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Abstract

We show that the Stokes operator A on the Helmholtz space L5 ()
for a bounded Lipschitz domain Q C R?, d > 3, has a bounded H-

w1 1
calculus if 53

A and the Dirichlet Laplace —A on LP(Q)?, which is based on “off-
diagonal” estimates of the Littlewood-Paley decompositions of A and
—A. This comparison theorem can be formulated for rather general
sectorial operators and is well suited to extrapolate the H°-calculus
from L2(U) to the LP(U)-scale or part of it. It also gives some infor-
mation on coincidence of domains of fractional powers.

AMS subject classification (MSC2010): 47 A 60, 47D 06, 35 Q 30.

keywords: sectorial operators, bounded H°°-calculus, Littlewood-
Paley operators, domains of fractional powers, Stokes operator.

’ < ﬁ. Our proof uses a new comparison theorem for
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1 Introduction

For a sectorial operator A of angle w on a Banach space X one can define
the holomorphic functional calculus by a Dunford integral

FA) == [ FVR( A)dx 1)

2 o,

for all bounded analytic funtions f on X, := {z € C\ {0} : |argz| < o} with
w<v<o<2rand [ [f(N]/IA[|dA] < co. A has a bounded H>(%,)-
calculus if there is a uniform estimate

LF(Dllsx) < Cllf =) (2)

for all such f. This functional calculus has found a lot of interest in evolu-
tion equations because it often allows for optimal regularity estimates [4],
[6], [12], [17], [20], [21]. By now there is a large literature establishing the
boundedness of the H>-calculus for very large classes of partial differential
operators A on LP(U)-spaces with 1 < p < 0o. However, even for the Laplace
operator A = —A on LP(R?) the proof requires Fourier multiplier theorems
(i.e. Littlewood-Paley theory), early results on elliptic operators estimated
(1), (2) with the calculus of pseudo-differential operators and there are still
some open questions, e.g., it seems that the boundedness for the Stokes op-
erator on a Helmholtz space LE(£2), 2 bounded, was only known for domains
with a “smooth” boundary but not for a Lipschitz domain.

The purpose of this paper is to close this gap and also to present a new
method for the H°-calculus, which is well adapted to the task of extrapo-
lating a bounded H-calculus for A on L?(U) to the whole LP-scale, or part
of it. Our approach is a refinement and a simplification of the comparison
method of [11]. Assume that B has a bounded H*-calculus on a fixed LP(U)-
space. The idea is that if a second sectorial operator A is “close enough” to
B it will inherit boundedness of the H*°-calculus.

Recall that the boundedness of the H*°-calculus can be characterized in
terms of (certain) Littlewood-Paley estimates ([12, Remark 2(b)])

el ~ ||(3 le@ )2 || . we @), (3)

where the analytic function ¢ on 3, decays polynomially at 0 and oo. The
idea is now that we “compare” the Littlewood-Paley decompositions of A
and B and the “closeness” condition we use is motivated by the following
simple calculation. Let ¢ be a second function with the properties of ¢ such



that 3, ¥*(2"\) = 1 for A € 3,. Then, for x € LP(U),
|l

- (S nSrerm)

> .

< (S| (Swermar) T, <t

if we assume the following “off-diagonal” estimates with respect to the
Littlewood-Paley decomposition

H (Z|90(2nA)¢(2”+mB)mn|2) 1/2

Lp

IN

( Z |90(2”14)15(2"“”3)¢(2”+m3)$|2> 1/2

< Ca*\m\H (Z|xn|2)1/2

Lp

—im 1/2
o < G|,

for some a > 1. Note that the second condition gives the lower estimate of
(3) by a similar dual argument. Hence, if B satisfies (3) and A satisfies (5)
then by (4) also A has a bounded H*-calculus. As we shall show below (see
Proposition 3), condition (5) holds, e.g., if D(A%) = D(B*) (with equivalent
norms) for two indices with oy < 0 < ay and A is R-sectorial, i.e. for some
C > 0 and all choices of \j,..., \y € 3, 21,...,7, € LP(U) we have

12 12
HZIARAMD 731%) /L<0HZ|]\ /

And this condition is clearly related to Littlewood-Paley theory. (6) is known
to hold, e.g., if the semigroup e~'4 satisfies (generalized) Gaussian bounds
(see, e.g. [17, Chapter 8]).

This argument is particularly well suited for extrapolation from L?*(U) to
the LP(U)-scale. Often it is possible to check the equality of some fractional
domains of A and B on L?(U). Then we have (5) on L?(U) for some a > 1 by
the last remark. If A and B are R-sectorial in LP then we have (5) in L? for
a = 1. Interpolating (5) in L? and (5) in L? then gives (5) on all LI(U) with
q between 2 and p (with a different a > 1, we refer to Theorem 5 below), i.e.
if A satisfies (6) and B has a bounded H>-calculus on these L9(U)-spaces,
so does A. For an illustration concerning elliptic operators, see Section 4.

Lp

H (Z|90(2n14)/1/;(2”+m3)/x; 2) 1/2

(6)



We mentioned that condition (5) can be obtained from the equality (with
equivalent norms) of fractional domains of A and B. Conversely, condition
(5) implies equality of certain fractional domains (see Theorem 1). Our extra-
polation scheme makes it therefore possible also to extrapolate the coinci-
dence of fractional domains of A and B from L? to the LP-scale.

For the Stokes operator A on the Helmholtz space LE(£2) we have the
additional difficulty that we want to compare A with the Dirichlet Laplace
operator B = —A on the larger space LP(Q)? To this end we introduce a
variant of condition (5) including a retraction of LP(2)? onto LP(2), which
is defined by the Helmholtz projection (see Theorem 9). According to the
latter argument the Stokes operator has a bounded H*-calculus on L2 (€2) if
we can show that

e the Helmholtz projection P, is bounded on LF()?,

e we have LZ(Q)s/24 = H:(Q) and (L*(Q))52,5 = H*(Q)? for |s| < 1/2
where X 4 denontes (D(A®),[|A*-|)~ on X,

o Ais R-sectorial on LE(£2).

The latter we show by extending Shen’s proof in [22] for sectoriality of A to

a square function estimate as in (6) for )% - %‘ <5, d >3

See Section 6 for the precise statement of the theorem on the Stokes
operator on bounded Lipschitz domains. In Section 3 we prove our com-
parison result based on (5). There we will use the random sum techniques
of [11] to formulate our result in a Banach space setting. We recall es-
sential definitions and statements from [12] and [11] in Section 2. Since
EIY enznllee ~ |3 |2a]?)?||zr in an LP(U)-space for a Rademacher se-
quence (g,,) there is no essential difference between the LP-case and the gen-
eral setting.

2 Preliminaries

In this paper, X is always a complex Banach space. The space of bounded
operators in X is denoted by B(X). We recall the notation ¥, = {2z €
C\{0} : |arg 2| < w} for w € (0, 7). By abuse of notation we set ¥ := [0, c0).

We shall need the concept of R-boundedness. A set of operators .7 from
X — Y is called R-bounded if there exists a constant C' such that, for all
neN, x,...,x, € X,and Ty, ...,T,, € 7, we have

n n
E|Y eTiilly < CE|Y  ejayllx.
=1 =1
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The smallest constant C' is denoted R(.7). R-boundedness is stronger than
uniform boundedness, and for sets in B(X) it is equivalent to uniform bound-
edness if and only if X is a Hilbert space (this is an unpublished result due
to Pisier, one has to combine [1, Prop. 1.13] with Kwapien’s characterization
of Hilbert spaces as those Banach spaces having type 2 and cotype 2, see also
[17, N 2.12]). Obviously, singletons {T'} are always R-bounded, we shall use
this fact later.
A sectorial operator of type w € [0, ) is an injective linear operator A in
X with dense domain D(A) and dense range R(A), such that its spectrum
o(A) is contained in the complex sector ¥, and one has uniform boundedness
of
DA=A): X eC\ ) (7)

for any 6 € (w, ). The infimum of all such w € [0, 7) is denoted w(A).

A sectorial operator A of type w in X is called R-sectorial of type w, if
the sets in (7) are R-bounded in B(X). The infimum of all such w is denoted
wr(A). A sectorial operator A of type w in X is called almost R-sectorial of
type w, if the sets

DPDAN=A)?:2eC\ e}, 0€ (w,m),

are R-bounded in B(X). The infimum of all such w is denoted w,(A).

If A is a sectorial operator in a Banach space X and a € R we denote by
X4 the completion of D(A®) with respect to the norm ||A® - || x. For the
scale (Xa, 4) of homogeneous fractional domain spaces and their properties
we refer to [11, Sect. 2] and [17, Sect. 15.E].

For an angle w € (0,7) we denote by H*>(X,) the set of all bounded
homolorphic functions on 3, and by Hg°(%,) the subset of those functions
f e H®(X,) that satisfy, for some ¢ > 0, |f(2)] = O(]z]°) as z — 0 and
1f(2)] = O(|z]|7¢) as z — oo. If A is a sectorial operator in X of type w
and 0 € (w, ) then for f € H°(3y) the absolutely convergent Dunford type

integral
: YA —A)"dA
T omi / O

defines a bounded operator f(A) on X, which is independent of v € (w,0).
The operator A is said to have a bounded H®(X4)-calculus, if there is a
constant C' such that

LF A< Cllf oo,

for all f € H$(3y). In this case, the functional calculus f — f(A) extends
to a bounded algebra homomorphism H* (%) — B(X). The infimum of all
such angles 6 is denoted wpy(A). For more details on the construction of the
H*>-calculus and its properties we refer to [3, 12, 11, 10]).

b}



We recall the characterization of [11, Theorem 4.1]: If A is an almost
R-sectorial operator in X and ¢ € H>*(%,,) \ {0} where w € (w,(A), ) then
each of the following two conditions is equivalent to A having a bounded
H>(X,)-calculus for each o € (w,(A),7):

(i) There are constants Cy 4, Cy ar > 0 such that, for z € X and 2’ € X',

sup supEH Z g (t2' A) H < Cyalzllx,
te[1,2] SN
i SUPEH S e AN < Cywlla|lx
tef12] N l71<N -

(ii) There are constants Cy 4,C}, 4 > 0 such that, for x € X,

woallzlx < sup supIEH Z gjh(t27 A) H < Cyallzlx
te[1,2] N =N

Here, X’ denotes the dual space of X. For later use we remark that, as a
consequence of the contraction principle (see [11, Prop. 2.5]), one has for
finite subsets Fi, F, C Z the following monotonicity

EH E T SEH E i
JjEF1 JEF,

At the end of this section we recall that any sectorial operator A that has a
bounded H®(3y)-calculus for some 6 € (w(A), ) is almost R-sectorial and
satisfies wy (A) = w,.(A) (see [11, Corollary 4.4]). So in the sequel we just say
that A has a bounded H*°-calculus.

if Fy C Fy. (8)

3 Criteria via Littlewood-Paley operators

Our first theorem gives our basic comparison criterion for the boundedness of
the H*°-calculus and the coincidence of fractional domains of two operators
A and B on a Banach space X in terms of an off-diagonal estimate of their
Littlewood-Paley decompositions. Variants of it in more concrete situations
will be given in subsequent sections.

Theorem 1. Let B have a bounded H*(X%,)-calculus on a Banach space X
and let A be an almost R-sectorial operator in X. Assume that there are



functions ¢, € HP(X,) \ {0} where v > o such that, for some [y, 1 > 0
and all |l € Z,

sup R{p(s2HAW(t2B):jez} < Cop27Pl 9)
1<s,t<2

sup R{p(s2MAYY(t2B) :j €7} < 2740 (10)
1<5,t<2

Then A has a bounded H*-calculus on X . Furthermore, if X is reflexive and
for all o € (=P, Bo) the functions pu(A) = A*@(N), Ya(X) = A*P(N) still
belong to H®(X,) then for o with |a] < By

D(B%) € D(A%),  [[A%|| < |B%x|| for x € D(B®). (11)
If 9o, Ve € HP (X)) for |a| < By then
D(A%) € D(B%),  |B%|| < [|A%] for x € D(A®). (12)

Remark. Our proof shows that A has a bounded H*-calculus if we make
only the weaker assumptions

sup ZfR{go(stHA)w(thB) 1] €L} < o0, (13)
1<st<2 =

sup > R{p(s2MA)YY(t2'BY : j € Z} < o. (14)
1<s,t<2 ez

Proof. We need regularizing operators. Setting
ho(2) =n?2(1+nz) Y (n+2)7"

we let U, := h,(A)™ where m € N is > [y. Then U, maps into D(A™) N
R(A™) and U,z — « for all x € X. Moreover, Cy := sup,, ||U,|| < oo and we
have

|lz||x < supl||zU,|x < Callz||x forall z € X.

We shall estimate square functions for the operator A via a reproduc-
ing type formula. To this end we choose ¥ € HZ°(3,) \ {0} as ¢(z) =

[/ () dt/t] 7 (Z) so that [;* (1) (t) ¢ = 1 and put

2 ~ . dt
plz) = | w(t2)v(tz) —.
1
Then p € H*(%,) and ), p(2/2) = 1 for all z € %, which leads to

Zp(QjB)x =z forallz e D(B)N R(B)

JEZ



where the series is absolutely convergent in X (since the Dunford calculus
even gives > ||p(2' B)hi(B)| < oc). For z € D(B™) N R(B™) and |a| < By
we thus have

©_a(528A) AU,z = 277U, (52" A)

»

and we thus obtain

sup supEH Z Exp—a(s2FA) AU,

s€(1,2] k|<N
< (4 sup supE Z ZakQ Fag=ap(s28A)p (2k_jB)xH
s€[1,2] N k<N 7 X
< C42° sup 22 o supIEH Z (528 A)2~ (= ])ap(Qk’jB)xH
s€(1,2] 7 N <N X
< a2 sup 22 o supEH Z 5k,jg0(32kA)2_(k_j)ap(2k_jB)xH ,
s€[1,2] N <N X

where we observe that the sequence (g;_;); has the same distribution as
(¢k)k. Now we shift the summation index k by j and use (8) to obtain

< €421 sup 22 o supEH Z epp(s287 )27k p(2" B H

s€[1,2] k<N X
We continue by writing p(t2¥ B)z as an integral and use

27k (128 Bz = t*¢_o (12" B) Bz

(recall that = € D(B™) N D(R™) C D(B%)) to obtain

‘ X

sup sup EH Z exp—a(s2FA) AU,

s€(1,2] N
dt
< 0427 sup/ 22 @ supEH Z enp(s287 Ay (128 B)_ (tQkB)BO‘m‘ —
s€[1,2] k<N x t
< 0280 sup Zz—aﬂy{go(s%ﬂAW(tQkB):keZ}x
s,t€[1,2]
sup supE‘ Z 5;4/) tQkB)Bax‘
te[1,2] N K<V X
<

lel ( 3 2—<ﬁo—|a\>|j|> Ci_, sl B llx
J



where the constant is finite due to |a| < Sy. We obtain the estimate

sup sup]EH Z Exp_al(s2FAN (AU o

s€[l,2] N k|<N

< o,2%lc, ( S 2—(61—|al)lj|> Cr (B x
J

X/

for the dual square function in the same way with a finite constant, if |o| < ;.
For a« = 0 we have
«

sup supIE‘ Z Ekgp(SQkA)a:HX < sup 51[1p supEH Z erp(s2 A)U x
n  s€(l,2
lk|<N

and our estimates show that A has a bounded H°-calculus. But then

.
X

|A®U,z||x ~ sup EH Zekgo (528 A) AU,z

s€(1,2]

and we have shown
sup [[A*Upz||x < [|Bz||x
n

for all |a| < fy. By reflexivity of X we find a weakly convergent subsequence
of (A*U,x), and weak closedness of A* implies z € D(A®) for x € D(B™) N
R(B™). Then (11) follows, since D(B™) N R(B™) is a core for B*.

The dual estimate gives

1(A%)2'[[x < ([(B*)2||x for all [a] < B,
which implies, if X is reflexive, by [11, Corollary 5.6] or Proposition 11 that
|Bx||x S ||A%||x  for all |a| < B,

and (12) follows.
To justify the remark, note that for @ = 0 we only need summability of
the R-bounds in the last estimate of the argument above. O

Remark 2. (a) If we only assume that B has an H>(3,)-calculus and (9)
then it follows already that {p(tA) : ¢ > 0} is R-bounded. In particular, if
©(A) = A(1 + X\)~2 then the assumption of almost R-sectoriality of A can be
omitted since it is automatically fulfilled. Sketch of proof: Replacing x in the
k-th term by ), we obtain for each s € [1,2] and o = 0:

EH Zekgo(s2kA)ka < CEH ZekJ(SQkB)ka < IEH Zakka
k k k



by almost R-sectoriality of B. Now we use [17, Example 2.16].

(b) For many natural choices of ¢ and J, eg. 2%(1+2)FPfor0< B <a
or z%¢~#, one can omit the sup over s,t € [1,2] and simply put s =¢t =1 in
(9) and (10) (cp. [16]).

(¢) It is clear from the proof that the functions ¢, in (9) and (10) need
not be the same.

(d) Condition (10) in Theorem 1 can be replaced by

C]:= sup Z.’R{@/J(tQjB)gp(st’LlA) 1j €L} < 0. (10')

1<s,t<2 1
As before, this condition allows to estimate (with a suitably chosen ¢ € Hg®)

exp (127 B) H < (7 sup EH Zéjgp 527 A) H

s€[1,2]

sup EH
te(1,2]

Since B has a bounded H*-calculus, we have

sup EH Zekw(ﬂkB)xHx > Cy pllzllx,
!

te[1,2]
and hence
sup EHZ&M 527 A) H > COy pllzl|x-
We conclude that A has a bounded H®-calculus.

Our next result gives a partial converse of the second part of Theorem 1:
The equality of fractional domains is a convenient way to verify the conditions
(9) and (10) of Theorem 1.

Proposition 3. Let A and B be almost R-sectorial operators of angle w in
X. Suppose that, for some ag, a; > 0, we have

D(B*) € D(A%) and |A%z| < |[B®z| (15)
for a = +ag and
D(A%) € D(B®) and |B%x|| < [|A%] (16)

for a = tay. If @, 1, \XE2p(N), \E2(N) are in HP(Z,) (where v > w) for
a = g, then (9) holds with By = ag and (10) holds with B = ay.

10



Proof. We write, for a = +ay,
(t2"9 A)op(s2 B)
f)azla(t2l+j)—aA—a¢(t21+jA)[AaB—a](s2f)aBa¢(52jB)
s
— <f>a21a P(t279 A) M o (s2/ B),

s

where 3(z) = 27%(z) and ¥(z) = 2*(z) are in H°(S,) by assumption,
and M € B(X) denotes the bounded extension of A=*B® (here we use (15)).
By almost R-sectoriality then the sets {G(tA) : t > 0} and {1(sB) : s > 0}
are R-bounded (see [11, Lemma 3.3]). Taking o = —ap < 0 for [ > 0 and
a = ap > 0 for [ <0 we see that (9) follows with 5y = ay.

For the proof of (10) we note that, by Proposition 11 below (with X =Y,
R = 1), condition (16) implies

D((B)™") € D((A)™%) and [[(A) 2| S [I(B") 2| for o = Fan.
Hence we can repeat the argument. O

Combination with Theorem 1 yields a result which should be compared
to [11, Theorem 5.1] with an additional restriction on the range of o (we also
refer to [18, Theorem 1.1], but mention that in case P = I, also the assertion
of [11, Theorem 7.9] is correct).

Corollary 4. Let B have a bounded H*-calculus on X and A be almost
R-sectorial in X. If (15) and (16) hold for a = ay, a9 € R\ {0} which are
different, then A has a bounded H*-calculus on X.

Proof. If a; < ag < 0 or 0 < ag < ag we shift the scales of (homogeneous)
fractional domain spaces (see [11, Proposition 2.1]) and obtain, by Theorem 1
and Proposition 3, that A has a bounded H*-calculus in X%B = XO%A. But
then A has a bounded H*-calculus in X. O

4 Extrapolation in the LP-scale

We now describe a quite general method which allows us to extend the bound-
edness of the H*-calculus of differential operators A on a space L?(§2), where
(Q,d, p) could be, e.g., a metric measure space with the doubling property,
to the part of A on LP(Q)-spaces, p # 2. It will be clear from the proof
that this argument also applies to other interpolation scales such as Sobolev-
and Besov spaces or scales of fractional domains of a sectorial operator (if,

11



e.g., the operators have BIP). The following statements refine [11, Corol-
lary 8.3]. Recall that a family of sectorial operators A, on a scale of spaces

LP(U), p in a real interval I, is consistent if, for A < 0 and p,p € I we have
R\ Ap)z = R(\, Ag)x for x € LP(U) N LP(U).

Theorem 5. Let py € (1,00) \ {2}, and suppose that we are given two
consistent families of sectorial operators A, and B, on LP(U) for p = 2,py
and all p between 2 and py. Let B, have a bounded H™-calculus in LP(U)
for p = 2,py, and let A be almost R-sectorial in LP°(U). Assume further
that there are functions p,v € HS(X,) \ {0} such that, for some constants
0,C >0, and alll € Z, s,t € [1,2],

sup [l¢(s27 A (127 B) || 22 < C27°1, (17)
JEZL
sup ||¢(t2' B)p(s2H A) || 2y 2 < €270 (18)
JEZ

R{p(s2MA)p(t2'B) : j € Z} < C in LP(U) and LPo(U), (19)
R{Y(t2B)p(s27TA) . j € Z} < C  in L»(U) and LP(U). (20)
Then A has a bounded H*-calculus in LP(U) for p between 2 and py. Fur-
thermore, we have for |a| < 6,0, where 6, determined by % = %” + %,

that

D(AY) = D(By), Azl ~ [[Byx| for x € D(Ay),
as long as the functions po(A) = A*@(N) and Y,(N) = A*(N) are still in
He(3,) for |a| < 6,0.

Proof. Complex interpolation gives the assumptions of Theorem 1 in LP(U)
for p between 2 and po, however with the bound C2-%. See also Remark 2
(d) and [11, Corollary 3.9]. O

Remark 6. Conditions (19) and (20) are satisfied if A is almost R-sectorial
in LPo(U) and LPo(U).

Corollary 7. Suppose we are given two consistent families A, and B, on
LP(U) for all p between 2 and some py € (1,00) \ {2} such that

a) By, has a bounded H> (3, )-calculus on LP(U),
b) Ap, is almost R-sectorial with angle wy, on L*(U),

c) As and By have their numerical range in a sector ¥,,, where oo < 7/2,
and for one a € R\ {0} we have

D(A3) = D(B3),  [[A5z[| ~ | B3| for x € D(A3). (21)

12



Then A, has a bounded H*-calculus on LP(U) for all p between 2 and py and
D(A}) = D(By), | Agz| ~||BJa|| for = € D(A]).
for B =sa, 0 <s <0, where 8, € (0,1) is given by % = %” + %.

Remark. Condition c) is certainly fulfilled if A and B are self-adjoint or
defined by a closed sectorial form and satisfy (21), e.g. for @ =1 or a = 1/2.

A version of this theorem where A, is only defined on a (consistent)
family of complemented subspaces X, of LP(U), py < p < py, will be applied
in Section 6 in the context of the Stokes operator.

Proof. The operators A; and By are accretive (even regularly accretive in the
sense of [15]), and thus have a bounded H*-calculus (see, e.g., [17, Section
11]). Therefore (L?); 4, = (L?) 5 fora < 8 < 0ifa < 0and for 0 < § < « for
a > 0. By a result of Kato ([15, Theorem 1.1]) and Proposition 11 it follows
that in addition (L?); 4, = (L?)5 p for 0 < 8 < min{1/2,|a|} in the first case
and for —min{1/2,|a|} < B < 0 in the second. Now combine Proposition 3
(applied in L?) and Theorem 5 to obtain a bounded H-calculus for A,
with some angle. The optimal angle can then be obtained by [11, Corollary
3.9]. O

Furthermore we shall exploit the assertion on fractional domains in The-
orem 5 in the following application. It is clear that this approach works in a
large variety of situations.

Corollary 8. Let A be an elliptic operator of order 2m with bounded mea-
surable coefficients defined on R? by a closed sectorial and coercive form
with form domain HY'(R?). Suppose that the semigroup (e=*4) extends to a
bounded Cy-semigroup on LP°(R?) and LP*(RY) where 1 < py < 2 < p; < 00
(weak* -continuous for p; = 0o). Then, for py < p < p1, (e™*) extends to
a Co-semigroup in LP(RY) whose negative generator A, has a bounded H*-
calculus in LP(RY) and satisfies D(AY) = H2™(R?) for 0 < a < 6,/2 where

6, € (0,1) is given by i = %p + 1;06"
m case 2 < p < pp.

mcasepo<p<2andby%:%p+%

Proof. The assertion on the H>-calculus is already in [2], and this gives also
R-sectoriality of A,. Then we compare with the self-adjoint operator B =
(—A)™ and use the proof of Corollary 7 and the arguments of Theorem 5. [
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5 Criteria via Littlewood-Paley operators in
complemented subspaces

Now we generalize the setting of Sections 3 and 4 and let A and B act in
different Banach spaces X and Y, respectively, where X is isomorphic to a
complemented subspace of Y.

Theorem 9. Let X and Y be Banach spaces. Let R:Y — X and S : X —
Y be bounded linear operators satisfying RS = Ix. Let B have a bounded
H>®(X,)-calculus in' Y and let A be almost R-sectorial in X. Assume that
there are functions ¢, € H§(X,) \ {0} where v > o such that for some
£8>0

sup R{p(sP T A)RY(t2’B) : j ez} < 2771 (22)
1<5,t<2

sup R{@(s2HAYS"Y(t2PB) :jeZ} < Cy27°l. (23)
1<s,t<2

Then A has a bounded H-calculus on X. If, in addition, X is reflexive and
B-convex (e.g. an LP-space with 1 < p < 00) and a € R is such that |o| <
and ©_o(A) = A% (A), Y_a(N) = A™*P(N) still belong to H°(X,) then

D(AY) ={zx € X : Sz € D(B*)} with ||A%x||x ~ || B“Sz|y.

Remark. If we only assume that

sup ZR{@(52j+lA)R¢(t2jB) CJELY < o0, (24)
1<5,1<2 =
sup ZfR{(p(SQjHA)'S’w(tQjB)’ CJELY < o0, (25)
1<5,1<2 1=

in place of (22) and (23) then the proof below still gives a bounded H*-
calculus for A in X.

Proof. We choose Ve H§(X,) \ {0} as in the proof of Theorem 1 so that
S () (t) % =1 and put again

2 ~ ot
o) = [ vl &
1
so that p € Hg(X,) and Y, p(272) = 1 for all z € ¥, and

Zp(QjB)y =y forally e D(B)NR(B)

JEZ

14



where the series is absolutely convergent. In the following, we shall need
regularizing operators and let U, := h,(A) and V,(B) = h,(B)™ where
m € Nis > and

ho(2) =n*z(14+nz) " (n+2)""

Then the operators U, and V,, are uniformly bounded in X and Y, respec-
tively, and map into D(A™) N R(A™) and D(B™) N R(B™), respectively.
Moreover, we have U,x — x and V,y — y as n — oo for all z € X and all
y € Y, respectively. It follows that

ITz||x = lim || TRV, Sz||x <supl||TRV,Sx|x
n—oo n
for any z € X and T' € B(X). Thus we have for z € D(A™) N R(A™)

sup supEH Z erp( st H

s€[1,2] N

k|<N
< sup supEH Z exp(s2¥A)RY, S:cH
s€[1,2] N k|<N

Proceeding, for fixed n, as in the proof of Theorem 1 we get

sup supIEH Z exp(s28A)RY, Sm”

s€(1,2]

|k|<N
<  sup ZsupE Z exp(s28A)Rp(2" 7 B)V,, Sz
se12) 57 N =N X
= sup Zsup]E Z exp(s2"A)Rp(2"7 B)V,, Sz
s€[1,2] N k<N X
< sup Zsup]E Z exp(s287 AYRp(28 B)V,, S
s€(1,2] j N k[<N X

We continue by writing p(t2%B)V,, Sz as an integral:

< sup / ZsupEH Z enp (5289 A) Ry (12F B)o) (12* B) VSxH

s€[1,2] N

b, B ||Vn5xHY

[k|<N
< sup Zsz{go (s2"9 AVRY(12" B) : k € Z} sup supEH S (125 B)Y; st
s,te[1,2] te[1,2] N k=N
< —Bl3l) H H < 813l
< 6'1(;2 >t2ul%supE Zskw t2BVSm C’1<22 )
< GG IValllShHz]lx.
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Since " :Y' - X', R : X’ - Y’ and S’R’ = Ix/, we obtain the estimate
kAN A/ _ / / /
sup | D ep(s2 M| < OoCs (sup UL I 1l

s€[1,2]

for the dual square function in the same way. From the first estimate and
this we obtain that A has a bounded H*°-calculus in X. Now we put ¢(z) =
[[ le(t)? dt/t] o (Z) so that [[*¢(t)@(t) % =1 and

0= [ etpe) T

satisfies n € Hg°(%,) and >, 1(272) = 1 for all 2 € ¥,. We conclude
Z n(s2"A)x = =, x € D(A)N R(A),

kEZ

where the series converges absolutely in X. Since X is B-convex, we also
have by [11, Proposition 3.5] that

sup R{y(s2"B)Sp(t2¥A) : k e Z} < Cy27 Pl

1<s,<2
Now we let |a| < f and estimate, similarly as we have done before, for
x € D(A™) N R(A™),

|BV,,Sz|ly < sup supEH Z ejw_a(thB)BaVnSxHY

te[1,2] N .
1.2 lj|<N

< sup sup E’H Z 5jt_o‘2_O‘jVn¢(t2jB)SxH
Y

te[1,2] N lj|<N
< 2l gup ZsupEH Z €2 IV ah (127 B)Sn (28R A)x H
te[1,2] 7 lj|<N Y
< 2l gup 22 aksupEH Z £;Vuh(t27B) 527U~ (5277 % A H
tef1,2] GI<N '
< 9lel sup ZQ aksupEH Z £ nw t23+k8)52 aj (SQJA) H
te[1,2] =N Y
< ol sup/ ZQ O‘ksup]EH Z £;27 V(127 B) S (527 A)p(s27 A)x H ds
tel1,2 <N Yos
< 2l sup 22 KRRV, (127K B)Sp(s2/ A) : j € 7} supEH Z er2 *P(s2" A)x H
ste(l,2] |k|<N
< 220, sup ”{@H(ZQ*(/B*IOLDI!\)EH S a3 a(s2°4) A% ‘
. X
] k
S A%]x.
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So we have shown

sup || BV, S|y < ||A%llx, x € D(A™)N R(A™). (26)

If x € D(A%) then the argument we used in the proof of Theorem 1 shows
that Sz € D(B*) and
1B*Szly S [[A%]|x

In the same way, using p, ¥, {bv in place of 1, p, », we obtain

sup [[A*Un Ryl x < 1B%lly, v € D(B™)NR(B™). (27)

Again, the argument we used in the proof of Theorem 1 shows for y € D(B%)
that Ry € D(A®) and
ARyl x < 1B%ylly-

Finally, if x € X and y = Sz € D(B®) this implies © = RSx = Ry € D(A?)
and
[A%z][x = [[A*RSz|x S [[B*Sz]y,

and the proof is finished. n
We give conditions that imply (22) and (23) in the style of Proposition 3.

Proposition 10. Condition (22) holds if

R(D(B%)) € D(A%),  [|A"Ryllx < C|Bylly, ye€ D(B"),
for a = aq, ay where oy < 0 < ag. Similarly, condition (23) holds if
S(D((A)) € D((B)), (A" SYlx < CNB)*Yly, ¢ € D(B)"),
for a = ay,as where ay <0 < g, orif

S(D(A%) € D(B%),  [BSally < CllA%allx, @€ D(A%)
for a = ay, as where ay; <0 < .

Proof. Similiar to the proof of Proposition 3. For the last statement we use
the following Proposition 11. m

The following is a simplified version of [11, Proposition 5.5], sufficient for
our purposes, which we prove here for convenience.
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Proposition 11. Let X and Y be Banach spaces. Let B and A be closed
injective operators wih dense domain and range in Y and X, respectively.
Let R :Y — X be a bounded linear operator and C > 0. Then (i) = (i)
where

(i) R(D(B™Y)) € D(A™) and ||[A7'Ry|x < C| B Yy|ly for all y €
D(BY).

(17) R(D(A") C D(B') and |B'R'z'||y: < C||A’2'||x: for all ' € D(A’).
If X is reflexive then (i) and (ii) are equivalent.

Proof. Assume that (¢) holds. Let 2/ € D(A’) and y € D(B). Then By €
D(B™Y), RBy € D(A™!), and = := A"'RBy € D(A). We thus have

(By, R'2') = (RBy,2') = (Ax,2') = (x, A'z’) = (A" RBy, A'x'),
and, using (7),
[(By, Ra')| < |AT RBy||x[|A'2'|[x < Cllylly [ A2"]| x.
This means R'2’ € D(B’') and ||B'R'y||y: < C||A’2'||x.

Now let X be reflexive and assume (7). Then A™1 = (A71)" = ((4")71).
Let y = Bz € D(B™'). Let 2/ = A'w’ € D((A")™!) where w' = D(A’). Then
R'w" € D(B') and

(Ry, (A™"2') = (Ry,w') = (RBz,w') = (Bz, Rw') = (2, B R'w').
This yields
[(Ry, (A71)2")] < |lzlly | B'R'w'[lyr < |l2lly Cll AW || xr = ClIB™ylly [l x.

Hence Ry € D(A™1) and || A7 Ry||x < C|| B 'yl|y. O

6 H°-calculus for the Stokes operator on Lip-
schitz domains

In this section we apply our results to the Stokes operator on bounded Lip-
schitz domains. In order to verify the assumptions we need R-sectoriality of
the Stokes operator in L4, we need the Helmholtz decomposition in H* for
|s| small, and we need information on the fractional domains of the Stokes
operator in L?. We shall use arguments from [22] and [8] and results from
[19]. Let © C R? be a bounded Lipschitz domain where d > 3. As usual,
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we denote by C29(€2) the space of all divergence-free vector fields in C5°(€2)
and by LZ(Q), where ¢ € (1,00), the closure of C22 () in L2(Q2)?. We recall
the definition of the Stokes operator A, in LZ(€2) from [22, (1.7),(1.8)]:

A= —Au+ Vo,

where ¢ € L9(Q) is such that —Au + V¢ € L1(Q) and D(A,) is the space
of all u € Wy ¥(Q)¢ with div(u) = 0 in Q for which such a ¢ exists. We
assume that diam(£2) = 1. The following has been shown in [22, Theorem
1.1, Remark 6.4].

Proposition 12. For any 6 € (7/2, ) there exists € > 0, only depending on
d, 6 and the Lipschitz character of ), such that for

1 1 1
there is a constant Cy g satisfying
_ Cyo
I+ 407 Flir < 25 s, A€ Tof € L@, (29)

where Cyg only depends on d,q,0 and the Lipschitz character of 2.

Consequently, for ¢ satisfying (28), the Stokes operator A, is sectorial in
L1(Q) and generates a bounded analytic semigroup. We check here how the
proof given in [22] yields also R-sectoriality of A, in LZ(Q2) for ¢ satisfying
(28).

Proposition 13. Under the assumptions of Proposition 12 there exists a
constant C’qyg, only depending on d,q,0 and the Lipschitz character of €2,
such that 3

:R{(P\‘ + 1)()\ + Aq)il A E 29} < Cq’g, (30)

where the R-bound is taken for operators LL(€2) — L1(2).

Proof. We follow the lines of [22, Proof of Theorem 1.1, p.421] and check
that the arguments extend to square functions. For A € 3y, f € L*(Q)? we
consider the problem

(31)

divu =

—Au+Vo+Iu = f
0

in Q. There is a unique v € H}(Q)? and a function ¢ € L*(Q), unique up to
constants, that satisfy (31). One has (22, (6.9)])

(AL + Dllullzz < Coll fll 22,
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which implies the square function estimate

(S0 <l (S )

for finite collections (f;); in L*(Q)% and A := (\;); € Zp, where u; is the
solution of (31) with A;, f; in place of A, f. In this situation we put

2

Tu((1)) = (00l +2%0s)

J

which defines a sublinear and L?*-bounded operator. In order to use [22,
Lemma 6.3] and thus obtain L?-boundedness of T for ¢ satisfying (28) we
show the square function version of [22, (6.10)], i.e

<]{20B TA((fj)j)q> " = C<]{)ﬁ2B TA((fj)j)2> "

which means

(., (i) ™) " < e( L S+ )”

Here B = B(zg,7) denotes a ball with 7o € Q and 0 < r < ¢ < 1 and
the f; € L*(Q)? have supp f; € Q \ 3B. This is a square function version
of [22, Lemma 6.2]. As in the proof given there it suffices to consider the
cases 3B C ), which reduces to an interior estimate, and xq € 9€). For the
latter case we need a square function version of [22, Lemma 6.1], which will
follow from a square function version of [22, Theorem 5.6] for the domain
U=QnNBkB,ie. from

([ (St mmur)™) " <o [ Sonvier)”™ o

(cp. with [22, (5.18)]) where ¢ = -*%. As in [22] we use the estimate

H(Uj)*HLQ(aU) < Cllujll 2oy

where (u;)* denotes the non-tangential maximal function of u; with respect
to the domain U. We also use the observation

uy(2)] < 0/ (W) 40y for any 2 € U,
ou [T —y|*™
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and the boundedness

M (F) 200y < ClIF o )

[ Fw@
F y)‘/m:c—m“d

where é%— $ =1 (see [7, Lemma 6.1]). By a classical result of Marcinkiewicz
and Zygmund (see [9, Ch. V, Sect. 2, Theorem 2.7]) the single operator I;
has a vector-valued extension

i Sinee

of the operator

1/2

L2(8U) L (U)

<c| (X IEn™
J

(i.e. the set {Il} is R-bounded). Now we carry out the duality argument
omitted in [22], but in our square function setting:

‘/Z(|/\j|+1)ujf}dl"

S [ L e e el
- Z/aU N1+ 1)) ()12 (E5) () dr ()

< /BUZHAH (uy)*[? dor(y) /Zm (F @) P o)
< co( [ S+ 1) F do ) )" oI

Taking the supremum over (F}); with LZ-norm of the square function < 1,
we arrive at (32). O

IA

Le(

We turn to the Helmholtz decomposition in €2. We denote by P := Py the
orthogonal projection in L?(2)? onto L2(2). It has been shown in [8, Theorem
11.1] that there exists e = £(Q) > 0 such that, for 3 —¢ < ¢ < 3 + ¢, the
operator P extends to a bounded projection P, in L4(2)% onto LZ(Q2) and
that one has the Helmholtz decomposition

LI(Q)* = LL(Q) @ VIWH(Q)

as a topological direct sum. Taking R = P, : L9(Q)? — L2(Q) and
S L4(Q)) — L9(2)? the inclusion, we see that we need for ¢ = 2 a Helmholtz

21



decomposition of H*(Q)? for |s| small. The following is part of [19, Proposi-
tion 2.16]. For convenience and as details had been omitted in [19], we check
here that the arguments given in [8] apply.

Proposition 14. For |s| < %, the Helmholtz projection P acts as a bounded
linear projection Py in H*(Q)¢ and yields the decomposition

H*(Q)* = H:(Q) @ VH*T(Q)
as a topological direct sum where
H:(Q) :={uec H Q) :divu=0in Q,v-u=0 on N}
Observe that H:(Q) = H*(Q)? N L2(Q) in the proposition.

Proof. We argue as in [8, Proof of Theorem 11.1], denote the outer unit
normal on 0f2 by v, and use the representation

Pu =u — VdivIlg(u) — Vi

where Il denotes the Newton potential and ¢ solves the Neumann problem

9 _
ov

Here u € H*(Q)? so Ilg(u) € H*™2(Q)¢ and VdivIig(u) € H*(Q)? for
|s| < 1. We also observe div (v — VdivIIg(u)) = 0, hence (see [8, Section 9])
u — VdivIIg(u) has a normal component on 92 and v - (u — VdivIlg(u)) €
H*~2(99)). By [8, Theorem 9.2] in combination with [8, Remark, p.360],
the Neumann problem above has a solution ¢ € H**1(f2), unique up to
constants, and Vi € H*(Q)?% Thus P extends to a bounded operator P, on
H#(Q)* for |s| < 1 which is again a projection. We also see that I — P acts
boundedly on H*(2)¢, and that

Ay =0, v (u— VdivIlg(u)).

P,(HS ()" ={uec H () :divu=01in Q,v-u=0on 9N} = H: (),
which finishes the proof. O

Let A, denote the Stokes operator in L1(Q2) for ¢ satisfying (28) and let
B, = —A with Dirichlet boundary conditions in L(Q)¢. Clearly, Ay and By
are self adjoint and D(AY?) = HY(Q)4N L2(Q), D(BY?) = H(Q)?. But we
have to relate these fractional domain spaces to the fractional Sobolev spaces
of Proposition 14. The first assertion of the following proposition is part of
[19, Theorem 5.1], we repeat the argument given there for convenience. The
main ingredient is [19, Theorem 2.12]. The second assertion is well known.
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1

5, we have

Proposition 15. For |s| <

(L3 (D)2, = Ho (), (L)), 2,8, = H ()"
Sketch of proof. Since the operators are boundedly invertible we can omit
the dots, and by self adjointness and duality we can restrict to 0 < s < 1/2.
Since the operators are self adjoint we can use complex interpolation and it
remains to show

[L5(Q), Ho ()" N L3(Q)]s = Hy(Q),  [L(Q)", Hy()]s = H*(Q)".

The latter is well known, and the former relies on [19, Theorem 2.12] which
states that the scale of fractional divergence-free Sobolev spaces is a complex
interpolation scale. [

Now we can prove our result for the Stokes operator.

Theorem 16. Let Q C R? where d > 3 be a bounded Lipschitz domain with
diam(§2) = 1. For q satisfying (28) the Stokes operator A, has a bounded
H*>-calculus in LL(S2). For these ¢ we have D(AF) = D((—A,)%) N LL(S)
for

||<1 (1+2>—11 1‘

ol < - —(=+2¢ - — -

2 d 2 q

Proof. The first assertion is proved by the arguments above. The second is
also an application of Theorem 9. O
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