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Abstract

We show that the Stokes operator A on the Helmholtz space Lpσ(Ω)
for a bounded Lipschitz domain Ω ⊂ Rd, d ≥ 3, has a bounded H∞-

calculus if
∣∣∣1p − 1

2

∣∣∣ ≤ 1
2d . Our proof uses a new comparison theorem for

A and the Dirichlet Laplace −∆ on Lp(Ω)d, which is based on “off-
diagonal” estimates of the Littlewood-Paley decompositions of A and
−∆. This comparison theorem can be formulated for rather general
sectorial operators and is well suited to extrapolate the H∞-calculus
from L2(U) to the Lp(U)-scale or part of it. It also gives some infor-
mation on coincidence of domains of fractional powers.
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1 Introduction

For a sectorial operator A of angle ω on a Banach space X one can define
the holomorphic functional calculus by a Dunford integral

f(A) =
1

2πi

∫
∂Σν

f(λ)R(λ,A) dλ (1)

for all bounded analytic funtions f on Σσ := {z ∈ C \ {0} : |arg z| < σ} with
ω < ν < σ < 2π and

∫
∂Σσ
|f(λ)|/|λ| |dλ| < ∞. A has a bounded H∞(Σσ)-

calculus if there is a uniform estimate

‖f(A)‖B(X) ≤ C‖f‖H∞(Σσ) (2)

for all such f . This functional calculus has found a lot of interest in evolu-
tion equations because it often allows for optimal regularity estimates [4],
[6], [12], [17], [20], [21]. By now there is a large literature establishing the
boundedness of the H∞-calculus for very large classes of partial differential
operators A on Lp(U)-spaces with 1 < p <∞. However, even for the Laplace
operator A = −∆ on Lp(Rd) the proof requires Fourier multiplier theorems
(i.e. Littlewood-Paley theory), early results on elliptic operators estimated
(1), (2) with the calculus of pseudo-differential operators and there are still
some open questions, e.g., it seems that the boundedness for the Stokes op-
erator on a Helmholtz space Lpσ(Ω), Ω bounded, was only known for domains
with a “smooth” boundary but not for a Lipschitz domain.

The purpose of this paper is to close this gap and also to present a new
method for the H∞-calculus, which is well adapted to the task of extrapo-
lating a bounded H∞-calculus for A on L2(U) to the whole Lp-scale, or part
of it. Our approach is a refinement and a simplification of the comparison
method of [11]. Assume that B has a bounded H∞-calculus on a fixed Lp(U)-
space. The idea is that if a second sectorial operator A is “close enough” to
B it will inherit boundedness of the H∞-calculus.

Recall that the boundedness of the H∞-calculus can be characterized in
terms of (certain) Littlewood-Paley estimates ([12, Remark 2(b)])

‖x‖Lp ∼
∥∥∥(∑

n∈Z

|ϕ(2nA)x|2
)1/2
∥∥∥
Lp
, x ∈ Lp(U), (3)

where the analytic function ϕ on Σσ decays polynomially at 0 and ∞. The
idea is now that we “compare” the Littlewood-Paley decompositions of A
and B and the “closeness” condition we use is motivated by the following
simple calculation. Let ψ be a second function with the properties of ϕ such
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that
∑

n∈Z ψ
2(2nλ) = 1 for λ ∈ Σσ. Then, for x ∈ Lp(U),∥∥∥(∑

n

|ϕ(2nA)x|2
)1/2
∥∥∥
Lp

=
∥∥∥(∑

n

∣∣ϕ(2nA)
[∑
m

ψ2(2n+mB)x
]∣∣2)1/2∥∥∥

Lp

≤
∑
m

∥∥∥(∑
n

|ϕ(2nA)ψ(2n+mB)ψ(2n+mB)x|2
)1/2∥∥∥

Lp

≤
(∑

m

a−|m|
)∥∥∥(∑

n

|ψ(2nB)x|2
)1/2∥∥∥

Lp
≤ C‖x‖Lp ,

(4)

if we assume the following “off-diagonal” estimates with respect to the
Littlewood-Paley decomposition∥∥∥(∑

n

|ϕ(2nA)ψ(2n+mB)xn|2
)1/2
∥∥∥
Lp

≤ Ca−|m|
∥∥∥(∑

n

|xn|2
)1/2
∥∥∥
Lp

and∥∥∥(∑
n

|ϕ(2nA)′ψ(2n+mB)′x′n|2
)1/2
∥∥∥
Lp′

≤ Ca−|m|
∥∥∥(∑

n

|x′n|2
)1/2
∥∥∥
Lp′

(5)

for some a > 1. Note that the second condition gives the lower estimate of
(3) by a similar dual argument. Hence, if B satisfies (3) and A satisfies (5)
then by (4) also A has a bounded H∞-calculus. As we shall show below (see
Proposition 3), condition (5) holds, e.g., if D(Aαj) = D(Bαj) (with equivalent
norms) for two indices with α1 < 0 < α2 and A is R-sectorial, i.e. for some
C > 0 and all choices of λ1, . . . , λn 6∈ Σσ, x1, . . . , xn ∈ Lp(U) we have∥∥∥(∑

j

|λjR(λj, A)xj|2
)1/2
∥∥∥
Lp
≤ C

∥∥∥(∑
j

|xj|2
)1/2
∥∥∥
Lp
. (6)

And this condition is clearly related to Littlewood-Paley theory. (6) is known
to hold, e.g., if the semigroup e−tA satisfies (generalized) Gaussian bounds
(see, e.g. [17, Chapter 8]).

This argument is particularly well suited for extrapolation from L2(U) to
the Lp(U)-scale. Often it is possible to check the equality of some fractional
domains of A and B on L2(U). Then we have (5) on L2(U) for some a > 1 by
the last remark. If A and B are R-sectorial in Lp then we have (5) in Lp for
a = 1. Interpolating (5) in L2 and (5) in Lp then gives (5) on all Lq(U) with
q between 2 and p (with a different a > 1, we refer to Theorem 5 below), i.e.
if A satisfies (6) and B has a bounded H∞-calculus on these Lq(U)-spaces,
so does A. For an illustration concerning elliptic operators, see Section 4.
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We mentioned that condition (5) can be obtained from the equality (with
equivalent norms) of fractional domains of A and B. Conversely, condition
(5) implies equality of certain fractional domains (see Theorem 1). Our extra-
polation scheme makes it therefore possible also to extrapolate the coinci-
dence of fractional domains of A and B from L2 to the Lp-scale.

For the Stokes operator A on the Helmholtz space Lpσ(Ω) we have the
additional difficulty that we want to compare A with the Dirichlet Laplace
operator B = −∆ on the larger space Lp(Ω)d. To this end we introduce a
variant of condition (5) including a retraction of Lp(Ω)d onto Lpσ(Ω), which
is defined by the Helmholtz projection (see Theorem 9). According to the
latter argument the Stokes operator has a bounded H∞-calculus on Lpσ(Ω) if
we can show that

• the Helmholtz projection Pp is bounded on Lp(Ω)d,

• we have L2
σ(Ω)s/2,A = Hs

σ(Ω) and (L2(Ω)d)s/2,B = Hs(Ω)d for |s| < 1/2
where Xs,A denontes (D(As), ‖As · ‖)∼ on X,

• A is R-sectorial on Lpσ(Ω).

The latter we show by extending Shen’s proof in [22] for sectoriality of A to

a square function estimate as in (6) for
∣∣∣1p − 1

2

∣∣∣ ≤ 1
2d

, d ≥ 3.

See Section 6 for the precise statement of the theorem on the Stokes
operator on bounded Lipschitz domains. In Section 3 we prove our com-
parison result based on (5). There we will use the random sum techniques
of [11] to formulate our result in a Banach space setting. We recall es-
sential definitions and statements from [12] and [11] in Section 2. Since
E‖
∑
εnxn‖Lp ∼ ‖

∑
|xn|2)1/2‖Lp in an Lp(U)-space for a Rademacher se-

quence (εn) there is no essential difference between the Lp-case and the gen-
eral setting.

2 Preliminaries

In this paper, X is always a complex Banach space. The space of bounded
operators in X is denoted by B(X). We recall the notation Σω := {z ∈
C\{0} : |arg z| < ω} for ω ∈ (0, π). By abuse of notation we set Σ0 := [0,∞).

We shall need the concept of R-boundedness. A set of operators T from
X → Y is called R-bounded if there exists a constant C such that, for all
n ∈ N, x1, . . . , xn ∈ X, and T1, . . . , Tn ∈ T , we have

E‖
n∑
j=1

εjTjxj‖Y ≤ CE‖
n∑
j=1

εjxj‖X .
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The smallest constant C is denoted R(T ). R-boundedness is stronger than
uniform boundedness, and for sets in B(X) it is equivalent to uniform bound-
edness if and only if X is a Hilbert space (this is an unpublished result due
to Pisier, one has to combine [1, Prop. 1.13] with Kwapien’s characterization
of Hilbert spaces as those Banach spaces having type 2 and cotype 2, see also
[17, N 2.12]). Obviously, singletons {T} are always R-bounded, we shall use
this fact later.

A sectorial operator of type ω ∈ [0, π) is an injective linear operator A in
X with dense domain D(A) and dense range R(A), such that its spectrum
σ(A) is contained in the complex sector Σω and one has uniform boundedness
of

{λ(λ− A)−1 : λ ∈ C \ Σθ} (7)

for any θ ∈ (ω, π). The infimum of all such ω ∈ [0, π) is denoted ω(A).
A sectorial operator A of type ω in X is called R-sectorial of type ω, if

the sets in (7) are R-bounded in B(X). The infimum of all such ω is denoted
ωR(A). A sectorial operator A of type ω in X is called almost R-sectorial of
type ω, if the sets

{λA(λ− A)−2 : λ ∈ C \ Σθ}, θ ∈ (ω, π),

are R-bounded in B(X). The infimum of all such ω is denoted ωr(A).
If A is a sectorial operator in a Banach space X and α ∈ R we denote by

Ẋα,A the completion of D(Aα) with respect to the norm ‖Aα · ‖X . For the
scale (Ẋα,A) of homogeneous fractional domain spaces and their properties
we refer to [11, Sect. 2] and [17, Sect. 15.E].

For an angle ω ∈ (0, π) we denote by H∞(Σω) the set of all bounded
homolorphic functions on Σω and by H∞0 (Σω) the subset of those functions
f ∈ H∞(Σω) that satisfy, for some ε > 0, |f(z)| = O(|z|ε) as z → 0 and
|f(z)| = O(|z|−ε) as z → ∞. If A is a sectorial operator in X of type ω
and θ ∈ (ω, π) then for f ∈ H∞0 (Σθ) the absolutely convergent Dunford type
integral

f(A) :=
1

2πi

∫
Γν

f(λ)(λ− A)−1 dλ

defines a bounded operator f(A) on X, which is independent of ν ∈ (ω, θ).
The operator A is said to have a bounded H∞(Σθ)-calculus, if there is a
constant C such that

‖f(A)‖ ≤ C‖f‖∞,Σθ
for all f ∈ H∞0 (Σθ). In this case, the functional calculus f 7→ f(A) extends
to a bounded algebra homomorphism H∞(Σθ)→ B(X). The infimum of all
such angles θ is denoted ωH(A). For more details on the construction of the
H∞-calculus and its properties we refer to [3, 12, 11, 10]).
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We recall the characterization of [11, Theorem 4.1]: If A is an almost
R-sectorial operator in X and ψ ∈ H∞(Σω) \ {0} where ω ∈ (ωr(A), π) then
each of the following two conditions is equivalent to A having a bounded
H∞(Σσ)-calculus for each σ ∈ (ωr(A), π):

(i) There are constants Cψ,A, Cψ,A′ > 0 such that, for x ∈ X and x′ ∈ X ′,

sup
t∈[1,2]

sup
N

E
∥∥∥ ∑
|j|≤N

εjψ(t2jA)x
∥∥∥
X
≤ Cψ,A‖x‖X ,

sup
t∈[1,2]

sup
N

E
∥∥∥ ∑
|j|≤N

εjψ(t2jA′)x′
∥∥∥
X′
≤ Cψ,A′‖x′‖X′ .

(ii) There are constants Cψ,A, C
′
ψ,A > 0 such that, for x ∈ X,

C ′ψ,A‖x‖X ≤ sup
t∈[1,2]

sup
N

E
∥∥∥ ∑
|j|≤N

εjψ(t2jA)x
∥∥∥
X
≤ Cψ,A‖x‖X

Here, X ′ denotes the dual space of X. For later use we remark that, as a
consequence of the contraction principle (see [11, Prop. 2.5]), one has for
finite subsets F1, F2 ⊆ Z the following monotonicity

E
∥∥∥∑
j∈F1

εjxj

∥∥∥ ≤ E
∥∥∥∑
j∈F2

εjxj

∥∥∥ if F1 ⊆ F2. (8)

At the end of this section we recall that any sectorial operator A that has a
bounded H∞(Σθ)-calculus for some θ ∈ (ω(A), π) is almost R-sectorial and
satisfies ωH(A) = ωr(A) (see [11, Corollary 4.4]). So in the sequel we just say
that A has a bounded H∞-calculus.

3 Criteria via Littlewood-Paley operators

Our first theorem gives our basic comparison criterion for the boundedness of
the H∞-calculus and the coincidence of fractional domains of two operators
A and B on a Banach space X in terms of an off-diagonal estimate of their
Littlewood-Paley decompositions. Variants of it in more concrete situations
will be given in subsequent sections.

Theorem 1. Let B have a bounded H∞(Σσ)-calculus on a Banach space X
and let A be an almost R-sectorial operator in X. Assume that there are
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functions ϕ, ψ ∈ H∞0 (Σν) \ {0} where ν > σ such that, for some β0, β1 > 0
and all l ∈ Z,

sup
1≤s,t≤2

R{ϕ(s2j+lA)ψ(t2jB) : j ∈ Z} ≤ C02−β0|l|, (9)

sup
1≤s,t≤2

R{ϕ(s2j+lA)′ψ(t2jB)′ : j ∈ Z} ≤ C12−β1|l|. (10)

Then A has a bounded H∞-calculus on X. Furthermore, if X is reflexive and
for all α ∈ (−β0, β0) the functions ϕα(λ) = λαϕ(λ), ψα(λ) = λαψ(λ) still
belong to H∞0 (Σν) then for α with |α| < β0

D(Bα) ⊆ D(Aα), ‖Aαx‖ . ‖Bαx‖ for x ∈ D(Bα). (11)

If ϕα, ψα ∈ H∞0 (Σν) for |α| < β1 then

D(Aα) ⊆ D(Bα), ‖Bαx‖ . ‖Aαx‖ for x ∈ D(Aα). (12)

Remark. Our proof shows that A has a bounded H∞-calculus if we make
only the weaker assumptions

sup
1≤s,t≤2

∑
l∈Z

R{ϕ(s2j+lA)ψ(t2jB) : j ∈ Z} <∞, (13)

sup
1≤s,t≤2

∑
l∈Z

R{ϕ(s2j+lA)′ψ(t2jB)′ : j ∈ Z} <∞. (14)

Proof. We need regularizing operators. Setting

hn(z) = n2z(1 + nz)−1(n+ z)−1

we let Un := hn(A)m where m ∈ N is ≥ β0. Then Un maps into D(Am) ∩
R(Am) and Unx→ x for all x ∈ X. Moreover, CA := supn ‖Un‖ <∞ and we
have

‖x‖X ≤ sup
n
‖xUn‖X ≤ CA‖x‖X for all x ∈ X.

We shall estimate square functions for the operator A via a reproduc-
ing type formula. To this end we choose ψ̃ ∈ H∞0 (Σν) \ {0} as ψ̃(z) =

[
∫
|ψ(t)|2 dt/t]−1ψ(z) so that

∫∞
0
ψ(t)ψ̃(t) dt

t
= 1 and put

ρ(z) :=

∫ 2

1

ψ(tz)ψ̃(tz)
dt

t
.

Then ρ ∈ H∞0 (Σν) and
∑

j∈Z ρ(2jz) = 1 for all z ∈ Σν , which leads to∑
j∈Z

ρ(2jB)x = x for all x ∈ D(B) ∩R(B)
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where the series is absolutely convergent in X (since the Dunford calculus
even gives

∑
j ‖ρ(2jB)h1(B)‖ <∞). For x ∈ D(Bm) ∩ R(Bm) and |α| < β0

we thus have

ϕ−α(s2kA)AαUnx = 2−kαs−αUnϕ(s2kA)x,

and we thus obtain

sup
s∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ−α(s2kA)AαUnx
∥∥∥
X

≤ CA sup
s∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

∑
j

εk2
−kαs−αϕ(s2kA)ρ(2k−jB)x

∥∥∥
X

≤ CA2|α| sup
s∈[1,2]

∑
j

2−αj sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2kA)2−(k−j)αρ(2k−jB)x
∥∥∥
X

≤ CA2|α| sup
s∈[1,2]

∑
j

2−αj sup
N

E
∥∥∥ ∑
|k|≤N

εk−jϕ(s2kA)2−(k−j)αρ(2k−jB)x
∥∥∥
X
,

where we observe that the sequence (εk−j)k has the same distribution as
(εk)k. Now we shift the summation index k by j and use (8) to obtain

≤ CA2|α| sup
s∈[1,2]

∑
j

2−αj sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2k+jA)2−kαρ(2kB)x
∥∥∥
X
.

We continue by writing ρ(t2kB)x as an integral and use

2−kαψ̃(t2kB)x = tαψ̃−α(t2kB)Bαx

(recall that x ∈ D(Bm) ∩D(Rm) ⊆ D(Bα)) to obtain

sup
s∈[1,2]

sup
N

E
∥∥∥∑

k

εkϕ−α(s2kA)AαUnx
∥∥∥
X

≤ CA22|α| sup
s∈[1,2]

∫ 2

1

∑
j

2−αj sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2k+jA)ψ(t2kB)ψ̃−α(t2kB)Bαx
∥∥∥
X

dt

t

≤ CA22|α| sup
s,t∈[1,2]

∑
j

2−αjR{ϕ(s2k+jA)ψ(t2kB) : k ∈ Z} ×

sup
t∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkψ̃−α(t2kB)Bαx
∥∥∥
X

≤ CA22|α|C0

(∑
j

2−(β0−|α|)|j|
)
Cψ̃−α,B‖B

αx‖X
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where the constant is finite due to |α| < β0. We obtain the estimate

sup
s∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ−α(s2kA′)(Aα)′U ′nx
′
∥∥∥
X′

≤ CA22|α|C1

(∑
j

2−(β1−|α|)|j|
)
Cψ̃−α,B′‖(B

α)′x′‖X′

for the dual square function in the same way with a finite constant, if |α| < β1.
For α = 0 we have

sup
s∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2kA)x
∥∥∥
X
≤ sup

n
sup
s∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2kA)Unx
∥∥∥
X

and our estimates show that A has a bounded H∞-calculus. But then

‖AαUnx‖X ∼ sup
s∈[1,2]

E
∥∥∥∑

k

εkϕ−α(s2kA)AαUnx
∥∥∥
X
,

and we have shown
sup
n
‖AαUnx‖X . ‖Bαx‖X

for all |α| < β0. By reflexivity of X we find a weakly convergent subsequence
of (AαUnx), and weak closedness of Aα implies x ∈ D(Aα) for x ∈ D(Bm) ∩
R(Bm). Then (11) follows, since D(Bm) ∩R(Bm) is a core for Bα.

The dual estimate gives

‖(Aα)′x′‖X′ . ‖(Bα)′x′‖X′ for all |α| < β1,

which implies, if X is reflexive, by [11, Corollary 5.6] or Proposition 11 that

‖Bαx‖X . ‖Aαx‖X for all |α| < β1,

and (12) follows.
To justify the remark, note that for α = 0 we only need summability of

the R-bounds in the last estimate of the argument above.

Remark 2. (a) If we only assume that B has an H∞(Σσ)-calculus and (9)
then it follows already that {ϕ(tA) : t > 0} is R-bounded. In particular, if
ϕ(λ) = λ(1 + λ)−2 then the assumption of almost R-sectoriality of A can be
omitted since it is automatically fulfilled. Sketch of proof: Replacing x in the
k-th term by xk we obtain for each s ∈ [1, 2] and α = 0:

E
∥∥∥∑

k

εkϕ(s2kA)xk

∥∥∥ ≤ CE
∥∥∥∑

k

εkψ̃(s2kB)xk

∥∥∥ . E
∥∥∥∑

k

εkxk

∥∥∥
9



by almost R-sectoriality of B. Now we use [17, Example 2.16].

(b) For many natural choices of ϕ and ψ̃, e.g. zα(1 + z)−β for 0 < β < α
or zαe−z, one can omit the sup over s, t ∈ [1, 2] and simply put s = t = 1 in
(9) and (10) (cp. [16]).

(c) It is clear from the proof that the functions ϕ, ψ in (9) and (10) need
not be the same.

(d) Condition (10) in Theorem 1 can be replaced by

C ′1 := sup
1≤s,t≤2

∑
l∈Z

R{ψ(t2jB)ϕ(s2j+lA) : j ∈ Z} <∞. (10′)

As before, this condition allows to estimate (with a suitably chosen ϕ̃ ∈ H∞0 )

sup
t∈[1,2]

E
∥∥∥∑

k

εkψ(t2kB)x
∥∥∥
X
≤ C ′1 sup

s∈[1,2]

E
∥∥∥∑

j

εjϕ̃(s2jA)x
∥∥∥
X
.

Since B has a bounded H∞-calculus, we have

sup
t∈[1,2]

E
∥∥∥∑

k

εkψ(t2kB)x
∥∥∥
X
≥ C ′ψ,B‖x‖X ,

and hence
sup
s∈[1,2]

E
∥∥∥∑

j

εjϕ̃(s2jA)x
∥∥∥
X
≥ C ′−1

1 C ′ψ,B‖x‖X .

We conclude that A has a bounded H∞-calculus.

Our next result gives a partial converse of the second part of Theorem 1:
The equality of fractional domains is a convenient way to verify the conditions
(9) and (10) of Theorem 1.

Proposition 3. Let A and B be almost R-sectorial operators of angle ω in
X. Suppose that, for some α0, α1 > 0, we have

D(Bα) ⊆ D(Aα) and ‖Aαx‖ . ‖Bαx‖ (15)

for α = ±α0 and

D(Aα) ⊆ D(Bα) and ‖Bαx‖ . ‖Aαx‖ (16)

for α = ±α1. If ϕ, ψ, λ±αϕ(λ), λ±αψ(λ) are in H∞0 (Σν) (where ν > ω) for
α = α0, α1 then (9) holds with β0 = α0 and (10) holds with β1 = α1.

10



Proof. We write, for α = ±α0,

ϕ(t2l+jA)ψ(s2jB)

=
( t
s

)α
2lα(t2l+j)−αA−αϕ(t2l+jA)[AαB−α](s2j)αBαψ(s2jB)

=
( t
s

)α
2lα ϕ̃(t2l+jA)M ψ̃(s2jB),

where ϕ̃(z) = z−αϕ(z) and ψ̃(z) = zαψ(z) are in H∞0 (Σν) by assumption,
and M ∈ B(X) denotes the bounded extension of A−αBα (here we use (15)).

By almost R-sectoriality then the sets {ϕ̃(tA) : t > 0} and {ψ̃(sB) : s > 0}
are R-bounded (see [11, Lemma 3.3]). Taking α = −α0 < 0 for l ≥ 0 and
α = α0 > 0 for l < 0 we see that (9) follows with β0 = α0.

For the proof of (10) we note that, by Proposition 11 below (with X = Y ,
R = I), condition (16) implies

D((B′)−α) ⊆ D((A′)−α) and ‖(A′)−αx′‖ . ‖(B′)−αx′‖ for α = ±α1.

Hence we can repeat the argument.

Combination with Theorem 1 yields a result which should be compared
to [11, Theorem 5.1] with an additional restriction on the range of α (we also
refer to [18, Theorem 1.1], but mention that in case P = I, also the assertion
of [11, Theorem 7.9] is correct).

Corollary 4. Let B have a bounded H∞-calculus on X and A be almost
R-sectorial in X. If (15) and (16) hold for α = α1, α2 ∈ R \ {0} which are
different, then A has a bounded H∞-calculus on X.

Proof. If α1 < α2 < 0 or 0 < α2 < α1 we shift the scales of (homogeneous)
fractional domain spaces (see [11, Proposition 2.1]) and obtain, by Theorem 1
and Proposition 3, that A has a bounded H∞-calculus in Ẋα2,B = Ẋα2,A. But
then A has a bounded H∞-calculus in X.

4 Extrapolation in the Lp-scale

We now describe a quite general method which allows us to extend the bound-
edness of the H∞-calculus of differential operators A on a space L2(Ω), where
(Ω, d, µ) could be, e.g., a metric measure space with the doubling property,
to the part of A on Lp(Ω)-spaces, p 6= 2. It will be clear from the proof
that this argument also applies to other interpolation scales such as Sobolev-
and Besov spaces or scales of fractional domains of a sectorial operator (if,

11



e.g., the operators have BIP). The following statements refine [11, Corol-
lary 8.3]. Recall that a family of sectorial operators Ap on a scale of spaces
Lp(U), p in a real interval I, is consistent if, for λ < 0 and p, p̃ ∈ I we have
R(λ,Ap)x = R(λ,Ap̃)x for x ∈ Lp(U) ∩ Lp̃(U).

Theorem 5. Let p0 ∈ (1,∞) \ {2}, and suppose that we are given two
consistent families of sectorial operators Ap and Bp on Lp(U) for p = 2, p0

and all p between 2 and p0. Let Bp have a bounded H∞-calculus in Lp(U)
for p = 2, p0, and let A be almost R-sectorial in Lp0(U). Assume further
that there are functions ϕ, ψ ∈ H∞0 (Σν) \ {0} such that, for some constants
δ, C > 0, and all l ∈ Z, s, t ∈ [1, 2],

sup
j∈Z
‖ϕ(s2j+lA)ψ(t2jB)‖L2→L2 ≤ C2−δ|l|, (17)

sup
j∈Z
‖ψ(t2jB)ϕ(s2j+lA)‖L2→L2 ≤ C2−δ|l|, (18)

R{ϕ(s2j+lA)ψ(t2jB) : j ∈ Z} ≤ C in Lp0(U) and Lp
′
0(U), (19)

R{ψ(t2jB)ϕ(s2j+lA) : j ∈ Z} ≤ C in Lp0(U) and Lp
′
0(U). (20)

Then A has a bounded H∞-calculus in Lp(U) for p between 2 and p0. Fur-
thermore, we have for |α| < θpδ, where θp determined by 1

p
= θp

2
+ 1−θp

p0
,

that
D(Aαp ) = D(Bα

p ), ‖Aαpx‖ ∼ ‖Bα
p x‖ for x ∈ D(Aαp ),

as long as the functions ϕα(λ) = λαϕ(λ) and ψα(λ) = λαψ(λ) are still in
H∞0 (Σν) for |α| < θpδ.

Proof. Complex interpolation gives the assumptions of Theorem 1 in Lp(U)
for p between 2 and p0, however with the bound C2−θpδ|l|. See also Remark 2
(d) and [11, Corollary 3.9].

Remark 6. Conditions (19) and (20) are satisfied if A is almost R-sectorial
in Lp0(U) and Lp

′
0(U).

Corollary 7. Suppose we are given two consistent families Ap and Bp on
Lp(U) for all p between 2 and some p0 ∈ (1,∞) \ {2} such that

a) Bp0 has a bounded H∞(Σσp)-calculus on Lp0(U),

b) Ap0 is almost R-sectorial with angle ωp0 on Lp0(U),

c) A2 and B2 have their numerical range in a sector Σσ2, where σ2 < π/2,
and for one α ∈ R \ {0} we have

D(Aα2 ) = D(Bα
2 ), ‖Aα2x‖ ∼ ‖Bα

2 x‖ for x ∈ D(Aα2 ). (21)

12



Then Ap has a bounded H∞-calculus on Lp(U) for all p between 2 and p0 and

D(Aβp ) = D(Bβ
p ), ‖Aβpx‖ ∼ ‖Bβ

p x‖ for x ∈ D(Aβp ).

for β = sα, 0 < s < θp, where θp ∈ (0, 1) is given by 1
p

= θp
2

+ 1−θp
p0

.

Remark. Condition c) is certainly fulfilled if A and B are self-adjoint or
defined by a closed sectorial form and satisfy (21), e.g. for α = 1 or α = 1/2.

A version of this theorem where Ap is only defined on a (consistent)
family of complemented subspaces Xp of Lp(U), p0 ≤ p ≤ p1, will be applied
in Section 6 in the context of the Stokes operator.

Proof. The operators A2 and B2 are accretive (even regularly accretive in the
sense of [15]), and thus have a bounded H∞-calculus (see, e.g., [17, Section
11]). Therefore (L2)·β,A = (L2)·β,B for α ≤ β ≤ 0 if α < 0 and for 0 ≤ β ≤ α for
α > 0. By a result of Kato ([15, Theorem 1.1]) and Proposition 11 it follows
that in addition (L2)·β,A = (L2)·β,B for 0 ≤ β < min{1/2, |α|} in the first case
and for −min{1/2, |α|} < β ≤ 0 in the second. Now combine Proposition 3
(applied in L2) and Theorem 5 to obtain a bounded H∞-calculus for Ap
with some angle. The optimal angle can then be obtained by [11, Corollary
3.9].

Furthermore we shall exploit the assertion on fractional domains in The-
orem 5 in the following application. It is clear that this approach works in a
large variety of situations.

Corollary 8. Let A be an elliptic operator of order 2m with bounded mea-
surable coefficients defined on Rd by a closed sectorial and coercive form
with form domain Hm

2 (Rd). Suppose that the semigroup (e−tA) extends to a
bounded C0-semigroup on Lp0(Rd) and Lp1(Rd) where 1 ≤ p0 < 2 < p1 ≤ ∞
(weak∗-continuous for p1 = ∞). Then, for p0 < p < p1, (e−tA) extends to
a C0-semigroup in Lp(Rd) whose negative generator Ap has a bounded H∞-
calculus in Lp(Rd) and satisfies D(Aαp ) = H2mα

p (Rd) for 0 < α < θp/2 where

θp ∈ (0, 1) is given by 1
p

= θp
2

+ 1−θp
p0

in case p0 < p < 2 and by 1
p

= θp
2

+ 1−θp
p1

in case 2 < p < p1.

Proof. The assertion on the H∞-calculus is already in [2], and this gives also
R-sectoriality of Ap. Then we compare with the self-adjoint operator B =
(−∆)m and use the proof of Corollary 7 and the arguments of Theorem 5.
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5 Criteria via Littlewood-Paley operators in

complemented subspaces

Now we generalize the setting of Sections 3 and 4 and let A and B act in
different Banach spaces X and Y , respectively, where X is isomorphic to a
complemented subspace of Y .

Theorem 9. Let X and Y be Banach spaces. Let R : Y → X and S : X →
Y be bounded linear operators satisfying RS = IX . Let B have a bounded
H∞(Σσ)-calculus in Y and let A be almost R-sectorial in X. Assume that
there are functions ϕ, ψ ∈ H∞0 (Σν) \ {0} where ν > σ such that for some
β > 0

sup
1≤s,t≤2

R{ϕ(s2j+lA)Rψ(t2jB) : j ∈ Z} ≤ C12−β|l| (22)

sup
1≤s,t≤2

R{ϕ(s2j+lA)′S ′ψ(t2jB)′ : j ∈ Z} ≤ C22−β|l|. (23)

Then A has a bounded H∞-calculus on X. If, in addition, X is reflexive and
B-convex (e.g. an Lp-space with 1 < p <∞) and α ∈ R is such that |α| < β
and ϕ−α(λ) = λ−αϕ(λ), ψ−α(λ) = λ−αψ(λ) still belong to H∞0 (Σν) then

D(Aα) = {x ∈ X : Sx ∈ D(Bα)} with ‖Aαx‖X ∼ ‖BαSx‖Y .

Remark. If we only assume that

sup
1≤s,t≤2

∑
l∈Z

R{ϕ(s2j+lA)Rψ(t2jB) : j ∈ Z} < ∞, (24)

sup
1≤s,t≤2

∑
l∈Z

R{ϕ(s2j+lA)′S ′ψ(t2jB)′ : j ∈ Z} < ∞, (25)

in place of (22) and (23) then the proof below still gives a bounded H∞-
calculus for A in X.

Proof. We choose ψ̃ ∈ H∞0 (Σν) \ {0} as in the proof of Theorem 1 so that∫∞
0
ψ(t)ψ̃(t) dt

t
= 1 and put again

ρ(z) :=

∫ 2

1

ψ(tz)ψ̃(tz)
dt

t

so that ρ ∈ H∞0 (Σν) and
∑

j∈Z ρ(2jz) = 1 for all z ∈ Σν and∑
j∈Z

ρ(2jB)y = y for all y ∈ D(B) ∩R(B)
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where the series is absolutely convergent. In the following, we shall need
regularizing operators and let Un := hn(A) and Vn(B) = hn(B)m where
m ∈ N is ≥ β and

hn(z) = n2z(1 + nz)−1(n+ z)−1.

Then the operators Un and Vn are uniformly bounded in X and Y , respec-
tively, and map into D(Am) ∩ R(Am) and D(Bm) ∩ R(Bm), respectively.
Moreover, we have Unx → x and Vny → y as n → ∞ for all x ∈ X and all
y ∈ Y , respectively. It follows that

‖Tx‖X = lim
n→∞

‖TRVnSx‖X ≤ sup
n
‖TRVnSx‖X

for any x ∈ X and T ∈ B(X). Thus we have for x ∈ D(Am) ∩R(Am)

sup
s∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2kA)x
∥∥∥
X

≤ sup
s∈[1,2]

sup
N,n

E
∥∥∥ ∑
|k|≤N

εkϕ(s2kA)RVnSx
∥∥∥
X
.

Proceeding, for fixed n, as in the proof of Theorem 1 we get

sup
s∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2kA)RVnSx
∥∥∥
X

≤ sup
s∈[1,2]

∑
j

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2kA)Rρ(2k−jB)VnSx
∥∥∥
X

= sup
s∈[1,2]

∑
j

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2kA)Rρ(2k−jB)VnSx
∥∥∥
X

≤ sup
s∈[1,2]

∑
j

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2k+jA)Rρ(2kB)VnSx
∥∥∥
X
.

We continue by writing ρ(t2kB)VnSx as an integral:

≤ sup
s∈[1,2]

∫ 2

1

∑
j

sup
N

E
∥∥∥ ∑
|k|≤N

εkϕ(s2k+jA)Rψ(t2kB)ψ̃(t2kB)VnSx
∥∥∥
X

dt

t

≤ sup
s,t∈[1,2]

∑
j

R{ϕ(s2k+jA)Rψ(t2kB) : k ∈ Z} sup
t∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkψ̃(t2kB)VnSx
∥∥∥
Y

≤ C1

(∑
j

2−β|j|)
)

sup
t∈[1,2]

sup
N

E
∥∥∥ ∑
|k|≤N

εkψ̃(t2kB)VnSx
∥∥∥
Y
≤ C1

(∑
j

2−β|j|
)
Cψ̃,B ‖VnSx‖Y

≤ C ′1Cψ̃,B ‖Vn‖‖S‖ ‖x‖X .
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Since S ′ : Y ′ → X ′, R′ : X ′ → Y ′ and S ′R′ = IX′ , we obtain the estimate

sup
s∈[1,2]

E
∥∥∥∑

k

εkϕ(s2kA′)x′
∥∥∥
X′
≤ C2Cψ̃,B′

(
sup
n
‖U ′n‖

)
‖R′‖‖x′‖X′

for the dual square function in the same way. From the first estimate and
this we obtain that A has a bounded H∞-calculus in X. Now we put ϕ̃(z) =
[
∫
|ϕ(t)|2 dt/t]−1ϕ(z) so that

∫∞
0
ϕ(t)ϕ̃(t) dt

t
= 1 and

η(z) :=

∫ 2

1

ϕ(tz)ϕ̃(tz)
dt

t
.

satisfies η ∈ H∞0 (Σν) and
∑

j∈Z η(2jz) = 1 for all z ∈ Σν . We conclude∑
k∈Z

η(s2kA)x = x, x ∈ D(A) ∩R(A),

where the series converges absolutely in X. Since X is B-convex, we also
have by [11, Proposition 3.5] that

sup
1≤s,t≤2

R{ψ(s2k+lB)Sϕ(t2kA) : k ∈ Z} ≤ C22−β|l|.

Now we let |α| < β and estimate, similarly as we have done before, for
x ∈ D(Am) ∩R(Am),

‖BαVnSx‖Y . sup
t∈[1,2]

sup
N

E
∥∥∥ ∑
|j|≤N

εjψ−α(t2jB)BαVnSx
∥∥∥
Y

≤ sup
t∈[1,2]

sup
N
E
∥∥∥ ∑
|j|≤N

εjt
−α2−αjVnψ(t2jB)Sx

∥∥∥
Y

≤ 2|α| sup
t∈[1,2]

∑
k

sup
N

E
∥∥∥ ∑
|j|≤N

εj2
−αjVnψ(t2jB)Sη(2j−kA)x

∥∥∥
Y

≤ 2|α| sup
t∈[1,2]

∑
k

2−αk sup
N

E
∥∥∥ ∑
|j|≤N

εjVnψ(t2jB)S2−α(j−k)η(s2j−kA)x
∥∥∥
Y

≤ 2|α| sup
t∈[1,2]

∑
k

2−αk sup
N

E
∥∥∥ ∑
|j|≤N

εjVnψ(t2j+kB)S2−αjη(s2jA)x
∥∥∥
Y

≤ 2|α| sup
t∈[1,2]

∫ 2

1

∑
k

2−αk sup
N

E
∥∥∥ ∑
|j|≤N

εj2
−αjVnψ(t2j+kB)Sϕ(s2jA)ϕ̃(s2jA)x

∥∥∥
Y

ds

s

≤ 2|α| sup
s,t∈[1,2]

∑
k

2−αkR{Vnψ(t2j+kB)Sϕ(s2jA) : j ∈ Z} sup
N

E
∥∥∥ ∑
|k|≤N

εk2
−αkϕ̃(s2kA)x

∥∥∥
X

≤ 22|α|C2 sup
n
‖Vn‖

(∑
l

2−(β−|α|)|l|
)
E
∥∥∥∑

k

εkϕ̃−α(s2kA)Aαx
∥∥∥
X

. ‖Aαx‖X .

16



So we have shown

sup
n
‖BαVnSx‖Y . ‖Aαx‖X , x ∈ D(Am) ∩R(Am). (26)

If x ∈ D(Aα) then the argument we used in the proof of Theorem 1 shows
that Sx ∈ D(Bα) and

‖BαSx‖Y . ‖Aαx‖X .

In the same way, using ρ, ψ, ψ̃ in place of η, ϕ, ϕ̃, we obtain

sup
n
‖AαUnRy‖X . ‖Bαy‖Y , y ∈ D(Bm) ∩R(Bm). (27)

Again, the argument we used in the proof of Theorem 1 shows for y ∈ D(Bα)
that Ry ∈ D(Aα) and

‖AαRy‖X . ‖Bαy‖Y .

Finally, if x ∈ X and y = Sx ∈ D(Bα) this implies x = RSx = Ry ∈ D(Aα)
and

‖Aαx‖X = ‖AαRSx‖X . ‖BαSx‖Y ,

and the proof is finished.

We give conditions that imply (22) and (23) in the style of Proposition 3.

Proposition 10. Condition (22) holds if

R(D(Bα)) ⊆ D(Aα), ‖AαRy‖X ≤ C‖Bαy‖Y , y ∈ D(Bα),

for α = α1, α2 where α1 < 0 < α2. Similarly, condition (23) holds if

S ′(D((A′)α)) ⊆ D((B′)α), ‖(A′)αS ′y′‖X′ ≤ C‖(B′)αy′‖Y ′ , y′ ∈ D((B′)α),

for α = α1, α2 where α1 < 0 < α2, or if

S(D(Aα)) ⊆ D(Bα), ‖BαSx‖Y ≤ C‖Aαx‖X , x ∈ D(Aα)

for α = α1, α2 where α1 < 0 < α2.

Proof. Similiar to the proof of Proposition 3. For the last statement we use
the following Proposition 11.

The following is a simplified version of [11, Proposition 5.5], sufficient for
our purposes, which we prove here for convenience.
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Proposition 11. Let X and Y be Banach spaces. Let B and A be closed
injective operators wih dense domain and range in Y and X, respectively.
Let R : Y → X be a bounded linear operator and C > 0. Then (i) ⇒ (ii)
where

(i) R(D(B−1)) ⊂ D(A−1) and ‖A−1Ry‖X ≤ C‖B−1y‖Y for all y ∈
D(B−1).

(ii) R′(D(A′)) ⊆ D(B′) and ‖B′R′x′‖Y ′ ≤ C‖A′x′‖X′ for all x′ ∈ D(A′).

If X is reflexive then (i) and (ii) are equivalent.

Proof. Assume that (i) holds. Let x′ ∈ D(A′) and y ∈ D(B). Then By ∈
D(B−1), RBy ∈ D(A−1), and x := A−1RBy ∈ D(A). We thus have

〈By,R′x′〉 = 〈RBy, x′〉 = 〈Ax, x′〉 = 〈x,A′x′〉 = 〈A−1RBy,A′x′〉,

and, using (i),

|〈By,R′x′〉| ≤ ‖A−1RBy‖X‖A′x′‖X′ ≤ C‖y‖Y ‖A′x′‖X′ .

This means R′x′ ∈ D(B′) and ‖B′R′y‖Y ′ ≤ C‖A′x′‖X′ .
Now let X be reflexive and assume (ii). Then A−1 = (A−1)′′ = ((A′)−1)′.

Let y = Bz ∈ D(B−1). Let x′ = A′w′ ∈ D((A′)−1) where w′ = D(A′). Then
R′w′ ∈ D(B′) and

〈Ry, (A−1)′x′〉 = 〈Ry,w′〉 = 〈RBz,w′〉 = 〈Bz,R′w′〉 = 〈z,B′R′w′〉.

This yields

|〈Ry, (A−1)′x′〉| ≤ ‖z‖Y ‖B′R′w′‖Y ′ ≤ ‖z‖YC‖A′w′‖X′ = C‖B−1y‖Y ‖x′‖X′ .

Hence Ry ∈ D(A−1) and ‖A−1Ry‖X ≤ C‖B−1y‖Y .

6 H∞-calculus for the Stokes operator on Lip-

schitz domains

In this section we apply our results to the Stokes operator on bounded Lip-
schitz domains. In order to verify the assumptions we need R-sectoriality of
the Stokes operator in Lq, we need the Helmholtz decomposition in Hs for
|s| small, and we need information on the fractional domains of the Stokes
operator in L2. We shall use arguments from [22] and [8] and results from
[19]. Let Ω ⊆ Rd be a bounded Lipschitz domain where d ≥ 3. As usual,
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we denote by C∞c,σ(Ω) the space of all divergence-free vector fields in C∞c (Ω)d

and by Lqσ(Ω), where q ∈ (1,∞), the closure of C∞c,σ(Ω) in Lq(Ω)d. We recall
the definition of the Stokes operator Aq in Lqσ(Ω) from [22, (1.7),(1.8)]:

Aqu := −∆u+∇φ,

where φ ∈ Lq(Ω) is such that −∆u + ∇φ ∈ Lqσ(Ω) and D(Aq) is the space
of all u ∈ W 1,q

0 (Ω)d with div (u) = 0 in Ω for which such a φ exists. We
assume that diam(Ω) = 1. The following has been shown in [22, Theorem
1.1, Remark 6.4].

Proposition 12. For any θ ∈ (π/2, π) there exists ε > 0, only depending on
d, θ and the Lipschitz character of Ω, such that for∣∣∣∣1q − 1

2

∣∣∣∣ < 1

2d
+ ε (28)

there is a constant Cq,θ satisfying

‖(λ+ Aq)
−1f‖Lq ≤

Cq,θ
|λ|+ 1

‖f‖Lq , λ ∈ Σθ, f ∈ Lqσ(Ω), (29)

where Cq,θ only depends on d, q, θ and the Lipschitz character of Ω.

Consequently, for q satisfying (28), the Stokes operator Aq is sectorial in
Lqσ(Ω) and generates a bounded analytic semigroup. We check here how the
proof given in [22] yields also R-sectoriality of Aq in Lqσ(Ω) for q satisfying
(28).

Proposition 13. Under the assumptions of Proposition 12 there exists a
constant C̃q,θ, only depending on d, q, θ and the Lipschitz character of Ω,
such that

R{(|λ|+ 1)(λ+ Aq)
−1 : λ ∈ Σθ} ≤ C̃q,θ, (30)

where the R-bound is taken for operators Lqσ(Ω)→ Lqσ(Ω).

Proof. We follow the lines of [22, Proof of Theorem 1.1, p.421] and check
that the arguments extend to square functions. For λ ∈ Σθ, f ∈ L2(Ω)d we
consider the problem

−∆u+∇φ+ λu = f
divu = 0

(31)

in Ω. There is a unique u ∈ H1
0 (Ω)d and a function φ ∈ L2(Ω), unique up to

constants, that satisfy (31). One has ([22, (6.9)])

(|λ|+ 1)‖u‖L2 ≤ C0‖f‖L2 ,
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which implies the square function estimate∥∥∥(∑
j

(|λj|+ 1)2|uj|2
)1/2∥∥∥

L2
≤ C0

∥∥∥(∑
j

|fj|2
)1/2∥∥∥

L2
.

for finite collections (fj)j in L2(Ω)d and Λ := (λj)j ∈ Σθ, where uj is the
solution of (31) with λj, fj in place of λ, f . In this situation we put

TΛ((fj)j) :=
(∑

j

(|λj|+ 1)2|uj|2
)1/2

,

which defines a sublinear and L2-bounded operator. In order to use [22,
Lemma 6.3] and thus obtain Lq-boundedness of TΛ for q satisfying (28) we
show the square function version of [22, (6.10)], i.e.(

−
∫

Ω∩B
TΛ((fj)j)

q
)1/q

≤ C
(
−
∫

Ω∩2B

TΛ((fj)j)
2
)1/2

which means(
−
∫

Ω∩B

(∑
j

(|λj|+ 1)2|uj|2
)q/2)1/q

≤ C
(
−
∫

Ω∩2B

∑
j

(|λj|+ 1)2|uj|2
)1/2

.

Here B = B(x0, r) denotes a ball with x0 ∈ Ω and 0 < r < c < 1 and
the fj ∈ L2(Ω)d have supp fj ⊆ Ω \ 3B. This is a square function version
of [22, Lemma 6.2]. As in the proof given there it suffices to consider the
cases 3B ⊆ Ω, which reduces to an interior estimate, and x0 ∈ ∂Ω. For the
latter case we need a square function version of [22, Lemma 6.1], which will
follow from a square function version of [22, Theorem 5.6] for the domain
U = Ω ∩B, i.e. from(∫

U

(∑
j

(|λj|+ 1)2|uj|2
)q/2)1/q

≤ C
(∫

∂U

∑
j

(|λj|+ 1)2|uj|2
)1/2

(32)

(cp. with [22, (5.18)]) where q = 2d
d−1

. As in [22] we use the estimate

‖(uj)∗‖L2(∂U) ≤ C‖uj‖L2(∂U)

where (uj)
∗ denotes the non-tangential maximal function of uj with respect

to the domain U . We also use the observation

|uj(x)| ≤ C

∫
∂U

(uj)
∗(y)

|x− y|d−1
dσ(y) for any x ∈ U ,
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and the boundedness

‖I1(F )‖L2(∂U) ≤ C‖F‖Lq′ (U)

of the operator

I1(F )(y) =

∫
U

F (x)

|x− y|d−1
dx

where 1
q

+ 1
q′

= 1 (see [7, Lemma 6.1]). By a classical result of Marcinkiewicz

and Zygmund (see [9, Ch. V, Sect. 2, Theorem 2.7]) the single operator I1

has a vector-valued extension∥∥∥(∑
j

|I1(Fj)|2
)1/2
∥∥∥
L2(∂U)

≤ C̃
∥∥∥(∑

j

|Fj|2
)1/2
∥∥∥
Lq′ (U)

(i.e. the set {I1} is R-bounded). Now we carry out the duality argument
omitted in [22], but in our square function setting:∣∣∣ ∫

U

∑
j

(|λj|+ 1)ujFj dx
∣∣∣

≤
∑
j

∫
U

∫
∂U

(|λj|+ 1)(uj)
∗(y)

|x− y|d−1
dσ(y) |Fj(x)| dx

=
∑
j

∫
∂U

(|λj|+ 1)(uj)
∗(y)I1(Fj)(y) dσ(y)

≤
(∫

∂U

∑
j

|(|λj|+ 1)(uj)
∗|2 dσ(y)

)1/2(∫
∂U

∑
j

|I1(|Fj|(y))|2 dσ(y)
)1/2

≤ CC̃
(∫

∂U

∑
j

|(|λj|+ 1)(uj)
∗|2 dσ(y)

)1/2∥∥∥(∑
j

|Fj|2
)1/2
∥∥∥
Lq′ (U)

.

Taking the supremum over (Fj)j with Lq
′
-norm of the square function ≤ 1,

we arrive at (32).

We turn to the Helmholtz decomposition in Ω. We denote by P := P2 the
orthogonal projection in L2(Ω)d onto L2

σ(Ω). It has been shown in [8, Theorem
11.1] that there exists ε = ε(Ω) > 0 such that, for 3

2
− ε < q < 3 + ε, the

operator P extends to a bounded projection Pq in Lq(Ω)d onto Lqσ(Ω) and
that one has the Helmholtz decomposition

Lq(Ω)d = Lqσ(Ω)⊕∇W 1,q(Ω)

as a topological direct sum. Taking R = Pq : Lq(Ω)d → Lqσ(Ω) and
S : Lqσ(Ω)→ Lq(Ω)d the inclusion, we see that we need for q = 2 a Helmholtz
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decomposition of Hs(Ω)d for |s| small. The following is part of [19, Proposi-
tion 2.16]. For convenience and as details had been omitted in [19], we check
here that the arguments given in [8] apply.

Proposition 14. For |s| < 1
2
, the Helmholtz projection P acts as a bounded

linear projection Ps in Hs(Ω)d and yields the decomposition

Hs(Ω)d = Hs
σ(Ω)⊕∇Hs+1(Ω)

as a topological direct sum where

Hs
σ(Ω) := {u ∈ Hs(Ω)d : divu = 0 in Ω, ν · u = 0 on ∂Ω }.

Observe that Hs
σ(Ω) = Hs(Ω)d ∩ L2

σ(Ω) in the proposition.

Proof. We argue as in [8, Proof of Theorem 11.1], denote the outer unit
normal on ∂Ω by ν, and use the representation

Pu = u−∇div ΠΩ(u)−∇ψ

where ΠΩ denotes the Newton potential and ψ solves the Neumann problem

∆ψ = 0,
∂ψ

∂ν
= ν · (u−∇div ΠΩ(u)).

Here u ∈ Hs(Ω)d, so ΠΩ(u) ∈ Hs+2(Ω)d and ∇div ΠΩ(u) ∈ Hs(Ω)d for
|s| < 1

2
. We also observe div (u−∇div ΠΩ(u)) = 0, hence (see [8, Section 9])

u−∇div ΠΩ(u) has a normal component on ∂Ω and ν · (u−∇div ΠΩ(u)) ∈
Hs−1/2(∂Ω). By [8, Theorem 9.2] in combination with [8, Remark, p.360],
the Neumann problem above has a solution ψ ∈ Hs+1(Ω), unique up to
constants, and ∇ψ ∈ Hs(Ω)d. Thus P extends to a bounded operator Ps on
Hs(Ω)d for |s| < 1

2
which is again a projection. We also see that I − P acts

boundedly on Hs(Ω)d, and that

Ps(H
s(Ω)d) = {u ∈ Hs(Ω)d : divu = 0 in Ω, ν · u = 0 on ∂Ω } = Hs

σ(Ω),

which finishes the proof.

Let Aq denote the Stokes operator in Lqσ(Ω) for q satisfying (28) and let
Bq = −∆ with Dirichlet boundary conditions in Lq(Ω)d. Clearly, A2 and B2

are self adjoint and D(A1/2) = H1
0 (Ω)d ∩ L2

σ(Ω), D(B1/2) = H1
0 (Ω)d. But we

have to relate these fractional domain spaces to the fractional Sobolev spaces
of Proposition 14. The first assertion of the following proposition is part of
[19, Theorem 5.1], we repeat the argument given there for convenience. The
main ingredient is [19, Theorem 2.12]. The second assertion is well known.
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Proposition 15. For |s| < 1
2
, we have

(L2
σ(Ω))·s/2,A2

= Hs
σ(Ω), (L2(Ω)d)·s/2,B2

= Hs(Ω)d.

Sketch of proof. Since the operators are boundedly invertible we can omit
the dots, and by self adjointness and duality we can restrict to 0 < s < 1/2.
Since the operators are self adjoint we can use complex interpolation and it
remains to show

[L2
σ(Ω), H1

0 (Ω)d ∩ L2
σ(Ω)]s = Hs

σ(Ω), [L2(Ω)d, H1
0 (Ω)d]s = Hs(Ω)d.

The latter is well known, and the former relies on [19, Theorem 2.12] which
states that the scale of fractional divergence-free Sobolev spaces is a complex
interpolation scale.

Now we can prove our result for the Stokes operator.

Theorem 16. Let Ω ⊆ Rd where d ≥ 3 be a bounded Lipschitz domain with
diam(Ω) = 1. For q satisfying (28) the Stokes operator Aq has a bounded
H∞-calculus in Lqσ(Ω). For these q we have D(Aαq ) = D((−∆q)

α) ∩ Lqσ(Ω)
for

|α| < 1

2
−
(1

d
+ 2ε

)−1∣∣∣1
2
− 1

q

∣∣∣.
Proof. The first assertion is proved by the arguments above. The second is
also an application of Theorem 9.
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[11] N.J. Kalton, P.C. Kunstmann, L. Weis, Perturbation and interpolation the-
orems for the H∞-calculus with applications to differential operators, Math.
Ann. 336(4), 747-801 (2006).

[12] N.J. Kalton, L. Weis, The H∞-calculus and sums of closed operators. Math.
Ann. 321(2), 319-345 (2001).

[13] N.J. Kalton, L. Weis, The H∞-functional calculus and square function esti-
mates, in Nigel J. Kalton Selecta (F. Gesztesy, G. Godefroy, L. Grafakos, and
L. Verbitsky, editors) Comtemporary Mathematicians, Birkhäuser-Springer,
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