
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 129.13.72.197

This content was downloaded on 14/08/2017 at 15:54

Please note that terms and conditions apply.

Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys.: Conf. Ser. 762 012012

(http://iopscience.iop.org/1742-6596/762/1/012012)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Optimization of Italian CMS Computing Centers via MIUR funded Research Projects

T Boccali, G Donvito, A Pompili et al.

An integrated infrastructure in support of software development

S Antonelli, C Aiftimiei, M Bencivenni et al.

A short carrier lifetime semiconductor optical amplifier with n-type modulation-doped multiple

quantum well structure

Ruiying Zhang, Fan Zhou, Jing Bian et al.

Hybrid resource provisioning for clouds

Mahfuzur Rahman and Peter Graham

SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre

Chris Loken, Daniel Gruner, Leslie Groer et al.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197517141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/762/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1742-6596/513/6/062006
http://iopscience.iop.org/article/10.1088/1742-6596/513/6/062018
http://iopscience.iop.org/article/10.1088/0268-1242/22/3/019
http://iopscience.iop.org/article/10.1088/0268-1242/22/3/019
http://iopscience.iop.org/article/10.1088/1742-6596/385/1/012004
http://iopscience.iop.org/article/10.1088/1742-6596/256/1/012026


Dynamic provisioning of a HEP computing

infrastructure on a shared hybrid HPC system

Konrad Meier2, Georg Fleig1, Thomas Hauth1, Michael Janczyk2,
Günter Quast1, Dirk von Suchodoletz2, Bernd Wiebelt2

1Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik,
Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
2Albert-Ludwigs-Universität Freiburg, Professur für Kommunikationssysteme,
Hermann-Herder-Str. 10, 79104 Freiburg im Breisgau, Germany

E-mail: konrad.meier@rz.uni-freiburg.de

Experiments in high-energy physics (HEP) rely on elaborate hardware, software and
computing systems to sustain the high data rates necessary to study rare physics processes.
The Institut fr Experimentelle Kernphysik (EKP) at KIT is a member of the CMS and Belle
II experiments, located at the LHC and the Super-KEKB accelerators, respectively. These
detectors share the requirement, that enormous amounts of measurement data must be processed
and analyzed and a comparable amount of simulated events is required to compare experimental
results with theoretical predictions.

Classical HEP computing centers are dedicated sites which support multiple experiments and
have the required software pre-installed. Nowadays, funding agencies encourage research groups
to participate in shared HPC cluster models, where scientist from different domains use the same
hardware to increase synergies. This shared usage proves to be challenging for HEP groups, due
to their specialized software setup which includes a custom OS (often Scientific Linux), libraries
and applications.

To overcome this hurdle, the EKP and data center team of the University of Freiburg have
developed a system to enable the HEP use case on a shared HPC cluster. To achieve this, an
OpenStack-based virtualization layer is installed on top of a bare-metal cluster. While other user
groups can run their batch jobs via the Moab workload manager directly on bare-metal, HEP
users can request virtual machines with a specialized machine image which contains a dedicated
operating system and software stack. In contrast to similar installations, in this hybrid setup,
no static partitioning of the cluster into a physical and virtualized segment is required.

As a unique feature, the placement of the virtual machine on the cluster nodes is scheduled
by Moab and the job lifetime is coupled to the lifetime of the virtual machine. This allows for a
seamless integration with the jobs sent by other user groups and honors the fairshare policies of
the cluster. The developed thin integration layer between OpenStack and Moab can be adapted
to other batch servers and virtualization systems, making the concept also applicable for other
cluster operators.

This contribution will report on the concept and implementation of an OpenStack-virtualized
cluster used for HEP workflows. While the full cluster will be installed in spring 2016, a
test-bed setup with 800 cores has been used to study the overall system performance and
dedicated HEP jobs were run in a virtualized environment over many weeks. Furthermore,
the dynamic integration of the virtualized worker nodes, depending on the workload at the
institute’s computing system, will be described.

Abstract

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012012 doi:10.1088/1742-6596/762/1/012012

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



1. Introduction
Current and upcoming experiments in High Energy Physics (HEP) require large amounts of
processing and storage capacity to handle the recorded data and to provide sufficient simulation
and analysis capabilities to their scientists. The Institute of Experimental Particle Physics
(EKP) is actively involved in the Compact Muon Solenoid (CMS) experiment at the LHC
collider in Geneva (Switzerland) and the Belle II experiment at the Super-KEKB collider in
Tsukuba (Japan). The CMS experiment resumed operation, after improvements to the LHC
accelerator in 2014 with an increased center-of-mass-energy of

√
s = 13 TeV, more concurrent

collisions and an increase in factor three of the stored measurement data. These factors make the
event reconstruction more challenging, and more computing resources are required to process
and analyze the recorded data in a timely fashion. The Belle II particle detector is being built
at the moment (02/2016) and is expected to start taking data in 2018. The factor 40 increase in
luminosity, compared to the predecessor experiment Belle, also poses a challenge to the available
computing resources. In conjunction with the recorded collision data, both experiments require
an equal amount of Monte-Carlo simulation events to compare the observations with theoretical
models.

The classical model, used with great success during the last decades, is to provide these
computing resources via data centers dedicated to HEP computing and running a HEP-specific
software stack. Due the independent nature of HEP computing workloads, they can be easily
partitioned in many small jobs and workflows can be evenly distributed across different data
centers and there is no need for a concurrent execution as no inter-process communication (IPC)
is required. Therefore, HEP jobs can be considered to belong to the High-throughput Computing
(HTC) class, which describes a loosely coupled computing workflow. Logically, dedicated HEP
data centers are tailored to suit the HTC workloads and have batch systems which can manage
small jobs efficiently.

In contrast, many other user groups in academia require computing clusters that efficiently
serve the High-performance Computing (HPC) class of workloads, which can be characterized
as tightly-coupled processing across as significant part of the cluster, which needs low latency
interconnection between nodes.

Furthermore, the software environment typically used on HPC clusters is very different from
the typical HEP experiment configuration. HPC-focused data-centers use an operating system
best suitable to support the installed hardware, for example the IPC components. The cluster
operator also provides compilers, software libraries and even whole applications suites for its
users. In contrast, most HEP experiments require a specific operating system and centrally
provide the experiment software, including compilers and libraries, which have to be used on
all sites in order to guarantee the software portability and consistency of the results across all
data centers. Furthermore, HEP experiment software is updated in regular intervals and new
software releases must be available in a matter of hours on every site. This release mode cannot
be properly supported if software must be installed by local experts.

These conditions make it challenging to employ classical HPC-based centers to fulfill the
computation needs of HEP experiments. Yet, HPC data centers can provide a significant
addition to the computing budget of HEP experiments and their usage is therefore highly desired.

In the following, a new approach to integrating the HEP software setup and workflows, based
on virtualization technology, will be outlined and its implementation in a shared cluster system
will be described.

2. Hybrid HPC Setup with OpenStack
To allow classic HPC computing (bare metal) and virtual machines on the same cluster the
HPC operating modell is extended by a virtualization layer. In order to run virtual machines
on a compute node, a virtualization hypervisor is installed on every compute node. Users that

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012012 doi:10.1088/1742-6596/762/1/012012

2



require a HPC system for computation can use the middle layer with direct access to hardware
to run computation jobs. Users that require a special software environment and do not need
direct access to hardware can use the top layer that provides Virtual Research Environments.

To manage virtual machines (network, images, life-cycle) OpenStack [1] is used as a
virtualization management framework. OpenStack is chosen for its modular structure.
Components required for the cluster virtualization, such as network, image handling or a
web interface, can be used while others can be ignored without interference with the overall
system. This allows to build a virtualization environment for the cluster that meets the specific
requirements.

bwForCluster

User

SSH HTTPS

Scheduler

Moab

Cluster Nodes Static VM-Nodes

OpenStack

Network

(Neutron)

Images

(Glance)

Compute 

(Nova)

OpenStack

Dashboard
(Horizon)

Run Compute VM on Cluster
Run normal 

Compute Job
Build 

VM Image
Run 

Service VM

Figure 1. Cluster Structure

The challenge in this setup is to intercon-
nect the virtualization environment and the
classic HPC environment to allow running
classic bare metal compute jobs and VMs on
the same cluster at the same time without
interference. In order to achieve this, it is
necessary to integrate the scheduling of vir-
tual machines into the already existing HPC
scheduler. A single resource management is
handling resources used by bare metal com-
putation and VMs. The advantage is that, it
is not necessary to assign a compute nodes to
run bare metal jobs or VMs. Thus a static
partitioning of the cluster between virtualiza-
tion and classic HPC nodes is not required.

The workflow from the user’s perspective
is given in figure 1. If the user has a prebuild
VM image he can directly upload the image
to the cluster using the OpenStack Dashboard. If an image is not present, the user is able to
use the cluster environment to run a VM on a static VM-Node (management server) in order to
install the required software. The image of that VM can then be used as a new image for new
VMs running on the cluster.

To run a compute VM on the cluster the user connects to the login server of the cluster and
submits a compute job to the scheduler that includes a request for a virtual machine.

2.1. Integration of OpenStack
In a traditional HPC cluster the resource management is done via a scheduler. A user submits
a job to the scheduler and the scheduler starts compute jobs on dedicated resources if they are
available. Since users in the hybrid cluster are able to submit jobs to the scheduler for bare
metal computation, it is required that the scheduler is also responsible for the resources allocated
by virtual machines. If virtual machines are started on the cluster without the knowledge of
the scheduler, resources could get assigned twice. For CPU resources this would slow down the
computation. For memory resources it is even worse if more memory is allocated than physically
available and the running jobs are canceled.
To solve the problem it is necessary that the scheduler is aware of the resources that virtual
machines are using. A script was developed to submit a request for a virtual machine as a normal
cluster job. In this way, the scheduler handles a request for a new virtual machine like any other
cluster job and is not required to have knowledge of the virtualization environment. This makes
the overall hybrid HPC cluster concept flexible and independent of the actual scheduler used.

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012012 doi:10.1088/1742-6596/762/1/012012

3



OpenStack APIMoabUser Compute-Node

Start Job

Job-ID

Submit startVM.py

Start VM

ok

Get VM-IP

IP

Add IP to Job-Metadata

ok

Get VM-Status

Status
loop

Terminate VM

ok

Job finished

Figure 2. Workflow for starting VMs on the Cluster

The workflow of the script is
given in figure 2. The script is sub-
mitted by the user as a normal clus-
ter job to the scheduler. By do-
ing so, the user is able to specify a
wall time, number of CPU cores and
amount of memory. These values are
read by the job script and mapped to
a matching OpenStack flavor. This
way it is possible for the user to de-
fine the size of the virtual machine
by the time he submits the job to the
scheduler and the scheduler is aware
of the resources used by the virtual
machine.
After submission the scheduler as-
signs a free compute node to the job
and starts the script on this node.
The script reads the job metadata
(requested wall time, CPU cores,
memory) and requests OpenStack to
start a virtual machine on the node
the script is executed on.

If the job is then executed by the scheduler on the compute node, the script reads the
environment variables HOSTNAME, PBS NP, PBS JOBID. The host name is required by
OpenStack to start the VM on the correct compute node. The job ID is used to generate the VM
name. Thus, it is possible to find a compute job for every VM name in the resource manager.
PBS NP corresponds to the requested number of CPUs and is mapped to an OpenStack-Flavor1.
To start the virtual machine, the following information is passed to the OpenStack API: flavor,
generated VM name, compute node hostname and the ID of the image.

Once the VM has started successfully, information of the VM network configuration is polled.
If an IP address is successfully assigned to the VM the address is added to the metadata of the
compute job. This allows the user to get the IP of a VM by requesting the job status from the
scheduler. The IP can be used to login to the VM for monitoring and debugging purposes.

The status of the VM is monitored by the startVM-script. If the status is ACTIVE the
script waits 30 seconds before checking the status again. In case of the status ERROR the VM
is deleted. The status SHUTDOWN indicates that the VM was shutdown and all computations
within the VM are finished. In this case the VM is deleted and the script exits, to signal the
scheduler that the resources are free again. The shutdown of the VM can thus be used to signal
the system that the VM is no longer needed. If a VM is not shutdown and reaches the maximum
wall time, the job is canceled by the scheduler. For this a SIGTERM signal is sent to the job.
This single is captured by the startVM script and the VM is deleted. The same procedure is
triggered if the job is canceled by the user.

2.2. Testbed Setup
The described hybrid HPC cluster is developed and tested as testbed cluster with 1248 Cores
at the computing center at the University of Freiburg. The final cluster, named bwForCluster,
with 15000 cores will be installed in spring 2016.

1 Describes a predefined set of resources of CPU cores, RAM and Storage.

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012012 doi:10.1088/1742-6596/762/1/012012

4



To test the system concept, tests were performed over many weeks. The following section
describes the setup and discusses first results.

3. Integration of an HPC Cloud into HEP Workflows
In this section we switch from the provider perspective to the user perspective. The access
to the new cloud-based resources should be seamless and hassle-free for HEP users so that no
adaptations of the existing workflows are required. Additionally, it should be possible to request
resources on-demand in a dynamic manner. To achieve this, a flexible batch system as well as
a central cloud manager are necessary.

3.1. A Flexible Batch System: HTCondor
HTCondor is a modular open-source workload management system using a client-server
architecture [2]. Two important features make it the batch system of choice for the dynamic
integration of cloud resources: It easily handles the addition and removal of worker nodes in the
computing pool and it enables the access to resources in a private network or behind a firewall.
Both are typical scenarios when using cloud resources for virtualized worker nodes.

3.2. A Cloud Meta-Scheduler: ROCED
A central component is required which dynamically manages virtual machines depending on
the demand for computing resources. For this purpose, the cloud meta-scheduler ROCED
(Reponsive On-demand Cloud Enabled Deployment) has been developed at the EKP since
2010 [3]. ROCED is written in a modular structure, the interfaces to batch systems and cloud
sites are implemented as modules. This makes ROCED independent of a specific user group
or workflow. For the described use case, the HTCondor and a special HPC-cloud module were
implemented. The ROCED source code is available on GitHub [4].

3.3. Virtual Machine Management Challenges
Encapsulating VMs in user jobs increases the complexity of managing these machines. The
underlying resources are shared with other communities, which means that a VM request might
not get processed immediately when the cluster is under heavy load. In addition, the run time
of VMs is limited to the maximum wall time allowed for user jobs on the cluster, which is 4
days. As a result, static booking of VMs for several weeks is not possible. These conditions
needed to be taken into account when provisioning resources.

3.4. Integration of a Remote HPC Cloud
The following list describes the interaction of all components, illustrated in Figure 3:

(i) HEP user submits computing job to HTCondor, specifying a requirement to send the job
to a cloud resource.

(ii) ROCED continuously monitors the demand for computing resources.

(iii) If required, a batch job containing a VM request (presently 4 vCPUs, 8 GB memory, but
flexible) is sent to the job scheduler of the bwForCluster.

(iv) The startVM script is scheduled on the cluster and requests an OpenStack-based VM on
the allocated worker node.

(v) After booting, the VM integrates in the physics institute’s HTCondor batch system and
acts as an additional worker node.

(vi) HEP jobs get scheduled on this virtualized HEP worker node. The VM can be reused for
multiple user jobs, it shuts down when it is idle for more than 5 minutes. In addition, the
job slots are set to drain mode when the underlying batch job is close to the wall time limit.

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012012 doi:10.1088/1742-6596/762/1/012012

5



Institute of Physics

HEP Storage

ROCED

GridKa/DESY

HTCondor
Batch System

Moab Batch System
+ StartVM script

Job Flow

Data Flow

Flexible
Resource

Management

bwForCluster ENM

101
011

VM

VMVM

Karlsruhe Freiburg

VM

SRM, XRootD, ..

1. 2.

3.

4.

5.

6.

7.

Figure 3. Interplay of tools and technologies for accessing cloud resources at the bwForCluster
ENM. Accessing virtualized HEP worker nodes is completely transparent to the end user. No
adaptations to the existing workflows of job submission are required.

(vii) Data can be read from and written to any HEP storage via common HEP protocols such
as XRootD [5] and SRM [6].

3.5. Building the Virtual Machine Image
The virtual machine disk image containing the HEP experiment software stack is created in an
automated manner. This is done by using the OZ toolkit [7] to install the SLC 6.7 operating
system [8], as well as CernVM-FS [9] to access Grid UI and CMS software and the HTCondor
client to integrate the VM at boot-time. Additional scripts for monitoring, auto-shutdown and
auto-drain were implemented. The templates for the images can easily be shared between various
cloud sites to ensure the exact same software environment on each site.

Figure 4. Allocation of virtualized HEP worker nodes at the bwForCluster. Up to 640 CPU
cores were used. The discontinuous behavior originates from the many different HEP workflows
and submission scenarios. For example testing the workflow with a few jobs and then submitting
the whole analysis later or increasing the size of a Monte-Carlo simulated sample by adding more
computing jobs after a first batch is finished.

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012012 doi:10.1088/1742-6596/762/1/012012

6



4. Stability and Long-Term Evaluation
The described setup has been successfully in production use for over 5 months: in total 412 000 h
of CPU time have been used. Various kinds of HEP workflows such as Monte-Carlo event
generation and detector simulation and skimming of datasets were processed. The complete
usage overview is shown in Figure 4. The discontinuous usage of resources is typical for HEP
users and is one of the reasons why sharing computing power between multiple communities to
buffer peak loads is necessary.

5. Conclusion
The hybrid approach presented in this paper combines the advantages of classical HPC data
centers, namely complete software environment and batch system, with the flexibility of
virtualization to allow groups of scientists, such as HEP users, to deploy a software setup tailored
to their needs. The dynamic nature of integration of such a hybrid center into HEP workflows
guarantees that only the required resources are booked and freed for other user groups in times
of low demand. The booking of virtual machines on a shared cluster is not limited to the used
Moab or OpenStack system and can also be applied to other clusters using different software
setups.

[1] OpenStack website https://www.openstack.org (25/02/2016)
[2] HTCondor website http://research.cs.wisc.edu/htcondor (17/02/2016)
[3] Hauth T, Quast G, Kunze M, Bge V, Scheurer A and Baun C 2011 Journal of Physics: Conference Series

331 062034 URL http://stacks.iop.org/1742-6596/331/i=6/a=062034

[4] Erli G, Fleig G, Hauth T and Riedel S Roced cloud meta-scheduler project website
https://github.com/roced-scheduler/ROCED (17/02/2016)

[5] XRootD website http://xrootd.org (28/02/2016)
[6] SRM website https://sdm.lbl.gov/srm-wg/index.html (28/02/2016)
[7] OZ website https://github.com/clalancette/oz (17/02/2016)
[8] ScientificLinux Cern website https://linux.web.cern.ch/linux/ (25/02/2016)
[9] CVMFS website http://cernvm.cern.ch/portal/filesystem (25/02/2016)

ACAT2016 IOP Publishing
Journal of Physics: Conference Series 762 (2016) 012012 doi:10.1088/1742-6596/762/1/012012

7




