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Abstract

Background: In population genetics, simulation is a fundamental tool for analyzing how basic evolutionary forces
such as natural selection, recombination, and mutation shape the genetic landscape of a population. Forward
simulation represents the most powerful, but, at the same time, most compute-intensive approach for simulating the
genetic material of a population.

Results: We introduce AnA-FiTS, a highly optimized forward simulation software, that is up to two orders of
magnitude faster than current state-of-the-art software. In addition, we present a novel algorithm that further
improves runtimes by up to an additional order of magnitude, for simulations where a fraction of the mutations is
neutral (e.g., only 10% of mutations have an effect on fitness). Apart from simulated sequences, our tool also
generates a graph structure that depicts the complete observable history of neutral mutations.

Conclusions: The substantial performance improvements allow for conducting forward simulations at the
chromosome and genome level. The graph structure generated by our algorithm can give rise to novel approaches
for visualizing and analyzing the output of forward simulations.

Keywords: Population genetics, Forward-in-time simulation, Fisher-Wright model, Algorithm, Software, Natural
selection

Background
The field of population genetics strives to determine,
how elementary evolutionary forces (i.e., natural selec-
tion, recombination, or random genetic drift) shape the
genetic landscape within population of a species. As for
related areas in evolutionary biology, rapid advances in
next-generation sequencing technology (e.g., [1]) have
transformed the field with the completion of the first
phase of the 1000 genome project [2] representing a recent
highlight. Thus, population genetics is rapidly transform-
ing into a data-driven science [3], while many methods
and tools are not up to the challenge yet [4] with respect
to scalability and efficiency.
Because of the complex processes in population genet-

ics, the inference machinery for analyzing the properties
of a population is often limited and needs to be comple-
mented by simulations. Some of the most common use
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cases of simulation software in population genetics are (i)
the verification of novel methods/models [5,6] and (ii) the
generation of datasets for assessing how using a different
model affects the properties of of a population. A promis-
ing, but computationally particularly expensive approach
is to use simulations for inferring specific properties
(e.g., demography [7]) of a given data sample, as imple-
mented, for instance by using approximate Bayesian com-
putation techniques [8]. For an overview of available
software and applications, see [9].
Forward-in-Time simulation represents a powerful

approach to simulating the evolutionary processes that
act on genomic regions (see review by [10]). Essen-
tially, sequences are represented in silico and the basic
evolutionary operations/events (e.g., mutation, selection,
and recombination) are explicitly applied to each simu-
lated individual, on a generation-by-generation basis. The
inferred, simulated sequences represent the exact out-
come of the underlying/assumed evolutionary process.
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However, this high accuracy comes at a high computa-
tional cost. Execution times are quadratic with respect to
the number of individuals, because the number of sim-
ulated generations needs to be increased with growing
population size. To obtain accurate results, the size of
the population that needs to be simulated must be cho-
sen realistically. However, realistic population sizes range
between a computationally already challenging 10,400
individuals in humans to an entirely prohibitive number
of 1,150,000 individuals in some species of Drosophila
melanogaster or 25,000,000 in Escherichia coli [11].
These excessive computational requirements explain

the popularity of approximate coalescent (backward)
simulations [12,13] that are substantially faster. The
coalescent-based approach is faster because only genomic
samples that survived until the present are simulated
backward in time. A substantial drawback of coalescent
simulations is that, natural selection can only be incor-
porated into the model by means of a single mutation
[14,15].
To date, only few attempts have been made to improve

the performance of forward simulators using optimiza-
tion techniques from computer science and via low-level
technical improvements. Chadeau-Hyam et al. developed
a strategy to re-scale simulation parameters such as to
decrease the effective population size that needs to be
simulated [16]. However, this shortcut induces a decrease
in accuracy (see [17]). Forwsim [18] (later extended by
[19]) implements a forward-algorithm that regularly sim-
ulates a small user-defined set of mutations under selec-
tion, forward in time. The neutral part of each haplotype
is simulated separately and executed with a delay of 8
generations. Thereby, one can circumvent simulating hap-
lotypes, if no ancestral material has survived until the
present. Distinguishing between neutral and non-neutral
mutations for accelerating forward simulations represents
a natural implementation choice, specifically since it is
assumed that the majority of mutations is effectively
neutral [20].
Finally, SFS_CODE [21] has become a state-of-the-art

forward simulator, because of an efficient implementation
in C coupled with a plethora of simulation features and
parameters.
Here, we describe design as well as optimization tech-

niques that allow for substantially more efficient forward-
in-time simulations. We introduce a novel algorithm, for
the a posteriori simulation of neutral mutations. In addi-
tion to runtime gains, our algorithm generates a data
structure that depicts the entire observable history of
each individual sequence, a feature that –to the best of
our knowledge– is unique among simulation software.
We make available a corresponding software package, the
Ancestry-Aware Forward-in-Time Simulator (AnA-FiTS,
available under GNU GPL at our project webpage:

http://www.exelixis-lab.org/aberer/anafits/index.html), a
C++ implementation that can handle challenging post-
genomic datasets for population genetics analyses.

Methods
In the following, we describe our algorithm for ancestry-
based simulation of neutral mutations. Subsequently, we
discuss implementation and optimization issues.

Algorithm for simulating neutral mutations
For forward simulation of a single generation of a popu-
lation with effective population size Ne, a scaled mutation
rate of θ = 4Neμ (with μ being the per-base mutation
rate), the scaled recombination rate ρ = 4Ner (with r
being the per-base recombination rate), the basic simula-
tion steps are: (i) sample diploid individuals by their fit-
ness, (ii) determine the number of recombination events
(Poisson random number drawn from Poi(ρ)) and create
recombinants, (iii) determine the number of non-neutral
mutations (Poisson random number drawn from Poi(θ ))
and mutate sequences, (iv) recalculate the fitness values
for each individual.
Since neutral mutations, by definition, do not affect

the survival probability of an individual (resp. the sam-
pling probability), we do not need to simulate neutral
mutations forward in time. This observation was first
explored in forwsim [18], where the simulation of the
neutral part of a sequence was delayed for a small
number of generations. Thereby, the actual calculations
required for this part of the simulation can be discarded,
if the haplotype under consideration did not survive
(because of drift or selection) until the present. The
authors demonstrated that, the simulation of neutral
sequences can be accelerated by a factor of two to five
by optimally choosing this so-called look-ahead param-
eter, that is, the number of generations, by which the
simulation of neutral mutations is delayed.
In AnA-FiTS, we deploy a different strategy: neutral

mutations are not simulated forward in time at all. Instead,
we keep track of the entire ancestry (and all recombi-
nation events) of all surviving individuals (potentially for
several thousand generations), create a graph structure
(see Figure 1), and only extract the neutral part of all
sequences from this graph structure once the forward
simulation has been completed. In other words, we retain
all information accumulated during the forward simula-
tion phase, exactly determine all parts of sequences, where
neutral mutations could have occurred and finally insert
neutral mutations into the sequence a posteriori. Note
that, in analogy to forwsim and in contrast to coales-
cent simulations, our algorithm is equivalent to simulating
all neutral mutations forward in time. Thereby, we can
guarantee simulation accuracy, which is one of the key
advantages of forward simulations.

http://www.exelixis-lab.org/aberer/anafits/index.html
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Figure 1 Backward event graph. The graph consists of M-nodes
(mutations) and R-nodes (recombinations). Edges represent ancestral
relationships, numbers stand for breakpoints (in R-nodes) or mutated
sequence position (in M-nodes). R-nodes point toward the donor of
the sequence at the downstream side of the breakpoint. Two
example sequences are extracted from the graph (lower right).

Simulating surviving neutralmutations
During l forward-simulation generations (typically l :=
10Ne for diploid organisms), AnA-FiTS annotates an
ancestry Al = {a1, a2, . . .al}, where ai is a surjective
function that maps the individual haplotypes in gener-
ation i to the haplotypes of the preceding generation
i − 1. In the following, we outline this procedure for
a single locus/chromosome. The extension to multiple
loci is described in the implementation section. The
variable ai is defined as ai : hi,j → hi−1,l, where
hi,j is the haplotype with index j in generation i, that
is mapped to its parental haplotype with index l in
generation i − 1. Haplotype indices are ordered, such
that adjacent pairs that start with an even index rep-
resent the two homologous versions of each locus for
diploid organisms (i.e., (hi,0, hi,1) or (hi,2, hi,3) represent an
individual).
As mentioned before, the algorithm also keeps track of

all recombination events (potentially multiple recombi-
nations per sequence and per generation) that occurred
during the forward phase. For each event, we store
the absolute sequence position, the haplotype index,
and the generation number. For a sequence of length
L, the information in Al and the corresponding set of
recombination events can be used to determine (via
back-tracking) the regions of ancestral haplotypes that
survived until the present. Only mutations that occurred
within these regions are observable in the present.
In the first step, our algorithm determines haplotypes
in ancestral generations (referred to as survivors) that

contributed material to the present generation (denoted
surviving regions). For these regions, we simulate neu-
tral mutations and identify those recombination events
that contributed to mutations in the present haplotype
instances.
The algorithm starts at the present generation and ini-

tializes surviving regions for each haplotype with a max-
imum interval of [0, L], where L is the sequence length.
Regions for ancestral haplotypes are initialized by the
tuple (∞, 0). Note that, the surviving regions of a hap-
lotype instance can be fragmented/scattered into many
segments by recombinations. To economize on runtime
and memory, we only keep track of the start position
of the very first segment rS and the end position of the
very last segment rE . By using this approximate surviving
’super-’region R = (rS, rE), we overestimate the size of the
actual surviving region. We correct for this in a later stage
of the algorithm, when sequences are extracted from the
graph structure. Finally, to determine the surviving haplo-
type region in generation i−1, we iterate over all survivors
Si of generation i starting with haplotypes contained in
the present generation. For each surviving haplotype hi,l ∈
Si with region (rS, rE), we propagate the surviving regions
as described in the following algorithm to the members
of the preceding generation. Let hi−1,k with region (r′S, r′E)
be the parent haplotype and hi−1,k+1 with region (r∗S , r∗E)
be the homologous haplotype in the corresponding parent
individual:



Aberer and Stamatakis BMC Bioinformatics 2013, 14:216 Page 4 of 13
http://www.biomedcentral.com/1471-2105/14/216

For simplicity, the algorithm described above assumes
that the recombinant emerged from at most one recom-
bination event. For multiple recombination events per
recombinant, the algorithm has to be adapted, such that
surviving regions of parental haplotypes are extended
until the next recombination breakpoint. This has also
been implemented in the AnA-FiTS software.
During the procedure described above, we also deter-

mine the set of survivors Si−1 from the preceding genera-
tion. In the case that a recombination event does not split
the surviving region (rS , rE), we can simply ignore it, if the
following property does not hold: assume, haplotype hi,l is
mapped to hi−1,k with surviving region (rS , rE) and hi,l is
a recombinant with a breakpoint b < rS. This means that,
hi,l does not inherit mutations from hi−1,k , but instead
from the homologous haplotype hi−1,k+1 it recombined
with. If we can not ignore the recombination, we create a
node instance for the graph that will be constructed in the
next step. The survivors of each generation are stored for
further processing in subsequent steps.
Once survivors and surviving regions for a generation

i have been determined, we can then simulate the neu-
tral mutations that occurred in this generation and that
are still observable in the present generation. Thus, the
expected number of neutral mutations is reduced by a
factor of F = |Si|

2·Ne
. Furthermore, if a neutral mutation

occurs outside the estimated surviving region, it can sim-
ply be ignored. As shown in Figure 2 , depending on the
recombination rate r, the number of haplotypes that con-
tribute genetic material to the present generation quickly
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Figure 2 Surviving haplotypes per generation. Number of
haplotypes that may contribute genetic material to the present
generation (survivors) for various per-sequence / per-generation
recombination rates r ∈ {10, 1, 0.1, 0.001},Ne = 500 and a sequence
length of 107 nucleotides.

converges and may cause values of F to become small.
Note that, we expect the algorithm to become ineffi-
cient for exceptionally high recombination rates, such as
r := 10 (i.e., 10 recombinations per individual and per
generation).

Graph construction
In the algorithm step described above, we determined
survivors Si for each generation i, the set of relevant
recombinations (stored as so-called R-nodes), and the set
of relevant neutral mutations (so-called M-nodes). For all
nodes, we store the generation of origin and the corre-
sponding haplotype index hi,l. The goal of the procedure
we describe here, is to construct a graph (the Backward
Event Graph BEG, see Figure 1 for an example). The BEG
is a directed acyclic graph with two types of nodes: (i) M-
nodes (for mutations) with out-degree 1 and (ii) R-nodes
(for recombinations) with out-degree 2. Thus, each node
in the graph represents the state of an ancestral haplotype
that reflects the history of all mutation or recombination
events experienced by its ancestors. A directed edge con-
necting node n1 to node n2 indicates that n2 emerged from
n1 after mutation or recombination.
Given this information, the graph can be constructed

forward in time (starting with generation 0) using an
array Ai for the current generation and an array Ai−1
for the preceding generation i − 1 that contains node
references/pointers. Array Ai is populated by carrying
over/propagating references from Ai−1 according to the
survival information stored in Si−1. If a surviving haplo-
type of generation i underwent recombination or muta-
tion, the respective R- or M-node nnew is used to replace
the node nold that was propagated and an edge is created
between nnew and nold. We also create an additional edge
to the haplotype which is homologous to nold for R-nodes
(recombination). Figure 3 provides a complex example,
where a recombinant emerges from three recombina-
tion events that originated at two homologous ancestral
haplotypes 1 and 2.

Extraction of sequences
The algorithm described above constructs the BEG and
an array of haplotype states ni (references to nodes in the
BEG), that survived until the present. In the final step, we
extract the exact sequence for each node ni from the BEG
by recursively traversing the graph starting at ni, while
keeping track of the region of interest which is segmented
by each recombination event which will be encountered.
Since we execute the backtracking procedure for each
node ni individually, (in contrast to the algorithm descrip-
tion) the exact borders of all segments of the surviving
region for this node are known at any given point in time.
Thus, we can ignore all mutation events that did not occur
within the surviving region, but were inserted into the
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Figure 3 Information flow in the BEG graph. An example of the information flow (i.e., regions that potentially contain ancestrial mutations) for a
recombinant that underwent three recombination events. Each line is labeled with the start (left of edge) and end (right of edge) of regions that
survive.

graph because of overestimation or because this mutation
forms part of the surviving region of another haplotype.
In practice, the above extraction procedure is inefficient.

As a consequence, the sequence reconstruction step dom-
inates execution times. Consider two haplotype states n1
and n2 that have survived, where n2 is an M-node with
ancestor n1. For both nodes, we have to traverse all ances-
tral nodes of n1 and n2 to obtain the two corresponding
sequences s1 and s2. To accelerate this process, it suf-
fices to create sequence s1 via backtracing starting at n1
and to generate s2 as a copy of s1 and then simply add
the mutation events induced by node n2 in the end. In
the following, we explain, how the computational cost of
sequence extraction can be reduced.
Prior to the actual sequence extraction step, the graph

is traversed twice, starting with each haplotype ni that
survived until the present. In the first traversal, we approx-
imate the surviving region for each node as described in
the algorithm. Thus, if we decide to explicitly determine
and store the sequence of a node, we already know the
maximum size of the region of interest beforehand.
In a second traversal that starts with each haplotype in

the present, we determine for which nodes intermediate
sequences should be created. In other words, the surviving
mutations are represented explicitly in this node. During
these traversals, we actually stop a traversal, if the tra-
versed node has already been visited by another traversal.
For each node, we also store the number v of times the
node has been visited.We refer to nodes with v ≥ 2 as coa-
lescent nodes, since ancestral material (resp. the surviving

regions) of two lineages coalesces in these nodes. Finally,
we determine the distribution of v and the 5% nodes with
highest v are represented explicitly, while all remaining
nodes will be traversed several times during sequence
extraction.
Then, the sequences can be extracted via a final full

traversal. The 5% cut-off (a tuning parameter of the
algorithm) was determined empirically. It yields good
results with respect to balancing runtime versus mem-
ory requirements. Note that, if every coalescent node
(v ≥ 2) is represented explicitly, memory requirements
would become prohibitive for whole-chromosome simu-
lations with 10,000 individuals. In general, the 5% cut-off
proves to be sufficient to attain a substantial decrease of
the traversal cost for sequence extraction.

Implementation and optimization
The ancestry-based algorithm for simulating neutral
mutations as discussed in the previous section has
specifically been developed to improve runtimes of
forward-simulations. In the following, we discuss low-
level implementation issues and optimization techniques
of AnA-FiTS.

Memory requirements of ancestry and BEG
For the majority of possible AnA-FiTS invocations with
respect to user parameter combinations, storing the
ancestry Al requires the largest amount of memory.
Depending on the effective population size Ne, we need
to store ancestry information for 10 · Ne2 haplotypes. If
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this exceeds the amount of available memory, the user
can set a command line flag such that the memory uti-
lization of the ancestry does not exceed a user-specified
soft limit (see below). AnA-FiTS then tries to split up
the forward simulation into sections (a number of gener-
ations that is as large as the user parameter permits) and
updates the graph after each section leading to increased
runtimes. In some instances the graph representation
itself can become at least as memory intensive as the
ancestry. Furthermore, for large graphs, the explicit bit
vector representation of intermediate sequences may fur-
ther increase memory requirements. Therefore, currently
no hard upper memory utilization limit can be imposed
on AnA-FiTS runs.
The ancestry Al only works correctly for a single locus.

For multiple unlinked loci (e.g., chromosomes), we map
each individual to its two parent individuals instead of
mapping it to individual haplotypes. For this, we use a
per-chromosome bit vector to keep track of which of the
two possible homologous haplotypes was inherited from
the respective parent. Apart from their high memory-
efficiency, bit vectors can also be efficiently initialized
with random bits using a random number generator
(i.e., each bit represents a choice as to which haplotype
was inherited by an individual).
To avoid unnecessary and inefficient frequent mem-

ory allocations, the entire ancestry (an array of arrays)
and the array of survivors are allocated as single, mono-
lithic blocks. For the ancestry, we dynamically determine
the minimal number of bytes that is required for stor-
ing a generation as a function of the population size of
the preceding generation (e.g., if the previous generation
contained 250 individuals, a 8-bit unsigned char is
sufficient). Since, under most simulation scenarios, Ne
does not exceed 65,536 individuals, it is mostly sufficient
to use the unsigned short integer (= 2 bytes) datatype for
saving memory.
Note that, beside all efforts to keep the memory con-

sumption of AnA-FiTS as low as possible, the entire
ancestry (or –as described above– part of it) is kept in
main memory during simulation. This necessarily means
that AnA-FiTS exhibits higher memory requirements
than comparable programs.

Randomnumber generation
High quality (pseudo-)random number generators are
essential for simulation tools. To date, the Mersenne
twister algorithm [22] is considered as state-of-the-
art in pseudo-random number generation (PRNG). A
SIMD-based version of the Mersenne twister (SFMT)
[23] employs Streaming Single instruction, multiple
data Extensions (SSE) instructions to generate random
numbers at almost twice the speed as the original
Mersenne twister. AnA-FiTS comes with a distribution

of RandomLib [24], a C++ implementation of SFMT. For
efficiency, RandomLib initializes an array with random
bytes and then transforms the bytes of this array (in steps
of 32 or 64 bits) into the required primitive data type
(i.e., double, integer, boolean) for the requested range.
For forward simulations, we can exploit two application-

specific properties to more efficiently use PRNGs: (i) usu-
ally for the ancestry, integer values of less than 4 bytes are
required, and (ii) uniform random numbers are frequently
drawn from the same interval (e.g., in case of the ances-
try from [ 0,N), whereN is the effective population size of
the previous generation). When a large amount of random
numbers with these two properties (small integer num-
bers, constant interval) is required, we can directly initial-
ize a target array from the internal array of the PRNG and
transform the minimal number of random bytes for the
respective integer type into uniform random numbers for
the required range using SSE instructions. For instance,
if simulations require sampling 10 integers ∈[0, 1000), we
can copy 20 bytes (= 10 unsigned short) from the
PRNG’s internal array into a location of the ancestrymem-
ory block and use vector instructions to transform the
20 bytes into 10 integers of the specified range. With-
out this optimization, RandomLib would produce 40 bytes
of randomness and transform 4 bytes into one integer
separately.

Non-neutral sequence representation
For forward simulators that work with a given number
and pre-defined locations of polymorphic sites (such as
[25]), it is straight-forward to represent haplotypes as
bit arrays. If we want to simulate a sequence with a
huge number of base-pairs (e.g., the human chromosome
with 10 Mbp), bit arrays are not the data structure of
choice any more because they become too sparse. Thus,
in other forward simulator implementations, a haplotype
is stored as a sequence of mutations with respect to an
initial reference sequence. For instance, SFS_CODE [21]
uses self-balancing binary trees to represent the poly-
morphisms of a haplotype. Sorted binary trees allow
for rapid insertion of novel mutations and fast extrac-
tion of sub-sequences which are required for creating
recombinants.
An alternative data structure is used in forwsim

that maintains sorted arrays of sequence positions. Since
for AnA-FiTS, we want to store additional informa-
tion about each mutation (e.g., generation of origin or
base), we use a data structure that is based on refer-
ences/pointers to mutation object instances. When sorted
arrays are used, sub-sequence replication for creating
recombinants can be efficiently implemented using the
memcpy() system call. This is because finding coordi-
nates within the sequence via a binary search has the same
time complexity of O(log(n)) as searches in a sorted tree.
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Additionally, changing the array size induces a smaller
memory allocation overhead than allocating additional
nodes in sorted trees. Themain drawback of sorted arrays
is the insertion cost of O(n). In practice however, obtain-
ing the correct relative position via a binary search is
usually more expensive than executing an insertion as
long as insertions are implemented via the memcpy()
system call. Note that, the memcpy() system call is also
vectorized via SSE intrinsics. Finally, the number of inser-
tion operations is relatively small in AnA-FiTS, since we
only simulate non-neutral mutations forward in time.
We experimented with various sorted tree implemen-

tations, for instance, the C++ STL std::set imple-
mentation or Judy arrays by [26], which are based on
cache-optimized 256-ary trees. For AnA-FiTS, we found
that the tree data structures did not outperform our sorted
array implementation.

Memorymanagement
In forward simulations, the number of distinct haplo-
type instances containing the sorted array of mutation
references and further meta-information and the num-
ber of mutation instances changes dynamically at a rapid
pace. Thus, dynamic memory allocations (repeated calls
to malloc () and free()) that are invoked in the
inner parts of nested loops quickly dominate runtimes.
As mentioned in the previous section, AnA-FiTS uses
block allocation, instead of dynamic allocation whenever
possible. Apart from being faster this also prevents heap
fragmentation.
One approach to handle the rapid turnover of haplotype

and mutation instances more efficiently is to use free lists
in conjunction with reference counting. The underlying
idea is to keep track for each allocated instance, how often
it is referenced in the current generation (in case of hap-
lotypes) or in present haplotypes (in case of mutations).
Instead of deallocating unreferenced instances, instances
are appended to a list, the free list, from which new
instances can then be allocated again, when required.
However, this allocation strategy still uses more than 10%
of total runtime.
Instead, we use two task-specific allocation schemes

that keep memory allocation overhead to an absolute
minimum. For haplotype instances, we deploy a free ring
scheme (see Figure 4). As the name suggests, a free ring
contains references to allocated haplotype instances in a
similar way as a free list. Whenever a haplotype is carried
over into the next generation, we update its generation
number (denoted as age in Figure 4). Thus, when hap-
lotype instance memory is requested from the free ring
structure, an iterator traverses the elements in the free
ring and returns the first instance that is neither used in
the current nor the previous generation. If no free instance
is available, the free ring capacity is doubled by allocating
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Figure 4 Free ring. The allocation structure for haplotype instances
(free ring). The iterator traverses the ring and returns the first instance
that is not present in the current or the previous generation.

new haplotype instances. Since it is unlikely that all ref-
erences of a haplotype will be carried over to the next
generation in the sampling phase without being subject to
recombination or mutation, the iterator typically finds an
unused instance after a small number of search steps.
In contrast to this, mutation instances need to be allo-

cated in blocks, since references to instances (as in the
free list) represent an inefficient mechanism for this task,
because mutation instances are comparably small in size.
Moreover, for large numbers of mutations, a correspond-
ing large number of memory allocation invocations would
be required, with a negative impact on performance. Allo-
cating monolithic blocks with dynamic re-sizing is also
not possible, because addresses of mutation instances can
change which would invalidate the references to muta-
tions that are stored in the haplotype instances. Instead,
we allocate multiple blocks (extended by a factor of two
if the capacity of the previous block is exhausted) of
instances and implement an iterator that searches for an
unused instance, such that it jumps to the next blockwhen
the end of the current block has been reached. When a
free instance has been found, it is flagged as in use. This
flag is updated in a cleanup step that is applied after a fixed
number of generations. In this cleanup step, mutation
instances that occur in all haplotypes (fixed mutations)
are removed from all haplotypes. Thus, this phase can be
used to efficiently update the in use flag of each muta-
tion without inducing a large overhead. Since, under this
scheme, the addresses of instances do not change, we refer
to this allocation structure as address-preserving free ring
(see Figure 5).
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Figure 5 Reference preserving free ring. The allocation structure for mutation instances (address-preserving free ring). Multiple blocks of mutation
instances are allocated. The iterator returns the first instance that is not being used or allocates the next block, if no free instance can be found.

Implementationof neutral sequence extraction
The main challenge in implementing the BEG algorithm
is to design an efficient method for extracting sequences
from the graph.
For this task, we can use the following property: dur-

ing the sequence extraction phase, all neutral mutations
that occurred during simulation are known. Thus, bit
arrays are the most adequate data structure for storing
neutral sequences. After sorting mutations by their loca-
tion, each mutation is assigned its corresponding index
in the bit array. As a result, the cost of adding a muta-
tion that is encountered during sequence extraction to a
given sequence is reduced to merely setting a bit. Han-
dling recombinations is computationally more expensive,
since we have to determine the bit array indices of the
start and end points for the surviving regions of the parent
haplotype via a binary search. Carrying over the relevant
mutations from parent haplotypes is implemented as a
bit-wise or-operation.
This implementation is particularly efficient because the

sequence output of the simulation can directly be writ-
ten as bit array to a binary file. Thus, output files do not
require a lot of disk space and programs that directly eval-
uate the output of a large simulation can efficiently parse
and post-process this output data.

Results and discussion
In this section, we evaluate the runtime performance
of AnA-FiTS. In general, conducting a fair compari-
son between forward simulation tools represents a diffi-
cult task, since each simulator uses different assumptions
(e.g., finite sites versus infinite sites or pre-defined muta-
tion sites versus randommutation sites). For a meaningful
technical analysis, we separately evaluate the two key
aspects of AnA-FiTS: efficient implementation of non-
neutral forward simulation and ancestry-based simulation
of neutral mutations. For realistic use cases, both features
independently contribute a certain amount of run time
improvement.
For all runs discussed throughout this section, we set

mutation and recombination frequencies to μ per base =

rper base = 2.5 · 10−8 which roughly correspond to the
empirical rates for humans [27,28]. For fixed μ and r, the
runtime depends on the locus length L and the effective
population size Ne. All runs were executed on a 4 × 8
core machine (AMDOpteron 6174) with a total of 256 GB
RAM. The execution times provided here are the result
of 4 independent runs with different random number
seeds. We discard the slowest runtime in order to correct
for the impact of seed values that generate exception-
ally expensive simulations and average over the remaining
three.
Moreover, we validate AnA-Fits by comparing the

output of our software to datasets generated with estab-
lished simulation codes. Finally, we describe runtime gains
for the simulation of partially neutral sequences, specifi-
cally in a whole-genome setting for human sequences.

Runtime improvement: forward simulation only
Here, we evaluate the efficiency of the pure forward sim-
ulation part of our implementation and compare it to
SFS_CODE. AnA-FiTS can simulate each mutation for-
ward in time by choosing a constant small selection coef-
ficient s �= 0 for each mutation that is to be simulated.
If s is small enough, it is effectively neutral. This way the
BEG algorithm is not applied. Simulating close to neutral
mutations (s := 0), forward in time, represents the most
expensive case, since for large values of s the mutation
quickly undergoes selection and for small negative values
it is removed from the gene pool by selection. In both
cases the mutation quickly vanishes which in turn reduces
runtimes.
In runs with SFS_CODE, we simulate neutral mutations

forward in time. In general, it is not possible to effi-
ciently simulate one contiguous locus of the length of a
chromosome with SFS_CODE (i.e., this is orders of mag-
nitude slower). Instead, for simulating a locus of 1,000,000
base pairs (bp), the user has to break up the locus into a
number of linked loci (e.g., 100 × 10,000). For obtaining
SFS_CODE runtimes, we did not optimize the break-up
strategy exhaustively, but followed the general suggestions
by the author and simulated chromosome lengths listed in
Figure 6 as 50 · 1 Kbp, 50 · 10 Kbp and 500 · 10 Kbp.
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Figure 6 Performance comparison to SFS_CODE. Runtime
comparison between SFS_CODE and AnA-FiTSwithout the BEG
algorithm. y-axis depicts runtime improvement factor (SFS_CODE
runtime divided by AnA-FiTS runtime).

Figure 6 depicts the relative runtimes of both programs.
Overall, AnA-FiTS is between 2.9 and 96.2 times faster
than SFS_CODE. In all except 2 runs, AnA-FiTS is at
least one order of magnitude faster than SFS_CODE.
The runtime improvements do not show a clear depen-

dency on one of the two input dimensions (Ne, sequence
length). We assume that this is because, for certain
steps, SFS_CODE switches between alternative imple-
mentations depending on the number of recombina-
tion/mutation events that are expected per generation.
Further parameters that may influence the runtime differ-
ences between the codes are: (i) frequency of the cleanup
steps in either code (fixed to 100 in AnA-FiTS since in
AnA-FiTS no significant performance impact could be
detected) and (ii) number of linked loci the sequence was
split into (SFS_CODE only).

Runtime improvement: ancestry-based simulation
As already mentioned, the BEG algorithm is inspired by
the postponed simulation of neutral mutations as imple-
mented in forwsim. Thus, in order to evaluate the
stand-alone efficiency of the BEG algorithm, we com-
pare the runtime for simulating entirely neutral sequences
between AnA-FiTS and forwsim. Note that, forwsim
simplifies the Fisher-Wright model in two ways: (i) while
it assumes finite sites, at most one mutation per site is
allowed and (ii) haplotypes undergo at most one recom-
bination event per generation. We omit a comparison
between forwsim and AnA-FiTS that includes for-
ward simulation of non-neutral mutations. The reason
for this is that, forwsim assumes a fitness model that

differs from the model implemented in AnA-FiTS and
SFS_CODE: for each non-neutral site, the user has to
specify selection coefficients for the two homozygous
cases and the heterozygous case. Thus, forwsim needs
to iterate over all non-neutral mutations of each indi-
vidual and recompute the fitness for each individual as
opposed to AnA-FiTS and SFS_CODE, where one sim-
ply multiplies the per-haplotype coefficients. In the final
analysis, the non-neutral mutation model implemented
in forwsim, is more powerful (balancing selection can
be accommodated), but slower and has a hard limit with
respect to the number of non-neutral mutations that can
be simulated. In AnA-FiTS, the fitness of an individual
is the product of the fitness effects f (where f = 1 − s
with selection coefficient s) of all mutations on either
haplotype.
Figure 7 depicts the relative runtimes of forwsim and

AnA-FiTS. The BEG algorithm allows for simulation of
neutral sequences that is between 2.2 and 11.0 faster than
the delayed simulation in forwsim. In less than 25% of all
cases (all Ne = 100), the runtime improvement is below
a factor of 5. Since for these cases only a small num-
ber of recombination/mutation events occur along short
sequences and a small effective population size of 100 is
used, the runtime improvement in AnA-FiTS is mainly
due to the more efficient random number generation. For
longer sequences with a higher number of individuals,
our BEG algorithm is substantially more efficient than the
postponing algorithm of forwsim. Note that, these run-
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Figure 7 Performance comparison to forwsim. Runtime
comparison between forwsim and AnA-FiTS for simulation of
strictly neutral mutations. y-axis depicts runtime improvement factor
(forwsim runtime divided by AnA-FiTS runtime). Missing bars
(NA) indicate prohibitive runtime.
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Figure 8 Verification under neutrality. Summary statistics (one per column) for datasets created with three different parameter settings of
AnA-FiTS (see text) or with ms for reference. Each row corresponds to one of the 5 distinct simulation scenarios (see text).

times already include the overhead that is associated with
generating and writing the BEG to file.

Validation
We performed a validation analogous to the validation of
SFS_CODE [29]. Since under neutrality, summary statis-
tics of datasets that are simulated using AnA-FiTS can
easily be compared with the equivalent summary statistics
generated by the popular coalescent software ms [12], we
mainly validate datasets that have been simulated under

neutrality. We also compare simulations with AnA-FiTS
under selection to datasets produced by SFS_CODE.

Under neutrality
To ensure that population genetic simulation software
produces correct results, it is common to compare sum-
mary statistics for datasets produced by the software that
needs to be validated to the respective summary statistics
of widely-used and well-tested software packages. To date,
ms is among the most cited population genetic simulation



Aberer and Stamatakis BMCBioinformatics 2013, 14:216 Page 11 of 13
http://www.biomedcentral.com/1471-2105/14/216

Figure 9 Verification under Selection. Summary statistics (one per column) for datasets created either with AnA-FiTS (black) or with
SFS_CODE) (red). Columns correspond to the respective summary statistic and rows to simulation scenarios that are described in the text.

tools. Slight deviations in summary statistics may be
expected, since for instance ms implements an infinite-
sites model of mutation, whereas AnA-FiTS implements
a full finite-sites model. We used AnA-FiTS to simulate
chromosome-sized sequences. Thus, the effect of non-
single nucleotide polymorphisms or multiple mutation
events that give rise to the same genotype should not
influence the respective summary statistics.
In addition to this standard validation setup, for

AnA-FiTS we also have to show that (i) the BEG-
algorithm yields correct results (which could be shown
by a formal mathematical proof alternatively) and that (ii)
the algorithm is correctly implemented. Thus, irrespec-
tive of the respective simulation scenarios we show, that
all three simulation modes produce the same summary
statistics as ms: (i) all mutations are simulated forward
in time (referred to as AF-FOR), (ii) a part of the muta-
tions is simulated forward in time (s := 0), while the rest
is obtained via an ancestry-based simulation (referred to

Table 1 Performance gainswith ancestry-based simulation

Ne = 1, 000; L = 5 · 106 Ne = 5, 000; L = 106

AF, F = 100% 20.2 secs 128.9 secs

AF, F = 10% 3.0 secs 32.6 secs

AF, F = 1% 2.0 secs 26.6 secs

AF, F = 0% 1.3 secs 16.5 secs

SFS_CODE 427.3 secs 2910.4 secs

AnA-FiTS (AF) runtimes (in sec) for simulation of neutral sequences with a
varying proportion F of mutations simulated forward in time (e.g., F := 10% ⇒
10% of mutations are simulated forward in time, 90% using the BEG algorithm);
SFS_CODE runtime for comparison. Simulations for 10 · Ne generations, with
per-base recombination and mutation frequency of 2.5 · 10−8 .

as AF-MIX), (iii) all mutations are simulated via ancestry-
based simulation (referred to as AF-ANC),
We test the correctness of our algorithm and implemen-

tation for 5 specific scenarios employing the number of
haplotypes, the number of segregating sites, the nucleotide
diversity, and the site frequency spectrum as summary
statistics. The scenarios are (for a present population size
of Np): (i) mutation only (no recombination), (ii) muta-
tion and recombination, (iii) mutation, recombination, a
doubling in population size taking place 0.2 · Np genera-
tions ago, (iv) mutation, recombination, a with a factor-
2-bottleneck taking place 0.25 · Np generations ago, (v)
mutation, recombination, with an exponential population
growth setting in 0.5 · Np generations ago.
For all scenarios, we assume an initial population size of

Ne := 500, a sequence length L := 106, a mutation rate
m := 10−8 and a recombination rate r := 10−8 (where
applicable). For the forward simulation scenario we calcu-
lated 10 · Ne generations in total. For each scenario, the
sampling size was set to 50 sequences, except in the expo-
nential scenario, wherewe sampled 75 sequences. Figure 8
shows the distribution of summary statistics after 30,000
simulations for each of the three AnA-FiTS parameters
and for correspondingms runs. To visualize the number of
segregating sites and the nucleotide density, we used the
Freedman-Diaconis’ rule [30] for a binning that retains a
high level of resolution. Even using such a high resolution,
the distributions in Figure 8 almost correspond perfectly,
with the exception of minor range deviations around the
mode of the distribution.

Under selection
To validate our software for simulations with selection,
we compared the same summary statistics (see previous
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section) as obtained by AnA-FiTS to summary statis-
tics for datasets simulated with SFS_CODE. To keep the
computational effort within reasonable limits, we reduced
the number of simulations to 15,000, the sequence length
to 105 bp, the effective population size to Ne = 250, and
set themutation and recombination rate per sequence and
per base pair tom := r := 10−6 (sampling size retained at
50 sequences).
Figure 9 shows a comparison of summary statistics for

two scenarios. In scenario one, we chose a fixed selec-
tion coefficient s := 0.01 using either a positive (20% of
all mutations) or a deleterious effect (80% of mutations)
for all mutations. In scenario 2, selection coefficients are
drawn from a normal distribution with mean μ = −0.01
(i.e., mutations will have a deleterious effect) and standard
deviation σ = 0.001. This particularly high value for the
mean and the fixed value of selection coefficients respec-
tively was chosen to ensure that selection does indeed
affect the summary statistics that are being assessed.
For SFS_CODE simulations, we simulated the 100 Kbp

sequence as 20 linked loci of length 5 Kbp. As shown
in the Figure 9, the distributions of summary statistics
of AnA-FiTS show a high level of agreement to the
respective distributions obtained with SFS_CODE.

Large-scale simulation of partially neutral sequences
Our algorithmic techniques and low-level technical opti-
mizations improve AnA-FiTS execution times by one
to two orders of magnitude compared to SFS_CODE for
plain forward simulation of sequences. If the user spec-
ifies a fraction of mutations to be neutral, AnA-FiTS
can become faster by more than one additional order of
magnitude (see Table 1).
Given these runtime improvements, coupled with the

continuous advances in hardware, large-scale simulations
of genomic regions at the chromosome level are becom-
ing feasible. AnA-FiTS also allows for simulating multi-
ple chromosomes (resp. large unlinked loci, one separate
graph is generated per locus). If we reduce the frac-
tion of non-neutral mutations to 10%, the entire (female)
human genome (simulated as 23 unlinked loci with a total
3.037·109 bp for 10 · Ne generations) can be simulated for
100 individuals within 55.2 seconds, resulting in a total
of 159,651 segregating sites. For 200 individuals (same
parameters), our implementation requires 441.7 seconds,
yielding a dataset with 323,673 segregating sites.

Conclusions
We discussed the design and optimization of a highly
efficient simulator for the forward-in-time simulation of
population genetic datasets. Our software is up to two
orders of magnitude faster than competing state-of-the
art software. Moreover, we described the BEG algorithm,
that may further accelerate simulation for the common

scenario, when a fraction of mutations does not have
an impact on the fitness of individuals. Our algorithm
outperforms a similar exploratory approach by up to one
order of magnitude, while it is at the same time capable of
retaining the entire observable history for each haplotype.
We demonstrated that our software allows for forward-
in-time simulation at the whole-chromosome and even
whole-genome level within acceptable execution times.
Our novel graph structure (the BEG) may become useful

for population geneticists. Graph metrics can be com-
puted on this structure, and the surviving material of any
ancestrial haplotype can be reconstructed for any given
point in time. Alternatively, local trees could be extracted
from the BEG for each sequence segment that did not
undergo recombination.
We believe that the availability of AnA-FiTS will lead

to an increased usage of forward simulation in popula-
tion genetics, given its importance for research on natural
selection, and in the context of approximate Bayesian
computation. Thus, our tool can handle the analytical
challenges of the post-genomic era.

Abbreviations
PRNG: Pseudo random number Generator; BEG: Backwards event graph.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AJA and AS designed the study. AJA developed the algorithm and
implemented/optimized the simulator. AJA and AS wrote the paper. Both
authors read and approved the final manuscript.

Acknowledgements
We wish to thank P. Pavlidis at HITS for his valuable input during the early
phases of this project. We would also like to thank J.D. Jensen and G. Ewing for
useful comments on this manuscript. We thank two anonymous reviewers for
their comments.

Received: 7 April 2013 Accepted: 3 July 2013
Published: 9 July 2013

References
1. Liu DJ, Leal SM: Replication strategies for rare variant complex trait

association studies via next-generation sequencing. Am J HumGen
2010, 87(6):790–801. [http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2997372&amp;tool=pmcentrez&amp;rendertype=abstract]

2. Abecasis GR, Auton A, Brooks LD, DePristo Ma, Durbin RM, Handsaker RE,
Kang HM, Marth GT, McVean Ga: An integratedmap of genetic
variation from 1,092 human genomes. Nature 2012, 491(7422):56–65.
[http://www.ncbi.nlm.nih.gov/pubmed/23128226]

3. Pool JE, Hellmann I, Jensen JD, Nielsen R: Population genetic inference
from genomic sequence variation. Genome Res 2010, 20(3):291–300.
[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2840988&amp;tool=pmcentrez&amp;rendertype=abstract]

4. Akey JM, Shriver MD: A grand challenge in evolutionary and
population genetics: new paradigms for exploring the past and
charting the future in the Post-genomic era. Front Genet 2011,
2(July):47. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
3268600&amp;tool=pmcentrez&amp;rendertype=abstract]

5. Enard D, Depaulis F, Roest Crollius H: Human and non-human primate
genomes share hotspots of positive selection. PLoS Genet 2010,

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2997372&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2997372&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/23128226
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2840988&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2840988&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3268600&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3268600&amp;tool=pmcentrez&amp;rendertype=abstract


Aberer and Stamatakis BMCBioinformatics 2013, 14:216 Page 13 of 13
http://www.biomedcentral.com/1471-2105/14/216

6(2):e1000840. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2816677&amp;tool=pmcentrez&amp;rendertype=abstract]

6. Sinha P, Dincer A, Virgil D, Xu G, Poh YP, Jensen JD:On detecting
selective sweeps using single genomes. Front Genet 2011,
2(December):85. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3268637&amp;tool=pmcentrez&amp;rendertype=abstract]

7. Li J, Li H, Jakobsson M, Li S, Sjödin P, Lascoux M: Joint analysis of
demography and selection in population genetics: where do we
stand and where could we go?Mol Ecol 2012, 21:28–44. [http://www.
ncbi.nlm.nih.gov/pubmed/21999307]

8. Beaumont Ma, Zhang W, Balding DJ: Approximate Bayesian
computation in population genetics. Genetics 2002, 162(4):2025–2035.
[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
1462356&amp;tool=pmcentrez&amp;rendertype=abstract]

9. Hoban S, Bertorelle G, Gaggiotti OE: Computer simulations: tools for
population and evolutionary genetics. Nat Rev Genet 2011,
13(2):110–122. [http://www.ncbi.nlm.nih.gov/pubmed/22230817]

10. Carvajal-Rodríguez A: Simulation of genes and genomes forward in
time. Curr Genomics 2010, 11:58–61. [http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=2851118&amp;tool=pmcentrez&amp;
rendertype=abstract]

11. Charlesworth B: Fundamental concepts in genetics: effective
population size and patterns of molecular evolution and variation.
Nat Rev Genet 2009, 10(3):195–205. [http://www.ncbi.nlm.nih.gov/
pubmed/19204717]

12. Hudson RR: Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics (Oxford, England) 2002,
18(2):337–338. [http://www.ncbi.nlm.nih.gov/pubmed/11847089]

13. McVean GaT, Cardin NJ: Approximating the coalescent with
recombination. Philos Trans R Soc Lond B Biol Sci 2005,
360(1459):1387–1393. [http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=1569517&amp;tool=pmcentrez&amp;rendertype=abstract]

14. Spencer CCa, Coop G: SelSim: a program to simulate population
genetic data with natural selection and recombination.
Bioinformatics (Oxford, England) 2004, 20(18):3673–3675. [http://www.
ncbi.nlm.nih.gov/pubmed/15271777]

15. Ewing G, Hermisson J:MSMS: a coalescent simulation program
including recombination, demographic structure and selection at a
single locus. Bioinformatics (Oxford, England) 2010, 26(16):2064–2065.
[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2916717&amp;tool=pmcentrez&amp;rendertype=abstract]

16. Chadeau-Hyam M, Hoggart CJ, O’Reilly PF, Whittaker JC, De, Iorio M,
Balding DJ: Fregene: simulation of realistic sequence-level data in
populations and ascertained samples. BMC Bioinformatics 2008, 9:364.
[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2542380&amp;tool=pmcentrez&amp;rendertype=abstract]

17. Kim Y, Wiehe T: Simulation of DNA sequence evolution under models
of recent directional selection. Brief Bioinform 2009, 10:84–96. [http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2638626&amp;
tool=pmcentrez&amp;rendertype=abstract]

18. Padhukasahasram B, Marjoram P, Wall JD, Bustamante CD, Nordborg M:
Exploring population genetic models with recombination using
efficient forward-time simulations. Genetics 2008, 178(4):2417–2427.
[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2323826&amp;tool=pmcentrez&amp;rendertype=abstract]

19. Doroghazi JR, Buckley DH: Amodel for the effect of homologous
recombination on microbial diversification.. Genome Biol Evol 2011,
3:1349–1356. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3240962&amp;tool=pmcentrez&amp;rendertype=abstract]

20. Eyre-Walker A, Keightley PD: The distribution of fitness effects of new
mutations. Nature Rev Genet 2007, 8(8):610–618. [http://www.ncbi.nlm.
nih.gov/pubmed/17637733]

21. Hernandez RD: A flexible forward simulator for populations subject
to selection and demography. Bioinformatics (Oxford, England) 2008,
24(23):2786–2787. [http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=2639268&amp;tool=pmcentrez&amp;rendertype=abstract]

22. Matsumoto M, Nishimura T:Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM
Trans Model Comput Simul 1998, 8:3–30. [http://portal.acm.org/citation.
cfm?doid=272991.272995]

23. Saito M, Matsumoto M: SIMD-oriented fast mersenne twister: a 128-
bit pseudorandom number generator. InMonte Carlo and Quasi-Monte
CarloMethods 2006. Berlin, Heidelberg: Springer; 2008:607–622.

24. Karney C. [http://randomlib.sourceforge.net/] 2011.
25. Peng B, Kimmel M: simuPOP: a forward-time population genetics

simulation environment. Bioinformatics (Oxford, England) 2005,
21(18):3686–3687. [http://www.ncbi.nlm.nih.gov/pubmed/16020469]

26. Baskins D. [http://judy.sourceforge.net/] 2004.
27. Nachman MW, Crowell SL: Estimate of the mutation rate per

nucleotide in humans. Genetics 2000, 156:297–304. [http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=1461236&amp;tool=
pmcentrez&amp;rendertype=abstract]

28. Jensen-Seaman MI, Furey TS, Payseur Ba, Lu Y, Roskin KM, Chen CF,
Thomas Ma, Haussler D, Jacob HJ: Comparative recombination rates in
the rat, mouse, and human genomes. Genome Res 2004,
14(4):528–538. [http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=383296&amp;tool=pmcentrez&amp;rendertype=abstract]

29. Hernandez RD: SFS_Code. 2012. [http://sfscode.sourceforge.net/SFS_
CODE/]

30. Freedman D, Diaconis P: On the histogram as a density estimator:L 2
theory. Probability Theory Relat Fields 1981, 57(4):453–476. [http://www.
springerlink.com/index/10.1007/BF01025868]

doi:10.1186/1471-2105-14-216
Cite this article as:Aberer and Stamatakis:Rapid forward-in-time simulation
at the chromosome and genome level. BMC Bioinformatics 2013 14:216.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2816677&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2816677&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3268637&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3268637&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/21999307
http://www.ncbi.nlm.nih.gov/pubmed/21999307
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1462356&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1462356&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/22230817
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2851118&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2851118&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2851118&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/19204717
http://www.ncbi.nlm.nih.gov/pubmed/19204717
http://www.ncbi.nlm.nih.gov/pubmed/11847089
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569517&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569517&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/15271777
http://www.ncbi.nlm.nih.gov/pubmed/15271777
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2916717&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2916717&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2542380&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2542380&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2638626&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2638626&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2638626&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2323826&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2323826&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3240962&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3240962&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/17637733
http://www.ncbi.nlm.nih.gov/pubmed/17637733
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2639268&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2639268&amp;tool=pmcentrez&amp;rendertype=abstract
http://portal.acm.org/citation.cfm?doid=272991.272995
http://portal.acm.org/citation.cfm?doid=272991.272995
http://randomlib.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/16020469
http://judy.sourceforge.net/
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1461236&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1461236&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1461236&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=383296&amp;tool=pmcentrez&amp;rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=383296&amp;tool=pmcentrez&amp;rendertype=abstract
http://sfscode.sourceforge.net/SFS_CODE/
http://sfscode.sourceforge.net/SFS_CODE/
http://www.springerlink.com/index/10.1007/BF01025868
http://www.springerlink.com/index/10.1007/BF01025868

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Algorithm for simulating neutral mutations
	Simulating surviving neutral mutations
	Graph construction
	Extraction of sequences

	Implementation and optimization
	Memory requirements of ancestry and BEG
	Random number generation
	Non-neutral sequence representation
	Memory management
	Implementation of neutral sequence extraction


	Results and discussion
	Runtime improvement: forward simulation only
	Runtime improvement: ancestry-based simulation
	Validation
	Under neutrality
	Under selection

	Large-scale simulation of partially neutral sequences 

	Conclusions
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

