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Motivation

• not all defects are detected during an inspection

• total number of defects is not known exactly

• number of defects is an important management tool

(cf. prescribed level of defect-freeness)
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Motivation

• not all defects are detected during an inspection

• total number of defects is not known exactly

• number of defects is an important management tool

(cf. prescribed level of defect-freeness)

• reliably estimate the number of defects in a software

document from the outcome of an inspection!

c© Dr. Frank Padberg 2003



Inspection Outcome

• list of detected defects

• zero-one matrix : shows which reviewer

detected which defect

• classification of the defects
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Existing Estimation Methods

• capture–recapture methods (Eick ea. ICSE 1992)

• curve–fitting methods (Wohlin ea. ICSE 1998)

• studies show that estimates are far too unreliable

to be useful in engineering practice (Briand ea.

TSE 2000, Biffl ea. ICSE 2001)

c© Dr. Frank Padberg 2003



Sample Database

• 16 inspections from controlled experiments

at NASA SEL (Basili ea. 1994/1995)

• specification documents of varying size

• between 6 and 8 reviewers

• true number of defects known exactly

• serves as standard benchmark
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Input Data for Capture–Recapture

• inspection viewed as a short test series

• number wk of defects detected by reviewer k

• total number d of different defects detected

• example: ( 9, 7, 6, 13, 9, 6 ) and d = 23
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Capture–Recapture Estimates
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mean abs. error of 24 percent

max error of –67 percent
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CR–Estimate versus Number of Reviewers
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Cap-Recap Estimate Versus Test Series Length
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some test series of length 19

estimate needs some time to stabilize!
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Estimates for Detection Profile Method
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mean abs. error of 36 percent

extremely high variation
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Why Capture–Recapture Fails

• mathematics : ”test series” is too short
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Why Capture–Recapture Fails

• mathematics : ”test series” is too short

• only the outcome of the current inspection

enters the estimation
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Why Capture–Recapture Fails

• mathematics : ”test series” is too short

• only the outcome of the current inspection

enters the estimation

• in other words: no learning from experience
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Machine Learning Approach

• use empirical data about past inspections for

estimating

• learn relationship between observable features

of an inspection and true number of defects

contained in the document
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Machine Learning Approach

• use empirical data about past inspections for

estimating

• learn relationship between observable features

of an inspection and true number of defects

contained in the document

• view defect content estimation as a regression

problem

c© Dr. Frank Padberg 2003



Required Inspection Data

• zero-one matrix

• document meta-data:

type, size, complexity, ....

• inspection meta-data:

reading technique, number of reviewers, ....

• true number of defects
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Steps to Take

1. collect empirical inspection data

2. choose features

3. choose regression technique

4. possibly subdivide database (meta-data)

5. do the regression (machine learning)
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Building a Database

• collect data from as many inspections as possible

(inspection outcome and meta-data)

• trace defects which are detected in later phases

(including maintenance) back to the correspond-

ing document

• compute approximate value for true number of

defects for each document in the database
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Candidate Features

• derived from zero–one matrix

• TDD, AVE, MIN, MAX, STD

• example A1:

( 9, 7, 6, 13, 9, 6 ) and 23 yields

TDD AVE MIN MAX STD

23 8.3 6 13 2.4

c© Dr. Frank Padberg 2003



Input Data for Linear Regression

• correlation analysis yields ranking

TDD > AVE > MIN > MAX > STD

• some datapoints :

inspection TDD AVE target

A1 23 8.3 30

B1 20 6.0 28

C1 10 3.2 18

D1 6 1.3 15
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Regression Hyperplane
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all 16 inspections

some points have large distance to hyperplane
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Jackknife Validation

• leave out an inspection from the database

• compute the regression hyperplane using the

remaining 15 inspections

• compute the regression estimate for the one

inspection which was left out

• compare the estimate with the true value

c© Dr. Frank Padberg 2003



Linear Regression Estimates
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jackknife error of 11 percent

max error of 40 percent
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Linear Regression versus Capture–Recapture
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clearly outperforms capture–recapture!

( 11 percent versus 24 )
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Non-Linear Regression: Neural Networks
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Neural Network Topology

• number of inputs

• number of hidden layers

• number of units in hidden layers

• connections between layers
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Training a Neural Network

• fit regression function to training data

• non-linear optimization process (choose weights

to minimize error on training data)

• no simple formula

• might get caught in local minimum

• train networks with different initial weights
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Input Data for Non-Linear Regression

• non-linear feature selection yields ranking

TDD > STD > MAX > MIN > AVE

• STD instead of AVE

• some training patterns:

inspection TDD STD target

A1 23 2.4 30

B1 20 1.7 28

C1 10 1.5 18

D1 6 1.4 15
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Non-Linear Regression Surface
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two hidden units in one layer; all 16 inspections

surface fits data very well
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Neural Network Estimates
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jackknife error of 6 percent

max error of –17 percent
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Neural Networks versus Capture–Recapture
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clearly outperforms capture–recapture!

( 6 percent versus 24 )
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Neural Networks versus Linear Regression
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outperforms linear regression

( 6 percent versus 11; smaller variance )
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Neural Network Advantages

• much flexibility when fitting to data

• detects non-linearity in the data

• gives guidelines which features to use
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Neural Network Advantages

• much flexibility when fitting to data

• detects non-linearity in the data

• gives guidelines which features to use

• worked well with small benchmark dataset

• automatically adapted to different document

types and sizes
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Result Summary

Method mean abs. error max error

Capture–Recapture 24 % –67 %

Detection Profile 36 % 113 %

Linear Regression 11 % 40 %

Interval Estimates (7 %) (14 %)

Neural Networks 6 % –17 %

novel approaches are promising!

need more empirical data for validation
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Own Publications About the

Defect Content Estimation Problem

• Empirical Interval Estimates for the Defect Content After an

Inspection

International Conference on Software Engineering ICSE (2002)

• Applying Machine Learning to Solve an Estimation Problem

in Software Inspections

International Conference on Artificial Neural Networks ICANN

(2002) (with T. Ragg and R. Schoknecht)

accepted for Transactions on Software Engineering TSE
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Own Publications (cont.)

• A Fast Algorithm to Compute Maximum Likelihood Estimates

for the Hypergeometric Software Reliability Model

Asia-Pacific Conference on Quality Software APAQS (2001)

• Maximum Likelihood Estimates for the Hypergeometric Software

Reliability Model

International Journal of Reliability, Quality and Safety Engineering

IJRQSE (2003)

c© Dr. Frank Padberg 2003



Thank You !
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