

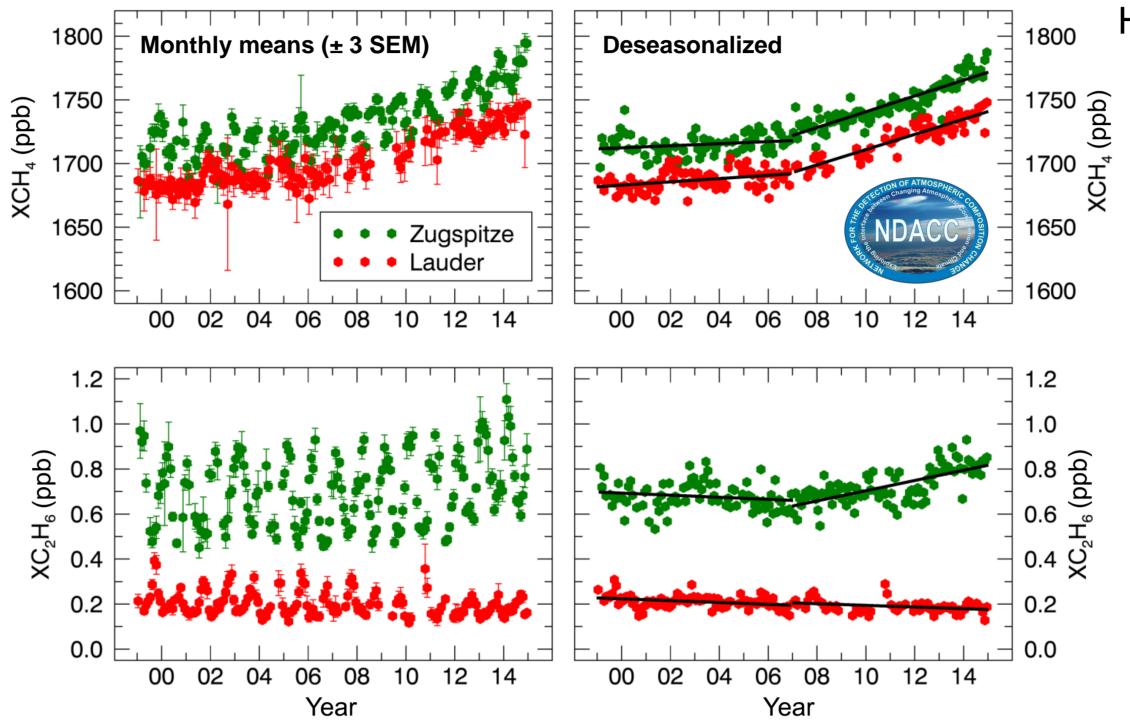
Karlsruhe Institute of Technology

IMK-IFU: Atmospheric Environmental Research

Renewed methane increase (2007–2014):

Contribution of oil and natural gas emissions determined from methane and ethane column observations

P. Hausmann¹, R. Sussmann¹, and D. Smale²


¹Karlsruhe Institute of Technology, IMK-IFU, Garmisch-Partenkirchen, Germany ²National Institute of Water and Atmospheric Research, Lauder, New Zealand

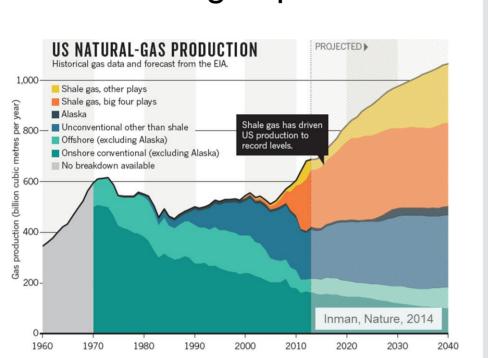
1. Motivation

Methane (CH_4) is important anthropogenic GHG:

- Global warming potential: 84 (20 years)
- 20 % of global warming since 1750
- Relatively short lifetime of about 9 years
- > Attractive target for climate-change mitigation

2. Long-term FTIR observations and trend analysis

High-resolution mid-infrared spectrometry:

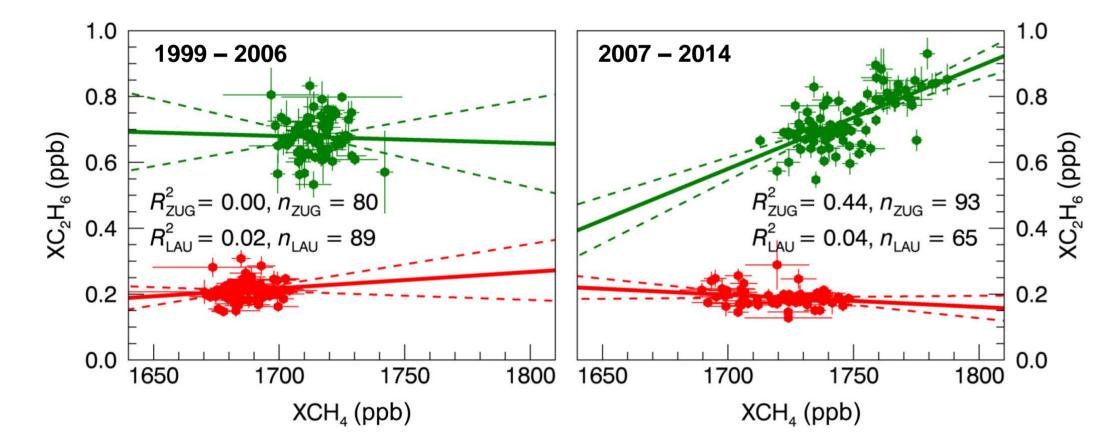

- Ground-based solar FTIR measurements at Zugspitze (47° N) and Lauder (45° S)
- Representative of free tropospheric background conditions in each hemisphere

Renewed methane increase since 2007:

- Dominant drivers are likely growing emissions from natural wetlands (biogenic) and (i) from fossil fuel production (thermogenic) (ii)
- But: their relative contribution is uncertain
- \succ Source attribution: ethane (C₂H₆) provides valuable constraint (no biogenic sources)

Strong increase in US oil & natural gas production:

- Leakage rates highly uncertain
- Climate benefit?
- Likely underestimated CH₄ emissions from oil & gas sector


Long-term trend analysis (method in Sussmann et al., 2012):

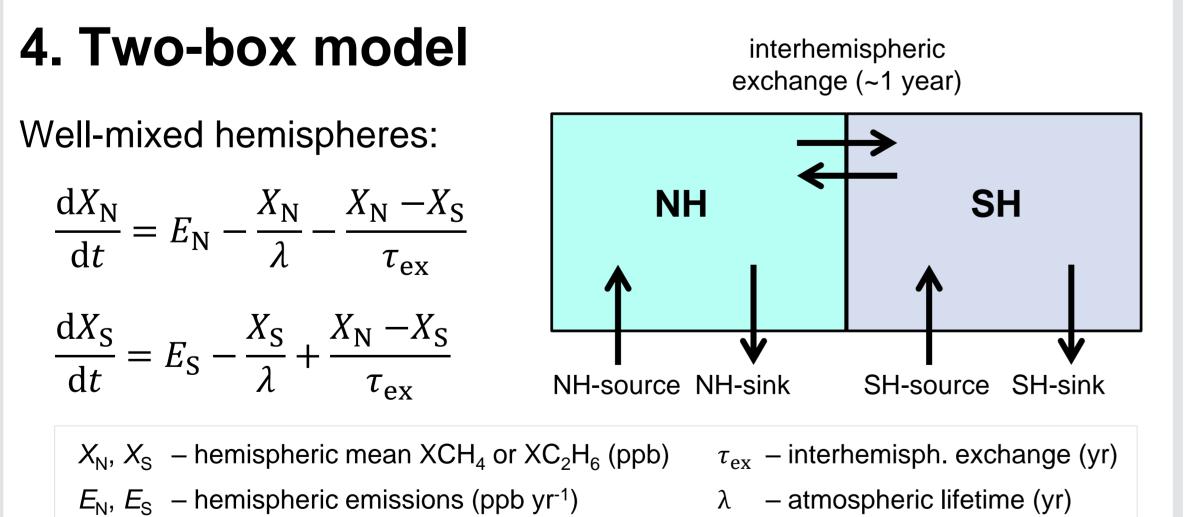
- Linear trend estimate (uncertainty from bootstrap resampling of residuals)
- Consistent renewed methane increase since 2007 in both hemispheres
- Significant positive ethane trend in NH since 2007, but continuing decline in SH

Trend (ppb yr ⁻¹) with 95 % confi-	1999 – 2006		2007 – 2014	
dence interval	Zugspitze	Lauder	Zugspitze	Lauder
Methane	0.8 [0.0, 1.6]	1.3 [0.6, 1.9]	6.2 [5.6, 6.9]	6.0 [5.3, 6.7]
Ethane (×10 ⁻²)	-0.5 [-1.0, 0.1]	-0.4 [-0.7, -0.2]	2.3 [1.8, 2.8]	-0.4 [-0.6, -0.1]

3. Ethane – methane correlation

5. Contribution of oil and natural gas emissions

Emission optimization (ethane):


- Simulate ethane increase since 2007 at Zugspitze with two-box model
- Add linear emission increase
- 1850 Model HNL • • • FTIR ZUG • • FTIR LAU Model HSL (qdd) 1800 1750 HOX 1700

Harmonized retrieval of column-averaged dry-air mole fractions (XCH₄ and XC₂H₆):

Retrieval	CH₄	C ₂ H ₆
Strategy	Sussmann et al., 2011	NDACC IRWG, 2014
Micro- windows (cm ⁻¹)	2613.7 – 2615.4 2835.5 – 2835.8 2921.0 – 2921.6	2976.7 – 2977.0 2983.2 – 2983.6
Line list	HITRAN 2000 (+ 2001 update)	C ₂ H ₆ pseudo-lines (Franco et al., 2015)
Regular- ization	Tikhonov-L ₁ DOFS ~ 2.1 (1.8)	Tikhonov-L ₁ DOFS ~ 1.6 (1.2)

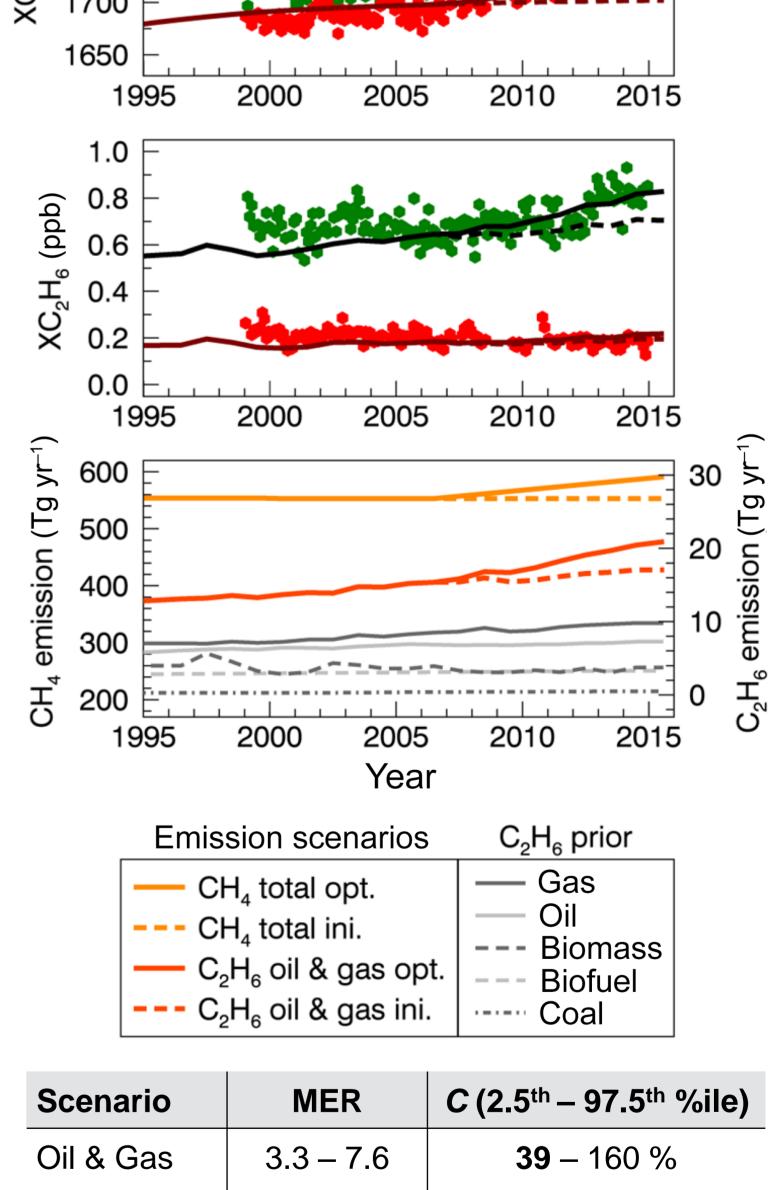
Correlation /	1999 – 2006		2007 – 2014	
Linear regression	Zugspitze	Lauder	Zugspitze	Lauder
Significant correlation?	no	no	yes	no
Regression slope ($\pm 2\sigma$)	-0.02 ± 0.16 %	0.05 ± 0.08 %	0.31 ± 0.07 %	-0.04 ± 0.04 %

Source emission ratio (molar) from instantaneous mixing model: $EMR_{src} = EMR_{bg} \times k_{C2H6}/k_{CH4} = 12 - 19 \% \rightarrow EMR_{oil \& gas} = 1 - 25 \%$

Assume: all "missing" emissions can be attributed to underestimated oil and natural gas emissions

Emission optimization (methane):

- Simulate methane increase since 2007
- Optimize total methane emissions


Overall emission change 2007 – 2014:

- Ethane oil & gas emission increase $\Delta E_{C_2H_6, \text{ oil } \& \text{ gas, opt.}} = 1 - 11 \text{ Tg yr}^{-1}$
- Methane total emission increase $\Delta E_{\rm CH_4, \ total, \ opt.} = 24 - 45 \ \rm Tg \ yr^{-1}$

Contribution of oil & natural gas emissions:

- Use methane-to-ethane ratio (MER) to get associated methane oil & gas emission increase (3 scenarios)
- Quantify contribution C =

At least 39 % (18 %, 73 %) contribution of

Lifetimes vs. mixing timescales:

- CH_4 : 9 years \rightarrow zonal and interhemispheric mixing
- C_2H_6 : 2.6 months \rightarrow zonal mixing, no interhemisph. exchange

Ethane emission inventories (~ 80 % in NH):

- Fossil fuel production (oil, gas, coal; Schwietzke et al., 2014)
- Biomass burning (Global Fire Emission Database 1997–2014)
- Biofuel use x emission factor (Andreae and Merlet, 2001)

Methane emissions (~ 70 % in NH):

• Decadal total emissions (IPCC, 2013)

emissions from oil & natural gas production	Oil (limit)	1.7 – 3.3	18 – 72 %
to renewed methane increase (2007 – 2014)	Gas (limit)	7.6 – 12.1	73 – 280 %

 $\Delta E_{C_2H_6, \text{ oil \& gas, opt.}} \times MER$

 $\Delta E_{
m CH_4,\ total,\ opt}$

References:

Hausmann, P., Sussmann, R., and Smale, D.: Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations, Atmos. Chem. Phys., 16, 3227–3244, 2016.

Sussmann, R., Forster, F., Rettinger, M., and Bousquet, P.: Renewed methane increase for five years (2007–2011) observed by solar FTIR spectrometry, Atmos. Chem. Phys., 12, 4885–4891, 2012.

Sussmann, R., Forster, F., Rettinger, M., and Jones, N.: Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network, Atmos. Meas. Tech., 4, 1943–1964, 2011.

Acknowledgment:

Our work was performed as part of the ESA GHG-cci project. We gratefully acknowledge funding by the European Commission (INGOS project) and by the Bavarian State Ministry of the Environment and Consumer Protection. Measurements at Lauder are supported by New Zealand's Ministry of Business, Innovation & Employment. We thank Frank Hase (IMK-ASF) for his support in using PROFFIT.

www.imk-ifu.kit.edu

KIT – The Research University in the Helmholtz Association

