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ABSTRACT
Detecting outliers in high-dimensional data is crucial in
many domains. Due to the curse of dimensionality, one typ-
ically does not detect outliers in the full space, but in sub-
spaces of it. More specifically, since the number of subspaces
is huge, the detection takes place in only some subspaces.
In consequence, one might miss hidden outliers, i.e., outliers
only detectable in certain subspaces. In this paper, we take
the opposite perspective, which is of practical relevance as
well, and study how to hide outliers in high-dimensional data
spaces. We formally prove characteristics of hidden outliers.
We also propose an algorithm to place them in the data. It
focuses on the regions close to existing data objects and is
more e�cient than an exhaustive approach. In experiments,
we both evaluate our formal results and show the usefulness
of our algorithm using di↵erent subspace selection schemes,
outlier detection methods and data sets.

1. INTRODUCTION
Many applications in di↵erent domains, e.g., fraud detec-

tion, depend on the e↵ective and e�cient identification of
outliers [3]. Due to the curse of dimensionality, outliers of-
ten occur in attribute subspaces. Such outliers are referred
to as subspace outliers. In high-dimensional spaces, it is
not feasible to inspect all subspaces for outliers, since their
number grows exponentially with the dimensionality. Thus,
most approaches only inspect a subset of the set of all sub-
spaces. Depending on the subspaces inspected, the outlier
detection method used and the distribution of the data, so-
called hidden outliers may occur. A hidden outlier exhibits
its outlier behaviour only in subspaces where no outlier de-
tection takes place. Hence, the characteristic whether an
outlier is hidden or not depends on the subspaces where one
is looking for outliers. See Figure 1. The outlier in the
figure is hidden when looking at each one-dimensional sub-
space in isolation. It can only be detected when looking at
the two-dimensional subspace.

Outlier

Figure 1: Example showing a hidden outlier

1.1 Motivation
In this article, we examine how to place hidden outliers in

high-dimensional data spaces, and we quantify the risk of the
data owner that such outliers can be placed in the data. We
see three reasons why studying the issue is necessary, namely
(1) increasing the reliability of critical infrastructures, (2)
coping with attacks, and (3) systematic evaluation of outlier
detection algorithms. We now elaborate on these points one
by one.

1.1.1 Reliability of Critical Infrastructures
Think of data objects each representing a state of a criti-

cal infrastructure. Outliers are unusual system states which
may represent any kind of fault or a state preceding a fault.
Since faults of infrastructures that are critical may be catas-
trophic [13], any action preventing such faults pays o↵. How-
ever, data objects representing these states usually do not
exist or are extremely rare. Hidden outliers represent combi-
nations of values that remain undetected with existing mod-
els. If hidden outliers were detected, a domain expert could
inspect them and assess how detrimental they are.

1.1.2 Attacking with hidden outliers
Research on classifier evasion [16] studies the behaviour

of an adversary attempting to ’vanquish’ a learner. Here,
as Example 1 shows, the situation is analogous, including
the motivation, i.e., studying the adverse behaviour in order
to shield against it. While Example 1 is extreme for the
sake of illustration, it is our running example due to its
intuitiveness. The example also shows that hidden outliers
pose a risk, and it is worthwhile to quantify this risk.

Example 1. Think of a criminal intending to commit
credit-card fraud. He has inside information, i.e., he knows
that the bank checks for fraud by means of an outlier-
detection method on a high-dimensional representation of
the credit-card transactions. More specifically, the bank uses
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a subspace-search method that is confined to subspaces con-
sisting of few attributes only. The attacker then identifies
regions of the data space where outliers are hidden from the
detection method and designs fraudulent transactions whose
representation falls into these regions.

1.1.3 Evaluation of subspace outlier detection
Being able to hide outliers is expected to help evalu-

ate subspace outlier detection methods. Current evaluation
schemes often either use an already existing minority class
as outlying or downsample the data to one rare class [2].
However, these outliers are not necessarily subspace outliers,
in contrast to hidden outliers generated with our approach.
Placed hidden outliers are known to be outliers in certain
subspaces, and one can quantify how well they are found.
An evaluation scheme based on our approach would also al-
low di↵erentiating between di↵erent kinds of hidden outliers
and might be more systematic than one depending on the
outliers which have been found so far. – The design and as-
sessment of such evaluation schemes is a long-term research
e↵ort of us and is beyond the scope of this current article.
Here, our concern is the e↵ective and e�cient placement of
subspace outliers.

1.2 Challenges and Contribution
Up to our knowledge, the general question of how to place

outliers in data sets has not been studied explicitly so far.
Placing outliers such that they are hidden is even more un-
clear. Various challenges arise when designing such a place-
ment, as follows.

Hidden outliers are inliers in certain subspaces. Hence,
we cannot just use extreme values to obtain hidden outliers.
Compared to Figure 1, the situation may also be more com-
plex. For instance, one is not confined to just ’high dimen-
sional versus low dimensional subspace’. Instead, a mix of
the two is feasible as well. The variety of outlier definitions
is another, orthogonal challenge. Some rely on statistical
models, others on spatial proximity [12] or angles between
objects [8]. We hypothesize that di↵erent outlier definitions
lead to di↵erent regions where hidden outliers can be placed.
When designing a general algorithm that hides outliers we
cannot assume much on the outlier-detection method used.
Another challenge relates to the relative size of the region
where hidden outliers can be placed. In some scenarios, this
region may be small, while it may be huge in others, e.g.,
close to the full data space. Placing many hidden outliers
that are diverse requires methods that adapt to the size of
this region. I.e., the placement should cover a broad range
of positions if the region is huge. When the region is small
in turn, the placement must be more fine-grained. A last
challenge is that assessing the probability of success of at-
tackers (the ones who hide the outliers) is not trivial. In
contrast to Example 1, attackers may not have full access
to the data. Hence, an attack is more likely to be success-
ful if hiding is feasible without knowing much on the data.
Any risk assessment should take into account the extent of
knowledge which is necessary for the hiding.

In our work we start by deriving important characteris-
tics of hidden outliers analytically, focusing on multivariate
data following a normal distribution. A first result is that
hidden outliers do exist in this setting. Second, correlation
within subspaces can reduce the size of the region of hidden
outliers. Third, having a higher number of dimensions has

the same e↵ect. Another contribution of ours is an algo-
rithm that places hidden outliers. Its design is based on the
hypothesis that hidden outliers tend to be close to real data
objects. This is based on the property that hidden outliers
must be inliers in some subspaces. Hence, our algorithm
concentrates on placing hidden outliers in regions close to
existing data objects, with adjustable tightness. This al-
lows for a placement that concentrates on a small region,
close to the data, or a rather large one. The algorithm does
not rely on any assumption regarding the outlier detection
method used, except for a non-restrictive one: Namely, the
detection method must flag points as outliers or not. The
output of any method we are aware of can be transformed
without di�culty to have this characteristic (see e.g., [11]).
Our algorithm also gives way to a rigid definition of the risk
of an attacker being able to hide outliers. Finally, we have
carried out various experiments. They confirm that some
of our theoretical findings also hold in the absence of the
underlying model assumptions, e.g., for other outlier detec-
tion methods and data sets. They also demonstrate that
our algorithm is much better in hiding than a baseline. In
particular, this holds for high-dimensional data sets. This
paper is structured as follows:

1. Definition of Hidden Outlier. Section 4.2

2. Analytical derivations of characteristics of hidden out-
liers. Section 4.3

3. Algorithm to place hidden outliers. Section 4.4

4. Evaluation of concept and algorithm. Section 5

All our code and used data sets are publicly available.1

2. RELATED WORK
We are not aware of any comprehensive study of hidden

outliers. [20] however describes the notion of masked out-
liers. ’masked’ means that irrelevant attributes within a
data set can hide the outlier behaviour to some extent. Our
work is of course related to the various methods for outlier
detection and subspace search. Some schemes exist solely
for subspace search [14] [4], some with integrated outlier de-
tection [10] [15] and numerous methods merely for outlier
detection [1], [12], [8], [6]. All outlier detection methods
compute whether existing data objects are outliers or not.
This is di↵erent from our approach. We study how to place
outliers in data sets.

To illustrate classifier evasion mentioned before explicitly,
think of a spam filter. The idea now is that a spammer
wants to send emails that are as close as possible to spam,
but are classified as regular. However, existing approaches
to find such positions [17], [19] rely on at least one instance
of spam email, which we do not rely on in outlier detection.
Secondly, we are not aware of any approach considering the
e↵ects of using subspaces.

Protecting privacy is another area in data analysis that is
related. This is because some approaches for privacy protec-
tion add objects to the data. For example, [5] proposes an
algorithm to add dummy objects to position data of individ-
uals, in order to have better privacy. Clearly, the objective

1Our code and data: http://ipd.kit.edu/mitarbeiter/steinbu
ssg/Experiments HideOutlier.zip
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is di↵erent: Privacy-protection approaches attempt to add
data that behaves like the original data. Hence, the true
data is hidden, while relevant information is still available.
We in turn hide data objects which contradict the general
structure of the data. Another di↵erence is that such privacy
approaches so far are global, i.e., not based upon subspaces.

Another related term is robust statistics. It deals with the
fact that assumptions in statistics often are only approxi-
mations of reality. Violations of these assumptions are often
interpreted as outliers. Hence, robust approaches take such
possible violations into account to stabilize statistical mod-
els. [18] for instance proposes a modification of a subclass
of Gauss-Markov models such that it is free from outlier
hiding e↵ects. Without these modifications, outliers might
a↵ect the model itself in a way that they are not detectable,
i.e., are hidden. However, such approaches are not based
upon subspaces, do not compute outlier regions or address
the problem of hiding outliers in the data.

3. NOTATION
Let DB be a database containing n objects, each de-

scribed by a d-dimensional real-valued data vector ~y =
(y(1), . . . , y(d))T . The set A = {1, . . . , d} denotes the full
attribute space. W.l.o.g., we assume that each attribute
lies within [l, u] where l, u 2 R. An attribute subset S =
{a

1

, . . . , a
˜

d

} ✓ A is called a d̃-dimensional subspace projec-
tion (1  d̃  d). A set Collection = {S

1

, . . . ,S
t

} ✓ P (A)
is a collection of t subspace projections (1  t  2d � 1).
The set FullR = {~y 2 [l, u]d} is the entire data space. When
not stated di↵erent explicitly, for any region R, it holds that
R ✓ FullR. Further, we assume that there exists a function
outS(·) of the form:

outS(~y) :=

(
1 if ~y is outlier in S,
0 if ~y is inlier in S.

(1)

The function outS(·) is a generic outlier definition. Di↵erent
outlier detection methods which typically incorporate di↵er-
ent definitions of this generic function are in use. Many such
methods output a score instead of a binary value. However,
we assume that these scores are transformed to a binary
signal, e.g., by applying a threshold.

4. THE REGION OF HIDDEN OUTLIERS
In this section we formalize the notion of hidden outlier

and derive important characteristics. Section 4.1 features
some assumptions behind our formal results. In Section 4.2,
we define hidden outliers and other relevant concepts. In
Section 4.3, we derive our formal results. Section 4.4 features
an algorithm to place hidden outliers. This algorithm also
allows to define the risk of hidden outliers.

4.1 Assumptions
We assume that DB follows a multivariate normal (MVN)

distribution with zero mean. Of course, Gaussian dis-
tributed data points have attribute limits �1 and +1.
However, we assume that l and u are so large that even
outliers will most likely be contained in the range spanned
by l and u. With MVN data, the Mahalanobis distance [12]
yields the likeliness of a data point. We assume data ob-
jects to be outliers if they are very unlikely according to
that distance. We refer to the Mahalanobis distance of ~y in

subspace S as MDistS(~y). Quantile(↵, df ) is the ↵ quantile
of a �2 distribution with df degrees of freedom. According
to [12], we can instantiate our outlier definition as follows:

outS(~y) :=

(
1 if

⇥
MDistS(~y)

⇤
2

> Quantile(0.975, |S|) ,
0 otherwise.

(2)

4.2 Definition
We define the notion of hidden outlier as follows:

Definition 1. Let two disjunct sets of subspace projec-
tions Collectionoutlier and Collectioninlier be given. ~o 2 [l, u]d

is a hidden outlier with respect to subspace collections
Collectioninlier and Collectionoutlier if outS(~o) = 0 8 S 2
Collectioninlier and 9 S 2 Collectionoutlier : out

S(~o) = 1.

The number of subspaces not in Collectioninlier is usually
rather high. Testing a subspace for outliers contained in
it is expensive computationally. Thus, we focus on the
case that the hidden outliers are outlier in at least one
subspace of Collectionoutlier instead of any subspace not in
Collectioninlier. Collectioninlier and Collectionoutlier must al-
ways be disjunct. This is because there cannot be any point
being an inlier and outlier in the same subspace. However,
there can be overlapping attributes in subspaces of both
sets. If there is no attribute within subspaces of both sets,
the task of placing hidden outliers is rather simple. One cre-
ates an outlier for one of the subspace in Collectionoutlier and
sets the values for the remaining attributes in A to the ones
of any existing inlier object. Thus, in this article we focus
on scenarios with such overlap. Based on this definition, we
now formulate a hypothesis.

Hypothesis 1. Since hidden outliers are inliers for all
subspaces in Collectioninlier, hidden outliers must be spatially
close to the points in DB.

We will return to this hypothesis when designing our algo-
rithm (Section 4.4) and in the experiments (Section 5.4.5).

A core issue in this study is to identify the posi-
tions/region with the following characteristic: If we place
a data point there, it is a hidden outlier. We now derive
this region and present some characteristics of hidden out-
liers. To this end, we do not rely on any further assumption
regarding outS(·).

Definition 2. The region of inliers is defined as

InR(Collection) := {~o 2 [l, u]d | outS(~o) = 0 8 S 2 Collection}

The region of outliers OutR(Collection) is its comple-
ment.

Definition 2 formalizes the notion of the region fulfilling one
property of hidden outliers, i.e., regions with positions that
are inlier or outlier for each subspace in Collection. This
notion is a prerequisite before defining the region of hid-
den outliers. See Figures 2a and 2b for examples using the
Mahalanobis distance. We discuss characteristics of it in
Section 4.3.

Lemma 1. InR(Collection) is the intersection of InR({S})
8 S 2 Collection.
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Figure 2: Example for InR(Collection), OutR(Collection) and hidden outliers in HiddenInA and HiddenFromA.

Lemma 1 states that we can derive InR(Collection) using
only intersections of InR({S}), i.e., the inlier region in a
single subspace. Detecting outliers in one subspace is well
defined and has been explored intensively.

Definition 3. Given two sets of subspace projections
Collectionoutlier and Collectioninlier, the region of hidden
outliers Hidden(Collectionoutlier,Collectioninlier) is the in-
tersection of InR(Collectioninlier) and OutR(Collectionoutlier).

Thus, every point in Hidden is a hidden outlier. We see
that, up to intersections, unions and complements, Hidden
solely depends upon outlier detection in a single subspace.
However, InR({S}) is of arbitrary shape – depending on
outS(·). Hence, computing these intersections, unions and
complements is arbitrarily complex.

The number of possible Collections is huge: Having
|P (A)| = 2d � 1 subspaces yields 2|P (A)| � 1 possible
Collections. The number of possible combinations of two
Collections to obtain Hidden is even larger. Thus, in the first
part of this work we focus on two cases, Collection

1

= {A}
(the full space) and Collection

2

= {{1}, . . . , {d}} (each
one-dimensional subspace).

Notation 1. HiddenInA refers to

Collectioninlier = {{1}, . . . , {d}}, Collectionoutlier = {A}

HiddenFromA to

Collectioninlier = {A}, Collectionoutlier = {{1}, . . . , {d}}

HiddenInA means that outliers are detectable in the
full space, but not in any one-dimensional projection.
HiddenFromA is the opposite: Outliers are not detectable
in the full space, but in at least one of the one-dimensional
projections.

Example 2. In Figure 2c, the Mahalanobis distance is
used to identify outliers. The red crosses are hidden out-
liers in the settings just proposed. The square represents
the bound for inliers in both subspaces of Collection =
{{1}, {2}}. The circle represents the inlier bound for points
that are inliers in Collection = {A} = {{1, 2}}. Hidden out-
liers in setting HiddenInA are points inside the square but

outside of the circle. Analogously, hidden outliers in setting
HiddenFromA are points outside of the square but inside the
circle.

In some cases we will refer to a more general form of
HiddenInA and HiddenFromA, i.e., where one collection is
an arbitrary partition of A into subspaces.

When analysing characteristics of Hidden, we will make
use of the relative volume of a region. More explictly, we
use it to bound the region of hidden outliers.

Definition 4. Let a region R 2 R be given. The rel-
ative volume of R is defined as RelativeVolume(R) :=
Volume(FullR \R)÷ Volume(FullR).

Lemma 2. An upper bound on RelativeVolume(Hidden)
is the minimum of RelativeVolume(InR(Collectioninlier))
and RelativeVolume(OutR(Collectionoutlier)).

Thus, if the relative volume of OutR(Collectionoutlier) or
InR(Collectioninlier) is very small, e. g., zero, we know that
the relative volume of Hidden cannot be larger.

In a next step, we investigate specific scenarios with an
outlier-detection method using the Mahalanobis Distance.
Having such a specific outlier notion allows to derive distinct
characteristics of Hidden.

4.3 Formal Results
Motivation for Theorem 1: Figure 2c is a two-dimensional

example illustrating hidden outliers. The lines are out-
lier boundaries using the Mahalanobis distance. In this
two-dimensional case, hidden outliers for both settings
HiddenInA and HiddenFromA can exist. We wonder
whether this eventuality of having hidden outliers extends
to higher dimensionalities and more general subspace selec-
tions. We answer this question by analysing a more general
scenario. In our two sample settings, there are two kinds of
subspace selections. We have Collection

1

= {{1}, . . . , {d}}
and Collection

2

= {A}. To generalize this, we replace
Collection

1

with an arbitrary partition of the attribute
space.

Theorem 1. Let A be the full data space and Collection
a non-trivial (i.e., 6= A) partition of A into subspaces. Let
the number of dimensions of A and of each subspace in
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Figure 3: Motivation for Theorem 2 and 3

Collection converge to infinity. Let the data attributes be
i.i.d. with N(0, 1). Then there exists a hidden outlier that
is outlier in at least one subspace of Collection and inlier in
A. There also exists a hidden outlier that is outlier in A but
inlier in each subspace of Collection.

All proofs are in the appendix (Section B). We have assumed
that the dimensionality goes to infinity in order to approxi-
mate Quantile in the proof. However, Figure 2c shows that
the theorem holds even in a two-dimensional case. Our ex-
periments will show that it holds for other data sets as well.

Motivation for Theorem 2: Next, we consider the e↵ect
of correlation on the relative volume of InR({A}). Figure
3a displays InR({A}) in a two-dimensional example. The
circle is for the case that Attributes 1 and 2 are uncorre-
lated. The ellipse stands for strong correlation. The volume
of the ellipse is smaller than the one of the circle. Thus, a
higher correlation seems to imply a smaller relative volume
of InR({A}) and a larger relative volume of OutR({A}).
Theorem 2 formalises this for data spaces of arbitrary di-
mensionality.

Theorem 2. Let subspaces S
1

and S
2

, both of dimension-
ality d and MVN distributed, be given, and let the attributes
in S

1

be i.i.d. with N(0,�). The covariance matrix in S
1

is
⌃

1

and in S
2

⌃
2

. It holds that diag (⌃
1

) = diag (⌃
2

), and
that ⌃

2

has o↵-diagonal elements (i.e., covariance). Then
we have:

RelativeVolume(InR(S
1

)) � RelativeVolume(InR(S
2

))

, RelativeVolume(OutR(S
1

))  RelativeVolume(OutR(S
2

))

This theorem relies on one further technical assumption
spelled out in the appendix which also contains the proof.

Motivation for Hypothesis 2: Theorem 2 reasons on
the influence of correlation on inlier and outlier regions.
In HiddenInA, the outlier region is OutR({A}). In
HiddenFromA, the inlier region is InR({A}). In both set-
tings, the respective other region depends on a Collection
consisting of only one-dimensional subspaces. Correlation
does not a↵ect the distribution within these subspaces and
hence does not a↵ect the relative volume. Lemma 2 states
that the minimum of the relative volumes of inlier and
outlier region is an upper bound on the relative volume of
Hidden. Thus, if one of them increases or decreases this
bound might do so as well.

Hypothesis 2. Correlated data has a smaller relative
volume of Hidden in setting HiddenFromA than uncorrelated
data. In HiddenInA, it is larger.

If this hypothesis holds, it is more di�cult to hide outliers
in correlated subspaces in HiddenFromA and less di�cult
in HiddenInA. We evaluate this assumption using various
data sets and outlier-detection methods in Section 5.2.2.

Motivation for Theorem 3: Zimek et al. [20] have stud-
ied outlier detection in high-dimensional Euclidean spaces.
They have shown that, if the radius is fixed, the relative
volume of a hyper sphere becomes smaller for more dimen-
sions. As we can see in Figure 3a, uncorrelated attributes
give way to a spherical shape of InR({A}). However, its ra-
dius depends on the Quantile(0.975, |S|) from Equation 2,
and thus varies. In Figure 3b, we see that this varying radius
does not seem to do away with that e↵ect described in [20].
The relative volume of InR({A}) tends to zero. Theorem 3
formalizes this characteristic for the inlier regions in both of
our settings.

Theorem 3. Let a data space over A whose attributes are
i.i.d. with N(0, 1) be given. Let Collection = {{1}, . . . , {d}}.
Then:

lim
d!1

RelativeVolume(InR({A})) = 0

lim
d!1

RelativeVolume(InR(Collection)) = 0

Lemma 2 tells us that the relative volume of Hidden is
bounded by the relative volume of inlier and outlier regions.
Theorem 3 states that in both our setting the relative volume
of the inlier region tends to zero for arbitrarily large numbers
of attributes. Thus, in both HiddenInA and HiddenFromA
the relative volume of Hidden is close to 0 for many dimen-
sions. Hence, it is di�cult to hide outliers in both settings
when the number of dimensions is high.

4.4 Algorithm for Hidden
So far, we have studied characteristics of Hidden analyt-

ically depending on certain assumptions. We now propose
an algorithm which places hidden outliers e�ciently, for any
instantiation of outS(·), subspace selections and data set.

Our algorithm is randomized, i.e., checks for random
points ~x 2 [u, l]d whether they are in Hidden. The base-
line we propose samples these points according to a uni-
form distribution with domain [u, l]d. However, inspecting
such samples would not only be extremely expensive, it also
would not take into account that Hidden can be a very small
portion of FullR. See Figure 2c. The red crosses indicate
some areas of points in HiddenInA and HiddenFromA. We
have computed these areas by detecting outlier positions in
each attribute in isolation as well as in the full space. While
the Region HiddenInA is rather large, HiddenFromA is not.
If Hidden is small, an algorithm which concentrates on this
part of the data space is desirable. However, the algorithm
should also inspect points exhaustively otherwise. A place-
ment that is always exhaustive however would leave aside
Hypothesis 1. It has stated that hidden outliers are close
to DB. According to it, it is unlikely that an extreme posi-
tion, a point far from DB, is a hidden outlier. To facilitate
a placement that is adaptive in this spirit, we specify a pa-
rameter to model the probability of positions to be checked.
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In particular, points next to existing data points ~y 2 DB
will have a higher likelihood. In the following enumerated
list, we discuss the probability of positions being checked
and how this check is performed.

4.4.1 Probability of a Position
A straightforward approach would be to only check points

~x closer than some threshold to existing data objects. How-
ever, we should also consider the distance of ~x to the at-
tribute bounds. To this end we introduce the parameter
eps 2 [0, 1]. Figure 4 graphs the probability of a position
being checked, for a single attribute and data point y. We
use the log scale for better illustration. The area of both
rectangles is 1. If eps = 0 we do not allow for any distance
greater than 0 to y. Thus, the probability of checking y is
1 and of any other position 0. If eps = 1 we allow for any
distance, as long as positions do not exceed the attribute
bounds. We set the probability of checking x to be con-
stant and thus to 1

u�l

. If 0 < eps < 1, a point x between
y�eps·(y�l) and y+eps·(u�y) is checked with a probability
1÷eps
u�l

. Any point outside of these bounds is not checked.

x 2 [l, u]

eps = 1

0 < eps < 1

eps = 00

l uy

y � eps · (y � l) y + eps · (u� y)

log 1

u�l

log 1÷eps
u�l

lo
g
p
(x

)

Figure 4: Exemplary probability density of checking
random points regarding a single attribute and data
object y.

Definition 5. Let ~y
1

, . . . , ~y
n

2 [l, u]d and eps 2 [0, 1] be
given. The surrounding region of a single observation ~y

j

is defined as:

SurrReps
(~yj) :=

(
~x 2 [l, u]

d

�����max
i2A

 
y

(i) � x

(i)

u � y

(i)
,

x

(i) � y

(i)

y

(i) � l

!
eps

)

The surrounding region of several observations ~y
1

, . . . , ~y
n

is SurrReps(~y
1

, . . . , ~y
n

) :=
S

n

j=1

SurrReps(~y
j

).

Thus, SurrReps(~y) consists of all ~x whose probability of
being checked is greater than zero. Figure 5 displays the
surrounding region for several points in an example where
|DB| = 4.
The following two lemmas feature useful characteristics of
the surrounding region.

Lemma 3. If eps = 0 then SurrR0(~y
j

) = {~y
j

} and
SurrR0(~y

1

, . . . , ~y
n

) = {~y
1

, . . . , ~y
n

}.

Lemma 4. If eps = 1 then SurrR1(~y
j

) = FullR and
SurrR1(~y

1

, . . . , ~y
n

) = FullR.

Hence, the surrounding region can consist of solely the obser-
vations themselves, the entire data space or a middle ground

Data Points SurrRegeps(~y
j

) SurrRegeps(~y
1

, . . . , ~y
n

)

Attribute 1

A
tt
ri
b
u
te

2

l u

u

y(2) � l

u� y(2)

eps · (y(2) � l)

Figure 5: Example of range distance and surround-
ing region

between these extremes (0 < eps < 1). Placing random
points only in SurrReps(DB) does away with the di�culties
of an exhaustive placement. However, our approach so far
features a parameter (eps), and it is unclear how to choose
its value. We will discuss this in Section 4.4.4.

Regarding the selection of random points, a surrounding
region gives way to a probability distribution from which to
draw the samples, as follows

p(~x) / 1
n

nX

j=1

~x2SurrReps(~yj) (3)

p(~x) is the multivariate generalisation of p(x) in Figure 4.
We now propose the algorithm in Figure 1 to sample
points, given the density function. The first step to ob-
tain #Samples random samples from p(~x) is to randomly
draw #Samples data points from DB. For every attribute
value of each such point, the algorithm calculates two new
positions, one towards the upper attribute limit u and one
towards the lower limit l. Both are scaled by eps. The
algorithm then determines randomly whether the sample
has the position next to u or l. This results in #Samples
random samples from p(~x).

4.4.2 Checking Positions
The next step necessary to place hidden outliers is to check

if a point is a hidden outlier or not. See Algorithm 2 for
our algorithm. For a given point, it checks if it is an in-
lier in each subspace in Collectioninlier and an outlier in at
least one subspace of Collectionoutlier. Thus we can filter
sampled points for hidden outliers. Armed with these algo-
rithms, it is now possible to hide outliers in SurrReps(DB),
for given a data set DB, eps and #Samples, as long as
RelativeVolume(Hidden) > 0. In the following we will dis-
cuss an alternative interpretation of eps which allows to
choose eps and define the risk of hidden outliers.

4.4.3 Interpreting eps

To motivate our interpretation we revisit Figure 5. The
region SurrReps(~y

1

, . . . , ~y
n

) with the blue surrounding is a
boundary for the observations. eps controls its tightness.
Lemma 4 has stated that, if eps = 0, SurrR1(DB) contains
each point from DB. Thus p(~x) from Equation 3 is the
empirical distribution function of DB. If eps ⇡ 0, p(~x) still
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Algorithm 1 Sample points using the pdf from equation 3

Input: #Samples, eps, DB
Output: Samples ~x

1

, . . . , ~x
#Samples

1: Sample ~y
1

, . . . , ~y
#Samples

from DB (with replacement)
2: for ~y

j

2 ~y
1

, . . . , ~y
#Samples

do
3: for attribute i of ~y

j

do

4: lowerChange  Sample from Unif (0, y(i)

j

� l )

5: upperChange  Sample from Unif (0, u� y
(i)

j

)
6: Select at random if
7: x

(i)

j

 y
(i)

j

� eps · lowerChange
8: or
9: x

(i)

j

 y
(i)

j

+ eps · upperChange
10: end for
11: end for
12: return ~x

1

, . . . , ~x
#Samples

is similar to the empirical distribution. However, the closer
eps is to 1, the less similar the empirical data distribution
is to p(~x). Their similarity quantifies how much knowledge
p(~x) reveals on observations in DB. Thus, one can interpret
eps as an indication of how much information on the data
(DB) is used in the sampling procedure.

4.4.4 Choosing eps
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Figure 6: Demonstration of the connection of the
proportion of hidden outliers in placed points and
eps. Using HiddenFromA, Arrhythmia and DBOut
(See Section 5.1). The risk is 0.44.

Up to here, eps is an exogenous parameter, without the
flexibility envisioned. Thus we now add one step to the al-
gorithm. Figure 6 graphs the proportion of sampled points
that are hidden outliers in one example setting. The maxi-
mum is reached at eps ⇡ 0.3. Hence, in this example, 0.3 is
the value that allows for the best placement of hidden out-
liers. We refer to the eps that maximises the proportion of
hidden outliers as optEps. This is not just the optimum for
eps but also allows for the computation of the risk of hidden
outliers. Usually there is no knowledge on the dependency
between eps and the proportion of hidden outliers. This is
why we propose to use a genetic algorithm to find optEps.

4.4.5 The risk of hidden outliers

Definition 6. Let DB, an outlier detection method
outS(·), Collectioninlier and Collectionoutlier be given. The
risk of attacker success is the harmonic mean of optEps
and the proportion of hidden outliers the attacker is able to
hide in SurrRoptEps(DB).

This risk has domain [0, 1]. If hiding outliers is di�cult,
the risk of the data owner is small. Recall our interpreta-
tion of eps as the amount of information known on the data.

Algorithm 2 Filter sample points for hidden outliers

Input: ~x
1

, . . . , ~x
#Samples

, DB, Collectionoutlier,
Collectioninlier, out

S(·)
Output: Set of hidden outliers SamplesHidden
1: for ~x

j

2 ~x
1

, . . . , ~x
#Samples

do
2: IsInlierInAll  TRUE
3: IsOutlier  FALSE
4: for type 2 {outlier, inlier} and for S 2 Collection

type

do
5: outRes  outS(~x

j

)
6: if outRes 6= type = inlier then
7: IsInlierInAll  FALSE
8: end if
9: if outRes = type = outlier then
10: IsOutlier  TRUE
11: end if
12: end for
13: if IsInlierInAll & IsOutlier then
14: Add ~x

j

to SamplesHidden
15: end if
16: end for
17: return SamplesHidden

optEps ⇡ 1 means that an attacker does not need any in-
formation on DB to place hidden outliers. If both optEps
and the maximal proportion of hidden outliers are high, it
is easy to hide outliers, and the risk is high. If only one of
them or both are low, the risk is also low. Hence, the risk is
low if an attacker either needs much knowledge on the data
and/or placed points rarely are hidden outliers.

4.4.6 Complexity
The algorithm we propose exclusively targets at high

result quality. We deem absolute runtime less impor-
tant, as long as it is not excessive, since a data owner
will conduct the analysis proposed here o✏ine. Hav-
ing said this, we nevertheless discuss the worst case
complexity of our solution. When placing hidden out-
liers for a given eps, the algorithms performs #Calc =
#Samples · |Collectioninlier| · |Collectionoutlier| calculations.
The maximal number of fitness-function evaluations by the
genetic algorithm is maxFitEval.

Lemma 5. The worst case complexity of our algorithm is
O(#Calc ·maxFitEval).

4.4.7 Summary of the Algorithm
The Algorithm needs four inputs: both subspace collec-

tions (Collectioninlier, Collectionoutlier), an outlier detection
method (outS(·)) and the number of samples (#Samples).
An additional optional input is eps; when not supplied, the
algorithm itself determines eps (optEps). First, the algo-
rithm obtains #Samples points from the probability dis-
tribution in Equation 3 (See Algorithm 1). Then these
points are filtered. Only points that are inlier in each sub-
space of Collectioninlier and outlier in at least one subspace
of Collectionoutlier according to outS(·) remain. See Algo-
rithm 2. They are hidden outliers. When eps is not given,
the algorithm repeats this procedure for di↵erent values of
eps. A heuristic generates values of eps. They target at
maximising the share of hidden outliers in each sample.
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5. EXPERIMENTS
In Section 4.3, we have derived characteristics of Hidden

analytically, assuming a specific outlier definition and under-
lying data distribution. In our experiments we investigate
its behaviour in terms of other outlier definitions and data
sets using our algorithm. The experiments show the general
ability of our algorithm to place hidden outliers and the vul-
nerability of di↵erent detection methods. We also study the
role of optEps, e.g., whether there exists a unique one.

5.1 Experiment Setup

5.1.1 Outlier detection
Additionally to the Mahalanobis distance we investigate

three other outlier definitions. One of them, follows the (k,
dmax)-Outlier, short DBOut, proposed in [7]. A point is an
outlier if at most k objects have a distance less than dmax.
The distance used is the euclidean metric. Hence, solely the
dimensionality of a subspace implies di↵erent magnitudes of
distances [20]. That is why, instead of using a fixed dmax
for each subspace, we use an adaptive dmax. In particu-
lar, we set dmax =

p
| S |. The last two methods we use

are ABOD [8] and LoOP [9]. ABOD uses angles to ob-
tain the outlierness of a point. These angles are much more
stable in higher dimensions than L

p

-distances. [8] proposes
three di↵erent implementations of ABOD which incorporate
di↵erent tradeo↵s between performance and result quality.
We use the fastest implementation, FastABOD. LoOP is an
adoption of the well known LOF [1] that incorporates a den-
sity based on the neighbourhood of data points. This allows
to find density based outliers without assuming a specific
distribution. In comparison to LOF, LoOP returns a score
that lies in [0, 1] and implies an outlier probability instead
of a score in [0,1]. Except for FastABOD and LoOP all
methods already output a binary signal if a data point is
an outlier or not. FastABOD and LoOP output scores. Re-
garding LoOP a low score indicates usual observations, as
for FastABOD a high score. In our experiments we need an
automatic threshold that allows to transform that score to
a binary signal. Regarding FastABOD we decided to use
the empirical 2.5 % quantile of the resulting scores to this
end. For LoOP we used a threshold of 0.5. Due to the
high complexity of FastABOD, we only used datasets with
at most 500 observations when using FastABOD. This ap-
plies to half of the datasets used. We set the neighbourhood
size to k = 5.

5.1.2 Datasets
Two data sets we use are artificial and 14 are real-world

benchmark data sets, including two high dimensional data
sets from the UCI ML Repository 2, namely Madelon and
Gisette (500 and 5,000 attributes). The remaining real world
datasets are from [2]. We always use the normed data, and
when the data has been down-sampled we use version one.
The two artificial data sets are produced by sampling from
a multivariate Gaussian distribution, each with 500 obser-
vations and 30 attributes. One data set is from a MVN
distribution where each attribute is i.i.d N(0,1) , referred to
as ’MVN cor.’. In the second one ’MVN’, where attributes
are N(0, 1) distributed as well, each pair of attributes is cor-
related with a covariance of 0.8. They are mostly used for

2UCI ML Repository: http://archive.ics.uci.edu/ml/

the experiments studying Hypothesis 2. To obtain compa-
rability across data sets, each data sets has been normalized
(i. e., l = 0 and u = 1).

5.1.3 Subspace selection
To evaluate our theoretical findings, we have a deter-

ministic procedure for subspace selection (HiddenInA and
HiddenFromA). Only for Theorem 1 we need to sample
subspace partitions. However, when evaluating the general
quality of our approach, instantiations of Collectioninlier and
Collectionoutlier are much less obvious. We need realistic
and diverse instantiations. However, the number of possi-
ble combinations is daunting. On the other hand, the rela-
tionship of subspace size and number of possible subspaces,
exemplary displayed in Figure 9a, implies the following: We
assume that one normally checks low- and high-dimensional
subspaces for outliers (green area). Hence, it is most likely
that hidden outliers occur in the subspaces with a medium
number of dimensions (red area). Thus, these outlier sub-
spaces are a natural selection. However, even with these
restrictions, the number of outlier and even inlier subspaces
can still be infeasibly large. Thus, we sample them accord-
ing to the procedure in Algorithm 3.

Algorithm 3 Sample inlier and outlier subspaces

Input: #Subspaces, A = {1, . . . , d}, outS(·)
Output: Subspace collections for inlier and outlier
1: if outS(·) is FastABOD or LoOP then
2: combs

inlier

 {S ✓ A : |S| � d� 2}
3: else
4: combs

inlier

 {S ✓ A : |S|  2}
5: end if
6: Collectioninlier  Sample #Subspaces from combs

inlier

7: Ã {a 2 S : 9 S 2 inlierCombs}
8: combs

outlier

 {S ✓ Ã : |S| =
⌅
d

2

⇧
}

9: Collectionoutlier Sample #Subspaces from combs
outlier

10: return Collectioninlier, Collectionoutlier

First we sample subspaces for Collectioninlier. For outlier
detection methods for high-dimensional spaces (FastABOD
and LoOP), we use the large subspaces as inlier subspaces
(right green area). For the other outlier detection tech-
niques, we use the smaller subspaces (left green area). Then
we obtain the attributes that are contained in the sampled
inlier subspaces. From those we sample the outlier sub-
spaces. This guarantees that attributes from inlier and out-
lier subspaces overlap.

5.2 Evaluating Theoretical Findings
In the first experiments, we investigate the generalizabil-

ity of our theoretical findings from Section 4.3. The experi-
ments approximate the scenarios described in the theorems
and hypotheses using various data sets and outlier detection
methods, cf. Section 5.1.

5.2.1 Theorem 1
The theorem states that hidden outliers exist when either

Collectioninlier or Collectionoutlier is a partition of the full at-
tribute space A into subspaces, and the other one is A itself.
We investigate the generalizability of this statement by vary-
ing the data distribution and the outlier detection method.

8
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For all data sets we create a number Collections by randomly
dividing A into partitions. For each outlier detection scheme
and Collection we compute the maximal proportion of hid-
den outliers regarding two selections of Collectioninlier and
Collectionoutlier. With the first one, Collectioninlier equals
Collection and Collectionoutlier = A. In the other case,
Collectionoutlier equals Collection and Collectioninlier = A.
We record how often the proportion of hidden outliers is not
0, i.e., one can hide outliers. If Theorem 1 is generalizable,
this should be possible. Table 5.2.1 lists the percentages of
runs where we have been able to hide outliers.

MDist DBOut LoOP FastABOD
* 63.21 73.57 70.36 93.33
** 36.79 83.57 78.93 91.93

* Collectionoutlier = A, ** Collectioninlier = A

Table 1: Percentage of runs with more than zero
hidden outliers

In most cases our algorithm is able to place hidden outliers.
Surprisingly, regarding MDist in particular, the success rate
is rather low. This is in some contrast to our formal result
that states there exist hidden outliers in these cases. The
other detection methods show higher success rates. Thus,
we conclude that Theorem 1 is generalizable to some extent.

5.2.2 Hypothesis 2
The hypothesis states that it is more di�cult to place in-

liers in correlated subspaces in setting HiddenFromA and
less di�cult in setting HiddenInA. To investigate this we
try to hide outliers in both settings using di↵erent outlier
detection schemes. In one data set, attributes are correlated
(MVN corr.). In another one they are not (MVN). To focus
on the e↵ects of correlation, the data has only 10 attributes.
If Hypothesis 2 holds we should see an increase in the pro-
portion of hidden outliers from uncorrelated to correlated
data in HiddenInA and a decrease in HiddenFromA. Ta-
ble 5.2.2 lists the results: the percentage obtained in each
dataset, the raw di↵erence between the two results and a
relative di↵erence. The last entry is obtained by dividing
the raw di↵erence by the maximal percentage the detection
algorithm has obtained in any of the two datasets.

MDist DBOut LoOP FastABOD

*

MVN 68.58 1.04 13.30 20.68
MVN cor. 71.84 1.32 63.06 57.18
Di↵erence 3.26 0.28 49.76 36.50
Relative 4.54 21.21 78.91 63.83

**

MVN 0.62 21.60 31.28 0.68
MVN cor. 0.36 19.90 20.76 0.40
Di↵erence -0.26 -1.70 -10.52 -0.28
Relative -41.94 -7.87 -33.63 -41.18

* HiddenInA, ** HiddenFromA

Table 2: Di↵erence in percentage of hidden outliers

All detection methods meet the expectation. We find it in-
teresting that the magnitude of change of proportion is very
di↵erent for HiddenInA and HiddenFromA. However, the
proportion of placed hidden outliers on each dataset also
varies greatly. In summary, although the extents are di↵er-
ent, the experiments confirm the hypothesis.

5.2.3 Generalising Theorem 3
The theorem states that hiding outliers in high dimen-

sional data is likely to be di�cult in both our settings. To
test the theorems generalizability we try to hide outliers us-
ing several outlier detection schemes and data of di↵erent
dimensionality. The data of di↵erent dimensionality should
still be comparable. Thus, to obtain a data set of a spe-
cific dimensionality we sample the desired number of at-
tributes from data sets with many attributes. To mitigate
e↵ects caused by peculiarities of individual attributes, we re-
peat the whole procedure and average the results. Figure 7
graphs the results for up to 100 dimensions.
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Figure 7: Proportion of hidden outliers versus di-
mensionality

The theorem does not seem to hold in a more general setting.
Using DBOut and LoOP, that proportion tends to be low
only in HiddenInA. With FastABOD the proportion does
not tend to be low in any of the two settings.

5.3 Investigating optEps
The next experiments target at a crucial parameter of our

algorithm. The proposed algorithm is based on a sampling
distribution parametrized by eps. The eps that maximizes
the proportion of hidden outliers, optEps, is important: It
allows to quantify the risk of data owners. We now inves-
tigate the dependency between eps and that proportion, to
analyse if optEps usually exists, i.e., if there is a global max-
imum of the dependency.

Figures 6 and 8 illustrate the dependency between the
proportion of hidden outliers and eps. In Figures 6 and 8a
we see a very distinct optEps. However, Figure 8b shows
that this is not always the case. The risk is highest with
0.45 in Figure 6. optEps as well as the maximal proportion
are relatively high. Figure 8b has the lowest risk with 0.12.

5.4 General Quality
In these final experiments, we study the general ability

of our algorithm to place hidden outliers. We also com-
pare our approach to a baseline. Since this article is first to
study hidden outliers, there is no explicit competitor, and
we choose uniform full space sampling as baseline, which
is equivalent to fixing eps to 1. We will declare success if
there is an increase in the quality of placing hidden outliers,
and this increase is significant, e.g., a factor of at least two
or three. Recall that our algorithm requires data, outS(·),
Collectioninlier, Collectionoutlier as input. The subspace se-
lection has been derived in Section 5.1.3. Regarding the
data, we look at all datasets introduced in 5.1.2 and sample
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(b) Using HiddenInA, Lymphography and MDist. Risk: 0.12

Figure 8: Proportion of hidden outliers in placed
points versus eps

di↵erent numbers of attributes and observations. However,
we only downsample, upsampling would lead to data that
is redundant. To vary outS(·), we use all outlier detection
methods introduced in 5.1.1. Additionally, we obtain eps
candidates by using a fixed sequence of values instead of a
heuristic. This allows for futher analysis on the e↵ect of eps
and a straightforward comparison to the baseline. We sum-
marize our results to highlight the e↵ect of the number of
attributes or observations, used dataset or detection method
and eps.

5.4.1 Number of Attributes
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Figure 10: E↵ect of number of attributes

Figure 10 graphs the e↵ect of the number of attributes.
The y-axis displays the share of hidden outliers amongst
sampled points, i.e., the success of the placement. For al-
gorithm and baseline the figure shows boxplots of the share
of hidden outliers. We observe a significant improvement of
our algorithm over the baseline – for high dimensional data
in particular. Second, for both alternatives it seems to be
more di�cult to place hidden outliers in high dimensional
datasets.

5.4.2 Number of Observations
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Figure 11: E↵ect of number of observations

Figure 11 plots the number of observations versus the
share of hidden outliers. Again, our algorithm is better than
the baseline, but with a bit less distinction. The algorithm
improves the baseline by a factor of about 5-10.

5.4.3 Used Dataset
Figure 9(c) is a barplot showing the e↵ect of the data set.

We summarize the results over all experiments, i.e., with dif-
ferent samplings of observations and attributes. We see that
there are drastic di↵erences between data sets. While plac-
ing hidden outliers is successful when using Madelon, this is
more di�cult with, say, InternetAds. We speculate that the
di↵erent data densities cause this e↵ect. We have seen this
e↵ect in our experiments in Section 5.2.2 as well. As before,
our algorithm outperforms the baseline significantly.

5.4.4 Outlier Detection Method Used

Values in % MDist DBOut LoOP FastABOD

*

Algorithm 94.70 80.86 100 100
Baseline 8.01 61.44 35.62 100

**

Algorithm 6.58 30.14 29.75 25.97
Baseline 0.03 10.32 2.62 23.67

* Percentage of runs with successfully placed hidden outliers
** Average proportion of hidden outliers

Table 3: E↵ect of used detection method

To determine e↵ects of the method used, we aggregate
the percentage of successful runs and the average share of
hidden outliers of all experiments. We have done this for
our algorithm as well as for the baseline. See Table 5.4.4.
Some detection methods are very prone to hidden outliers
while others are not. Next, the gain in success when us-
ing our algorithm varies among detection techniques. With
MDist this gain is high, while it is negligible with FastA-
BOD. However, it is possible to hide outliers with all five
detection techniques.

5.4.5 Used eps
Figure 9(b) displays the proportion of hidden outliers ver-

sus eps. eps = 1 is our baseline, i.e., uniform sampling. The
median has a peak when eps is 0.1. This value results in hid-
den outliers placed closely to other data points. This con-
firms Hypothesis 1, i.e., hidden outliers are spatially close to
the points in DB. The figure also confirms the superiority
of our algorithm over the baseline.
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Figure 9: a) displays number of subspaces versus subspace size (using ten attributes) .b) - c) displays success
in placement regarding number eps and dataset

Summary: The experiments have shown that in many sce-
narios our approach is able to place hidden outliers irrespec-
tive of the data set or the detection method used. Further,
our approach is a significant improvement over the baseline.
While not in all cases, our algorithm has improved the result
by a factor of three or more in many settings.

6. CONCLUSIONS
In this work we have analysed characteristics of hidden

outliers, i.e., outliers that are only detectable in certain at-
tribute subspaces. This includes both formal results based
on model assumptions and a proposal for an algorithm that
places hidden outliers in data. Regarding the first kind of
contribution, we prove the existence of hidden outliers in
many scenarios and show that the extent of correlation or
the number of attributes can have a significant e↵ect on the
ease of hiding outliers. The algorithm we have developed
places hidden outliers in regions close to existing data ob-
jects. We evaluate the generalisability of our formal results
experimentally with our algorithm. Some of these results
do extend to scenarios not covered by the model assump-
tions. Further we have shown that our algorithm improves
the results with a reference baseline significantly.
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APPENDIX
A. PREREQUISITES FOR PROOFS

We will use the abbreviations Collection =: SS, InR({S}) =:
IS and u� l =: range.
The Mahalanobis distance is defined as: MDistA(~y) =p
(~y � ~µ)T⌃�1(~y � ~µ) where ~µ is the mean vector and ⌃

the covariance matrix. W.l.o.g. we assume that ~µ = ~0. As
the data is MVN distributed, MDist2 is �2

d

distributed. The
degrees of freedom are determined by the dimension of the
data. We can rewrite:

h
MDistA(~y)

i
2

= ~y T⌃�1~y =
X

i2A

X

j2A

y(i) · �(i,j)

�1

· y(j)

�
(i,j)

�1

denotes the entry in the jth column and ith row of
the inverse of the covariance matrix. If the attributes are
i.i.d. N(0,1) distributed, this reduces to

⇥
MDistA(~y)

⇤
2

=
P

i2A

h
y(i)

i
2

. To test a data point for outlier or inlier, we

used the outlier initialization in Equation 2. Although this
initialization uses the 0.975 quantile, here we will use a gen-
eral ↵ quantile. The quantile function of a �2 distribution
is not obtainable in closed form. Thus, we will make use of
an approximation. Following the central limit theorem, for
large degrees of freedom a �2

d

distribution can be approxi-
mated by a N(d,

p
2d) distribution. Thus:

Quantile(↵, d) ⇡ d+
p
2d z

↵

;
@ Quantile(↵, d)

@ d
⇡ 1+

z
↵p
2d
(4)

where z
↵

is the ↵ quantile of a standard normal distribu-
tion. We can derive that the approximation of the function
Quantile(↵, d) is strictly monotonic increasing. For a fixed

distance, e.g.,
⇥
MDistA(~y)

⇤
2

= Quantile(↵, d), the Maha-
lanobis distance exhibits an ellipsoid form. I. e., having
�
1

, . . . ,�
d

eigenvalues and ~v
1

, . . . ,~v
d

eigenvectors of ⌃, the
ellipsoid has centroid ~µ, and axes ~v

1

, . . . ,~v
d

. Half the length
of each axis is determined by

p
�
i

·Quantile(↵, d).
Introducing subspaces in this setting is quite trivial. We

assume that the full data space is MVN(~0,⌃) distributed.
Hence, any subspace S is also Gaussian. To obtain its mean
and covariance matrix we only need to drop the irrelevant
variables from each parameter of the full space distribution.

B. PROOFS OF THEOREMS

B.1 Theorem 1
In this proof we will use the normal approximation given

in Equation 4. From attributes i.i.d N(0, 1) and partitioning
SS follows:

h
MDist

A
(~y)
i2

=
X

i2A

h
y

(i)
i2

=
X

S2SS

X

i2S

h
y

(i)
i2

=
X

S2SS

h
MDist

S
(~y)
i2

We first prove that a data point ~o
1

with

o

(i)

1

=

(q
Quantile(↵, |A|)

|S| if i 2 S
0 otherwise

is an outlier for any S 2 SS but an inlier for A. We know
that MDistA(~o

1

) = Quantile(↵, |A|) and MDistS(~o
1

) =
Quantile(↵, |A|) > Quantile(↵, |S|). Due to the strictly
monotonic increasing quantile function, ~o

1

is an inlier re-
garding A but an outlier in S. It is important to note that
~o
1

is an outlier only regarding subspace S and not regarding
any other subspace in SS.

Moreover, a data point ~o
2

defined by

o
(i)

2

=

p
Quantile(↵, |S|)

|S| for S 2 SS : i 2 S

is an outlier for A but an inlier for all S 2 SS. It
holds that: MDistA(~o

2

) =
P

S2SS Quantile(↵, |S|) and

MDistS(~o
2

) = Quantile(↵, |S|). We know that ~o
2

is an
outlier if MDistA(~o

2

) > Quantile(↵, |A|). We also know
that |A| =

P
S2SS |S|. Hence, in order to show that ~o

2

is an
outlier in A, we have to show:

X

S2SS
Quantile(↵, |S|)

!
> Quantile

0

@
↵,

X

S2SS
|S|

1

A

X

S2SS


|S| +

q
2|S| z↵

�
>

X

S2SS
|S| +

s
2
X

S2SS
|S| z↵

X

S2SS

q
|S| >

s X

S2SS
|S|

X

S1,S22SS

q
|S1|

q
|S2| >

X

S2SS
|S|

X

S1 6=S22SS

q
|S1|

q
|S2| +

X

S2SS
|S| >

X

S2SS
|S|

As SS is a non-trivial partition, i.e., SS 6= A, the termP
S1 6=S22SS

p
|S

1

|
p

|S
2

| is greater than 0, and the inequal-
ity holds.

B.2 Theorem 2
This theorem relies on an assumption not explicitly listed

in the body of the article. Let � denote the eigenvalue of ⌃
1

(algebraic multiplicity of d). Further let �̃
1

, . . . , �̃
d

denote
the eigenvalues of ⌃

2

. We introduce "
1

, . . . , "
d

which satisfy
�+"

i

= �̃
i

. Our assumption is that the "
i

’s are symmetrical,
i. e., for any "

j

> 0 there exist "
k

= �"
j

.
We know that, for both subspaces S

1

and S
2

, Volume(FullR)
is equal. Using a constant Volume(FullR) we can write:
RelativeVolume

�
IS� / Volume(IS). This volume is the

one of a d-ellipse. Let �
1

, . . . ,�
d

be the eigenvalues of the
covariance matrix within a subspace S, then:

RelativeVolume
⇣
IS
⌘

/
2⇡

d
2

d�( d
2 )

vuutQuantile(↵, |S|)
dY

i=1

�i (5)

We further know that
P

d

i=1

�
i

is equal to the sum of the
trace of the corresponding covariance matrix. The trace
of ⌃

1

and ⌃
2

are the same. We have assumed that each
attribute in S

1

is i.i.d. N(0,�). Hence, ⌃
1

is a diagonal
matrix with � in each diagonal element. Thus, � is the
variance and each of the d eigenvalues of ⌃

1

. ⌃
2

has o↵-
diagonal elements. Hence, the eigenvalues can di↵er from
the ones in ⌃

1

. Using the equality of traces we infer thatP
d

i=1

"
i

= 0. In order to prove our theorem we need to show
that:

12



dY

i=1

� = �d �
dY

i=1

�̃
i

=
dY

i=1

(�+ "
i

) (6)

We introduce index
>0

:= {i 2 1, . . . , d | "
i

> 0}. Sim-
ilarly, the index of "

i

= 0 as index
=0

. Let further be
m = |index

=0

|. We can infer that |index
>0

| = d�m

2

. Using
this, we can write:

dY

i=1

(� + "i) =

2

4
Y

i2 index=0

�

3

5

2

4
Y

j 2 index>0

(� + "j)(� � "j)

3

5

= �

m

2

4
Y

j 2 index>0

(�
2 � "

2
j )

3

5

= �

m
⇣
�

2
⌘ d�m

2 � �

m

2

4
Y

j 2 index>0

"

2
j

3

5

= �

d ��

m

2

4
Y

j 2 index>0

"

2
j

3

5

| {z }
0

Inserting this in Equation 6 directly proves the theorem.
We can also infer that if there is an "

i

> 0, the state-
ment of the theorem extends to RelativeVolume

�
IS1

�
>

RelativeVolume
�
IS2

�

B.3 Theorem 3
We first prove the first statement. We know that having

attributes that are i.i.d. N(0, 1) gives that
Q

d

i=1

�
i

= 1. If d
goes to infinity, the approximation of Quantile(↵, |A|) from
Equation 4 is exact. This yields:

Volume(IA
) ⇡

2⇡
d
2

d�( d
2 )

q
d +

p
2d z↵

)
h
�(IA

)
i2

⇡
4⇡d

d

2
⇥
�( d

2 )
⇤2
⇣
d +

p
2d z↵

⌘

=
4⇡d

d

⇥
�( d

2 )
⇤2

| {z }
=:p1(d)

+
2

5
2
⇡

d
z↵

p
d

3 ⇥
�( d

2 )
⇤2

| {z }
=:p2(d)

p
1

(d) and p
2

(d) are used to simplify the notation. We now
derive a recursive formula for the volume of a full data space
of dimensionality d+ 2, subsequently referred to as Ã.

Volume(IÃ
) ⇡

4⇡(d+2)

(d + 2)
h
�( d+2

2 )
i2 +

2
5
2
⇡

(d+2)
z↵

p
d + 2

3
h
�( d+2

2 )
i2

=
⇡

24⇡d

(d + 2)
⇥
d
2�(

d
2 )
⇤2 +

2
5
2
⇡

2
⇡

d
z↵✓q

1 + 2
d

p
d

◆3 ⇥
d
2�(

d
2 )
⇤2

=
⇡

2

⇥
d
2

⇤2

2

64
d

d + 2
p1(d) +

1
q

1 + 2
d

3
p2(d)

3

75

=
⇡

2

⇥
d
2

⇤2
| {z }
!0

2

66666664

�(IA
) �

2

d + 2
p1(d)

| {z }
�0

�

q
1 + 2

d

3
� 1

q
1 + 2

d

3
p2(d)

| {z }
�0

3

77777775

Thus, using this recursive formula, we can infer that the
volume of the full space inlier region shrinks when increasing
d. In Section 4.3 we had required l and u to be su�ciently
large. Thus, we can assume that range is greater than 1, and
that the volume of the full space region (ranged) increases
with d. Putting all this together yields:

lim
d!1

RelativeVolume
⇣
IA

⌘
= lim

d!1

Volume(IA)
Volume(FullR)

=
0
1 = 0

We now turn to the second statement. Think of a point
that is an inlier in an attribute. Its value in this attribute
lies within +

p
Quantile(↵, 1) := " and �

p
Quantile(↵, 1).

We can infer that " < range
2

as we have assumed range to be
su�ciently large. Thus:

lim
d!1

RelativeVolume(InR(SS inlier)) = lim
d!1

✓
2"

range

◆
d

= 0
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