF prediction p (xxxt+1|It,uuut) as follows

p (xxxt+1|It,uuut) =
∫
p (xxxt+1|xxxt,uuut) p (xxxt|It) dxxxt. (2.7)

Commonly, a Bayesian filter consists of two steps, the prediction step using equation (2.7)
and the update step using equation (2.6). For these steps two models are required, the
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2.3. Bayesian Filtering

system evolution over time, is described in a system model and relating the measurements
to the state vector is carried out using a measurement model. To use these models in a
Bayesian filter they must be available in a deterministic form and in a probabilistic form
[Ristic et al., 2004].
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Chapter 3
Process Description

Within the last chapter it was deduced that the uncertainty estimation of kinematic
measurements needs to be considered an inverse uncertainty evaluation. This is due
to the fact that the estimation depends on additional process information, e.g. the
velocity of the object being observed, which cannot be measured by any common laser
tracker or photogrammetric system in the LVM. Nor can this information be derived
with sufficient variance, as shown in Ulrich [2015]. Furthermore, the velocity alone is
not necessarily sufficient to describe the general kinematic behaviour. Therefore, the
uncertainty estimation should involve the kinematic process.

Taking into consideration the kinematic task, the kinematic process description can be
divided into different application scenarios. This means the description can be highly
complex or relatively simple depending on the amount of additional knowledge available
of the kinematic task.

For all applications, the movement can either be described in a continuous time state,
whereby the object state equations must then be transformed into the corresponding
discrete time equations, or the movement can be directly modelled using discrete time
equations. Using discrete time equations result in process noise covariance matrices
which are easier to interpret, but are slightly different to the one transformed from the
continuous time state. However fundamentally, both methods approximate the movement
differently, the latter assumes a piecewise constant noise whereas the former assumes a
continuous-time noise. Furthermore, the difference between the covariance matrices of
both methods can be considered to be marginal as shown in Ulrich [2015] and Bar-Shalom
et al. [2001].

However, considering kinematic measurements in the LVM these are discretized observa-
tions of the object’s movement, which is continuous so it appears to be more appropriate
to describe the process continuously and the measurements in a discrete model. Even if
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3.1. Simplified Movement

both methods are just approximations of the real kinematic process and the differences
are marginal, as shown in Ulrich [2015].

3.1 Simplified Movement

Considering the example of a kinematic measurement of a linear rail where the carriage
moves at a constant velocity. If the acceleration time at the beginning and the deceleration
time at the end of the movement are negligible then the whole movement can be described
using a single constant velocity model. The constant velocity can be expressed in a
continuous white-noise acceleration model as in Bar-Shalom et al. [2001]. In this case
the state space vector xxx = [x y z ẋ ẏ ż]ᵀ consists of the position and the velocity. The
discrete-time state equation of this model is

xxxt+1 =
[
III3×3 ∆t III3×3

000 III3×3

]
xxxt +wwwt (3.1)

with the sampling period ∆t and the covariance of this discrete-time process noise wt
can be expressed as

cov (wwwt) =
[

1
3∆t3 III3×3 1

2∆t2 III3×3
1
2∆t2 III3×3 ∆t III3×3

]
q̃. (3.2)

The matrix is derived by discretizing the continuous time model with additional noise,
using the inverse Laplace transformation as proposed in Bar-Shalom et al. [2001] and
Ulrich [2015]. Here it is assumed that the power spectral density of the process noise q̃ is
constant. This model is ideally suited to be used in a common Kalman filter as a simple
Bayes filter e.g. in Ulrich [2015].

However, as it is obvious that the model, on which the filter is based, does not accurately
represent the kinematic behaviour of the carriage at all times – e.g. the acceleration time
and brake time –, the process noise covariance must be artificially enlarged to include
these parts too. This technique can be found throughout in the literature e.g. Simon
[2006] but it can also result in wrong state estimates as shown in Simon [2006]; Ulrich
[2013] or at least it decreases the performance during the parts the process description
was designed to. Due to the fact that the uncertainty estimation relies on this derived
information, uncertainty would increase.

3.2 Known Movement at any Time

Assuming that there is synchronization between the measurement system, e.g. a laser
tracker, and the control system of an industrial robot and that the robot control data are
accessible, then they can be incorporated into the analysis method. However, beside these
data a probabilistic model also needs to be provided for the incorporation, as can be seen
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3.2. Known Movement at any Time

A1A2

A3A6

A5 A4

Figure 3.1: Axis configuration of a KUKA KR 5 arc robot according to[KUKA, 2011]

in equation (2.3). Due to the incorporation, all problems arising from predefined motion
models in Bayesian filters of the tracking problem can be avoided, see the discussion
in section 3.1,3.3 and 3.4. This is a big advantage especially if the robot moves along
arbitrary trajectories with complex kinematic behaviour.

Considering as an example the synchronization of a six axis robot manipulator KUKA
KR 5 arc having six revolute joints and a laser tracker which is measuring a retro reflector
attached to the robot’s tool centre point (TCP). Figure 3.1 depicts a sketch of a KUKA
KR 5 arc with its six axis. The position and orientation of the TCP with respect to the
robot’s base can be calculate at any time t with the current joint angles ϑϑϑt = [ϑ1, . . . , ϑ6]t
readings using sequential homogeneous matrix multiplication

6∏

i=1
ΓΓΓi−1
i =




x
RRR3×3 y

z
000 1


⇒




x
y
z
φ
θ
ψ




(3.3)

also known as forward transformation. Here ΓΓΓi−1
i describes the transformation from

coordinate frame attached to joint i − 1 to the coordinate frame attached to i. The
position of the TCP is (x, y, z) and its orientation –roll, pitch, yaw– is described with the
angle parameters (φ, θ, ψ) derived of the rotation matrix RRR. The transformation matrix
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3.3. Known Movement in Advance

TTT i−1
i is replaced with the Denavit-Hartenberg matrix containing the geometry parameter

of the robot which is

DDDi−1
i =




cosϑi − sinϑi cosαi sinϑi sinαi cosϑi ai
sinϑi cosϑi cosαi − cosϑi sinαi sinϑi ai

0 sinαi cosαi li
0 0 0 1


 . (3.4)

Due to the fact that all joints are revolute joints, the link offset li is a constant parameter
of the robot model describing the distance from the origin frame i− 1 along the zi−1 axis
to the intersection with the xi axis. The joint angle is ϑi and is defined as the rotation
about the zi−1 axis between the xi−1 axis and xi axis. The distance parameter ai is
the link length measured along the xi axis between the zi−1 axis and the zi axis. αi is
a rotation about the xi axis until the zi−1 axis is parallel to the zi axis. More details
about the Denavit-Hartenberg matrix and its definition can be found in Corke [2011];
Craig [2005]. In addition to these parameters there are further geometric calibration
parameters which need to be taken into account. According to Wiest [2001] these are per
frame, the index offset which is a deviation of the zero position, the tilt deviation which
means that the two successive z axis are not parallel to each other and the link deviation
which defines the deviation of two successive axis in all three coordinate directions from
their nominal values. Alongside these geometrical errors, there are non-geometrical
influences which need to be considered, the most importance are the temperature and
the transmission elasticity according to Wiest [2001].

The joint variable can also be determined with respect to the forces and torques applied
by using the forward dynamic model. This model includes the friction force, the gravity
loading, the joint-space inertia matrix and the Coriolis and centripetal coupling matrix.
Within this list, the gravity is the dominant term and needs to be taken into account at
all times i.e. when the robot is stationary, or moving along a trajectory [Corke, 2011;
Craig, 2005].

3.3 Known Movement in Advance

Assuming that the movement of an industrial robot along a complex trajectory should
be monitored, but only the starting point can be synchronized, this means there is no
additional information about the robot control system available. However, the movement
of the robot is known in advance, because the trajectory has to be programmed in advance.
To avoid including the model inaccuracy i.e. one model cannot sufficiently describe the
whole complex trajectory, a hybrid system estimator can be utilized. It estimates the
continuous state of the robot and the discrete system model. As shown in Ulrich [2013],
the hybrid system estimator has been thoroughly researched particularly in the field
of air traffic control [Hwang et al., 2006; Rong Li and Jilkov, 2003; Bar-Shalom et al.,
2001; Blackman and Popoli, 1999], autonomous vehicles and driving assistance systems
[Althoff, 2010]. Within a hybrid system estimator, the most probable system models
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3.3. Known Movement in Advance

are included to represent the robot’s kinematic behaviour along the whole trajectory
not only along the largest parts, see section 3.1. These system models can be e.g. an
acceleration model, a model for a constant velocity, or a constant turn model to describe
a curve and so on. In the following, the continuous dynamic of the hybrid system is
modelled using difference equations and the discrete-state dynamic is modelled applying
a finite Markov chain as proposed e.g. in Hwang et al. [2006]. Therefore, the common
state space equations (2.3) and (2.4) needs to be adjusted as

xxxt+1 = f it

(
xxxt, w

i
t

)
(3.5)

zzzt = hit

(
xxxt, v

i
t

)
(3.6)

to represent a discrete-time stochastic hybrid system. The system model function of
model i is f i and its process noise is wi. hi is the measurement model function of
model i with its measurement noise vi. Here the state space vector is xxx and zzz are the
measurements.

A widely used hybrid system estimator is the Interacting Multiple Model (IMM) filter
because of its performance compared with other hybrid system estimators [Rong Li, 2000;
Hwang et al., 2006]. An IMM filter approximates the required posterior density p (xxxt|zzzt)
using a weighted sum of Gaussian density functions as

p (xxxt|zzzt) ≈
r∑

i=1
gitN

(
xxxit; x̂xxit,PPP it

)
(3.7)

with
r∑

i=1
git = 1.

Here the model-conditioned state estimate is x̂xxit with its covariance PPP it and the weights
are git. The exponent i denotes the model which is governed by the finite Markov chain
as

µµµt+1 = ΠΠΠµµµt. (3.8)

Here, r is the count of the discrete models in this chain. The vector µµµ ∈ Rr contains the
model probabilities and ΠΠΠ is the model transition probability matrix of the dimension
ΠΠΠ = {πij} ∈ Rr×r which also needs to be defined in advance with respect to the real
process. An IMM filter calculates the final hybrid state estimate as

x̂xxt+1 =
r∑

i=1
x̂xxit+1p

(
mi
t+1|zzz1:t+1

)
(3.9)

The model probabilities are p
(
mi
t+1|zzz1:t+1

)
, which are comparable to the weights in

equation (3.7). Under the condition that the model at time t + 1 is mi
t+1 the model-

conditioned state estimate of xxxt+1 can be calculated as

x̂xxit+1 =
∫
xxxt+1 p

(
xxxt+1|zzzt+1,m

i
t+1
)
dxxxt+1, (3.10)
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3.3. Known Movement in Advance

using the model estimator of model i according to Hwang et al. [2006]. This can be
directly compared to an optimal state estimator with respect to the minimum mean-
square error of a common Bayesian filter as shown in Ulrich [2015].

To sum up the hybrid filter IMM is a weighted sum using the model probabilities to
also include the states of the process during the transition from one model to another
model and so to reduce the number of models. Because of the inclusion of the transition
phase, there is no need to include further models, to describe the transition from one
model to another model precisely. This, on the other hand, may even deteriorate the
overall performance, as the transition phase is rather short, compared to the others. As
mentioned above, the most probable system models are included to represent the process,
meaning also the models representing the longest phase. It is clear that an IMM filter’s
performance must decrease if the mismatch between the modelled kinematic process
behaviour and the real kinematic movement increases. In Rong Li [1994] it was shown
that adding more models does not guarantee a better performance as the mismatches
alone may increase, which may further deteriorate the performance. This becomes clear
when taking into account equation (3.16) as they just represent a ’relative’ probability
with respect to the subspace of the chosen models. However, the issue that a common
IMM or other hybrid system filters has a fixed structure which needs to be defined in
advance and therefore is not able to adapt itself is further discussed in 3.4.

The work of an IMM filter can be subdivided into three steps, an interaction and mixing
step, a filter step and a state estimation step. The following description is loosely based
on the derivation of Bar-Shalom et al. [2001] and Hwang et al. [2006].

Assuming that all models can be implemented using a Kalman filter, then new initial
states and covariance matrices are calculated within the interaction and mixing step to
be used in each filter. The mixed means and covariance matrices for each filter can be
calculated as

x̂xx0j
t =

r∑

i=1
x̂xxitµ

ij
t|t (3.11)

PPP 0j
t =

r∑

i=1

{
PPP it +

[
x̂xxit − x̂xx0j

t

] [
x̂xxit − x̂xx0j

t

]ᵀ}
µijt|t j=1,. . . ,r, (3.12)

as proposed in Ulrich [2013]. Here the state estimate is x̂xxit and the covariance is PPP it
which are results of the Kalman filter i after the measurement update at time t. The
conditional probability µijt|t includes the transition probability that the system made the
transition from model i to j at time t+ 1 which can be determined with

µijt|t = πijµ
i
t

cj
(3.13)

cj =
r∑

i=1
πijµ

i
t.
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Here cj is the normalization constant and the model probability of model i at time t
is µit. Hwang et al. [2006] introduced an improvement of the IMM filter by reducing
the model estimation delay. This was achieved by increasing the difference between the
likelihood of the correct model and the others. The improved version is called Residual-
Mean Interacting Multiple Model (RMIMM). However, in Ulrich [2013] no big difference
between the common IMM filter and the RMIMM filter was detected for the application
observing an industrial robot with a laser tracker.

As presented in Ulrich [2015] the filter step includes the common prediction and update
step of a Kalman filter which can be briefly expressed as

[
x̂xx−,it+1,PPP

−,i
t+1

]
= KFp

(
x̂xx0j
t ,PPP

0j
t ,AAA

i
t,QQQ

i
t

)
(3.14)

[
x̂xxit+1,PPP

i
t+1
]

= KFu
(
x̂xx−,it+1,PPP

−,i
t+1, zzzt+1,HHH

i
t+1,ΣΣΣi

t+1
)
. (3.15)

Here the prediction step of a Kalman filter is denoted using KFp and the update step
using KFu. The matrix AAA is the transition matrix of the system model mi with its
covariance matrix QQQ. The measurement matrix is represented by HHH and the covariance
matrix of the measurement model is denoted using ΣΣΣ. Here, the predicted state estimate
is x̂xx−,it+1 and the predicted covariance is PPP−,it+1 which are results of the Kalman filter
applying model i. In equation (3.14) and (3.15) a generic brief expression of a Kalman
filter is shown, as a realization depends on the motion model and the chosen Kalman
filter. Accordingly, the Kalman filter equations are also effected.

Furthermore, the needed model probability, within an IMM filter, can be calculated as

µjt+1 = 1
c

Λjt+1cj j = 1, . . . , r (3.16)

using the normalization constant

c =
r∑

j=1
Λjt+1cj .

For each model the likelihood is required which can be determined as

Λjt+1 = N
(
dddres.t+1; 0,SSSjt+1

)
. (3.17)

Here SSSjt+1 is the innovation covariance matrix in the KF update step of model mj and
dddres.t+1 are the appropriate residuals at time t+ 1.

The final step, the state estimation step, calculates the combined state estimate and
covariance over all filter results as a weighted sum as follows

x̂xxt+1 =
r∑

j=1
µjt+1x̂xx

j
t+1

PPP t+1 =
r∑

j=1
µjt+1

{
PPP jt+1 +

[
x̂xxjt+1 − x̂xxt+1

] [
x̂xxjt+1 − x̂xxt+1

]ᵀ}
. (3.18)
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3.4 Unknown Movement in Advance

Even if there is no immediate application for a variable hybrid system model estimator
in conjunction with an industrial robot and a laser tracker, it is briefly presented for
the sake of completeness. An IMM filter describes non manoeuvre motion and different
manoeuvres in different motion models with a fixed set of models. These models represent
possible system behaviour patterns, which are highly interesting in regard to the problem
under consideration. In a general description of a hybrid system, the system mode refers
to a real-world behaviour pattern and a model refers to a mathematical representation
of the system at a certain accuracy level. The model set Mset usually has fewer elements
than the mode space B and an element ofMset is usually just an approximated description
of a mode, up to a certain accuracy level [Rong Li, 2000].

On the one hand the performance of an IMM filter depends largely on the type of
models used, on the other hand it also depends on the number of models used in the
IMM. Rong Li [1994] showed that the use of more models and filters does not guarantee
performance improvements. Including more models intoMset may increase the mismatch
between Mset and Bt the system modes at time t and lead to performance deterioration.

For the scenario where a person carries a reflector, it can be assumed that there will
be a large mode space and that the set of likely system modes is highly time variant.
Furthermore, the mode space is not known in advance, in comparison with when an
industrial robot carries the reflector. The robot must be programmed in advance, and
there is some more information available e.g. its repeatability, which can be used to
deduce a reasonable and limited number of system models, as shown in Ulrich [2013].
Therefore, variable structures of a hybrid system estimator have to be considered for
scenario where a person carries the reflector.

The likely-model set structure belongs to the most important class, the adaptive structure
of the variable structure. Its active model set is generated by deleting the unlikely models
in the total set to match the true mode at the given time [Rong Li and Zhang, 2000].

The likely-model set (LMS) algorithm uses a subset of the models in the total set which
are likely to match the true mode. For implementation the state dependency of the
mode set can be utilized. Therefore, the set of possible system modes at the next time
is determined by the mode transition law, this is the adjacency relations of the modes,
which is a subset of the mode space given the current system mode according to Rong Li
[2000].

The two major steps in a LMS algorithm are

• Model classifying, as unlikely, significant and principal

• Model-set adaptation, discard the unlikely ones, keep the significant ones and
activate the models adjacent from the principal ones
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However, even if the LMS is used, there is still the issue that there must be some
knowledge in advance about the process, in order to set up a reasonable subspace of
models in which the process might stay. Additionally, the transition probability matrix
needs to be defined. In the scenario where a person carries a reflector, reasonable
boundaries maybe deduced from the kinematic performance of the measurement system
e.g. the maximum acceleration at which the instrument can work, but this needs further
investigation.
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Chapter 4
Measurement Model

Within the field of LVM there are different kinds of measurement instruments, the
two most common ones for carrying out kinematic measurements are laser trackers and
photogrammetric systems. In order to integrate one of these instruments into a Bayesian
filter technique, an appropriate measurement model must be used.

In Ulrich [2015] a stereo photogrammetric system was used to measure the movement
of a rotating arm. Within these experiments, the standard deviation of the 3D point
calculation provided an initial guess for the probabilistic model within the Bayesian filter.
As this standard deviation includes a large portion of the elements taking part in the
3D point determination within a stereo photogrammetric system e.g. the calibration
parameter, the image processing. Furthermore, the shutter-time was considered, with
respect to its influence on the resulting geometry and to a common time axis. The use of
the 3D point standard deviation as an initial guess can also be applied to multi-camera
systems, however more research is required to clearly deduce single kinematic influences
of all the internal and external elements on the final 3D point standard deviation.

The kinematic process can also be observed by more than one measurement instrument
which may lead to different state space estimates about the process. Therefore, these
different estimates needs to be fused together to one state estimate.

4.1 Laser Tracker

As mentioned in chapter 1, the main focus is on laser trackers in order to be integrated
into the robot control system. To get the most out of this integration the uncertainty of
the trajectory measured by a laser tracker is needed.
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Figure 4.1: A sketch of a laser tracker together with a retro-reflector.

Commercial laser trackers can be subdivided into two design types. These are the gimbal
mounted beam source type and the gimbal mounted beam steering mirror, as can be
seen in Ulrich [2013]. For calibration purposes, geometric models already exist, for
the latter one the model was developed by Loser and Kyle [1998]. For the first one a
calibration model was published by Muralikrishnan et al. [2009] which is an adoption
of the well-known model of tacheometers and theodolites which can be found e.g. in
Deumlich [1982]. A mathematically revised version of this model can be found in Hughes
et al. [2011]. These models describe the geometrical beam path within the laser tracker
by considering its sub-parts. They consequently also need to be taken into account to
determine the uncertainties of kinematic measurements.

Due to the fact that the Leica AT901 laser tracker has a beam steering mirror and all
experiments were done with this kind of laser tracker, only the beam steering model
is considered in the following. Using this model the entire analysis method can be
demonstrated without any loss of generality. Figure 4.1 illustrates a laser tracker
together with a retro-reflector. Here, the pitch angle is denoted using pa, the yaw angle
is ya and d is the distance.

Geometry

There are three groups of geometric parameters. The offset parameters model the de-
viation of the transit axis not intersecting the primary/standing axis and the parallel
deviation between the laser beam and the primary axis. In figure 4.2a the offset param-
eters are depicted and they are made up of the distance between the mirror and the
primary axis named e, the parameter fp the offset between the mirror and the rotation
centre, the beam offset O1 between the beam and the primary axis and the beam offset
O2 due to the cover plate. The parameter O1 and O2 can be further divided into a x
and y component.

The second group is the tilt parameters, which are shown in figure 4.2b. The deviation
of the perpendicularity of transit axis to the primary axis is described by the transit axis
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Figure 4.2: Geometry parameters of a beam steering mirror laser tracker according to
Loser and Kyle [1998].

tilt ip. The parameter beam axis tilt Ip is the parallelism deviation between the primary
axis and the beam axis which can be further sub-divided into a x and y component.
Furthermore the parameter c, mirror tilt, is the tilt between mirror and the transit axis
as they should be parallel.

The last group is the encoder offsets and the pitch index offset, as depicted in figure 4.2c.
The eccentricity of the pitch encoder K is the distance between the rotation centre and
the encoder centre and E is the eccentricity of the yaw encoder E. The pitch index offset
is jp. The parameter E and K are divided into a x and y components for calculation
purposes as can be seen in equation (4.1) and (4.2).

The yaw angle, ya.corr, is determined by using the geometric calibration model of Loser
and Kyle [1998] as follows

ya.corr = ya.m + (O1x cos (ya.m)−O1y sin (ya.m) +O2x + ya.off) /dm
sin (pa.m + jp)

+ Ip.x cos (ya.m)− Ip.y sin (ya.m)
sin (pa.m + jp)

−
ip sin

(
pa.m+jp

2

)
+ c

cos
(
pa.m+jp

2

)

+ Ey sin (ya.m)− Ex cos (ya.m) . (4.1)

The yaw angle value measured is ya.m, the pitch angle value measured is pa.m and dm is
the distance corrected with respect to the meteorological conditions. In order to easily
distinguish the variables, a is additionally used as a subscript variable to denote an angle
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measurement. A correction when the reflector is moving provides the term ya.off. All
other terms are explained above.

The corrected pitch angle can be calculated as

pa.corr = pa.m + jp − Ip.x sin (ya.m)− Ip.y cos (ya.m)− O1x sin (ya.m) +O1y cos (ya.m)
dm

+ pa.off +O2y
dm

− cos
(
pa.m + jp

2

)( 2
dm

(
e cos

(
pa.m + jp

2

)
+ fp

)
+Kx

)

+Ky sin
(
pa.m + jp

2

)
. (4.2)

Similar to the term ya.off, the term pa.off provides a correction when the reflector is
moving. Again, all other terms are explained above.

In addition, the distance measured is corrected as follows

dcorr = dm − 2 sin
(
pa.m + jp

2

)(
e cos

(
pa.m + jp

2

)
+ fp

)
+ b (4.3)

The home point distance is denoted using b which represents the datum reference for the
interferometer. The other parameters are described above.

When applying the calibration procedure on the Leica laser tracker AT901, available at
the institute, the standard deviations of the calibration parameter, as explained above,
can be determined. The maximal standard deviation for each group can be seen in table
4.1. Here, the vertical index shift is subsumed into the tilt parameters due to its unit,

Max. std value
Offset parameters ≈ 1.4 µm
Tilt parameters ≈ 2.2 µrad

Eccentricity parameters ≈ 3.0 µm

Table 4.1: Maximal standard deviation of the calibration parameters after the calibration
process.

despite the above proposal. Further parameters concerning the laser tracker can be found
in [Leica Geosystems AG, 2009b,c], as mentioned in chapter 1.

Meteorology

As mentioned in the chapter introduction, a laser tracker may have implemented an
ADM and an IFM as a length measurement device. When using a Leica laser tracker
AT901, for kinematic measurements only the implemented IFM can be used, because
of this, only the meteorological correction for IFM measurements are considered which
means only the standard index of refraction, the phase index, is taken into account.
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A distance measured by an interferometer needs to be corrected with respect to the
refractive index of air considering the given wavelength as well as the air temperature,
the pressure and the humidity. Due to the fact, that the basic length scale is the
wavelength in air, the distance can be corrected by

dm = d0
106

106 + n (Tm, pm, Hm, λm) . (4.4)

Here the distance measured by the interferometer is d0 without considering a refraction
compensation and dm is the distance with refraction compensation. The refractive
index with respect to the temperature Tm, the pressure pm, the humidity Hm and
the wavelength λm is n (Tm, pm, Hm, λm). In general the refractive index of air can
be calculated using either the equation developed by Ciddor or the updated version
of the Edlén equation. Even if the Ciddor equation delivers somewhat better results,
under rough conditions in terms of temperature, pressure and humidity, than the Edlén
equation, the latter is commonly used for precision measurements at temperature near
20 ◦C [Stone and Zimmerman, 2011]. Due to the rough environmental condition issue
the International Association of Geodesy (IAG) adopted the Ciddor equation as the
standard equation for calculating the refraction index [Stone and Zimmerman, 2011].

The refractive index considering the interferometer of a laser tracker can be calculated
using the Edlén approach as

n = ntp − 10−10
(
3.7345− 0.0401λ−2

m

)
pv. (4.5)

Here the wavelength λm is in µm, the water vapour partial pressure is pv and when
using relative humidity Hr, pv can be calculated as pv = Hr/100psv. For the calculations
presented here it is assumed that the temperature, T , is in ◦C and that the pressure
values, p, are given in Pa, this is important as the coefficients are dependent on that.
Furthermore, the saturation vapour pressure psv can be calculated using the equations
described in Huang [1998]. Using the revised Edlén equation the dry air refractive index
ntp can be determined as

ntp = 1 + p (ns − 1)
96095.43

1 + 10−8 (0.601− 0.00972T ) p
1 + 0.003661T (4.6)

according to Birch and Downs [1994]. Using the deduction in Birch and Downs [1994]
the revised dispersion equation leads to

ns = 1 + 10−8
(

8342.54 + 2406147
130− λ−2

m
+ 15998

38.9− λ−2
m

)
. (4.7)

Finally the corrected distance can be calculated, as proposed in equation (4.4).

So far, only the change in wavelength due to the refractive index is considered to correct
the distance measurement. Using only this approach to treat all meteorological issues can
be considered as insufficient. As this would assume that the refractive index is homoge-
neous in the whole working volume along the laser beam which cannot be guaranteed and
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specially for typical laser tracker working volumes it is not realistic. In Eschelbach [2007]
an approach was proposed to correct the angle measurements as well as the distance
measurement using 3D temperature gradient. Thereby, solely the temperature gradient
was used as it was assumed that pressure inhomogeneity and humidity inhomogeneity
along the laser beam do not occur when making indoor measurements. Unfortunately,
this approach requires well disturbed temperature sensors along the laser beam which is
not feasible.

In order to refine the probabilistic model, the turbulence theory could be used and
particularly the angle part could take advantage of it. The variance of the angle for a
plane wave propagating through weak turbulence has to be calculated with respect to
the aperture diameter bm of the receiving telescope and with respect to the inner and
outer boundaries l0 and L0 of the inertial sub-range. They describe the atmospheric
inhomogeneities (eddies), the smallest eddies l0 are between 1 mm to 3 mm [Brunner,
1984].

As proposed by Brunner [1984] the variance of the angle can be calculated with respect
to the inner boundary as follows

σ2
α
∼= 1.46 b−1/3

m SmC
2
n l0 � b� Rm (4.8)

and with respect to the outer boundary

σ2
α
∼= 2.92 b−1/3

m SmC
2
n L0 > b� Rm (4.9)

Here, Rm is the radius of the first Fresnel zone which is given by

Rm = (λm Sm)1/2 . (4.10)

Where, Sm is the path length and λm is the wavelength. Furthermore, the average
value of the strength of the atmospheric turbulence is denoted using C2

n which can be
calculated as

C
2
n = 1

S

S∫

0

C2
n (x) dx. (4.11)

Here, the refractive index structure parameter C2
n is a measure of the magnitude of the

fluctuation of the refractive index and can be related to the 3D refractive index spectrum.

Furthermore, the variance of the distance can be calculated as proposed by Hennes [1995]
and Brunner [1984] using the following equation

σ2
L = am SmC

2
n L

5/3
0 . (4.12)

Here, am depends on the spectral model selected and can vary between 3 to 30 [Brun-
ner, 1984]. The equations (4.8) to (4.12) are used for individual observation; however,
Brunner [1984] derived several augmentations for multiple observations. Nevertheless,
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for kinematic measurements these equations can be directly applied, as there is only a
single measurement for a point available.

However, to apply the equation (4.8) to (4.12) the measurement of C2
n along the laser

beam is needed. In principle, C2
n can be determined by the measurements of a scintil-

lometer. However, these measurements take some time, so it is not suitable for kinematic
measurements and more important it made up of rather big sender and receiver devices
which cannot be attached next to a laser tracker retro-reflector.

To sum up, to date there is no feasible method to precisely correct the laser tracker
measurements due to environmental influences, during kinematic measurements in con-
junctions with an industrial robot. In subsection “Integration Within Bayesian Filter”
there is a method proposed to get a rough estimate of the variance of the angle and
distance measurement influenced by the environmental conditions.

Reflector

Three different kinds of retro-reflectors can be used in conjunction with a Leica laser
tracker, spatial mounted reflectors carrying a glass prism, cat’s eye reflectors and air
path corner cube reflectors.

According to Markendorf [2000] there is a systematic deviation with respect to the laser
beam’s angle of incidence when using the spatial mounted reflector carrying a glass prism.
A similar effect has been reported by Pauli [1969] when using glass in a reflector, which
can be calculated by using Snell’s law along the beam path. In consequence this kind of
reflector is unsuitable when a small uncertainty is needed due to the fact that the angle
of incidence cannot be controlled throughout kinematic measurements.

A cat’s eye reflector is made up of different glass hemispheres of differing refractive
indices and sizes. All incident beams should be reflected back, parallel to the incident
beams. However, throughout kinematic measurements the laser tracker’s beam is not
at all time perpendicular to the outer glass hemisphere which leads to an imperfect back
reflection. Owing to the spherical glass surface incident beams being non-perpendicular
are back reflected non-parallel to the incident beam. In figure 4.3 this additional angle
of reflection is ι. The cat’s eye model was developed as published in Loser [2001] and
Zuercher et al. [1995]. With respect to the height hr of the beam according to the figure
4.3 the divergence angle ι of-non-perpendicular beams can be derived to be

ι = 2
(
− arcsin

(
hr
rr.1

)
− arcsin

(
hr
rr.2

n1
n2

)
+ arcsin

(
hr
rr.1

n1
n2

)

+ arcsin
(
hr
rr.2

n1
n3

)
+ arcsin

(
hr
rr.3

n1
n3

))
, (4.13)

which is similar to a n2 reflector as developed in Yongbing et al. [2003]. The radiuses
of the different glass spheres used in the cat’s-eye rr.1 to rr.3 can be seen in figure 4.3,
n2 to n5 are the different refraction indexes of these spheres. Figure 4.3 implies, that
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Figure 4.3: Cat’s eye reflector

a perpendicular beam has the height hr = 0 and is reflected without deviation. Due to
the fact that there is not enough time for the control algorithm of the laser tracker to be
regulated to the PSD control point, the PSD values are used in the terms ya.off and pa.off
to correct the angle measurements throughout kinematic measurements. This is why the
additional divergence angle directly effects the ya.off and pa.off term and in consequence
the yaw and pitch angle. Accordingly, an unpredictable uncertainty source remains when
using a cat’s eye reflector throughout kinematic movements.

On the other hand, air path corner cube reflectors may also introduce additional uncer-
tainties. This is due to their dihedral angle error of the mirror planes if the reflector’s
roll angle cannot be held steadily throughout the kinematic measurement. Only the yaw
and pitch angle are effected due to an additional deviation on the PSD. According to
ASME B89.4.19 [2006] the maximum allowable dihedral angle error is set according to the
accuracy of the PSD control point and the stringency of the laser tracker specifications.

In summary, when using air path retro-reflectors specified by the laser tracker manufac-
turer and holding the reflector’s roll angle, fixed additional effects caused by reflectors
can be largely mitigated.

Integration within a Bayesian Filter

For the integration within a Bayesian filter additionally the synchronization between the
measurement and the control data has also to be considered. Within the Leica laser
tracker the internal control loop runs at a frequency of 3000 Hz. The PSD outputs,
the angle encoder and the distance readings are stored together with an associated
time stamp. The measurements are interpolated to match the timing of the external
trigger impulse, so that the trigger impulse does not interrupt the measurement process
according to Kihlman et al. [2004] and Leica Geosystems AG [2009a]. Loser [2001]
described the synchronization of this trigger impulse as the main source of uncertainty in
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kinematic laser tracker measurements. This is due to the fact that the PSD control point
is determined during the initialization procedure of the laser tracker [Loser, 2004]. As
the PSD control point effects the terms ya.off and pa.off which are used during kinematic
measurements to improve the angle measurements, as can be seen in equation (4.1)
and (4.2). Therefore, an error in the PSD control point would lead to big systematic
deviations, as also described in ASME B89.4.19 [2006]. As a result, a 3D point of an
object’s movement can be expressed in the first approximation as follows

x = dcorr · cos (ya.corr) · sin (pa.corr) + Vx · ts + . . .

y = dcorr · sin (ya.corr) · sin (pa.corr) + Vy · ts + . . .

z = dcorr · cos (pa.corr) + Vz · ts + . . . . (4.14)

Here Vx, Vy, Vz are the components of the velocity according to the corresponding coor-
dinate axis and the synchronization error is ts.

As mentioned above, when using a Bayesian filter, a deterministic and a probabilistic
model of the measurement model is needed. In order to deduce a probabilistic measure-
ment model, the Monte-Carlo Method in conjunction with equation (4.14) can be used
to determine a probability density for any arbitrary point as proposed in Ulrich [2013].
Taking equation (4.14) into consideration, it becomes clear that the measurement model
is highly dependent on the object’s state, meaning the position and the current kinematic
behaviour. Consequently, the measurement model needs to be recalculate every Bayesian
filter cycle to take into account the object’s new state.

Due to the fact that there are several influences on the angle measurement which cannot
be further quantified, the standard deviation of the angle encoder readings has to be
adjusted. This is because normal users cannot get the PSD values during kinematic
measurements, which effects the terms ya.off and pa.off as can be seen in equation (4.1)
and (4.2). Furthermore, the meteorological correction does not include the angle mea-
surements, as explained above, and the error due to the dihedral angle error of the
reflector is unknown. As proposed in Leica Geosystems AG [2009b] a good estimate of
the meteorological part can be deduced, by observing a stable point for a certain period
of time within the measurement volume. Applying this method an overall approximation
for the standard deviation of the angle measurement can be estimated to be ≈4 µrad,
when using the Leica AT901 indoors having weak turbulence.

4.2 Multi Sensor Data Fusion

The uncertainty of a state space vector estimate can be decreased by including further
information about the state into the analysis. This information can also be the same kind
of information, simply measured using another sensor e.g. two laser trackers measure
the same reflector attached to the tool centre point of an industrial robot. For this kind
of multiple sensor data fusion either the fusion can be accomplished within a centralized
architecture, or within a decentralized architecture as described in Mitchell [2007]. If
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all raw measurements are sent to a single fusion node before they are processed then
this architecture is called centralized architecture, also known as measurement fusion.
The drawback with this type of architecture is that it is very sensitive to spatial and
temporal misalignments. On the other hand this architecture has a higher performance
than the decentralized architecture also called track-to-track fusion [Mitchell, 2007; Chen
et al., 2003; Zhansheng and Rong Li, 2008]. Before transmitting the measurements to a
fusion node in order to join all sensor data together, every sensor node preforms its own
Bayesian filtering within a decentralized architecture.

Where the measurements of two LVM instruments, e.g. two laser trackers, should be
fused together one can expect that the measurements can be precisely synchronized and
that the transformation parameters between the instruments can be determined within
a reasonable uncertainty. Therefore, only the measurement fusion architecture type is
considered in the following.

In order to use the measurement fusion architecture, the update equation of the Bayesian
filter needs to be adjusted as shown in Ulrich [2013], e.g. equation (3.15) becomes:

[
x̂xxit+1,PPP

i
t+1
]

= KFu
(
x̂xx−,it+1,PPP

−,i
t+1, zzzt+1, H̃HH

i
t+1, R̃RR

i
t+1
)

(4.15)

with

z̃zzt =




zzz1
t
...
zzz
lf
t


 H̃HH

i
t =




HHH i,1
t
...

HHH
i,lf
t


 R̃RR

i
t = diag

[
RRRi,1t , · · · ,RRR

i,lf
t

]
,

Here lf is the number of involved measurement instruments that should be fused to-
gether. A feature of this method, is that it can incorporate measurements from distinct
measurement instruments e.g. different laser trackers but also photogrammetric systems
or additional sensors attached on the robot’s TCP like pressure sensors, etc.
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Chapter 5
Kinematic Ground Truth

As the analysis method for kinematic measurements presented so far incorporates a
measurement model, it is essential to verify the derived model of a Leica laser tracker
taking into account a ground truth.

To test the laser tracker’s kinematic properties Peipe [1996]; Loser [2001]; Morse and
Welty [2013] proposed observing points on a rotating arm, followed by a best-fit circle
to the points. When taking into account figure 2.1, it becomes clear that this procedure
focuses solely on the internal synchronization of the subsystems of a laser tracker i.e.
the angle encoders and the distance measurement, because only measurements within
the measurement space are considered. This is why the procedure cannot be used to
generate a ground truth for kinematic laser tracker measurements as proposed in section
2.2.

The most straightforward way of verifying the measurement model would be, if the retro-
reflector could be simultaneously measured using an additional instrument with a higher
level of accuracy. In principle, this could be achieved by using a multilateration system,
consisting of four laser tracers, as explained in more detail in the following section.

However, due to various dynamic restrictions, the laser tracker cannot be tested over its
whole range of kinematic performance capabilities, when using a multilateration system.
For this reason, another kinematic ground truth was developed to test the laser tracker
over a wider kinematic spectrum. The resulting ground truth is made up of a linear
rail and a glass scale with a very high level of accuracy. When using a linear rail, no
arbitrary trajectories can be chosen in contrast when using the multilateration system,
however different motion profiles can be applied. Due to the linear rail solely kinematic
issues are taken to account. To focus solely on geometric issues any standard calibration
procedure can be applied. This ground truth is explained in more detail in section 5.2.
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5.1 Laser Tracer / Multilateration

A laser tracer is an interferometer which measures the distance to a retro-reflector
and also tracks this retro-reflector while it is moving in space. It is equipped with a
mechanically and thermally decoupled reference reflector for its interferometer, in order
to achieve a high level of accuracy. This results in a sub-micron stability while the
tracking mechanism is in movement [National Physical Laboratory (NPL), 2009]. Due
to the fact, that a laser tracer delivers only the change in distance to a moving retro-
reflector, four synchronized laser tracers are used to determine the reflector’s 3D position
using a technique called multilateration. As a result, a multilateration system, made
up of four synchronized laser tracers would be ideally suited to deliver a ground truth
for kinematic laser tracker measurements. The reason for distance-only measurement
is to eliminate the less accurate angle measurements whose uncertainty has a linearly
increasing spatial error as the distance to target increases.

The absolute distances between each laser tracer and the reflector must be established
at the beginning of a kinematic experiment as the laser tracers only provide relative
changes in the distances. The starting distance between a laser tracer and the reflector
is measured using a tape measure to get a rough estimate of the absolute distance.
Accordingly, the absolute starting distances must be refined within the analysis method.
The analysis method determines the laser tracer 3D positions, the refined offsets of the
start distances, also known as dead paths, and the 3D positions of the reflector. As there
are no additional scale deviations considered in this analysis approach, the wave length
of each laser tracer should be established and calibrated. Furthermore, the meteorology
does not need to be factored in because laser tracer distance measurements are directly
adjusted with respect to the meteorological condition within the working volume.

Standard Analysis Method

The multilateration analysis can be seen as a free-network adjustment in the Gauss-
Markov-model using distance measurements alone. Within the Gauss-Markov adjustment
model the unknowns are estimated with maximum probability. This model is also known
as a least-squares adjustment or a minimisation using the L2 norm [Luhmann et al.,
2013], and the condition for the residuals is:

vvvᵀPPPGvvv → min! (5.1)

Here, vvv is the residual vector and PPPG is the weight matrix. The functional model of the
multilateration analysis can be expressed as

di,j =
√

(Xi −Xj)2 + (Yi − Yj)2 + (Zi −Zj)2 − oj . (5.2)

Here the 3D position i of the reflector is given by Xi, Yi, Zi with i ∈ {1, 2, . . . , u} and
the 3D position of laser tracer j is denoted using Xj ,Yj ,Zj with j ∈ {1, 2, . . . , n}. The
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Tracer 1 Tracer 2 Tracer . . . Tracer n Pos. 1 Pos. 2 Pos. . . . Pos. u
X Y Z o X Y Z o X Y Z o X Y Z o X Y Z X Y Z X Y Z X Y Z

d1,1
d1,2
d1,...
d1,n
d2,1
d2,2
d2,...
d2,n
d...,1
d...,2
d...,...
d...,n
du,1
du,2
du,...
du,n

Table 5.1: Design matrix structure, the not null elements are depicted with a grey cell.

distance measured between reflector position i and laser tracer j is di,j and the dead
path offset of laser tracer j is oj . As the functional model in (5.2) is non-linear, the
adjustment in the Gauss-Markov-model needs to be iteratively solved, this includes a
linearisation of (5.2). This requires the partial derivatives with respect to the unknowns
for the design matrix AAAG are:

∂di,j
∂Xi

= − (Xj −Xi)
dRi,j

∂di,j
∂Yi

= − (Yj − Yi)
dRi,j

∂di,j
∂Zi

= − (Zj − Zi)
dRi,j

∂di,j
∂Xj

= (Xj −Xi)
dRi,j

∂di,j
∂Yj

= (Yj − Yi)
dRi,j

∂di,j
∂Zj

= (Zj − Zi)
dRi,j

∂di,j
∂oj

= −1 (5.3)

with
dRi,j =

√
(Xi −Xj)2 + (Yi − Yj)2 + (Zi −Zj)2

The final matrix AAAG has a sparse matrix structure which can be seen in table 5.1, where
the non-zero elements are depicted by a grey cell. The stochastic model of the distance
observations can be derived as being

q = u2
l.a +

(
ul.b · dRi,j

)2
. (5.4)
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Here, q is a diagonal element of the covariance matrix QQQG. The distance measurement’s
constant uncertainty element is ul.a and ul.b takes account of the range-dependent el-
ement of uncertainty. The covariance matrix is reduced to a diagonal matrix as the
measurements of the laser tracer can be considered to be stochastically independent and
all correlation coefficients become zero. Determining the unknowns using the Gauss-
Markov adjustment model requires the calculation of the inverse matrix of the matrix of
normal equations

NNN = AAAᵀ
G ·PPPG ·AAAG. (5.5)

Here, PPPG is the weight matrix which is the inverse of the covariance matrix. However,
calculating the inverse of the matrix of normal equations NNN is not possible, as the matrix
is singular. This is because of the rank defect of the design matrix AAAG, which means
only the shape of the network can be determined, as its position and orientation within
a coordinate system have not yet been defined. As already stated in Illner [1985] the
rank defect of a 3D free-network adjustment is six, when the scale factor is considered
to be fixed.

When introducing approximate coordinates of the reflector positions as datum points
into the free-network adjustment, the rank defect is eliminated. In consequence, the free-
network adjustment attempts to fit the multilateration coordinates to the approximate
coordinates. Accordingly, the approximate coordinates must be sufficiently good to
ensure that the iterative process can converge. The fitting to the approximate coordinates
defines the requirements, meaning that the translation and the rotation between the
approximate coordinates and the coordinates of the multilateration system should be
minimal, which yields in the matrix

BBB =




000 · · ·

︸ ︷︷ ︸
Laser tracer

1 0 0 · · · 1 0 0
0 1 0 · · · 0 1 0
0 0 1 · · · 0 0 1
0 −Z̃i Ỹi · · · 0 −Z̃u Ỹu
Z̃i 0 −X̃i · · · Z̃u 0 −X̃u

−Ỹi X̃i 0 · · · Ỹu X̃u 0
︸ ︷︷ ︸

Multilateration points




(5.6)

according to Illner [1985] and Luhmann et al. [2013]. The matrix BBB has the dimensions
6 × (4 · n+ 3 · u) and

(
X̃i, Ỹi, Z̃i

)
denotes the approximate coordinate of the reflector

position i. The translation requirements can be found in the first three rows and the
rotation requirements can be seen in the last three rows. The system of normal equations
is extended by the requirement matrix BBB which results in

[
x̂xxG
kkk

]
=
[
AAAᵀ
GPPPGAAAG BBBᵀ

BBB 000

]−1

·
[
AAAᵀ
GPPPG lll

000

]

= NNN
−1 ·nnn. (5.7)
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The vector of reduced observations is lll and x̂xxG is the vector of unknowns containing
the estimated parameters. Furthermore, the vector kkk contains the Lagrange multipliers.
The vector of reduced observations is the observed observations minus the computed
observations, which are obtained by using the functional model of equation 5.2 together
with the available approximated values of the unknowns.

Refined Analysis Method

According to Niemeier [2008], there are different quantities which provide a quality
criteria for geodetic networks, i.e. the overall quality, the global accuracy and the
homogeneity and isotropy which are well known in this field. However, the geometrical
stiffness of a network was proposed by Schmitt [1997] as an additional criterion. This
criterion was introduced to reduce weak forms within the network by strengthening the
geometry in general, in order to increase the significance in separating out deformations
in monitoring networks. Therefore, the consideration of this criterion is, most notably, to
make a reliable assessment of any deformation or difference between the multilateration
system and the laser tracker being tested.

As shown in Schmitt [1997], the tendency of a geodetic network to leave its geometry by
oscillating around its stable form can be seen in the solution of the special eigenvalue
problem

(NNN − λi III)mmmv.i = 0 (5.8)
with respect to the normal equation matrix. Here, the i th eigenvector ismmmv.i and the i th
eigenvalue λi. This solution can be utilised to illustrate the weak forms of the network by
vector-plots using mmmv.i

√
λi as the components in the coordinates. According to Schmitt

[1997] the dominant weak form is defined by

mmmv.1
√
λ1 with λ1 = max (λi) ∀ i. (5.9)

Consequently, the dominant weak form is governed by the value of the maximal eigenvalue
which can be easily found in the eigenvalue spectrum.

The maximal eigenvalue can be reduced by introducing additional restrictions into the
adjustment method, by changing the network configuration or by altering the initial
covariance matrix, meaning measuring certain network parts with another instrument,
as Kaltenbach [1992] showed.

Due to space restrictions of an experiment set-up and the angle of acceptance changing
the configuration of the laser tracers is not always possible. In addition, when using
a multilateration system, measuring parts of the network with another instrument is
not feasible. However, introducing additional geometrical restrictions into the analysis
process should be appropriate for most experiment set-ups where the other suggestions
cannot be applied.

Further geometrical restrictions can be derived from the affine transformation. This
means that, beside the translation and rotation restriction, which have already been
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used, there are the scale parameters and the shear factors of the coordinate system axis.
A common affine transformation can be expressed as

xxx′P = FFF T · xxxP + TTT , (5.10)

according to Welsch et al. [2000]. Here, TTT is the translation of the point xxxP and FFF T is the
deformation gradient tensor. According to Altenbach [2012], this deformation gradient
tensor can be decomposed assuming an infinitesimal deformation into

FFF = IIIT +HHHT . (5.11)

Here IIIT is the identity tensor and HHHT is the displacement gradient tensor. After a
linearisation of the displacement gradient tensor, it can be further decomposed into a
symmetric part GGGT and an antisymmetric part RRRT

HHH = GGGT +RRRT . (5.12)

The antisymmetric part RRRT , represents a linearised rotation tensor for small angles and
the symmetric part is a linearised strain tensor. As Altenbach [2012] and Balke [2014]
showed, the matrix form of (5.12) can be found by

HHH =



εxx εxy εxz
εxy εyy εyz
εxz εyz εzz




︸ ︷︷ ︸
=GGGT

+




0 −ωxy ωxz
ωxy 0 −ωyz
−ωxz ωyz 0




︸ ︷︷ ︸
=RRRT

=



εxx 0 0
0 εyy 0
0 0 εzz




︸ ︷︷ ︸
Scale factors

+




0 εxy εxz
εxy 0 εyz
εxz εyz 0




︸ ︷︷ ︸
Shear factors

+




0 −ωxy ωxz
ωxy 0 −ωyz
−ωxz ωyz 0




︸ ︷︷ ︸
Rotation

. (5.13)
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A new requirement matrix BBB′ can be expressed by using (5.10) and (5.13) together as

BBB′ =




000 · · ·

︸ ︷︷ ︸
Laser tracer

1 0 0 · · · 1 0 0
0 1 0 · · · 0 1 0
0 0 1 · · · 0 0 1
0 −Z̃i Ỹi · · · 0 −Z̃u Ỹu
Z̃i 0 −X̃i · · · Z̃u 0 −X̃u

−Ỹi X̃i 0 · · · Ỹu X̃u 0
0 Z̃i Ỹi · · · 0 Z̃u Ỹu
Z̃i 0 X̃i · · · Z̃u 0 X̃u

Ỹi X̃i 0 · · · Ỹu X̃u 0
X̃i 0 0 · · · X̃u 0 0
0 Ỹi 0 · · · 0 Ỹu 0
0 0 Z̃i · · · 0 0 Z̃u︸ ︷︷ ︸

Multilateration points




(5.14)

The matrix BBB′ is 12× (4 · n+ 3 · u) and
(
X̃i, Ỹi, Z̃i

)
denotes the approximate coordinate

of the reflector position i. The first six rows are equivalent to matrix BBB in (5.6). The
following three rows represent the three shear factors and the last three rows represent
the three scale factors. This matrix is used to replace the matrix BBB within the extended
matrix of normal equations in (5.7), in order to determine the unknown parameters with
respect to modified restrictions.

In both cases, the standard analysis method and the refined method, the free-network
adjustment is a fitting to the approximate coordinates, which are the laser tracker
coordinates, so it is important to make sure that the laser tracker coordinate system
contains no errors in a calibration parameter corresponding to one of the transformation
parameters.

5.2 Glass Scale / Linear Rail

In the preceding section, the multilateration system was introduced as a possible kine-
matic ground truth for laser trackers. However, a potential drawback is, that it cannot
bring to light all errors as some transformation parameters may correspond to alignment
parameters of the laser tracker itself. Therefore, the laser tracker has to be calibrated
in advance, using one of the calibration procedures described in Loser and Kyle [1998]
or Hughes et al. [2011]. Furthermore, due to the limitation of the laser tracer, the laser
tracker cannot be tested over its whole range of kinematic performance capabilities. Be-
cause of this, another kind of kinematic ground truth is needed in order to conclusively
verify the derived measurement model of a laser tracker.

An alternative kinematic ground truth was set-up consisting of a linear rail and a glass
scale. Figure 5.1 shows a sketch of the new ground truth set-up. The principal idea is,
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Figure 5.1: Sketch of the kinematic ground truth.

to compare the distance between two retro-reflector 4 positions measured by a laser
tracker, against the readings at the glass scale 3 . A retro-reflector of a laser tracker is
attached to the top of the carriage 6 , which is mounted on the linear rail 7 and also
carries the reading head 5 of the glass scale. A servo motor moves this carriage along
the rail, in conjunction with a programmable servo drive, so that a wide range of motion
profiles can be controlled. To perform these movements the carriage is connected via a
timing belt 1 with the motor. The length of the linear rail is 3 m and the maximum
speed of the glass scale reading head is 8 m/s. However, due to some safety reasons the
maximum working length is roughly 2.5 m, as some space must be reserved to allow an
safe stop triggered by a stop switch.

There are four essential sub-parts which must be borne in mind in order to achieve a
high accuracy using this ground truth. The straightness of the linear rail, the accuracy
of the glass scale, the eigenfrequency, which might occur during the movement, as well
as the synchronization between the glass scale reading and the trigger impulse for the
laser tracker.

Linear rail

The linear rail of THK provides a rigidity during motion, within a range lower than
0.5 µm [THK, 2015b] and its specified running parallelism is in the range of ±2.5 µm/m
[THK, 2015a]. To achieve a higher rigidity, two parallel rails with two carriages mounted
on each rail were used connected with an additional rigid plate of metal 2O where the
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sensors are attached on. By using this design the effects of the mounting surface errors
can also be mitigated [THK, 2015a]. However, after the installation of the rails onto the
mounting surface, the accuracy of the straightness needs to be checked.

According to Weck [2013], the straightness of a linear rail can be verified by using an auto-
collimator, this technique is also recommended in THK [2015a] for inspection after instal-
lation. In this case, the deviation of straightness is measured using an auto-collimator
having an accuracy in the range of ±0.1′′. During an auto-collimator measurement the
angle differences between cumulative positions along the rail are used to approximate
the rail with local tangents. This local tangents are used to determine the deviation of
the straightness of the rail as proposed in Weck [2013] using the equations

dyi = δli · tan (φi − βy)
dxi = δli · tan (ωi − βz) . (5.15)

Here, δli is the differential reading at the glass scale at position i, where φi is the angle
difference measured by the auto-collimator along the Y axis reduced to the first point and
ωi is also an angle difference reduced to the first point but along the Z axis. Furthermore,
the mean slope within the local XY plane is βy and the mean slope within the local XZ
plane is βz. Therefore, the points along the linear rail can be calculated using

PPP rail
i =




n∑
i=1

δli
n∑
i=1

dyi
n∑
i=1

dzi



. (5.16)

However, due to the non-straightness determined using (5.16) there must be a deviation
between the distance calculated between two laser tracker points and two glass scale
readings. This deviation is dependent on the offset between the optical centre of the
retro-reflector and the encoder reading head. The retro-reflector’s offset can be taken to
account using the following equation

PPP off
i = PPP rail

i +RRRZ (φi − βy) ·RRRY (ωi − βz) ·OOO. (5.17)

Here, RRRZ is the rotation matrix around the Z axis using the angle difference (φi − βy)
and RRRY is the rotation matrix around the Y axis using the angle difference (ωi − βz).
The offset due to the reflector is given by OOO which results in the offset point PPP off

i .
Using equation 5.17 the deviation between the linear glass scale reading and the length
calculated from retro-reflector positions can be determined using

di =
n∑

i=1
δli −PPP off

i PPP off
1 (5.18)

Here, PPP off
i PPP off

1 is the distance between the retro-reflector at position 1 and at position
i. The deviation di is a combined result of the retro-reflector offset in conjunction with
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the non-straightness of the linear rail. An example of the order of di can be found in
subsection 6.4. Besides this deviation, the reading of the glass scale is also affected by
the non-straightness of the linear rail. An estimate of this deviation can be calculated
using

dGi = h · tan (ωi − βz) . (5.19)

Where h is the maximum height between the glass scale and the reading head and the
resulting deviation due to the non-straightness is dGi .

Due to the materials used, the straightness is sensitive to temperature changes, this
means that the temperature has to be monitored and if necessary the deviation of the
straightness must be determined again at the other temperatures, so that it is considered
in the right way within the uncertainty budget. In subsection 6.4 the deviation due to a
temperature change of 0.2 ◦C can be seen.

Glass Scale and Eigenfrequency

The glass scale used is a Heidenhain scale having a specified accuracy in the range of
roughly ±1.6 µm/m. Even if, the glass scale had a high accuracy after the manufacturing
it is possible that due to the installation on the mounting surface it has lost a degree
of its high accuracy. Aside from this, it is also very likely that the glass scale is not
completely parallel to the moving axis of the linear rail. In both cases, the readings of
the glass scale needs to be checked. The glass scale is checked against a two axis glass
scale having a higher accuracy which is specified to ±0.6 µm/m. For this purpose, a
two axis glass scale can be placed in parallel, beside the glass scale itself and its two
additional reading heads can be attached to the same carriage. The two reading heads
are connected to the same electronic analysis unit, so that all readings are synchronized.
As this two axis glass scale is not suitable for measurements at high speed, it is not used
as the primary glass scale on the granite block.

There are strict requirements for the mounting surface for both parts, the linear rail and
the glass scale especially in terms of flatness. Besides this a low temperature coefficient
is also needed to preserve the straightness of the linear rail. Therefore, a purpose-built
granite block was chosen as a mounting surface. This granite block is mounted on a
metal support frame with adjustable joints to level it, while not placing any horizontal
forces onto the granite block. Even if, the granite block together with its support frame
is supposed to be stable, because of its weight of 1.5 t, it might be that the entire object
oscillates at its eigenfrequency. Due to the fact that the laser tracker cannot be placed
on the same granite block, any resulting eigenfrequency leads to error. This is why
any oscillation of the object must be carefully monitored when the carriage is moving
along the rail. For this purpose, the two axis glass scale can be used, if the reading
head is decoupled from the granite block or the metal support frame. The readings are
synchronized by using the same electronic analysis unit which additionally generates the
trigger signal for the laser tracker.
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Figure 5.2: S-Ramp Velocity profile

Motion Profiles

The maximum working length is roughly 2.5 m and the maximum speed is 8 m/s. In
order to reveal kinematic issues when using a laser tracker, three different kind of motion
profiles were implemented into the programmable servo drive. As can be seen in VDI 2143
[2002], there are a lot of different motion profiles, which can be implemented. Alongside
this catalogue, other motion profiles can be developed which are more appropriate to
fulfil the application’s need. In general, these motion profiles can be separated using their
velocity, acceleration and jerk profile. Even if, there are some user specified variables,
these cannot be chosen arbitrarily, they must be specified with regard to the real object,
meaning factoring in the motor, the servo drive, the payload, the linear rail length etc.
. . .

S-Ramp

The simplest profile for a point to point movement at a constant velocity is the trape-
zoidal profile. However, when using this profile the jerk is infinite at the points where an
acceleration change happens. This may cause high-frequency oscillatory motion and dis-
rupts smooth operation [Gurocak, 2015]. Therefore, the s-ramp profile was implemented
to achieve a finite jerk and so smoothing the movement. Unlike to the trapezoidal profile
the acceleration is not constant but changes over time. Figure 5.2 shows a s-ramp profile
together with its velocity, acceleration and jerk profile. This s-ramp profile consists of
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five different phases. The first two and the last two phases are derived from a cubic
polynomial

s (t) = C1 t
3 + C2 t

2 + C3 t+ C4 (5.20)
v (t) = 3C1 t

2 + 2C2 t+ C3 (5.21)
a (t) = 6C1 t+ 2C2 (5.22)
r (t) = 6C1 (5.23)

which are the principal equations of this motion profile. Here, C1 to C4 are constants
which must be determined with respect to some boundary conditions, as described below.
The velocity profile over time is given by v (t), the position profile by s (t), the acceleration
profile by a (t) and the jerk profile by r (t).

The phases are divided according to the acceleration profile, which is shown in yellow
in figure 5.2. This means, that during the first phase the acceleration is constantly
increasing up to half of the specified acceleration time, ta, where it reaches the specified
maximal acceleration for this profile. In the following phase, the acceleration is constantly
decreasing from time ta

2 up to time ta. Within the next phase, the acceleration is constant
zero, but the object is moving at a constant velocity, which is its maximum velocity
as specified. During phase number four there is constant deceleration, lasting half of
the specified acceleration time. At the end of this phase, the maximum deceleration is
reached. After this point, there is again acceleration in the last phase lasting half the
specified acceleration time as before, and reaching an acceleration of zero at the end as
well as a zero velocity.

To calculate the constants, C1 to C4 the user must specify the maximum velocity Vm and
the acceleration time ta. However, instead of specifying the acceleration time also the
maximum acceleration Am can be specified, because they can be related to each other
using the following equation

Am = 2Vm
ta

. (5.24)

Using the conditions specified above leads to the following equations and finally to the
required constants CI

1 to CI
4 for the first phase

s (0) = 0 eq.(5.20)−−−−−→ CI
4 = 0

v (0) = 0 eq.(5.21)−−−−−→ CI
3 = 0

a (0) = 0 eq.(5.22)−−−−−→ CI
2 = 0

a

(
ta
2

)
= Am

eq.(5.22)∧CI
2−−−−−−−−→ CI

1 = Am
3 ta

. (5.25)

Here, the equation and the constant above the arrow are used to derive the solution
of the given constant. The exponent of a constant CI denotes the phase the constant
belongs to.
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Using the solutions of the first phase (5.20) to (5.23) as well as (5.25) and applying the
conditions on the second phase then the constants for the second phase can be determined
as follows,

s

(
ta
2

)
= Am t

2
a

24
eq.(5.20)∧CII

1 ∧CII
2 ∧CII

3−−−−−−−−−−−−−−−→ CII
4 = Am t

2
a

12

v

(
ta
2

)
= Am ta

4
eq.(5.21)∧CII

1 ∧CII
2−−−−−−−−−−−−→ CII

3 = −Am ta2

a (ta) = 0
eq.(5.22)∧CII

1−−−−−−−−−→ CII
2 = Am

r

(
ta
2

)
= −2Am

ta

eq.(5.23)−−−−−→ CII
1 = −Am3 ta

. (5.26)

The equations and the constants applied to find the solution of the constants of the
second phase, CII, are written above the arrow.

Owing to the fact that within the constant velocity phase the acceleration and the jerk
is zero, but the velocity remains constant, the position of the carriage can be calculated
as being

s (t) = s(ta) + Vm t. (5.27)

Here, s (t) is the position of the carriage after the acceleration and the duration of the
this phase must be specified by the user as well.

Beyond the constant velocity phase, the time variable was rest to zero to derive the
constants’ of phase four, CIV, which can be found by applying the following conditions

s (0) = sall
eq.(5.20)−−−−−→ CIV

4 = sall

v (0) = Vm
eq.(5.21)−−−−−→ CIV

3 = Vm

a (0) = 0 eq.(5.22)−−−−−→ CIV
2 = 0

a

(
ta
2

)
= −Am

eq.(5.22)−−−−−→ CIV
1 = −Am3 ta

. (5.28)

Here, sall is the position of the movement in total, meaning the end position of the
constant velocity phase, which can be calculated using (5.27). For a real movement the
results must be adjusted for the time of the constant movement and the first and second
phases, as the time variable t was rest to zero to derive the constants in effect for phases
three and four.
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Figure 5.3: sin2 Velocity profile

Finally, the constants of the last phase, CV, can be determined using the following
equations, when taking account of the results of the former phase,

s

(
ta
2

)
= Am t

2
a

24
eq.(5.20)∧CV

1 ∧CV
2 ∧CV

3−−−−−−−−−−−−−−−→ CV
4 = −Am t

2
a

12 + sall

v

(
ta
2

)
= Am ta

4
eq.(5.21)∧CV

1 ∧CV
2−−−−−−−−−−−−→ CV

3 = Am ta
2 + Vm

a (ta) = 0
eq.(5.22)∧CV

1−−−−−−−−−→ CV
2 = −Am

r

(
ta
2

)
= 2Am

ta

eq.(5.23)−−−−−→ CV
1 = Am

3 ta
. (5.29)

When using the equations from (5.20) to (5.29) the entire motion profile can be calculated,
as shown in figure 5.2, and used to control by the programmable servo drive.

sin2 Velocity Shape Profile

A profile having a sin2 shape velocity profile was implemented, to challenge the laser
tracker, because the acceleration is continuously changing, which is solely the case during
the acceleration and deceleration time when applying the s-ramp profile. In figure 5.3 the
profile with its velocity, acceleration and jerk profile is illustrated. Taking into account
both figures 5.2 and 5.3 it can seen that the jerk function is limited, but there are jumps
within the jerk profile for the s-ramp as well as for the sin2-shape profile. The motion
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Figure 5.4: Septic polynomial profile

profile can be calculate using the following equations

s (t) = t sspec
tspec

− sspec
2π sin

(
2π t
tspec

)
(5.30)

v (t) = 2 sspec
tspec

sin
(
π t

tspec

)2

(5.31)

a (t) = 2π sspec
t2spec

sin
(

2π t
tspec

)
(5.32)

r (t) = 4π2 sspec
t3spec

cos
(

2π t
tspec

)
. (5.33)

For these derivatives, the equation sin2 (x) = 1
2 (1− cos (2x)) was used. Here, sspec is

the maximum distance the carriage can travel specified by the user, and tspec specifies
the time duration to travel the maximum distance. Taking into account equation (5.31),
the maximum velocity can be calculated as being

Vm = 2 sspec
tspec

. (5.34)

Septic Polynomial

To test a laser tracker using a profile having a continuous jerk function a polynomial
having the degree 7 was implemented, obeying the condition of a zero jerk at the beginning
and at the end. Figure 5.4 shows an example of this profile. The principal equations of
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this motion profile are

s (t) = C1 t
7 + C2 t

6 + C3 t
5 + C4 t

4 + C5 t
3 + C6 t

2 + C7 t+ C8 (5.35)
v (t) = 7C1 t

6 + 6C2 t
5 + 5C3 t

4 + 4C4 t
3 + 3C5 t

2 + 2C6 t+ C7 (5.36)
a (t) = 42C1 t

5 + 30C2 t
4 + 20C3 t

3 + 12C4 t
2 + 6C5 t+ 2C6 (5.37)

r (t) = 210C1 t
4 + 120C2 t

3 + 60C3 t
2 + 24C4 t+ 6C5. (5.38)

Here, C1 to C8 are constants which need to be determined with respect to the boundary
conditions. At the beginning of the movement, it is necessary that the carriage is at its
zero starting position, that the velocity is zero at this point as well as the acceleration.
Additionally, it is required that the jerk of this profile is zero at the beginning. Taking
account of these conditions, the constants C5 to C8 can be shown to be

s (0) = 0 eq.(5.35)−−−−−→ C8 = 0

v (0) = 0 eq.(5.36)−−−−−→ C7 = 0

a (0) = 0 eq.(5.37)−−−−−→ C6 = 0

r (0) = 0 eq.(5.38)−−−−−→ C5 = 0. (5.39)

The conditions at the end of the movement are that the carriage is at the specified
position sspec in a specified time tspec and at this time, the velocity, the acceleration, as
well as the jerk must be zero. By using these conditions in conjunction with the solution
of C5 to C8 and the principal equations (5.35) to (5.38) an equation system can be set
up to solve for the constants C1 to C8 as follows,




t7spec t6spec t5spec t4spec
7 t6spec 6 t5spec 5 t4spec 4 t3spec
42 t5spec 30 t4spec 20 t3spec 12 t2spec
210 t4spec 120 t3spec 60 t2spec 24 tspec







C1
C2
C3
C4


 =




sspec
0
0
0


 (5.40)

C1 = −20 sspec
t7spec

C2 = 70 sspec
t6spec

C3 = −84 sspec
t5spec

C4 = 35 sspec
t4spec

.

The septic polynomial motion profile, as figure 5.4 shows, can be calculated by using
these constants in conjunction with the principal equations (5.35) to (5.38).

43



Chapter 6
Experiments and Results

In order to verify the derived probabilistic measurement model, two different kinds of
kinematic ’ground truths’ were used. The first, was the multilateration system, were
arbitrary trajectories could be tested, but there were some restrictions in terms of the
maximum velocity and acceleration. The second, was verification using the glass scale and
linear-rail ground truth, which has far less restrictions on the velocity and acceleration,
but does not allow arbitrary trajectories.

In addition, the entire analysis method was tested in different kind of application scenarios
in conjunction with an industrial robot. These scenarios included one that incorporated
the control information from an industrial robot, but also one where the movement was
known in advance as well as one using a more simplified motion model.

6.1 Simplified and Known Movement in Advance

In Ulrich [2013] an industrial 6 axis robot was programmed to move a reflector along a
predefined trajectory, at a constant speed of 500 mm/s. The trajectory consisted of the
edges of a cube and semicircles on its sides, as can be seen in figure 6.1. Throughout
the movement a Leica laser tracker AT901 and Leica laser tracker LTD500 observed
the reflector. During this experiment the robot’s control information could not be
incorporated into the analysis method as described in section 3.2.

By taking into account the trajectory three system models could be considered within
a hybrid system estimator. Here, the hybrid system estimator was an IMM filter, as
presented in section 3.3 using a constant velocity model, a constant acceleration model
and a constant turn model (also known as coordinated turn model). The constant
velocity model should represent the major part of the trajectory where the robot was
programmed to move at a constant velocity. In order to model the transition from
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one cube plane to another, as well as to model the semicircle, the constant turn model
was implemented. Furthermore, to consider the acceleration along the trajectory e.g.
before and after a transition on another cube plane, the constant acceleration model was
integrated. The hybrid system estimator result was compared to the result of a common
Kalman filter using the system model constant velocity as an example of s simplified
movement analysis. Beside this comparison the result of the IMM was also compared to
the result of a RMIMM.

The first model in the hybrid system estimator was the constant velocity model, using
the state space vector xxx = [x y z ẋ ẏ ż]ᵀ. The discrete-time state equation is

xxxIt+1 =
[
III3×3 ∆t III3×3

000 III3×3

]
xxxt +wwwI

t. (6.1)

Here the sampling period is ∆t and the discrete-time process noise is wwwI
t. The covariance

matrix is
cov

(
wwwI
t

)
=
[

1
3∆t3 III3×3 1

2∆t2 III3×3
1
2∆t2 III3×3 ∆t III3×3

]
q̃. (6.2)

The constant acceleration model, the second model within the hybrid system estimator,
was modelled using the discrete-time state equation

xxxIIt+1 =



III3×3 ∆t III3×3 1

2∆t, III3×3

000 III3×3 ∆t III3×3

000 000 III3×3


 xxxt +wwwII

t . (6.3)

Here xxxII = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈]T is the sate space vector and the covariance matrix of
the discrete-time process noise wwwII

t can be expressed as

cov
(
wwwII
t

)
=




1
20∆t5 III3×3 1

8∆t4 III3×3 1
6∆t3 III3×3

1
8∆t4 III3×3 1

3∆t3 III3×3 1
2∆t2 III3×3

1
6∆t3 III3×3 1

2∆t2 III3×3 ∆t III3×3


 q̃. (6.4)

The matrix was derived by discretizing the continuous time model, with additional noise
using the inverse Laplace transformation as proposed in Bar-Shalom et al. [2001]; Ulrich
[2015].

The third model within the hybrid system estimator filter, was the constant turn model.
A planar constant turn in the navigation plane can be described using

ẋxxIII (t) =




000 III3×3 000
000 000 III3×3

000 −ω2 III3×3 000


 xxx (t) +




000
000

III3×3


wwwIII (t) (6.5)

according to Li and Jilkov [2003]. Here, xxxIII = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈]T is the state vector
and wwwIII is the process noise. The turn rate is ω. A deduction of the discrete time model
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and its covariance matrix can be found in Li and Jilkov [2003] and in Ulrich [2015].
Within Ulrich [2013] the state space vector xxxIII was augmented with the turn rate, as
well as the covariance matrix, as proposed in Li and Jilkov [2003].

For all three system models, an appropriate Bayesian filter was needed in an IMM filter.
As the constant velocity and the constant acceleration model are linear, a common
Kalman filter is ideally suited, if the measurements can be assumed to be normally
distributed. Due to the non-linearity of the constant turn model, the said filter, needs
to be modelled on an extended Kalman filter, particle filter or unscented Kalman filter.
In Ulrich [2013] it was shown, that the laser tracker measurement can be considered
as obeying a normal distribution. This was done by applying two different tests, the
Anderson-Darling test and the Lilliefors test. In consequence, a common Kalman filter
was used for the constant velocity and the constant acceleration model. The constant
turn model was implemented within an unscented Kalman filter as it is more convenient
to use rather than a particle filter, if the underlying distribution can be approximated
as a normal distribution [Ulrich, 2013].

Due to the fact that the variance of a point is dependent on the state vector of the object,
which was different for each model in the IMM filter, the covariance matrix ΣΣΣi

t needs to
be determined for each time instant t. In Ulrich [2013] the Monte Carlo method was
used in conjunction with equation (4.14).

In figure 6.1a, the trajectory is displayed together with the speed of the robot. Especially,
at the corners it had to slow down and speed up again, everywhere else it maintained a
constant speed. For figures 6.1a to 6.2b the graphs are depicted within the laser tracker’s
coordinate system. The approximated manufacturer’s specification of the standard
deviations of the laser tracker measurements along this trajectory, are depicted in 6.1b.
Here it was assumed that the laser tracker’s accuracy is ±20 µm/m as proposed in Ulrich
[2013] according to the manufacturer’s specification.

As the robot moved at an almost consistent speed, the collected data were also analysed
using a common Kalman filter, with a constant velocity model and the manufacturer’s
specification was used as the measurement model. The resulting standard deviation of
this analysis can be seen in figure 6.2a. Additionally, the data were analysed using the
IMM filter, with the models as explained above, in conjunction with the augmented
measurement model of the laser tracker, as proposed in Ulrich [2013] and explained in
section 4.1. The standard deviation determined can be seen in figure 6.2b. In order to
compare these methods, the mean standard deviation of all methods was calculated and
summarized in table 6.1.

When taking into account figures 6.1b to 6.2b and table 6.1, it can see that the IMM filter,
in conjunction with the augmented measurement model, achieves a significantly better
uncertainty estimation than either a Kalman filter or the manufacturer’s approximation
can provide. This is mainly because the actual kinematic behaviour can be better taken
into consideration due to the continuous adaptation of the probable system models.
Furthermore, the over-shoots of the Kalman filter approach could be avoided as shown
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6.1. Simplified and Known Movement in Advance

(a) Speed reached for each point. (b) Specification

Figure 6.1: The speed of the robot along the trajectory together with the specified accuracy
of the laser tracker, as presented in Ulrich [2013].

in Ulrich [2013], because it considers more than one system model, as a result the IMM
approach is more suitable to complex kinematic trajectories. In Ulrich [2013] a sensor

IMM Specific. KF
Mean standard 0.024 0.102 0.074deviation [mm]

Table 6.1: Comparison between the analysis methods.

fusion between two laser trackers within an IMM filter was also considered, as outlined
in section 4.2. The fusion achieved an improvement of roughly 25 %. In addition, an
improved version of the IMM filter the RMIMM filter was considered in Ulrich [2013]
although no significant deviation between these two versions of a hybrid system estimator
was found.
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6.2. Known Movement at any Time

(a) Kalman Filter (b) IMM Filter

Figure 6.2: Bayesian filter analysis methods, comparing the hybrid system estimator ap-
proach with the Kalman filter approach, as presented in Ulrich [2013].

6.2 Known Movement at any Time

The experiments described within the following two subsections were carried out using
an industrial robot a KUKA KR 5 ARC in conjunction with a Leica laser tracker AT901,
some experiments were published in Ulrich and Irgenfried [2014]. A corner cube reflector
(CCR) was used as a retro-reflector, which was attached to the robot’s TCP using a
purpose-built adapter. As the laser tracker and the industrial robot measure within their
own coordinate frames, the corresponding coordinate frames need to be transformed
into each other. The determination of these transformation parameters is also known as
hand-eye transformation. To determine these parameters, an initialization trajectory was
used, spread all over the designated measuring volume to gain representative parameters.
The transformation parameters consisted of a translation vector and a rotation matrix.

The experiments were set up to allow the motion control from an external PC, running a
custom developed position control program. A list of trajectory key points was entered
to the control program which controls the robot’s motion in terms of direction and speed
along the key points. This program linearly interpolates the key points and communicates
with the robot’s controller using KUKA Robot Sensor Interface (RSI) Extensible Markup
Language (XML)-based User Datagram Protocol (UDP)-Ethernet communication. Path
planning was done by the program in Cartesian coordinate system, whereas the robot
control calculates the inverse kinematics. The control program also sent a TTL trigger
signal in order to synchronize the robot’s motion with the laser tracker.

A model of an industrial robot is generally highly non-linear, especially in dynamic
cases, as can be seen in Wiest [2001] and Corke [2011]. However, these calculations were
carried out by the robot’s controller, which solely delivered the processed data back to
the position control program, as described above. In consequence, the system model
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6.2. Known Movement at any Time

could be regarded as being linear, and the robot’s covariance matrix was derived from
the manufactures specification. Owing to the fact that the analysis took place in the
laser tracker’s coordinate system, the covariance matrix of the industrial robot had to be
adjusted in order to include the hand-eye transformation uncertainty. The final Bayesian
filter implemented was a simple Kalman filter, because of the normal distribution and
the linearity of the system model. The authors Simon [2006] and Thrun et al. [2005]
went into detail about a Kalman filter. In addition to this, alternative equations were
discussed in Bierman [2006] to overcome numerical and stabilization issues resulting from
the analysis method.

Ulrich [2012] showed that despite the non-linearity of equation (4.14), the laser tracker
values can be taken to be normal distributed. This means that the laser tracker value
can be represented by its mean and covariance matrix. In consequence, as measurement
model of the laser tracker, the Monte Carlo method was used in conjunction with,
equation (4.14) in order to determine a covariance matrix, as already proposed in Ulrich
[2012, 2013] and explained in subsection 6.1. Because equation (4.14) requires the object
velocity, the velocity provided by the robot controller was used.

Incorporating an Industrial Robot’s Control Information

Within the Bayesian analysis method the information from the robot together with its
covariance matrix were used as the predicted prior PDF. Every 16 ms, a trigger impulse
from the robot generated a laser tracker measurement. This information in conjunction
with the predicted prior PDF, is used to generate a new measurement covariance matrix,
as outlined in subsection 6.1. Furthermore, the desired posterior PDF of the trajectory
was calculated using a Kalman filter update step as being

[x̂xxt,PPP t] = KFu
(
x̂xx−t ,PPP

−, zzzt,ΣΣΣt

)
. (6.6)

The update function is denoted by KFu, which uses the predicted prior PDF, represented
by the predicted state estimate x̂−t and the predicted covariance matrix PPP−, which was
made up of the robot’s covariance matrix and the transformation covariance as described
above. The laser tracker measurement is stored in vector zzzt and the covariance matrix
determined is ΣΣΣt. The desired posterior PDF of the CCR’s position along the trajectory
at time t is represented by the estimated mean x̂xxt of the state vector and its covariance
matrix PPP t.

In Ulrich and Irgenfried [2014] two experiments were carried out, one with an additional
weight attached to the robot, roughly 3.5 kg, and one without. The control program
was configured to reach exactly the key points along the trajectory. Using the robot’s
repeatability of 40 µm the velocity variance of the system was estimated to 57 µm/s.
Additionally, the absolute position variance of the system model was estimated to 322 µm,
using some prior knowledge about the robot and including the standard deviation of the
transformation parameter.
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6.2. Known Movement at any Time

(a) The robot speed along the trajectory dis-
played in the laser tracker coordinate system
as similar presented in Ulrich and Irgenfried
[2014].

(b) Estimated laser tracker uncertainty using
the proposed approach. The 3σ standard
deviation is displayed in the laser tracker
coordinate system as similar presented in
Ulrich and Irgenfried [2014].

Figure 6.3: The estimated laser tracker uncertainty together with the robot speed along
the trajectory.

The result of the laser tracker uncertainty analysis is depicted in figure 6.3b which is the
result of the experiment without additional weight using the 3σ-interval. In figure 6.3a
the robot’s speed is depicted. The range dependency in figure 6.3b shows that the speed
throughout the experiment was not fast enough so that the kinematic uncertainty effects
overlap the range dependence and the alignment errors. But due to the experiment
constellation, meaning the trajectory within the working envelope of the robot, no higher
speed could be achieved along this trajectory.

As can be seen in Ulrich and Irgenfried [2014] there were outliers at the beginning of
every movement section along the trajectory. These outliers were related to jerks at the
beginning of each new motion segment caused by the extremely straightforward path
planning approach. This approach were only made up of a linear interpolation with
equidistant segments between the key points, together with the maximum acceleration.
From looking at the results, the only difference between the experiment with additional
weight and the one without appears to be that the range of the outliers were significantly
damped down as can be seen with more details in Ulrich and Irgenfried [2014]. These
outliers are comparable to the one in figure 6.4a of another experiment, which are further
investigated in the following subsection.

Assessing Deviations using a Ground Truth

In difference to the experiment in the last subsection, in this experiment the multilater-
ation system of the PTB was also used, which is explained in detail in section 5.1. The
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6.2. Known Movement at any Time

multilateration system was used to generate a ground truth, specifically in order to verify
the derived laser tracker measurement model. Another difference to the experiment in
the last subsection is that the key points along the trajectory were only approximate.
The trajectory of this experiment can be seen in figure 6.10a and the mean speed along
this trajectory was 100 mm/s.

A trigger impulse was issued every 4 ms by the robot which synchronized the laser tracker
and laser tracer measurements. The robot data were first transformed into the laser
tracker coordinate system then a predicted prior PDF was determined using the system
model and its covariance matrix, as described above. This prior PDF was then used
together with the laser tracker data to determine a new measurement covariance matrix,
as outlined in subsection 6.1 at the beginning of this chapter or explained in more detail
in Ulrich and Irgenfried [2014]. Furthermore, the desired posterior PDF of the trajectory
was calculated using a Kalman filter update step as shown in equation (6.6).

Additionally, an outlier detection step was performed, according to Thrun et al. [2005],
which is a test against a threshold γ as follows

(zzz − ẑzz)ᵀ ŜSS−1 (zzz − ẑzz) ≤ γ, (6.7)

where the threshold γ is taken from the inverse χ2 cumulative distribution at a certain
significance level and considering the degrees of freedom. Here, the measurement pre-
dicted is denoted using ẑzz. Furthermore, the innovation covariance matrix is ŜSS which is
made up of the predicted covariance matrix PPP−, the measurement covariance matrix ΣΣΣ
and the measurement matrix HHH. The innovation covariance matrix can be determined
by

SSS = HHHPPP−HHHᵀ + ΣΣΣ. (6.8)

The deviations between the laser tracker and the robot are depicted in figure 6.4a, as
well as the outliers detected by the test proposed in equation (6.7). These outliers are
related to jerks at the beginning of each new motion segment caused by a very basic
path planning approach, using linear interpolation with equidistant segments between
the key points and applying the maximum possible acceleration at the beginning of each
motion segment. A ramp function at the beginning would mitigate or avoid theses jerks
currently observable. At the base line, only 3.5 % of the points were detected as outliers
when the significance level was set to 0.01. Alongside applying a ramp function to take
into account these outliers in the analysis method, a more complex probability system
model of the robot could also be applied which would change every time step with respect
to the current system state vector. This model requires a much deeper insight into the
control system to take into account the current dynamic robot model, which considers
at least the friction force, the gravity loading, the joint-space inertia matrix and the
Coriolis and centripetal coupling matrix as listed in section 3.2.

However, the mean deviation between the robot’s path and laser tracker’s ones is 290 µm,
which is roughly equal to the expected absolute position uncertainty of this robot. Some
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6.3. Laser Tracer / Multilateration

(a) Deviation between the robot and the laser
tracker as well as the detected outliers.

(b) Deviation between the laser tracker and the
multilateration system as well as the esti-
mated uncertainty of the laser tracker using
the new proposed approach

Figure 6.4: Deviation between robot and laser tracker and deviation between laser tracker
and multilateration system.

bigger deviations between robot and laser tracker should be visible if the maximum
payload limit is exceeded or if robot manipulator is in an outstretched position.

To verify the results of the proposed analysis method for a laser tracker, a comparison
against a ground truth was carried out. The ground truth was generated by the mul-
tilateration system of the PTB consisting of four laser tracer. The maximal standard
deviation along the trajectory in this experiment was 2 µm, calculated by the refined
analysis method. Accordingly, it can be seen as a ground truth for kinematic laser tracker
measurements. In figure 6.4b the deviation between the laser tracker and the multilater-
ation is depicted. Furthermore, the estimated standard deviation of the kinematic laser
tracker measurement calculated by the proposed approach can be seen. These deviations
exceed the standard deviation only in 2.4 % of all measurements, the proposed method
can therefore be taken as working reliably. This additionally underpins the fact that
the outliers in figure 6.4a were caused by the robot control and the unsophisticated
probability model.

6.3 Laser Tracer / Multilateration

The multilateration system of the PTB was used in conjunction with a Leica laser tracker
AT901 to observe the trajectory of a corner cube reflector attached to a TCP of a six axis
industrial robot. During the experiment, the robot moved the reflector along trajectories
which were predefined. Additionally, the robot produced a trigger signal in order to
synchronise the robot encoder readings and the measurements of the laser tracker as well
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6.3. Laser Tracer / Multilateration

as the measurements of the multilateration system. In this experiment a corner cube
air path reflector was used and the roll angle was fixed in order to mitigate additional
uncertainties which can be caused by the reflector, as explained in detail in section 4.1.
To overcome the limited acceptance angle of this reflector type, the reflector was pointed
back by the robot to a stable point in space when it was moved along the trajectories.

Multilateration Ground Truth

In both cases presented in section 5.1 specifically equation (5.6) and (5.14), the standard
analysis and the refined analysis, all unknown points of the observed trajectory were
used to define the datum.

Due to some restrictions to the robot’s axis and the configuration of the laser tracers, all
trajectories had to be approximately located in a plane. In addition, in order to achieve
a better numerical stability, the TCP were moved along an initialization trajectory in
a cube shape at the beginning of the experiment. Niemeier [2008] and Luhmann et al.
[2013] showed that the confidence ellipse semi-axis point towards the centroid of the
points defining the coordinate system. For this reason only the trajectory points were
used in the analysis method as datum points. Not using all of the points as datum points
is also known as partial trace minimization.

The points along the trajectory do not have observations between each other, there are
only observations between the laser tracer and the points on the trajectory. This means
the underlying geometrical network structure is equivalent, even if only a representative
portion of points is used to do a weak from analysis. In consequence, the following results
were obtained by using full matrix operations, despite the sparsity of the matrix of the
system of normal equations. The trajectory was made up of four loops along the ellipse
shape which can be seen depicted in orange together with the initialisation cube in blue
in figure 6.10b. The coordinate system is the laser tracker coordinate system.Throughout
the experiment the average speed of the industrial robot’s TCP was 100 mm/s. For this
analysis, the standard deviation within the stochastic model’s parameter of (5.4) were
set to ul.a = 0.1 µm and ul.b = 0.1 µm/m.

Standard Analysis Method

By applying the standard analysis method as described above, the deviations between
the laser tracker coordinates and the coordinates determined using the multilateration
system show a clear systematic pattern along the whole trajectory as can be seen in
figure 6.5a. The deviations are within a ±20 µm range which is still in accordance with
the specification of the laser tracker. Figure 6.5b displays the standard deviation of each
component of the 3D multilateration points, which can be regarded as too large to serve
as a ground truth. Furthermore, the standard deviation of the laser tracers’ positions
and dead paths can be considered as being too large which can be seen in table 6.2.
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6.3. Laser Tracer / Multilateration

(a) Deviation between the laser tracker coordi-
nates and the multilateration coordinates.

(b) Standard deviation determined for each
component of the multilateration coordi-
nates.

Figure 6.5: Results by using the standard method.

Standard Method Refined Method
Laser tracer Dead path Laser tracer Dead path
position STD [µm] STD [µm] position STD [µm] STD [µm]

Laser tracer X Y Z 1 2 X Y Z 1 2
1 96.2 9.0 49.2 98.6 103.9 2.3 0.2 0.7 3.8 2.3
2 78.2 24.4 29.3 77.7 84.1 1.7 0.5 0.4 3.6 1.8
3 78.9 19.9 21.7 74.8 82.0 2.0 0.4 0.3 3.7 2.0
4 49.4 0.8 4.6 39.5 48.4 1.1 0.1 0.1 3.2 1.0

Table 6.2: Standard deviation (STD) of the four laser tracers’ position and dead paths’
using the standard method and refined method.

As mentioned in 5.1, it is important to know if the network is in its major weak form
when assessing coordinate deviations in order to conclusively separate real from unreal
deviations. A network follows its major weak form when the residuals at the points,
which are defining the datum of the coordinate system, show the same pattern as the
eigenvector of the major eigenvalue. When taking into account figure 6.6 a clear and very
strong correlation between the major eigenvector and the residual vector can be seen,
which means that the network follows its major weak form. This is further supported by
looking at the eigenvalue spectrum in figure 6.9a, as there is a dominant major eigenvalue
visible for the standard analysis method. Therefore, the deviations of the laser tracker
coordinates cannot be taken as being real deviations. Accordingly one cannot assume
that there might be systematic error in the laser tracker.
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6.3. Laser Tracer / Multilateration

(a) X component (b) Y component (c) Z component

Figure 6.6: Components of major eigenvector and residual vector of the standard method.

(a) Deviation between the laser tracer coordi-
nates and the multilateration coordinates.
The X axis component is mostly covered by
the other components

(b) Standard deviation determined for each 3D
point component

Figure 6.7: Results by using the refined method.

Refined Analysis Method

When using the multilateration system in conjunction with the refined analysis method,
there is no systematic pattern visible within the deviations between the laser tracker
coordinates and the coordinates of the multilateration system as can be seen in figure
6.7a. The X axis component is obscured by the other components. In comparison with
the standard analysis method, also the range of the deviations decreased to roughly
±10 µm with a few peaks up to ±15 µm. Figure 6.7b illustrates the standard deviation
of the 3D points determined which clearly shows a considerable decrease in comparison
with the standard deviation of the standard method in figure 6.5b. Furthermore, the
standard deviation of the laser tracers’ positions dropped significantly, as can be seen in
table 6.2 as well as the standard deviation of the laser tracers’ dead paths.
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(a) X component (b) Y component (c) Z component

Figure 6.8: Components of major eigenvector and residual vector of the refined method.

In figure 6.8 the major eigenvector and the residual vector are depicted and there is no
correlation visible between them. Consequently, the network does not follow its major
weak form implying that the deviation of the laser tracker coordinates can be taken to
be real deviations.

Comparison of the Analysis Methods

The eigenvalue spectrum of the standard method together with the refined method are
shown in figure 6.9a. Within this figure it can clearly be seen that the refined method
attenuated the major eigenvalue appreciably, and therefore the network was not inclined
to leave its stable geometry. The eigenvalue spectrum of the refined method also shows
a much better network quality overall than the standard analysis method, as can also be
seen from the standard deviations of the points, the laser tracer positions and the dead
paths.

Distances are comparable between the methods, as both methods determine coordinates
in the Euclidean space, and reveal the differences between said methods. The distances
between the determined point coordinate and the determined laser tracer positions were
used, so there were four distances per CCR point coordinate to compare. The differences
between these distances when comparing the two methods are depicted in figure 6.9b. A
clear separation into two sections is visible. The first section ranges up to point no 500,
which is exactly the points of the initialization cube. Whereas the second section, ranges
from point no 501 until the end which are the points of the trajectory. Within these
two sections there is only a clear offset between the distances of the different methods.
The clear offset of the distances can also be interpreted as being an additional offset
to the dead path. The additional offsets fit comfortably into the appropriate standard
deviation of the dead paths of the standard analysis method, which is shown in table
6.3. This is a further sign that the systematic deviations in figure 6.5a should not be
thought to be caused by the laser tracker, as, with a little adjustment on the dead paths
of the laser tracer, the systematic deviations vanish.
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(a) Eigenvalue Spectrum of the standard analy-
sis method and the refined analysis method.
Showing the 10 biggest eigenvalues.

(b) Comparison between the distances from a
laser tracer to a point on the trajectory de-
termined with the standard method and the
refined method.

Figure 6.9: Comparison of the Analysis Methods

Section 1 Section 2

Laser Tracer Offset Dead path Offset Dead path
[µm] STD [µm] [µm] STD [µm]

1 65 99 94 104
2 25 78 53 84
3 52 75 83 82
4 9 40 39 48

Table 6.3: Dead path standard deviation (STD) of the standard analysis method confronted
with the additional offset.

Kinematic Laser Tracker Measurement Model Verification

The multilateration system and the laser tracker were synchronized using a trigger
impulse generated by the industrial robot. Figure 6.10b shows the initialization cube
of the multilateration system, as well as one of the trajectories. Another trajectory,
which was used to verify the laser tracker measurement model, can be seen in figure
6.10a. These trajectories were chosen due to the inconstant speed changes on each axis
to reveal kinematic issues within the laser tracker measurements. Their speed profiles
at 100 mm/s can be seen in figure 6.11, where the profile of 6.11b belongs to the ellipse
shape and 6.11a belongs to the loop shape. Due to various control constrains of the
robot’s axis and also the laser tracers, the fastest speed achieved along the trajectories
was 200 mm/s.
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6.3. Laser Tracer / Multilateration

(a) Trajectory loop shape (b) Trajectory ellipse shape depicted in orange
together with the initialization cube de-
picted in blue.

Figure 6.10: Trajectory shapes

Trajectory 1 2 3 4
Shape Loop Loop Ellipse Ellipse

Speed [mm/s] 100 200 100 200

Table 6.4: Trajectories overview

As presented above in this section, the standard multilateration analysis method cannot
be used with this experiment set-up, therefore the refined method was used to determine
the multilateration points.

In order to efficiently solve the equation system in (5.7), direct solving methods for sparse
matrix had to be used, as proposed in Schmitt [1973] for geodetic networks or for general
problems in Davis [2006]. The maximal dimension was roughly 8 · 105× 8 · 105 which also
includes the observations of the initialization cube at the beginning of the experiment,
not only the points of the trajectory. This matrix had a density of roughly 43 ppm, which
is the fraction of non-zero elements over the number of elements of the matrix. As the
inverse matrix of a sparse matrix is a full matrix, the posterior covariance matrix cannot
be calculated entirely. Because this would require a memory of roughly 512 TB, encoding
each entry as a double data type just to store the matrix. However, the diagonal entries
of the matrix NNN−1, the inverse matrix of equation system in (5.7), can be determined, as
Duff et al. [1986] and Erisman and Tinney [1975] showed in general for sparse matrices.
In particular, these elements are needed to calculate a 3D point standard deviation of
the multilateration points.

Because the initialization cube was not carried out before each experiment, an adjustment
with a partial trace minimization was performed, using only the trajectory points as
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(a) Speed profile of the loop trajectory. (b) Speed profile of the ellipse trajectory.

Figure 6.11: Speed profiles of the trajectories.

datum points as proposed above in this section. This was to ensure that the initial
cube measurement did not influence the covariances of new points in the trajectory
adjustment.

The results of the loop trajectory at a speed of 100 mm/s and 200 mm/s are displayed
in figure 6.12, using the laser tracker coordinate system.

As the experiments needed to be stopped manually and the robot needed to move to
its starting point within the first trajectory, the resulting total point number is not
exactly twice as much as within the second trajectory. According to the results of the
refined multilateration method the standard deviations never exceeded 2 µm along these
trajectories. The laser tracker’s standard deviation was estimated using the proposed
measurement model, as presented in section 4.1, with respect to the velocity of the object
which was derived from the ground truth. When taking into account figure 6.12a and
6.12d it can be seen that the standard deviation of the laser tracker data does not vary
significantly. However, within figure 6.12a a slight range dependency is visible in the
segment where the robot moves from its starting position to the starting position on the
trajectory. Furthermore, in figure 6.12b and 6.12e there is only a negligible small noise
increase visible and systematic deviations cannot be found within figure 6.12b nor within
6.12e. Therefore, no additional kinematic effects can be assumed at these speeds. The
deviation of each point between the laser tracker and the multilateration system can be
seen in figure 6.12c and 6.12f together with the point standard deviation of the laser
tracker. Within these figures, the point deviation exceeded the laser tracker’s standard
deviation in 1.9 % of all points within the first trajectory and in 2.5 % of all points within
the second trajectory. Accordingly, no influence factor of the laser tracker measurement
model, as described in section 4.1, was underestimated for these two experiments. For
both experiments the deviations of the X axis component is significantly smaller than
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(a) Trajectory loop shape and
LT STD at 100 mm/s.

(b) Deviation in X, Y, Z be-
tween LT and ground-
truth at 100 mm/s.

(c) Point deviation between
LT and ground-truth and
LT STD at 100 mm/s.

(d) Trajectory loop shape and
LT STD at 200 mm/s.

(e) Deviation in X, Y, Z be-
tween LT and ground-
truth at 200 mm/s.

(f) Point deviation between
LT and ground-truth and
LT STD at 200 mm/s.

Figure 6.12: The loop trajectory at a speed of 100 mm/s in the first row and at 200 mm/s
in the second row. The standard deviation (STD) was calculated using the
proposed laser tracker (LT) model. Within figure (b) and (e) the X axis
component is obscured by the other, larger components.

the deviations of the other two components. This is caused by the influence of any
angle measurement, which is very low, compared with the part of the interferometer
measurement, which has a much smaller uncertainty compared to the angle measurement,
as described in 5.1.

The results of the ellipse trajectory at a speed of 100 mm/s as well as at a speed of
200 mm/s are displayed in figure 6.13. Owing to the reasons mentioned above, the total
point number of the 100 mm/s experiment is not twice as much as the total point number
of the 200 mm/s. The refined multilateration analysis method was used to determine the
ground truth and the standard deviation never exceeded 2.2 µm. The standard deviation
of the laser tracker was calculated, as mentioned previously, and is depicted within the
laser tracker coordinate system in figure 6.13. In comparison with figure 6.13d a slight
range dependency is visible in figure 6.13a. In spite of this, there is no significant increase
in the standard deviation visible in figure 6.13d which might be caused by the higher
object speed. Furthermore, there is no systematic deviation visible between the laser
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(a) Trajectory shape and LT
STD at 100 mm/s.

(b) Deviation in X, Y, Z be-
tween LT and ground-
truth at 100 mm/s.

(c) Point deviation between
LT and ground-truth and
LT STD at 100 mm/s.

(d) Trajectory shape and LT
STD at 200 mm/s.

(e) Deviation in X, Y, Z be-
tween LT and ground-
truth at 200 mm/s.

(f) Point deviation between
LT and ground-truth and
LT STD at 200 mm/s.

Figure 6.13: The ellipse trajectory at a speed of 100 mm/s in the first row and at 200 mm/s
in the second row. The standard deviation (STD) was calculated using the
proposed laser tracker (LT) model. Within figure (b) and (e) the X axis
component is obscured by the other, larger components.

tracker and the multilateration system when taking into account figures 6.13b and 6.13e.
However, there is a small increase in the noise level visible within the experiment which
was conducted at a higher speed. Figures 6.13c and 6.13f show the point deviation
between the laser tracker and the multilateration system as well as the point standard
deviation of the laser tracker. Only in 0.6 % of all measurements the point deviation
exceeded the point standard deviation of the laser tracker measurements in the third
experiment and in the fourth experiment in 2 % of all experiments. This again shows
that some influencing factors had been overestimated for the measurement model of the
laser tracker, as introduced in section 4.1. The deviations of the X axis component is
again significantly smaller than the deviations of the other two components. This is for
the same reason as stated above for the other experiment.

To sum up, no significant variation was found when comparing the loop experiments
with those of the ellipse, even when using different speed profiles along the trajectories.
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6.4 Glass Scale / Linear Rail

To test the probabilistic measurement model of a Leica laser tracker, derived in 4.1,
kinematic experiments were conducted using the developed kinematic ground truth, as
described in 5.2, in conjunction with a Leica laser tracker AT901. The laser tracker was
placed at difference positions and the motion profiles s-ramp, sin2-velocity profile and
the septic polynomial profile were applied. All of the these profiles were used to move
the object at different velocities, ranging from 0.23 m/s to 5.1 m/s. Before the kinematic
measurements of the laser tracker can be conducted, the linear rail and glass scale also
need to be checked in order to make sure that the entire object can be regarded as
establishing a ground truth for kinematic laser tracker measurements. This means the
uncertainty must be sufficiently low.

Glass Scale / Linear Rail Ground Truth Verification

Before the linear rail can be used in kinematic laser tracker experiments, the sub parts
must be verified and the entire uncertainty budget must be determined, in order to make
sure that the measurement set-up can be considered to be a kinematic ground truth.

Eigenfrequency and Additional Movement

As mentioned in section 5.2, it is important to know, if the entire reference object makes
an additional movement, due to the force applied to move the carriage along the linear
rail. This movement can be monitored by using another glass scale as described in the
section stated.

Figure 6.14a shows, as an example, the additional movement of the granite block during
a run of the septic polynomial motion profile. Beside an additional movement which is
proportional to the acceleration profile, a high frequent oscillation is visible. As figure
6.14b illustrates, this high frequent oscillation is at a frequency of roughly 21.5 Hz. This
frequency roughly matches the eigenfrequency which can be calculated using

f0 =

√
cS
mO

2π (6.9)

as can be found in Tipler and Mosca [2006]. Here, mO is the mass of the entire object and
can be estimated to 1500 kg and the spring constant is given by cS . The spring constant
can be determined by cS = force/distance according to Tipler and Mosca [2006]. For
this experiment the spring constant was determined to be cS = 100 N

3.6 µm . Accordingly, the
resulting eigenfrequency is 21.7 Hz. The slight deviation might be caused by the rather
inaccurate spring balance to measure the 100 N used to determine the spring constant
or the rather rough estimate of the mass of the entire object.
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(a) Additional movement due to the applied
forces to move the carriage along the linear
rail.

(b) Frequency analysis of the entire object, gran-
ite block together with the metal support
frame.

Figure 6.14: Additional movement of the granite block together with the metal support
frame.

In order to reduce the additional movement of the granite block, two short vertical metal
posts were installed, at either short side of the granite block. Figure 6.17b shows the
granite block together with the two posts. Each of the posts is equipped with a horizontal
screw in conjunction with a levelling pad, so that the granite block can be pre-stressed
in both movement direction, thereby reducing the additional movement. Furthermore,
due to the pre-stressing the spring constant changes and the rigidity of the entire object
increases.

The additional movement can be further reduced by decreasing the force which is applied
to the granite block. This could be done by uncoupling the motor from the granite block,
this means using an additional metal frame exclusive for mounting the motor and the
deflection pulley of the timing belt as well. This option would reduce a major part of the
applied force on to the granite block and therefore also the additional movement. The
remaining force would be the friction of the carriage on the rail which is roughly 20 N
but cannot be further reduced.

However, the additional movement needs to be carefully monitored and taken into account
when comparing the laser tracker distances against the glass scale readings. As described
in detail in section 5.2, this additional movement can be monitored synchronously using
the two axis glass scale. This two axis glass scale has a position error of ±270 nm over
1.5 m as reported in the calibration sheet.
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6.4. Glass Scale / Linear Rail

(a) Deviation at the beginning. (b) Deviation roughly 6 h later, while the tem-
perature has changed 0.2 ◦C

Figure 6.15: Deviation between the distance calculated between two laser tracker points
and two glass scale readings, due to the non-straightness in conjunction with
the laser tracker’s retro-reflector offset.

Non-straightness

As mentioned in section 5.2, the straightness of the linear rail must be determined, in
order to derive the resulting error, when comparing the distance between two positions
measured using the glass scale and using the laser tracker measurements. Beside the
straightness, the offset between the retro-reflector’s optical centre and the reading head
of the glass scale are also needed. For the following analysis, this offset was assumed
to be (5, 5, 60) mm with respect to a local coordinate system which is placed in the
origin of the reading head and having the axis oriented parallel to the coordinate system
introduced in section 5.2. Due to physical restriction, this offset cannot be precisely
measured, this is why a worst case estimate was chosen.

The straightness was measured using an auto-collimator having an error of ±0.01′′ at a
distance of 0.1 m, in accordance with the calibration sheet. By using these auto-collimator
measurements, the deviations between the distances calculated between two laser tracker
points and the two glass scale readings along the linear rail, can be determined applying
(5.18). The distance between the cumulative positions were chosen to be the carriage
length, as proposed in Weck [2013]. Figure 6.15b shows the result at the end, after
conducting the kinematic laser tracker measurements which took roughly 6 h, and the
deviations are in a range of ±2.2 µm. At the end of the experiments there was an air
temperature of 20.7 ◦C. The deviation at the beginning of the experiments can be seen in
figure 6.15a when there was an air temperature of 20.5 ◦C. As the straightness is sensitive
to temperature changes, the difference between the deviation at the beginning and 6 h
later could be reduced, if there was a better climate control within the laboratory.
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6.4. Glass Scale / Linear Rail

(a) Uncorrected deviation between the glass
scale and two axis glass scale.

(b) Corrected deviation between the glass scale
and two axis glass scale.

Figure 6.16: Verification of the glass scale.

Because the reading head of the glass scale is also attached to the carriage, the readings
are consequently effected by the non-straightness of the linear rail, as described in section
5.2. By using the equation (5.19) the resulting deviation can be calculated to be 0.029 µm
a maximum.

Glass Scale

In order to test if the glass scale is parallel to the moving axis and to verify its accuracy
a two axis glass scale was used which was also used to monitor the additional movement
during kinematic experiments, as mentioned at the beginning of this subsection.

Figure 6.16a shows the uncorrected deviations between the glass scale and the two axis
glass scale where a linear trend is visible, which could be the result of non-parallel axis.
The deviations compensated for the non-parallelism are illustrated in figure 6.16b and
the remaining deviation is roughly ±2.1 µm. Additionally, the glass scale is effected by
temperature changes and according to the manufacturer the coefficient of linear expansion
is 0± 0.5 · 10−6 /◦C.

All of these influences are summarized in table 6.5. This table can also be used to calculate
an overall uncertainty for the glass scale / linear rail ground truth as proposed in Pesch
[2003], which is in accordance with GUM. The final uncertainty can be determined as
being 4 µm.

Within this table, the maximum additional movement which occurred during all kinematic
experiments, is taken into account. This is why the final budget can be considered to be
a worst case estimate of the experiments. These experiments are described in more detail
in the following subsection. As the measurements can be compensated for any additional
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6.4. Glass Scale / Linear Rail

Range [µm] Distribution Factor
Glass Scale 2.1 rect. 0.58 1.2 µm

Non-straightness 2.2 rect. 0.58 1.3 µm
Transversal 2 rect. 0.58 1.2 µmMovement

Linear expansion 0.1 rect. 0.58 0.1 µm
Skewed Reading 0.029 rect. 0.58 0.0 µm

k=2 4 µm

Table 6.5: Uncertainty of the glass scale and linear rail ground truth

movement within the movement direction, only the additional transversal movement is
considered in table 6.5.
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6.4. Glass Scale / Linear Rail

1

2
3 m

1 m

4 m

3 m

3

(a) Experiment set-up, laser tracker po-
sitions 1 and 2 around the gran-
ite block 3 .

(b) Granite block with metal support frame
and the two vertical metal posts.

Figure 6.17: Verification of the glass scale.

Kinematic Laser Tracker Measurement Model Verification

The kinematic experiments to verify the derived probabilistic model of the Leica laser
tracker were conducted applying the different motions profiles, s-ramp, sin2-velocity
profile and septic polynomial profile. All of these profiles are explained in section 5.2.
These profiles were applied using different user parameters, meaning varying the velocity
from slow to fast. Furthermore, the laser tracker was put in different places around the
granite block to observe the movement along the linear rail. The configuration of the
laser tracker positions and the granite block are illustrated in figure 6.17. One experiment
consisted of a motion from one end to the other and after a short break the carriage
moved back again to the starting position, while using the same motion profile for each
movement. A representative bundle of the experiments, having a velocity ranging from
0.23 m/s to 5.1 m/s, will be discussed in detail in the following.

Unlike the experiments using the multilateration system, neither point coordinates can
be compared nor can their uncertainty. Therefore, the proposed model of section 4.1,
cannot be verified without further operations. This means, distances between retro-
reflector positions along the linear rail had to be calculated as well as their uncertainties,
incorporating the positions’ uncertainties, determined using the prosed measurement
model.

The distances along the rail were calculated from the smallest value to all other positions
of the retro-reflector. This means that, the very left position, with respect to position
two in figure 6.18, was held fixed while the distance to all the other positions were
determined. Due to the fact, that there was a small overshoot, when commanding the
carriage to a position, it is most likely that the smallest value along the glass scale is
rather at the end of an experiment.
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6.4. Glass Scale / Linear Rail

With regard to the equation for calculating the standard deviation of a distance between
two Cartesian points, which is

σS =

√√√√
(
σ2
X 1 + σ2

X 2
)

(X1 −X2)2 +
(
σ2
Y 1 + σ2

Y 2
)

(Y1 − Y2)2 +
(
σ2
Z 1 + σ2

Z 2
)

(Z1 − Z2)2

(X1 −X2)2 + (Y1 − Y2)2 + (Z1 − Z2)2

(6.10)
it becomes clear from the denominator why there is a point of discontinuity, if their
variance of each coordinate axis is not equal. Here, the standard deviation for each
coordinate axis is given by σ and the subscript indicates the axis as well as the point
number. The point coordinate is given by X Y Z in conjunction with a subscript for the
point number. As the calculated uncertainties using the proposed measurement model
do not have the same variance for each coordinate axis, a discontinuity is most likely.

In order to compare the kinematic measurement model against the manufacturer’s ap-
proximation, the distance variances along the rail were also calculated using this ap-
proximation. According to Ulrich and Irgenfried [2014], the kinematic accuracy of a
Leica AT901 can be estimated with (2–4) times less than the static accuracy, which is
±7.5 µm + 3 µm/m [Leica Geosystems AG, 2009c]. Even if the velocity ranges up to
5.1 m/s the lower bound, factor 2, were only used for the following experiments. Using
the manufacturer’s approximation the variance cannot be decomposed for individual
axis, so no discontinuity can be expected.

There are some restriction which must be taken into account when using the laser tracker.
The target velocity perpendicular to laser beam should not exceed 4 m/s at a distance
of 2.5 m and the acceleration should not be higher than 2 g.

To test the probabilistic model, the 2σ standard deviation was determined and is illus-
trated in the figure 6.18. Accordingly, 95.4 % of the deviations between the distances
derived from laser tracker measurements and the glass scale readings must be smaller
than the 2σ standard deviation. Before the laser tracker distances were compared with
the glass scale distances, the distances were compensated for any additional movement
in the motion direction, as described above.

In figure 6.18a and 6.18b the result of the motion profile s-ramp with a constant velocity
at 0.23 m/s are shown. In the first column, the laser tracker was placed at position
1 and in the second column the laser tracker was placed at position 2. Here, the 2σ
standard deviation applying the measurement model is illustrated in red and the standard
deviation applying the manufacturer’s approximation is shown in yellow. A slight range
dependency is visible which can also be expected due to the definition. However, the
standard deviation using the measurement model is significantly lower, although it still
comfortably includes the deviation between the laser tracker distances and the glass scale
distances illustrated in green. The mean standard deviation at the laser tracker position
1 using the manufacturer’s approximation is 74 µm, where the mean standard deviation
using the measurement model is 38 µm, this is 49 % less. A similar situation can be seen
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6.4. Glass Scale / Linear Rail

(a) Laser tracker is at position 1 using motion
profile s ramp, having a constant velocity
at 0.23 m/s.

(b) Laser tracker is at position 2 using motion
profile s ramp, having a constant velocity
at 0.23 m/s.

(c) Laser tracker is at position 1 using motion
profile septic polynomial, having a maxi-
mum velocity at 5.1 m/s.

(d) Laser tracker is at position 2 using motion
profile septic polynomial, having a maxi-
mum velocity at 5.1 m/s.

Figure 6.18: The results of the experiments using a s-ramp motion profile in the first row
and a septic polynomial motion profile in the second row, while the laser
tracker is at position 1 and 3.

at position 2, however the standard deviation using the measurement model is only 39 %
less.

Figure 6.18c and 6.18d show the results of the septic polynomial motion profile, having a
maximum velocity at 5.1 m/s. As can be seen, the standard deviation using the measure-
ment model still includes the most deviations, but at position 2 1.4 % of measurements
not. However, 1.4 % still obeys to the 2σ standard deviation.

Furthermore, there is a kinematic effect visible, which is not covered by geometric
influences. But it is in a first order approximation proportional to the velocity of the
object. It can also be seen that this effect is represented in the standard deviation
using the measurement model. Additionally, the deviation is no longer proportional to
the velocity, when the object is decelerating from a high velocity, especially during fast
experiments. During this state the deviation decreases at a higher rate than expected,
which leads to an overestimation.
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6.4. Glass Scale / Linear Rail

When taking into account the standard deviation of the manufacturer’s approximation,
it becomes clear that, it is not sufficient to consider the true kinematic behaviour of
the object being tracked. This can also be deduced from the fact that it is only range
dependent, however particularly in figure 6.18c it can be seen that this leads to false
assumptions, where the standard deviation decreases, it should increase to reflect the
truth. The same behaviour can be found in the results at position 3 in figure 6.18d, but
much weaker, there are two small dents visible near time 2 s and 4 s within the graph.

With regard to the results of position 1 compared to the results of position 2 it can be
seen that the deviation varies more at station 2. The angle measurement part at position
2 may provide a plausible explanation, as it is significantly higher and therefore increases
the uncertainty. It is comparable to the results of the multilateration measurements in
section 6.3. However, in figure 6.18c and 6.18d it can be seen that this fact is considered
within the standard deviation using the measurement model, as the standard deviation
is higher in 6.18d for the same stable point at the beginning than it is in 6.18c.

To sum up, during all of the experiments, not only those presented here, the measurement
model could be verified, if the kinematic conditions of the laser tracker, as mentioned
above, were fulfilled.
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Chapter 7
Conclusion

Within large volume metrology, laser trackers have been widely used to measure
kinematic tasks such as the movement of an industrial robot and the tracking of a hand-
held surface scanner. Notwithstanding these kinematic applications, most research has
solely focused on the uncertainty of static measurements. Accordingly, only very rough
estimates have been available, concerning the kinematic uncertainty.

With regard to potential applications, an approach capable of real-time was developed to
determine uncertainties of kinematic measurements. It was shown that these uncertainties
can be estimated in accordance to GUM using a Bayesian filter. As the kinematic
behaviour of the object plays an important role, the system model description must be
chosen with regard to the application and its requirements. Therefore, these descriptions
can range from a very high approximation level to a very low approximation level, where
additional information from the control system of moving object are integrated. To
determine the uncertainty for simple movement, a common linear Kalman filter can be
applied. However, if there is a complex movement a hybrid system model filter can be
used to include more than one system model description as it is done for example by a
Kalman filter. The internal models of a hybrid system filter must roughly match the
observed process. This is why the choice of the system model within a hybrid system filter
might be a difficult one, due to the low uncertainty achievable using LVM instruments.
Aside from that a Bayesian filter can also be utilized to include additional information
e.g. from a control system of an industrial robot. In this way all issues arising from the
approximation of the movement can be mitigated.

In addition to the system model, there is the measurement model, which is also needed
within a Bayesian filter. The measurement model was developed by augmenting the
geometric model with a kinematic part as well as a meteorological part to entirely
represent the measurement. As this model is state dependent, meaning it depends on
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the object’s current position and current kinematic, e.g. the velocity, it needs to be
recalculated each time step.

To verify the derived probabilistic measurement model two new different kinds of kine-
matic ground truth were introduced. This is because prior methods have focused on the
internal synchronization of the subsystems of a laser tracker i.e. the angle encoders and
the distance measurement rather than on the object’s trajectory.

The first one was made up of the PTB’s multilateration system. Due to the restricted
space and the acceptance angle, the standard analysis method was prone to error, which
could be revealed using weak network analysis. Therefore, the analysis method was
refined, so that the multilateration system provided a ground truth for kinematic laser
tracker measurements. This was accomplished by introducing a new requirement matrix
into the free-network adjustment, so that the geometry could be strengthened in general.
This new requirement matrix can also be applied to any other free-network adjustment,
where the standard approaches for strengthening the geometry cannot be applied. How-
ever, only a very small part of the laser tracker’s capacity in terms of the velocity and
acceleration could be tested. In general it can be said that the weak form analysis should
always be part of a multilateration analysis to properly assess the deformation between
the reference system and the machine being tested.

The second one consisted of a linear rail in conjunction with a glass scale. This is
why no arbitrary trajectories can be chosen in contrast when using the multilateration
system, however different motion profiles can be applied. The result is that the derived
probabilistic model could be verified up to a maximum velocity of roughly 5 m/s using the
linear rail and up to a maximum velocity at roughly 200 mm/s using the multilateration
system. Furthermore, if the delay time is relatively short and the movement is rather slow,
the results reveal that the alignment errors and the environmental conditions are more
important than additional kinematic influences. As mentioned above, the uncertainty
is state dependent and this is why it is hard to give a rule of thumb for which velocity
or acceleration the kinematic influences play a significant role within the uncertainty of
laser tracker measurements. However, overall it can be said that the proposed method
in conjunction with the augmented measurement model reduced the uncertainty of the
trajectory significantly and delivers a much more authentic uncertainty representation
than the manufacturer’s approximation, mainly due to the inclusion of the object’s
kinematic behaviour.

The proposed method can be applied to assess the deviation of a robot’s trajectory in
a reliable way in real-time and so has the potential to be used for correcting robots
during their movement. Furthermore, it can be distinguished between points along the
trajectory where the laser tracker measurement provides a useful contribution and points
where not. Beside the real-time correction, the method could be also applied for real-time
monitoring applications.

In order to grant the robot’s information more reliability in this proposed method, its
uncertainty must be reduced. A certain level could be reduced by implementing a more
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authentic probabilistic model. But this requires a deeper insight to take into account
the six axis industrial robot’s dynamic model, consisting of the friction force, gravity
loading, the joint-space inertia as well as the Coriolis and centripetal effects. However,
particularly when observing robot’s having a parallel kinematic, the proposed method
should lead to a significant improvement in terms of assessing path deviations: As these
kinds of robots may have a significantly better accuracy than six axis industrial robots,
e.g. small hexapods, it is even more important to have an authentic uncertainty of the
laser tracker trajectory to make an assessment of the path deviation.

Future work at the linear rail and glass scale ground truth should focus on minimizing
the additional movement and eigenfrequency which occur during several high speed
experiments. As these effects are related to the applied external force, it is clear that
this must be reduced. The reduction could be achieved by uncoupling the motor from
the granite block, this means using an additional metal frame exclusive for mounting the
motor and the deflection pulley of the timing belt as well.

Even if the linear rail and glass scale ground truth has only one moving axis, six degrees
of freedom (6DoF) equipment for laser trackers could be also tested by comparing the
3D distance in the same way as proposed for a 3D point. Furthermore, free-from surface
scanning is either be done by moving a retro-reflector over the surface or by moving a line
scanner over the surface. However, both methods there are meander movements with
characteristic acceleration and deceleration parts in it, which could be adapted to create
appropriate motion profiles. In order to identify whether or not there are some specific
uncertainties which are originated just by the movement method. As the measurement
model presented only includes 3D point measurements, this model should be augmented
to include also the additional sensors, which are used during 6DoF measurements.
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Abstract
Photogrametric systems are widely used in the field
of industrial metrology to measure kinematic tasks
such as tracking robot movements. In order to assess
spatiotemporal deviations of a kinematic movement,
it is crucial to have a reliable uncertainty of the kine-
matic measurements. Common methods to evaluate
the uncertainty in kinematic measurements include
approximations specified by the manufactures, vari-
ous analytical adjustment methods and Kalman fil-
ters.

Here a hybrid system estimator in conjunction with
a kinematic measurement model is applied. This
method can be applied to processes which include
various types of kinematic behaviour, constant ve-
locity, variable acceleration or variable turn rates.
Additionally, it is been shown that the approach is
in accordance with GUM (Guide to the Expression
of Uncertainty in Measurement). The approach is
compared to the Kalman filter using simulated data
to achieve an overall error calculation. Furthermore,
the new approach is used for the analysis of a rotat-
ing system as this system has both a constant and a
variable turn rate.

As the new approach reduces overshoots it is more
appropriate to analysing kinematic processes than
the Kalman filter. In comparison with the manu-
facturer’s approximations, the new approach takes
account of kinematic behaviour, with an improved
description of the real measurement process. There-
fore, this approach is well-suited to the analysis of
kinematic processes with unknown changes in kine-

matic behaviour.
Photogrammetric System; Kinematic measurement;
Hybrid system estimator IMM; Uncertainty estima-
tion; Bayesian filtering

1 Introduction
In recent years photogrammetric systems have been
widely used for kinematic measurements. These have
included crash tests, structure analysis and motion
capture e.g. for movies or games. However, they can
also be used in LVM (Large Volume Metrology) to
measure the tool centre point of an industrial robot
during its movement and can therefore be utilised
for real time process monitoring or to provide on-
line correction. It is particularly important to have
a reliable uncertainty of the kinematic measurement
for the last two tasks. This permits an explicit as-
sessment of the deviations between the trajectory ob-
served by the photogrammetric system and the one
provided by the robot control system.

There are different analysis methods for different
kinematic applications including time series analy-
sis for pattern recognition suggested by [1]. The au-
thor of [2] suggests an adjustment method in a post-
processing analysis step which was previously used
by [3] in order to compare the kinematic performance
of a stereo photogrammetric system against a Leica
Laser Tracker. A Kalman filter was suggested by the
author of [4] but with the limitation that the proba-
bilistic system model of the kinematic process must
be known and all error terms must have a Gaussian
distribution. To overcome these limitations [5] ap-
plied a real-time hybrid system filter for kinematic
laser tracker measurements. The approach proposed
in this paper is also based on a hybrid filter. Here
the focus on the system models describing the real
kinematic process more precisely, as well as on the
measurement model of a stereo photogrammetric sys-
tem to include kinematic effects. Furthermore, it is
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demonstrated that the hybrid system model is in ac-
cordance with GUM (Guide to the Expression of Un-
certainty in Measurement).

1.1 Photogrammetric system
The photogrammetric system used in this experiment
is the MoveInspect HF from AICON, which works
with retro-reflective targets. A sketch of the system
can be seen in figure 2. This system consists of two
cameras which are mounted on a bar to facilitate a
stable exterior calibration during the measurement.
Exterior calibration describes the position and orien-
tation of one camera relative to the other. In order to
use the system, it must be calibrated before the mea-
surement takes place. This procedure determines the
exterior calibration parameters, as well as the interior
calibration parameters. It describes the imaging pro-
cess of a 3D point onto an image plane, including the
distortion parameters of the lenses used. More de-
tails relating the calibration parameters to kinematic
effects are discussed in section 4.4. The syncbox syn-
chronizes both cameras and can be triggered using
an external impulse e.g. generated by an industrial
robot. Within the syncbox these two cameras are
triggered in cascade. This results in an additional
error source for kinematic measurements which is ex-
plained in more detail in 4.4. The photogrammetric
system can capture images up to 1000 Hz. After cap-
turing an image in grey values, the image processing
is done on a FPGA (Field Programmable Gate Ar-
ray) to achieve a high frequency in 2D image points
in order to cope with fast kinematic movements of
an object [6]. In this image processing, the edges of
the retro-reflective targets are extracted using a So-
bel operator from the grey value image resulting in
regions of interest, details on the Sobel operator can
be found in [7]. To calculate the 2D point coordi-
nates of the imaged targets, the centroid method is
applied to the selected regions of interest. This is a
weighted mean of the pixel coordinates. Using these
2D point coordinates and the calibration parameters,
the AICON software, running on an external laptop,
calculates the corresponding 3D target coordinates.

2 Measurement Uncertainty
If the measurement result of a photogrammetric sys-
tem is associated with a statement of uncertainty
expressing the reliability of that result, then it is

possible to make an explicit assessment of the spa-
tiotemporal deviations between a planned trajectory
and the one observed by the photogrammetric sys-
tem. The Guide to the Expression of Uncertainty in
Measurement (GUM) provides a framework, which is
widely accepted, to evaluate uncertainties [8, 9].

Within GUM the uncertainty of a quantity ζ can
be expressed as a probability density function (PDF)
p (ζ). Uncertainty evaluation can, in general, be di-
vided into two cases, the forward-uncertainty evalu-
ation and the inverse-uncertainty evaluation [10].

To determine the uncertainty for multivariate
input-output models, the forward-uncertainty eval-
uation can be utilized. Given a function of multiple
variables, η = f (ζ), where ζ is the vector of those
variables, then the required PDF is p (η). This un-
certainty can be determined by applying the law of
propagation of uncertainty (LPU) or using the Monte
Carlo method (MCM). To apply these methods, all
input quantities ζ must be known, together with an
associated probability distribution. The advantages
of the MCM are that it does not use approximations
in the distributions of the input or output quantities
nor does it use linearization [8, 10].

The inverse uncertainty evaluation can be associ-
ated with model parameter fitting. Here, the desired
parameter β is only indirectly, related to the mea-
sured quantities ζ by a function f (β). To deduce a
density of β, with respect to the observed information
ζ the Bayesian paradigm can be utilized. This pos-
terior density p (β|ζ) includes the information about
parameter β of the function, based on the observed
quantities ζ and any prior information [8]. For ex-
ample, the inverse uncertainty evaluation can be ap-
plied to the uncertainty determination of the circle
parameters radius and centre from photogrammet-
ric measurements or laser tracker measurements, as
these quantities cannot be measured directly. The
posterior density p (β|ζ) can be determined using the
Bayes theorem

p (β|ζ) = p (ζ|β) p (β)
p (ζ) . (1)

Here, p (ζ|β) is the likelihood function and p (β) is the
prior density. The prior density comprises of infor-
mation about the parameter β available prior to the
observations ζ, or from other independent sources.
In general, the Markov-Chain-Monte-Carlo (MCMC)
approach can be applied to determine the posterior
density p (β|ζ). There are a number of algorithms for
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the MCMC approach e.g. the Metropolis-Hastings
independence chain algorithm. To make an inference
about the parameter β, the posterior density can be
used directly, as it represents the state of knowledge
with respect to the observed measurement ζ [8].

According to [11], the Bayesian statistic is well-
suited to determining a measurement uncertainty if
systematic influences can be inferred, but cannot be
directly measured. It is therefore preferable to con-
ventional statistics for the analysis of kinematic un-
certainties as e.g. the velocity causes a systematic
effect which cannot be measured directly with a pho-
togrammetric system. This is explained in more de-
tail below. The difference between the conventional
statistic and the Bayesian statistic with regard to
GUM is presented in [11, 12].

2.1 Kinematic Measurement

As the authors of [1] pointed out, the term ’kinematic
measurement’ can be construed in different ways.
However, in this paper the term kinematic measure-
ment is regarded as the spatiotemporal measurement
of a moving object, so the result can be related to
other measurements through a common time axis as
depicted in figure 1. There are a number of analysis
methods for these kinds of measurements for differ-
ent applications. However, these methods are often
not capable of real-time calculation or the kinematic
characteristic such as acceleration or velocity must
be known exactly in advance [5].

The main focus of the proposed method is on the
real-time observation and analysis of the moving ob-
ject’s trajectory. In order to achieve a higher flexibil-
ity, the trajectory should be assumed to be unknown
in advance and arbitrary.

Normally, the observed measurements of a moving
object must be transformed into the object space for
purpose of analysis. In the case of a kinematic mea-
surement, it is not only the spatial transformation
which must be considered but also the alignment of
the time axis, as these axes may have different zero
points, scales or drifts. The relationship between the
object space and the measurement space can be seen
in figure 1. Here two time axes, for example one
belonging to a robot and one to the measurement
system, are aligned using a synchronization impulse.
The common time axis can also be generated using
a frequency counter. In figure 1, a point in time
is denoted by t where the superscript indicates the

number of the point and the subscript indicates m
for the measurement space, o for the object space.
No subscript is used for the common time axis. On
each time axis k denotes the same specific interval, to
highlight the possible differences between these axes.
A rotation matrix R and translation vector T are
used to define a geometric transformation. Assuming
that the rotation and the translation between the ob-
ject space and the measurement space are known, the
kinematic measurement of an object moving along a
straight line at a constant velocity can be expressed
as follows

x = z (V ) + V · dt. (2)
Here dt is the time offset between the time axes of
the object and the measurement systems. The results
of the vector function z, with respect to the veloc-
ity V , are the measurements. These have been al-
ready transformed into the object space using known
spatial transformation parameters. The result of the
kinematic measurement with respect to the velocity
V and the offset between the time axes is denoted
by the vector x. Equation (2) shows that the de-
termination of a kinematic measurement uncertainty
should be treated as an inverse uncertainty evalua-
tion. The process parameter V must be taken into
consideration, but cannot be measured directly by a
photogrammetric system (see next paragraph). As
a result, knowledge of the kinematic process govern-
ing the object movement is a significant contributor
to the posterior density of the kinematic result x.
Equation (2) is illustrated in section 4.4 using the
shutter-time of the photogrammetric system.

A straightforward approach to deduce the velocity
in real-time makes use of the most recent measure-
ment and the measurement one time step earlier this
results in the following equation

V = (x2 − x1)
∆t . (3)

Here ∆t is the time interval between the two mea-
surements x1 and x2. The standard deviation of the
velocity can be calculated using the LPU as follows

σV =

√

2 ·
(
σx
∆t

)2
+
((x1 − x2) · σ∆t

∆t2
)2
. (4)

Where the standard deviation of the measurements
are σx1 = σx2 = σx. The standard deviation of the
time interval between the two measurements is de-
noted by σ∆t. If the timestamps of the two mea-
surements are perfect the the standard deviation σ∆t
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Figure 1: Object space and measurement space

reduces to zero and the standard error of the velocity
is given by:

σV =
√

2 ·
(
σx
∆t

)
. (5)

With this equation it is clearly visible that the veloc-
ity deduced using the last equation can be considered
as too inaccurate for use in the LVM, as any uncer-
tainty deduced would be directly proportional to the
measurement frequency used.

In the LVM, the measurement systems commonly
use frequencies higher than 1 Hz, and therefore result
in an increasing variance compared with the standard
deviation of the actual measurement σx. Therefore,
this method is inappropriate to deduce the velocity
in order to incorporate it into the estimate of a kine-
matic uncertainty of x. Furthermore in reality most
movements of an object are much more complex than
a straight line with constant velocity.

In summary, the kinematic uncertainty estimation
can be considered as an inverse uncertainty evalua-
tion which depends on additional process informa-
tion, e.g. the velocity of the object being tracked
and measured. This information cannot be directly
measured by any common measurement system in
the LVM, e.g. a photogrammetric system or a laser

tracker. Nor, with a sufficiently good variance, can
these be deduced from the measurements, as pointed
out above. Furthermore this information is not suffi-
cient to describe the whole movement.

As stated above, a kinematic measurement is de-
pendent on the object’s kinematics. This means that
the description of such a measurement should involve
the kinematic process. A very common approach
to achieve this is called state-space representation.
Within this approach the state of the observed ob-
ject is stored in a state vector, which is made up
of all relevant information to describe the object’s
state. In the case of a kinematic 3D measurement,
this information may be the position, velocity and
acceleration, depending on the object’s movement.
The state space equations of a non-linear stochastic
discrete-time state space model are

xt+1 = ft (xt,ut, wt) (6)
zt = ht (xt, vt) (7)

Here f is the system model function with its system
process noise w, the control input u and the state vec-
tor x. The measurement model function h includes
its measurement noise v. The state-space approach
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focuses on the state vector which is under investiga-
tion and can be analysed using Bayesian filters.

3 Bayesian filtering
A Bayesian filter is an optimal non-linear state esti-
mator which determines the conditional PDF of the
state vector x (t) given all information at time t. This
is made up of the information about the prior state
of the system, the control inputs and the available
measurements. Therefore a Bayesian filter perfectly
matches the requirements postulated by GUM and is
ideally suited to calculate a kinematic uncertainty.

The required conditional state PDF at time t is
P (xt|It) with the available information set I at time
t. This information set consists of

It = {z1:t,u1:t−1} . (8)

Here z1:t are all measurements up to time t and u1:t−1
are all control inputs up to time t − 1 [13]. Using
[13, 14], the conditional density of xt+1 at time t+ 1
can be written using Bayes’ formula as

p (xt+1|It+1) = p (xt+1|z1:t+1,u1:t)
= p (xt+1|z1:t, zt+1,u1:t)

= p (zt+1|xt+1, z1:t,u1:t) p (xt+1|z1:t,u1:t)
c

= p (zt+1|xt+1, It,ut) p (xt+1|It,ut)
c

(9)

Here c is the normalisation constant as c =
p (zt+1|It,ut). Considering independent process and
measurement noise sequences, and taking the state
vector as a Markov process, it can be shown that

p (xt+1|It+1) = 1
c
p (zt+1|xt+1) p (xt+1|It,ut) (10)

which is known as the state update equation of a
Bayesian filter [14, 13]. For the following analy-
sis method it is imported to mention, that state-
dependent process and measurement noise are al-
lowed [13]. The requirement of a Markov process
assumes that the state at xt is complete and the
evolution of future states is not influenced by vari-
able prior to xt[14]. In order to calculate the PDF
prediction p (xt+1|It,ut) needed in equation (10) the
Chapman-Kolmogorov equation

p (xt+1|It,ut) =
∫
p (xt+1|xt,ut) p (xt|It) dxt (11)

can be utilized [13]. According to [13] equation (10)
yields the minimum mean-square error of the current
state which can expressed as

x̂MMSE
t+1 = E [xt+1|It+1] =

∫
xt+1 p (xt+1|It+1) dxt+1.

(12)
Equation (10) together with (11) make a Bayesian
filter which consists of two steps. The first step is the
prediction step, see equation (11), in which a prior
PDF is calculated using a system model, in general
equation (6). A system model describes the evolution
of the system over time. The second step is called the
state update step, which calculates the required PDF
see equation (10) and (7). To perform this step a
measurement model is needed which relates the noisy
measurements to the state. To apply a Bayesian filter
it is necessary that the system model, as well as the
measurement model, are available in a deterministic
form and in a probabilistic form.

3.1 System model

In general Bayesian filtering for kinematic uncer-
tainty estimation can be subdivided into two major
categories. These are filtering with a known system
model and filtering with an unknown system model.

The first case, filtering with a known system model,
is found by tracking and measuring the tool centre
point of an industrial robot. This is synchronized
with the measurement system so that the control in-
formation of the robot can be used in conjunction
with data of the measurement system.

The second case, filtering with an unknown system
model, occurs if the measurement system cannot be
synchronized with the robot’s data. This case is sim-
ilar to the situation where a human operator moves
the object being tracked and measured.

A traditional Bayesian filter is the Kalman filter.
However, when estimating the continuous state of a
moving object, without using synchronized process
data, it does not perform very well, because of the
unknown control inputs and insufficient knowledge
of the system. The usual approach is to include the
model inaccuracies into the process noise, which re-
sults in a reduction of the state accuracy. This leads
to a hybrid estimation problem in which the continu-
ous state of the object and the discrete model is esti-
mated [15]. In this paper, the continuous dynamic of
the hybrid system is modelled by difference equations
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and the discrete-state dynamic is modelled using a fi-
nite Markov chain. As shown in [5] a hybrid system
estimator can be utilised for kinematic laser tracker
measurements which can be adapted as pointed out
below.

In contrast to equation (6) and (7) a discrete-time
stochastic hybrid system can be expressed as

xt+1 = f it

(
xt, w

i
t

)
(13)

zt = hit

(
xt, v

i
t

)
. (14)

Here f i is the system model function of model i in
conjunction with its process noise wi. The measure-
ment model function of model i is denoted with hi

and its measurement noise vi. An Interacting Multi-
ple Model (IMM), used in this paper, is a hybrid sys-
tem estimator which approximates the required pos-
terior density p (xt|zt) by a weighted sum of Gaussian
density functions as

p (xt|zt) ≈
r∑

i=1
witN

(
xit; x̂it, P it

)
(15)

with
r∑

i=1
wit = 1, (16)

where wit are weights and x̂it denotes the model-
conditioned state estimate with its covariance P i

t

[16]. To avoid an IMM filter with an increasing num-
ber of mixture components, only the most probable
components are used and merged together to form
one state estimate [16]. Within an IMM filter these
components are the most probable system models
representing the object’s kinematic behaviour e.g. a
constant acceleration with a certain noise level.

As stated above, the discrete-state dynamic is
modelled using a finite Markov chain. The evolution
of a model i is governed by the finite Markov chain.
The exponent i denotes the model whose evolution is
governed by the Markov chain as

µt+1 = Πµt. (17)

The count of discrete models within the Markov chain
is r. Thus the transition probability matrix is of the
dimension Π = {πij} ∈ Rr×r and the model prob-
abilities are denoted with µ. The final hybrid state
estimate of an IMM filter can be written as

x̂t+1 =
r∑

i=1
x̂it+1p

(
mi
t+1|z1:t+1

)
. (18)

Here p
(
mi
t+1|z1:t+1

)
are the weights, compare with

equation (16), which are the model probabilities. The
model-conditioned state estimate of xt+1 is

x̂it+1 =
∫
xt+1 p

(
xt+1|zt+1,m

t+1
i

)
dxt+1, (19)

under the condition that the model at time t + 1
is mi

t+1 using the estimator of model i according to
[15]. As the IMM filter is here a host of different
Kalman filters, each of them modelling another kine-
matic behaviour, the model-conditioned state esti-
mator is simply a Kalman filter. This can be directly
compared with equation (12) which is the optimal
state estimator with respect to the minimum mean-
square error of a common Bayesian filter.

An IMM filter can be subdivided into three major
steps:
• interaction / mixing,

• filter,

• state estimate and covariance combination.
The following derivation is based on [5, 13, 15].

Interaction/mixing step

Within the first step, new initial states and covari-
ances are calculated to be used in each Kalman filter.
This is done by weighting the Kalman filter outputs,
the state and the covariance, with the mixing proba-
bility as follows

x̂0j
t =

r∑

i=1
x̂it µ

ij
t|t j = 1, . . . , r (20)

P 0j
t =

r∑

i=1

{
P it +

[
x̂it − x̂0j

t

]

×
[
x̂it − x̂0j

t

]}
µijt|t j = 1, . . . , r (21)

here x̂ti is the state estimate and P ti is the covariance
result of Kalman filter i after the measurement up-
date at time t. The conditional probability, that the
system made the transition from model i to j at time
t+ 1 is denoted by µijt|t and can be calculated using

µijt|t = 1
cj
πijµ

i
t

cj =
r∑

i=1
πijµ

i
t. (22)

Here cj is the normalization constant and µit is model
probability of model i at time t.
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Filter step

The second step includes the filtering with the
Kalman filter of each model. The prediction and up-
date step can be expressed briefly for a linear system
as
[
x̂−,it+1, P

−,i
t+1

]
= KFp

(
x̂0j
t , P

0j
t , A

i
t, Q

i
t

)
(23)

[
x̂it+1, P

i
t+1
]

= KFu
(
x̂−,it+1, P

−,i
t+1, zt+1, H

i
t+1, R

i
t+1
)
.

(24)

Here KFp is the prediction step of a Kalman filter
and KFu is the update step. The transition matrix is
denoted by A and Q is the covariance matrix of the
system which are derived from the system model mi.
H represents the measurement matrix and R is the
covariance matrix of the measurement model.

In addition, the model probability for each model is
needed within an IMM filter. The model probability
is determined as

µjt+1 = 1
c

Λjt+1cj j = 1, . . . , r (25)

and the normalization constant c can be calculated
as

c =
r∑

j=1
Λjt+1cj . (26)

The required likelihood for each model can be calcu-
lated as

Λjt+1 = N
(
dt+1; 0, Sjt+1

)
. (27)

Here, the residuals of the measurement t + 1 of the
model mj are dt+1 and Sjt+1 is the innovation covari-
ance matrix in the KF update step of model mj .

State estimate and covariance combination

The goal of this step is to calculate the combined
state estimate and covariance over all filter results of
each Kalman filter. This can be done according to
equation (16) as a weighted sum as

x̂t+1 =
r∑

j=1
µjt+1x̂

j
t+1

Pt+1 =
r∑

j=1
µjt+1

{
P jt+1 +

[
x̂jt+1 − x̂t+1

]

·
[
x̂jt+1 − x̂t+1

]T}
. (28)

3.2 Measurement model

As stated, in order to apply a Bayesian filter a proba-
bilistic measurement model is also needed. According
to [5] the variance of a 3D point can be expressed in
a first-order approximation as follows

σ2
xk

= σ2
x + t2sσ

2
Vx

+ V 2
x σ

2
ts

σ2
yk

= σ2
y + t2sσ

2
Vy

+ V 2
y σ

2
ts

σ2
zk

= σ2
z + t2sσ

2
Vz

+ V 2
z σ

2
ts (29)

. Here ts denotes the synchronization error between
the measurement system and the common time axis
and σts its standard deviation. The velocity is repre-
sented by V with its standard deviation σV for each
axis x, y, z. This assumes there is a zero or negligi-
ble time delay between the two cameras and that the
object moves with constant velocity.

4 Experiment

In order to test the performance of a hybrid filter
against a common Kalman filter a simulation was
carried out before the analysis of the experiment.

4.1 Simulation

The simulation included tracking an object on a tra-
jectory consisting of a segment with a constant veloc-
ity and a segment with a constant turn rate. Within
this simulation the measurement system was assumed
to be a stereo photogrammetric system and the move-
ment simulated was conducted in a plane perpendic-
ular to the viewing axis of the measurement system.
A common Kalman filter was set up, which included
a constant velocity model described by

ẋ (t) =
[
0 I3×3

0 0

]
x (t) +

[
0

I3×3

]
w (t) (30)

according to [13]. Here the state vector is x =
[x, y, z, ẋ, ẏ, ż] and w denotes the process noise.

The hybrid system filter was made up of the
Kalman filter described above and additionally of an
unscented Kalman filter including the constant turn
model as described in section 4.3.1. Here, the state
vector is x = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈] which shows that
an IMM filter can also cope with models having dif-
ferent dimensions.

7
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Figure 2: Sketch of the experiment set-up, show-
ing the configuration of the rotation system and the
stereo photogrammetric system.

4.2 Experiment Set-up

The experimental setup is shown in figure 2 and
comprises a rotating component and the MoveIn-
spect stereo photogrammetric system from AICON.
To observe the rotation of the arm there are pho-
togrammetric targets attached to the arm at differ-
ent heights, four on small rods at the end of the arm
and eight on the arm itself. To balance the additional
weight of these rods a counter weight is attached to
the other end of the arm.The rotation plane is tilted
by about 45◦ from the horizontal plane and an air
bearing is used to achieve a very precise and stable
circle during the kinematic movement. To cover most
of the image sensor the photogrammetric system is
also tilted and placed 1.5 m away from the rotating
system. As the arm is 1 m long, the resulting radius
should be roughly 0.5 m. The observation of the kine-
matic process begins in the speed-up phase of the arm
and continues until it has reached the desired angular
velocity.

4.3 System model

In the experimental setup above it can be inferred
that at least two major kinematic behaviours occur
during the experiment and these should be modelled
separately. The speeding-up phase can be expressed
by the variable turn model, in which the object is as-
sumed to change its angular velocity during each time
step. Additionally, the imperfect balancing of the ro-
tating arm and the rudimentary motor drive must
lead to some angular velocity variations on the cir-

cle which are also addressed using this model. After
the speed-up phase, one can assume that the object
remains at a nearly constant angular velocity which
can be modelled by a planar constant turn model.

As the photogrammetric system delivers coordi-
nates at discrete times but the object movement is
described in a continuous time state, the object state
equations must be transformed to the correspond-
ing discrete time equations. Alternatively, the ob-
ject movement can be directly modelled using dis-
crete time equations. This results in slightly different
process noise covariance matrices which are easier to
interpret [13]. Thus, both methods model different
process approximations, where the latter assumes a
piecewise constant noise and the former a continuous-
time noise. The difference can be shown using the
example of a constantly moving object in one dimen-
sion with the state x = [x, ẋ]. This results, according
to [13], in the following two covariance matrices

Qc =
[
1/3∆t3 1/2∆t2
1/2∆t2 ∆t

]
q̃

Qd =
[
1/4∆t4 1/2∆t3
1/2∆t3 ∆t2

]
σ2
v . (31)

Here, q̃ denotes the power spectral density of the
process noise, ∆t the sampling period and σ2

v the
process variance. The covariance matrix Qc is ob-
tained from the continuous state by using the in-
verse Laplace transformation and the matrix Qd is
obtained by multiplying the process noise by the vec-
tor gain Γ =

[
1/2∆t2,∆t

]T [13]. If one assumes the
same magnitude of acceleration modelled in the pro-
cess noise q̃ and σv then the position variance of Qd
is smaller

Q1,1
c = 1/3 ∆t4σ2

v > 1/4 ∆t4σ2
v = Q1,1

d . (32)

However, to describe the process of the experiment,
the following models are deduced by discretisation of
a continuous time model with additional noise and
using the inverse Laplace transformation as proposed
in [13]. This seems to be more appropriate to describe
the experiment’s kinematics.
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4.3.1 Constant turn model

According to [17] a planar constant turn, in the so
called navigation plan, can be described using

ẋ (t) =




0 I3×3 0
0 0 I3×3

0 −ω2 I3×3 0


 x (t) +




0
0

I3×3


w (t) .

(33)
Here, the state vector is x = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈]T
and w is the process noise. Assuming, that the angu-
lar velocity vector Ω is perpendicular to the velocity
vector v, the acceleration vector is a and the angular
acceleration is zeros, then the turn rate ω is given by

ω = |Ω| = |v × a|
v2 . (34)

Using the Laplace transform in conjunction with
equation (33) results in the following discrete time
model

xt+1 =



I3×3 sin(ω∆t)

ω I3×3 1−cos(ω∆t)
ω2 I3×3

0 cos (ω∆t) I3×3 sin(ω∆t)
ω I3×3

0 −ω sin (ω∆t) I3×3 cos (ω∆t) I3×3




· xt +wt, (35)

with the covariance matrix

cov (wt) =



a′ I3×3 b′ I3×3 c′ I3×3

b′ I3×3 d′ I3×3 e′ I3×3

c′ I3×3 e′ I3×3 f ′ I3×3


 q̃

a′ = (sin (2ω∆t)− 8 sin (ω∆t) + 6ω∆t)
4ω5

b′ =
2 sin

(
ω∆t

2

)4

ω4

c′ = − sin (2ω∆t) + 4 sin (ω∆t)− 2ω∆t
4ω3

d′ = − sin (2ω∆t) + 2ω∆t
4ω3

e′ = sin (ω∆t)2

2ω2

f ′ = sin (2ω∆t) + 2ω∆t
4ω .

Here, q̃ represents the power spectral density of the
process noise and ∆t is the sampling period. As can
be seen in equation (35), the turn rate is needed.
This can be calculated using equation (34) from the
estimates of the velocity and the acceleration within
each time step.

4.3.2 Variable turn model

A planar variable turn model with the state vector
x = [x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈]T can be described by

ẋ (t) =




0 I3×3 0
0 0 I3×3

0 − (ω2
c + α2) I3×3 −2α I3×3


 x (t)

+




0
0

I3×3


w (t) . (36)

according to [17]. Here ωc = α2 + ω2 and w (t) the
white noise. As for the constant turn model the an-
gular velocity vector must be perpendicular to the
velocity vector and the turn rate ω can be calculated
with equation (34). According to [17] the damping
coefficient α can be determined from the acceleration
and the velocity with

α = −v · a
v2 . (37)

Using the Laplace transform, the corresponding dis-
crete time model can be found as

xt+1 =



I3×3 a′ I3×3 b′ I3×3

0 c′ I3×3 d′ I3×3

0 e′ I3×3 f ′ I3×3


 xt +wt,

a′ =
(
2αωc − e−α t′

(
2αωcc0 +

(
α2 − ω2

c

)
s0
))
/ (ωc a0)

b′ =
(
ωc − e−α t′ (ωcc0 + αs0)

)
/ (ωca0)

c′ =e−α t′ (ωcc0 + αs0) /ωc
d′ =e−α t′s0/ωc

e′ =− e−α t′a0s0/ωc

f ′ =e−α t′ (ωcc0 − αs0) /ωc (38)

with the covariance matrix

cov (wt) =



a′ I3×3 b′ I3×3 c′ I3×3

b′ I3×3 d′ I3×3 e′ I3×3

c′ I3×3 e′ I3×3 f ′ I3×3


 q̃

a′ =e−2α t′
(
α
(
c1
(
α2 − 3ω2

c

)
− s1

(
3α2 − ω2

c

)
+

16αω2
c eα t

′
c0 + 8ωceα t

′
s0 (α+ ωc) (α− ωc)

)
−

a2
0 + ω2

c e2α t′
(
ω2
c − 11α2 + 4α t′a0

))
/
(
4αω2

ca
3
0
)

b′ =e−2αt′
(
ωcc0 − ωceαt

′ + αs0
)2
/
(
2ω2

ca
2
0
)

c′ =− e−2αt′
(
α (α− c1 + s1) + ω2

c e2αt′−

9
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ω2
c − 4αωceαt

′
s0
)
/
(
4αω2

ca0
)

d′ =
−e−2αt′

(
α (α− c1 + s1)− ω2

c e2αt′ + ω2
c

)

4αω2
ca0

e′ =e−2αt′s2
0/
(
2ω2

c

)

f ′ =
e−2αt′

(
α (−α+ c1 + s1) + ω2

c e2αt′ − ω2
c

)

4αω2
c

using the auxiliary variables

c0 = cos
(
ωc t
′) s0 = sin

(
ωc t
′)

c1 =α cos
(
2ωc t′

)
s1 = ωc sin

(
2ωc t′

)

a0 =α2 + ω2
c t′ = ∆t.

The power spectral density of the process noise is de-
noted by q̃ and the sampling period by ∆t. Equation
(34) is used to calculate the turning rate and equa-
tion (37) the damping coefficient, in conjunction with
the estimates of the velocity and the acceleration.

4.4 Measurement model
The 3D point determination method used is stereo
triangulation. As there are some uncertainties in the
calibration of the photogrammetric system, as well
as in the determination of the image coordinates m̃,
the two rays are skew and do not intersect exactly
in 3D space. The ray constellation for 3D point and
two camera images can be seen in figure 3. Because
of this imperfect intersection, the 3D determination
method minimizes the length of vector s and uses the
midpoint of the vector as an approximation of the 3D
point, which is denoted by M in figure 3. Based on
this 3D location method, the projection of the 3D
point onto the image plane is briefly given by [18] as
follows

sm̃i = PiM̃ (39)

with Pi = AiPNDi Di =
[
Ri ti
03 1

]
03 = [0, 0, 0]

PN =




1 0 0 0
0 1 0 0
0 0 1 0




Here m̃i = (u, v, 1)T is the homogeneous image co-
ordinate of the camera i and the corresponding ho-
mogeneous world coordinate is M̃ = (X,Y, Z, 1)T .
The exterior orientation of the camera is expressed

using the rotation R3×3
i and translation t3×1

i with re-
spect to a common world coordinate frame. The in-
terior camera calibration is collected in matrix A3×3

i

consisting of the principal point and the focal length
[18]. Using equation (39) for two images of the same
3D point results in two equations. These equations
can be used to reconstruct the 3D point using ei-
ther the homogeneous or the inhomogeneous method
[18]. 3D point projection is also affected by distortion
caused by the lens and sensor in the camera. During
the calibration of the photogrammetric system the
radial symmetrical, asymmetrical and tangential dis-
tortion as well as the affinity and non-orthogonality of
each camera are determined. For the sake of simplic-
ity in equation (39) the assumption was made that
the image coordinates had already been corrected for
these effects according to the method described in
[19]. The vector s can be seen as a quality crite-
rion [20, 7]. This is used in the AICON system to
deduce a standard deviation for each 3D point deter-
mination. As the two cameras of the photogrammet-
ric system are cascaded, there must be an internal
synchronization error between camera one and cam-
era two influencing vector s, depending on the whole
kinematic behaviour of the object e.g. direction and
velocity. Thus, the standard deviation is also affected
and therefore a Bayesian filter can be used, assuming
the PDF is a Gaussian distribution.

In addition, the shutter-time can also produce er-
rors during kinematic measurements as the camera
needs some integration time for a precise determina-
tion of a point’s centroid. Therefore, any movement
during this integration time must lead to a devia-
tion of the point coordinate which is dependent on
the shutter-time as well as the velocity and direc-
tion. Given that the planed trajectory is a circle, the
centroid of a retro-reflecting target tends to drift to-
wards the centre of the circle as shown in figure 4.
Assuming, to a first order-approximation, a circle on
the image plane, then the centroid’s coordinates on
a circle segment can be calculated as

xc = R

τ
sin (τ)

yc = R

τ
(1− cos (τ)) (40)

according to [21] using the curve integral. Here, R is
the radius and τ denotes the angle travelled through-
out the shutter-time. Furthermore it is assumed that
there is no light density variation during the shutter-
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Figure 3: Stereo triangulation according to [18]. The rays are skew to each other, due to the imperfect
image point measurement mi and the uncertainties in the calibration parameter.

Figure 4: Centroid tends to drift towards the cen-
tre of the circle, because of the shutter-time and the
velocity.

time.

4.5 Implementing within an IMM filter

In order to implement the proposed system models
from the last section, an appropriate Bayesian filter
type must be chosen. As both models are non-linear,
they cannot be implemented using a common Kalman
filter. Because the measurement model is assumed to
have a Gaussian distribution they are ideally suited
to be implemented in an unscented Kalman filter.
Because of the Gaussian distribution the unscented
Kalman filter is more suitable and not the particle
filter as described in [14].

The implementation of a IMM filter can be sim-
plified as it is known that only one photogrammetric
system observed the experiment and that this mea-
surement system is the same for both filters. Further
simplification can be made as the state vector in each
system model has the same dimension and the same
elements. Therefore the equation (24) can be simpli-
fied to
[
x̂it+1, P

i
t+1
]

= KFu
(
x̂−,it+1, P

−,i
t+1, zt+1, Ht+1, Rt+1

)
.

(41)
A more detailed description of the Kalman filter and
the required equations can be found in [13, 14, 22].
To overcome numerical issues within these common
equations a variant of factorization methods can be
found in [23].

5 Results
In order to analyse the rotating system, the at-
tached photogrammetric targets were cropped to-
gether within one virtual 6 degree-of-freedom (DoF)
probe, thus resulting in higher 3D point accuracy
than using just one target. The virtual point of the
6 DoF probe was calculated using a function within
the AICON software. Figure 5 shows a sketch of
the 6DoF probe and virtual target point. Where the
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Figure 5: Sketch of the virutual probe. Photogram-
metric targets, shown as circles on the probe, are
used to calculate a virtual target point shown as a
triangle.

virtual point is depicted by a grey triangle and the
photogrammetric targets as a circle. As the AICON
software does not provide a standard deviation for
this virtual point one had to be deduced. The de-
duction was made using the standard deviations pro-
vided by the real photogrammetric targets and the
mean standard deviation for the virtual tip point was
set to 40 µm for the analysis with the proposed IMM
filter.

The results of the analysis with the proposed IMM
filter, can be seen in figure 6, where each figure shows
one coordinate component with its 3σ standard devi-
ation interval scaled by a factor of 200. In these fig-
ures one can slightly see the speeding up phase of the
arm at the beginning which results in the expected
shortening of the wave length of sine signal in each
coordinate component. The mean standard devia-
tion was estimate at 69 µm. It can also be seen that
the standard deviation increases at the maximum and
the minimum of sine curve. During this experiment,
the photogrammetric system was operated at a fre-
quency of 200 Hz. According to equation (5), this
would lead to a standard deviation of 11.3 mm s−1

for the velocity. However, the mean standard devi-
ation of the velocity using the IMM filter results in
0.9 mm s−1 which clearly shows the advantage of the
Bayesian approach.

Using equation (40) the error due to the shutter
time is the difference between the observed radius
and real radius Rr

∆R =
√
x2
c + y2

c −Rr. (42)

With a shutter-time of 50 µs, a radius of 0.5 m and
a velocity of 0.5 m s−1 the error due to the shut-
ter time is ∆R = −5× 10−11 m, which is negligibly
small. Thus, comparing with figure 4 the shutter-
time causes an offset in the angle α travelled. This

can also be interpreted as an offset to the time stamp
on the common time axis in this experiment.

In order to check the performance of the IMM filter
in comparison with the common Kalman Filter, an
object with a constant velocity was simulated. The
trajectory of this simulation included a straight line
segment at the beginning and ends up in a circle seg-
ment with a radius of 0.3 m within the XY-plane, as
can be seen in figure 7. During this simulation, the
object reached a mean speed of 1.2 m s−1 and the two
models, the constant velocity and the constant turn
as introduced in section 4.1, were applied.

The simulation was carried out once with a com-
mon Kalman filter using the constant velocity model
and once with the IMM filter. Within the IMM fil-
ter, a constant velocity model in conjunction with a
common Kalman filter was used, and additionally an
unscented Kalman filter with a constant turn model.
The results of the simulation are depicted in figure
8. Within these figures, the Kalman filter estimation
error is drawn as a dotted line and the estimation
error of an IMM filter depicted as a dashed line. To
confirm that the determined PDF of an IMM filter in-
cludes all uncertainties, the 3σ standard deviation is
plotted as a solid line. Thus, 99.7 % of the estimation
errors must lie between the two solid lines. Despite
employing the Kalman filter, this can be easily veri-
fied for the IMM filter for all coordinate components.
One can clearly see that the Kalman filter crosses
this boundary during the second trajectory segment
along the circle and generates systematic deviations.
These deviations are only visible in the X and Y com-
ponents as this is the plane of the curve. The errors
are roughly the same as those of the IMM filter dur-
ing the first segment moving along the straight line
with a constant speed. Yet it can also be seen that
the estimated standard deviation of the IMM filter
increases slightly throughout the constant turn seg-
ment of the trajectory, which is a non-linear model.
As pointed out in section 3.1, this result of the com-
mon Kalman filter was anticipated.

6 Conclusion

It was shown that a kinematic uncertainty can be es-
timated in accordance to GUM, in real time and using
Bayesian filters, in order to include the kinematic be-
haviour of the object which plays an important role
in these uncertainties. To overcome the limitations of
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(a) X Coordinate (b) Y Coordinate (c) Z Coordinate

Figure 6: The estimate X, Y, Z coordinates used the proposed IMM filter with their 3σ interval scaled with
200.

Figure 7: Simulated trajectory.

a common Kalman filter, a hybrid system filter was
proposed which could adapt itself to the current kine-
matic behaviour of the object. Within the Bayesian
filters a more natural description of the system mod-
els, reflecting the kinematic behaviour of the object,
was achieved by deducing them from a continuous
description of the kinematics. This results in system
models having less influence on the position estimate
than the system models deduced from a discrete de-
scription. From the simulation above, it can be seen
that an IMM filter outperforms a common Kalman
filter and fulfils the requirements of GUM.

The experiment with a rotation system in conjunc-
tion with a photogrammetric system showed that the
hybrid filter can estimate a path uncertainty with
respect to the uncertainty of the photogrammetric
system. Furthermore, it was shown that the veloc-
ity can be estimated more accurately than when us-
ing a straightforward approach and thus supports a
more reliable kinematic uncertainty estimation in real
time.

The results therefore show that the IMM filter is a
reasonable way to estimate the kinematic uncertainty
of a process embodying different kinds of kinematic
behaviours. However the limitation of this approach

is very clear, the internal system models of the IMM
filter must roughly fit the observed process. With
regards to the low uncertainties achievable by LVM
instrumentation, this might make the choice of sys-
tem model difficult. The real-time measurement of
industrial robots might benefit from this approach
due to their high repeatability.

7 Outlook
As the system models used in a Bayesian filter are
just models of the real movement, and the measure-
ment model is a simplification, it would be neces-
sary to test the whole analysis approach against a
kinematic reference, in order to best identify miss-
ing kinematic influences or incorrect modelling. To
widen the range of possible applications, the decision
of the kinematic models should be carried out by the
method instead of requiring knowledge of the process
in advance. Applications like free-from surface scan-
ning, where a person carries a scanner with markers,
would also need to be observed in real time and could,
in turn, benefit from this analysis method.
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Abstract

Laser trackers are widely used to measure kinematic
tasks such as tracking robot movements.

Common methods to evaluate the uncertainty in
the kinematic measurement include approximations
specified by the manufacturers, various analytical ad-
justment methods and the Kalman filter. In this pa-
per a new, real-time technique is proposed, which
estimates the 4D-path (3D-position + time) uncer-
tainty of an arbitrary path in space. Here a hy-
brid system estimator is applied in conjunction with
the kinematic measurement model. This method
can be applied to processes, which include various
types of kinematic behaviour, constant velocity, vari-
able acceleration or variable turn rates. The new
approach is compared with the Kalman filter and a
manufacturer’s approximations. The comparison was
made using data obtained by tracking an industrial
robot’s tool centre point (TCP) with a Leica laser
tracker AT901 and a Leica laser tracker LTD500. It
shows that the new approach is more appropriate to
analysing kinematic processes than the Kalman filter,
as it reduces overshoots and decreases the estimated
variance. In comparison with the manufacturer’s
approximations, the new approach takes account of
kinematic behaviour with an improved description of
the real measurement process and a reduction in es-
timated variance. This approach is therefore well-
suited to the analysis of kinematic processes with un-
known changes in kinematic behaviour as well as the
fusion among laser trackers.

1 Introduction

Laser trackers have been widely and successfully used
to calibrate industrial robots for many years. The
most common calibration method is the static tech-
nique, which means that the robot moves from point
to point, pausing at each to enable calibration mea-
surements to be made. On the other hand, during
a kinematic technique (often loosely called ”dynamic
robot calibration”) the robot does not pause at cal-
ibration points to save a lot of time. But to apply
a kinematic calibration method, the kinematic un-
certainty of the measuring process as well as the dy-
namic model of the robot have to be known and the
measurement uncertainty must be lower than the ab-
solute accuracy of the robot.

In addition to robot calibration, there is another
important class of application which can benefit from
this knowledge. This is free-form surface scanning in
which a laser line scanner is kinematically tracked
as it is moved over a surface to be measured. Both
applications lead to the question: What is the un-
certainty in a trajectory measured kinematically by
laser trackers?

The laser tracker itself is a measurement device,
which follows with its laser beam a moving reflector
and measures its 3D position in spherical coordinates.
The distance to the reflector is measured by interfer-
ometer (IFM) or absolute distance meter (ADM) and
two optical angle encoders measure the direction to
the reflector. The retro-reflector returns the outgoing
laser beam back to the tracker where part of the re-
turn beam is directed onto a position sensing device
(PSD). Any lateral movement of the reflector gener-
ates an offset signal at the PSD, which is used in a
control loop to automatically point the laser beam
back to the centre of the reflector and to improve
the angle encoder readings. In a first approximation,
Cartesian values of a laser tracker 3D point can be
calculated from the distance and angle measurements
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Figure 1: Common laser tracker.

as follows,

x = d ∗ cos(θ) ∗ sin(φ)
y = d ∗ sin(θ) ∗ sin(φ)
z = d ∗ cos(φ), (1)

where θ denotes the yaw angle, φ the pitch angle and
d the distance (compare with figure 1). The angle and
distance parameters in (1) are not raw measurement
values from the encoders but are modified to account
for other design parameters in the laser tracker. Some
current laser tracker designs are shown in figure 3.

An industrial robot was used to move a cat’s-eye
retro-reflector along a predefined 3D trajectory in or-
der to obtain experimental data, including different
kinematic characteristics such as different velocities
or accelerations. This data was then used to in-
vestigate the kinematic uncertainty of a Leica Laser
Tracker AT901. The fused uncertainty between the
two Leica Laser Trackers, AT901 and LTD500, was
also considered, as it can be expected, that the fused
uncertainty is lower for the same trajectory. Dur-
ing the experiment, laser tracker measurements were
triggered by an external source. The internal control
loop of the laser tracker under test operates at a con-
stant frequency of 3000 Hz. As a part of this loop,
the PSD outputs, the angle encoders readings and the
distances are stored with an associated timestamp.
These timestamps are generated at a frequency of
1 MHz and therefore have a resolution of 1 µs. They
are used to interpolate measurements to match the
timing of the external trigger impulse so that the lat-
ter does not interrupt the normal measuring process
of the laser tracker. The final 3D point values, which
are sent to an application, are therefore based on in-
terpolated elements [1],[2].

The objective is to calculate the kinematic uncer-
tainty of the 3D trajectory of the industrial robot
measured by a Leica Laser Tracker AT901. The 3D
coordinate for this type of laser tracker can be com-
puted by (32) according to the laser displacements
and angle encoder readings. Due to the laser tracker
design type, the laser displacements and the angle
encoder readings are under the prescribed uncertain-
ties as formulated in (29) which have to be taken
in account to calculate a over-all uncertainty of the
laser tracker measurements. To apply a Bayesian fil-
ter the target position must be described in a system
model (see section 4.1 Development of the System
Model). Finally a hybrid system estimator is used
as a Bayesian filter to calculate and to improve the
kinematic uncertainty of the trajectory.

2 Kinematic Measurement

The term “kinematic measurement” can be inter-
preted in different ways, as shown in [3]. In this
paper, a kinematic laser tracker measurement is con-
sidered as a spatiotemporal measurement of a moving
reflector, hence the result can be linked via the com-
mon time axis with other measurements.

There are a number of existing methods for dif-
ferent applications which can be used to analyse
such kinematic measurements. For example, [4] sug-
gests adjustment method in a post-processing anal-
ysis step and [5] suggests a Kalman Filter as a real
time method, but with some restrictions. Amongst
other issues, the probabilistic system model of the
kinematic process must be known and all error terms
must have a Gaussian distribution. To detect peri-
odic patterns, a time series analysis was suggested by
[3]. Bayesian inference was also used in the field of
coordinate measuring machines, for a small measure-
ment volume to estimate the output probability den-
sity function (pdf), in order to describe the resulting
measurement uncertainty for non-linear dynamic pro-
cesses [6]. In this approach, the assumption has been
made that the target movement can be modelled lo-
cally by a polynomial of some degree. The estimated
uncertainty is therefore dependent on the degree of
the polynomial and on the given measurement fre-
quency. However, none of these suggested techniques
is suitable to describe the 4D path uncertainty of
large volume laser tracker measurements of an arbi-
trary path in a real-time application, which may have
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different kinematic characteristics, such as different
velocities, different accelerations, and variable turn
rates. Hence, the aforementioned techniques can not
be utilized to estimate the 4D uncertainty of an ar-
bitrary path for the fused combination between laser
trackers.

In order to improve the analysis of laser tracker
data it is possible to utilise the state-space approach
to modelling dynamic systems. Here a dynamic sys-
tem is one that changes its state over time. The state-
space approach focuses on the state vector of the sys-
tem which is under investigation. The state vector is
made up of all relevant descriptive information of the
system, such as the position and the velocity. In the
case of a spatial tracking problem, the information is
related to the kinematic characteristics of the mov-
ing reflector. The reflector, together with the laser
tracker, can therefore be seen as a dynamic system,
which can be analysed with Bayesian filters. If the
kinematic characteristic of the path is not known in
advance, this problem can be considered as a state
estimation problem of a hybrid system. In the case
of a hybrid system, the estimation of the combina-
tion of the continuous state vector as well as that of
the discrete model is required. The discrete model
reflects kinematic characteristics. For example if the
reflector moves at a constant velocity or on a curve,
or if it is accelerating, this characteristic is clearly
reflected in the state vector of the model. Hybrid
systems have been extensively studied in the field of
air traffic control [7],[8],[9],[10], autonomous vehicles
and driving assistance systems [11].

In this paper the analysis is based on Bayesian fil-
tering and a hybrid system estimator to both esti-
mate kinematic uncertainty and to improve it. The
analysed task is the kinematic measurement of in-
dustrial robot and this analysis is compared with the
aforementioned alternative methods, additional the
sensor fusion between the two laser trackers is con-
sidered.

3 Bayesian Filtering
The kinematic laser tracker measurement of a moving
reflector can be viewed as a dynamic system. To
analyse a dynamic system with the Bayesian filter
approach, two models are required:

• A system model that describes the evolution of
the system over time.

• A measurement model relating the noisy data
measurements to the state.

If these models are available in a probabilistic form,
the state space formulation is ideally suited to the
application of Bayesian filters [12].

A Bayes filter calculates a posterior distribution,
the probability distribution over the state vector xt
at time t based on all past measurements z1:t and on
all past control inputs of the system model u1:t, ex-
amples for these parameters can be found in section 4.
In general a Bayes filter consists of a prediction step
and an update step. The prediction step at time t
calculates a prior pdf using a system model and re-
quires the pdf p (xt−1|z1:t−1). As described in [13]
the prior pdf can be calculated by,

p (xt|z1:t−1,u1:t) =
∫
p (xt|xt−1,ut)

p (xt−1|z1:t−1,u1:t−1) dxt−1 (2)

The update step calculates the required posterior as
follows,

p (xt|z1:t,u1:t) = p (zt|xt) p (xt|z1:t−1,u1:t)
p (zt|z1:t−1,u1:t)

(3)

Within the update step, the current measurements
zt modify the prior pdf depending on the likelihood
function, which is defined by the measurement model.
For the derivation of the Bayes filter the assump-
tion is made that the state xt is a first-order Markov
chain. The variance of the resulting pdf after the
update step can be seen as an kinematic uncertainty
since it includes all influences of the measuring pro-
cess, as well as the system process. Therefore the
determination of the kinematic uncertainty is con-
form to the ”Guide to the Expression of Uncertainty
in Measurement”[14].

To sum up, a standard kinematic laser tracker mea-
surement can be seen as a tracking problem in which
the system model is not known and must be esti-
mated. Due to the fact that the dynamic system
model of the kinematic process is often not accurately
known in advance, the analysis method should take
several system models into account in order to calcu-
late the best estimation. For example, a very often
used system model is the constant velocity model,
thereby it is assumed, that the tracking target moves
with a constant velocity. In order to consider more
than one dynamic system model the hybrid system
estimator approach can be utilized.
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3.1 System Model

A Kalman filter is a traditional Bayesian filter but
does not perform very well when estimating the con-
tinuous state of a reflector, because it is likely that
the model on which the filter is based, does not accu-
rately represent the current behaviour of the reflector
at all times. Due to the unknown inputs u1:t of the
tracking system for the analysis, the usual approach
is to include the model inaccuracies into the process
noise, which reduces the accuracy of the state.

Estimation of both the continuous state and the
discrete model leads to a so-called hybrid estima-
tion problem [7]. The hybrid systems used in this
paper model the continuous dynamic by difference
equations and the discrete-state dynamics by a finite
Markov chain.

A discrete-time stochastic hybrid system can be
expressed as follows,

xt+1 = f it

(
xt,ut, w

i
t

)

zt = hit

(
xt, v

i
t

)
, (4)

where f i is the system model function of model i with
its system process noise w, and where hi is the mea-
surement model function of model i with its measure-
ment noise v. The model i is governed by the finite
Markov-chain

µt+1 = Πµt, (5)

where Π = {πij} ∈ Rr×r is the transition probability
matrix, µt ∈ Rr is the model probability, and r the
count of models. The state estimate can be expressed
as

x̂t+1 =
r∑

i=1
x̂it+1p

(
mi
t+1|z1:t+1

)
, (6)

where x̂it+1 =
∫
xt+1p

(
xt+1|z1:t+1,mi

t+1
)

dxt+1 is the
state estimate of the state xt+1 given the conditional
probability, the model at time t + 1 is mi

t+1 and is
computed by the state estimator matched to model i,
based on [7]. Hence, the estimator in (6) can be seen
as a weighted sum with the weights p

(
mi
t+1|z1:t+1

)
,

which are the model probability µit+1 of the model i
at time tt+1.

The Interacting Multiple Model (IMM) filter is a
widely used hybrid system estimator due to its ex-
cellent performance in comparison with other hybrid
system estimators [7]. It approximates a set of possi-
ble system models and calculates a combination over

all implemented models [9]. Possible models of reflec-
tor manoeuvres can therefore be defined in advance,
depending on the expected kinematic process. In an
IMM filter, the implemented models can also have
state vectors with different dimensions. The authors
of [7] have proposed an improvement to the IMM fil-
ter called Residual-Mean Interacting Multiple Model
(RMIMM). They have shown that the model estima-
tion delay of a RMIMM filter is slightly better than
the one of an IMM filter. The main difference be-
tween the IMM and the RMIMM can be assessed by
a specific calculation of the weights for (6), in order
to reduce the false model estimation. This is achieved
by increasing the difference between the likelihood of
the correct model and the others.

The combination of the different models are com-
bined according to a general Markov model, for the
transition between the states. An IMM / RMIMM
filter consists of a bank of r parallel Bayesian fil-
ters and a transition matrix, which defines the transi-
tion probability between the states of each model [8].
These filters are usually made up of a range of system
models, which are deployed by different Bayesian fil-
ters like a Kalman– or Particle Filter [9], [15]. Three
major steps are carried out in an IMM / RMIMM fil-
ter:

• Interaction/Mixing

• Filter

• Estimate and Covariance Combination

The following description of these three steps is
loosely based on the derivation of [9]. For a simplified
description the Kalman filter is used as an example
of a Bayesian filter.

3.1.1 Interaction/Mixing Step

The first step is the interaction/mixing step. Here,
calculations of the mixed inputs for each model are
made. Assuming a Kalman filter, the mixed inputs
are the means and the covariances for each filter that
can be calculated as

x̂0j
t−1 =

r∑

i=1
µ
i|j
t−1x̂it−1 j = 1, · · · , r

(7)

P 0j
t−1 =

r∑

i=1
µ
i|j
t−1

{
P it−1 +

[
x̂it−1 − x̂0j

t−1

]
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[
x̂it−1 − x̂0j

t−1

]T}
j = 1, · · · , r

(8)

where x̂it−1 and P it−1 are the mean and covariance for
the model i at time step t−1. The conditional proba-
bility µi|jt−1, that the system made the transition from
model i to model j at time t − 1, can be calculated
as

µ
i|j
t−1 = 1

cj
πijµ

i
t−1 i, j = 1, · · · , r (9)

cj =
r∑

i=1
πijµ

i
t−1 j = 1, · · · , r (10)

where πij is the transition probability for each model
mi, and mj according to the transition probability
matrix of the Markov model. Finally, cj is the nor-
malization factor.

3.1.2 Filter Step

In this second step, the Bayesian filters are applied.
If one assumes the Kalman filter for each model mi,
the prediction and update step are as follows,
[
x̂−,it , P−,it

]
= KFp

(
x̂0j
t−1, P

0j
t−1, A

i
t−1, Q

i
t−1
)

(11)
[
x̂it, P

i
t

]
= KFu

(
x̂−,it , P−,it , zt, H

i
t , R

i
t

)
(12)

where KFp ( · ) stands for the Kalman filter predic-
tion step and KFu ( · ) for the Kalman filter update
step. A denotes the system transition matrix and Q
the system covariance matrix. Both are derived from
the system model mi. According to the measurement
model, H represents the measurement matrix and R
the covariance matrix of the measurement model. In
addition to the mean and covariance, the model prob-
ability for each model mi must be calculated.

The probability for an IMM / RMIMM filter is de-
termined as

µjt = 1
cΛ

j
tcj j = 1, · · · , r (13)

where c is the normalization constant, calculated as

c =
r∑

j=1
Λjtcj . (14)

Within a IMM filter the likelihood of the measure-
ment for each model is calculated as

Λjt = N
(
djt ; 0, Sjt

)
(15)

where djt are the residuals of the measurements and
Sjt is the innovation covariance matrix for the model
mj in the KF update step. The likelihood for the
RMIMM filter is calculated by

Λjt =





Nj
tN(dj

t ;0,Sj
t )∑r

i=1 N
i
tN(dj

t ;0,Sj
t ) if djt 6= 0

N
(
djt ; 0, Sjt

)
otherwise

(16)

with

N i
t =





∥∥∥dit
∥∥∥
−1

if djt 6= 0
1 otherwise

(17)

where djt is the mean value of the residuals in model
i at time t. The conditional likelihood Λj for each
filter is directly comparable to the data association
problem. This problem is well known by simulta-
neous localization and mapping (SLAM) algorithms
and has been extensively investigated [16]. The au-
thors of [7] have pointed out that the IMM filter can
be improved when the difference between the likeli-
hood values is increased. In SLAM algorithms more
features are included in an augmented state vector
to obtain a greater difference between the likelihood
values to avoid ambiguities [17].

3.1.3 Estimate and Covariance Combination

In this third step, the combined state estimate and
covariance are calculated as

x̂t =
r∑

j=1
µjt x̂

j
t

Pt =
r∑

j=1
µjt

{
P jt +

[
x̂jt − x̂t

] [
x̂jt − x̂t

]T}
. (18)

It can be seen, that the IMM / RMIMM filter is ide-
ally suited to the analysis of longer kinematic mea-
surement where more than one model exists in a dy-
namic process. Due to the acceleration there are at
least two different models, at the beginning and at
the end of each kinematic movement, which is other-
wise considered as a constant velocity process.

3.2 Measurement Model
The aforementioned Bayesian filter also consists of a
measurement model composed of a deterministic and
a probabilistic model. (1) can be viewed as the de-
terministic model and the probabilistic model can be
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derived from it with additional probabilistic param-
eters. With respect to (12) it can be seen, that this
model and its covariance can change with each time
steep. This property is important for the analysis
of kinematic laser tracker measurements, due to the
fact that a laser tracker generally consists of a range
measuring device as well as two angle encoders. This
means that the uncertainty depends on the reflector’s
position, which changes every time step throughout a
kinematic measurement. In spite of some geometrical
design differences, the 3-D point variance of a laser
tracker can be estimated via the uncertainty propa-
gation as a first-order approximation over

σ2
x = (cos θ sinφ)2 σ2

d + (−d sinφ sin θ)2 σ2
θ+

(d cosφ cos θ)2 σ2
φ

σ2
y = (sin θ sinφ)2 σ2

d + (d cos θ sinφ)2 σ2
θ+

(d cosφ sin θ)2 σ2
φ

σ2
z = (cosφ)2 σ2

d + (−d sinφ)2 σ2
φ, (19)

where σd denotes the standard deviation of distance,
σφ the standard deviation of the pitch angle, and σθ
the standard deviation of the yaw angle, see figure 1.
(19) do not take into account any correlations be-
tween the axes.

In [4] the author describes the synchronization be-
tween some trigger pulses as the main source of un-
certainty caused by kinematic measurements for the
Leica laser tracker model, as the PSD control point
—the second error source— is determined during the
initialisation of the laser tracker [18]. The synchro-
nization uncertainty is directly linked to the speed,
which results in the first order approximation of,

xk = x+ Vx · ts

yk = y + Vy · ts

zk = z + Vz · ts. (20)

Hence, a kinematic 3D variance can be expressed by

σ2
xk

= σ2
x + t2s σ

2
Vx

+ V 2
x σ

2
ts

σ2
yk

= σ2
y + t2s σ

2
Vy

+ V 2
y σ

2
ts

σ2
zk

= σ2
z + t2s σ

2
Vz

+ V 2
z σ

2
ts (21)

where ts represents the synchronization error, and
σts its standard deviation. V is the velocity and σV
is its standard deviation. Here it is assumed that
ts denotes the synchronization between each trigger

impulse as well as the internal synchronization be-
tween the distance measuring device and the angle
encoders. (20) and (21) are only valid for movement
with constant velocity and if no cross correlations be-
tween the components occur.

In order to describe a kinematic 3D point uncer-
tainty, environmental influences must also be taken
into account. In (19) it can clearly be seen that the
kinematic 3D point variance depends on position and
synchronization. With a full description of the mea-
surement model and its uncertainty, kinematic laser
tracker measurements are appropriate for analysis us-
ing a Bayesian filter.

3.3 Multi Sensor Fusion
In order to use measurements of multiple laser track-
ers together, these must be fused to achieve a more
accurate state estimation. In general, multi sensor
fusion can be accomplished within a centralized ar-
chitecture or within a decentralized architecture. The
centralized architecture is also known as measure-
ment fusion, as all raw measurements are transmitted
to a single fusion node in a sensor network before they
are processed. This architecture is very sensitive to
spatial and temporal misalignments of the involved
sensors [19]. On the other hand the decentralized
architecture, also called track-to-track fusion, has a
lower performance than the measurement fusion [20],
[19], [21]. Within a decentralized architecture, ev-
ery sensor node preforms its own Bayes filtering to
gain a better state estimation, before transferring its
information to the fusion node where all state esti-
mations of all sensors are fused together [19]. It can
be expected that, the transformation parameters be-
tween the laser trackers can be determined sufficient
enough, along with the signals that can be precisely
synchronized. Therefore measurement fusion is the
only architecture type that is considered. In order to
use this fusion, (12) must be adjusted as follows

[
x̂it, P

i
t

]
= KFu

(
x̂−,it , P−,it , z̃t, H̃

i
t , R̃

i
t

)
(22)

with

z̃t =




z1
t
...

zlt


 H̃ i

t =




H i,1
t
...

H i,l
t




R̃it = diag
[
Ri,1t , · · · , Ri,lt

]
,
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where l is the number of involved laser trackers should
be fused. A striking feature of this method can be
seen in (22), as it can incorporate measurements
from distinct laser tracker models, as long as there
is reliable uncertainty describing the measurements.
In this fusion approach, it is assumed that the ex-
pectancy value of the delay time is zero and the vari-
ance is considered as part of the measurement model
as proposed in equation (21). An approach deal-
ing with systematically delayed measurements within
Bayes filters can be found in [22].

4 Implementation
The following section describes the analysis of a kine-
matic laser tracker measurement using a Leica AT901
Laser Tracker that followed a cat’s eye reflector ma-
nipulated by an industrial robot. The predefined tra-
jectory along which the reflector was moved at a con-
stant speed of 500 mm/s and can be seen in figure 4.
Due to robot performance limitations, 500 mm/s was
the maximum constant speed for this trajectory. The
trajectory was defined by the edges of a cube with
semicircles on its sides. The robot first moved the
reflector along the edges of the cube and then along
the semicircles.

4.1 Development of the System Model
With regard to the experiment design and the test
trajectory, three system models should be considered:

• Constant velocity

• Constant acceleration

• Coordinated turn

The constant velocity model is used to model the
parts of trajectory where a constant velocity can be
expected, as e.g. on the edges of the cube a con-
stant velocity of 500 mm/s.Whereas the coordinated
turn model is applied to cover the semicircles on the
sides.Furthermore the acceleration model is utilized
to model the behaviour before and after a change of
the moving direction at the corners or at the begin-
ning and at the end of the experiment.

The constant velocity of the reflector is expressed
in a continuous, white-noise acceleration model,
where the velocity is a Wiener process according to
[9]. Hence, the state space vector of the first model

is xI = [x ẋ y ẏ z ż]T. The discrete-time state equa-
tion is expressed as

xI
t+1 = diag

[
F I, F I, F I

]
xt + wI

t

F I =
[
1 ∆t
0 1

]
(23)

with the sampling period ∆t. The covariance of the
discrete-time process noise wI

t is

QI = diag
[
QI
c, Q

I
c, Q

I
c

]
q̃I

QI
c =

[
1
3∆t3 1

2∆t2
1
2∆t2 ∆t

]
(24)

assuming q̃I is a constant power spectral density of
the process noise. The model with a constant accel-
eration is expressed as

xII
t+1 = diag

[
F II, F II, F II

]
xt + wII

t

F II =




1 ∆t 1
2∆t2

0 1 ∆t
0 0 1


 (25)

with the state vector x = [x ẋ ẍ y ẏ ÿ z ż z̈]T ac-
cording to [9]. Here the acceleration is a Wiener pro-
cess and the covariance of the discrete-time process
noise wII

t is

QII = diag
[
QII
c , Q

II
c , Q

II
c

]
q̃II

QII
c =




1
20∆t5 1

8∆t4 1
6∆t3

1
8∆t4 1

3∆t3 1
2∆t2

1
6∆t3 1

2∆t2 ∆t


 (26)

with q̃II the power spectral density of the process
noise. The coordinated turn model assumes a con-
stant turn rate ω in a navigation plane [10]. Here the
turn rate is defined as the norm of the angle velocity
vector Ω and can be calculated as

ω = ‖Ω‖ = |v × a|
v2 = |v| |a|

v2 = a

v
(27)

if Ω⊥v [10]. Figure 2 shows the relationship between
the velocity vector v as well as the acceleration vector
a in the navigation plane, to which the angle velocity
vector Ω is perpendicular. The discrete-time coordi-
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Figure 2: Coordinated turn model.

nated turn model can be expressed as

xIII
t+1 = diag

[
F III (ω) , F III (ω) , F III (ω) , 1

]
xt + ΓwIII

t

F III (ω) =




1 sin (ω∆t) /ω (1− cos (ω∆t)) /ω2

0 cos (ω∆t) sin (ω∆t) /ω
0 −ω sin (ω∆t) cos (ω∆t)




Γ =




0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


 (28)

with the augmented state vector
x = [x ẋ ẍ y ẏ ÿ z ż z̈ ω]T, based on [10] and the
noise gain matrix Γ to define the effect of the process
noise.

The three system models should be sufficient to
describe the kinematic process of the robot in hy-
brid system estimator without losing accuracy as in a
Bayes filter, which considers only one system model
like, e. g., the Kalman filter. In the hybrid esti-
mator, the curves, the constant velocities as well as
the accelerations between each period, are taken into
consideration.

4.2 Development of the Measurement
Model

In general, commercial laser trackers can be assigned
to one of two classes depending on their design.
There are laser trackers with with:

• a gimbal-mounted beam steering mirror and

• a gimbal-mounted beam source

Figure 3 shows examples of different types of a laser
tracker. Calibration models have been published for
both types of laser trackers. A geometrical align-
ment model for the gimbal-mounted beam source is

Figure 3: Different design types of laser trackers, ei-
ther with a gimbal-mounted beam steering mirror or
with a gimbal-mounted beam source. The ADM and
IFM are depicted as striped and in grey.

presented in [23] and in [24]. The Leica Laser Tracker
AT901 and the LTD500, belongs to the first group.
All these models describe only the geometrical align-
ment parameters. These are not sufficient to calcu-
late a precise probability density function of a moving
reflector, which can be used in a Bayesian filter algo-
rithm, as they do not take into account environmental
and kinematic influences.

To develop a measurement model for a trajec-
tory measured kinematically by a Leica laser tracker
AT901 or LTD500, the model described in [25] is
augmented by additional terms which represent kine-
matic as well as environmental effects. A group of
16 parameters are used in the geometrical alignment
model described in [25]. These parameters are:

• Transit axes offset e

• Mirror offset f

• Beam offset O1x O1y

• Cover plate offset O2x O2y

• Mirror tilt c

• Transit axis tilt, i

• Beam axis tilt Ix Iy

• Yaw angle encoder eccentricity Ex Ey

• Pitch angle encoder eccentricity Kx Ky

• Pitch angle offset j

8
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• Distance parameter k

This model is valid in both static and kinematic mea-
surements, but for the latter, additional parameters
must be taken into consideration. A corrected value
for the yaw angle θc, the pitch angle φc, and the dis-
tance dc, can be calculated using these parameters
and the correction equations of [25] using the follow-
ing equations

θc = fyaw (hθ)
φc = fpitch (hφ)
dc = fdistance (hd) (29)

where h is parameter vector containing the parame-
ters for the correction functions f of the yaw angle θ,
the pitch angle φ, and the distance d.

To take environmental influences into account, the
distance distc must be additionally corrected with the
formulas according to [26], which depend on

• the temperature

• the air pressure

• the relative humidity

• the wave length of the laser source

• the measured distance.

If these parameters are stored in a vector hmeteo, the
meteorology correction can be expressed in brief as

dć = fmeteo (hmeteo, dc) . (30)

To apply (30), it is assumed that these represent
the current refractive index along the tracker’s laser
beam. After utilising the full correction process, a
static 3D point can be calculated with (1) as

x = dć ∗ cos (θc) ∗ sin (φc)
y = dć ∗ sin (θc) ∗ sin (φc)
z = dć ∗ cos (φc) . (31)

Assuming that one delay time includes the delay time
for each component, i.e. the distance and the angle
encoders’ readings, a kinematic 3D point can be de-
termined with

xk = dć ∗ cos (θc) ∗ sin (φc) + vxts + 1/2 axt2s
yk = dć ∗ sin (θc) ∗ sin (φc) + vyts + 1/2 ayt2s
zk = dć ∗ cos (φc) + vzts + 1/2 azt2s (32)

where v expresses the speed and a the acceleration
for each axis and ts the synchronization error.

A deterministic model of a Leica laser tracker is
described by (29) to (32). However, a measurement
model for a Bayesian filter consists additionally of
a probabilistic model. This can be deduced with
the variance propagation or with the Monte Carlo
Method [27]. For complex functions, it is simpler to
use the Monte Carlo Method instead of the variance
propagation. In addition, the Monte Carlo Method
avoids linearisation errors [13]. (32) used in conjunc-
tion with the Monte Carlo Method, can be inter-
preted as a kinematic virtual laser tracker (kVLT),
which determines the probability density for any arbi-
trary point by applying 30 critical parameters. Nor-
mal users can not generally obtain the PSD values
during tracking and so the angle standard deviation
has to be adjusted to include the behaviour of the
PSD sensor. As (30) do not consider a 3D refraction
index, the angle encoder readings must be further
modified.

4.3 Combining within an IMM Filter
To implement the measurement model and the dif-
ferent system models as described in subsection 4.1,
a Bayesian filter type must be chosen. Specific de-
tails about the different types of Bayesian filters can
be found in [13] and [22]. This decision depends on
the model type, linear or non-linear, the parameters’
distribution and the approximation error. The ex-
tended Kalman filter was chosen in [9], for the non-
linear coordinated turn model, and the Kalman filter
for a constant velocity model. On the other hand,
the particle filter was used for all model types in [15].

For all filters in the filter bank, it is assumed that
the laser tracker is always the same. The measure-
ment model is known and the measurements are nor-
mal distributed. The filter update equation (12) can
be rewritten as

[
x̂it, P

i
t

]
= KFu

(
x̂−,it , P−,it , zt, Ht, R

i
t

)
. (33)

In (21), the kinematic variance of a point is depen-
dent on its velocity and variance. The estimated
velocity and its variance are different for each filter
model. The laser tracker model of (32) is used to de-
termine for each time instance t a covariance matrix
Rit as follows

Rit = E
(
[xr − xr] [xr − xr]T

)
(34)

9
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Anderson-Darling Lilliefors
Normally distributed 95.1% 94.9%

Table 1: Normal distribution test.

where xr is the state vector of (xk yk zk) and con-
tains the individual random variables according to
the Monte Carlo Method of (32).

Due to the assumption of normally distributed
measurements, the linear constant velocity model
and constant acceleration model are implemented
in a Kalman filter, whereas the non-linear coordi-
nated turn model is implemented in an Unscented
Kalman filter. To achieve a higher accuracy the Un-
scented Kalman filter is chosen instead of the Ex-
tended Kalman filter. The unscented transformation
is more accurate for the propagation of the means and
the covariances than the linearisation, which is used
by an Extended Kalman filter as shown in [13] and
[22]. As described in [13], the Unscented Kalman fil-
ter is more convenient to use rather than the Particle
Filter if the underlying distribution is approximately
normal. Due to the normal distribution the imple-
mented IMM / RMIMM can be seen as a Gaussian
sum filter.

5 Results

To determine if the measurement model can be con-
sidered as normally distributed, two different tests
were made. The first test is the Anderson-Darling
test and the second one is the Lilliefors test. The Lil-
liefors test is based on the well known Kolmogorov-
Smirnov test, but in contrast to the latter, the Lil-
liefors test can be applied even if the mean and co-
variance are unknown, as described in [28]. In or-
der to compare the two the Anderson-Darling test
was also applied. This is based on different statis-
tics from the Kolmogorov-Smirnov test and perfor-
mances better[29]. The test results for both tests
are shown in table 1. For 95% of the test data both
tests show that the measurement model can be con-
sidered as normally distributed. For both tests, 7900
data points from the test trajectory as shown in fig-
ure 4, were used in conjunction with the Monte Carlo
method applied to (32) with 5000 samples. The sig-
nificant level α was set to 0.05 for both tests. It
is therefore justifiable to use the Kalman and Un-

scented Kalman filter in a hybrid system model for
further analysis, as previously suggested.

To compare the new analysis methods, i.e. the
RMIMM filter and the IMM filter, against more com-
monly used methods, i.e. the specification of Leica
and the Kalman Filter, all methods were tested with
the same data set. All shown results were computed
with a 1-sigma-interval for the Baysian filters.

The kinematic accuracy for a Leica Laser Tracker
LTD500 is specified with ±20− 40 µm/m, in [30], [1].
According to [31], this specification can also be ap-
plied to the Leica Laser Tracker AT901. Taking ac-
count of the reflector’s relatively slow speed of ap-
proximately 500 mm/s, compared with the tracker’s
maximum tracking speed of 6 m/s, the lower bound
of 20 µm/m was chosen for the analysis. The results
of this specification are shown in figure 4a where the
range dependency is clearly visible. For the com-
monly used Kalman filter method suggested in [5],
the Leica specification was used as the measurement
model. The results of the Kalman filter method are
shown in figure 4b. As expected, the standard devia-
tion drops significantly from a minimum of 92 µm to
68 µm, but it is also clear that the variances were set
to very large values in order to cover the inaccuracy
of the applied model. This effect has already been
mentioned in section 3 Bayesian Filtering.

To improve the Kalman filter method, the RMIMM
filter and IMM filter were applied to the data set.
Figure 5 shows the results and there is no notice-
able difference between them. Due to the slow speed
of the experiment and the nearly still stand at the
model change points at the corners, the advantage
of a faster model detection of the RMIMM filter, in-
stead of the IMM filter, cannot be seen. In contrast,
the difference between the commonly used methods
in figure 4 and hybrid algorithm methods in figure 5,
is obvious. With the coordinated turn model, the hy-
brid filters are also capable of dealing with the cross-
track deviations of the robot. They are also sensi-
tive to the low standard deviation of laser tracker
measurement, which is not the case with the more
common Kalman filter. The clear range dependency
shows that the speed of 500 mm/s is too slow there-
fore the alignment errors and range dependency over-
lap the kinematic uncertainty effects. By contrast
there must be a significant lower standard deviation
at the corners where the speed drops nearly to zero
in order to change its direction of movement as can
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(a) Specification (b) Kalman filtering

Figure 4: Standard analysis methods.

be seen from figure 6. The higher range dependency
at slower speeds, emphasizes the importance of reli-
able static laser tracker models, assuming the delay
time can be taken as ±5 µs as claimed in [2] and [4].
Specifying a delay time of zero could be justified by
the post-processing interpolation step, as discussed
in section 1 Introduction.

In order to qualify the performance of the hybrid
system estimators a simulation of one edge of the
cube was conducted to obtain entirely known data.
In this simulation the developed laser tracker model
was used, with the assumption, that dynamic and
kinematic effects can be neglected. As the assump-
tion was made, that there is a constant velocity on
the edges of the cube, it is sufficient to use a Kalman
filter. The result of the Kalman filter was a mean
standard deviation of 21 µm, which shows how small
the uncertainties in figure 5 and in the table 2 are.

Another advantage of the hybrid algorithms is that
they avoid overshoots, which not only generate poor
standard deviation but also slightly wrong state es-
timates. As expected, these overshoots are found at
path corners where the system model changes. These
overshoots are no specific result of the Kalman filter
method. They are caused by the fact that a normal
Bayes filter considers only one system model. This
means also other Bayes filters, like the particle filter,
would produce wrong state estimates as so shown in
[6]. One example of these overshoots is shown in fig-
ure 7. Hybrid algorithms successfully prevent over-
shoots, due to their fast model detection. There is

no occurrence of overshoots where the RMIMM fil-
ter generates a faster model detection than the IMM
filter. In addition figure 7 shows, that there were
no clear model change points at every corner. The
robot makes a small loop instead of a curve or sharp
edge, which leads to many more model changes than
expected and ultimately to calculation of a higher
standard deviation by the hybrid algorithms.

To compare all analysis methods, their mean stan-
dard deviations were calculated and listed in table 2.
One can see that the IMM and RMIMM filters deliver
the smallest mean standard deviation with 0.024 mm.
With respect to the theory of the RMIMM filter it
was expected, that it delivers the smallest mean stan-
dard deviation. This is dependent on the long still
stand time at the beginning and at the end of the ex-
periment. During these periods, small movements of
the robot were interpreted as model changes by the
RMIMM filter, which provided a higher standard de-
viation as a result. It can be seen, therefore, that the

RMIMM IMM Specific. KF
Mean standard 0.024 0.024 0.102 0.074deviation [mm]

Table 2: Comparison between the analysis methods.

hybrid filters deliver roughly four times better stan-
dard deviation than the approximation of the man-
ufacture and three times better than the common
Kalman filter approach.

11
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(a) Interacting Multiple Model (IMM) Filter. (b) Residual-Mean Interacting Multiple Model (RMIMM) Filter.

Figure 5: Hybrid systems analysis methods.

Figure 6: The reached speed for each point of the
experiment.

The measurement fusion technique mentioned
above is compared with the analysis method where
only one laser tracker was used, figure 8 shows the re-
sult. This result was obtained with the same IMM fil-
ter constellation. It is visible, that the fusion between
the two laser trackers LTD500 and AT901 achieves a
better state estimation, which is 0.0181 mm. This
is an improvement of roughly 25% over the IMM
method, based only of the data of the AT901.

6 Conclusion

In the example presented above, of a robot following
a trajectory at a constant speed, it has been shown
that its analysis as a hybrid system can provide an
estimation of the path’s uncertainty. Due to the slow
speed adopted in the test, it was not possible to de-
termine if the RMIMM filter, in contrast to the more
common IMM filter, could achieve its expected faster
model detection. However, it was obvious that both
hybrid system filters, in conjunction with the aug-
mented measurement model, achieve a significantly
better uncertainty estimation than a Kalman filter
or the manufacturer’s approximation can provide. In
particular, the overshoots of the Kalman filter ap-
proach can be avoided, which makes the proposed
approach suitable for more complex kinematic trajec-
tories. Along with the capabilities of the augmented
measurement model to reflect local characteristics, it
is possible for the new approach to analyse the trajec-
tory in a more appropriate way. Even if the proposed
approach is also suitable for real-time applications,
such as integration in a robot control loop, the sam-
pling rate of the laser tracker must be considered.

The results reveal that the alignment errors are
more important than synchronisation errors if the de-
lay time is relatively short. This effect is larger in
a more far-range application. As the environmental
conditions have a significant influence on an electro-
magnetic beam, it would be useful to have a time-
varying refractive index to correct all readings of a
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Figure 7: Over shoots provided through the Kalman
filter in comparison with the estimation of the hybrid
filter algorithms.

laser tracker.
Whereas the sensor fusion between two laser track-

ers achieves an improvement of roughly 25%, the ad-
vantage of this method is for large volumes, where
one laser tracker can compensate the range depen-
dent uncertainty of the other if the trackers have the
right constellation. Apart from that it is important to
see that the fusion of a laser tracker with a higher un-
certainty than one with a lower uncertainty, achieves
an over all improvement of the estimated uncertainty
of the state, which is postulated by the Bayesian the-
ory.

However, the analysis of a kinematically measured
trajectory with Bayesian filtering, in conjunction
with a hybrid system estimator, is a reasonable way
to estimate and improve its uncertainty. Nonethe-
less, it must be remembered that the internal system
models must be roughly appropriate to the observed
process.

7 Outlook
Bayesian filters rely on the first-order Markov chain
assumption which is invalid if there are systematic
effects not taken into consideration. It is therefore

Figure 8: Improved state estimation through the
laser tracker fusion.

necessary to generate a kinematic reference to test
the measurement model with the objective of identi-
fying additional, missing kinematic parameters which
influence the system but are only noticeable at higher
speeds.

A benefit of adopting Bayesian filters is that the
new proposed approach is well suited for analyzing a
trajectory observed by more than one laser tracker.
This sensor-fusion approach should lead to a signifi-
cant lower trajectory uncertainty.

With regards to the coordinated turn model, it is
possible here to calculate an approximation of the ori-
entation angles. This approximation could be used
to improve a six degrees of freedom (6DoF) esti-
mation, where Leica’s T-Cam (6DoF tracking acces-
sory) cannot deliver readings because it has a measur-
ing frequency of 100 Hz instead of the laser tracker’s
1000 Hz.
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