

This material is based upon work supported by DARPA under Contract No.NBCH3039002.

What Do Programmers of Parallel Machines Need?
 A Survey

Susan Squires

Sun Microsystems Inc.
Santa Clara, CA

susan.squires@sun.com

Walter F. Tichy
University of Karlsruhe

Karlsruhe, Germany
tichy@ipd.uka.de

Lawrence Votta
Sun Microsystems Inc.

Menlo Park, CA
lawrence.votta@sun.com

Abstract: We performed semi-
structured, open-ended interviews with
11 professional developers of parallel,
scientific applications to determine how
their programming time is spent and
where tools could improve productivity.
The subjects were selected from a
variety of research laboratories, both
industrial and governmental. The major
findings were that programmers would
prefer a global over a per-processor view
of data structures, struggle with load
balancing and optimizations, and need
interactive tools for observing the
behavior of parallel programs.
Furthermore, handling and processing
massive amounts of data in parallel is
emerging as a new challenge.

1 Introduction

Programmer productivity has been
improving, but at a much lower rate than
processor speeds [4]. This disparity has
led to a shift of bottlenecks in the
supercomputer community consisting of
the computer and human.

In many cases, the bottleneck for
achieving results is no longer compute
time but programmer time. To explore
the phenomena, questions in our survey
were therefore aimed at obtaining a time
and task breakdown for development
work and eliciting suggestions of where
tool support might improve programmer
productivity.

2 Method

2.1 Survey Sampling

The sample size of participants in this
study is in keeping with the techniques
for purposive sampling. Purposive
sampling is used for exploration or pilot
studies when the demographics of the
participants are clear but the unit of
analysis or important questions are
unknown [1]. In qualitative studies of
nonrandom cases typical of a class of
participants, such as programmers of
parallel machines, purposive sampling
can be “sufficient to display something
of substantive importance” [2]. For such
surveys experienced researchers
recommend sampling at least 6 to 7
participants to document core
experiences that can generate questions
for follow-up quantitative studies (see
for example [5], [6], [8]).

2.2 Interview Construction

Semi-structured, open-ended interviews
follow a set of well-understood rules.
They build rapport in the first segment
and then look for deeper information.
The interviewers summarize information
in order to confirm the data with the
respondent.

While open-ended conversations are

allowed, interviewers make sure all
questions are eventually addressed. They
listen for native language: words, terms
and descriptions to fully understand the
world of the respondent. Techniques
such as reflecting back help the
interviewer achieve a deeper emphatic
understanding [6], [8].

An interview guide was initially
designed with the aid of a social scientist
and tested with two subjects. The
feedback was used to clarify the
statement of purpose and modify the
questions. Since part of the interview
was to elicit time and task breakdown,
and these estimates are most reliable
when done within the context of a step-
by-step description of an actual project,
the interviewer asked the subject to
identify a parallel programming project
that he/she remembered well. The
project might involve writing new code
or adapting existing code. The
respondent was asked to describe the
project in detail and to identify phases
that the project went through and how
much time the phases took. The phases
suggested were:

1. understanding the problem
and/or existing software;

2. studying documentation;
3. designing a solution;
4. writing new code or adapting

existing code;
5. testing, debugging and checking;
6. correctness of the results;
7. optimizing the code; and
8. scheduling production runs.

Respondents were, of course, free to
specify different phases, for instance
those of a prototype workflow.
Respondents were asked to identify the
most difficult and time-consuming
phase. Furthermore, we included a

specific question to estimate the amount
of communication and synchronization
code in the application.

The next block of questions centered on
tools. First, respondents were asked what
programming languages, communication
libraries, debuggers, version control, or
other tools they used. Second, the
interviewer probed explicitly for tools
that might speed up the development if
the programmers had to do the same
project again. In this part of the
interview, summarization of the ideas
expressed was particularly important.

In closing, the interviewer asked whether
the respondent would like to add
anything or had any questions. The
interviewer finally expressed thanks and
left the conversation open for quick
follow-up calls or emails.

2.3 Respondents

Candidates were initially approached to
participate in the study based on their
senior status and experience. In all, 16
candidates were identified and 11 of
them participated in the survey. The
remaining five did not reply to e-mail.
All respondents were professionals with
a PhD in a scientific discipline, and their
main work was developing parallel
applications or benchmarks. The 11
respondents came from both industrial
and governmental research labs in the
US and Germany. No claims are made
that the sample is representative, but the
areas in which they have experience is
found widely scattered, with 4 of the ll
were in the area of computational
physics called Lattice Quantum
Chromodynamics (QCD). Six of the
respondents worked in teams while the
other five worked alone when

developing the application discussed. All
candidates were male.

Table 1: Areas and Number of
Respondents

Area # of Respondents

Lattice QCD 4

Particle Physics
Data Analysis 1

Gravitational Wave
Analysis 1

Quantum Chemistry 1

Interval Arithmetic 2

Reengineering 1

Illumination
modelling 1

Total 11

3 Findings

3.1 Application Classes

We found three different application
classes: computation-bound with regular
structure, computation-bound with
irregular structure, and I/O-bound.
Importantly, we noted that developers
approach these classes in markedly
different ways and face different
challenges.

Computation-bound with Regular
Structure (4 Respondents)

This class is characterized by large,
multi-dimensional arrays that are
distributed over multiple compute nodes
and processed in parallel. Developers for

this class struggle with the per-processor
view imposed by MPI and similar
communication packages on distributed
memory machines. A per-processor view
of an array means that programmers
divide the array in chunks that are stored
on individual computer nodes and write
their programs for these chunks rather
than for the array as a whole. The
undesirable side effect of this approach
is that whenever data needs to be fetched
from, or stored on, another chunk,
special communication code, typically in
MPI, must be inserted. The extra MPI
code was typically 50-60% of the entire
code.

In one reengineering project, where the
respondent described how he took
existing benchmarks written with MPI
and rewrote them with a global or
shared-memory view, the code became
dramatically shorter: it shrank to one
fifth to one tenth of the original. This
respondent spent extra effort writing
code in as clear a way as possible and
eschewed all optimizations that might
obfuscate the intent of the algorithm.
The differences in code bloat observed
by this individual may be due to the per-
processor view requiring code in
addition to the MPI code. Optimizations
and sloppy coding may also account for
some extra code.

MPI code is not easy to write; some
respondents called it the most difficult
aspect of a parallel application. A global
view of arrays, as in HPF or ZPL [3],
was deemed far superior. One
respondent said: “If we had this, a lot of
programmers could do something more
meaningful than writing MPI.”

One-sided communication was seen as
mitigating the problems that MPI causes,

without going all the way to a global
view. With two-sided communication as
in MPI, the programmer must write two
statements for a single communication:
one to send the data, and one to receive
and store it into the target variable. In
addition, sender and receiver must be
synchronized in such a manner that the
sent message is received by the correct
receiving statement, not an earlier or
later one. In contrast, one-sided
communication allows the sender to
deposit a datum into a target variable at
the receiver without the cooperation of
the receiver. Thus, the communication
code is roughly half as long and
synchronization is needed less often.

In large applications, the problem often
is to redistribute data from one step to
the next, in order to be able to process it
in parallel. Redistribution is costly on
current machines.

Computation-bound with Irregular
Structure (5 Respondents)

This class of applications is
characterized by many sub-problems to
be solved, whose number and
distribution over the computation nodes
is unpredictable. One typically finds
irregular tree structures or parameter
space searches in this class of problems.
Each processor maintains a list of sub-
problems that need to be processed.
During processing, new sub-problems
may get added to the list. When the list's
length falls below a certain threshold,
the processor obtains additional work
from neighboring nodes (work stealing).
Alternatively, an overloaded node can
spread its work to less loaded nodes.
Other problems are irregular meshes that
are subdivided dynamically. N-body
problems also have the characteristic of

unbalanced load, but in order to
redistribute the load, the data structure (a
space-dividing oct-tree) needs to be
redistributed.

One respondent reported that
parallelizing a serial version of an
irregular problem took as long as writing
the sequential version, even though the
computational kernels remained
unchanged. Another respondent reported
that the statistical distribution of sub-
computations in his application was
reasonable so no load balancing was
necessary.

It is not clear whether load-balancing in
irregular applications can be done by
libraries (providing, for instance,
distributed work queues) or by language
constructs, or is highly application
dependent. It appears to be a neglected
area. Three respondents worked on this
type of problem.

I/O-bound (2 Respondents)

This class of applications is
characterized by massive data files that
need to be processed in parallel.
Examples are the interpretation of
detector data in high-energy physics or
the analysis of gravitational wave data.
Here, the problem is not parallelism or
synchronization. These applications are
“embarrassingly parallel” in that they are
easily split in many sub-computations
that do not communicate. The problem,
however, is to stream the data through
the machine in parallel and collect and
merge the results at the end. Truly
parallel file systems and sufficient I/O
bandwidth are essential. Since scalable
parallel file systems, in which a single
file can be accessed concurrently are
rare, developers end up splitting the files

manually and storing the pieces on
different file servers. An additional
problem is bookkeeping: knowing which
data sets have been processed. This task
can become very important because
detectors may deliver Terabytes of data
per day and do this for several years.
System administrators are quickly
overwhelmed with the task of keeping
track what data was and what was not
analyzed.

A second problem with massive data
handling has to do with how to skip
errors in the data. Erroneous records can
cause the analysis program to fail. A
smart analysis tool should be able to
identify erroneous records and skip them
on the next run.

Though physics has the most data to
process, other scientific areas may soon
have similar requirements. Biologists
already handle large amounts of data.

3.2 Work and Time Breakdown

Respondents were asked to identify
phases in their development work and
estimate the time they spent for each.
Most of them thought that a raster of
problem understanding, designing
algorithms, followed by implementation
and debugging and optimization
reflected their work adequately. One
respondent followed a prototype model,
characterized by an initial prototype
followed by a complete rewrite with
successive releases.

Table 2 provides an overview of the time
breakdown. Problem understanding
varied – around 20% of total effort, with
the exception that the reengineering
effort consumed 50%. The bulk of the

time went into implementation and
debugging. Only Lattice QCD
researchers spent significant time on
optimizing the computational kernels
(writing assembly code for them). Other
respondents said their programming was
permanent optimization (parallelization
and communication). Nobody mentioned
that reading documentation was an issue.

MPI use varied widely. For instance, the
data analysis problems needed little
MPI, since only data scattering and
gathering needed to be implemented.

Table 2: Percent of Time in Task for
Each Respondent

% of Time in Task Area
of Re-
spon-
dent

Under-
stand-

ing

Design Imple-
men-
tation

Opti-
miza-
tion

Runs

QCD1 22 10 56 12 0

QCD2 0 30 60 10 0

QCD3 0 0 0 100 0

QCD4 0 20 30 50 0

Data
Anal1

0 20 80 0 0

Data
Anal2

Prototyping process used is not
consistent with a linear model of time
usage.

Chem 20 20 40 0 20

Inter-
val

Arith1

20 50 25 5 0

Inter-
val

Arith2

40 0 60 0 0

Reeng-
ineer-

ing

50 25 25 0 0

Illumi-
nation

25 0 50 0 25

3.3 Tools

Respondents used C/C++/Fortran
compilers, editors, MPI libraries, and
problem specific libraries. A few also
used version control tools (SCCS, RCS,
CVS).

GDB or DBX was used by a few to
debug serial programs. Surprisingly,
only one respondent was using a parallel
debugger (TotalView). The rest used
print statements that produced trace files
for later analysis.

The reasons given for using print
statements with trace files varied. Some
stated they were unwilling to learn a new
debugger that might disappear again in a
short time. They felt that tools should be
in the public domain to improve the
chances that the tools survived the ups
and downs of vendors.

For other respondents, there was simply
no interactive debugger available,
because they were working in a batch
environment. Several also said that
debuggers were not helpful because they
tended to produce too much trace data. It
was simply easier to implant output
statements or output macros that could
be turned on and off than “taming” a
debugger.

Finally, those who spent a lot of time on
optimization thought that they were
more interested in execution profile data,
because logic errors weren't that frequent
or difficult to detect. However,
debuggers are meant for detecting logic
bugs and are not good profiling. In any
case, debuggers and profilers should
introduce very little overhead.

One team, the Graviational Analysis
team, switched from C/MPI to Matlab.
In the first iteration, the application took
ten months to build using C/MPI and the
resulting program, running on a PC
cluster, was disappointingly slow – three
weeks to process one week of data.

Further, the programming environment
for the cluster was poor and awkward,
since interactive debugging was
impossible.

In a second attempt, the Gravitational
Analysis Team rebuilt the entire system
using Matlab only. Even though the
team was learning Matlab, the entire
project was completed in 3 months. The
respondent liked Matlab, because it was
possible to run scaled down versions on
a workstation and the interpreted mode
of Matlab made it possible to watch the
computation in detail.

Using Matlab, the team was able to
reduce the time to program the
computational kernel: from 2-3 weeks to
3 days. In the process, however, a
number of additional changes were
made. First, rather than feeding the data
from a single file server, filtering it and
passing suitable subsets to the worker
nodes, the Matlab version simply passed
all the data to all the worker nodes. The
filtering was then done by the worker
nodes themselves. Second, the data was
split up and distributed over nine file
servers. This change both eliminated the
I/O bottleneck and also MPI. The worker
nodes simply opened files to get their
data. In essence, the team simulated
manually what a scalable parallel file
system should do automatically. A
special program later collected the files
produced by the worker nodes and
merged the data. The result was a

dramatic speed-up. Instead of three
weeks it took less than a day to process
the data for a week.

Respondents suggested the following list
of tools. Almost half of them (5) asserted
that a global view language would
improve productivity greatly. Parallel
I/O, load balancing libraries, debuggers,
and profilers were mentioned twice each,
the rest once.

1. Programming languages with
global arrays, such as Fortran 90,
HPF, ZPL, or a global array
toolkit (5 citations).

2. Scalable, parallel I/O (2
citations).

3. Libraries for load balancing (2
citations).

4. High- level parallel debuggers
and profilers (CM-5's parallel
debugger was mentioned as a
good one.) (2 citations).

5. Low-level profilers or simulators
to see what goes on in the
processor for optimization
purposes (cache misses, TLB
misses, pipeline stalls) (2
citations).

6. Communication profilers.
Presently, communication
optimization is done by trial and
error (1 citation).

7. Prettyprinters for the various
Fortran versions (1).

8. Translator from Fortran 77 to
Fortran 90 (1).

9. Smart source browsers that have
static analysis capability, for
instance for tracing variable use,
checking initialization, indexing
and pointers; highlighting dead
variables and dead code, etc. (1).

10. Tools to simplify/rewrite/clean
up formulas (1).

11. Automated regression testing (a

la Junit) (1).
12. Comparative debuggers: suppose

there are successive versions of a
program. At a certain point, a
bug is noticed. In which of the
versions was the bug introduced?
This could be solved with a
technique called delta debugging
(run the revealing test case on all
versions automatically) [9] (1).

13. Distributed versions of basic data
structures, such as lists, queues,
priority queues, etc. (1).

14. A tool that visualizes the status
of all processors in a time line
(idle, running, I/O) (1).

15. For SMP-clusters: compilers
should make sure shared memory
communication is used where
possible; message exchange only
when going outside of the SMP
node (1).

16. One-sided communication
primitives (1).

17. Aids for deciding whether 32-bit
accuracy is enough. Without it,
everybody uses 64-Bit accuracy
everywhere, doubling the cost in
memory bandwid th and cache
usage (and energy) (1).

18. Aids for handling erroneous
input data. The massive data sets
to be processed are never perfect.
A faulty data record can lead to a
program crash. Need a way to
identify the faulty data record
and skip it on the next run
automatically (1)

4. Conclusions

In conclusion the most pressing needs
we observed seem to be:

1. A program model based on a
global view or virtual shared
address space, combined with

compilers that produce efficient
communication code. Although
early experience with HPF
compilers was disappointing,
more recent work in HPF [7] and
ZPL compilers [3] showed that
compilers can produce
communication code competitive
with hand-written code.

2. Scalable, truly parallel I/O for
handling massive data sets.

3. Libraries for load balancing and
distributed versions of basic data
structures.

4. Fancy parallel debuggers and
profilers (at the levels of
algorithm, communication
operations, and processor
internals).

References

[1] H. Russel Bernard, Research
Methods in Anthropology: Qualitative
and Quantitative Approaches. Alta Mira
Press, 1995.

[2] H. Russell Bernard (ed), Text
Analysis, in Handbook of Methods in
Cultural Anthropology, pp 613, Walnut
Creek: Altamara Press, 1988.

[3] Bradford Chamberlain, Sung-Eun
Choi, Steven Deitz, and Lawrence
Snyder. The high- level language ZPL
improves productivity and performance,
Proc. IEEE International Workshop on
Productivity and Performance in High-
End Computing, 2004.

[4] DARPA, Defense Advanced
Research Project Agency, Information
Processing Technology Office, High
Productivity Computing Systems
(HPCS) Program, http://www.darpa.mil/
ipto/programs/hpcs/.

[5] W. Penn Handwerker and Danie lle
Wozniak. Sampling Strategies for the
Collection of Anthropological Data: An
Extension of Boaz’s Answer to Galton’s
Problem. Current Anthropology, 38(5):
869-875, 1997.

[6] J. M. Morse. Designing Funded
Qualitative Research. In Handbook of
Qualitative Research. Norman K. Denzin
and Y. S. Lincoln, eds., pp. 220-235.
Thousand Oaks, CA: Sage Publications,
1994.

[7] Matthias M. Müller, Compiler-
generated vector-based prefetching on
architectures with distributed memory,
High Performance Computing in
Sciences and Engineering ’01, pp 527-
539, Springer Verlag, 2001.

[8] Susan Squires and B. Byrne, (eds),
Creating Breakthrough Ideas, Westport,
Bergin & Garvey, 2002.

[9] Andreas Zeller. Yesterday, my
program worked. Today, it doesn’t.
Why? Proc. ESEC/FSE 99, Vol. 1687 of
LNCS, Springer Verlag, pp 253-267,
1999.

