
 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
 

Genomic sequence analysis is an important task in bioinformatics 
and computational biology. Several applications, such as phylogenetic 
tree reconstruction or inference of  population genetic parameters rely 
on genomic sequence data. Phylogenetic studies can be used to 
determine how a virus spreads over the globe [1] or to describe major 
shifts in the diversification rates of  plants [2]. Population genetics can 
be used to infer demographic information such as expansion, 
migration, mutation and recombination rate in a population, or the 
location and intensity of  selection processes within a genome. 

In general, molecular sequence analyses involve a multitude of  
steps which depend on the specific scientific question at hand. 
Regardless of  the concrete (downstream) steps in an analysis pipeline, 
the precise content and order of  nucleotides in a stretch of  DNA 
needs to be determined at the very beginning. The raw molecular 
sequence data is produced by DNA sequencing machines which 
analyze light signals that originate from flurochromes which are 
attached to nucleotides. Typically, the obtained raw sequences are 
provided as input to (multiple) sequence alignment programs. Once 
an MSA file has been generated, the analysis proceeds to address 
specific  questions (e.g.,  phylogeny  reconstruction  or  inferences  of 

 
 
 
 
 
 

 
 

 
  

 

population genetic parameters). Thus, the quality of the initial MSA 
is of primary importance. 

In some cases, only partially different or slightly erroneous MSAs 
can yield substantially different parameter values. For example, 
alignment errors can mislead the branch-site test [3] for positive 
selection such that it returns unacceptably high false positives [4]. 
Also, a slight over-representation of  rare alleles may lead to inferring a 
population size expansion instead of  obtaining a constant population 
size [5]. In phylogenetics, an uncorrected MSA may lead to biased 
estimates of  tree topologies and branch lengths. In general, pseudo-
polymorphic sites (sites that only appear to be polymorphic because 
of  sequencing errors) can mislead downstream analyses. 

A widely-used technique for reducing the number of  sequencing 
errors and improving MSA quality consists in manually inspecting and 
visually verifying sequencer output based on the corresponding 
chromatogram files. This approach becomes increasingly tedious and 
error-prone as the number of  sequences in the alignment as well as the 
length of  sequences increases, since all sites need to be inspected 
individually. For each polymorphic site, users need to identify the 
exact chromatogram positions of  polymorphic characters for that 
specific site and verify that they do not represent a pseudo-
polymorphism. 

We propose an approach for systematic detection and correction 
of  sequencing errors in MSAs that relies on chromatogram data, 
henceforth denoted as the “CGF framework”. The goal is to generate 
corrected MSAs with the following property: each nucleotide in the 
MSA can be correctly mapped back to the corresponding 
chromatogram position by a few simple arithmetic operations. We 
denote this mapping property (or consistency) as CGP, and an MSA 
for which this property holds as CGA. Creating CGP-compliant 
alignments facilitates the detection and correction of  possible 
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sequencing errors in an MSA, because locating and identifying the 
potential error in the chromatogram trace signal now becomes 
straightforward. The user simply needs to approve or reject the 
respective base calls by visually inspecting the (automatically located) 
trace signal. 

 

 
 
  
 
 
 

Figure 1 depicts a chromatogram region that contains sequencing 
errors at the highlighted positions. At position 472, for instance, the 
slight expansion of  the peak led to the insertion of  the additional 
character C in the sequence. A similar peak expansion gave rise to 
duplication of  the Gs at positions 475 and 481. Furthermore, the 
slightly shifted peaks at positions 478 and 480 resulted in the 
insertion of  an undefined character N at position 479. 

ChromatoGate implements the aforementioned CGF framework 
and thereby substantially simplifies the process of  detecting 
sequencing errors and creating CGP-compliant MSAs. The 
development of  ChromatoGate  was motivated and guided by 
observing the workflow for reconstructing a phylogeny of  325 Mullus 
surmuletus sequences. While MSA tools (e.g., ClustalW [6], MAFFT 
[7], and MUSCLE [8]) required a few minutes and phylogeny 
reconstruction programs (e.g., RAxML [9] or MrBayes [10]) required 
a few hours to run to completion, the inspection of  the MSA for 
detecting and correcting sequencing errors required several days. The 
tool is freely available for download at http://www.exelixis-
lab.org/software.html. 

There already exist some programs that provide a similar, but not 
identical, functionality to ChromatoGate. The Phred, Phrap, and 
Consed program suite [11,12,13–15] offers solutions for reviewing 
and editing sequence assemblies, such as trimming and assembling 
shotgun DNA sequence data. More specifically, Phred reads DNA 
sequencer trace files, associates them with the appropriate nucleotide 
base, and assigns a quality value to every base call. Thereafter, these 
quality values are used to trim the sequences. Phrap is intended for 
assembling shotgun DNA sequence data, and uses the entire sequence 
— not just the trimmed, high quality, part of  a sequence. Phrap then 
constructs a contiguous sequence by merging the read segments with 
the highest quality, rather than by building a consensus sequence. 
Finally, the Consed/Autofinish tools aid the user in reviewing, editing, 
and finalizing Phrap-based sequence assemblies. Users can also select 
primers and templates, suggest additional sequencing reactions that 
shall be performed, and verify assembly accuracy. 

DNA Chromatogram Explorer [16] is a dedicated interactive 

software for DNA sequence analysis and manipulation. Via an 
appropriate visualization method, it can trim low quality bases at 
either end of  the sequences. The DNA Baser Sequence Assembler tool 
in Chromatogram Explorer can be used for DNA sequence assembly 
and analysis as well as for contig editing and mutation detection. An 
easy-to-use graphical editor is available to view and edit 
chromatograms, cut primers, assemble contigs, and reverse-
complement sequences. 

Sequencher 5.0 [17] (a commercial product by Gene Codes) is 
more similar to ChromatoGate in terms of  functionality. The user can 
work with the chromatogram data and—at the same time—edit the 
corresponding raw sequences. Sequence edge trimming as well as tools 
for detection and annotation of  polymorphisms are also available. 
Sequencher represents a useful software package that provides several 
tools for improving MSA quality, but the high software license cost ($ 
1000) represents a substantial drawback. 

ProSeq v3 (Processor of  Sequences) [18] allows for the 
preparation of  DNA sequence polymorphism datasets. It includes an 
internal relational database that links sequences to individuals and 
individuals to populations, thereby simplifying the analysis of  datasets 
that contain multiple genes. Furthermore, it allows for visual 
inspection of  DNA sequence chromatograms to correct base-calling 
and sequencing errors. Chromatogram quality checking is followed by 
assembly of  individual sequence reads into longer contigs using Phred 
and Phrap (these are not included in ProSeq because of  licensing 
issues). ProSeq v3 was developed for population genetic analyses and 
it also includes a tool for basic phylogenetic analysis that can 
construct and visualize neighbor-joining trees.   

A significant difference between ChromatoGate and the 
aforementioned tools is that, in ChromatoGate, chromatogram editing 
is not implemented by visual alignment and chromatogram inspection, 
but via automatically generated reports. These reports only entail 
those nucleotides and associated chromatogram positions that require 
further inspection. By means of  this pre-filtering, the user does not 
need to inspect the entire sequence base-by-base to correct sequencing 
errors, accelerating the error correction process. 

 
Experimental procedures 
 

The goal of  our tool is to generate CGP-compliant alignments 
with a minimal number of  sequencing errors. This is achieved by a 
step-by-step alignment assembly and correction procedure which is 
illustrated in Figure 2. The steps outlined in Figure 2 are described in 
more detail below. Nonetheless, it should be evident that this 
workflow does not reflect the standard workflow of  visual detection 
and manual correction of  sequencing errors. The standard approach 
requires to consecutively correct all sequences prior to computing the 
MSA. Existing commercial (DNASTAR [19]) as well as open-source 
(Staden Package [20]) programs can be used for this purpose. They 
are able to identify weak-signal chromatogram peaks and report their 
positions to the user. Thereby, the user is not required to manually 
inspect all peaks in each chromatogram but only the indicated ones. 

The semi-automatic ChromatoGate approach also requires the 
user to inspect a limited number of  peaks in every chromatogram. The 
main idea is to inverse the process by scanning an initial—
uncorrected— MSA for potential sequencing errors. Guided by this 
preliminary MSA, the user then only inspects those chromatogram 
peaks that form part of  polymorphic sites in the alignment. Due to 
this inversed procedure for eliminating sequencing errors, 
ChromatoGate does not use base call quality information generated by 
programs such as Phred [11, 12]. 

Figure 1. A chromatogram snapshot that shows base mis-calls and an 
undefined character at the highlighted positions. 
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In general, our approach treats every polymorphic site as a 

potential sequencing error. Usually, the sequencing error rate is not 
large (typically < 1%; [21]). Hence, base mis-calls will generate low-
frequency polymorphisms, that is, polymorphisms that only occur in a 
few (typically 1 or 2) sequences of  an MSA site. If  a polymorphic site 
is not generated by a sequencing error but represents a true 
polymorphism, all characters at this site must have a clear, unequivocal 
chromatogram signal. If  the corresponding peaks for a few characters 
(typically 1 or 2) at a polymorphic site are ambiguous, this can be 
attributed to a sequencing error rather than to a true polymorphism. 
Thus, the user only needs to visually inspect the chromatogram peaks 
of  the comparatively small fraction of  base calls that differ from the 
majority of  bases at the site. Note that, ChromatoGate does not 
decide upon potentially erroneous base calls. Therefore, neither 
alignment sites are removed nor are base calls corrected. The tool 
assumes that a sequencing error most probably generates a low-
frequency polymorphism in the alignment (see Figure 8). Evidently, 
removing all low-frequency polymorphisms from an alignment can not 
be desirable because it will generate a significant bias in the analysis 
(many genuine singletons will be removed along with the sequencing 
errors). To this end, ChromatoGate does not remove any low-
frequency polymorphisms at all. Instead, it highlights them and maps 
them to the corresponding chromatogram peaks such that the user can 
assess if  there is a sequencing error or a genuine singleton. 

Note that, if  recombination has occurred, it is likely that the 
number of  base mis-calls in the MSA will be increased. 
ChromatoGate, however, cannot detect recombination. Therefore, if  
recombination has occurred, the ChromatoGate reports will be larger. 
Similar increase in the number of  base mis-calls and thus in the size 
of  the reports can be observed because of  a very large nucleotide 
diversity in the MSA. In any case, the user can reduce the size of  the 

reports by lowering the user-defined threshold, and thus determining 
in advance the amount of  time he wishes to invest on the correction 
of  the MSA. 

When an existing MSA is extended by new sequences, this MSA-
based correction process ensures that adding new sequences will not 
decrease the quality of  an existing, curated reference MSA. Hence, 
ChromatoGate can not only be deployed for de novo MSA assembly, 
but also for MSA extension. We describe the CGF workflow and the 
corresponding ChromatoGate functions in more detail below. 

 

 
Step1: Edge trimming 

Typically, the chromatogram-based sequence S returned by a 
sequencer does not yield a clear signal over the entire sequence length. 
Thus, ambiguous subsequences S.U (Sequence.Undefined) that are 
characterized by a large number of  undetermined characters appear at 
both ends of  a sequence S. Typically, a clean subsequence S.C 
(Sequence.Clean) is located between S.U subsequences at either end. 
Only the clean subsequence entails nucleotides that can be identified 
by the sequencer with a high degree of  confidence (Figure 3). 
Therefore, S.U subsequences must be trimmed to prevent biasing the 
downstream analysis. The responsibility to trim 
unreliable/undetermined subsequences rests with the user, because it 
is hard to design a sufficiently sensitive but not too sensitive tool for 
automatic trimming. Thus, for each sequence, the user needs to pass 
trimming position information (see below for details) to 
ChromatoGate. 

 

 
 

 
 
 

 
Although several third-party tools for automated sequence 

trimming are available (e.g., the Lucy open-source code [22] using 
Phred scores or the Trim Ends function of  the commercial 
Sequencher [17] package), deploying them in conjunction with 
ChromatoGate is not possible because base calls will be incorrectly 
mapped to corresponding chromatogram peaks. ChromatoGate uses 
the raw sequences (i.e., the exact position of  each base call in the 
sequence) for mapping nucleotides to chromatograms. Hence, when 
edge-trimmed sequences are provided, this mapping will become 
inconsistent. 

In Figure 3A we provide an example for sequence trimming. To 
preserve the CGP property, the S.U lengths for each sequence in a 
MSA must be known. Therefore, ChromatoGate keeps track of  the 
initial sequence length, the length of  trimmed subsequences, as well as 
the start and end positions of  the S.C subsequences. User-driven 
trimming is implemented by Trim-Indicators (TIs) which are short 
sequences of  one or more gaps that must be inserted by the user into 
the sequence to denote the beginning and end of  the clean part of  the 
(yet unaligned) sequence. The user will need to replace the last X 

Figure 2. The steps of the CGF framework. The dashed-line boxes 
represent actions that need to be performed manually. The single-line 
boxes are used to refer to operations that can be performed by third-party 
software and the double-line boxes refer to ChromatoGate functions. 

Figure 3. Example of the trimming process. A: The clean (S.C) and 
undefined (S.U) subsequences of S are  shown. B: Trim-Indicators (TIs) of 
length 3 have been inserted in both S.U subsequences. 
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characters of  the left S.U by X gaps and the first Y characters of  the 
right S.U by Y gaps. When no trimming is required, the user does not 
need to insert any gaps. In Figure 3B we provide an example for the 
trimming process (with X := 3 and Y := 3). 

 

 
 
 
 
 

 
 

 
Step 2: Consensus Sequence Generation 

The second step (optional) consists of  calculating consensus 
sequences for samples that have been amplified with forward and 
reverse primers. A DNA sequence is usually sequenced in both 
directions with a forward and a reverse primer (denoted as seqF and 
seqR respectively) when the entire length of  the amplified gene 
product can not be obtained by a single primer. To obtain the full-
length sequence, the reversed and complemented sequence seqRC of  
seqR needs to be aligned (matched) to seqF (note that, seqRC and 
seqF typically do not fully overlap). Finally, a consensus sequence is 
built for the pairwise alignment of  seqF and seqRC (where seqF and 
seqRC overlap). ChromatoGate does not support consensus sequence 
generation from multiple pairs of  forward and reverse reads at present. 
We will however, include this feature in the next release. 

The pairwise alignment and consensus sequence calculation in 
ChromatoGate is outlined in Figure 4. Initially, seqF and seqR are 

trimmed according to the TIs. Thereafter, seqR is reversed and 
complemented to obtain seqRC. Subsequently, ChromatoGate 
computes a local alignment of  seqF and seqRC using a 
straightforward, naive implementation of  the Smith-Waterman 
algorithm [23], since this step is not performance-critical. Two scoring 
matrices can be used for local alignment: (i) a default score matrix and 
(ii) a user-defined matrix. Note that, the Smith-Waterman algorithm 
locally aligns seqF to seqRC. Thus, we obtain an alignment in which 
seqF and seqRC only overlap partially. The trailing (non-overlapping) 
ends of  seqF and seqRC are therefore attached again to the respective 
ends of  the local alignment (see Figure 4). Finally, the sequences are 
checked for alignment mismatches to calculate a consensus sequence. 

ChromatoGate offers two strategies for handling mismatches. It 
can either represent mismatches by the undetermined character N (N 
strategy) or by inserting the corresponding ambiguous character (e.g., 
S, R, Y, etc.; AMB strategy). In Figure 4, the alignment mismatch at 
site 7 can be handled by inserting an N (N strategy) or S (AMB 
strategy). In a subsequent step, ChromatoGate will provide the 
corresponding chromatogram positions of  those mismatches, and 
allow the user to resolve them. 

The consensus method handles mismatches as follows: 
1. If  the mismatch consists of  a gap and a character, the 

character is used. 
2. If  the mismatch consists of  two characters and none of  

them is an ambiguous character, then it will either be 
replaced by N (N strategy) or by the corresponding 
ambiguous character (AMB strategy). 

3. If  a mismatch consists of  a character and an ambiguous 
character, then the (non-ambiguous) character is selected. 

 
Evidently, when extracting consensus sequences, the insertion 

variant is always selected (see Figure 5). This simplifies the detection 
of  a possible sequencing error at a latter CGF step (see PSD – 
Polymorphic Site Detection). By selecting the insertion variant, it will 
generate alignment sites that are dominated by gaps and one or just a 
few characters. The characters of  consensus sequences of  gap-
dominated sites are a consequence of  selecting the constant insertion 
variant during consensus sequence generation. These 'extra' characters 
are usually generated by erroneously extended chromatogram peaks. 
The PSD step will classify these sites as sites with probable 
sequencing errors and report them to the user along with the 
positions of  the corresponding chromatogram peaks. 

When reconstructing consensus sequences based on a pairwise 
sequence alignment, additional information needs to be stored to 
maintain the CGP property. During pairwise alignment and consensus 
sequence generation, each character in seqF and seqRC can potentially 
be shifted and/or replaced by another character. ChromatoGate keeps 
track of  all shift and replacement operations that are conducted prior 
to the computation of  the multiple sequence alignment. 
 
Step 3: Preliminary File Generation 

After edge trimming, pairwise alignment, and consensus sequence 
generation, ChromatoGate generates a preliminary file of  unaligned 
sequences in FASTA format (Preliminary File Generation - PFG). 
This preliminary file can then be used with any MSA program. 

Apart from creating this FASTA file, ChromatoGate also 
maintains information for associating each nucleotide to the 
corresponding position in the respective chromatograms. Using the 
PFG-generated file for calculating MSAs ensures that it will be a 
CGP-compliant alignment regardless of  the chosen MSA program. 
For every sequence in the PFG file and the MSA, ChromatoGate has 
maintained information on how each nucleotide was generated. This 
information can now be used to improve MSA quality. 

Figure 4. Steps of the Consensus Sequence Generation (CSG) procedure 
followed by ChromatoGate. The final consensus sequence consists of three 
subsequences: (i) the initial (non-overlapping with seqF) part of seqRC, (ii) 
the local alignment of seqRC and seqF for the part where they overlap, 
and (iii) the final (non-overlapping with seqRC) part of seqF. 
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Step 4: Ambiguous Character Detection 

When the initial MSA has been calculated from the preliminary 
unaligned FASTA file, the Ambiguous Character Detection (ACD) 
function of  ChromatoGate can be used to detect, inspect, and 
eventually correct all ambiguous characters in the MSA. For each 
ambiguous character, ChromatoGate automatically yields the correct 
position in the corresponding chromatogram and thereby substantially 
simplifies this process. 

More specifically, ChromatoGate generates a report for every 
ambiguous character/site that allows the user to inspect the 
corresponding chromatogram positions. Erroneous ambiguous 
characters (as identified by visual chromatogram inspection) need to 
be corrected manually, and in this case, the respective ACD report 
entry must be updated accordingly. Figure 6A shows a typical ACD 
report entry for an ambiguous character. The ACD entry indicates 
that the ambiguous character was found at site 155 of  sequence seqX 
in the MSA. 

The chromatogram position field is of  the form: FW.X − RV.Y, 
where X and Y correspond to the chromatogram positions in a 
forward and a reverse sequence respectively. For consensus sequences, 
both the F W.X and RV.Y fields are present while for forward or 
reverse sequences only the corresponding single field is shown. 
Therefore, from the ACD entry of  Figure 6A one can deduce that the 
ambiguous character of  seqX at site 155 was initially present in the 
reversed sequence and that it is located at position 555 of  the 
respective chromatogram file. 

If  the user wants to correct this character he needs to update/edit 
the MSA (with an editor of  his choice, e.g., BioEdit [24]) and update 
the corresponding ACD report entry by replacing the question mark 
(see Figure 6) with the new character in the “Changed To” field. Once 
all ambiguous characters have been inspected and potentially corrected 
the user needs to realign the sequences after de-gapping (removing the 
gaps from the previous alignment) them using the MSA editor. This 

new MSA should contain a lower number of  polymorphic sites. 
 
Step 5: Polymorphic Site Detection 

A polymorphic site can either represent a “true” polymorphism or 
a base mis-call. The terms “pseudo- polymorphism” and “pseudo-
polymorphic sites” are used synonymously to denote sites that appear 
to be polymorphic in an MSA due to one or more sequencing errors. 

The Polymorphic Site Detection (PSD) function of  
ChromatoGate can be used for correcting pseudo-polymorphic sites. 
The PSD function implements a site-selection/-filtering mechanism 
with user-defined sensitivity. The selection sensitivity is set by a 
threshold which represents the maximum fraction of  nucleotides that 
have to be different from the majority of  nucleotides at a site such 
that the site is considered as polymorphic. 

The output of  the PSD function is a text file containing one entry 
for each polymorphic site in the MSA. Each entry contains the MSA 
site index, the nucleotide frequencies at that site, the names of  those 
sequences whose nucleotides differ from the majority nucleotides at 
the site, and the corresponding chromatogram positions. As before, 
the PSD report can now be used to inspect the respective 
chromatogram files and correct errors. Figure 6B illustrates an entry 
of  the PSD report. The report shows that site 109 of  the MSA is 
polymorphic and contains 9 As, 1 G, and that the remaining 
characters, if  any, are gaps. Nucleotide G belongs to the consensus 
sequence seqX and there are two corresponding chromatogram peaks: 
(i) the chromatogram peak that corresponds to character G at 
position 83 in the forward-primer-amplified sequence and (ii) the 
chromatogram peak that corresponds to character C at position 601 
in the reverse-primer-amplified sequence. Once the PSD function has 
been applied to correct potential sequencing errors, the curated MSA 
will hopefully contain only a small number of  ambiguous characters 
and sequencing errors. 

 
Results and Discussion 
 

We assess the effect of  uncorrected sequencing errors on 
phylogenetic and population genetics studies by means of  simulations. 
Our simulated datasets consist of  non-recombining genomic 
segments. 

 

We used two distinct settings (errA, errB) for incorporating 
sequencing error rates. Despite the fact that error rates typically vary 
significantly along a genomic segment [21], we simplified the error 
simulation process by assuming that base mis-calls are distributed 
uniformly along a genomic segment. There are two types of  errors: (i) 
substitution errors that refer to erroneous calls of  nucleotide states, 
that is, substitution of  a base with an A, C, G, T, or N, and (ii) errors 
that lead to an insertion or deletion. We refer to the latter type of  
errors as frameshift errors. Frameshift errors are further sub-divided 
into nucleotide-state insertions (A, C, G, T, N), base deletions, or 
base-call extensions. For errA, the substitution error rate is set to 
0.001 per base and the frameshift error rate is set to 0.0001. For errB, 
we set the substitution error rate to 0.01 and the frameshift error rate 
to 0.0005 (also see Figures 1 and 3 in [21]). The error rates are 
summarized in Table 1. Sequencing errors are introduced 
independently and uniformly for each sequence and for each base. 
Note that we neglect the effect of  base mis-calls (especially frameshift 
errors) on the MSA by preserving homologous sites in the alignment. 
For example, if  a base is inserted into a sequence, then a gap (-) is 
automatically inserted into all remaining sequences at the same 
position. 

Figure 5. Detection of insertion/deletion sequencing errors in consensus 
sequences. During the generation of the consensus sequence seqX, the 
insertion variant is selected for the mismatch at position i. If character T of 
sequence seqF is actually the result of a sequencing error, the multiple 
sequence alignment will contain a gap-dominated site. The Polymorphic 
Site Detection (PSD) function will mark this site as one with a possible 
sequencing error. 
part of seqRC, (ii) the local alignment of seqRC and seqF for the part where 
they overlap, and (iii) the final (non-overlapping with seqRC) part of seqF. 
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We generated simulated DNA alignments to assess the effect of  
base mis-calls on phylogenetic tree reconstruction accuracy. To obtain 

realistic simulation parameters (GTR rates, α-shape parameter of  the 

Γ model of  rate heterogeneity [25], empirical base frequencies, 
reference tree) we initially conducted a single standard ML tree search 
with RAxML [9] on an empirical 500-taxon dataset [26] that has 
been frequently used for benchmarking phylogenetics software [27, 
28, 29]. 

We then deployed INDELible [30] to generate 100 simulated 
datasets on the RAxML-based ML tree (using the ML model 
parameters as inferred for the empirical dataset) with a length of  
approximately 1,000 bp each. Indels were intentionally not simulated, 
since our goal was to explore the effects of  sequencing errors on tree 
reconstruction accuracy. Hence, we avoided introducing further 
potential error sources (indels) that may also lead to decreased 
reconstruction accuracy to better identify the effects of  base mis-calls. 
We then inserted base mis-calls into the 100 simulated alignments as 
described in Section “Base mis-call simulation” to generate an 

additional 100 simulated datasets with errors. Then, we conducted 
one ML tree search with RAxML (standard tree search, GTR model 

of  nucleotide substitution, Γ model of  rate heterogeneity) on the 200 
simulated datasets (100 with and 100 without base mis-calls). 

 

Figure 6. Example of an Ambiguous Character Detection (ACD) and Polymorphic Site Detection (PSD) report entries. 
 

Figure 7. Robinson-Foulds (RF) distances distributions between inferred and real phylogenies when sequencing errors are absent (black line) or present (gray 
line) in the analysis. A) Error rates correspond to the values from the errA of Table 1. B) Error rates correspond to the values from the errB of Table 1. RF-
distance quantifies the dissimilarity between two trees. Eliminating the sequencing errors from the analysis results in a statistical significant improvement of 
the similarity between the inferred and the true genealogy only for the higher error rates (errB), even though this difference is not very large. 
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Finally, we used the Robinson-Foulds (RF) metric [31] to 

determine the topological distance of  the ML trees inferred on the 
simulated datasets with and without base mis-call errors to the 
respective true tree. As shown in Figure 7, base mis-calls significantly 
increase the RF distances (Kolmogorov-Smirnov statistic p-value = 
0.0079) between the inferred ML tree and the true tree for the errB 
setting (substitution error probability: 0.01; frame change probability: 
0.0005). However, RF distances only increased by 0.0045% on 
average for simulated alignments including sequencing errors. This 
may be attributed to the fact that maximum likelihood-based 
phylogenetic inference is relatively robust with respect to sequencing 
errors and noise. For smaller error probabilities (errA setting), the RF 
distances to the true tree are not significantly different on the datasets 
with and without errors (Kolmogorov-Smirnov statistic p-value = 
0.527). 
 

We also examined the effect of  base mis-calls on the inference of  
population genetic parameters. Our results indicate that, correcting for 
sequencing errors in the MSA is necessary. We simulated 2000 
coalescent trees using Hudson’s ms [32] tool. Each coalescent tree 
models the genealogy of  100 orthologous non-recombining genomic 
regions sampled from a constant population. We then used 
INDELible to simulate a 1-kb long, non-recombining single-gene 
dataset on each of  the 2000 coalescent trees with the same empirical 
ML model parameters as above. 

The branch lengths of  the coalescent trees were scaled by a factor 

of  0.01, such that the population mutation parameter θ = 4Neμ is 
equal to 10 mutations per kilobase per 4Ne generations, where Ne 

denotes the effective population size and μ the mutation rate per 
generation and per kilobase. We then introduced sequencing errors as 
described in Section “Base mis-call simulation”. MSAs were then 
converted to binary format (0,1), assuming an infinite site model 
[33]. This conversion is required because INDELible generates 
datasets for a finite site model, whereas the analysis assumes that the 
data follow the infinite site model. For every MSA column the most 
frequent nucleotide was transformed to state 0 and all remaining 
nucleotides to state 1. This infinite site model transformation is 
standard practice in population genetic data analysis and is justified by 
the small mutation rates. For all simulated datasets (with and without 
mis-calls) we calculated corresponding summary statistics such as to 
compare the respective distributions (Figure 8). 

On the simulated datasets with errors, the Site Frequency 
Spectrum (SFS) shifts toward rare alleles (Figure 8A and 8D). Also, 
the number of  singletons increases on average by a factor of  3 
(compared to datasets without errors), even for small error rates 
(setting errA). The amount of  polymorphic sites (as counted in the 
untransformed MSAs) increased by a factor of  2 for setting errA 
(Figure 8B) and by a factor of  7 for setting errB (Figure 8D) and 
Tajima’s D [34] assumed extreme negative values (Figure 8C and 8F). 
Thus, base mis-calls dramatically affect estimates of  population 
genetic parameters. 

We also simulated a multi-gene dataset from a constant 
population using msABC [35], comprising 20 independent, non-
recombining genes with a length of  1 kb. This dataset represents the 
reference alignment without base mis-calls. Thereafter, we introduced 
errors as before to create a reference dataset with base mis-calls. These 
datasets were used to infer population parameters using an 
Approximate Bayesian Computation  (ABC)  method as implemented  

Figure 8. Biases in summary statistics that base mis-calls introduce in the analysis. At the upper panel we compare summary statistics calculated from datasets 
that contain no errors versus the datasets that contain errors from the set errA (see Table 1). For the bottom panel the error rates are described in errB. A and 
D: Base mis-calls shift the site frequency spectrum toward low-frequency polymorphisms. B and E: number of polymorphic sites, and C and F: Tajima’s D. In all 
cases error rates introduce biases in the summary statistics. The biases are larger for higher error rates. 
 

ChromatoGate 

7 

Volume No: 6, Issue: 7, March 2013, e201303001 Computational and Structural Biotechnology Journal | www.csbj.org 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
in the ‘abc’ package [36] of  the R programming language for 
statistical computing [37]. We sampled 1,000,000 candidate 
parameter vectors and used them to simulate multi-gene datasets with 
msABC [35]. The simulated and reference datasets were summarized 

using the average values of  θπ [38], θW [39], ZNS [40], and H [41]. 
For each dataset we retained the 1,000 most similar simulations, based 
on the distance between the summary statistics of  the simulated and 
the reference datasets. Then, we assessed the bias introduced by mis 

calls on estimates of  the population mutation rate θ and past 
population size changes. 
 

To obtain an estimate of  potential analysis time savings, EV 
tested ChromatoGate on 325 Mullus surmuletus sequences from the 

D-loop region with a length of  350 base pairs. These sequences had 
already been manually corrected by EV within 3 working days. EV 
repeated the error detection and correction procedure using 
ChromatoGate in 6 hours. The ChromatoGate-based correction 
detected more sequencing errors within a significantly smaller amount 
of  time. 

 
Conclusions 

 
We have presented the freely available and easy-to-use software 

ChromatoGate that allows for rapidly identifying and correcting base 
mis-calls as generated by capillary and gel-based sequencers. It also 
allows for aligning and merging forward and backward sequences and 
computing respective consensus sequences. The key feature of  

Figure 9. Base mis-calls bias the estimation of population genetics parameters. On the first two rows (A-F) the posterior distributions of parameters have been 
inferred from datasets that contain sequencing errors. At the bottom panel, sequencing errors have been removed. In figures A-C the error rates are given by 
the setA in Table 1, whereas Figures D-F error rates are described by the setB. The simulations implement a model of constant population size and θ = 10. 
Parameters were estimated using the ABC framework (see main text). In A, D, and G, we compare the posterior distribution of the population mutation 
parameter θ. B, E, and H show the posterior distributions of the time of population expansion, and C, F, and I show the expansion rate. Obviously, θ is 
overestimated when sequencing errors have been introduced. Furthermore, low-frequency alleles due to base mis-calls bias the analysis creating a signal of 
population size expansion. As expected, for MSAs with mis-calls, the estimated θ value is higher than the true value (Figures 9A, 9D, 9G) and a population 
expansion is detected (Figures 9B, 9C, 9E, 9F) when sequencing errors are present in the MSA. For small error rates (set errA in Table 1), the estimated θ value is 
3 times higher than the real θ value. Furthermore, a recent and strong expansion is inferred (Figures 9B and 9C). For higher, but still realistic, error rates (set 
errB in Table 1), the inferred θ value is more than 20 times greater than the real θ value (Figure 9D). Additionally, a very recent expansion—that occurred just 
before the present—is inferred (Figure 9E). In contrast to this, analogous inference on the reference dataset without base mis-calls did not yield significant 
deviations from the true, simulated parameter values (Figures 9G, 9H, 9I). The estimated θ value is 10 (Figure 9G), the maximum a posteriori rate of expansion is 
-2.23, and the inferred time of expansion amounts to approximately 1.8 Ne generations. In other words, a very old and weak expansion has been inferred on the 
reference dataset without base mis-calls. 
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ChromatoGate is that it maintains meta-data that allows the user to 
“go back” and inspect chromatogram peaks at any point of  the MSA 
assembly process and correct potential errors. A purely empirical 
assessment of  the time saving that can be achieved by using such a 
semi-automatic tool indicates that biologists can save approximately 
one order of  magnitude of  office time by deploying ChromatoGate. 

We also address the more fundamental question whether base-mis 
calls need to be corrected at all for phylogenetic and population 
genetic analyses by means of  simulated data experiments. Our 
experiments indicate that correcting for base mis-calls in MSAs used 
for phylogenetic analyses is not absolutely necessary. However, 
correcting for base mis-calls in population genetic analyses, which rely 
on inferring many parameters based on a substantially smaller number 
of  evolutionary events than in phylogenetic analyses, appears to be 
absolutely necessary. If  one does not correct for base mis-calls to get 
those few mutations right in population genetic analyses, parameter 
estimates can deviate significantly from their true values. 
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