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Abstract. Offshore meteorological characteristics set specific conditions for the 

operation of offshore wind farms. One specific feature is low turbulence intensity 

which on the one hand reduces loads on turbines but on the other hand is the reason 

for much longer turbine and farm wakes than over land. The German Government is 

presently funding a research project called WIPAFF (WInd PArk Far Field) which 

heads for the analysis of properties and impacts of offshore wind park far fields. The 

focus is on the analysis of wind farm wakes, their interaction among each other and 

their regional climate impact. This is done by in-situ, extensive aircraft and satellite 

measurements and by operating meso-scale wind field models and an analytical wind 

farm model. 

1.  Specific meteorological conditions for offshore wind farms 

The marine atmospheric boundary layer (MABL) offers specific meteorological conditions for the 

operation of offshore wind farms. Amongst these conditions are availability of large continuous areas 

for very large farms, higher mean wind speeds, lower turbulence intensity, and less vertical wind shear 

over the rotor plain due to the low roughness of the sea surface. This leads to higher electrical energy 

yields and lower fatigue loads on the turbines [1]. 

But the lower turbulence intensity does not have advantageous effects only. Turbulence is an 

important parameter for the dissipation of wakes as well. Higher turbulence helps to dissipate turbine 

and farm wakes rapidly [2]. Therefore, wakes behind offshore wind turbines and wind farms are 

expected to be much longer than behind onshore wind turbines and farms (see e.g., [3]). Numerical 

modelling with simple analytical wind park models [4] and meso-scale wind field models [5] have 

shown these prolonged wind farm wakes as well. Wake lengths up to about 100 km have been 

modelled [5]. 

The different temporal variations of atmospheric stability in the MABL compared to onshore sites 

are another feature of offshore areas chosen for wind energy generation. Offshore thermal stability 

mainly varies in an annual course due to the overall temperature difference between the sea water and 

the MABL air temperature [6] and also due to moving depressions [7]. The diurnal variation of 

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 092014 doi:10.1088/1742-6596/753/9/092014

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197518571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

stability which is very prominent at onshore sites is nearly completely absent offshore and only 

happens in reduced form when the wind is directly blowing from the land [8]. 

In Europe, many countries have started to erect offshore wind farms in the North Sea. This planned 

intensive usage of the North Sea for offshore wind farms poses several questions which deserve 

answers in the near future. Amongst these questions are: (1) how far will wakes extend behind wind 

farms? (2) how do the extension of wakes depend on atmospheric conditions such as thermal stability 

and sea surface conditions? (3) will the wakes from different wind farms interact which each other? 

(4) can these wakes be adequately modelled with meso-scale wind field models and other wind farm 

models? (5) will there be an impact of the planned wind farms on the regional climate at adjacent 

coastal areas? 

In order to find these answers the German research project WIPAFF (WInd PArk Far Field) has 

been initiated within which aircraft measurements, SAR satellite image evaluation and numerical 

modelling  will form a major part. After a short look back on earlier wake measurements by aircraft in 

Section 2, we will present the principal outline of the WIPAFF project in Section 3 and will give a 

brief outlook in Section 4. 

 

 
 

Figure 1. Tracks of flights with the Helipod measurement system upstream (red), in between (green) 

and downstream (blue) of two large wind turbines at the German coast near Emden (marked by white 

stars). The flights were performed in May, 2008, perpendicular to the mean wind vector. 

 

2.  Preliminary study of wind-turbine wakes 

In May, 2008, a first (very short) in-situ flight experiment was performed in order to prove that wind-

turbine wakes can quantitatively be observed using research aircraft. The experiment was carried out 

at the north-western German coast, near the city of Emden, using the helicopter-borne turbulence 

probe Helipod [9]. The flight tracks of 1 to 2 km length (Figure 1) were orientated perpendicular to the 

mean wind (coming from eastern to southeastern directions, between 100 and 110 degree) upstream, 

downstream and in between two large wind turbines. The two Enercon-126 turbines were installed 

close to the flat coast and had a hub height of 135 m and rotor blades of 63 m length (resulting in an 

over-all height of 198 m). 
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Figure 2 shows the measured turbulent kinetic energy (TKE) along the flight paths. TKE is the sum 

of the three wind component variances times the air density and divided by 2. The Helipod was flown 

with a constant airspeed of 40 m/s, resulting in a time scale below one minute for one flight leg. 

Within one minute flight time for one leg, Taylor's hypothesis of frozen turbulence [10] is fulfilled. 

Therefore, these measurements can be considered as an instantaneous snapshot. Upstream, TKE is 

larger over land (right hand site of diagram a)), since the surface roughness induces turbulence 

mechanically. In between the two turbines, turbulence is increased drastically. But also downstream, 

the TKE is large, indicating a wake travelling over the open water of the Dollart bight towards the 

Dutch coast (left hand side of diagram c)). The data was gathered during one flight only. Any 

changing boundary conditions like wind direction or speed, thermal stratification, water-wave height 

etc. cannot be studied from this data. Thus the Emden data set lags significance on one hand, on the 

other hand it demonstrates that turbine wakes are easily identified in airborne data, and can be 

quantified regarding strength and dispersal direction.  

 

 
 

Figure 2. TKE measured during the Helipod flights at two wind turbines near Emden in May, 2008 

(see Fig. 1). The diagrams show data a) upstream of the turbines, b) in between the two turbines and c) 

downstream of the turbines at different flight levels about ground level (agl). 

 

3.  The WIPAFF project 

The project WIPAFF is a common effort of five institutions headed by the Institute for Meteorology 

and Climate Research of the Karlsruhe Institute of Technology in Garmisch-Partenkirchen. The 

partners are from the University of Braunschweig, the Helmholtz Centre Geesthacht, UL International 

GmbH (DEWI) in Wilhelmshaven and the University of Tübingen. The project is planned to run from 

November 1, 2015 to October 31, 2018. The focus is on wind and turbulence conditions in far fields of 

offshore wind farm wakes, i.e., 10 to 100 km behind the wind farms. The analyses and simulations are 

based on in-situ, extensive aircraft and satellite measurements and on operating meso-scale wind field 

models and an analytical wind farm model.  
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3.1.  Wind field simulations 

Numerical modelling in this project will rely on the meso-scale wind field model WRF [11]. WRF will 

be updated with a wave model WAM [12][13] and an appropriate parameterization scheme that 

describes offshore wind farms. Then the whole updated model is tested and validated with SAR, in-

situ and aircraft data from the project (see following subsections). Finally, industrial wind models [14] 

and an existing simple analytical wind farm model [4] are validated and optimized (if possible) by 

comparison to the WRF results and the experimental data. 

 

 
 

Figure 3.  TerraSAR-X   image acquired over the Horns Rev I Windfarm at the Danish west coast on 

Feb 16, 2012  at 17:10 UTC. The image is a 30 by 20 km subscene of a stripmap data set taken in HH 

polarisation  (©DLR 2012). 

 

3.2.  SAR satellite data 

Synthetic Aperture Radar (SAR) satellite images for the whole North Sea will be analyzed in this 

project. The SAR data allow for a determination of the near surface wind speed and the detection of 

spatial gradients in these near-surface wind fields [15]. The wind fields in these observed wakes can 

then be compared to the model results and the aircraft measurements. The usability of SAR images to 

detect wind farm wakes has been proven for the first time in [16]. First comparisons between SAR 

images and WRF simulations have been shown in [17]. 

 

 
 

Figure 4. A Windcube (Leosphere) positioned (bottom right) on the FINO1 platform. 
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Within the WIPAFF project data from both the German satellite TerraSAR-X and the European 

satellite SENTINEL-1 will be analysed. The required algorithms to convert the sea surface roughness 

information provided by SAR data into wind speed estimates will be tailored to the specific research 

questions addressed in WIPAFF. As an example Figure 3 shows a TerraSAR-X scene (©DLR) 

acquired over the Danish offshore wind farm Horns Rev 1 with clear wake structures east of the 

turbines.    

3.3.  In situ and aircraft measurements 

The measurements in the project comprise wind lidar observations from a platform in the North Sea 

and extensive aircraft flights on different flight patterns above and behind the wind farms. Wind lidar 

observations from a platform in the North Sea (such as those, e.g., described in [18]) will provide 

continuous measurements of vertical wind profiles. Figure 4 shows, for example, a lidar (Windcube, 

Leosphere) currently positioned on the FINO1 platform.   

 

 
 

Figure 5. The research aircraft Do-128 D-IBUF of TU Braunschweig is equipped with a nose boom 

for meteorological measurements. The laser scanner is located in the cabin, looking downward (Photo: 

Uwe Bethke). 

 

The aircraft operations are performed with the Do-128 of TU Braunschweig (Figure 5). The flights 

deliver wind, turbulence, temperature, surface temperature and humidity data at high resolution, like 

those documented in [19], [20]. The aircraft is equipped with different slow and accurate as well as 

fast sensors, described in [21]. Additionally, a laser scanner is integrated for the project to determine 

surface properties, and especially wave profiles. The suitability of the system, providing enough 

backscatter signals from the water surface with low reflectivity, was confirmed already during a test 

flight. The flight patterns are determined in accordance with the needs of all partners to be able to use 

the data for inter-comparison and for the validation of models. 

 

3.4.  Implications for wind farm planning 

Implications for the erecting of larger wind farm clusters will be analysed in the project as well. Large 

offshore wind farms are expected to influence each other, if they are arranged along the main wind 

direction. Most wake interaction studies have so far concentrated on turbine wake interactions within a 

wind farm [3], because clusters of wind farms were rare. A most recent example of such studies can be 

found in [22].  A first numerical study on wind farm wake interaction can be found in [23]. 

Wake lengths will depend on atmospheric stratification, because atmospheric turbulence is a clear 

function of atmospheric stratification. Longer wakes are expected for stable stratification [3], i.e. 

warmer air over colder water. Figure 6 displays an analysis of FINO1 data from 2005 which 

demonstrates a clear correlation between wind direction and atmospheric stratification in the North 
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Sea. Stable situations are coupled to the main wind direction (South-West). Such correlation is 

assumed to be typical for the two temperate latitude west-wind belts on both hemispheres of the globe, 

because the correlations are caused by the usual sequence of warm sectors winds followed by cold 

sector winds of eastward moving depressions. On the northern hemisphere, warm sector winds most 

frequently come from Southwest and cold sector winds from Northwest. On the southern hemisphere 

warm sector winds usually come from Northwest and cold sector winds from Southwest. Figure 7 

shows a possible array of wind farms on the northern hemisphere which takes into account the 

correlation shown in Figure 6. Distances between single turbines within wind farms and between 

entire farms are larger along the most frequent direction of warm sector winds (from Southwest to 

Northeast) and they are shorter along the perpendicular direction of cold sector winds. 

 

 

 

Figure 6. Left: Wind rose indicating the frequency of atmospheric stratifications. Blue: stable 

stratification, brown: unstable stratification, red line: neutral stratification. Numbers give the stability 

measure z/L with the height above ground, z, and the Monin-Obukhov length, L. Data displayed are 

from FINO1 in 2005 at 60 m height, only data between 5 m/s and 25 m/s wind speed have been 

considered. Right: Schematic of a mid-latitude cyclone on the Northern hemisphere. Red arrow: warm 

air advection in the warm sector of the cyclone, blue arrows: cold air advection behind the cold front. 

 

 

Figure 7. Schematic of a wind farm 

cluster adapted to the wind conditions 

shown in Figure 6. Boxes symbolize 

entire wind farms, crosses within the 

boxes single turbines. The geographic 

orientation is identical to the one in 

Figure 6 (North is at the top). 

 

 

 

T 
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3.5.  Impact on regional climate 

Large offshore wind farms are expected to change the downwind local and regional climate, because 

they slow down the wind speed, produce additional turbulence and mixing, and may cause alterations 

in cloud and rain formation. Most studies so far have concentrated on larger-scale and global impacts 

by numerically simulating the impacts of hypothetic large wind parks, e.g., [24][25][26]. Regional 

impact on surface temperatures has been assessed, e.g., from model simulations in [27] or from 

satellite surface temperature measurements in [28], and on precipitation from model simulations, e.g., 

in [29]. A first numerical study focusing on impacts of North Sea wind farms has been published 

recently [30]. 

 

 
 

Figure 8. Schematic of the impact of large wind farms or wind farm clusters on the local and regional 

climate. Thin straight arrows indicate the stream flow, clouds and rain the possible enhancement of 

cloud formation and precipitation, the two bended arrows enhanced turbulence intensity in the wake. 

 

Figure 8 shows schematically the possible impact from a large wind farm cluster. Reduced wind 

speed within large wind farms forces the air to rise. This may lead to enhanced cloud formation over 

the wind farms and possibly even to precipitation formation. Turbulence behind the wind farms will 

slightly change near-surface temperature in case of non-neutral thermal stratification of the MABL. 

The opposite issue, i.e., the impact of climate change on the generation of torque from the wind is 

not addressed in the WIPAFF project but has recently been addressed in [31]. 

 

4.  First Results and Outlook 

The WIPAFF project has started at the end of 2015. A first test flight over the North Sea took place on 

April 22, 2006 and passed about 10 km off the downstream side of the wind farm cluster north of 

Helgoland. Due to the very unstable weather conditions (the stability parameter formed from hub 

height and Monin-Obukhov length was close to -1) no farm wake was discernable from the data. The 

absence of a longer wake was confirmed by WRF [11] wind field simulations for that day (not shown) 

and fits to results from the analytical model [4]. The next flights are planned for September 2016. 

Work on the SAR satellite image analysis started with the creation and implementation of the 

Geophysical Model Function (GMF) for X band radar data following, e.g., [32], thereby eliminating 

some errors in this reference. A GMF function describes the normalized radar backscatter cross 

section (NRCS) as a function of wind speed, wind direction (relative to the movement of the satellite) 

and incident angle of the radar beam at the sea surface (Fig. 9). A sample analysis using such a newly 

derived GMF of a SENTINEL-1 SAR image is displayed in Fig. 10. Several wind farms in the North 
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Sea can be clearly identified by reduced wind speeds (e.g., Horns Rev off the Danish coast) and partly 

also by longer wakes behind them (e.g., Butendiek off the island of Sylt). 

 

 
 

Figure 9. GMF function for X band data from the TerraSAR-X satellite. Left: NRCS as function of 

wind direction for three incident angles Θ and a wind speed of 10 m/s. Right: NRCS as function of 

wind speed for a relative wind direction of 45°. 

 

 

 
 

Figure 10. 10 m wind field derived from a SENTINEL-1 wide swath SAR scene using the derived 

GMF function for the North Sea on June 3, 2015, 17:16 UTC. Wakes of several wind farms are 

visible, most pronounced those of Horns Rev (near the upper right corner) and Butendiek (west of the 

island of Sylt). 

 

Numerical modelling has started by coupling the wave model WAM [12] to a WRF model [11]. An 

iterative procedure of running WRF first, then executing WAM with the wind data from WRF and 

finally running WRF again with updated roughness data from WAM allows for wind field simulations 

which take into account the effect of the wind park wakes on the wave field. A first simulation for 
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May 3, 2006 is displayed in Fig. 11. This time (compared to the first test flight on April 22, 2016) the 

thermal stratification of the marine boundary layer was very stable and long wakes formed behind the 

cluster of wind farms north of Helgoland, Butendiek west of Sylt and Dan Tysk even further to the 

Northwest. Wind direction is slowly turning during the simulation period and at 1300 UTC the wind 

farm Dan Tysk is in the wake of the wind farm cluster north of Helgoland. According to this 

simulation, the incoming flow at Dan Tysk is reduced by five to ten percent for several hours. 

The results of this project will help to accompany the further deployment of wind farms in coastal 

areas in any part of the world. The optimized and verified models can be used to calculate and to 

predict the effect of various offshore scenarios to give insight into optimal planning solutions. The 

impact on local climatology that might be affected by wind farms will also be assessed based on the 

model results. 

 

Figure 11. Hub height wind speed reduction (in %) behind a cluster of wind farms north of Helgoland, 

Butendiek west of Sylt and Dan Tysk even further to the Northwest (dark blue areas) from a 

WRF/WAM simulation for May 3, 2006 at 9, 11, 13, and 15 UTC. The images show a detail from a 

larger simulation domain. The horizontal grid resolution is 1.6 km. 
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