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Abstract This paper presents a method to optimize the energy efficiency of walking bipedal
robots by more than 80 % in a speed range from 0.3 to 2.3 m/s using elastic couplings – me-
chanical springs with movement speed independent parameters. The considered planar robot
consists of a trunk, two two-segmented legs, two actuators in the hip joints, two actuators
in the knee joints and an elastic coupling between the shanks. It is modeled as underactu-
ated system to make use of its natural dynamics and feedback controlled via input-output
linearization. A numerical optimization of the joint angle trajectories as well as the elastic
couplings is performed to minimize the average energy expenditure over the whole speed
range. The elastic couplings increase the swing leg motion’s natural frequency thus making
smaller steps more efficient which reduce the impact loss at the touchdown of the swing leg.
The process of energy turnover is investigated in detail for the robot with and without elastic
coupling between the shanks. Furthermore, the influences of the elastic couplings’ topology
and of joint friction are analyzed. It is shown that the optimization of the robot’s motion
and elastic coupling towards energy efficiency leads to a slightly slower convergence rate
of the controller, yet no loss of stability but a lower sensitivity with respect to disturbances.
The optimal elastic coupling discovered via numerical optimization is a linear torsion spring
with transmissions between the shanks. A design proposal for this elastic coupling – which
does not affect the robot’s trunk and parallel shank motion and can be used to enhance an
existing robot – is given for planar as well as spatial robots.

Keywords bipedal robot · dynamic walking · nonlinear feedback control · optimization ·
energy efficiency · elastic coupling

1 Introduction

There are many and varied application scenarios of bipedal robots. The most impressive
ones are the humanoid as surrogate of workers in disaster response saving human lives and
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the exoskeleton as enhancement of disabled people improving human lives. These applica-
tions share inherently high mobility requirements, which prohibit an external power supply
and therefore directly demand for high energy efficiency. The newly developed robot AT-
LAS from Boston Dynamics is employed in a disaster response scenario in the Robotics
Challenge of the DARPA Program Maximum Mobility and Manipulation (M3). Its 23 kg
lithium-ion-battery provides energy for no more than 20 min of running – the program
consistently demands to improve the energy efficiency by a factor of 20 [36]. In order to
evaluate the efficiency of locomotion, the dimensionless specific energetic cost of trans-
port cT = energy input/(weight×distance traveled) is applied. For example, the highly de-
veloped humanoid ASIMO from Honda (cT = 3.2) has a 16 times higher specific cost of
transport than a human (cT = 0.2) at a low walking speed of v = 0.4m/s [13]. Due to this
performance gap between artificial bipedal systems and their biological counterpart, energy
efficiency can be justifiably stated as one of the major challenges in the development of
walking bipedal robots [42].

There are essentially two reasons for the bad energy efficiency of todays bipedal robots.
First the conservative control strategy: the robot is operated close to static equilibrium, fights
against gravitation and tries to suppress any natural dynamics. Humans in contrast walk
dynamically, they constantly fall over their feet, swinging their legs like pendulums during
walking and therefore exploit their natural dynamics instead of struggling against them [31].
Second the design: the robot consists of rigid links interconnected only by actuated joints.
Humans in contrast consist of both rigid skeletons and elastic structures serving as elastic
boundary layer to absorb shocks, as pogo-stick to redirect center of mass motion and as
return spring to buffer energy during the redirection of the swing leg motion [2].

Elastic boundary layers acting as shock absorbers are used in walking robots to reduce
the load of the robots’ mechanical parts, especially the actuator gear boxes [25,26,29]. Be-
cause of their high stiffness compared to other elastic structures, they have a minor influence
on the overall system dynamics.

Elastic couplings acting as pogo-stick have been used for a long time in hopping and
running robots [1,39] and their influence on the dynamics has been analyzed in detail with
the model of the spring loaded inverted pendulum [6,9,19,22].

Elastic couplings acting as return springs have first been used solely in passive dynamic
running [30,43]. Later an elastic coupling in the form of a hip spring was also used in spatial
passive dynamic walking to adjust the step frequency to the frequency of the toddling motion
for stabilization [27]. However, this is not a necessary measure [34]. The idea of adjusting
the step frequency by a hip spring was also applied to prevent stumbling by shortening the
swing phase of planar passive dynamic walking robots with trunk in simulation [46] and
experiment [45].

By enhancing the simplest walking model [3,21] with an elastic coupling in the form
of a hip spring, the preferred speed–step length relationship of humans could be predicted
[28]. With the same model it could be shown that at a given target speed the elastic coupling
reduces the step length and therewith the impact loss at touchdown of the swing leg [17].
The robot Cornell Ranger used this effect to walk a marathon at one battery charge [7].

Elastic couplings acting as return springs have also been used in more complex walking
models with segmented legs. For a passive model comprising of trunk, two thighs and two
shanks it could be demonstrated that an elastic coupling between trunk and thigh is necessary
for walking with upright trunk [8]. Using an elastic coupling over multiple joints, a trunkless
model with impulsive push off force showed an increase in speed at constant energy input
[16].
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In addition there was the attempt to rebuild the anatomy of the biological example and
its elastic couplings in detail. The robot FastRunner was inspired by an ostrich and uses
a network of nonlinear elastic couplings with different modes for the swing phase and the
stance phase of each leg. This allows for actuation of the six segmented leg by only one
hip actuator [14]. In order to approach human locomotion capabilities, the robot BioBiped
was designed [38]. However, its elastic couplings have only been investigated for a hopping
motion with given joint torque trajectories without any optimization [37].

On the quest for an energy efficient bipedal robot a collision free gait on level ground
was found with a planar passive robot model consisting of trunk, two rigid legs and two
rotational springs between trunk and legs [23]. However, the gait without energy costs holds
only for one specific speed, is unstable and comes along with a heavy oscillation of the
trunk. On an incline this model has shown a much more stable gait than a comparable model
without trunk [12].

A big step towards an energy efficient and versatile robot was made by enhancing this
model with actuation in the hips [18,32]. Stiffness and resting length of hip springs were
optimized together with the robot’s motion. A significant reduction of actuation could be
shown for one constant speed. However, both studies have three major drawbacks, which
prevent their practical application: (1) the geometrical and inertial parameters of the investi-
gated robots were far away from humanoid robots, (2) the objective function of optimization
– integral of square of actuator torques over one step – has no physical relationship with en-
ergy used and does not account for variable step length and (3) the elastic couplings are
optimized only for one specific speed whereas a real robot has to be energy efficient over a
range of speeds.

In order to enable the practical applicability of elastic couplings in bipedal robots, these
shortcomings are addressed. A process is developed to optimize the motion and the elastic
couplings simultaneously over a broad range of speeds with respect to energy efficiency
[5]. Furthermore a more realistic robot model comprising of the five rigid bodies trunk,
thigh and shank close to the robots in [11,24,40] is investigated. This allows for a thorough
investigation of the effects of elastic couplings to develop an energy efficient robot [4].

This paper is organized as follows. Sec. 2 introduces the investigated robot model. It
consists of the mechanics model (2.1), the actuator model (2.2) and the control strategy
(2.3). Sec. 3 describes the process of generating the motion (3.1) as well as selecting the
optimal elastic coupling (3.2) of the robot via simultaneous numerical optimization. Sec. 4
presents the effect of elastic couplings on the investigated robot. The reduction of specific
cost of transport by elastic couplings is explained (4.1) and the influences of the elastic
couplings’ topology (4.2) and of joint friction (4.3) as well as stability and sensitivity of the
motion with respect to disturbances (4.4) is displayed. Furthermore, a design proposal for
the optimal elastic coupling is given (Sec. 4.5). Sec. 5 concludes the investigation, the used
methods and the resulting insights and gives an outlook on the future research aims.

2 Robot model

The model of the investigated robot consists of the mechanics model (2.1), the actuator
model (2.2) and the control strategy (2.3). The approach of modeling the robot as underac-
tuated system and control it with input-output linearization was taken from [44].
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2.1 Mechanics model

The robot is modeled as planar rigid body system. It is composed of two legs which are
separately connected to a rigid trunk via two ideal revolute joints in the hip, whereas each
leg consists of a rigid thigh and rigid shank also connected by a revolute joint as depicted in
Fig. 1(a). The stance leg foot 1 is modeled a priori as ideal revolute joint and the swing leg
foot 2 is assumed to move freely. It will be checked a posteriori, if the unilateral contact and
stiction conditions are fulfilled. The configuration (q = [q1, q2, q3, q4, q5]

T ) of the robot is
described by four joint angles (qJ = [q1, q2, q3, q4]

T ) and one absolute orientation (qA = q5).
Two actuators between trunk and thigh and two actuators between thigh and shank (cf.
Fig. 3(a)) apply torques (u = [u1, u2, u3, u4]

T ) along the respective joint angles (qJ) and
control their evolution. The dynamics of the multibody system can be described by

M(q) q̈+Q(q, q̇) = Bu (1)

with the mass matrix M(q), the vector of generalized forces Q(q, q̇) and the input matrix
B. The elastic couplings are introduced in Sec. 2.1.3, their restoring torques are included in
the vector of generalized forces.

The later prescription of the joint angle trajectories (qJ) by the control (cf. Sec. 2.3) can
be regarded as introduction of virtual constraints. No torques are applied about the point foot
1 or more precisely about the joint towards ground. Therefore, the evolution of the absolute
orientation is subject to the remaining dynamics. The bipedal gait consists of two distinct
phases which are distinguished by the number of feet on the ground. Adding this discrete
state variable to the continuous state variables converts the system to a hybrid system.

Fig. 1 Mechanics model of the robot (a) with single support phase as rotation of the total system about foot
1 (b) and double support phase as instantaneous impact of foot 2 (c)

2.1.1 Single support phase

During the single support phase solely foot 1 is on the ground. It corresponds to a rotation
of the total robot about foot 1 powered by the torque due to the weight rCoMx mg about foot
1 as depicted in Fig. 1(b). The resulting motion can be described by the angular momentum
theorem

L̇1 =−rCoMx (qJ ,qA)mg (2)
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with the angular momentum L1 of the total system about foot 1. Since the trajectories of the
joint angles qJ are prescribed by the control input u, Eq. (2) corresponds to the remaining
dynamics. In order to reflect this situation in the describing equations and to facilitate the
control design, Eq. (1) is transformed into the mixed partial feedback linearized normal
form. The mass matrix M does not depend on the absolute angle qA and the torques u do not
directly act on it. Therefore, the equation of motion (1) can be subdivided into[

MJJ (qJ) MJA (qJ)
MAJ (qJ) MAA (qJ)

][
q̈J
q̈A

]
+

[
QJ (q, q̇)
QA (q, q̇)

]
=

[
BJ
0

]
u . (3)

The angular acceleration of the absolute orientation

q̈A =−M−1
AA (qJ)(MAJ (qJ) q̈J +QA (q, q̇)) (4)

can be calculated with the second row of Eq. (3) and eliminated in the first row. Inverse
dynamics determine the joint torques

u = B−1
J
(
M(qJ)v+Q(q, q̇)

)
, (5)

M(qJ) =
(
MJJ (qJ)−MJA (qJ)M−1

AA (qJ)MAJ (qJ)
)

, (6)

Q(q, q̇) =
(
QJ (q, q̇)−MJA (qJ)M−1

AA (qJ)QA (q, q̇)
)

(7)

as a function of the angular acceleration of the joint angles v = q̈J , which becomes the new
control input. Furthermore, the absolute orientation of the trunk qA is substituted by the
absolute orientation of the virtual stance leg, the direct connection between hip and stance
leg foot 1 (cf. Fig. 1(c))

θ = q1 +
1
2 q3 +q5 = cθ q , (8)

assuming equal segment length of thigh and shank. The canonical change of coordinates

q̃ =

[
qJ
θ

]
=

[
I 0
cθ

][
qJ
qA

]
= Hq (9)

transforms the mass matrix to

M̃(qJ) =
(
H−1)T M(qJ)H−1 . (10)

The total angular momentum with respect to foot 1

L1 =
[
M̃AJ (qJ) M̃AA (qJ)

][q̇J
θ̇

]
(11)

is the generalized momentum conjugate to θ and can be determined directly with the mass
matrix M̃ and the angular velocities ˙̃q. Hence, the system equation for the robot’s stance
phase in first order form can be displayed as

ẋ =
d
dt


qJ

θ

q̇J
L1

=


q̇J

M̃−1
AA (qJ)L1−M̃AJ (qJ) q̇J

0
−rCoMx (qJ ,θ)mg


︸ ︷︷ ︸

f(x)

+


0
0
I
0


︸︷︷︸
g(x)

v =: f(x)+g(x)v (12)

with M̃AJ (qJ) = M̃−1
AA (qJ)M̃AJ (qJ).
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2.1.2 Double support phase

During the instantaneous double support phase both feet are on the ground. It is modeled
as plastic impact of foot 2 onto the ground with simultaneous contact opening in foot 1 (no
interaction force: F1 = 0), as depicted in Fig. 1(c). After the touchdown, foot 2 is at rest. It
neither slips horizontally nor rebounds vertically. The configuration vector qa =

[
qT ,rT

1
]T

is augmented by the position vector r1 of foot 1 to describe the double support phase. The
impact duration is assumed to be infinitesimally short, therefore the configuration of the
system

q+
a = q−a (13)

does not change over the impact, whereby −(+) indicates the respective quantity before
(after) the impact. The resulting motion can be described by the momentum theorem in
integral form

Ma
(
q−a
)

q̇+
a −Ma

(
q−a
)

q̇−a = F̂a = lim
t−→t+

∫ t+

t−
Fa (t)dt (14)

with the mass matrix Ma (qa) and the generalized impulse F̂a of the enhanced system. The
generalized impulse

F̂a =

(
∂r2 (q−a )

∂qa

)T

F̂2 (15)

can be expressed as projection of the impulse F̂2 acting on foot 2 with the position vector
r2 =

[
r2x , r2y

]T onto the configuration space. In combination with the condition for plas-
tic impact ṙ2 (q+

a ) = 0, a system of linear equations can be formulated and solved for the
generalized velocities after the impact and the impulse acting on foot 2 [44, pp. 55–57][

q̇+
a

F̂2

]
=

[
∆∆∆ q̇a (q−)
∆∆∆ F̂2

(q−)

]
q̇− , q−a =

[
I
0

]
q− , q̇−a =

[
I
0

]
q̇− . (16)

After the impact the role of the legs is switched, the former stance leg becomes the new
swing leg and vice versa. Left and right leg are not distinguished, since only symmetrical
gaits are investigated. The introduction of a switching matrix R which interchanges the
legs’ angles and angular velocities respectively allows for the mapping of the multibody
state variables over the impact via[

q+

q̇+

]
=

[
∆∆∆ qq−

∆∆∆ q̇ (q−) q̇−

]
, ∆∆∆ q = R , ∆∆∆ q̇

(
q−
)
= [R0]∆∆∆ q̇a

(
q−
)

. (17)

The angular momentum about foot 2 does not change during the impact

L+
2 = L−2 . (18)

By changing the reference point of the angular momentum from foot 1− to 2− just before
the impact and switching the role of the legs from 2− to 1+ just after the impact the angular
momentum of the total system with respect to foot 1 is

L+
1 = L−1 − r2x

(
q−J ,θ

−)m
drCoMy

(
q−J ,θ

−)
dt

. (19)
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In order to obtain a robust numerical process, the impact event – the end of the step and
therefore the switching between the single support phase and the double support phase – is
defined by the absolute orientation of the stance leg

S : θ = θ
− (20)

as depicted in Fig. 1(c). To guarantee physically reasonable results of the contact model, the
conditions

r2y

(
q−J ,θ

−)= 0 (21)

for contact closing of foot 2 at the end of the step and

ṙ2y

(
q+

J ,θ
+
)
> 0 (22)

for contact opening of foot 1 without interaction at the beginning of the step are introduced.
For both single and double support phase it has to be checked a posteriori, whether the

solution fulfills the contact conditions unilaterality

F1y ≤ 0 , F̂2y ≤ 0 , (23)

and stiction1

|F1x | ≤ µ0
∣∣F1y

∣∣ ,
∣∣F̂2x

∣∣≤ µ0
∣∣F̂2y

∣∣ . (24)

2.1.3 Elastic couplings

The investigated elastic couplings act with respect to the relative angle ϕ between two bod-
ies. Elastic couplings attached to the shank furthermore provide the option of weighting the
knee joint angles (q3, q4) in the relative angle ϕ using a transmission ratio.

Fig. 2 Elastic coupling of the thighs (lt_lt, t_lt) (a), the shanks (ls_ls, t_ls) (b) and thigh and shank (lt1_ls2,
lt_ls) (c) divided into elastic couplings between the legs (solid line) and within each leg (dashed line)

There are six different elementary elastic couplings as depicted in Fig. 2. They can be
subdivided into elastic couplings of the thighs (lt_lt, t_lt) (cf. Fig. 2(a)), of the shanks

1 The coefficient of static friction µ0 is assumed to be the same for the continuous motion and the instance
of impact. It has been observed that µ0 varies in the impact [10], which is neglected in this paper.
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(ls_ls, t_ls) (cf. Fig. 2(b)) and of thigh and shank (lt1_ls2, lt_ls) (cf. Fig. 2(c)). For each
configuration there is an elastic coupling between the legs (solid line) and within each leg
(dashed line). The elastic couplings within each leg consist of two identical springs and
correspond to the biological arrangement of elasticities in form of tendons.

The characteristics of each elastic coupling – the torque-angle-relationships – are de-
scribed by a piecewise power law

Tec (ϕ) =

{
−k (ϕ−ϕ0)

ν , ϕ−ϕ0 ≥ 0
k (ϕ0−ϕ)ν , ϕ−ϕ0 < 0 (25)

as approximation of a general nonlinear relationship. These characteristics can be realized
via linear springs with geometric nonlinearities and end stops. The respective joint torque is
calculated by

TJ (ϕ) = Tec (ϕ)∇qϕ (26)
with the torque angle relation (Tec) and the gradient of the relative angle (ϕ) with respect to
the configuration variables (q) and is included in the generalized force Q(q, q̇) of Eq. (1).

The elastic coupling between trunk (t) and thigh (lt) acts on the relative angles ϕt_lt1 =
q1 and ϕt_lt2 = q2. It is defined by three parameters

βββ t_lt =
[
ϕt_lt0 , kt_lt , νt_lt

]
. (27)

The elastic coupling between trunk (t) and shank (ls) acts on the relative angles ϕt_ls1 =
q1 + it_lsq3 and ϕt_ls2 = q2 + it_lsq4. Knee joint angles and torques are transmitted with the
ratio it_ls. It is defined by four parameters

βββ t_ls =
[
ϕt_ls0 , kt_ls, νt_ls, it_ls

]
. (28)

The elastic coupling between thigh (lt) and shank (ls) acts on the relative angles ϕlt_ls1 =
q3 and ϕlt_ls2 = q4. It is defined by three parameters

βββ lt_ls =
[
ϕlt_ls0 , klt_ls, νlt_ls

]
. (29)

The elastic coupling between the thighs (lt) acts on the relative angle ϕlt_lt = q2−q1. It
has a vanishing resting angle ϕlt_lt0 = 0, and is thus defined by two parameters

βββ lt_lt = [klt_lt , νlt_lt ] . (30)

The elastic coupling between the shanks (ls) acts on the relative angle ϕls_ls = q2 +
ils_lsq4− (q1 + ils_lsq3). Knee joint angles and torques are transmitted with the ratio ils_ls
and the resting angle ϕls_ls0 = 0 vanishes. Hence, it is defined by three parameters

βββ ls_ls = [kls_ls, νls_ls, ils_ls] . (31)

The elastic coupling between the thigh (lt1) and the shank (lt2) of the opposite leg
consists of two identical springs which act on the relative angles ϕlt1_ls2 = q2+ ilt1_ls2q4−q1
and ϕlt1_ls2 = q1+ ilt1_ls2q3−q2. Knee joint angles and torques are transmitted with the ratio
ilt1_ls2. It is defined by four parameters

βββ lt1_ls2 =
[
ϕlt1_ls20 , klt1_ls2, νlt1_ls2, ilt1_ls2

]
. (32)

The general elastic coupling is a combination of the elementary elastic couplings. It is
described by the parameters

βββ =
[
βββ

T
t_lt , βββ

T
t_ls, βββ

T
lt_ls, βββ

T
lt_lt , βββ

T
ls_ls, βββ

T
lt1_ls2

]T
. (33)

These are physical parameters of the robot and therefore movement speed independent. The
values of βββ are determined by numerical optimization as described in Sec. 3.2.
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2.2 Actuator model

Permanent magnet DC motors with transmission by cable and pulleys are selected as ac-
tuators as depicted in Fig. 3(b). The realization of the transmission by cable and pulleys

Fig. 3 Actuator installation circumstances (a) and realization by
electric motor with cable and pulley transmission (b)

Fig. 4 Geometry and inertia parame-
ters of the rigid body model

combined with a low transmission ratio iT leads to a low frictional resistance. Hence, the
actuator is easily backdrivable. Under the assumption of a rigid drive train, the inertia of the
actuator is reduced onto the inertia of the attached rigid body and the friction of the actua-
tor is reduced onto viscous joint damping of the actuated joint with the coefficient of joint
damping dJ . Due to the lower time constant in comparison to the mechanical dynamics of
the robot, the electrical dynamics are neglected. The actuator remains an ideal torque source
within a bounded torque range.

In order to quantify the used energy for walking, the electric power input of the actuator

pA = RAi2A + kT iAωA . (34)

is considered with resistance RA, current iA and angular velocity ωA of the armature and
torque constant kT . Employing the torque current relationship TA = kT iA, the actuator-joint
torque relationship u = iT TA and the actuator-joint angular velocity relationship ωA = iT q̇
the electric power

pA = cstatu2 +uq̇ , cstat =
RA

(kT iT )
2 (35)

is displayed using merely variables of the rigid body model. The first term in Eq. (35) rep-
resents the electric power applied to produce a static torque without performing mechanical
work. The second term represents the mechanical power. The coefficient of static electric
power cstat determines how active power is distributed into dissipation power, which is lost
as thermal output in the resistance of the armature and usable mechanical power. It is as-
sumed that no electric energy can be recuperated during the operation of the electric motors
in generator mode, since the electric circuit is not modeled and its efficiency is unknown.
Hence, one actuator’s energy consumption during one step

WA =
∫ T

0
max

(
cstatu2 +uq̇,0

)
dt (36)

is calculated by integration of the positive electric power input over the step duration T .
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2.3 Control

The task of the controller is to realize a predefined motion of the robot by influencing the
dynamics of the system. Therefore, the trajectories of the robot’s joint angles qJ are con-
trolled. The subsequently presented control approach is not developed by the authors but
taken from [44].

2.3.1 Reference trajectory

The strictly decreasing orientation θ of the virtual stance leg, connecting hip and stance
leg foot 1, (cf. Fig. 5) is used as independent variable of the reference trajectories’ defini-
tion. Compared to time as independent variable this has the advantage of resulting in an

Fig. 5 Strictly decreasing orientation θ of the virtual stance leg, connecting hip and stance leg foot 1, as
independent variable for the reference trajectories’ definition

autonomous system. The controller does not enforce the system’s phase and the natural dy-
namics can evolve freely. The reference trajectories are discretized by means of a Bézier
curve of degree nα

hr (θ) =
nα

∑
j=0

ααα j

(
nα

j

)(
θ −θ+

θ−−θ+

) j(
1− θ −θ+

θ−−θ+

)nα− j

(37)

normalized by the orientation of the virtual stance leg at the beginning θ+ and end θ− of
a step. The Bézier curve has a smoothening characteristic and contributes to a numerically
robust process of the subsequent numerical optimization (cf. Sec. 3.1). Small changes in the
parameters ααα do not result in large oscillations of the Bézier curve [44, p. 139]. It allows for
analytical expressions of function value and derivatives at the beginning (θ+) and the end
(θ−) of a step

hr
(
θ
+
)
= ααα0 ,

∂hr

∂θ

(
θ
+
)
=

nα (ααα1−ααα0)

θ−−θ+
, (38)

hr
(
θ
−)= αααnα

,
∂hr

∂θ

(
θ
−)= nα (αααnα

−αααnα−1)

θ−−θ+
(39)

as function of the Bézier coefficients ααα i. Only periodical gaits with symmetrical steps of left
and right foot are investigated. With the impact map Eq. (17) and

q = H−1
[

hr (θ)
θ

]
, q̇ = H−1

∂hr (θ)

∂θ
1

 θ̇ (40)



Optimal elastic coupling to improve energy efficiency of walking bipedal robots 11

the Bézier parameters at the beginning of the step[
ααα0
θ+

]
= H∆∆∆ qH−1

[
αααnα

θ−

]
, (41)

ααα1 =
[
I 0
]

∆∆∆ q̇H−1
[

αααnα
−αααnα−1

nα

θ−−θ+

](
cθ ∆∆∆ q̇H

[ nα

θ−−θ+ (αααnα
−αααnα−1)

1

])−1

+ααα0 (42)

can be derived from the Bézier parameters at the end of the step (αααnα
,αααnα−1,θ−) (cf. [44,

pp. 141–143]). Hence, the reference trajectories of the joint angles and therefore the motion
of the robot can be described by the Bézier parameters

ααα =
[
ααα

T
2 , . . . ,ααα

T
nα
, θ
−]T . (43)

These describe the robot’s motion and are therefore movement speed dependent. Their val-
ues are determined by numerical optimization as described in Sec. 3.1.

2.3.2 Hybrid zero dynamics

The control of the joint angles qJ is realized by input-output linearization. The system’s
output

y = h(x) = hr (θ)−qJ (44)

is defined as the deviation of the joint angles from the reference trajectory. Differentiating
the output twice with respect to time using chain rule and Eq. (12)

ẏ =
∂h(x)

∂x
f(x) =: Lfh(x) , (45)

ÿ =
∂Lfh(x)

∂x
f(x)+

∂Lfh(x)
∂x

g(x)v =: L2
f h(x)+LgLfh(x) v (46)

relates it to the input v = q̈J . A linear PD controller determines the behavior of the output’s
second derivative

ÿ =−KDẏ−KPy (47)

and achieves an asymptotically stable characteristic2 for

y = h(qJ ,θ) = 0 . (48)

In the case of perfect joint angle reference trajectory tracking, the output as well as its time
derivatives vanish (ÿ = 0). However, the system has remaining dynamics, the so called zero
dynamics, corresponding to the rotation of the total system about foot 1. The states of these
dynamics are not observable by the output and define the zero dynamics manifold

Z = {x | y = 0, ẏ = 0} . (49)

The zero dynamics are asymptotically stable, accomplished by the linear controller (cf.
Eq. (47)), and invariant with respect to the impact (∆∆∆ (S ∩Z ) ⊂ Z ) due to the design
of the Bézier parameters (cf. Eq. (41) and (42)). The analysis of the multibody system can
thus be reduced to the analysis of the hybrid zero dynamics3.

2 Successful implementations of real-time controllers based on input-output linearization and additional
stabilization via linear PD control have been reported in literature, cf. [11,24,44].

3 Zero dynamics of a hybrid system are called hybrid zero dynamics.
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The single support phase of the hybrid zero dynamics is described by constraining Eq. (44)
– (46) to

qJ = hr (θ) , (50)

q̇J =
∂hr (θ)

∂θ
θ̇ , (51)

v0 =−LgLfh(x)−1L2
f h(x) (52)

as well as the remaining dynamics from Eq. (12)

d
dt

[
θ

L1

]
=

[
M̃−1

AA (qJ)L1−M̃AJ (qJ) q̇J
−rCoMx (qJ ,θ)mg

]
=

[
fθ (θ)L1
fL1 (θ)

]
. (53)

The special structure of Eq. (53) allows for a solution of the differential equation via quadra-
ture as proposed in [44, pp. 128–131]. The time free formulation

dL1

dθ
=

fL1 (θ)

fθ (θ)L1
(54)

is solved with separation of variables for the angular momentum4

L1 (θ) =−
√(

L+
1

)2
+2V0 (θ) . (55)

The term

V0 (θ) =
∫

θ

θ+

fL1 (θ
′)

fθ (θ ′)
dθ
′ (56)

as well as the time

t (θ) =
∫

θ

θ+

1
fθ (θ ′)L1 (θ ′)

dθ
′ (57)

are determined via quadrature as functions of the orientation of the stance leg θ .

The double support phase of the hybrid zero dynamics is described as linear mapping of
the angular momentum over the impact

L+
1 = δ0

(
θ
−)L−1 (58)

which follows from Eqs. (19) and (53). The factor δ0 only depends on the orientation of the
stance leg at the end of the step and has to be determined only once for a specific set of
reference trajectories (ααα).

4 Because the definition of θ is in mathematically positive direction it strictly decreases (cf. Fig. 5) and
the angular momentum is negative.
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The gait consists of a sequence of single support phases and double support phases. It can
be described by the Poincaré map

P
(
L−1
)
=−

√(
δ0 (θ−)L−1

)2
+2V0 (θ−) , (59)

which maps the angular momentum L−1 at the end of the step5 onto the end of the next
step, using Eq. (58) in Eq. (56). Its fixed point states the periodic solution of the gait and is
explicitly given by

L−1
∗
=−

√
2V0 (θ−)

1−δ0 (θ−)
2 . (60)

The stability of the periodic solution L−1
∗ is evaluated by means of the absolute value of

the Floquet multiplier, the eigenvalue of the monodromy matrix∣∣∣∣∣∂ P
(
L−1
∗)

∂L−1

∣∣∣∣∣= δ0
(
θ
−)2

< 1 . (61)

The sensitivity of the stable, periodical solution L−1
∗ is evaluated by means of the relative

size

sB =
L−1

max−L−1
min

L−1
∗ (62)

of its basin of attraction B which is bounded on both sides. The upper bound

L−1
max

=−
√
− 2

δ0 (θ−)
2 min

θ+<θ<θ−
V0 (θ) (63)

ensures the forward rotation of the robot, the lower bound

L−
min

1,F1y
= inf

{
L−1

∣∣∣∣ max
θ+<θ<θ−

F1y

(
θ ,L−1

)
≤ 0

}
, (64)

L−
min

1 = inf

{
L−1 > L−

min

1,F1y

∣∣∣∣∣ max
θ+<θ<θ−

∣∣∣∣∣F1x

(
θ ,L−1

)
F1y

(
θ ,L−1

) ∣∣∣∣∣≤ µ0

}
(65)

ensures the contact conditions of unilaterality and stiction.

2.4 Model parameters

The model parameters used for the investigation of the influence of elastic couplings on the
energy efficiency of bipedal robots are displayed in Table 1 and the process parameters in
Table 2. In order to analyze effects relevant for practical systems, a 1.80 m tall and 80 kg
heavy robot is investigated. The segmentation and distribution of mass is assumed to be
human like. Therefore, the geometrical and inertial parameters (cf. Fig. 4) are determined
via regression according to [15]. The rigid bodies’ centers of mass, masses and moments of
inertia values already include the inertia and reduced inertia of the actuators. The coefficient
of static friction µ0 is estimated conservatively and assumed to include a safety margin

5 The touchdown of foot 2 defines the beginning of the step.
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Table 1 Model parameters

Parameter Value Unit

` total body length 1.80 m
m total body mass 80.0 kg
mt mass trunk 48.2 kg
mlt mass thigh 11.3 kg
mls mass shank 4.56 kg
`t length trunk 0.533 m
`lt length thigh 0.446 m
`ls length shank 0.446 m
rt center of mass position trunk 0.289 m
rlt center of mass position thigh 0.183 m
rls center of mass position shank 0.267 m
Jt moment of inertia trunk 3.09 kgm2

Jlt moment of inertia thigh 0.244 kgm2

Jls moment of inertia shank 0.126 kgm2

g standard gravity 9.81 m/s2

µ0 coefficient of static friction 0.6 -
iT transmission ratio 30:1 -
cstat coefficient of static power 1.81e-3 W/(Nm)2

dJ reduced joint damping parameter 8.00 Nms/rad
nα degree of Bézier curve 21 -

to cope with small disturbances of the reference motion6. The parameters concerning the
actuators (iT , cstat , dJ) are derived from the actuators of the walking robot MABEL [24,33].
The determined joint damping parameter dJ is merely used for a realistic quantification of
the specific cost of transport savings in Sec. 4.3. In the remainder of the paper, the joint
damping is neglected. The selected degree of nα = 21 for the Bézier curves is necessary
because lower degrees were found to affect the results in Sec. 4.

3 Optimization process

In this section the generation of motion as well as the selection of elastic couplings by means
of numerical optimization is described.

3.1 Trajectory optimization

In order to find an energy efficient motion, the trajectories of the joint angles qJ are opti-
mized by determining the Bézier parameters ααα for a specific movement speed. As objective
function

fminααα
(ααα,βββ ) = cT =

∑
4
i=1
∫ T

0 max
(
cstatu2

i +uiq̇i,0
)

dt
mgr2x (θ

−)
(66)

the dimensionless specific cost of transport is selected, defined as energy input of the actua-
tors (cf. Eq. (36)) divided by weight and step length.

6 Foot slipping does not immediately result in instability of the controller [35]. However, it is excluded
from the following investigations in order to isolate the elastic couplings’ effects from efficiency improve-
ments due to slipping of the stance foot [20].
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Besides minimizing the objective function, the trajectory of the solution ααα∗ of the opti-
mization has to fulfill equality and inequality constraints. The equality constraints ci (ααα) = 0
are given by

v− r2x (θ
−)

t (θ−)
= 0 , (67)

r2y

(
θ
−)= 0 (68)

and consist of the desired average horizontal velocity v, in this paper referred to as speed,
and contact closing at the end of the step (cf. Eq. (21)). The inequality constraints in the
form ci (ααα)≤ 0

F1y ≤ 0 , F̂2y ≤ 0 , (69)

|F1x |−µ0
∣∣F1y

∣∣≤ 0 ,
∣∣F̂2x

∣∣−µ0
∣∣F̂2y

∣∣≤ 0 , (70)

−ṙ2y

(
θ
+
)
≤ 0 , (71)

−r2y ≤ 0 , (72)

q3 ≤ 0 , q4 ≤ 0 (73)

consist of unilaterality (cf. Eq. (23)), stiction (cf. Eq. (24)), contact opening without in-
teraction (cf. Eq. (22)), no ground penetration of foot 2 during the step (cf. Eq. (21)) and
no hyperextension of the knee joints. A SQP algorithm is utilized to solve the nonlinear,
constrained optimization problem.

Fig. 6 Process of optimizing the motion (ααα) (a) and the elastic couplings (βββ ) (b)

Figure 6(a) depicts the process of optimizing the Bézier parameters ααα implemented in
MATLAB. For a given parameter set ααα i the limit cycle is determined in the hybrid zero
dynamics via trapezoidal quadrature of Eq. (56) at nθ sampling points and subsequent eval-
uation of the fixed point Eq. (60). Afterwards, the state variables of the hybrid zero dynamics
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Table 2 Process parameters

Parameter Value

nθ Number of quadrature sampling points 401
TolFun SQP algorithm termination function tolerance 1e-2
TolCon SQP algorithm termination constraint tolerance 1e-5
nv Number of averaging sampling points 10
TolMesh PS algorithm termination mesh tolerance 1e-5

(θ , L1) are mapped onto the state variables and angular accelerations of the full multibody
system (q, q̇, q̈) by using Eq. (50) – (52) and (4). The respective joint torque u is determined
by evaluation of Eq. (5). The objective function is evaluated via trapezoidal quadrature of
Eq. (66) at nθ sampling points with linear interpolation of zero crossings. The constraint
function is also evaluated at nθ sampling points. Objective and constraint function are for-
warded to MATLAB’s implementation of the SQP algorithm, which calculates the parameter
set ααα i+1 for the next iteration using a quasi Newton approach. The optimum described by the
parameter set ααα∗ is reached, if the termination tolerance for the function TolFun and for the
constraints TolCon are fulfilled. The termination tolerances in Table 2 were chosen instead
of the default parameters because of convergence difficulties due to gradient approximations
via finite differences7. At this point it has to be mentioned, that there is no iteration in the
determination of the limit cycle neither in the full multibody system nor in the hybrid zero
dynamics. The limit cycle is given directly by Eq. (60). Hence, this approach is numerically
very efficient8 and allows for the optimization of the elastic couplings in an outer loop.

3.2 Structure optimization

While the Bézier parameters ααα are changed and optimized separately for each speed v, the
structure and therefore the parameters of the elastic couplings βββ are fixed after design and
independent of movement speed. Hence, they have to be a trade-off for different speeds. In
order to find an energy efficient robot in a broad region of operation, the elastic couplings βββ

are optimized for the speed range vi ∈ [0.3, 2.3] m/s. As objective function

fminβββ
(βββ ) = cT =

1
nv

nv

∑
iv=1

fminααα

(
ααα

iv ,βββ
)

(74)

the mean specific cost of transport for the speed range is selected. Whereas the interval
[0.3, 2.3] m/s is divided into nv subintervals which are evaluated at their midpoints.

Figure 6(b) depicts the process of optimizing the elastic coupling parameters βββ imple-
mented in MATLAB. For a given parameter set βββ

i the motion ααα iv is optimized for nv single
speeds vi separately. The optimization of motion is performed in an inner loop displayed
in Fig. 6(a). The objective function is determined by averaging the single specific costs of
transport of the different speeds. Since the process of optimizing motion adds numerical

7 Convergence can be improved by a more accurate numerical approximation of gradients, e.g. via com-
plex step derivative approximation [41] which was investigated after submission of this paper.

8 Computation times strongly depend on the parameters in Tables 1 and 2 as well as the initial conditions.
Our implementation requires about 10s to find the optimal trajectory parameters ααα when initialized with the
solution for a 0.2m/s faster speed. The computations were performed on a HP Z600 workstation with two
Intel Xeon X5650 processors.
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noise, the optimization problem is non-smooth and nonlinear. It is solved by a gradient free
direct search algorithm called pattern search. The approach varies each parameter consec-
utively around the reference point βββ

i by steps ∆βββ of equal magnitude. The point in the
mesh with the lowest value becomes the new reference point, if the new point equals the old
point, the mesh size will be halved until the pattern search termination mesh size tolerance
TolMesh is reached.

4 Results

In this section, the effect of elastic couplings on the robot is presented. The investigation
focuses on the reduction of the specific cost of transport. The robot’s motion and energy
turnover are analyzed to identify the major energy loss component as well as to suggest
counter measures (Sec. 4.1). Subsequently the influence of the elastic couplings’ topology
(Sec. 4.2) and of joint damping (Sec. 4.3) are investigated focusing on the reduction of
the specific cost of transport. Furthermore, the influence of the optimal elastic coupling
on stability and sensitivity with respect to disturbances of the robot’s motion is analyzed
(Sec. 4.4). Finally, a design proposal for the optimal elastic coupling is presented in Sec. 4.5.

4.1 Reduction of cost of transport

In order to isolate the effect of elastic couplings, a robot without elastic couplings is consid-
ered first. Its motion (ααα) is optimized for each speed by the process described in Sec. 3.1.
Figure 7 displays the resulting motions for the lowest (v = 0.3m/s), medium (v = 1.3m/s)
and highest (v = 2.3m/s) considered speed at seven equidistant instances of time.

The step length, the trunk inclination angle and the stance leg knee flexion angle of
the robot increase with increasing speed. For example, the maximum trunk inclination angle
increases from 1.09° at v= 0.3m/s to 24.5° at v= 2.3m/s. In order to investigate the energy
turnover of the robot, the specific energies9

cT =
∑

4
i=1
∫ T

0 max
(
cstatu2

i +uiq̇i,0
)

dt
mgr2x (θ

−)
, (75)

e+mech =
∑

4
i=1
∫ T

0 max(uiq̇i,0)dt
mgr2x (θ

−)
, (76)

e−mech =−
∑

4
i=1
∫ T

0 min(uiq̇i,0)dt
mgr2x (θ

−)
, (77)

eimp =−
Ekin (θ

+)−Ekin (θ
−)

mgr2x (θ
−)

, (78)

estat =
∑

4
i=1
∫ T

0 cstatu2
i dt

mgr2x (θ
−)

(79)

are introduced. Analogously to the specific cost of transport cT , these quantities are related
to the robots weight mg and the distance traveled which is the step length r2x (θ

−). While
the specific cost of transport cT corresponds to the electric energy intake of the actuators, the

9 In this paper the term specific energies refers to the quantities introduced in Eq. (75) - Eq. (79) although
some of them are works (process, not state quantities).
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(a) v = 0.3m/s

(b) v = 1.3m/s

(c) v = 2.3m/s

Fig. 7 Comparison of the robot’s motion without elastic coupling at three different speeds v at seven equidis-
tant instances of time

specific positive mechanical work e+mech corresponds to the mechanical energy input in motor
or accelerating mode and the specific negative mechanical work e−mech to the mechanical
energy takeout in generator or breaking mode. The specific impact loss eimp is defined by
the loss of kinetic energy during the impact. The specific static energy estat is defined by the
heat loss in the resistance of the actuator’s armature and corresponds to the electric energy
effort necessary to statically supply a torque.

0 0.5 1 1.5 2 2.5
0.00

0.05

0.10

0.15

speed v [m/s]

sp
ec
i�
c
en

er
g
y

cT

e+mech

e−mech
eimp

Fig. 8 Comparison of the specific energies of the robot without elastic coupling
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Figure 8 illustrates the specific energies of the robot without elastic coupling. The spe-
cific cost of transport cT increases with speed v and consists mainly of specific positive
mechanical work e+mech. At a speed of v = 2.3m/s the specific positive mechanical work
contributes 81.5 % of the specific cost of transport. This implies that the positive mechanical
work e+mech is not negligible and the specific static work estat , commonly used in optimal
control approaches [18,32], is not a suitable objective function if energy efficiency is con-
sidered. The energy input by positive specific mechanical work e+mech is primarily dissipated
by the specific negative mechanical work e−mech. At a speed of v = 2.3m/s 88.7 % of the
specific positive mechanical work is consumed by the specific negative mechanical work.
This implies that the optimization minimizes the specific impact loss.
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Fig. 9 Rate of the stance leg’s effective length change after ˙̀+
l1 and before ˙̀−

l1 the impact

Figure 9 shows the rate of the stance leg’s effective length change after ˙̀+
l1 and before

˙̀−
l1 the impact. By lengthening the stance leg before the impact ˙̀−

l1 > 0, the robot’s center
of mass motion is diverted from a circular motion about the stance leg foot 1 to a more
horizontal path. Therefore, the absolute value of the robot’s vertical center of mass velocity
ṙCoM and the potential impact loss is reduced. By shortening the stance leg after the impact
˙̀−
l1 < 0, the knee flexion of the stance leg acts as a shock absorber. The flexion of the knee

joint increases the lever arm of the acting impact force. This allows for the transfer of the
translational kinetic energy to rotational kinetic energy of the thigh and shank rotation in-
stead of its dissipation in the impact loss. In order to break against the acceleration of the
thigh and shank rotation specific negative mechanical work is needed.

The measure of enlarging the lever arm of the impact force, transferring the translational
kinetic energy to rotational kinetic energy and breaking the rotation during the step in order
to reduce the impact loss is also used in the hip joint between trunk and thigh and is one
reason for the increase of the trunk inclination angle with increasing speed (cf. Fig. 7). This
means that a strategy to reduce the specific cost of transport has to decrease the specific
negative mechanical work by finding another measure to reduce the specific impact loss.

In order to find an appropriate measure to reduce the impact loss, its origin is inves-
tigated with the simplest walking model consisting of an inverted mathematical pendulum
as depicted in Fig. 10. During the single support phase the hip, containing the total mass,
moves on a circular path around the foot of the massless stance leg. The double support
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Fig. 10 Explanation of the impact loss by an in-
verted mathematical pendulum as simple model for
the double support phase

Fig. 11 Explanation of the double step frequency
by a physical pendulum as simple model for the
single support phase

phase corresponds to the transition from one circular path to the next meaning that the im-
pact is described by a projection of the hip velocity v+h = v−h cosψ into the new tangential
direction. Therefore, the specific impact loss of the inverted pendulum

eimpip =

(
v−h
)2

2g`l
sinψ cos 1

2 ψ (80)

can be determined analytically and is valid in the stiction domain of the leg opening angle
ψ ∈ [0, 2arctan(µ0)]. Equation (80) directly suggests an opportunity to reduce the specific
impact loss. By reducing the robot’s leg opening angle ψ and therewith the step length
r2x (θ

−) the specific impact loss of the inverted pendulum eimpip decreases and finally dis-
appears. This raises the question why the optimization does not converge to this solution.
Since the robot has to walk at a specific speed, a decrease of step length means an increase
of step frequency.

In order to evaluate the double step frequency10 of the optimized motion, the swing leg,
which is the body with the highest acceleration in the single support phase, is modeled as
physical pendulum (cf. Fig. 11). By linearizing the equation of motion about the lower rest
position, the eigenfrequency

fSM0 =
1

2π

√
mlgrl + kl_l

Jl +mlr2
l

(81)

of the swing leg model can be determined. The numerical values of the physical pendulum’s
parameters (rl , ml , Jl) are determined by averaging the values of the swing leg consisting
of thigh and shank during one step. In the entire speed range the double step frequency fDS
of the optimized motion of the robot is significantly above the eigenfrequency fSM0 of the
swing leg model (cf. Fig. 12). At a speed of v = 2.3m/s the double step frequency equals
2.56 times the eigenfrequency of the swing leg model. This means the optimized motion
is already far above resonance operation and to diverge further by making smaller steps is
not energetically efficient. However, the swing leg model also presents an opportunity to
increase the eigenfrequency of the swing leg model via introduction of an elastic coupling
of the swing leg with the stiffness kl_l (cf. Eq. (81)).

In the remainder of this section a robot with linear elastic coupling between the shanks
(ls_ls) is investigated (cf. Fig. 2(b)). The robot’s motion (ααα) for each speed as well as

10 One double step corresponds to one cycle of walking and consists of one step with the right leg and one
step with the left leg.
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Fig. 12 Comparison of the double step frequency fDS of the optimized motion with the eigenfrequency fSM0
of the swing leg model for the robot with and without elastic coupling

the elastic coupling (βββ ) are optimized by the process described in Sec. 3. This results in
the movement speed independent stiffness kls_ls = 2250Nm/rad and the transmission ratio
ils_ls = 0.364 as well as the associated motions.

(a) v = 0.3m/s

(b) v = 1.3m/s

(c) v = 2.3m/s

Fig. 13 Comparison of the robot’s motion with elastic coupling of the shanks between the legs (ls_ls) at three
different speeds v at seven equidistant instances of time
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Figure 13 displays the resulting motions for the lowest (v = 0.3m/s), medium (v =
1.3m/s) and highest (v = 2.3m/s) considered speed at seven equidistant instances of time.
Through comparison of the kinematics on position level of the motion of the robot without
elastic coupling (Fig. 7) with the motion of the robot with elastic coupling (Fig. 13) three
patterns emerge.
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Fig. 14 Step length r2x (θ
−) of the robot with and without elastic coupling

First, the step length r2x (θ
−) of the robot with elastic coupling is considerably smaller

than the step length of the robot without elastic coupling as depicted in Fig. 14. At the
speed of v = 2.3m/s the step length of the robot is reduced from 0.661m to 0.249m which
corresponds to a reduction of 62.3 %. This indicates the expected phenomenon of reduction
of impact loss. Furthermore, the step length of the robot with elastic coupling is almost a
linear function of speed, which indicates a motion with constant double step frequency.
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Fig. 15 Trunk inclination angle q5 of the robot with and without elastic coupling
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Second, the trunk inclination angle q5 of the robot with elastic coupling is much smaller
compared to the robot without elastic coupling as depicted in Fig. 15. At the speeds v =
0.3m/s and v = 2.3m/s, the maximum trunk inclination angle of the robot is reduced from
1.09° and 24.5° to 0.68° and 13.8° respectively. This corresponds to a reduction of 38.1 %
and 43.8 % due to the elastic coupling. This indicates that the impact loss is reduced else-
where and it is not necessary to maximize the impact force’s lever arm. This hypothesis is
further confirmed by the reduced trunk inclination angle sway at v = 2.3m/s from 2.00° to
0.415° which corresponds to a reduction of 79.2 %; the trunk inclination angle of the robot
with elastic coupling remains almost constant.
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Fig. 16 Stance leg knee flexion angle q3 of the robot with and without elastic coupling

Third, the stance leg knee flexion angle after the impact q3 (θ
+) and its regime of brak-

ing q3 (θ
+)−minq3 of the robot with elastic coupling is smaller than of the robot without

elastic coupling as depicted in Fig. 16. At the speed of v = 2.3m/s the regime of braking is
reduced from 18.2° to 8.88° which corresponds to a reduction of 51.2 %. This also indicates
that the impact loss is reduced elsewhere and the leg needs to act as shock absorber less
strongly.

Figure 12 depicts the double step frequency fDS of the optimized motion and the eigen-
frequency fSM0 of the swing leg model of the robot with and without elastic coupling.
The elastic coupling of the robot is assumed to act directly at the hip with the stiffness
kl_l = kls_ls. By the use of the elastic coupling the eigenfrequency of the swing leg model
and thus the natural frequency of the robot is increased. At the speed of v = 2.3m/s the
eigenfrequency of the swing leg model increases from 0.672Hz to 4.44Hz. Over the total
speed range the double step frequency of the optimized motion is almost constant within a
span of 9.09 % and a maximal deviation from the eigenfrequency of the swing leg model of
10.4 %. Therefore, we conclude that the robot moves in resonance.

Figure 17 illustrates the different specific energy losses of the robot with and without
elastic coupling. The sum of the specific negative mechanical work e−mech and the specific im-
pact loss eimp has to be compensated by specific positive mechanical work e+mech and there-
fore determines the specific cost of transport cT . Introducing the elastic coupling mainly
reduces the specific negative mechanical work e−mech. This confirms the aforementioned hy-
pothesis. Moreover, the specific impact loss eimp is reduced. In the lower to medium speed
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Fig. 17 Comparison of the specific energy loss of the robot with and without elastic coupling

range v = 0.3− 1.3m/s the specific negative mechanical work almost disappears. It in-
creases in the medium to higher speed range v = 1.3−2.3m/s, because the shock absorbing
function and therewith the breaking function of the knee increase with a growing knee flex-
ion angle (cf. Fig. 16) .
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Fig. 18 Comparison of the robot’s specific energy effort with and without elastic coupling

Figure 18 shows the specific energy efforts of the robot with and without elastic cou-
pling. By introduction of the elastic coupling the specific cost of transport cT is reduced
in the entire speed range. The mean specific cost of transport cT for the speed range v =
0.3−2.3m/s is reduced from cT = 0.0654 to cT = 0.0130 which is a saving of 80.1 %. The
mean specific static energy estat , which corresponds to the energy dissipation in form of heat
in the actuator’s armature resistor, is reduced from estat = 0.0395 to estat = 0.00458 which
is a saving of 88.4 %. The elastic coupling does not only reduce the specific cost of transport
significantly, it also allows for a downsizing of the actuators, which might lead to a further
reduction of specific cost of transport since this changes cstat .
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Summing up, the elastic coupling increases the natural frequency of the swing leg mo-
tion and therefore allows for a resonance operation with small step length which reduces
the impact loss and therewith supersedes the shock absorber mode of the knee flexion de-
manding for high specific negative mechanical work and thus reduces the specific cost of
transport significantly.

4.2 Influence of the elastic coupling’s topology

While the reduction of the specific cost of transport was illustrated by the example of the
linear elastic coupling of the shanks (lin. ls_ls) in the previous section, in this section the in-
fluence of the elastic coupling’s topology is investigated. In order to evaluate the efficiency
of a single elementary elastic coupling in a combination of elastic couplings, those with
similar effect are compared. As illustrated in Fig. 15 the trunk inclination angle of the robot
with linear elastic coupling of the shanks is almost constant during one step. This means the
direct elastic coupling of the shanks (ls_ls) between the legs and the indirect elastic cou-
pling of the shanks via elastic coupling of trunk and shank (t_ls) within each leg have an
almost identical effect (cf. Fig. 2(b)), provided the resting angle ϕt_ls0 of the elastic cou-
pling of trunk and shank is chosen properly. Analogously, the elastic couplings of the thighs
and of thigh and shank between the legs and within each leg can be considered as direct
and indirect elastic couplings with similar functions. In the following, the elastic couplings
between the legs and within each leg depicted in Fig. 2 with characteristics described by
Eq. (25) are evaluated regarding their efficiency by means of the specific cost of transport
cT and compared to a robot without elastic coupling. In each case the motion as well as the
elastic coupling are optimized with the process described in Sec. 3. The elastic couplings’
parameters βββ and their resulting mean specific cost of transport cT as well as their relative
saving ∆cT/cT _0 are collected in Table 3.
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Fig. 19 Comparison of the specific cost of transport cT of different elastic couplings of the thighs between
the legs (lt_lt) and within each leg (t_lt)

Figure 19 depicts the specific cost of transport cT of the robot with elastic coupling
of the thighs between the legs (lt_lt) and within each leg (t_lt) as well as without elastic
coupling (w/o e.c.). Because of a movement speed dependent mean trunk inclination angle
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(cf. Fig 15), the movement speed independent resting angle ϕt_lt0 = 3.49rad of the thighs’
elastic coupling within each leg (t_lt) has to be a compromise. For low speeds (v = 0.3−
0.6m/s) this results in a specific cost of transport of the robot with linear elastic coupling
within each leg (lin. t_ls) which is worse than the one of the robot without elastic coupling
(w/o e.c.). For medium and higher speeds (v = 0.6−2.0m/s) the specific cost of transport
of the robot with linear elastic coupling within each leg (lin. t_lt) is better than the version
without elastic couplings (w/o e.c.). Only for the highest speeds (v = 2.0− 2.3m/s) it is
better than the version with linear elastic coupling between the legs (lin. lt_lt) because the
elastic coupling within each leg can be used to suspend the torque of gravity caused by the
trunk inclination. However, the mean specific cost of transport cT = 0.02617 of the robot
with linear elastic coupling within each leg (lin. t_lt) is far above the mean specific cost of
transport cT = 0.01963 of the robot with linear elastic coupling between the legs (lin. lt_lt)
which can be further reduced cT = 0.01756 by a nonlinear elastic coupling between the legs
(nlin. lt_lt) which constitutes the optimal elastic coupling of the thighs.
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Fig. 20 Comparison of the specific cost of transport cT of different elastic couplings of the shank between
the legs (ls_ls) and within each leg (t_ls)

Figure 20 displays the specific cost of transport cT of the robot with elastic coupling
of the shanks between the legs (ls_ls) and within each leg (t_ls) as well as without elastic
coupling (w/o e.c.). As already explained in the last paragraph, the resting angle ϕt_ls0 =
3.06rad and thus the shanks’ elastic coupling within each leg (t_ls) has to be a compromise
because of the movement speed dependent trunk inclination angle. The mean specific cost
of transport cT = 0.04593 of the robot with linear elastic coupling between trunk and legs
(lin. t_ls) is far above the mean specific cost of transport cT = 0.01302 of the robot with
linear elastic coupling between the legs (lin. ls_ls) which can be reduced only marginally to
cT = 0.01287 by a nonlinear elastic coupling between the legs (nlin. ls_ls). Since the degree
of nonlinearity νls_ls = 1.10 is rather low and the effort for the nonlinear design outweighs its
advantages, the linear elastic coupling between the legs (lin. ls_ls) is considered as optimal
elastic coupling of the shanks.

Figure 21 illustrates the specific cost of transport cT of the robot with elastic coupling of
thigh and shank between the legs (lt1_ls2) and within each leg (lt_ls) together with the robot
without elastic coupling (w/o e.c.). Because of a speed dependent mean knee flexion angle
and different torque directions in the stance leg knee joint and the swing leg knee joint at the
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Fig. 21 Comparison of the specific cost of transport cT of different elastic couplings of thigh and shank
between the legs (lt1_ls2) and within each leg (lt_ls)

same knee angle, it is hard to find a good compromise for the resting angle ϕt_ls0 = 3.06rad
and thus the thigh and shank’s elastic coupling within each leg (lt_ls). Hence, the curve
of the specific cost of transport of the robot with linear elastic coupling within each leg
(lin. lt_ls) is above the curve of the robot without elastic couplings (w/o e.c.) for low speeds
v= 0.3−0.7m/s and below it but far above the curve of the robot with linear elastic coupling
between the legs (lin. lt1_ls2) for medium and high speeds v = 0.7− 2.3m/s. In order to
avoid this issue, a switchable linear elastic coupling between thigh and shank (lin. lt_ls])
with a clutch is considered. The elastic coupling is only active in the stance leg; the clutch
closes at touchdown of the foot with a relaxed elastic coupling and opens at takeoff. The
energy saved in the elastic coupling is lost when the clutch opens. The mean specific cost
of transport cT = 0.05201 of the robot with linear elastic coupling within each leg (lin.
lt_ls) is lowered by the design with switchable elastic coupling to cT = 0.03242, however
it is still above the mean specific cost of transport cT = 0.01527 of the robot with linear
elastic coupling between the legs (lin. lt1_ls2). It is further improved to cT = 0.01318 by
a nonlinear elastic coupling between the legs (nlin. lt1_ls2) which constitutes the optimal
elastic coupling of thigh and shank.

Because of their similar effect a combination of the elementary elastic couplings within
each leg and their corresponding elementary elastic couplings between the legs does not
show improvements in the specific cost of transport. In order to find the optimal elastic cou-
pling of the robot, the different elementary elastic couplings between the legs are compared
and combined if necessary.

Figure 22 shows the specific cost of transport cT of each robot with one elementary
elastic coupling between the legs. The mean specific cost of transport cT = 0.01756 of the
robot with elastic coupling of the thighs (nlin. lt_lt) is significantly worse than the mean
specific cost of transport cT = 0.01302 of the robot with elastic coupling of the shanks (lin.
ls_ls) and of the mean specific cost of transport cT = 0.01318 of the robot with elastic
coupling of thigh and shank (nlin. lt1_ls2) which lie close together. From lower to medium
speeds (v = 0.3−1.4m/s) the elastic coupling of the shanks is advantageous, from medium
to higher speeds (v = 1.4−2.3m/s) the elastic coupling of thigh and shank performs better
with regard to the specific cost of transport.
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Fig. 22 Comparison of the specific cost of transport cT of the optimal elastic couplings of the thighs, the
shanks and of thigh and shank between the legs

Combinations of the elastic couplings of the thighs, of the shanks and of thigh and
shank show no further improvement of the specific cost of transport. In order to analyze this
issue the joint torques Tec of the linear elementary elastic couplings between the legs are
represented with respect to the configuration q = [q1, q2, q3, q4, q5]

T :

Tlt_lt =−klt_lt


−(q2−q1)
(q2−q1)

0
0
0


q

, (82)

Tls_ls =−kls_ls


−(q2−q1 + ils_ls (q4−q3))
(q2−q1 + ils_ls (q4−q3))

−ils_ls (q2−q1 + ils_ls (q4−q3))
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0


q

, (83)
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0
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. (84)

By setting the transmission ratio of the knee joints ils_ls and ilt1_ls2 to zero, the joint torque
Tlt_lt of the elastic coupling of the thighs (cf. Eq. (82)) can be represented by the joint torque
Tls_ls of the elastic coupling of the shanks (cf. Eq. (83)) and the joint torque Tlt1_ls2 of the
elastic coupling of thigh and shank (cf. Eq. (84)). Therefore, the elastic coupling of the
thighs is already implicitly included in the other two and contributes no additional function.
The joint torque Tls_ls of the elastic coupling of the shanks and the joint torque Tlt1_ls2 of
the elastic coupling of thigh and shank differ only in the torques with respect to the knee
joints in the value of the respective knee joint angle (q3 and q4). Since the difference in the
hip joint angles q2−q1 is not reduced and much bigger than the difference of the knee joint
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Table 3 Comparison of different elastic couplings between the legs and within each leg by parameters βββ and
resulting mean specific cost of transport cT with relative saving ∆cT /cT _0

elastic coupling ϕ0[rad] k [ Nm
rad ] ν i cT ∆cT /cT _0

w/o 0.06540

w
ith

in
le

g t_lt lin. 3.49 1090 1 0.02617 60.0 %
t_ls lin. 3.06 2250 1 0.800 0.04593 29.8 %
lt_ls lin. -0.475 880 1 0.05201 20.5 %
lt_ls] lin. N/A 374 1 0.03242 50.4 %

be
tw

ee
n

le
gs

lt_lt lin. 0 785 1 0.01963 70.0 %
lt_lt nlin. 0 2490 1.93 0.01756 73.2 %
ls_ls lin. 0 2250 1 0.364 0.01302 80.1 %
ls_ls nlin. 0 2740 1.10 0.345 0.01287 80.3 %
lt1_ls2 lin. -0.183 1040 1 0.678 0.01527 76.7 %
lt1_ls2 nlin. -0.198 2400 1.36 0.818 0.01318 79.9 %

angles q4−q3, the elastic coupling of the shanks and the elastic coupling of thigh and shank
have a similar function. A combination of the elementary elastic couplings of the shanks
and of thigh and shank only influences the curve of the specific cost of transport but not its
mean value.

With regard to the implementation of the elastic coupling in hardware a simple de-
sign is preferred. Hence the linear elementary elastic coupling of the shanks (lin. ls_ls)
is considered as the optimal elastic coupling. By using only one elastic coupling in form
of a simple mechanical spring, the mean specific cost of transport cT for the speed range
v = 0.3− 2.3m/s is reduced from cT = 0.06540 to cT = 0.01302 which is a reduction of
80.1 %. In the remainder of this paper the robot equipped with this elastic coupling is inves-
tigated further.

4.3 Influence of viscous joint damping

In the previous sections the academic case of a robot without joint friction was considered. In
this section the influence of viscous joint damping on the reduction of specific cost of trans-
port by elastic couplings is investigated. As shown in Sec. 4.1 the reduction is mainly caused
by an increase of the resonance frequency of the swing leg motion and thus by increasing
the joint angular velocity. The joint torque caused by viscous joint damping counteracts the
motion and is proportional to the angular velocity. Hence, a decrease of the reduction of spe-
cific cost of transport by elastic couplings is anticipated. In order to quantify the influence
of viscous joint damping the mechanical model depicted in Fig. 1 is enhanced by linear ro-
tational joint dampers with damping coefficient dJ = 8Nms/rad corresponding to the value
of the assumed reduced drive train (cf. Sec. 2.2). The motion as well as the elastic coupling
of the robot are optimized if applicable.

Figure 23 displays the absolute saving of specific cost of transport ∆cT by the elastic
coupling with and without viscous joint damping. Surprisingly the absolute saving in spe-
cific cost of transport by the elastic coupling depends only weakly on the joint damping
coefficient.

Figure 24 illustrates the relative saving of the specific cost of transport ∆cT/cT _0 by the
elastic coupling with and without viscous joint damping. Since the specific cost of transport
cT _0 of the robot without elastic coupling becomes larger as the joint damping coefficients
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Fig. 23 Comparison of the absolute saving of the specific cost of transport ∆cT by the elastic coupling with
and without viscous joint damping
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Fig. 24 Comparison of the relative saving of the specific cost of transport ∆cT /cT _0 by the elastic coupling
for different joint damping coefficients dJ

dJ increase while the absolute saving ∆cT is constant, the relative saving of the specific cost
of transport ∆cT/cT _0 decreases. For the assumed reduced drive train with joint damping
coefficient dJ = 8Nms/rad the mean relative saving or the reduction of the mean specific
cost of transport cT decreases from 80.1 % to 47.0% and the reduction of the mean heat load
or the mean specific static energy estat from 88.4 % to 81.5 %. By the transition from the
academic case without joint damping to a realistic value, the relative saving of specific cost
of transport by elastic couplings decreases, however, it stays in a range relevant for practical
application.

4.4 Stability and sensitivity

Optimization is always a specialization. This paper focuses on energy efficiency by optimiz-
ing the robot’s elastic coupling as well as the motion. This raises the question if the increase
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in energy efficiency sacrifices stability and increases sensitivity with respect to disturbances
of the motion. Through the use of input-output linearization, the dynamics of the robot are
completely described by its hybrid zero dynamics. Hence, the stability and sensitivity of the
robot’s motion can be evaluated by analyzing the stability and sensitivity of the solution of
the hybrid zero dynamics. The stability of the robot’s motion is investigated by means of the
absolute value of the Floquet multiplier of the Poincaré map of the trajectory of zero dynam-
ics just before the impact (cf. Eq. (61)). The sensitivity of the robot’s motion is investigated
by the relative size of the basin of attraction of the stable trajectory of the zero dynamics
evaluated in the Poincaré map just before the impact (cf. Eq. (62)).
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Fig. 25 Comparison of the Floquet multiplier’s absolute value δ0
2 for the robot with and without elastic

coupling

Figure 25 shows the Floquet multiplier’s absolute value δ0
2 for the robot with and with-

out elastic coupling. In both cases the absolute value of the Floquet multiplier is less than
one. Accordingly, the solution and therewith the motion of the robot is stable. Since the re-
duction of specific cost of transport by elastic couplings is based on the reduction of impact
loss, δ0 has to approach the value 1 (cf. Eq. (58)). Therefore, the Floquet multiplier of the
robot with elastic coupling is greater than without elastic coupling. This results in a slower
decay rate of disturbances in the total angular momentum and thus a slower transition to the
desired average speed.

Figure 26 depicts the relative size of the basin of attraction sB for the robot with and
without elastic coupling. For low speeds (v = 0.3− 0.7m/s) the relative size of the basin
of attraction of the stable solution of the robot with elastic coupling is greater than without
elastic coupling. For medium speeds (v = 0.7− 1.9m/s) the relative size of the basin of
attraction of the stable solution of the robot with elastic coupling is smaller than without
elastic coupling and for high speeds (v = 1.9− 2.3m/s) the relative sizes of the basins of
attraction are approximately the same. The sensitivity of the robot’s motion increases in
general, however with the basin of attraction’s minimal relative size of 84.6 % it is high
enough for practical usage at each considered speed.

The utilization of elastic couplings to reduce the specific cost of transport results in
a motion with slightly slower convergence rate with respect to disturbances and slightly
decreases the size of the relative basin of attraction.
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Fig. 26 Comparison of the basin of attraction’s relative size sB for the robot with and without elastic coupling

4.5 Design proposal for the optimal elastic coupling

Thus far the optimal elastic coupling in form of the elementary elastic coupling of the shanks
between the legs (ls_ls) was merely described by its joint torque Tls_ls (cf. Eq. (83)). In this
section a design of the optimal elastic coupling – which implements the two subfunctions
elasticity and joint angle transmission via two subsystems – is proposed for planar as well
as three-dimensional robots.

The design proposal for a planar robot in Fig. 27(a) and (b) consists of two belt drives
and one tension spring. The subfunction joint angle transmission is realized by the belt
drives, whereas the pulley coaxial with the knee joint is fixed to the shank and the pulley
coaxial with the hip joint is pivoted. The ratio of the pulleys diameters defines the transmis-
sion ratio ils_ls of the elastic coupling. The subfunction elasticity is realized by one simple
tension spring between the pivoted pulleys. The degree of nonlinearity of the elastic cou-
pling can be adjusted by the strain-stress curve of the material of the spring or the axial
distance of the spring’s fastening points on the pivoted pulleys.

The design proposal for a three-dimensional robot with spherical hip joints in Fig. 27(c)
extends the planar design via Bowden cables to allow for independent spatial movement of
both legs. The joint angle transmission is realized via belt drives as in the planar case. The
elastic coupling of the pulleys is realized via linear tension springs and Bowden cables. The
degree of nonlinearity can be adjusted by the strain-stress curve of the spring material or by
the geometric arrangement of the Bowden cables with respect to the pulleys.

The suggested design of the optimal elastic coupling does not influence the motion of
the trunk or the parallel motion of the shanks which is advantageous in manipulation tasks,
it is primarily active during the walking motion. It can be realized with simple components
and can be used to upgrade an existing robot.

5 Conclusion and outlook

It is known from literature [13] that a bipedal robot will only walk efficiently if its control
does not fight against its natural dynamics but allows for it to evolve. For a given robot design
elastic couplings are the only possibility to shape the natural dynamics. Hence, the aim of
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Fig. 27 Design proposal of the optimal elastic coupling. Side view (a) and rear view (b) of the design proposal
for a planar robot consisting of two belt drives and one tension spring. Perspective and sectional views (c)
of the design proposal for a robot with spherical hip joints consisting of two belt drives coupled via tension
springs and Bowden cables

this paper was to investigate the influence of elastic couplings on the energy efficiency of a
bipedal walking robot. For this purpose an 1.80m tall, 80kg heavy, underactuated robot was
considered, feedback controlled via input-output linearization and analyzed in the hybrid
zero dynamics as proposed by [44]. The gained knowledge is transferable to every bipedal
robot provided that its control allows for the evolution of natural dynamics.

In order to quantify the energy efficiency and to evaluate the influence of the elastic
couplings, the specific cost of transport was introduced as energy input divided by dis-
tance traveled and weight. The energy input was defined as the integral of the actuators’
electric power intake during one step. For the development of an energy efficient robot an
optimization process was designed, minimizing the mean specific cost of transport in the
walking speed range v = 0.3−2.3m/s by optimizing the motion and the elastic coupling of
the robot simultaneously. The considered parameters of the elastic coupling are movement
speed independent.

The energy turnover of the robot was analyzed in detail to explain the effect which
reduces the specific cost of transport. For the robot without elastic couplings the energy
input by the actuators is mainly dissipated by negative mechanical work during braking in
the stance leg knee joint. The shock absorbing knee function reduces the energy loss of
the plastic impact at touchdown in the double support phase. By modeling the robot during
the double support phase as an inverted mathematical pendulum it could be shown that the
reduction of step length is an alternative measure to reduce the impact loss. At a given
desired speed, the reduction of step length directly increases the double step frequency. By
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modeling the swing leg during the single support phase as a physical pendulum it could be
shown that the double step frequency of the robot without elastic coupling is far above the
resonance frequency of the swing leg motion. Using the elastic coupling between the legs
increases the swing leg motion’s resonance frequency thus the effect of lower impact losses
via smaller step lengths can be exploited. Using the optimized elastic coupling between the
legs the robot moves in resonance over a broad range of speeds and the specific cost of
transport is reduced.

The elastic couplings within each leg cannot be used optimally in the studied range of
speeds, because the trunk inclination angle and the knee flexion angle depend on move-
ment speed. Combinations of different elastic couplings between the leg did not show an
improvement in the specific cost of transport. The optimal elastic coupling consists of the
elementary elastic coupling of the shanks between the legs.

The optimal linear elastic coupling of the shanks reduces the mean specific cost of trans-
port by 80.1 % for the academic robot without joint damping and by 47.0 % for the robot
with realistic joint damping. While the relative reduction decreases with increasing joint
damping, the absolute reduction is maintained.

The mean static electric energy, the heat load of the actuators, is reduced for the aca-
demic robot without joint damping by 88.4 % and for the robot with realistic joint damping
by 81.5 % using a linear elastic coupling of the shanks. This allows for downsizing of the
actuators and thus reduced weight and friction of the robot.

The optimization of the robot’s motion and elastic coupling towards energy efficiency
does not severely interfere with stability and sensitivity of the motion. Using elastic cou-
plings the motion of the robot remains stable. However, the decay rate of perturbations
decreases as a matter of the reduced impact loss. The robot’s motion becomes slightly more
sensitive due to the elastic couplings because the relative size of the basin of attraction of
the stable solution decreases, but stays sufficiently large for practical application.

It can be summarized that by using elastic couplings the specific cost of transport of the
robot can be reduced significantly with minor sacrifices in stability and slight increases of
the motion’s sensitivity with respect to disturbances.

The design proposal for the optimal elastic coupling for planar robots consists of two
belt drives and one tension spring. The design proposal for the optimal elastic coupling
for three-dimensional robots consists of two belt drives which are elastically coupled with
Bowden cables. Neither one interferes with trunk or parallel shank motion of manipulation
tasks and can be used to upgrade an existing robot.

In the future the effect of elastic couplings on a more realistic robot model with ex-
tended feet will be investigated. The increase in the number of rigid bodies results in further
topologies of elastic couplings and therewith options to reduce the specific cost of transport.
Furthermore, we plan to investigate the influence of elastic couplings on planar running
gaits. However, the application of the presented method to three-dimensional robot models
is not planned in the near future. Prior to the investigation of three-dimensional models, the
aim is the validation of the effect of elastic couplings in a hardware experiment.
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