

Corrosion Behavior of Aluminum-based Coatings in a Liquid Metal Environment for Fusion Applications

Jürgen Konys,

Wolfgang Krauss, Sven-Erik Wulf

INSTITUTE FOR APPLIED MATERIALS - APPLIED MATERIALS PHYSICS | CORROSION DEPARTEMENT

Outline

Corrosion Issue in Liquid PbLi alloy

Requirements for Al-based Coatings

Development of Coating Processes

Corrosion Behavior in PbLi Environment

Estimation of TPR Behavior of Al-coating

Conclusions

Nuclear Fusion as a Long-term Option for the Worldwide Energy Demand

Power (TW)

Energy gain is about 450 : 1

${}^{2}_{1}D + {}^{3}_{1}T \Leftrightarrow {}^{4}_{2}He(3.5\,MeV) + n(14.1\,MeV)$

Development of a new primary energy source on the basis of a magnetically confined fusion plasma

- Favorable environmental and safety properties
- Unit size $2 5 \text{ GW}_{\text{th}} / 1 2 \text{ GW}_{\text{e}}$
 - Typical for present base load power plants
- Potential fusion applications
 - Base load for large cities
 - Energy intensive industries
 - High temperature process heat for renewable economy

into coolant gas

capture and by nuclear reactions with Lithium

 ${}_{3}^{6}Li$ (8%) + n (14.1 MeV) \rightarrow T + He + 4.8 MeV \rightarrow enrichment is needed

produced in heavy water-moderated reactors by neutron

The He-PbLi Blanket Concept for ITER: Application

of T-permeation and/or Anti-corrosion coatings

 ${}^{7}_{3}Li$ (92%) + n (14.1 MeV) \rightarrow T + He - 2.87 MeV

Worldwide, blanket concepts are designed to use

are required!

Tritium (T) is naturally "extremely rare" on earth, but is

Deuterium (D) is highly available, e.g. in sea water

Burning D-T plasma

Structure and Technical Requirements for an Albased T-permeation and/or Corrosion Coating

Requirements for coatings

- Reduction of T-permeation by a factor of <100 in Pb-16Li (1000 in gas phase)
- Self-healing of (mechanically) damaged layer must be thermodynamically possible in Pb-16Li (re-oxidizing)
- Long-term corrosion resistant in flowing Pb-16Li up to ca. 550°C (protecting the underlying structural material)
- High content of low activation elements (minimizing Al content)
- No negative influence on mechanical properties of the steel due to the coating process
- The coating process must be of industrial relevance

Need for Corrosion Coatings on Eurofer Steel

Alloying elements in RAFM steel Eurofer (wt.%)

Cr	Mn	V	W	Та	С	Ni
8.82	0.47	0.2	1.09	0.13	0.11	0.02

- Corrosion rates up to 400 μm/y at 550°C are reported depending on:
 - Temperature, flow velocity, (time)
- Mechanism \rightarrow dissolution corrosion in Pb-16Li

from: J. Konys et. al, J. Nucl. Mater., vol. 455, issues 1-3, (2014), p.491

Corrosion protection layers needed for a reliable and save operation

<u>Reduced activation ferritic-martensitic steels (RAFM)</u> e.g. Eurofer suffer from severe corrosion attack in flowing Pb-16Li

Development of Al-based coating processes

Fabrication routes for aluminum-based coatings on Eurofer steel

Hot-Dip Aluminizing Process (HDA)

8

Improved coatings required!

Int. Symposium on Coatings and Corrosion 2016 (ISCC2016) May 16-19, 2016 Kuala Lumpur, Malaysia							
	2010. ECA process	Since 2011. Lex process					
Mid 1990s: Hot-Din-Aluminization	2010: ECA process	Since 2011: ECX process					

Corrosion testing of coated and uncoated steel specimens in a Pb-16Li loop (PICOLO)

Parameters of Pb-16Li Loop PICOLO					
Test temperature:	480-550°C				
T _{max} in test section: T _{low} at EM-pump:	550°C 350°C				
Pb-16Li volume:	20 litres				
Flow velocity range:	0.01 - 1 m/s				
Test velocity up to 2007:	0.22 m/s				
Since 2011:	0.1 m/s				
Loop materials:					
Cold legs:	18 12 CrNi steel				
Hot legs:	10 % Cr steel				
Total loop operation:					
at 480°C	> 120,000 h				
at 550°C	> 40,000 h				

Corrosion behaviour of HDA coated Eurofer in flowing Pb-16Li

- Exposure to flowing Pb-16Li for up to approx. 7,000h (480°C)
- Coating protects underlying RAFM steel from corrosion
- Local corrosion of the coating itself
- Al-rich phase (FeAl₂) attacked and partially removed
- Corrosion attack decreased/stopped in case of FeAl and Fe(Al) phase

Mid 1990s: Hot-Dip-Aluminization

2010: ECA process

Scan path

Since 2011: ECX process

Lower Al amounts seem favorable

concerning corrosion resistance

Improved coating techniques

required to deposit homogeneous

and thinner Al coatings

Electroplating of Aluminum

Activation of Al from Al-based coatings in a "fusion irradiation environment"

Aluminium irradiation for 2 years

 \rightarrow Consequence: Minimization of the amount of AI in the surface of steel

Jürgen Konys

Al-Electroplating from volatile organic electrolytes: ECA process

Water-free electrolytes required for Al electrodeposition

- Electrodeposition from toluene-based electrolytes + Al-alkyls (e.g. (Na,K)F*2 Al-R₃)
 - Electrolytes are very sensitive to oxygen and humidity
 Safety is a big issue!
- Process temperature: 100°C / growth rates: 12 μm/h
- Dense coatings (relatively big crystallite sizes)
- After HT relatively rough surfaces
- Available in industry: e.g. Rasant-Alcotec (Germany), Alumiplate (USA) ECA: after deposition

from: Reinold et. al, Mat.wiss. und Werkstofftechn., 39 (12), (2008), 907-913.

ECA after HT

Corrosion behaviour of ECA-coated Eurofer in flowing Pb-16Li (550°C; 0.1m/s)

- ECA coated Eurofer test specimens:
 - Al-based coatings protect the underlying base material (i.e. Eurofer steel) from corrosion in flowing Pb-16Li even at long exposure times of up to 12,000h.
 - Fe-Al coating still remains after 12,000 h of exposure
 - Reduced corrosion attack of the coating layer itself
 - → Formation of local steps to uncoated sample

after 10,000 h

8

D

Mid 1990s: Hot-Dip-Aluminization

2010: ECA process

Since 2011: ECX process

2

Corrosion behaviour of ECA-coated Eurofer in flowing Pb-16Li (550°C; 0.1m/s)

- Plateaus \rightarrow two measured values for the radial material loss: $\Delta r_{min} u. \Delta r_{max} \rightarrow \Delta r_{min, max} = r (t=0) - r (t)_{min, max}$
- Material loss slightly depended on the exposure time
- Calculated corrosion rates at high exposure times below 20 μm/y
- Reduction of corrosion rate in comparison to bare Eurofer steel by a factor of >10

Al-Electroplating from ionic liquids: ECX process

ECX after electrodeposition

ECX after complete HT

Water-free electrolytes required for Al electrodeposition
Electrodeposition from *ionic liquids*Electrolyte: [Emim]Cl:AlCl₃ (1:1.5, lewis acidic)

Electrolytes are "only" sensitive to humidity

Use of pulse plating possible (improved surfaces)
Process temperature: 100°C / Growth rates: 10 - 25 μm/h
Good adhesion to the substrate (no delamination)

Mid 1990s: Hot-Dip-Aluminization

2010: ECA process

Since 2011: ECX process

Al-Electroplating from ionic liquids: ECX process

- Dense 10-13 μm thick Al coatings with fine grained morphology
- **1**st HT step \rightarrow Formation Al rich phases
- 2nd+ 3rd HT step → ductile Fe-Al phases
 - Al content < 20 atomic percent
- **Οverall Fe-Al thickness after HT: approx. 55 μm**
- Smooth surfaces even after HT

Corrosion behaviour of ECX-coated Eurofer in flowing Pb-16Li (550°C; 0.1m/s)

ECX coated Eurofer test specimens:

 Al-based coatings protect the underlying base material (i.e. Eurofer steel) from corrosion in flowing Pb-16Li for ≥ 6,000 h

Fe-Al coating thickness after 6,000 h of exposure > 40 μm

No formation of local plateaus as in the case of ECA

Smooth surface preserved

from: S.-E. Wulf et. al, *Nucl. Mater. & Energy.*, (2015), accepted.

Corrosion behaviour of ECX-coated Eurofer in flowing Pb-16Li (550°C; 0.1m/s)

Microstructure remains columnar

- No/very low roughening in the contact zone between Pb- 16Li and coating
- No penetration of Pb-16Li into the Fe-Al coating

Pb-16Li

Comparison of the corrosion behaviour of coated and uncoated Eurofer in flowing Pb-16Li (550°C; 0.1m/s)

Characterization of T-permeation Behavior

- T-permeating setup have been designed, in which H and D-permeability is measured by helium leak detector, thus interference of residual hydrogen existed on/in most materials can be neglected.
- Permeation reduction factor (PRF) is the rate of T-permeability in steel before and after TPB coated, and tests will be performed in 2016.

Conclusions

- Aluminum-based coatings have proven their ability to protect 9%Cr-steels (Eurofer) sufficiently from heavy corrosion attack in flowing liquid Pb-16Li.
- Although, coatings by Hot-dip aluminizing have drawbacks due to their "high" Al content in the steel surface
 - ▶ activation under neutron irradiation: \rightarrow ²⁶AI (slightly above recycling limit)
- Electrochemical-based processes like ECA, ECX have shown better behavior concerning homogeneity, Al thickness and reproducibility, even for complex geometries.
- Fe-Al coatings made by ECX process showed smoother and more uniform surfaces with additional advantages regarding lifetime, cost and safety.
- Applying Fe-Al layers by ECX process can reduce corrosion rates in flowing Pb-16Li by a factor of 10, compared to uncoated Eurofer steel.
- The Al-based coatings made by electrodeposition from ionic liquids have also proven their high potential in other energy applications at elevated temperatures and aggressive environments (gas, steam etc.).