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Abstract. From a series of zonal mean global stratospheric
tracer measurements sampled in altitude vs. latitude, circu-
lation and mixing patterns are inferred by the inverse solu-
tion of the continuity equation. As a first step, the continuity
equation is written as a tendency equation, which is numeri-
cally integrated over time to predict a later atmospheric state,
i.e., mixing ratio and air density. The integration is formally
performed by the multiplication of the initially measured at-
mospheric state vector by a linear prediction operator. Fur-
ther, the derivative of the predicted atmospheric state with
respect to the wind vector components and mixing coeffi-
cients is used to find the most likely wind vector components
and mixing coefficients which minimize the residual between
the predicted atmospheric state and the later measurement
of the atmospheric state. Unless multiple tracers are used,
this inversion problem is under-determined, and dispersive
behavior of the prediction further destabilizes the inversion.
Both these problems are addressed by regularization. For this
purpose, a first-order smoothness constraint has been chosen.
The usefulness of this method is demonstrated by application
to various tracer measurements recorded with the Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS).
This method aims at a diagnosis of the Brewer–Dobson cir-
culation without involving the concept of the mean age of
stratospheric air, and related problems like the stratospheric
tape recorder, or intrusions of mesospheric air into the strato-
sphere.

1 Introduction

In the context of climate change, possible changes in the in-
tensity of the Brewer–Dobson circulation have become an
important research topic. Climate models predict an inten-
sification of the Brewer–Dobson circulation (Butchart et al.,
2006). Engel et al. (2009), however, found a weakly signifi-
cant slow increase in the mean age of stratospheric air. The
latter is defined as the mean time lag between the date of
the transition of tropospheric air into the stratosphere and the
date when the mixing ratio of a monotonically growing tracer
was measured in the air volume under investigation, and its
increase suggests a deceleration of the Brewer–Dobson cir-
culation. These measurements have been challenged as not
being representative (Garcia et al., 2011), and global mean
age of air measurements by Stiller et al. (2012) suggest that
the true picture is not that one-dimensional. Instead, strato-
spheric age trends vary with altitude and with latitude. The
determination of the age of air and its use as a diagnostic
of the intensity of the Brewer–Dobson circulation, however,
has its own limitations. First, due to mixing processes, the
age of a stratospheric air volume is not unique but character-
ized by an age spectrum, which has to be considered since
the tropospheric growth of SF6 mixing ratios is not strictly
linear; some ad hoc assumptions on this spectrum have to be
made (Waugh and Hall, 2002). These include the adequacy
of the Wald (inverse Gaussian) function for the representa-
tion of the age spectrum and the choice of its width param-
eter. Second, the most suited age tracer, SF6, which has sig-
nificant and monotonic growth rates in the troposphere, is
not fully inert: it has a mesospheric sink (Hall and Waugh,
1998; Reddmann et al., 2001) and introduces some age un-
certainty when mesospheric air subsides into the stratosphere
in the polar winter vortex (Stiller et al., 2008). Third, the de-
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termination of the mean age relies upon a reference air mass
where the age, by definition, is 0. When the age of air concept
was introduced, the reference was simply the troposphere,
which is well mixed and thus avoids any related complica-
tion (Solomon, 1990; Schmidt and Khedim, 1991). Since the
age of air has become a model diagnostic, parts of the com-
munity have established the stratospheric entry point as a ref-
erence (Hall and Plumb, 1994), which makes a difference
due to the slow ascent of air through the tropical tropopause
layer (Fueglistaler et al., 2009). For model validation, how-
ever, this redefined age of air is of limited use because no
long measured time series of tracer mixing ratios are avail-
able there.

Facing these difficulties, it is desirable to infer the atmo-
spheric circulation directly from tracer measurements, with-
out going back to the age of air concept. Multiple approaches
have been developed to infer wind fields from measured at-
mospheric state variables. Sequential data assimilation and,
in its optimal form, the extended Kalman filter approach
(e.g., Ghil and Malanotte-Rizzoli, 1991; Ghil, 1997), calcu-
lates the optimal average of the forecasted meteorological
variables for the time of the observation and the observed
meteorological variables themselves and uses this average to
initialize the next forecast step. The wind field is calculated
by a dynamical model. This method involves the generalized
inversion of the observation operator where the forecast is
used as a constraint. In contrast, so-called1 variational data
assimilation minimizes the residual between the forecasted
and the measured atmospheric state variables by optimally
adjusting the initialization of the forecast via inversion of
an adjoint forecast model, constrained by some background
state (Thompson, 1969). Both approaches rely on dynami-
cal models2 and are suited to infer the most probable atmo-
spheric state variables rather than the wind field, which is a
by-product of the assimilation. The wind field or atmospheric
circulation can also be inferred directly by kinematic meth-
ods from tracer measurements. Such methods rely solely on
the continuity equation, do not involve a dynamic model, and
thus do not depend on any ad hoc parameterization of effects
which are either not resolved by the discrete model, com-
putationally too expensive for explicit modeling, or simply
not well understood. While this work is targeted primarily at
an assessment of the Brewer–Dobson circulation, its applica-
bility is much wider and includes stratospheric–tropospheric
exchange, the mesospheric overturning circulation, and other
areas. Early approaches to infer the circulation from tracer
measurements include Holton and Choi (1988) as well as
Salby and Juckes (1994) who used approaches which share
several ideas with ours. The direct inversion of wind speeds

1The term “so-called” is used here because it is challenged that
this method is really variational in the context of discrete variables
(Wunsch, 1996, p. 368).

2This statement refers to meteorological data assimilation.
Chemical data assimilation uses chemistry transport models.

from tracer measurements in a volcano plume has, e.g., been
suggested by Krueger et al. (2013), however without consid-
eration of mixing. The continuity equation including diffu-
sion terms has been exploited by Wofsy et al. (1994) for the
assessment of diffusion of stratospheric aircraft exhaust.

In this paper we present a method to infer two-dimensional
(latitude–altitude) circulation and mixing coefficients from
subsequent measurements of inert tracers. The application of
this method, i.e., the inference of the Brewer–Dobson cir-
culation from global SF6 distributions (Stiller et al., 2008,
2012) measured with the Michelson Interferometer for Pas-
sive Atmospheric Sounding (MIPAS), is presented in a com-
panion paper. In order to avoid the reader not seeing the for-
est for the trees, we give a short overview of our method in
Sect. 2. The prediction of pressure and tracer mixing ratio
fields on the basis of the continuity equation and related error
estimation is described in Sect. 3. The estimation of circula-
tion and mixing coefficients by the inversion of the continuity
equation is presented in Sect. 4. In Sect. 5, the applicability
of the method and the need for further refinements is dis-
cussed critically. The benefits of the method are discussed in
Sect. 6. The paper concludes with recommendations on how
these results should be used and with an outlook for future
work (Sect. 7). Changes in the Brewer–Dobson circulation
during 2002–2012, i.e., the MIPAS mission, are currently in-
vestigated by means of this method and will be published in
a subsequent paper.

2 General concept

Knowing the initial state of the atmosphere in terms of mix-
ing ratio and air density distributions, wind speed, and mix-
ing coefficients at each grid point, a future atmospheric state
can be predicted with respect to the distribution of any in-
ert tracer. This procedure we call the forward problem. If
no ideal tracers are available, source and sink terms of re-
lated species have to be included in the forward model. The
goal of this work is to invert the forward model in order
to infer the circulation and mixing coefficients from tracer
measurements by the minimization of the residual between
the predicted and measured atmospheric state. This approach
is complementary to free-running climate models because it
makes no assumptions about atmospheric dynamics except
for the validity of the continuity equation. It is further con-
sidered more robust than age-of-air analysis (Stiller et al.,
2012) because it does not depend on a reference point where
the age is assumed 0, nor does it require knowledge of the
history of an air parcel.

Our concept involves the following operations. First,
a general solution of the forward problem is formulated
(Sect. 3). The forward problem is the solution of the predic-
tion equation as a function of the initial atmospheric state for
given winds and mixing coefficients. For our chosen solver,
which involves the MacCormack (1969) integration scheme

Atmos. Chem. Phys., 16, 14563–14584, 2016 www.atmos-chem-phys.net/16/14563/2016/



T. von Clarmann and U. Grabowski: Circulation and mixing from tracer measurements 14565

for the solution of the transport problem (Eqs. 5–10), the rel-
evant dependencies of the final state on the initial state are
reported in Sect. 3.2 (Eqs. 15–26). The formulation in ma-
trix notation (Eqs. 27–28) allows the easy treatment of mul-
tiple successive time steps (Eq. 29) and an easy estimation of
the prediction error via generalized Gaussian error estimation
(Eq. 30). As a next step, the dependence of the predicted state
on winds and mixing coefficients is estimated for a given ini-
tial state. This is achieved by the differentiation of the so-
lution of the prediction equation with respect to winds and
mixing coefficients (Eqs. 34–76). These partial derivatives
form the Jacobian matrix of the problem, with which the es-
timation of winds and mixing coefficients can be reduced to
a constrained least squares optimization problem where the
inversely variance-weighted residual between the predicted
atmospheric state and the respective measured atmospheric
state is minimized. The latter step involves the generalized
inverse of the Jacobian matrix (Eqs. 78–90).

3 The forward problem

The forward model reads the measured atmospheric state at
time t and predicts the atmospheric state (number density of
air, c, and volume mixing ratios, vmr) at time t+1t for given
wind vectors and mixing coefficients representing the time
interval [t; t +1t] by solving the continuity equation. The
continuity equation allows us to calculate the local tenden-
cies of the number densities and volume mixing ratios. These
local tendencies ∂ρ

∂t
and ∂vmr

∂t
are then integrated over time to

give the new number densities and mixing ratios.

3.1 The continuity equation

The local change in number density ρ of air is in spherical co-
ordinates (for all auxiliary calculations, see Supplement 1):

∂ρ

∂t
=−1

r

∂ρv

∂φ
+ ρv
r

tan(φ)− ∂ρw
∂z
− 2ρw

r
(1)

− 1
r cos(φ)

∂ρu

∂λ
,

where t is time, λ is longitude, φ is latitude, z is alti-
tude above surface, r = rE+ z, rE is the radius of Earth,
u= (rE+ z)cosφdλ/dt , v= (rE+ z)dφ/dt , and w = dz/dt .
Here the shallowness approximation (Hinkelmann, 1951;
Phillips, 1966, quoted after Kasahara, 1977), which simpli-
fies the equations using the assumption that z is much smaller
than rE and which is, often implicitly, used in the usual text-
books on atmospheric sciences (e.g., Brasseur and Solomon,
2005, their Eq. 3.46a), is intentionally not used for reasons
which will become clear in Sect. 3.2.

The local change in the volume mixing ratio of gas g can
be calculated from known velocities and mixing coefficients
as well as source/sink terms as

∂vmrg
∂t
= Sg
ρ
− u

r cosφ
∂vmrg
∂λ
− v
r

∂vmrg
∂φ

(2)

−w∂vmrg
∂z
+ 1
r2

∂

∂λ

[
Kλ

cos2φ

∂vmrg
∂λ

]
+ 1
r2 cosφ

∂

∂φ

[
Kφ cosφ

∂vmrg
∂φ

]
+ 1
r2
∂

∂z

[
r2Kz

∂vmrg
∂z

]
,

where vmrg is the volume mixing ratio of species g,Kλ is the
zonal diffusion coefficient,Kφ is the meridional diffusion co-
efficient,Kz is the vertical diffusion coefficient, and Sg is the
production/loss rate of species g in terms of number density
over time (e.g., Brasseur and Solomon, 2005, Eq. 3.46b, and
Jones et al., 2007).

Since we are only interested in a two-dimensional rep-
resentation of the atmosphere in altitude and latitude coor-
dinates, zonal advection and mixing terms are ignored in
Eqs. (1)–(2). In this two-dimensional representation, all at-
mospheric state variables represent zonal mean values. The
kinematic variables, viz. the velocities and mixing coeffi-
cients, have to be reinterpreted because they do not represent
merely the zonally averaged velocities and mixing coeffi-
cients. Instead, they include also eddy transport and diffusion
terms, and their interpretation is less unique than one might
hope because it depends on the definition of the kinematic
variables and the approximations used (see Appendix A for
details of the interpretation of the kinematic quantities). The
local change in number density ρ of air in a two-dimensional
atmosphere thus is

∂ρ

∂t
=−1

r

∂ρv

∂φ
+ ρv
r

tan(φ)− ∂ρw
∂z
− 2ρw

r
, (3)

and the local change in vmrg is calculated as

∂vmrg
∂t
= Sg
ρ
− v
r

∂vmrg
∂φ
−w∂vmrg

∂z
(4)

+ 1
r2 cosφ

∂

∂φ

[
Kφ cosφ

∂vmrg
∂φ

]
+ 1
r2
∂

∂z

[
r2Kz

∂vmrg
∂z

]
.

3.2 Integration of tendencies

The integration of Eqs. (3)–(4) is performed numerically
for time steps of 1tp. For practical reasons, processes (ad-
vection, diffusion, sinks) are split; i.e., the tendencies due
to these three classes of processes are integrated indepen-
dently. The time steps 1tp used for the integration are cho-
sen to be smaller than the time difference 1t between two
measurements, in order not to clash with the Courant limit
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(Courant et al., 1952). In the following, we call 1tp a “mi-
cro time increment” and 1t “macro time increment”. The
atmospheric state after a macro time increment is predicted
by successive prediction over the micro time increment. In
the following, index i designates time t , i+ 1 designates the
time t +1tp, etc., and I designates the time after the final
micro time increment, i.e., the next macro time increment.

For the discrete integration of the advection part of the ten-
dencies, the MacCormack (1969) method is used in a gener-
alized multidimensional version similar to the one described
by (Perrin and Hu, 2006). This is a predictor–corrector
method. For a general state variable c(t,x,y)= ci(x,y) at
location (x,y), and time t with e(c) and f (c) being func-
tions of c, an equation of the form

∂c

∂t
+ ∂e(c)

∂x
+ ∂f (c)

∂y
= 0 (5)

is solved by preliminary predictions of the state variable as a
first step: x is

c∗i+1(x,y)= ci(x,y) (6)

− 1tp
1x

(ei(x+1x,y)− ei(x,y))

− 1tp
1y

(fi(x,y+1y)− fi(x,y)) .

These are then used in a subsequent correction step which
gives the final prediction

ci+1(x,y)= 1
2

[
ci(x,y)+ c∗i+1(x,y) (7)

− 1tp
1x

(
e(c∗i+1,x,y)− e(c∗i+1,x−1x,y)

)
− 1tp
1y

(
f (c∗i+1,x,y)− f (c∗i+1,x,y−1y)

)]
.

Application to the continuity equation in spherical coordi-
nates requires the reformulation of Eq. (3) (see, e.g., Chang
and St.-Maurice, 1991):

∂r2ρ cos(φ)
∂t

=−∂rρ v cos(φ)
∂φ

− ∂r
2ρ w cos(φ)

∂z
. (8)

The predictor of r2ρ cos(φ) is then calculated as

[r2ρi+1(φ,z))cos(φ)]∗ = r2ρi(φ,z)cos(φ) (9)

− 1tp
1φ

(rρi(φ+1φ,z)cos(φ+1φ)v(φ+1φ,z)
−rρi(φ,z)cos(φ)v(φ,z))

− 1tp
1z

(
(r +1z)2ρi(φ,z+1z) wφ,z+1z cos(φ)

− r2ρi(φ,z) wφ,z cos(φ)
)
,

and the corrected prediction for ρ then gives

ρi+1(φ,z)= 1
2r2 cos(φ)

×
[
ρi(φ,z)r

2 cos(φ) (10)

+
[
ρi+1(φ,z)r

2 cos(φ)
]∗

− 1tp
1φ

[[
ρi+1(φ,z)rv(φ,z)cos(φ)

]∗
− [ρi+1(φ−1φ,z)rv(φ−1φ,z)cos(φ−1φ)]∗]
− 1tp
1z

[[
ρi+1(φ,z)r

2w(φ,z)cos(φ)
]∗

−
[
ρi+1(φ,z−1z)(r −1z)2w(φ,z−1z)cos(φ)

]∗]]
.

For the local change in mixing ratio, operator splitting is
performed. The horizontal and vertical advective parts of
the continuity equation for mixing ratios in two dimensions
are transformed into the following MacCormack-integrable
forms:[
∂ r vmr

v

∂t

]
adv.horiz

= ∂vmrg
∂φ

(11)

and[
∂

vmrg
w

∂t

]
adv.vert

= ∂vmrg
∂z

, (12)

respectively.
For the diffusive component we use simple Eulerian inte-

gration:[
vmrg;i+1(φ,z)− vmrg;i(φ,z)

]
diff (13)

= 1tp

2r2(1φ)2 cos(φ)

·
[(
Kφ(φ,z)+Kφ(φ+1φ)

)
cos(φ+ 1φ

2
)

(vmrg;i(φ+1φ,z)− vmrg;i(φ,z))

− (Kφ(φ,z)+Kφ(φ−1φ))cos(φ− 1φ
2
)

· (vmrg;i(φ,z)− vmrg;i(φ−1φ,z))
]

+ 1tp

2r2(1z)2

[
(r + 1z

2
)2

· (Kz(φ,z)+Kz(φ,z+1z))
· (vmrg;i(φ,z+1z)− vmrg;i(φ,z))

−
(
r − 1z

2

)2

· (Kz(φ,z)+Kz(φ,z−1z))

· (vmrg;i(φ,z)− vmrg;i(φ,z−1z))
]
.
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Sinks of the species considered here are treated as uni-
molecular processes (see, e.g., Brasseur and Solomon, 2005,
their Eq. 2.27d) and integrated as

ρg;i+1 = ρg;ie−kg1tp , (14)

where kg is the sink strength of the gas g.
The abundance of gas g after time step 1tp is then sim-

ply the sum of the increments due to horizontal and vertical
advection, diffusion, and chemical losses.

Admittedly, there exist more elaborate advection schemes
than the one used here. However, the need to provide the Ja-
cobians needed in Sects. 3.3–4 justifies a reasonable amount
of simplicity. Further, numerical errors cannot easily accu-
mulate because after each time step 1t , the system is re-
initialized with measured data.

Since we do not have a closed system but have mass ex-
change and mixing with the atmosphere below the lowermost
model altitude and above the uppermost altitude, the atmo-
spheric state is not predicted for the lowermost and upper-
most altitudes. Prediction is only possible from the second
altitude from the bottom up to the altitude below the upper-
most one. Henceforth, we call this restricted altitude range
the “nominal altitude range”. Instead, the atmospheric state
of the uppermost and lowermost altitude is estimated by the
linear interpolation of measured values at times t and t +1t
and used as a boundary condition for prediction within the
nominal altitude range. Alternatively, derivatives at the bor-
der can be approximated by asymmetric difference quotients.

We use the following convention. Atmospheric state vari-
ables are sampled on a regular latitude–altitude grid. For
some grid points, no valid measurements may be available
but we assume that, for each state variable, we have a con-
tiguous subset of this grid with valid measurements. For state
variable g, we have a total of Jg valid measurements within
the “nominal altitude range”, each denoted by index j . A
state variable in this context is either air density ρ (g = 0)
or the mixing ratio of one species vmrg . The nominal alti-
tude range at latitude φ is the altitude range where, for each
grid point, a valid measurement is available at the grid point
itself and for its northern, southern, upper, lower, and diag-
onal neighbors. The use of asymmetric difference quotients
can be emulated by extrapolation, generating artificial border
values, which guarantee that each grid point within the nomi-
nal altitude and latitude range has all required neighbors. The
availability of neighbor values is necessary to allow the cal-
culation of numerical derivatives of the state variable with
respect to latitude and altitude. We therefore have Kg border
elements of each quantity g, each denoted by index k. This
implies, for each state variable g, a total of Lg = Jg +Kg
grid points with indices l.

3.3 Integration in operator notation

For further steps (error propagation and the solution of the
inverse problem), it is convenient to rewrite the prediction

of air density and mixing ratios in matrix notation. For this
purpose, we differentiate the predicted air densities (Eq. 10)
and mixing ratios (Eqs. 11–13) with respect to air density
and mixing ratios of the gases under assessment at all rel-
evant locations. The sensitivities of the densities of the first
predictive step with respect to the initial densities at the same
latitude and altitude are

∂ρi+1(φ,z)

∂ρi(φ,z)
(15)

= 1
2

[
2− 1tp

1φ

[
v(φ,z)

r

(
1tp

1φ
· v(φ,z)

r
+ 1tp
1z

w(φ,z)

)
+ 1tp
1φ

v(φ−1φ,z)v(φ,z)
r2

]
− 1tp
1z

[
w(φ,z)

(
1tp

1φ
· v(φ,z)

r
+ 1tp
1z

w(φ,z)

)
+ 1tp
1z

w(φ,z−1z)w(φ,z)
]]
.

We further differentiate predicted air densities with respect
to air densities at the adjacent southern latitude but the same
altitude.

∂ρi+1(φ,z)

∂ρi(φ−1φ,z) =
1
2

[
1tp

1φ
· v(φ−1φ,z)

r
· cos(φ−1φ)

cos(φ)
(16)(

1+ 1tp
1φ
· v(φ−1φ,z)

r
+ 1tp
1z

w(φ−1φ,z)
)]

The derivative of the predicted air densities with respect to
air densities at the adjacent northern latitude but the same
altitude is

∂ρi+1(φ,z)

∂ρi(φ+1φ,z) =
1
2

[
1tp

1φ
· v(φ+1φ,z)

r
· cos(φ+1φ)

cos(φ)
(17)(

− 1+ 1tp
1φ
· v(φ,z)

r
+ 1tp
1z

w(φ,z)

)]
.

As a next step we differentiate predicted air densities with
respect to the initial air densities at the next higher altitude
but the same latitude.

∂ρi+1(φ,z)

∂ρi(φ,z+1z) =
1
2

[
1tp

1z
· (r +1z)

2

r2 w(φ,z+1z) (18)

·
(
− 1+ 1tp

1φ
· v(φ,z)

r
+ 1t
1z
w(φ,z)

)]
.

The derivative of the predicted air densities with respect to
the initial air densities at the next lower altitude but the same
latitude is

∂ρi+1(φ,z)

∂ρi(φ,z−1z) =
1
2

[
1tp

1z
w(φ,z−1z)(r −1z)

2

r2 (19)

·
(

1+ 1tp
1φ

v(φ,z−1z)
r −1z + 1tp

1z
w(φ,z−1z)

)]
.
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Finally we differentiate the predicted air densities with re-
spect to the initial air densities at the adjacent southern lati-
tude and higher altitude,

∂ρi+1(φ,z)

∂ρi(φ−1φ,z+1z) (20)

=−1
2

[
v(φ−1φ,z)

r
· 1tp
1φ
· 1tp
1z
· (r +1z)

2

r2

· cos(φ−1φ)
cos(φ)

w(φ−1φ,z+1z)
]
,

and vice versa

∂ρi+1(φ,z)

∂ρi(φ+1φ,z−1z) (21)

=−1
2

[
w(φ,z−1z)1tp

1z
· 1tp
1φ
· (r −1z)

2

r2

· cos(φ+1φ)
cos(φ)

· v(φ+1φ,z−1z)
r −1z

]
,

where i is the index of the time increment and where φ±1φ
and z±1z refer to the adjacent model grid points in latitude
and altitude, respectively.

For mixing ratios, the respective derivatives are

∂vmri+1(φ,z)

∂vmri(φ,z)
(22)

= 1−
(
1tp

1φ

)2

· v(φ,z)
r2 · 1

2

[
v(φ,z)+ v(φ−1φ,z)]

−
(
1tp

1z

)2

·w(φ,z) · 1
2

[
w(φ,z)+w(φ,z−1z)]

− 1tp

2r2(1φ)2 cos(φ)

[(
Kφ(φ,z)+Kφ(φ+1φ,z)

)
· cos

(
φ+ 1φ

2

)
+
(
Kφ(φ,z)+Kφ(φ−1φ,z)

)
cos

(
φ− 1φ

2

)]
− 1tp

2r2(1z)2

[(
r + 1z

2

)2(
Kz(φ,z)+Kz(φ,z+1z)

)
+
(
r − 1z

2

)2(
Kz(φ,z)+Kz(φ,z−1z)

)]
−Loss(month,φ,z)1tp;
∂vmri+1(φ,z)

∂vmri(φ+1φ,z) (23)

=−1tp
1φ
· v(φ,z)

2r

(
1− 1tp

1φ
· v(φ,z)

r

)
+ 1tp

2r2(1φ)2 cos(φ)

·
(
Kφ(φ,z)+Kφ(φ+1φ,z)

)
cos

(
φ+ 1φ

2

)
;

∂vmri+1(φ,z)

∂vmri(φ−1φ,z) (24)

= v(φ,z)
2r
· 1tp
1φ

(
1+ 1tp

1φ
· v(φ−1φ,z)

r

)
+ 1tp

2r2(1φ)2 cos(φ)

·
(
Kφ(φ,z)+Kφ(φ−1φ,z)

)
cos

(
φ− 1φ

2

)
;

∂vmri+1(φ,z)

∂vmri(φ,z+1z) (25)

=−1
2
·w(φ,z) · 1tp

1z

(
1− 1tp

1z
w(φ,z)

)
+ 1tp

2r2(1z)2
(r + 1z

2
)2
(
Kz(φ,z)+Kz(φ,z+1z)

)
;

∂vmri+1(φ,z)

∂vmri(φ,z−1z) (26)

= 1tp
1z
· 1

2
·w(φ,z)

(
1+w(φ,z−1z)1tp

1z

)
+ 1tp

2r2(1z)2

(
r − 1z

2

)2(
Kz(φ,z)+Kz(φ,z−1z)

)
,

where Loss(month,φ,z) is the relative loss rate in the re-
spective month at latitude φ and altitude z. These deriva-
tives are simplifications in the sense that they do not con-
sider the full chemical Jacobian but assume instead that the
source strength depends on no other concentration than the
actual concentration of the same species. For the typical
long-lived tropospheric source gases considered here, like
SF6 or CFCs, this assumption is appropriate. Pre-tabulated
loss rates are used which have been calculated by locally in-
tegrating loss rates over an entire month at a time resolu-
tion adequate to resolve the diurnal cycle. From the monthly
losses, the Loss(month,φ,z) values, which are the contribu-
tion of losses to the partial derivatives of the local mixing
ratios with respect to the initial local mixing ratios, are cal-
culated as the secant of the local decay curve.

With these expressions, the prediction of air density and
volume mixing ratio can be rewritten in matrix notation for
a single micro time increment. This notation simplifies the
estimation of the uncertainties of the predicted atmospheric
state and the inversion of the prediction equation. In matrix
notation, the prediction reads

ρi+1 =
 ρI ;k=1,K0

ρi+1;k=1,K0

ρi+1;j=K0+1,L0

= Dρ;iρi

=
 IK 0 0

Wi 0
0 Dρ,nom

 ρI ;k=1,K0

ρi;k=1,K0

ρi;j=K0+1,L0

 ,

(27)
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where

Dρ;i is the (L0+K0)×(L0+K0) Jacobian matrix of air
density for time increment i, i.e., the sensitivities of the
prediction with respect to the initial state, ∂ci+1,m

∂ci,n
(here

m and n run over the model grid points);

IK is K0×K0 identity matrix; 0 are zero sub-matrices
of the required dimensions;

Wi is a K0× 2K0-dimensional interpolation matrix;

Dρ,nom is a J0×L0 Jacobian containing the partial
derivatives ∂ρi+1;j/∂ρi;l , applied to the nominal alti-
tude range;

ρI ;k=1,K0
is the K0-dimensional vector of air densities

in the border region after the final time step, i.e., for the
time of the next measurement;

ρi;k=1,K0
is the K0-dimensional vector of air densities

in the border region at the current time step as resulting
from interpolation in time; and

ρi;j=K0+1,L0
is the J0-dimensional vector of air densi-

ties in the nominal region at the current time step as re-
sulting from integration according to the MacCormack
scheme as described above.

The operation of these sub-matrices is illustrated in the up-
permost three (violet, green, blue) blocks of Fig. 1.

Since the source term depends on air density, the integra-
tion in matrix notation for vmr requires simultaneous treat-
ment of vmr and air density, and we get the following, using
notation accordant with air density:

(
ρi+1

vmr i+1

)
=



ρI ;k=1,K0

ρi+1;k=1,K0

ρi+1;j=K0+1,L0

vmrg;I ;k=1,Kg

vmrg;i+1;k=1,Kg

vmrg;i+1;j=Kg+1,Lg


= Di

(
ρi

vmrg;i

)

=


Dρ;i 0 0 0

0 IK 0 0
0 Wi 0

Dg,nom




ρI,k=1,K0

ρi;k=1,K0

ρi;j=K0+1,L0

vmrg;I,k=1,Kg

vmrg;i,k=1,Kg

vmrg;i,j=Kg+1,Lg

 ,

(28)

where Di is the total Jacobian with respect to air densities
and all involved gas mixing ratios, and where g runs over all
gases. Note that

1. the Jacobian Di is time-dependent because it includes
sub-matrices controlling the interpolation between the
initial time and the end time. In the case of vmr, a further
time dependence is introduced by the time-dependent
source function.

2. the first “row” of the Jacobian matrix includes identity
IK because the prediction is not supposed to change the
measured ρI and vmrI at the end of the macro time
increment. This value is used to construct the bound-
ary condition. Row is here written in quotes because the
elements of this “row” are matrices in themselves. The
introduction of unity Jacobian elements is necessary be-
cause Eqs. (27)–(28) are autonomized, originally non-
autonomous systems of differential equations.

3. W is used to interpolate the boundary state between the
initial time of the micro time interval, t+(i−1)1tp, and
the time at the end of the time interval t+1t to give the
atmospheric state at the border region at time t + i1tp.

4. the Jacobian sub-matrices Dρ,nom and Dg,nom are used
to predict the atmospheric state in the nominal range
after one further micro time increment from the atmo-
spheric state at the current time and the boundary con-
dition. Its elements are described in Eqs. (15)–(21) and
(22)–(26). The part of Dg,nom which refers to the border
mixing ratios (vmrg;I,k=1,Kg ) is zero. The dimension of
Dg,nom is

∑
gJg × (L0+K0+∑g(Lg +Kg)).

5. no simple mapping mechanism between the field of at-
mospheric state variables sampled at latitudes and al-
titudes and the vectors ρ and vmrg is provided be-
cause the fields are irregular in the sense that the number
of relevant altitudes is latitude-dependent. Pointer vari-
ables have to be used instead.

The matrix structure is exemplified in Fig. 1. For the macro
time increment 1t , we get(

ρI
vmrI

)
=
(

1∏
i=I

Di

)(
ρ0
vmr0

)
. (29)

3.4 Prediction errors

Let S0 be the L×L covariance matrix describing the uncer-
tainties of all involved measurements ρ0 and vmr0, with di-
agonal elements s0;l,l = σ 2

0;l,l and L=∑gases
0 Lg . We assume

that these measurement errors in the state variables used for
the prediction are the only relevant error sources. With S0
and

∏1
i=IDi available, generalized Gaussian error propaga-

tion for ρI and vmrI can be easily formulated as

SI =
(

1∏
i=I

Di

)
S0

(
1∏
i=I

Di

)T

. (30)

Even if S0 is diagonal, i.e., the initial errors are assumed to be
uncorrelated, error propagation through the forward model
will generate non-zero error covariances in SI representing
the atmospheric state at time t+1t . SI will be needed in the
inversion of circulation and mixing coefficients described in
Sect. 4.
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Figure 1. Matrix structure of the right-hand part of Eq. (28). Colors indicate which matrix blocks operate on which part of the input vector.
An example with two gases is shown.

3.5 A note on finite-resolution measurements

The measurements used are not a perfect image of the
true atmospheric state but contain some prior information.
In the case of the data provided by the Institute of Me-
teorology and Climate Research (IMK), a priori profiles
are usually set to zero, and the constraint is built with a
Tikhonov-type first-order finite differences smoothing con-
straint (see von Clarmann et al., 2009). That means that, be-
sides the mapping of measurement and parameter errors, the
only distortion of the truth via the retrieval is reduced altitude
resolution; no other effect of the prior information is to be
considered. Usually, any comparison between modeled and
measured fields requires application of the averaging kernels
of the retrieval to the model data in order to account for the
smoothing by the constraint of the retrieval (assuming that
the model grid is much finer than the resolution of the re-
trieval).

In our case, the situation is different. The model is initial-
ized with measurements of reduced altitude resolution, and
the fields predicted by the model are then compared to mea-
surements of the same altitude resolution. It is fair to assume
that the model does not dramatically change the altitude res-
olution of the profiles, and thus comparable quantities are
compared when the residuals between predicted and mea-
sured atmospheric state are evaluated.

3.6 A note on numerical mixing

Let the initial mixing ratio field be homogeneous except one
point with delta-type excess mixing ratio. Assume further a
homogeneous velocity field and zero mixing coefficients. If
the velocity is such that the position of the excess mixing ra-
tio is displaced during1t by a distance which is not equal to
an integer multiple of the grid width, then the resulting dis-
tribution will no longer be a delta-type distribution but will
be smoothed. We refer to the widening of the delta peak as
numerical mixing. The MacCormack transport scheme is de-
signed to fight this diffusivity but some higher-order effects
may still survive. One might think that, during the inversion,
the widening is misinterpreted as mixing, leading to mixing
coefficients that are too large.

Again, in our case, the situation is different. The widening
does not accumulate over the1tp time steps because we first
calculate the operator

∏1
i=IDi , which is applied only once

to the initial field, which avoids the accumulation of numer-
ical mixing over time steps. Still one widening process as
described above can occur, when the forward model leads to
a position of the new peak which cannot be represented in
the grid chosen. However, since the gas distributions vmrg;I
at the end of time step 1t are sampled on the same grid, the
maximum in the real atmosphere would be widened in the
same way and there would be no residual the inversion would

Atmos. Chem. Phys., 16, 14563–14584, 2016 www.atmos-chem-phys.net/16/14563/2016/



T. von Clarmann and U. Grabowski: Circulation and mixing from tracer measurements 14571

try to get rid of by increasing the mixing coefficients. And
the next time step1t is initialized again with measured data,
which also excludes the accumulation of numerical mixing
effects.

These considerations aside, there are other numerical ar-
tifacts. These are related to the numerical evaluation of par-
tial derivatives of the state variables in our transport scheme
chosen. Particularly in the case of delta functions in the state
variable field, these cause side wiggles behind and smearing
in front of the transported structure. To keep these artifacts
small, it is necessary to set the spatial grid fine enough that
every structure is represented by multiple grid points.

4 The inverse problem

For convenience, we combine the variables of the initial at-
mospheric state and the predicted state at the end of the
macro time interval, respectively, into the vectors

x̃0 =
(

ρ0
vmr0

)
= (̃x0;1. . .̃x0;L)T (31)

and

x̃I =
(

ρI
vmrI

)
= (̃xI ;1. . .̃xI ;L)T. (32)

The related subsets of x̃0 and x̃I which contain only
state variables in the nominal altitude range but not those
in the border region are x0 = (x0;1. . .x0;J )T and xI =
(xI ;1. . .xI ;J )T, respectively. The reason why the distinction
between x̃ and x is made is that, contrary to the prediction
step, for the inversion vector elements related to the interpo-
lation of values in the border region are no longer needed.
Further, we combine the fields of meridional and vertical
wind components and mixing coefficients into the vector

q =


v

w

Kφ

Kz

 (33)

and assume constant velocities and mixing coefficients dur-
ing the macro time step. To infer circulation patterns and
mixing coefficients from the measurements of air densities
and mixing ratios, the Jacobian matrix F,

F= (f 1, . . .,fN
)= (fj,n)= (∂xI,j

∂qn

)
(34)

=
(
∂xI

∂q1
, . . .,

∂xI

∂qN

)
,

is needed, where N = 4J , where J =∑gases
0 Jg , because

there are four unknown quantities, vj , wj , Kφ;j , and Kz;j ,
at each grid point of the nominal region where these vari-
ables shall be inferred. The elements of F are calculated from

Eq. (28) by application of the product rule:

f̃ n =
I∑
i=1

[(
i+1∏
k=I

Dk

)(
∂Di
∂qn

)( 1∏
k=i−1

Dk

)
x̃0

]
, (35)

where the tilde symbol in f̃ n indicates that the vectors re-
sulting from Eq. (35) still include the border elements which
have to be discarded to obtain f n. The quantity f̃ nis more
efficiently computed using the following recursive scheme,
where f̃ l,i is the respective column of the Jacobian after mi-
cro time step i:

f̃ n,i = Dif n,i−1+
∂Di
∂qn

(
1∏

k=i−1
Dk

)
x̃0. (36)

With the argument of D specifying the column of the D
matrix such that Dc,i(φ,z) relates ρi+1(φ,z) to ρi(φ,z),
Dρ,i(φ±1φ,z) relates ρi+1(φ,z) to ρi(φ±1φ,z), and
Dρ,i(φ,z±1z) relates ρi+1(φ,z) to ρi(φ,z±1z), and for
vmr accordingly, the entries of Di relevant to v are

∂
∂ρi+1(φ,z)
∂ρi (φ,z)

∂v(φ,z)
=− 1tp

21φ
(37)

·
(
1tp

1φ
· 2v(φ,z)+ v(φ−1φ,z)

r2 + 2
1tp

1z
· w(φ,z)

r

)
,

∂
∂ρi+1(φ+1φ,z)
∂ρi (φ+1φ,z)
∂v(φ,z)

=−1
2
·
(
1tp

1φ

)2

· v(φ+1φ,z)
r2 , (38)

∂
∂ρi+1(φ+1φ,z)

∂ρi (φ,z)

∂v(φ,z)
= 1

2r
· 1tp
1φ
· cos(φ)

cos(φ+1φ) (39)

·
(

1+ 2
1tp

1φ
· v(φ,z)

r
+ 1tp
1z

w(φ,z)

)
,

∂
∂ρi+1(φ,z)
∂ρi (φ+1φ,z)
∂v(φ,z)

(40)

= 1
2
·
(
1tp

1φ

)2

· v(φ+1φ,z)
r2 · cos(φ+1φ)

cos(φ)
,

∂
∂ρi+1(φ−1φ,z)

∂ρi (φ,z)

∂v(φ,z)
= 1

2r
· 1tp
1φ
· cos(φ)

cos(φ−1φ) (41)

·
(
− 1+ 1tp

1φ
· v(φ−1φ,z)

r
+ 1tp
1z

w(φ−1φ,z)
)
,

∂
∂ρi+1(φ,z+1z)

∂ρi (φ,z)

∂v(φ,z)
(42)

= 1
2
· 1tp
1z
· 1tp
1φ
· r2

(r +1z)2
w(φ,z)

r
,
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∂
∂ρi+1(φ,z)
∂ρi (φ,z+1z)
∂v(φ,z)

(43)

= 1
2
· 1tp
1z
· 1tp
1φ
· (r +1z)

2

r3 w(φ,z+1z),

∂
∂ρi+1(φ+1φ,z)
∂ρi (φ,z+1z)
∂v(φ,z)

=−1
2
· 1tp
1φ
· 1tp
1z

(44)

· (r +1z)
2

r3 · cos(φ)
cos(φ+1φ)w(φ,z+1z),

∂
∂ρi+1(φ−1φ,z+1z)

∂ρi (φ,z)

∂v(φ,z)
=−1

2
· 1tp
1φ
· 1tp
1z

(45)

· r

(r +1z)2 ·
cos(φ)

cos(φ−1φ) ·w(φ−1φ,z),

∂
∂vmri+1(φ,z)
∂vmri (φ,z)

∂v(φ,z)
(46)

=−
(
1tp

1φ

)2

· 1
r2 ·

(
v(φ,z)+ v(φ−1φ,z)

2

)
,

∂
∂vmri+1(φ+1φ,z)
∂vmri (φ+1φ,z)
∂v(φ,z)

=−
(
1tp

1φ

)2

· v(φ+1φ,z)
2r2 , (47)

∂
∂vmri+1(φ,z)
∂vmri (φ−1φ,z)
∂v(φ,z)

(48)

= 1
2r
· 1tp
1φ
·
(

1+ 1tp
1φ
· v(φ−1φ,z)

r

)
,

∂
∂vmri+1(φ+1φ,z)

∂vmri (φ,z)

∂v(φ,z)
= 1

2r

(
1tp

1φ

)2
v(φ+1φ,z)

r
, (49)

∂
∂vmri+1(φ,z)
∂vmri (φ+1φ,z)
∂v(φ,z)

=−1tp
1φ
· 1
r

(
1
2
− 1tp
1φ
· v(φ,z)

r

)
. (50)

Entries not mentioned here are zero. Entries relevant tow are

∂
∂ρi+1(φ,z)
∂ρi (φ,z)

∂w(φ,z)
=−1tp

1φ
· 1tp
1z
· v(φ,z)

r
(51)

−
(
1tp

1z

)2

w(φ,z)− 1
2

(
1tp

1z

)2

w(φ,z−1z),

∂
∂ρi+1(φ,z+1z)
∂ρi (φ,z+1z)
∂w(φ,z)

=−1
2

(
1tp

1z

)2

w(φ,z+1z), (52)

∂
∂ρi+1(φ,z)
∂ρi (φ+1φ,z)
∂w(φ,z)

(53)

= 1
2
· 1tp
1φ
· 1tp
1z
· v(φ+1φ,z)

r
· cos(φ+1φ)

cos(φ)
,

∂
∂ρi+1(φ+1φ,z)
∂ρi (φ+1φ,z−1z)
∂w(φ,z)

(54)

= 1
2
· 1tp
1φ
· 1tp
1z
· v(φ,z)

r
· cos(φ)

cos(φ+1φ),

∂
∂ρi+1(φ,z+1z)

∂ρi (φ,z)

∂w(φ,z)
= 1

2
· 1tp
1z
· r2

(r +1z)2 (55)

·
(

1+ 1tp
1φ
· v(φ,z)

r
+ 2

1tp

1z
·w(φ,z)

)
,

∂
∂ρi+1(φ,z)
∂ρi (φ,z+1z)
∂w(φ,z)

(56)

= 1
2
·
(
1tp

1z

)2

· (r +1z)
2

r2 ·w(φ,z+1z),

∂
∂ρi+1(φ,z−1z)

∂ρi (φ,z)

∂w(φ,z)
= 1

2
· 1tp
1z
· r2

(r −1z)2 (57)

·
(
− 1+ 1tp

1φ
· v(φ,z−1z)

r −1z + 1tp
1z
·w(φ,z−1z)

)
,

∂
∂ρi+1(φ+1φ,z−1z)

∂ρi (φ,z)

∂w(φ,z)
=−1

2
· 1tp
1φ
· 1tp
1z

(58)

· r2

(r −1z)2 ·
cos(φ)

cos(φ+1φ)
v(φ,z−1z)
r −1z ,

∂
∂ρi+1(φ,z+1z)
∂ρi (φ+1φ,z)
∂w(φ)

=−1
2
· 1tp
1φ
· 1tp
1z

(59)

· r2

(r +1z)2 ·
cos(φ+1φ)

cos(φ)
· v(φ+1φ,z)

r
,

∂
∂vmri+1(φ,z)
∂vmri (φ,z)

∂w(φ,z)
(60)

=−
(
1tp

1z

)2

·
(
w(φ,z)+ w(φ,z−1z)

2

)
,

∂
∂vmri+1(φ,z+1z)
∂vmri (φ,z+1z)
∂w(φ,z)

=−
(
1tp

1z

)2

· w(φ,z+1z)
2

, (61)
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∂
∂vmri+1(φ,z)
∂vmri (φ,z−1z)
∂w(φ,z)

(62)

= 1
2
· 1tp
1z
·
(

1+w(φ,z−1z) · 1tp
1z

)
,

∂
∂vmri+1(φ,z+1z)

∂vmri (φ,z)

∂w(φ,z)
= 1

2
·
(
1tp

1z

)2

·w(φ,z+1z), (63)

∂
∂vmri+1(φ,z)
∂vmri (φ,z+1z)
∂w(φ,z)

(64)

=−1
2
· 1tp
1z
·
(

1− 2
(1tp)

(1z)
·w(φ,z)

)
.

Entries relevant to Kφ are

∂
∂vmri+1(φ,z)
∂vmri (φ,z)

∂Kφ(φ,z)
=− 1tp

(1φ)2
· 1

2r2 (65)

·
cos

(
φ+ 1φ

2

)
+ cos

(
φ− 1φ

2

)
cos(φ)

,

∂
∂vmri+1(φ∓1φ,z)
∂vmri (φ∓1φ,z)
∂Kφ(φ,z)

=− 1tp

(1φ)2
· 1

2r2 ·
cos

(
φ∓ 1φ

2

)
cos(φ∓1φ) , (66)

∂
∂vmri+1(φ,z)
∂vmri (φ−1φ,z)
∂Kφ(φ,z)

= 1
2r2 ·

1tp

(1φ)2
· cos(φ− 1φ

2 )

cos(φ)
, (67)

∂
∂vmri+1(φ,z)
∂vmri (φ+1φ,z)
∂Kφ(φ,z)

= 1
2r2 ·

1tp

(1φ)2
· cos(φ+ 1φ

2 )

cos(φ)
, (68)

∂
∂vmri+1(φ+1φ,z)

∂vmri (φ,z)

∂Kφ(φ,z)
= 1

2r2 ·
1tp

(1φ)2
· cos(φ+ 1φ

2 )

cos(φ+1φ), (69)

∂
∂vmri+1(φ−1φ,z)

∂vmri (φ,z)

∂Kφ(φ,z)
= 1

2r2 ·
1tp

(1φ)2
· cos(φ− 1φ

2 )

cos(φ−1φ). (70)

And finally, entries relevant to Kz are

∂
∂vmri+1(φ,z)
∂vmri (φ,z)

∂Kz(φ,z)
=− 1tp

(1z)2
·
(
r + 1z

2

)2+ (r − 1z
2

)2
2r2 , (71)

∂
∂vmri+1(φ,z∓1z)
∂vmri (φ,z∓1z)
∂Kz(φ,z)

=− 1tp

(1z)2
·
(
r ∓ 1z

2

)2
2(r ∓1z)2 , (72)

∂
∂vmri+1(φ,z+1z)

∂vmri (φ,z)

∂Kz(φ,z)
= 1

2
· 1tp
(1z)2

·
(
r + 1z

2

)2
(r +1z)2 , (73)

∂
∂vmri+1(φ,z)
∂vmri (φ,z−1z)
∂Kz(φ,z)

= 1
2
· 1tp
(1z)2

·
(
r − 1z

2

)2
r2 , (74)

∂
∂vmri+1(φ,z)
∂vmri (φ,z+1z)
∂Kz(φ,z)

= 1
2
· 1tp
(1z)2

·
(
r + 1z

2

)2
r2 , (75)

∂
∂vmri+1(φ,z−1z)

∂vmri (φ,z)

∂Kz(φ,z)
= 1

2
· 1tp
(1z)2

·
(
r − 1z

2

)2
(r −1z)2 . (76)

With these derivatives we linearize the prediction with re-
spect to wind and mixing coefficients; i.e., we linearly pre-
dict the new atmospheric state for a given initial state q0 as a
function of wind and mixing ratios.

xI = x0+F(q − q0) (77)

This formulation gives access to the winds and mixing ratios
via inversion of F.

Assuming linearity and Gaussian statistics, the most likely
set q of winds and mixing ratios during the macro time inter-
val minimizes the following cost function:

χ2
1 =

(
xm;I − xI

)TS−1
r
(
xm;I − xI

)
(78)

≈ (xm;I − x0−F(q − q0)
)TS−1

r(
xm;I − x0−F(q − q0)

)
,

where xm;I is the measured state at the end of the macro
time step and Sr is the error covariance matrix of the resid-
ual, which is, under the assumption that prediction error and
measurement errors are uncorrelated, the sum of the predic-
tion covariance matrix and the measurement covariance ma-
trix, both after the macro time step:

Sr = Sm,I +Sp, (79)

where Sp is a J × J matrix containing those elements of SI
which are relevant to xI . Sm,I is the measurement error co-
variance matrix of the atmospheric state after the macro time
step. The minimization of the cost function gives the follow-
ing estimate q̂ of winds and mixing coefficients:

q̂ = q0+
(

FTS−1
r F

)−1
FTS−1

r (xm;I − xI ). (80)

The matrix FTS−1
r F can be singular either because the related

system of equations is under-determined or ill-posed due to
nearly linearly dependent equations. Singularity is addressed
by adding the following constraint term to the cost function
of Eq. (78):
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χ2
con =

(
q − qa

)TR
(
q − qa

)
(81)

χ2 = χ2
1 +χ2

con, (82)

where qa is some prior assumption on velocities and mixing
coefficients. R is a J × J regularization matrix of which the
choice is discussed below. From this, the constrained esti-
mate of velocities and mixing coefficients can be inferred:

q̂ = qa+
(

FTS−1
r F+R

)−1
FTS−1

r (xm;I − xI ). (83)

An equivalent formulation, which is more efficient if the di-
mension of q is larger than that of x (under-determined prob-
lem) but which requires a non-singular regularization matrix
and does not give easy access to diagnostics (see below), is
(Rodgers, 2000)

q̂ = qa+R−1FT
(

FR−1FT+Sr,I

)−1
(xm;I − xI ). (84)

The covariance matrix characterizing the uncertainty of es-
timated winds and mixing coefficients is

Sq =
(

FTS−1
r F+R

)−1
FTS−1

r F
(

FTS−1
r F+R

)−1
, (85)

and the estimated winds and mixing coefficients are related
to the true ones as

A= ∂ q̂
∂q
=
(

FTS−1
r F+R

)−1
FTS−1

r F, (86)

which is unity in the case of the unconstrained estimation
of q. In the case of Newtonian iteration, Eqs. (85)–(86) are
evaluated using the Jacobian F valid at the solution.

Due to the concentration dependence of the source func-
tion and the q dependence of F, Eq. (29) is valid only in
linear approximation. This is helped by putting the inversion
in the context of a Newtonian iteration (see, e.g., Rodgers,
2000, p. 85). Equation (80) becomes

q̂ it+1 = q it+
(

FT
itS
−1
r Fit

)−1
FT

itS
−1
r (xm;I − xI,it), (87)

where it is the iteration index. Equation (83) becomes

q̂ it+1 = q it+
(

FT
itS
−1
r Fit+R

)−1
(88)(

FT
itS
−1
r (xm;I − xI,it)−R(q it− qa)

)
or alternatively

q̂ it+1 = qa+
(

FT
itS
−1
r Fit+R

)−1
(89)

FT
itS
−1
r
(
xm;I − xI,it+Fit(q it− qa)

)
,

and Eq. (84) becomes

q̂ it+1 = qa+R−1FT
it

(
FitR−1FT

it +Sr,I

)−1
(90)

(
xm;I − xI,it+Fit(q it− qa)

)
.

With qa = 0 and diagonal R= γ I we get the smallest pos-
sible velocities and mixing coefficients still consistent with
the measurement, where tuning parameter γ will be set de-
pending on how large fit residuals may be for the user to
still consider them to be “consistent”. With R being diago-
nally blockwise composed of squared and scaled first-order
finite difference operators and qa = 0, smooth fields of wind
vectors and mixing coefficients can be enforced. Setting qa
the result of the previous macro time step corresponds to se-
quential data assimilation. In this application R is set to the
reciprocal uncertainty of qa plus some margin to allow for
variability of velocity and mixing coefficients in time. And
finally, if prior knowledge is formed by independent mea-
surements and their reciprocal uncertainties as a constraint
matrix, or within the debatable framework of Bayesian statis-
tics, estimates q̂ would even be the most probable estimate of
velocities and mixing ratios.

5 Proof of concept

5.1 Prediction of the atmospheric state

In a first step we test the predictive power of the formal-
ism defined by Eqs. (3)–(29). Since the formalism itself is
deductive and starts from a well-established theoretical con-
cept, the purpose of the test is solely to verify that the imple-
mentation of the formalism is correct and that involved nu-
merical approximations are adequate. As a consequence of
the Bonini paradox (see Bonini, 1963, and Starbuck, 1975),
a model is the harder to understand the more complex it is.
While the predictive power of a model usually increases with
complexity, this does not necessarily hold for its explanatory
power. Thus, we have decided to test our model on the basis
of very simple test cases, where major failure of the model is
immediately obvious. Four test cases have been chosen, each
dedicated to one kinematic variable (v,w,Kφ andKz), while
the other three were set to zero.

In the first case, v was set to 1/10 of the Courant limit
(Courant et al., 1928) (about 0.17/cos(φ)m s−1) every-
where. As one would expect from the continuity equation ap-
plied to a spherical atmosphere, no changes in air density ex-
cept boundary effects at the poles were observed, and struc-
tures near the equator were transported by about 4◦ within a
month, as expected from the equation of motion. A Gaussian-
shaped perturbation of a half width of one latitudinal grid
width (4◦) causes an upwind wiggle of less than 0.7 % of the
amplitude of the perturbation at a meridional velocity of one
grid point per month. There is no discernable change in the
width of the transported structure. Similarly, for the second
case a constant field of w of 1.1× 10−3 m s−1 lifts a struc-
ture upwards by about 3 km per month. Mixing coefficients
were verified to smear out structures in the respective direc-
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tion while leaving air density and structures in the orthogonal
direction unchanged.

5.2 Inversion of simulated measurements

Case studies based on real measurement data are inadequate
as the sole proof of concept because the truth is unknown
and the result thus is unverifiable. Instead we first test our
scheme on the basis of simulated atmospheric states and con-
sider the scheme as verified if the velocities and mixing co-
efficients used to simulate the atmospheric states are suffi-
ciently well reproduced. In the noise-free well-conditioned
case, one might even expect, within the numerical precision
of the system, the exact reproduction of the reference data;
due to the – weak but non-zero – dispersivity of the numer-
ical transport scheme, the wiggles discussed in the previous
subsection cause, at some grid points, D matrix entries of the
wrong sign. In order to fight resulting convergence problems
of the inversion, some small regularization is at least neces-
sary, even if the system of equations to be solved is well or
overdetermined. Since the system in reality tends to be ill-
conditioned and the constraint applied to the inversion pre-
vents the reproduction of the reference data, we use a vari-
ety of idealized tracers instead. After this initial test of func-
tionality, more and more realistic test cases are constructed
in order to study the competing influence of constraint and
measurement data on the solution.

During code development, a series of basic tests of in-
creasing complexity were performed, including a variety of
mixing ratio distributions transported with various velocity
fields. The main lesson learned was that, even when the rows
of Eq. (80) were independent and no formal ill-posedness
could be diagnosed, the unphysical upwind wiggles in the
vicinity of the mixing ratio peak as discussed in the previous
subsection could trigger errors which are boosted during the
iteration. This problem, which is associated with sharp struc-
tures and large velocities (of the order of one grid width per
macro time step) can be solved by the use of a smoothing
regularization matrix R as discussed in the last paragraph of
Sect. 4, however at the cost of degraded spatial resolution of
the result.

As an example we show the following test. An altitude-
independent meridional velocity field (in degrees per month)

v = 23.6562
2

cosφ (91)

was chosen, while the vertical velocity was set to zero
(Fig. 2a). This particular choice of the meridional velocity
field keeps boundary problems at the poles due to divergence
in a circulation which is not closed reasonably small. Initial
mixing ratio distributions (in ppmv) of four idealized gases
were constructed such that gas (a) was sugarloaf shaped,
while the mixing ratio distributions of the gases (b) to (d)
were monotonic slopes.

vmra =
(
e
−
(
z−36
1.5

)2
/72+ 5.0× 10−4

)
e−(

6(φ+6)
40 )2/12, (92)

vmrb = (30+ 0.02z2− 0.2φ)3

1000
, (93)

vmrc = 20 · e0.02z+0.03φ, (94)

and

vmrd = 30 · e−0.03z−0.002φ, (95)

where z is altitude above surface in km and φ is latitude in
degrees. The distribution of gas (a) is shown in Fig. 2b. The
transport problem was solved in the forward mode using the
velocity field as defined in Eq. (91) for integrating the ten-
dency equation (Eq. 28) over 1 month. The resulting distri-
bution of gas (a) after this macro time step is shown Fig. 2c.
The “sugarloaf” is transported to the north by the expected
distance. Due to the latitudinal gradients with lower veloc-
ities in the luff of the sugarloaf and larger velocities in the
lee, the shape of the sugarloaf is slightly distorted, leading to
a steeper slope in the luff and a flatter slope in the lee. No
indication of problems with diffusivity or dispersivity of the
transport scheme is seen. At the poles boundary problems are
visible which are unavoidable when such an unrealistic (but
instructive) velocity field is used. The inversion nicely repro-
duces the initial velocity field (not shown because hardly dis-
cernable from Fig. 2a). Due to the smoothing constraint the
peak velocity is decreased by 18 %. This smoothing is the
price to pay for the stabilization of the retrieval in the pres-
ence of the boundary problems discussed above. The residual
between the simulated measurement of the distribution of gas
(a) at t0+1t and the distribution predicted with the resulting
velocity field is shown in (Fig. 2d).

5.3 Case study with MIPAS measurements

The risk of case studies based on simulated data typically is
that not all difficulties encountered with real data are fore-
seen during theoretical studies. In order to demonstrate ap-
plicability to real data, global monthly latitude–altitude dis-
tributions of CFC-12, CH4, N2O, and SF6 (Kellmann et al.,
2012; Plieninger et al., 2015; Haenel et al., 2015) measured
with the MIPAS (Fischer et al., 2008) were used. The purpose
of these tests is to demonstrate the feasibility of the method
presented. An investigation of the atmospheric circulation on
the basis of this method applied to MIPAS data is left for a
companion paper. For this proof of concept, sinks of these
long-lived tracers have been ignored, but these will certainly
be considered in scientific applications.

For this case study, zonal monthly mean distributions of
air densities and mixing ratios of these four species from
September and October 2010 were used. Figure 3 shows the
measured distributions of these quantities in September (left

www.atmos-chem-phys.net/16/14563/2016/ Atmos. Chem. Phys., 16, 14563–14584, 2016



14576 T. von Clarmann and U. Grabowski: Circulation and mixing from tracer measurements

Vϕ,Vz

-90 -60 -30 0 30 60 90
Latitude/deg

0

10

20

30

40

50

60

70

80
A

lt
it

u
d

e/
km

max|Vϕ|=11.82 deg·mth
−1

, max|Vz|= 0.00 km·mth
−1

2

4

6

8

10

(a)

vmr_a/ppmv, t=t 0

-90 -60 -30 0 30 60 90
Latitude/deg

10

20

30

40

50

60

A
lt

it
u

d
e/

km

-1.0

-0.5

0.0

0.5

(b)

vmr_a/ppmv, t=t 0+ ∆t

-90 -60 -30 0 30 60 90
Latitude/deg

10

20

30

40

50

60

A
lt

it
u

d
e/

km

-1.0

-0.5

0.0

0.5

(c)

Residuum vmr_a/ppmv

-90 -60 -30 0 30 60 90
Latitude/deg

10

20

30

40

50

60

A
lt

it
u

d
e/

km

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2(d)

Figure 2. Test case: (a) velocity field; (b) initial distribution of
gas (a); (c) distribution of gas (a) after 1 month; (d) residual be-
tween distribution of gas (a) after 1 month predicted with the result-
ing and the correct velocities. The units of the color bar in (a) are
degrees per month.

column) and October (middle column) and the residuals be-
tween the measured and predicted contributions for Octo-
ber (right column). The residuals are reasonably small and
show, except for methane in the polar upper stratosphere, no
patterns which would suggest peculiarities with the inferred
kinematic quantities.

The resulting circulation vectors which best explain the
change in the mixing ratio distributions from September to
October 2010 are shown in the upper left panel of Fig. 4.
Winter polar subsidence, summer polar upwelling, the meso-
spheric overturning circulation, the upper and lower branches
of the Brewer–Dobson circulation, and the tropical pipe are
clearly visible. Details of the tropical pipe are visible in the
right upper panel. As expected, the Brewer–Dobson circula-
tion is much more pronounced in the northern (early) winter
hemisphere. Velocities are roughly consistent with the mean
ages of stratospheric air as determined by Stiller et al. (2008)
and Haenel et al. (2015) in the sense that the quotient of the
typical circulation velocity and the distance between equator
and pole gives an age estimate of the correct order of mag-
nitude. While the inferred field of circulation vectors shows
many detailed features demanding scientific investigation in
their own right (e.g., the latitude offset between the intertrop-
ical convergence zone and the stratospheric tropical pipe or
the interface between the stratospheric two-cell circulation
and the overturning mesospheric circulation and the transi-
tion altitude between them), the reproduction of the expected
features justifies confidence in the method proposed. Result-
ing mixing coefficients Kφ and Kz are shown in the left and
right lower panels, respectively. Negative mixing coefficients
indicate counter-gradient mixing, which seems to be most
pronounced in the tropical upper stratosphere.

Jacobian elements with respect to v values and K values
seem to form a null space. Thus the K values were con-
strained to zero using diagonal components only in the R
matrix diagonal blocks associated with the K values. The
strength of this constraint was adjusted such that the K val-
ues were as small as possible as long as this did not boost
the residual. Resulting Kφ and Kz distributions are shown in
Fig. 4.

The errors in the estimated transport velocities and mixing
coefficients have been estimated according to Eq. (85) and
are shown in Fig. 5. The uncertainties in the transport veloc-
ities caused by the propagation of measurement errors are in
the 1 % range, indicating that the information contained in
the measurements is adequate for the purpose of retrieving
circulation parameters. It even seems possible to improve the
time resolution of the circulation analysis and aim at weekly
instead of monthly temporal sampling.

Larger errors above 65 km altitude and at the bins clos-
est to the pole are border effects, resulting from the fact that
no symmetric derivatives can be calculated there. The un-
certainties in Kφ show the same patterns as the Kφ values
themselves.
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Figure 3. Measured distributions in September (left column) and October (middle column) and residual distributions between October
measurements and predictions for October (right column) for air density and mixing ratios of CFC-12, CH4, N2O, and SF6 (top to bottom).
Grey grid boxes indicate nonavailability of valid data.
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Figure 4. Resulting circulation vectors (v(z,φ),w(z,φ)) (upper left panel), where colors on the red side of the rainbow color scale represent
higher velocities; a zoomed-in view of this (upper right panel); mixing coefficients Kφ (lower left panel) and Kz (lower right panel).

6 Discussion

The analysis of the age of stratospheric air can be under-
stood as an integrated look at the equations of motion of
stratospheric air because the total travel time of the air par-
cel through the stratosphere is represented. The refinement
of this method which analyzes the mean age just consid-
ers a weighted mean of the above, but it is still an integral
method. Contrary to these integral methods, our direct inver-
sion scheme supports a – in approximation, due to discrete
sampling in the time domain – differential view of the same
problem. The related advantages are the following:

a. independence of assumptions on the age spectrum be-
cause during each time step mixing is explicitly consid-
ered

b. insensitivity to SF6 depletion in the mesosphere (see,
e.g., Reddmann et al., 2001; Stiller et al., 2012) because
the scheme uses the actual entry values of subsiding air
as a reference

c. applicability to nonideal tracers in the stratosphere
(since the atmospheric state is updated for each time

step by measured value, depletion does not accumulate,
even if no sink functions are considered) and

d. the circular reasoning that the lifetimes of nonideal trac-
ers depend on their trajectories (and thus atmospheric
circulation), while the determination of the circulation
requires knowledge of the lifetimes, can be resolved;
our scheme requires knowledge only of the local, not
the global, lifetimes

e. the method is an empirical method which does not in-
volve any dynamical model; i.e., the forces which cause
the circulation are not required.

The method only finds that kinematic state of the atmosphere
which, according to the continuity equation, fit the measure-
ments best. These kinematic state values are provided as
model diagnostics to assess the performance of dynamical
models. Due to these advantages, the major problems in the
empirical analysis of the Brewer–Dobson circulation as men-
tioned by Butchart (2014) are solved. Problems related to our
method are

a. sensitivity of the inferred kinematic quantities to locally
varying biases,
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Figure 5. Estimated uncertainties of v(z,φ) (upper left panel), w(z,φ) (upper right panel),Kφ (lower left panel), andKz (lower right panel).

b. a tendency towards ill-posedness of the inversion if dis-
tributions of too few tracers with too similar a morphol-
ogy are used, and

c. the usual artifacts arising if the numerical discretization
chosen is too coarse.

Results of the case study presented in Sect. 5.3 suggest that
these problems are under control in the current application of
the proposed scheme.

7 Conclusions and outlook

We have presented a method which infers mixing coefficients
and effective velocities of a 2-D atmosphere by inversion of
the continuity equation. The main steps of this procedure are

a. the integration of the continuity equation over time to
predict pressure and mixing ratios for given initial pres-
sures and mixing ratios and initially guessed velocities
and mixing coefficients;

b. the propagation of errors of initial pressures and mixing
ratios onto the predicted pressures and mixing ratios, by
differentiation of the predicted state with respect to the
initial state and generalized Gaussian error propagation;

c. the estimation of the sensitivities of the predicted state
with respect to the velocities and mixing coefficients;
and

d. the minimization of a quadratic cost function involving
the residual between measured and predicted state at the
end of the forecasting interval by inversion of the conti-
nuity equation.

The inferred velocities are suggested to be used as a model
diagnostic in order to avoid problems encountered with other
model diagnostics like mean age of stratospheric air. It is im-
portant to note that the diagnostics inferred here are effective
transport velocities and effective mixing coefficients in the
sense that they include eddy transport and diffusion terms.
Thus, they cannot simply be compared to zonal mean veloc-
ities and mixing coefficients of a 3-D model, but the eddy
terms have to be considered when these diagnostics quan-
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tities are calculated. The application of this method to SF6
distributions measured by MIPAS (Stiller et al., 2012) to di-
agnose the Brewer–Dobson circulation is discussed in a com-
panion paper. Obvious future activities are the extension of
this method to three dimensions and the inclusion of sink
functions of non-inert species to explore a larger number of
tracers in order to better constrain the related inverse prob-
lem.

8 Data/Code availability

The code is still under development. The data used are com-
piled in Supplement 2. The complete MIPAS data are avail-
able at http://www.imk-asf.kit.edu/english/308.php.
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Appendix A: From 3-D to 2-D

The reduction of the transport problem from three to two
dimensions involves Reynolds decomposition of the three-
dimensional continuity equation and subsequent zonal av-
eraging and gives rise to eddy mixing and transport terms.
The inference of effective two-dimensional transport veloci-
ties and effective mixing coefficients from measurements dis-
cussed in the main paper relies on the fact that, within certain
assumptions and approximations, all these eddy effects can
be understood as additional pseudo-advection and pseudo-
mixing terms according to the advection equation and Fick’s
law, with gas-independent pseudo-velocities and pseudo-
mixing coefficients. The exact interpretation of the two-
dimensional velocities and mixing coefficients inferred from
the measurements depends on the approximations made.
We apply our scheme to zonally averaged mixing ratios
(no mass-weighted averaging). Contrary to the main text,
where the symbols v, w, Kφ , and Kz are used in the two-
dimensional system, here zonal averages are indicated by a
bar.

Assuming

– that the deviations from the zonal mean are small com-
pared to the zonal mean itself such that linearization is
justifiable,

– that meridional advection is negligibly small compared
to zonal advection,

– that the time variation of the zonal mean quantities is
assumed to be much slower than the time variation of
the deviations from the zonal mean, which corresponds
to the assumption of a quasi-steady state,

Tung (1982) derives a two-dimensional approximation to the
continuity equation which, adjusted to our notation, written
for geometric altitudes instead of potential temperatures, and
using the shallowness approximation, reads

ρ
∂

∂t
vmrg +

(
ρv− ∂

∂t
ρ′η′

)
1
r

∂

∂φ
vmrg (A1)

+
(
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ρ′8′

)
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− 1
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1
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− ∂

∂z

(
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∂

∂t
+ u

r cosφ
∂

∂λ

)
η′ = v′, (A2)

(
∂

∂t
+ u

r cosφ
∂

∂λ

)
8′ = w′, (A3)

and(
∂

∂t
+ u

r cosφ
∂

∂λ

)
σ ′ = S′. (A4)

Further,

Kφφ = 1
ρ
(ρv)′η′, (A5)

Kzz = 1
ρ
(ρw)′8′, (A6)

Kφz = 1
ρ
(ρv)′8′, (A7)

and

Kzφ = 1
ρ
(ρw)′η′. (A8)

Assuming further that

– our scheme is applied only to long-lived species, such
that chemical eddy terms can be ignored because chem-
ical lifetimes are long compared to transport lifetimes
(see Pyle and Rogers, 1980) and

– wave disturbances are dominated by steady or periodic
terms, such that the terms with the mixed second deriva-
tive terms tend to disappear (Matsuno, 1980; Clark and
Rogers, 1978; Pyle and Rogers, 1980; Tung, 1982) and
an even weaker approximation is sufficient, namely

∂

∂t
η′8′ ≈ 0, (A9)

making it equivalent with the assumption that Kzφ ≈
−Kφz,

Eq. (A1) can be rewritten as a tendency equation of the type

∂
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+ 1
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where

v∗ = v− 1
ρ
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ρ
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K∗φ =Kφφ, (A13)

and

K∗z =Kzz (A14)

can be understood as virtual velocities and virtual mixing
coefficients. All terms in Eq. (A10) have the mathematical
structure of either an advection equation or a Fick’s law.
Thus, Eqs. (A11)–(A14) provide the interpretation of the ve-
locities and mixing coefficients inferred in the main part of
the paper. These can be identified with the virtual velocities
and virtual mixing coefficients inferred above. Obviously,
this interpretation depends on the approximations made, and
different approximations would lead to a different interpreta-
tion. If mixing coefficients describing subscale effects in the
original 3-D model (the last two terms in Eq. 3) are to be
considered, then the effective mixing coefficient is the sum
of the mixing coefficients describing these subscale effects
plus the respective K∗ term accounting for the eddy mixing.

We would like to emphasize that none of the approxima-
tions and assumptions discussed above are used in our pro-
posed method to infer velocities from zonal mean mixing

ratio measurements. The discussion in this Appendix only
tries to relate the resulting velocities to the velocities in a 3-
D world. The ambiguities in the interpretation of the inferred
“effective” 2-D velocities suggests that it might be promising
to switch from a theoretical to an empiricist view and to no
longer conceive of the zonal mean of the 3-D velocities as
the “true” 2-D velocities but as those which satisfy the 2-D
continuity equation. These can be – admittedly indirectly –
observed with our suggested method and can be used to vali-
date 2-D models, including their underlying concept of solv-
ing the 2-D transport problem. With this, the adequacy of the
assumptions made to approximate away the headache terms
which can be expressed neither as advection nor as Fick’s
law terms can also be tested by means of a comparison of the
measured and 2-D modeled effective, i.e., transport-relevant,
velocities. This empiricist turn in argumentation might not
fully solve all aspects of the problem of interpretation of the
observed 2-D velocities from a 3-D perspective, but at least it
moves the problem from the desk of the observation scientist
onto the desk of the 2-D modeler.
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The Supplement related to this article is available online
at doi:10.5194/acp-16-14563-2016-supplement.
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