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Abstract 

Cardiovascular disorders (CVDs) are the major cause of death world-wide. Their management 

relies on artificial materials in implants and external devices such as stents and 

cardiopulmonary bypass equipment. All currently used artificial materials cause thrombotic 

and inflammatory complications and require anticoagulant and antiplatelet therapies that are 

costly and dangerous for the patient. So far, research into blood-material interactions failed 

to find materials free from these complications, an adequate in vitro test for evaluating 

material hemocompatibility, or appreciate the complexity of the blood-biomaterial 

interactions. I address these problems by designing two in vitro hemocompatibility tests. One 

is a whole-blood quasi-static test where thrombotic and inflammatory responses to three 

clinically used biomaterials (Ti, CoCr, steel) are evaluated using a multi-parametric assay 

assessing thrombin generation, platelet and leukocyte activation and aggregation, and 

complement activation. The second one is a small volume, rapid, microfluidic assay where 

platelet-surface interactions in platelet-rich plasma are evaluated by measuring platelet 

detachment from and activation at biomaterial surfaces. Because of the novelty of this test 

system, model surfaces were used: TiO2, glass, hydrophobically modified glass, and glass 

coated with a polymer, poly[bis(trifluoroethoxy)phosphazene] (PTFEP), that has recently 

attracted attention as stent coating. The key feature of my approach in both cases was to 

identify blood activation parameters sensitive to differences between materials, such as 

platelet consumption (decrease in the platelet count due to contact with the material) and 

the activation of platelet-leukocyte aggregates in the whole-blood test and platelet spreading 

and platelet-surface adhesion strength in the microfluidic test. Analysis of correlations 

between parameters showed that different surfaces acted as platelet agonists of different 

strength and highlighted platelet-mediated interactions between the inflammatory and 

thrombotic reactions. Titanium emerged as a superior material in the whole-blood test.  

The future of artificial material integration is in their ability to activate native wound healing 

pathways. Normally platelets initiate them by secreting growth factors and cytokines. By 

selectively activating platelets at biomaterial surfaces, it should be possible to induce a healthy 

wound healing response. Unfortunately, not enough is known about the underlying 

mechanisms, but there is evidence of differently activated platelet subpopulations causing 
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different reactions. As a first step towards understanding and controlling platelet secretion 

reactions, I developed, for the first time, a single-platelet microfluidic assay for studying 

platelet secretion reactions that could access platelets in different subpopulations.  

 

Zusammenfassung 

Herz-Kreislauf-Erkrankungen sind die Haupttodesursache weltweit. Ihre Behandlung stützt 

sich aktuell auf synthetische Materialien, die in Implantaten, Stents sowie externen Geräten 

wie z.B. Herz-Lungen-Maschinen zum Einsatz kommen. Alle derzeit eingesetzten 

synthetischen Materialien verursachen Komplikationen wie Thrombosen und Entzündungen 

und benötigen die Blutgerinnung sowie die Thrombozytenfunktion hemmende Therapien, 

welche für die Patienten kostenintensiv und gefährlich sind. Bislang waren die Versuche im 

Bereich Blut-Biomaterial-Interaktion, Materialien frei solcher Komplikationen oder einen 

geeigneten in vitro Test für Hämokompatibilität zu finden, sowie das komplexe 

Zusammenspiel von Blut und Biomaterial näher zu verstehen, nur wenig erfolgreich. Ziel 

dieser Arbeit war es, diese Problematik aufzugreifen und zwei in vitro 

Hämokompatibilitätstest zu entwickeln. Der erste ist ein quasistatischer Vollbluttest, bei 

welchem die thrombotischen und entzündlichen Reaktionen auf drei klinisch genutzten 

Biomaterialien (Ti, CoCr, Stahl) unter Verwendung von multiparametrischen Tests unter 

Beurteilung der Bildung von Thrombin, der Aktivierung und Aggregation von Thrombozyten 

und Leukozyten sowie der Komplementaktivierung untersucht werden. 

Der zweite ist ein auf geringen Probenvolumen basierender, schneller mikrofluidischer Test, 

welcher Interaktionen zwischen Thrombozyten und den Oberflächen in einem 

thrombozytenreichen Blutplasma aufgrund der Ablösung der Thrombozyten von den 

Biomaterialoberflächen sowie der Thrombozytenaktivierung an selbigen Oberflächen 

beurteilt. Da es sich bei diesen Verfahren um neue Testsysteme handelt, kamen folgende 

Modelloberflächen zur Verwendung: TiO2, Glas, hydrophob-modifiziertes Glas und Glas 

beschichtet mit dem Polymer Poly(Bis(Trifluoroethoxy)Phosphazen), welches kürzlich als 

Stentbeschichtung in den Fokus der Aufmerksamkeit rückte. Das wesentliche Merkmal meines 

Ansatzes in beiden Fällen war das Ermitteln bezüglich Materialunterschiede sensitiver 

Blutaktivierungsparametern, wie dem Thrombozytenverbrauch (Abnahme der 
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Thrombozytenanzahl bei Kontakt mit dem Material) und der Aktivierung von Thrombozyten-

Leukozyten-Aggregationen im Vollbluttest, sowie der Thrombozytenverteilung und der 

Oberflächenhaftung der Thrombozyten im mikrofluidischen Test. Die Analyse der 

Zusammenhänge ergab, dass die unterschiedlichen Oberflächen in unterschiedlicher Stärke 

als Thrombozytenagonisten agieren, und hob die Thrombozyten-vermittelten 

Wechselwirkungen zwischen entzündlichen und thrombotischen Reaktionen hervor. Titan 

ging aus den Vollbluttests als herausragendes Material hervor. 

Die Integration der synthetischen Materialien wird in der Zukunft von ihrer Fähigkeit 

abhängen, die natürlichen Wundheilungsprozesse zu initiieren. Üblicherweise aktivieren 

Thrombozyten diese durch Absonderung von Wachstumsfaktoren oder Zytokinen. Durch das 

selektive Aktivieren von Thrombozyten an Biomaterialoberflächen sollte es möglich werden, 

den Wundheilungsprozess einzuleiten. Leider sind die zugrunde liegenden Mechanismen nur 

unzureichend bekannt, jedoch gibt es den Nachweis für unterschiedlich aktivierte 

Thrombozyten-Untergruppen, welche unterschiedliche Reaktionen verursachen. Als ersten 

Schritt zum Verständnis und zur Kontrolle der Sekregationsreaktionen von Thrombozyten 

habe ich  - zum ersten Mal – einen Einzelthrombozyten Mikrofluidik-Test, welcher 

Thrombozyten in unterschiedlichen Untergruppen erfassen kann, entworfen. 
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1. Introduction 

1.1 Cardiovascular disorders: a global problem 

Cardiovascular disorders (CVDs) are diseases of the heart and blood vessels. Coronary Artery 

Disease (CAD), heart attacks, stroke, arrhythmias, heart failure, congenital and acquired heart 

valve abnormalities, are prominent examples.1 CVDs represent a global concern, poised to 

become more severe with the increase of the lifespan and acquisition of lifestyle-related risk 

factors (smoking, alcohol consumption, obesity, diabetes). CVDs are the major contributors to 

mortality word-wide, causing the death of around 18 million people every year. CAD alone is 

responsible for 8 million of these deaths, strokes account for 5.5 million of deaths annually.2 

The primary cause of CAD, heart attacks, and strokes, is atherosclerosis. 

Atherosclerosis is the formation of a plaque in the artery wall that narrows the artery and 

limits the blood flow. The plaque formation results from a progressive accumulation of lipid 

and cholesterol, inflammatory cells, and fibrous elements--such as smooth muscle cells and 

extracellular matrix-- in the wall of the artery.3 In an advance state, the plaque can calcify and 

become increasingly big and complex. Non-occlusive obstructions of the artery--due to the 

growth of the atherosclerotic plaque--clinically manifest as ischemic events and disabling 

chest pain.4,5 Acute occlusion of the artery occurs when a thrombus or blood clot forms at the 

atherosclerotic plaque. Usually, thrombus forms when the atherosclerotic plaque ruptures or 

erodes, due to the activation and aggregation of platelets and the initiation of the coagulation 

cascade.6 Clinical manifestations of acute occlusions of the artery are heart attacks and 

strokes.  

Other pathological conditions such as hypertension greatly contribute to the epidemiology 

and mortality of atherosclerotic-related diseases. It is estimated that close to 9 million deaths 

world-wide are related to hypertensive complications.7  Another example is atrial fibrillation. 

It affects 33.5 million of individuals and greatly contributes to the occurrence of thrombotic 

events and hear failure.8 

Congenital or acquired abnormalities of the structure and function of the heart also contribute 

to the high mortality of CVDs. To give some examples, heart failure–defined as the impaired 

heart’s pumping ability--affects more than 23 million of people world-wide and causes nearly 
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300,000 deaths annually.9,10 Equally, structural heart diseases such as dysfunctional heart 

valves cause nearly 40,000 deaths every year.11  

1.2 CVD management strategies 

There is no cure for CVDs, but there are preventative approaches and/or strategies to manage 

their progress that save patients’ lives and restore their quality of life. Preventative 

approaches focus on the lifestyle improvements (healthy diet, physical activity, quitting of 

smoking and alcohol consumption). Their application is rewarded with the reduction of CVD 

mortality. For examples, Finland achieved 80% reduction in CAD mortality during the period 

1992-1972; Ireland of 50% during the period 1985-2000.12 Despite these successes in some 

countries, in others the reduction is not so impressive and CVD prevention is still a faraway 

goal on the global scale.13 

On the other hand, preventative approaches alone are not sufficient for the patients who are 

already at high risk or those with existing, developed CVDs. They require effective treatment 

measures to thrombotic complications of CVDs such as heart attacks and strokes. Examples of 

preventative therapies include those aimed at normalizing blood pressure, statins to lower 

cholesterol levels, and preventative antiplatelet therapies (aspirin) to reduce thrombosis risk. 

Thrombolytic agents are applied in the event of an acute thrombotic occlusion.14 Surgical 

interventions (angioplasty, stenting, cardiovascular bypass grafting, etc.) are used in severe 

cases. Patients with implants have to be treated pharmaceutically with anticoagulant and/or 

antiplatelet drugs.  

1.3 Use of Artificial Devices for CVD management 

Surgical interventions rely on the use of artificial devices that substitute, or augment the 

function of the damaged vessel or heart. They represent a key strategy in the management of 

CVDs. Examples of such devices are stents, vascular grafts, mechanical heart valves, 

ventricular assist devices (VADs) and extracorporeal oxygenator systems (Figure 1-1 A-D).  
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Figure 1-1. Artificial Devices. A. Coronary stent, B. Vascular bypass graft, C. Mechanical heart valves, 
D. Ventricular Assist Device (VAD), E. Membrane oxygenator used for extracorporeal membrane 
oxygenation systems.  

The use of these devices saves millions of lives. Furthermore, the progress in their design 

allowed complex and challenging surgical procedures to become routine, although limitations 

remain.15  

Key among these limitations are the adverse thrombotic and inflammatory reactions to the 

artificial materials used in the devices. 

The introduction of coronary stents has revolutionized percutaneous coronary intervention 

(PCI, or angioplasty) for the management of CADs. Close to half a million of cardiac stents are 

implanted in the US annually, three quarters of million in Europe, and around 100,000 in the 

UK for the treatments of CAD.16-18 Initially PCI was performed without stenting by balloon 

angioplasty (the first PCI was performed by Gruntzig in 1977).19 The technique consisted in 

inserting a balloon catheter in the narrowed artery and inflating it at the atherosclerotic site, 

in order to compress the plaque against the artery’s wall.19 However, the outcomes were 

compromised by the acute collapse of the arterial wall (minute-hours after the angioplasty) 

and longer-term post-angioplasty restenosis (re-narrowing) of the arteries due to vascular 

remodeling and neo-intima proliferation.20 The balloon angioplasty also suffered from 

thrombotic complications due to the tearing of the vessel.21 

Bare metal stents (BMS) were developed to prevent the collapse of the vessel by scaffolding 

the balloon-dilated artery.22 However, they resulted in high incidence of in-stent thrombosis 

(ST) and consequent embolic events. The breakthrough in the use of the stents was the 

introduction of dual antiplatelet therapy (DAPT, aspirin/ticlopidine, later replaced by 

aspirin/clopidogrel), which significantly reduced the occurrence of CAD treatment.23  
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While the thrombosis problem was addressed by DAPT, BMS suffer from significant rate of 

medium- and long-term in stent restenosis due to neo-intima proliferation.24 To address this 

problem, drug eluting stents (DES) were developed. DES have polymer-coated metal 

framework eluting anti-proliferative and anti-inflammatory drugs (Sirolimus, Everolimus, 

Paclitaxel). With respect to reducing restenosis, DES were successful, but the first generation 

DES stents turned out suffer from late stent thrombosis (1 – 5 years after the intervention).25 

The long-term performance of BMS and first generation DES turned out to be similar in terms 

of the rate of adverse cardiac events such as heart attacks and strokes.26 As the reasons behind 

late stent thrombosis became better understood, second-generation DES stents are now 

being introduced in the clinic, with better outcomes. Nevertheless, compared to the BMS, 

much longer duration of DAPT regiment (1-3 months for BMS, 6-12 months for DES) is 

recommended by the European guidelines.27,28 

Alternative method to PCI with stents for the treatment of CAD, is the more invasive coronary 

artery bypass grafting (CABS). This is an open heart surgery to redirect the blood flow by 

sewing the vascular graft to the target vessel.29 According to the current guidelines, CABS is 

the treatment of choice for patients with severe CAD.30,31 The implantation of artificial 

vascular graft is, analogous to coronary stents, associated with thrombotic complications that 

are treated with DAPT. Artificial vascular grafts also suffer from restenosis due to intimal 

hyperplasia.15  

A common and important problem of coronary stents and vascular grafts is their inability to 

promote the growth of a continuous endothelium over the surface of the implant. This limits 

the integration of the stents or graft and impairs the physiological wound healing.25 Another 

example of the impact artificial devices have on the modern health-care is the implantation 

of artificial heart valves: world-wide approximately 280,000 artificial heart valves are 

implanted per year.32 The introduction of valve replacement surgery in the early 1960s has 

dramatically improved the outcome of patients with congenital or acquired heart valve 

diseases.33 During the evolution of the artificial heart valves, several models were designed 

and optimized with respect to their geometry, materials and hemodynamics properties. The 

most recent advances are represented by aortic valves design for minimally invasive, trans-

catheter replacement.34 Heart valve prosthetics are not free from drawbacks either. Patients 

with mechanical heart valve are at risks of thromboembolic complications, systemic 

embolization (usually cerebral), valve obstruction and/or regurgitation due to the thrombosis. 



                                                                                                                                                                Introduction 
 

5 
 

The problem is more severe than in the case of the stents, and patients with mechanical heart 

valves require life-long anti-coagulation and antiplatelet therapy.32  

Yet another example is the implantation of left ventricular assist devices (LVADs) in patients 

with end-stage heart failure. It has increased considerably (from 246 patients in 2007 to circa 

2,500 patients in 2014),35 as LVAD design was recently improved. The change from the 

pulsatile to continuous flow greatly contributed to decrease the mortality rates.36 VADs suffer 

from the same thrombotic and embolic complications as other devices, requiring life-long anti-

coagulant and antiplatelet therapy regiments. Despite these regiments, the rates of 

thromboembolic complications in VAD patients remain significant (9% patients after 1 

year).37,38 

Finally, the use of external devices such as cardiopulmonary bypass (CPB) and external 

extracorporeal membrane oxygenators (ECMO) is a key element in modern surgical and 

intensive care procedures. These devices take over the heart and/or lung functions 

maintaining blood oxygenation.39 Since their first introduction in 1953, their development 

went through several changes, particularly concerning the oxygenator design.39,40 The gas 

exchange in the blood was initially achieved by direct contact bubble oxygenator, successively 

replaced by membrane oxygenator, and finally by the current used hollow fiber oxygenator 

that greatly increase the gas exchange in the blood passing through the device (Figure 1-1 

D).41 The performance of the external devices is also limited by thromboembolic complications 

and consequent strokes. Therefore, they require anti-coagulant therapies (heparin). 

Furthermore, they also cause the so-called systemic inflammatory responses that are not 

alleviated by the use of anti-coagulants.41-43 

In summary, blood-contacting artificial devices save millions of patients affected by CVDs. 

However, it should be clear from the preceding discussion that their performance is limited 

by thromboembolic complications. All of the materials used in the construction of the artificial 

devices--metals and their oxides, polymers, pyrolytic and diamond-like carbon--are not 

hemocompatible.44  

Hemocompatibility is defined as the ability of a material to be used in contact with blood 

without causing harm. Instead, all of these materials activate body’s defense systems: 

coagulation, complement, and cellular inflammation pathways. Consequently, thrombotic 

and embolic complications of these reactions lead to major adverse cardiac events (MACE) 

such as heart attacks and strokes.45 These complications are managed pharmaceutically with 
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anticoagulant and antiplatelet therapies. While this approach is successful at saving lives and 

improving the quality of life of millions of patients, it is fraught with complications. MACE rates 

are still significant in patients on the ACT/APT therapies and so is the risk of bleeding. Careful 

monitoring of patients with chronic application of ACT/APT therapies is also required to 

manage the bleeding risk, incurring considerable costs for the healthcare systems. With the 

ageing of the world-wide population, these costs will continue to rise. Much effort is therefore 

devoted to finding a material that avoids thrombotic and inflammatory complications—a so-

called hemocompatible material—but none has been found till now. Further information on 

this subject can be found in a recent review from our group.46  

I now discuss in detail what is known about adverse thrombotic and inflammatory reactions 

of blood to artificial materials. 

1.4 Adverse reactions to the materials: activation of the body’s 

defenses systems 

Contact of blood with artificial materials causes the activation of the body’s defenses systems: 

hemostasis and inflammation. Hemostasis is a physiological process that is activated in 

response to the injury to stops the bleeding. Platelets are the key component of hemostasis, 

as they catalyze the formation of thrombin by the cascade of the plasmatic coagulation 

factors.47 

Inflammation is a protective response of the body to infection and injuries. Its purpose is to 

localize and eliminate the injurious agent and to remove damaged tissue components, paving 

the way to the regenerative stages of the wound-healing cascade. It can be viewed as a 

combination of cellular reactions involving the activation of various leukocytes, and acellular 

reactions of the complement cascade.48,49 Platelets are the first cellular structures to arrive at 

the injury site, and they prime and orchestrate the subsequent inflammatory and wound 

healing reactions. The connection between hemostatic and inflammatory responses is 

schematically depicted in Figure 1-2. 
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Figure 1-2. Overview of blood-material interactions showing the components of the hemostatic 
and inflammatory systems relevant to thrombotic complications. Adapted from Gorbet et al.45 

Hemostatic and inflammatory systems are highly interconnected both in physiological and 

pathological conditions. However, under physiological condition the activation and the 

interplay of these systems lead to the wound healing, while in the pathological condition of 

blood-material contact lead to thrombotic complications.45  

I now describe in detail the components of the hemostatic and inflammatory reactions. 

1.5 Hemostasis 

Hemostasis is a defense mechanism to stop the bleeding after the injury of the vessel wall. It 

consists of three major phases: 1) vascular spasm or vasoconstriction; 2) platelet activation 

and aggregation resulting in the formation of a platelet plug and amplification of the 

coagulation (primary hemostasis); 3) blood coagulation with the formation of the fibrin clot 

that seals the wound and stops the bleeding (secondary hemostasis).50 Fibrin clot also serves 

as the natural tissue-regeneration scaffold for the subsequent wound healing reactions.  

1.5.1 Vascular spasm 

The vascular spasm, occurring immediately after the injury, is the reduction of the vessel 

lumen to limit the blood loss. It is produced by a contraction of the vessel wall and the smooth 

muscle cells as an immediate reflex to the injury.51 Serotonin and thromboxane-A2 (TXA2), 

released by the platelets activated at the injury site, contributes to this reaction.52 
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1.5.2 Platelets 

Platelets are small anuclear cell fragments circulating in the blood. They originate from 

megakaryocytes in the bone marrow.53 Platelets circulate at a concentration ranging from 150 

to 400 × 106 platelets/ml with a life span of 7-10 days.50 They are the main players in the 

hemostatic process.  

1.5.2.1 Platelet Structure 

Platelets are the smallest elements circulating in the blood, averaging only 2 to 5 μm in 

diameter. They have a discoid shape in their resting state. At high magnification in the low-

voltage high-resolution scanning electron microscope the plasma membrane has a rugose 

appearance, resembling the surface of the brain (Figure 1-3 A). The tiny folds of the so-called 

open canalicular system (OCS) provide additional membrane surface needed when platelets 

spread and expand upon activation (Figure 1-3B).54 Platelet membrane supports numerous 

receptors that respond to a very diverse variety of stimuli regulating the activation process.55  

Membrane
Open Canalicular System

α-granule

dense-granule

Mitochondria 

Actin

Microtubules

Dense Tubular 
System

A. B. Lysosome

 
Figure 1-3. Platelet Structure. A. Discoid platelet photographed in low-voltage high-resolution 
scanning electron microscope. The platelet membrane resembles the surface of the brain. B. Figure 
summarizing the ultrastructure of a discoid platelet. 

Microtubules and actin, underlying the membrane, support membrane rearrangement during 

activation.56  

Platelet cytoplasm contains three major types of intracellular granules: α-granules, dense-

granules, and lysosomes. α- granules are the most numerous platelet granules, ranging from 

40 to 80 granules per platelet. They contain up to 300 different active biomolecules with 

different functions (for example pro-and anti-inflammatory molecules, pro-and anti-
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angiogenic molecules, cytokines, growth factors). Dense-granules are less abundant than α- 

granules.56,57 They contain ions and small molecules such as ADP, calcium, and serotonin. 

Lysosomes (no more than three per platelet) contain degrading enzymes such as 

glycohydrolases.58 Platelet activation triggers the release of the granule content and the 

expression of the granule-specific glycoproteins on the platelet surface. One of the most 

important glycoproteins is CD62P (P-selectin), a commonly used marker of platelet activation 

that mediates platelet-leukocyte and platelet-endothelium interactions.59,60  

Other elements embedded in the cytoplasm include mitochondria and the dense tubular 

system DTS (Figure 1-3 B). DTS originates from the rough endoplasmic reticulum in the parent 

megakaryocyte. It functions as one of the major calcium storage pool, and participates in 

platelet activation by releasing calcium in a signal-dependent manner.56,61  

1.5.2.2 Platelet in Hemostasis 

Platelets play a key role in hemostasis. They circulate in a resting state in close proximity to 

the vessel wall.62 The healthy endothelium provides a natural barrier to their activation by 

releasing inhibitor mediators such as nitric oxide (NO) and prostaglandin I2 (PGI2).63 Following 

vascular injury they quickly adhere, activate, and aggregate forming the platelet plug. Most 

importantly, activated platelets catalyze thrombin formation at their surface.64  

Platelet adhesion 

Vascular injury cause the disruption of the vascular wall, with the consequent exposure of the 

sub-endothelial matrix proteins—such as collagen, fibronectin and laminin–to the circulating 

blood components.63  

Plasmatic von Willebrand factor (vWF), normally circulating in an inactive globular 

conformation, binds to the exposed collagen, changes conformation, and becomes competent 

to bind the platelet receptor glycoprotein (GP) Ib-IX-V. This binding initiates platelet tethering 

to the site of vascular injury.65 Following the tethering, platelets adhere stably to the vWF and 

collagen via GPIV and GPIa/IIa binding.66 
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Platelet activation 

Platelet activation is initiated by their adhesion to the sub-endothelial proteins, as well as by 

soluble agonists. The most potent agonist is thrombin; other important agonists include ADP 

and TXA2, secreted or produced by the activated platelets themselves. Stimulation of the 

platelet signaling pathways by the interaction of agonists with platelet receptors leads to 

morphological and biochemical changes–such as spreading, exposure of phosphatidylserine 

(PS), activation of the integrin GPIIb/IIIa, production of TXA2 and exocytosis of α- and dense- 

granules.67 These are schematically shown in Figure 1-4. Exposed PS serves as the assembly 

site for the plasmatic coagulation cascade proteins, leading to thrombin generation at the 

platelet surface. Activated integrin GPIIb/IIIa binds fibrinogen and/or plasmatic fibrin, cross-

linking the platelets during the platelet plug formation.66,68 TXA2 and ADP (the latter comes 

from the dense granules), together with thrombin, activate more platelets through the 

autocatalytic feedback loops, amplifying hemostatic responses.69 Thrombin activates protease 

activated receptor 1 and 4 (PAR1 and PAR4) on the platelet membrane by proteolytic cleavage 

of the N-terminal domain. The N-terminal peptide that is released in turn binds PAR1 and 

PAR4 initiating multiple signaling cascade via G-proteins.70 ADP, released from dense-

granules, binds its receptor P2Y1 and P2Y12 inducing further platelet activation and secretion 

events.71 TXA2 is produced by Cyclooxygenase (COX) mediated conversion of arachidonic acid 

(stored as phospholipid in the plasma membrane). TXA2 binds to its receptors TP-α and TP-β 

on platelet membrane, amplifying the activation process and GPIIb/IIIa inside-out signaling, 

which in turn recruits more platelets for the aggregation.72 These autocatalytic feedback loops 

serve as the targets for antiplatelet therapy drugs. Thus, the most common antiplatelet agent, 

aspirin, inhibits the biosynthesis of TXA2 by the platelets. In particular, aspirin inhibits the 

enzyme responsible for the conversion of Arachidonic acid in TXA2. 73 Another effective oral 

antiplatelet agent for long-term use, clopidogrel, blocks the action of ADP on the P2Y12 

receptor. Another type of antiplatelet agent is abciximab, a monoclonal antibody. Abciximab 

inhibits platelet aggregation trough blockage of GPIIb/IIIa.74 It is used intravenously or intra-

arterially during cardiac interventions, but is too potent for long term use.71 The combination 

of aspirin and clopidogrel forms the most effective antiplatelet regiment to date, DAPT used 

to manage patients with stents and other implants as described above in section 1.8.75 
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Figure 1-4. Platelet activation. Schematic representation of the major events characterizing platelet 
activation. Common platelet agonists (soluble: ADP, thrombin, TXA2; extracellular matrix proteins: 
collagen and collagen-bound von Willebrand factor) are indicated in blue. Soluble agonists bind to 
the G-protein receptors (black) that activate various platelet responses through the associated 
signaling pathways involving intracellular calcium rise. Matrix proteins bind to the integrin-type 
receptors (gray, GPIa/IIa; green, GPIIb/IIIa). Responses include PS expression, granule secretion, 
GPIIb/IIIa activation, and thromboxane synthesis. Note that ADP and TXA2 are both released during 
activation and serve as platelet agonists, forming autocatalytic feedback loops amplifying platelet 
activation. PS catalyzes thrombin formation. The signaling through GPIIb/IIIa is bi-directional: it can 
be activated by soluble agonists (inside-out), making it competent to bind fibrinogen and cross-
linking the platelets, as well as by binding to the fibrin or von Willbrand factor in the clot or injury 
site (outside-in), activating other platelet responses. 

All these events are associated with an increase in the concentration of cytosolic calcium 

([Ca2+]i) triggered by the agonist-receptor interaction. The source of Ca2+ in platelet activation 

is both intracellular (DTS described above) and extracellular.76 Intracellular Ca2+ release from 

the DTS involves the activation of phospholipase C (PLC), which hydrolyzes 

phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol-1,4,5-trisphosphate (IP3) and 1,2-

diacyl-glycerol (DAG). IP3 in turns triggers Ca2+ release by interacting with its receptors (IP3R) 

on the DTS, which themselves are Ca2+ permeable ion channels. The drop in the DTS Ca2+ is 

sensed by the stromal interaction molecule (STIM1) which triggers the extracellular Ca2+ influx 

into the cytoplasm through the channel Orai1. This mechanism is called SOCE (store-operated 

calcium entry) and it is reviewed by Varga-Szabo et al.77 

The content of platelet granules deserves further comment. Dense granules contain small 

molecules—such as serotonin, ADP, ATP, Ca2+. α-granules contain proteins, growth factors, 
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cytokines, coagulation cascade proteins, etc. Altogether, some 300 molecules have been 

identified in the α-granules. They include hemostatic factors (fibrinogen, Factor V, vWF, 

GPIIb/IIIa), growth factors (Stromal Derived Growth Factor 1α /SDF1α, Platelet-Derived 

Growth Factor/PDGF), proteases (Matrix Metalloproteinase 9/MMP9, Matrix 

Metalloproteinase 2/MMP2), pro-angiogenic factors (angiogenin, Vascular Endothelial 

Growth Factor/VEGF), anti-angiogenic factors (Platelet Factor-4/PF4, angiostatin), pro-

inflammatory factors (e.g. P-selectin, RANTES, Interleukin 8/IL-8 and Interleukin 2/IL-2), and 

anti-inflammatory factors (e.g. IL4, Hepatocyte Growth Factor/HGF, Tumor Necrosis Factor-

α/TNF-α). These molecules control and regulate the wound microenvironment following the 

injury.78-80 Many of them have contradictory functions, for example pro-and anti- angiogenic 

factors such as VEGF and angiostatin, pro- and anti- inflammatory factors such as interleukins 

and HGF. 

Platelet aggregation 

Activated platelets form stable aggregates through the binding of the integrin GPIIb/IIIa to 

fibrinogen, fibrin and vWF. It is notable that following the engagement of ligands, GPIIb/IIIa 

can deliver outside-in signals, which further enhance platelet activation, cytoskeleton 

rearrangement, and granule secretion. These signal events facilitate the formation of the 

platelet plug.72,81 

1.5.3 Coagulation 

The formation of the clot that stops the bleeding—coagulation—involves a series of enzymatic 

reactions in which a zymogen (inactive enzyme) present in the blood plasma becomes 

activated through cleavage and catalyzes the activation of the following component of the 

cascade.82 Figure 1-5 schematically depicts the coagulation cascade. Coagulation is initiated 

by the damage to the vascular bed with the exposure of Tissue Factor (TF) on the damaged 

cells. TF binds FVII, which activates to VIIa to form extrinsic tenase, TF/FVIIa. The latter 

converts FX in to FXa, a key reaction needed to form the prothrombinase complex for 

catalyzing thrombin formation from prothrombin. Tenase complex consists of FXa and FVa, 

and is formed on the PS exposed at the activated platelet surface. Vitamin K and calcium serve 

as co-factors. TF also activates platelets. 
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Once formed, thrombin amplifies, propagates and sustains the coagulant response by further 

activating factors V, VIII, and XI. The FVIIIa that is formed assembles into the intrinsic tenase 

complex together with FIXa on the platelet surface. Thrombin also cleaves fibrinogen and FXIII 

to form the insoluble cross-linked fibrin clot.  

 

Figure 1-5. Blood Coagulation Cascade 

Other initiation reactions, possibly relevant to some biomaterials, include prekallikrein, high 

molecular weight kininogen/HMWK, and FXII of the contact activation pathway are not shown 

in Figure 1-5. In vivo they are not involved in the initiation of coagulation, because patients 

with deficiency in these proteins do not have bleeding disorders.56 Their physiological role is 

not known.45 

Activated platelets are directly involved in the coagulation cascade in several ways. Firstly, the 

enzymatic reactions leading to the formation of thrombin are catalyzed by PS exposed on the 

surface of the activated platelets. Secondly, activated platelets release from their intracellular 

granules blood coagulation factors V, factor XI, fibrinogen and factor XIII (that combine with 

the pool of plasmatic coagulation proteins). If platelets are deficient in these factors, patients 

suffer bleeding disorders.83 Third, activated platelets release TXA2, which is a 

vasoconstrictor.52 They also release the trace amounts of thrombin needed for the initial 

activation of FVII on the TF-FVII complex. 
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The process of coagulation is controlled and restricted to the site of vascular injury by natural 

anticoagulants. These inhibitors of coagulation are: anti-thrombin (AT), the protein C and 

protein S, and the TF pathway inhibitor system (TFPI). Dissolution of blood clots (fibrinolysis) 

is regulated by the plasminogen–plasmin system. This system, activated by tissue plasminogen 

activator (t-PA), breaks down fibrin and controls fibrin polymerization.84 

1.6 Inflammation 

Inflammatory response entails the activation of cellular (leukocytes) and acellular 

(complement) components. It defends the organism against damage from external factors, 

both biological (pathogens) and non-biological. Under normal physiological conditions, 

inflammation leads to wound healing and regeneration of functional tissue. Acute 

inflammation occurs over the period of a few weeks, but under pathological conditions it can 

turn chronic and persist indefinitely. 

1.6.1 Complement 

The complement system is a sequential cascade of more than twenty plasmatic proteins. 

Similar to the coagulation cascade, each factor catalyzes the activation of the subsequent 

factor. These steps culminate in the assembly of a membrane attack complex (MAC). Its 

function is to destroy the invading pathogen by lysis. Soluble components released as a part 

of the complement cascade reactions activate platelets and leukocytes, participating in the 

overall inflammatory cascade.49 (Figure 1-6).  
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Figure 1-6. Complement Cascade. 

Activation of complement occurs through the classical, lectin, or alternative pathways. The 

classical and lectin pathways are homologous, differing only in the initiation. The classical 

pathway is initiated by antigen-antibody complex, while the lectin pathway by mannose-

binding lectin (MBL) binding to carbohydrates on microorganisms. The alternative pathway is 

initiated by any foreign elements—such as fungal, bacteria, lipopolysaccharides (LPSs) or 

biomaterials surfaces45. The three pathways merge at the formation of C5 convertase that 

catalyzes the assembly of the MAC.  

In the absence of lipid membranes susceptible to the attack, MAC is inactivated by the S-

protein (vitronectin) to form the soluble sC5b-9 complex.85 This occurs when complement is 

activated by biomaterials, and sC5b-9 levels are used to measure complement activation.45  

1.6.2 Leukocytes 

Circulating leukocytes comprise neutrophils, monocytes, lymphocytes, basophils and 

eosinophils. Neutrophils and monocytes are the major players in the initiation and 

maintenance of the inflammation. Neutrophils circulate at a concentration of 3-5 × 106 

cells/ml, while monocytes at a concentration of 0.2-1 × 106 cells/ml 45. Under conditions of 

inflammation they activate, adhere to the endothelial cells (ECs) of the vasculature and 

migrate to the injured site. At the injury site, monocytes undergo to maturation and 

differentiate in macrophages. The activation of neutrophils and monocytes entails several 
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responses: synthesis and expression of TF, increased capacity to adhere to endothelium and 

other surfaces thanks to the upregulation of CD11b and the shedding of L-selectin.86 

Neutrophil activation results in the release of inflammatory mediators from the intracellular 

granules (gelatinase, specific and azurophil granules). Important inflammatory mediators are 

elastase, cathepsin G and lactoferrin, as well cytokines such as IL -1, -6, -8, TNF-α, Granulocyte 

colony-stimulating factor (G-CSF) and Granulocyte macrophage colony-stimulating factor 

(GM-CSF). Neutrophils also produce and release arachidonic acid metabolites, such as 

leukotriene B4 and platelet activating factor (PAF). The released inflammatory mediators are 

chemoattractant for leukocytes, promote adherence to ECs, and further activate platelets or 

leukocytes.87,88 

Neutrophils and monocytes can also release oxidants, such as O2- and H2O2. This products 

damaged tissue and activate cells,89 but they are also powerful enough to erode most 

biomaterials. 

1.7 Hemostasis and Inflammation: one system for wound healing 

and material-induced thrombosis 

Hemostasis and inflammation are highly interrelated process that considerably affect each 

other.  

The cross-talk between hemostasis and inflammation occurs at level of all components of the 

two systems: platelets, plasmatic coagulation, leukocytes, and complement.   

Platelets occupy a central role in the relationship between hemostasis and inflammation. 

Upon activation, platelets release from the intracellular granules cytokines, growth factors 

and numerous pro-inflammatory mediators.80 In addition, platelets recruit monocytes and 

neutrophils to the site of the injury by forming platelet-leukocyte aggregates. The aggregate 

formation is mediated by P-selectin on the activated platelets and its counter-receptor on 

leukocytes (P-selectin Glycoprotein Ligand-1, PSGL-1).90 Also, cellular interaction via P-selectin 

markedly enhances the production of pro-inflammatory cytokines and chemokines in 

neutrophils and monocytes, increases the expression of adhesion molecules (CD11b) and TF 

on both leukocytes and ECs.91 

In turn, platelet activation is enhanced by the complement factors. Incorporation of the 

terminal complement C5b-9 complex into the cell membrane activates platelets and results in 
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the exposure of PS, thereby enhancing the pro-coagulant activity of platelets, and granule 

secretion from the cytoplasm of platelets.92 Binding of C1q to its receptor on the surface of 

platelets induces the expression of P-selectin.93 The complement factors (C3a, C4a and C5b) 

also induce the activation of leukocytes and augment the expression of TF, which is the key 

initiator of the coagulation cascade (Figure 1-5). On the other hand, thrombin produced in the 

coagulation cascade induces leukocyte activation through the PAR-receptors expressed on the 

leukocyte surface.94 The thrombin-mediated activation of leukocytes leads to increased 

production of inflammatory mediators and increased leukocytes adhesion and chemotaxis. 

Thrombin is also involved in the activation of C3, C5 and C6 in the complement cascade.45  

Finally, the clot scaffolding made of fibrin recruits activated platelets through GPIIb/IIIa 

binding, as well as leukocytes through interaction with the active form of the integrin CD11b. 

Leukocyte binding to fibrin leads to production of chemokines and cytokines and 

degranulation.95 

The bidirectional relationship of hemostasis and inflammation is also apparent in the anti-

coagulant pathways. All the three major natural anticoagulants (AT, TFPI, Protein C/S) also 

possess anti-inflammatory properties.96  

In summary, coagulation, platelets, leukocytes and complement act in concert creating a 

hemostatic-inflammatory cycle, in which the activated processes promotes the others in a 

positive feed-back loop (Figure 1-2). Under physiological conditions the close relationship 

between hemostasis and inflammation leads to the wound healing. In pathological conditions 

this relationship greatly contributes to the etiology or progression of the disease. This is what 

happens when blood contacts the artificial device: coagulation, platelets, leukocytes and 

complement activate and closely interact leading to thrombotic and inflammatory 

complications.  

1.8 Pharmacological management of the adverse effects caused by 

the artificial devices 

Clinicians have learned to manage the complications associated with the artificial devices 

pharmacologically through APT, ACT, or combination of the two. The breakthrough in the 

management of artificial devices was the combination of different antiplatelet agents 

(DAPT).23,71,97 DAPT considerably reduced the thromboembolic complications associated with 
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stent implantation, underscoring the importance of platelets in adverse reactions to 

biomaterials.  

DAPT relies on the combination of aspirin and clopidogrel. These two antiplatelet agents have 

the greatest clinical successes in reducing thromboembolic complications.23,98 This success 

could be attributed to the ability of both aspirin and clopidrogel in modulating the 

amplification of platelet activation. Aspirin, by preventing the generation of TXA2, and 

clopidogrel, by inhibiting the ADP binding to its receptor P2Y1, eliminates important feedback 

loops for the amplification of the activation.71 

In addition to APT, ACT are used for the prevention of thrombotic complications in a variety 

of interventions. Heparin and warfarin are the most common anticoagulants. Heparin exerts 

its action by binding and activating anti-thrombin III, which in turns inactivate thrombin, FXa 

and FIXa. Intravenous heparin-based ACT is used to prevent thromboembolic complications 

during CPB and ECMO.39,99,100 Warfarin is a vitamin K antagonist, important cofactor for the 

activation of many coagulation factors (prothrombin, FVII, IX, X). Differently from heparin, it 

is administrated orally and it is used for long-term anticoagulation treatments, e.g. after 

mechanical heart valve replacement or VADs implantation, alone or in combination with 

APT.36,101,102 

However, the use of APT and ACT is not free of drawbacks. They are associated with increased 

risks of hemorrhagic complications. Heparin further causes thrombocytopenia.71,103 

Balancing between thrombosis and hemorrhagic risks requires complex decisions in terms of 

drug combinations, dosage and duration, and as well constant monitoring. 

1.9 Mechanisms of blood activation at the biomaterial surface: the 

role of adsorbed proteins 

In this section, we discuss what is known about the mechanisms, by which biomaterials 

activate body’s defense systems that have been described in the previous sections.  

The first event occurring at the blood-material interface is the absorption of plasma proteins. 

The adsorption phenomena are thought to be key to the development of the subsequent 

cellular reactions.104 

The composition and the conformation of the adsorbed protein layer are considered 

particularly important in influencing these reactions. For example, the absorption of 
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fibrinogen, vWF, vitronectin, coagulation proteins such as FXII and HMWK is favorable in 

inducing platelet adhesion.105 

In particular, it has been known for a long time that the amount of fibrinogen was always 

associated to the platelet adhesion response.106 However, the group of Latour demonstrated 

that the conformational changes occurring at the surface are more important mediators of 

platelet adhesion. The adsorption-induced conformational changes of fibrinogen led to the 

exposure of platelet binding motif, otherwise hidden in the native state of the circulating 

protein.107 This notion, of surface-induced conformational changes, was actually inspired by 

vWF that undergoes such a conformational change upon adsorption to collagen, to 

biomaterial surfaces, and in turbulent flow.108  

Interestingly, a similar unfolding mechanism leading to platelet activation was recently found 

in albumin,109 even though this protein is usually considered passivating and unable to induce 

platelet adhesion due to the lack of binding motif in its sequence.110  

Albumin is the main protein constituent of plasma (40 mg/ml). These conformational changes 

were found to be surface-specific (e.g., dependent on the chemical nature of the surfaces 

studies), and they occurred in a time-dependent manner. 

However, despite several studies only partial data on adsorbed protein profiles on different 

surfaces have been obtained.110 It is important to remember that blood contains several 

hundred of different proteins and that the adsorption phenomena are complex and time-

dependent. The phenomenon known as Vroman effect describes how the layer composition 

evolves with time, such that the highest mobility proteins are adsorbed earlier (seconds) and 

are displaced later (minutes) by proteins with higher surface affinity. The classic Vroman effect 

example is the initial absorption of albumin and fibrinogen, subsequently replaced by the 

coagulation protein HMWK or FXII.111,112 

Finally, the dynamics of protein absorption is also related to the physicochemical properties 

of the surface.113 For example, there are differences between hydrophobic and hydrophilic 

surfaces. Fibrinogen retention is greater on hydrophobic surfaces than on the hydrophilic 

ones. Some materials sequester complement factor C3b and may cause less activation of the 

plasmatic coagulation by the complement system.114 Dynamic Vroman effects are seen mainly 

for hydrophilic surfaces on which the protein are less tightly bound than on hydrophobic 

ones.110 
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In other words, the composition of the adsorbed protein layer, as well as the conformation of 

the proteins in that layer, are important in the interaction between surfaces of artificial 

implants and platelets. Both evolve with time and depend on the surface chemistry of the 

material. However, despite many years of research, the detailed mechanisms of pro-

coagulatory and pro-inflammatory events upon blood contact with artificial surfaces are only 

poorly understood. If on one hand the basic mechanisms of those interaction have to be 

investigated, on the other hand a systematic evaluation and comparison between 

biomaterials still makes sense, in order to predict the performance in vivo.   

1.10 Failed Attempts to Find Hemocompatible Materials 

We saw above that adverse reactions to biomaterials begin with the absorption of proteins to 

the biomaterial surface. Therefore, the main approach of the past 70 years of research to 

developing hemocompatible materials was to reduce protein adsorption and cell adhesion; in 

other words, it was to make the materials “inert”. In many hemocompatibility tests, resistance 

to protein adsorption and platelet adhesion was used as a marker in lieu of 

hemocompatibility.110,115 

This strategy typically entailed the modification of the material surface with passivating 

coatings -such as Polyethylene Glycol (PEG) or phosphorylcholine (PC) coatings- in order to 

weaken and ideally eliminate the interaction of proteins and cells with the surface (Figure 1-7 

A). It is now clear, that this approach failed rather spectacularly.  

While both PEG and PC exhibit significant reduction in protein absorption and platelet 

adhesion in vitro,116-121 this had not translated into in vivo success.122,123 For example, PC 

polymer-coated stents had no advantages over uncoated stents in porcine or rabbit 
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Figure 1-7. Approaches to developing hemocompatible materials. A. Passivating coatings. B. 
Immobilization of bioactive molecules for the inhibition of thrombin. C. Bifunctional surface: the 
passivating coating reduces the non-specific protein absorption; the immobilized bioactive molecule 
promotes specific reactions with thrombin modulating coagulation. 



                                                                                                                                                                Introduction 
 

21 
 

angioplasty models.124 Although they showed reduced protein absorption and platelets 

adhesion, they had no significant effect in reducing coagulation activation. Indeed, studies 

showed that coagulation still took place on these so-called “inert” surfaces.125 The only 

instance of a passivating coating used in an implant to date is in the Endeavor stent from 

Medtronics, where PC coating is used together with drug-elution. This stent has been 

introduced recently and clinical outcomes are not clear.126 All other coatings used in the clinic 

to date are of the “active“ type, such as heparin modified materials for the CPB , ECMO, and 

dialysis circuits (Figure 1-7 B).127 But even these, active-type coatings, did not find application 

in implant surface modification: when heparin coated implantable artificial devices—such as 

coronary stents and vascular graft—underwent to clinical trials, they did not show any 

significant improvement in the long-term thrombosis compared to the uncoated stents.128 129 

Stents and other implants are constructed of materials that are certainly far from “inert” 

(metals, carbons, other polymers). One can speculate that bioactive coatings are not suitable 

for long-time blood-material contact, because the enzymatic degradation that occurs over 

time causes the loss of activity of the coating. 

Once again, existing active coatings (heparin-coated CPB, ECMO, and dialysis devices) still rely 

on soluble heparin injections and other anticoagulants to function. Heparin coating improves 

the situation, but does not solve the problem. 

Modern extensions of the active coating approach focus on bifunctional surface modified with 

PEG—for protein resistance—and direct thrombin inhibitor (hirudin) – for the specific protein 

binding (Figure 1-7 C).130 These are sought for applications in CPB, hemodialysis, ECMO, 

catheters, and other external medical devices. 

The biomaterials currently used in clinical practice include metals and metallic alloys 

(Titanium, Nitinol, surgical grade-steel, cobalt chromium alloys), polymers (Dacron, Teflon, 

Polyurethane, Polyethylene, Polytetrafluoroethylene—PTFE), and carbon modifications 

(diamond-like and pyrolytic).131,132 All of them, without exception, activate adverse 

thrombotic and inflammatory responses when they come into contact with the blood. These 

lead to thrombotic and inflammatory complications that need to be managed with 

anticoagulant and antiplatelet treatment. Inertness does not equal hemocompatibility, and 

tests that evaluate protein adsorption or platelet adhesion are poor predictors of 

hemocompatibility. The question becomes, what has to be tested to evaluate material 

hemocompatibility, and how can the situation be improved.  
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1.11 Evaluating hemocompatibility: thrombotic and embolic events 

The best information we have about the behavior of various materials in blood comes from 

animal tests. It was shown early on (1970s) by Kusserow and later by Ratner that platelets may 

not adhere to the material surface, but may become activated by the surface and aggregate 

in solution, causing emboli that travel downstream from the device and occlude vessels in the 

lung, heart, brain or kidney.133,134 Thus, a direct parallel between platelet adhesion and the 

material hemocompatibility is erroneous.  Instead, there is the need to evaluate not only the 

events occurring at the surface but also the ones occurring in solution, referred to by the 

thrombotic and embolic potential of the surface, respectively. Indeed, as early as 1972 

Kusserow wrote: “The need for careful evaluation of a given prosthetic device or surface for its 

embolic propensity is apparent” (Figure 1-8).  
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Figure 1-8. Thrombotic and embolic responses to the materials. The nomenclature refers to the early 
work of Kusserow.134 Since in this thesis we are concerned not only with thrombotic adverse 
reactions, but also inflammatory, we refer to these as surface-phase and solution phase thrombotic 
and inflammatory responses. It is to be understood that “thrombotic” in this case includes 
thrombotic (surface-phase) and embolic (solution-phase) reactions. 

Kusserow studied the thromboembolic properties of ring implants, composed of several 

materials, placed in the renal artery of dogs (Figure 1-9 A).  As well, other investigators tested 

the thrombotic and embolic events following materials implantation in the vena cava, using 

canine models, or in baboons having arteriovenous (A-V) shunts (Figure 1-9 B and C).135,136 
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Figure 1-9. In vivo hemocompatibility tests. A. Renal embolus test: the stent made of the material 
of interest is implanted in the renal artery of the dog, B. Vena cava test: the stent implanted in the 
superior and/or inferior vena cava of the animal. C. Arteriovenous shunt: the shunt is insert between 
an artery and a vein of the experiment animal, the test materials is interposed between the inlet 
and the outlet of the shunt.134,137,138   

These studies invariably revealed that materials could have thrombotic potential, embolic 

potential, or both, and that all materials activated hemostasis to some extent. They also 

revealed that platelet depletion from the fluid phase was the best parameter to assess both 

the thrombotic and embolic propensities of the implanted materials that could be correlated 

with in vitro results in some cases.131 However, animal experiments have always been a 

complicated topic, especially in the case of primates and canines. Economic and ethical issues 

ultimately led to a reduction of animal experiments or their complete prohibition.139,140 

Translation of the animal test results to the humans is also a complex problem that will not be 

considered here: blood from different species behaves differently, for example the 

adhesiveness of dog- and human platelets differs by orders of magnitude; pig and human 

platelets differ in functional responses, while murine and human platelets express different 

receptor repertoires.44,141,142 Finally, there is the lack of a reliable correlation between in vitro 

and in animal studies. All of this drives the need to design reliable in vitro tests.  

It turns out that despite the past 70 years of hemocompatibility research, there is actually no 

standard in vitro test for evaluating hemocompatibility, and no universal agreement for the 

parameters that need to be measured to evaluate hemocompatibility. Some standards are 

being worked out (ISO 10993-Part 4), but this is very much a work in progress.143 However, 

some lessons have been learned. Based on the animal experiments, we can surmise that a 

reliable in vitro test has to meet these requirements: 

 Thrombin levels should be measured, because thrombotic complications of 

biomaterials are most severe; 
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 Platelet counts should be measured, because it is the one parameter that has exhibited 

some correlation between in vitro and in vivo results; 

 Any other parameter that is measured (e.g., platelet activation, cellular or acellular 

inflammatory responses) cannot be restricted to surface- or solution-phase reactions. 

Measurements should either reflect both, or separately measure the two, for the 

reasons discussed above; 

 Of these, platelet activation is particularly important because of their unique position 

in the hemostatic, inflammatory, and regenerative responses (section 1.7 above). 

The next point concerns the measurement conditions under which all these parameters need 

to be measured so that the results of these measurements are useful. There is a general 

consensus that the testing should be performed under flow, if nothing else than avoid cell 

sedimentation.46,144 The geometry should be circular for mimicking in vivo flow conditions and, 

more likely, for reflecting physiological distribution of cells in the flowing blood with platelets 

pushed to the periphery. Several models for in vitro circulation have been employed. Examples 

are the Chandler loop system and the rolled-pump closed loop. However, each of them have 

their drawbacks and complications, and arguments about their physiological relevance 

continue.145,146 Perhaps the future is with micro-fluidic systems, which required small blood 

volumes, are easy to control and to standardize.46,147,148 The drawback of the micro-fluidic 

systems is an increased surface area-to-volume ratio. Microfluidic technologies have been 

widely used to study platelet functions, activation and thrombus formation under flow and at 

protein-coated surfaces (for simulating the vascular injury).147,149,150 To my knowledge, 

microfluidic technologies have been rarely applied to the biomaterial testing. 

So-called quasi-static measurement protocols also exist. They are based on systems for blood 

incubation under static conditions, in which the sedimentation of the blood cells is prevented 

by agitation. The quasi-static measurements show similar sensitivity in distinguishing between 

materials of the in vitro circulation models.151  

In general, the idea that only measurements that mimic “physiological conditions” are useful 

is somewhat dogmatic. It cannot be considered proven, because so far, correlations between 

in vitro measurements and in vivo performance have not really been established. Indeed, 

there are several arguments against the blind “mimicking “approach. Firstly, blood, taken out 

of the body, will coagulate if left on its own; therefore, none of the in vitro situations are 

physiological.152 Secondly, all of the currently used in vitro tests hemocompatibility tests 
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struggle with predicting long-term (3 – 5 years) effects from short-term (15 – 90 minute) 

measurements. This timescale gap actually points to the need for a test that strives away from 

physiological conditions to be predictive, because a predictive test run under “physiological” 

conditions would have to run for 3 – 5 years! (The timescale problem is illuminated in the work 

of Latour et al. already mentioned above, who showed that surface-adsorbed proteins may 

take months to change conformation153). This topic is also discussed in Reviakine et al.152  

Therefore, in my view, the search for adequate in vitro hemocompatibility test has to focus 

not on attempts to mimic physiological conditions, but on clinical correlations, independently 

of how they are obtained. In this spirit, Chapters 3 is concerned with the development of a 

quasi-static whole blood hemocompatibility assay that is based on the principles outlined 

above, while Chapter 4 is concerned with the development of a platelet-rich-plasma (PrP) 

based hemocompatibility assay that searches for a parameter displaying maximum sensitivity 

to the differences between material properties. 

1.12 The future of implant integration: directing platelet responses 

towards wound healing  

The more fundamental question than how to test material hemocompatibility is related to the 

desired outcome of the blood-biomaterial interaction. What are the properties of the vascular 

implant that are needed for it to be hemocompatible? For a long time, it was considered that 

minimizing thrombotic and inflammatory responses was the goal of material science and 

modification approaches to synthesizing materials for vascular implants. This is still the 

prevailing point of view today, despite 70 years of consistent failure. Testing strategies were 

developed and used accordingly. 

The view taken in my group, as well as shaped by my own work presented in Chapters 3 and 

4, is that minimizing the initial adverse reactions to biomaterial is not the relevant goal of, or 

an approach to, the material hemocompatibility. The ultimate goal should be to “hide” the 

biomaterial from the bloodstream altogether. No other material is more hemocompatible 

than vascular endothelium, and therefore, after a short healing period, any vascular implant 

should be covered with it. This idea is very old, but my work represents a radical departure 

from how it has been approached until now.  

Until now, the two strategies to implant endothelialization entailed either “seeding” ECs on 

the surface of an implant or tissue engineering scaffold ex vivo, or catalyzing the formation of 
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the endothelium formation in vivo.154,155 The second strategy, entails modification of the 

implant or scaffold surface with antibodies or peptides able to capture the endothelial 

progenitor cells (EPCs) from the blood, or with growth factors that stimulate 

endothelialization.155,156  

Up to now, neither strategy has been successful. First clinical trials of the EPC capture stents 

have not shown improvement compared to the drug-eluting stents.157,158 Their failure of the 

endothelialization approaches, in my view, is related to the fact that platelets have been 

missing from the picture.  

In vivo, platelets are the first cellular elements that interact with the implant. Under 

physiological conditions platelets orchestrate wound healing reactions, but at the implant 

surface they cause thrombosis and inflammation. Therefore, I believe that controlling platelet 

activation is the key to promote the wound healing at the site of the implant (Figure 1-10). 
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Figure 1-10. Directing platelet activation towards the wound healing. 

The question then becomes, how do we control platelet activation to achieve the desired 

wound healing response? The answer is thought to be related to controlling platelet secretion 
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responses. Upon activation, platelets release a plethora of molecules to finely orchestrate 

wound healing. These molecules are stored in the α-granules of the resting platelets, but are 

released upon activation. A lot of these factors have contradictory properties and how their 

release is controlled is not understood. Some of those factors are listed in Table 1-1. 

It is notable that platelets accumulate at the site of injury very rapidly, much more so than the 

other circulating blood cells, making platelets the most important source of the wound-

healing mediators.80 For example, VEGF concentrations are elevated 3-fold during the first 

minutes after plug formation following forearm incision.163 Therefore, the future of 

hemocompatibility is not behind minimizing the activation of the defense systems, but in 

inducing specific activation, in directing platelet responses to the wound healing and implant 

integration reactions. To achieve this, the triggers controlling their secretion reactions need 

to be understood and harnessed in the biomaterials. There is evidence in the literature that 

this approach is viable. Firstly, platelet secretion may be agonist-specif. For example, ADP is a 

more potent mediator of VEGF and CTGF release from platelet than endostatin.164-166 

Pro-angiogenic, vascular remodeling, recruitment, growth and proliferation of ECs and 

fibroblast 159 160 

Growth 

Factors 

VEGF, PDGF, fibroblast growth factor (FGF), epidermal growth factor 

(EGF), HGF, insulin-like growth factor (IGF), connective tissue growth 

factor (CTGF) 

Chemokines, 

cytokines 

and others 

RANTES, IL-8, angiopoietin, SDF-1, and β-thromboglobulin (β –TG), MMP-

1, -2, and -9 

Anti-angiogenesis, inhibition of endothelial cell proliferation, interference  with pro-

angiogenic factors 78,161 

Glycoprotein, 

cytokines 

and others 

Thrombospondin-1 (TSP-1), PF4, angiostatin, endostatin, tissue inhibitors 

of metalloproteinases (TIMPs-1 and -4) 

Table 1-1. Major classes of Platelet α-granule content and their function. More than 300 factors 
have been identified by proteomics analysis so far.162 
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Secondly, PrP is used in a number of therapeutic applications in dental, orthopedic, and plastic 

surgery where rapid wound healing is required.160,167 PrP is also used for promoting the 

proliferation of mesenchymal stem cells (MSCs).168  

Third, it has been shown by us and others that platelets activate in biomaterial surfaces in 

different ways: differential expression of GPIIb/IIIa was also reported in response to the 

interaction with different materials;131 differential α-granule secretion in platelets adhering to 

different surfaces or surfaces modified with different plasma proteins has been reported by 

several authors under different conditions.169-172  

Furthermore, several studies of platelet activation in solution report that different stimuli 

induce platelet subpopulations in term of the expression of PS and GPIIb/IIIa,173-175 while we 

reported that such phenomena are observed in surface-adhering platelets.176  

Altogether, these observations point to the fact that platelet activation and secretion patterns 

at biomaterial surfaces can in principle be controlled, and that control could lead to beneficial, 

wound-healing reactions.  For this reason, in Chapter 5 I develop and validate an assay for 

evaluating platelet secretion. Because of the discovery of platelet subpopulations with 

different activation profiles, the assay is focused on individual platelets approached with a 

microfluidic technique. 
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1.13 Objectives of the work  

It is widely recognized that there is an urgent need for improving the performance of the 

artificial devices used to treat CVDs. All the artificial materials currently in use induce 

thrombotic and inflammatory complications that lead to heart attacks and strokes. Platelets 

play a central role in these complications. Clinicians manage the thrombotic complication 

therapeutically through anticoagulant and antiplatelet agents.  However, their clinical use is 

accompanied by significant risk of bleeding. Until now, research into blood-material 

interaction failed in finding a material free from these complications, or devising an in vitro 

test for characterizing material hemocompatibility that could reasonably and rapidly guide the 

search for such a material. Therefore, the first objective of this work was to identify sensitive 

and robust blood activation parameters for in vitro material testing. Two in vitro test systems 

are used for this purpose. First is a whole-blood quasi-static test system, where I evaluate the 

effectiveness of various in vitro measures of blood activation in distinguishing between similar 

clinically used biomaterials (Ti, CoCr, steel) and examine the underlying activation 

mechanisms. Blood activation is evaluated using a multiparametric assay I develop that 

measures solution- and surface-phase reactions contributing to the thrombotic and 

inflammatory responses. These include thrombin production, platelet consumption and 

activation, and leukocyte and complement activation. This aspect is described in Chapter 3. 

Second is a simple biophysical system based on measuring platelet-surface interactions in 

platelet-rich plasma with the goal of identifying a platelet activation parameter that is most 

sensitive to differences between materials. This aspect of the work is described in Chapter 4 

The second objective of this work was to pave the way for the developing future biomaterial 

integration strategies based on platelet regenerative functions. Based on the notion that 

platelet secretion is the key to the regenerative functions of the platelets, I develop and 

validate a single platelet assay for studying platelet secretion. This aspect is described in 

Chapter 5. Chapter 6 provides the overall conclusions. 
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2. Materials and Methods 

2.1 Cell Labeling Reagents 

PerCPCy5.5-conjugated anti-CD41a, PE-conjugated anti-CD62P, BV450-conjugated anti-CD63, 

FITC-conjugated anti-CD45, V450-conjugated anti-CD66b, BV605-conjugated anti-CD14, APC-

conjugated anti-CD14, BV510-conjugated anti-CD11b, as well as BV605- and Cy5-conjugated 

phosphatidylserine binding protein Annexin A5, were purchased from BD Biosciences 

(Heidelberg, Germany).  

2.2 Other Chemicals 

Vacutainers for blood collection containing 0.105 M Sodium Citrate, 170 I.U. Sodium Heparin, 

or 109 M CTAD (Buffered Sodium Citrate, Theophylline, Adenosine, Dipyridamole) were 

purchased from BD Biosciences (Heidelberg, Germany). BD Cell Fix and 10X concentrated BD 

Lysis solution were from BD Biosciences (Heidelberg, Germany). Acid citrate dextrose (ACD), 

sodium dodecyl sulfate (SDS), calcium chloride hexahydrate ≥99.0%, α-D-glucose anhydrous 

96%, magnesium chloride anhydrous ≥98.0%, potassium nitrate ≥99%, sodium chloride 

≥99.5%, TRAP6 (thrombin receptor activating peptide 6), PMA (phorbol 12-myristoyl acetate) 

and Calcium Ionophore A23187 (CaIoP) were obtained from Sigma-Aldrich (Steinheim, 

Germany). HEPES (4-(2-hydroxyethyl) piperazin-1-ylethanesulfonic acid), OTS 

Octadecyltrichlorosilane and APTES: (3-Aminopropyl)trimethoxysilan were purchased from 

VWR International GmbH (Bruchsal, Germany). PMN-elastase ELISA assay was purchased from 

Demeditec Diagnostics GmbH (Kiel, Germany), MicroVue complement sC5b-9 Plus ELISA assay 

from Quidel (San Diego, USA), TAT ELISA assay from BioCat GmbH (Heidelberg, Germany) and 

β-TG ELISA assay from Diagnostica Stago (Asnieres, France).  

2.3 Equipment 

All of the experiments were performed in a sterile, dust-free environment provided by the 

sterile laminar flow cabinet (Biomedis®, laborservice GmbH & Co.KG, Gießen, Germany). 

Centrifugations were performed with temperature-controlled Sigma 3-30KHS centrifuge 

(Sigma Laborzentrifugen GmbH, Osterode am Harz, Germany), blood cell count with ABX 
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Pentra 60+ (Horiba Medical, Kyoto, Japan). The flow cytometric analysis were performed using 

anAttune® Acoustic Focusing Cytometer (AB applied biosystems, Foster City, CA, USA) or a 

Guava® easyCyte™ 8HT flow cytometer (Millipore, Darmstadt, Germany) or a MACSQuant® 

Analyzer 10 flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany). Fluorescence 

pictures were acquired using an Axio Observer.Z1 inverted fluorescence microscope (Carl Zeiss 

AG, Oberkochen, Germany),a Leica DM-IRB optical inverted microscope (Leica Microsystem, 

Stockholm, Sweden) and a home-made scanning laser confocal ThorLabs confocal scanner 

(ThorLabs, Mölndal, Sweden). Surfaces used in the experiments were cleaned with an UV-

Ozone cleaner (Jelight Company Inc., Irvine, CA, USA) and sonication steps were done in an 

Ultrasonic Cleaning Unit (Elma, Singen, Germany). Samples were incubated at 37°C in an 

incubating mini shaker (VWR, Darmstadt, Germany).  

2.4 Incubation Setup 

In the thesis different types of cells were used for incubating the blood samples. The type of 

incubation setup are indicated in Table 2-1.  

Incubation setup Chapter 

Shear Channels 3 

Teflon cells 4 

Metallic screw cells with 
Teflon insert 

4, 5 

Table 2-1. Incubation setup types used in the thesis 

The shear channels are made of aluminum and coated with the material of interest. They will 

be described in section 2.7.1. The Teflon cells are circular home-made hollow cells with 

dimension of 1 cm high and 25 mm wide. The test surface (25 mm glass slide) is mounted in 

the center of the cell using dental glue. The screw cells consist of titanium rings used to keep 

a 25 mm test surface and a Teflon insert, separated by a Viton O-ring, sealed securely together.  

2.5 Buffers 

The buffers used throughout the thesis are listed in Table 2-2 together with the chapter in 

which they were used.  
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Buffer Composition pH Purpose Chapter 

CITRATE Buffer 
100 mM NaCl, 5 mM KCl, 1 mM MgCl2, 
15 mM citrate, 5 mM Glucose 

6.5 
Platelet 

purification 
5 

Calcium-free 
HEPES Buffer 

145 mM NaCl, 5 mM KCl, 1 mM MgCl2, 
10 mM HEPES, 5 mM Glucose 

7.4 
Platelet  

re-suspension 
3,4,5 

Calcium-
containing HEPES 

Buffer 

145 mM NaCl, 5 mM KCl, 1 mM MgCl2, 
10 mM HEPES, 2 mM CaCl2, 5 mM 
Glucose 

7.4 
Platelet  

re-suspension 
5 

Table 2-2. Buffers used in this study and the chapters in which they were used. 

All buffers were freshly prepared in nano-pure water and autoclaved 24 hrs prior to the 

experiments. Glucose was added after autoclaving, immediately before use. After the addition 

of glucose, buffers were filtered through 200 nm sterile syringe filters (Whatman GE 

Healthcare Life Sciences, Freiburg, Germany). 

2.6 Blood Collection 

Blood collection was organized at Karlsruhe Institute of Technology (KIT), Chalmers University 

(Sweden) and at Helmholtz Zentrum Geesthacht (HZG, Teltow, Berlin). 

At KIT, the blood collection was organized by the KIT medical service. Study protocols were 

approved by the Ethics commission of Baden-Württemberg (approval #F-2014-077). Informed 

consent was obtained from all the donors by the KIT medical staff.  

At the HGZ was organized according to the review board of the Charité - Universitätsmedizin 

Berlin (Application number: EA2/018/16).  

At Chalmers, the blood collection was organized by the Sahlgrenska Univeristetssjukhuset 

(Klinisk kemi, Goteborg, Sweden) and was also performed with informed consent according 

to the appropriate legal and ethical guidelines (approval ID #s15010). In all cases, the donors 

were healthy volunteers without history of exposure to antiplatelet medication (such as 

aspirin) or exposure to alcohol in the two weeks prior to collection. Phlebotomy was 

performed by a trained nurse.  

For every experiment, blood was collected by venipuncture with a 21-gauge needle into BD 

Vacutainer® tubes containing the anticoagulant of choice (Table 2-3).  
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Anticoagulant Chapter 

170 I.U. Sodium Heparin 3, 4 

0.105 M Sodium Citrate 5 

Table 2-3.  Anticoagulant of choice. 

First 2 ml of blood was discarded during the collection to avoid platelet activation by residual 

thrombin and/or tissue factor. Tubes were pre-warmed to 37 °C prior to collection and stored 

without agitation at 37 °C until used (< 30 minutes). 

2.7 Methods for material hemocompatibility testing 

Blood-material interactions were evaluated in order to assess the effects of different clinically 

used materials on blood response. To this purpose a home-made system called shear channels 

was used to expose the blood to the materials of interest.  

2.7.1 Shear Channels 

The experiments were performed using the shear channels system. The system was developed 

at KIT, in collaboration with Prof. Grunze. The system consists of two aluminum valves 

containing a channel (Figure 2-1). The two halves are closed together in a sandwich-structure, 

embedding the channel. Two ports for filling the channels with blood and withdrawing it are 

present on one aluminum halves. The ports are tightly closed with the lids equipped with O-

rings to prevent evaporation (box on the right in Figure 2-1). The maximal channel volume is 

20 ml.  
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Figure 2-1. Shear channels schematic. 

The system is placed in a temperature-controlled platform shaker that oscillates horizontally.  

2.7.2 Surface coating and surface characterization 

Three shear channels were coated with 200 nm of metallic titanium, L605 cobalt-chromium 

alloy (CoCr), or 316 Ti stainless steel. Before the coating, all the shear channels were identically 

polished.  

Ti, CoCr, and steel coatings were deposited by DC magnetron sputtering as previously 

described. 177,178 The 316 Ti stainless steel sputtering target was made in the central workshop 

of the KIT. The L605 CoCr sputtering target was a gift of Alexander Kueller (Celanova 

Biosciences), purchased from Specialty Materials, Zapp Materials Engineering GmbH (Zapp 

Platz 1 Ratingen, Germany). Ti coating was done at the Paul Scherer Institute (PSI, Switzerland) 

using a Leybold dc-magnetron Z600 sputtering unit. CoCr and steel coatings were prepared at 

the Georg Albert Physical Vapor Disposition in a custom-made sputtering unit based on the 

Leybold UNIVEX 300 sputtering plant. The coatings were characterized by XPS to ascertain 

their composition. The XPS was done by Dr. Alexei Nefedov at the Institute of Functional 

Interfaces (IFG) at KIT in a PREVAC RG Scienta 4000 system (Prevac, Rógow, Poland) equipped 

with a hemispherical electrostatic energy analyzer (SPECS Phoibos 150), using a 

monochromatized Al Kα X-ray source (SPECS Focus 500). Survey spectra were recorded at the 

pass energy of 200 eV, and detailed spectra at a pass energy of 100 eV. Spectra were calibrated 

using the C1s aliphatic carbon peak at 285 eV and processed using CasaXPS software.  
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2.7.3 Shear Channel cleaning 

The cleaning protocol of the coated shear channels involved several sonication steps, using a 

water-bath Ultrasonic cleaning unit (Elma, Singen, Germany). The assembled systems were 

sonicated for 10 minutes filled with 2% SDS solution (1X), nano-pure water (2X), ethanol (3X) 

and again nano-pure water (3X). Between each sonication step the systems were washed 

under a constant flow of nano-pure water.  Excess water was then removed with a stream of 

filtered nitrogen gas. The channels were disassembled in a sterile laminar flow cabined and 

further cleaned for 15 min in a UV-Ozone cleaner (Jelight Company Inc., Irvine, CA, USA) that 

was pre-heated 30 min prior the use. The UV-Ozone cleaning is effective in removing organic 

contaminants from the surfaces.179 

The cleaning protocol was executed the day before each experiment and immediately after 

each experiment. Cleaned channels were stored under sterile conditions overnight. 

2.7.4 Shear Channel experiments 

Within 15 minutes after blood collection, each of the three shear channels (Ti, CoCr, steel) was 

filled with 6 ml of blood using a pipette through the filling ports. This was done slowly and in 

the most gentle way possible as to not activate the blood during the filling stage. In each 

experiment, only blood from one donor was used.  

The shear channels were placed in a shaker horizontally and shaken at 200 rpm at 37°C for 30 

min. Blood samples were taken prior (baseline) and after the incubation in the shear channels 

for flow cytometry, cell count, and ELISA analysis as described below. Blood from the shear 

channels was withdrawn through the filling ports with a pipette, again, this was done gently 

to avoid activation.  

2.7.5 Blood Cell Count 

The counts of red blood cell, leukocytes and platelets were measured in an ABX Pentra 60+ 

cell counter. Blood cell counts were performed immediately—after collection, or after the 

relevant experimental steps. The blood cell count is presented in Chapter 3. 
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2.7.6 Six color Flow cytometric Assay 

Baseline blood and blood-contacting material were sampled for flow cytometric analysis. 

Sample volume was 50 μl. Samples were incubated for 30 min at 37°C with a mix of six 

antibodies: 2.5 μl of PerCPCy5.5-conjugated anti-CD41a was used to identify platelets and 1.25 

μl of PE-conjugated anti-CD62P to evaluate their activation state; 2.5 μl of FITC-conjugated 

anti-CD45 was used for identification of leukocytes, 2.5 μl of V450-conjugated anti-CD66b for 

identification of neutrophils and 2.5 μl of BV605-conjugated (or APC-conjugated) anti-CD14 

for identification of monocytes; 2.5 μl of BV510-conjugated anti-CD11b was used to evaluate 

the activation of neutrophils and monocytes. The antibody volumes were chosen after 

performing titration experiments for each employed antibody. After staining, positive controls 

were prepared by activating blood with the agonists TRAP6, at a final concentration of 70 μM, 

and PMA at a final concentration of 10 μM, for 30 min at 37°C.  

Isotype matched-controls were run in parallel to all monoclonal antibodies. Subsequently to 

agonist stimulation and staining, the blood samples were fixed with BD Cell Fix solution 1X for 

45 min, at room temperature in the dark. Afterwards, erythrocytes were lysed using BD FACS 

lysis solution 1X.  

Flow cytometry was performed within 4 hours of the sample preparation. At KIT we used an 

Attune® Acoustic Focusing Cytometer equipped with a blue laser (488 nm, 20 mW) and a violet 

laser (405 nm, 50 mW) calibrated before each experiments with the Attune® Performance 

Tracking Beads. At HZG the measurements were performed on a MACSQuant® Analyzer 10 

flow cytometer equipped with a blue laser (488 nm, 30 mW diode pumped solid state), a violet 

laser (405 nm, 40 mW dioe) and a red laser (638 nm, 20 mW diode) routinely calibrated with 

MACSQuant Calibration Beads. In the assay, an electronic threshold was applied in the forward 

scattered light (FSC) and in the side scattered light (SSC) channels in order to eliminate very 

small events such as debris and to display a correct blood picture. FSC is proportional to the 

cell surface area or size, while SSC is proportional to cell granularity and internal complexity. 

Correlated measurements of FSC and SSC allowed the differentiation of platelets and different 

types of leukocytes. For the fluorescence signals, a proper compensation matrix was design 

on both the Attune and MACSQuant flow cytometers, in order to correct the overlap of one 

fluorophore’s emission into another fluorophore’s emission. The compensation matrix was 

defined using single stained controls for all the antibodies used in the assay.  
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The samples were acquired at a low flow rate. The acquisition was stopped when 10,000 

events positive for the platelet identification marker CD41a were reached. Forward scatter, 

side scatter, and fluorescence data were collected using all detectors in logarithmic scale. 

2.7.7 Flow cytometry data analysis 

The data were analyzed using the Flowjo software.  The strategy of the analysis aimed to 

evaluate platelet activation and interaction with leukocytes, and differentiate the composition 

of platelet/leukocyte aggregates.  

The antibody binding is presented as frequency of positive events for the antibody staining 

over the recorded 10,000 events CD41a+. Positive events were defined by drawing an 

exclusion gate based on the fluorescence histograms of the isotypes. Activated platelets are 

identified by the expression of the activation marker CD62P on their surface (CD41a+/CD62P+ 

events). Platelet/leukocyte aggregates are considered as the events positive for both CD41a 

and CD45 markers (CD41a+/CD45+). Within the platelet/leukocyte aggregates, leukocytes are 

differentiated in neutrophils expressing CD66b+ (CD41a+/CD45+/CD66b+), and monocytes 

expressing CD14 (CD41a+/CD45+/CD14b+). The activation of the platelet/leukocyte 

aggregates was evaluated analyzing the expression of the activation marker CD11b on 

neutrophils (CD66b+/CD11b+) and monocytes (CD14+/CD11b+), and of CD62P on platelets in 

the aggregates.  Via back-gating the fluorescence signals, the different populations identified 

in the strategy analysis are depicted in the FSC/SSC plot (scatter plot).  

2.7.8 ELISA sample preparation and measurements 

ELISA samples were prepared from baseline blood and blood-contacting materials for the 

measurements of the activation of platelets (β-TG secretion); coagulation (thrombin-anti-

thrombin complex, TAT), leukocytes (PMN-elastase release), and complement (sC5b-9).  

For β-TG evaluation, blood was sampled in tubes containing 109 M CTAD (Buffered Sodium 

Citrate, Theophylline, Adenosine, Dipyridamole, BD Biosciences, Heidelberg, Germany) and 

kept in ice 15-60 min. The samples were centrifuged twice for 20 min at 2500xg at 4°C, 

aliquoted in 100 μl samples, shock-frozen in liquid nitrogen and stored at -20°C for further 

ELISA analysis.  

For TAT, PMN-elastase and sC5b-9, the blood was sampled in 0.105 M sodium-citrate tubes 

and immediately centrifuged for 20 min at 2000xg at room temperature. Plasma from blood 
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samples was aliquoted in 250 μl samples, shock-frozen in liquid nitrogen. Samples for TAT and 

PMN-elastase were stored at -20°C for further ELISA analysis. Samples for sC5b-9 were stored 

at -80°C for further ELISA analysis.  

ELISA measurements were performed using β-TG ELISA kit (Stago, Germany), Thrombin-

Antithrombin Complexes ELISA Kit (AssayMax, Germany), PMN elastase ELISA Kit (Demeditec 

Diagnostics, Germany) and SC5b-9 Plus ELISA Kit (Quidel, USA) according to manufacturer's 

specifications. 

2.7.9 Statistical analysis 

The fluorescence data from the flow cytometry are presented as frequency of the CD41a+ 

events.  

The data are presented as arithmetic mean ± standard deviation. At KIT 4 different 

experiments from 1 donor were performed. In HZG, 5 experiments with the blood from 5 

donors were run.    

Activation and aggregate levels are presented as normalized data by the positive control 

(blood treated with TRAP6 or PMA) data normalized by the baseline. For the ELISA 

measurements, the data are presented as raw data and data normalized by the baseline. All 

the data were then analyzed using paired t-test or unpaired two-sample equal variance t-test 

to reveal difference between the groups. Statistical significance was defined as p < 0.05.  

2.8 Methods for platelet detachment studies 

2.8.1 Platelet Rich Plasma (PrP) Preparation 

PrP was prepared from freshly withdrawn heparin anticoagulated whole blood. PrP was 

obtained by centrifuging whole blood at 40xg, for 20 min at 37°C. Platelet concentration in 

PrP was adjusted to a final concentration of 5 x 104/μl using Platelet Free Plasma (PfP). PfP 

was prepared from PrP through a two-step centrifugation. First, a certain volume of PrP was 

centrifuged for 20 min at 700 ×g at 22°C. The supernatant was collected and centrifuged a 

second time for 15 min at 5000 xg at 22°C. The entire procedure was performed under sterile 

conditions to avoid contamination. Immediately after preparation, platelet activation in PrP 

was analyzed by flow cytometry. PrP was then used in the following experiments in the Shear 

Force Apparatus or in static condition.  
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2.8.2 Blood Cell Count 

Blood cells were counted using an ABX Pentro 60+ cell counter. Red Blood Cell, Leukocyte and 

Platelet count was measured in whole blood prior the PrP preparation. Platelet number was 

measured in undiluted PrP, in PpP to ascertain the absence of platelets, and finally in the 

diluted PrP (Table 2-4).  

2.8.3 Analysis for Platelet Activation in PrP by Flow Cytometry 

Prior to each experiment, flow cytometry was performed to ensure that platelets in the PrP 

were minimally activated and properly responded to the agonists. PrP volume used for flow 

cytometry sample was 25 μl. 1.5 μl of PerCPCy5.5-conjugated anti-CD41a antibody was used 

for platelet identification. 1.5 μl of PE-conjugated anti-CD62P, 1 μl of BV450-conjugated anti-

CD63, 1 μl of BV605-conjugated phospholipid binding protein Annexin A5 were used to 

evaluated platelet activation. TRAP6 at the final concentration of 70 μM and PMA at the final 

concentration of 10 μM were added to the samples for 30 min at 37°C in order to activate the 

platelets. After agonist stimulation and staining, PrP was diluted to 2 ml in HEPES Buffer. 

Isotype-matched controls were run in parallel to all monoclonal antibodies. Forward scatter, 

Donors 

Whole Blood PpP Diluted PrP 

RBC 
(1012/l) 

WBC 
(109/l) 

PLT 
(109/l) 

RBC 
(1012/l) 

WBC 
(109/l) 

PLT 
(109/l) 

RBC 
(1012/l) 

WBC 
(109/l) 

PLT 
(109/l) 

 
01 

 

4.51 6.5 254 0 0 0 0 0.3 62 

4.45 8.0 238 0 0 0 0 0.2 66 

4.99 6.0 435 0 0 0 0 0.2 69 

02 

4.59 7.8 276 0 0 0 0 0.1 55 

5.38 5.2 108 0 0 0 0 0 42 

4.30 7.6 291 0 0 0 0 0.2 45 

4.26 6.7 452 0 0 0 0 0.2 62 

03 4.61 8.8 545 0 0 0 0 0 59 

04 
4.99 9.6 552 0 0 0 0 0.2 77 

4.87 8.9 547 0 0 0 0 0.1 65 

Table 2-4. Blood cell count in whole blood, Platelet free Plasma (PfP) and Diluted Platelet rich Plasma 
(PrP). 
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side scatter, and fluorescence data from 10,000 events were collected with all the detectors 

in the logarithmic mode. Data analysis was performed using Flow Jo software (Tree Star Inc, 

USA).  

2.8.4 Substrate preparation and characterization 

For the substrates preparation, 25 #1 mm glass slides (VWR, Darmstadt, Germany) were 

coated with titanium dioxide (TiO2), modified with Octadecyltrichlorosilane (OTS), coated with 

poly[bis(trifluoroethoxy)phosphazene] (PTFEP), or left unmodified. 

TiO2 Substrate.  20 nm TiO2 coating was deposited by magnetron reactive sputtering as 

previously described178 in a Leybold dc-magnetron Z600 sputtering unit at the Paul Scherrer 

Institute (PSI, Villigen, Switzerland).  The coatings were characterized by XPS (X-ray 

photoelectron spectroscopy) to ascertain their quality and purity. The results are presented 

in the Appendix.  

Prior to each detachment experiment, the unmodified glass and TiO2 coated glass surfaces 

were cleaned for 30 min in the 2% SDS solution that was filtered through 0.2 um pore diameter 

syringe filters, washed under a stream of Nano-pure water, and cleaned for 30 min in a UV-

Ozone cleaner (pre-heated for 40 min immediately prior).  

OTS Substrate. Unmodified glass slides were cleaned using Piranha cleaning. Freshly cleaned, 

dried slides were incubated in solution of 0.1% OTS in Toluene overnight. The substrates were 

then rinsed with chloroform and dried under a stream of filtered nitrogen gas. The OTS coated 

surfaces emerged dry from Toluene and were hydrophobic as judged by the water rolling on 

the slide.  

PTFEP Substrate. Cleaned glass slides in Piranha solution were pre-treated with APTES. To this 

end, the glass slides were immersed for 30 min in a solution of 94 ml methanol, 5 ml nano-

pure water, 5 μl Acetic Acid concentrate containing 1 ml of APTES.  The pre-treated slides were 

then removed from the solution while rinsing with nano-pure water and dried under a stream 

of nitrogen. Subsequently, they were heated at 105°C for 1 hour and then cooled to room 

temperature. They were then immersed in a freshly prepared solution of PTFEP in ethyl 

acetate (450 mg/10 ml) and incubated overnight. PTFEP coated slides were then rinsed with 

ethyl acetate and dry under a stream of filtered nitrogen gas. PTFEP coatings were 

characterized by XPS. OTS and PTFEP coating was performed by Dr. Kwan Cho and Dr. 

Alexander Welle (IFG, KIT).  
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2.8.5 Shear forces apparatus for analyzing platelet detachment 

The shear force apparatus used in these experiments was based on a microfluidic channel 

assembly previously described in ref. 180. The original system consisted of a 

polydimethoxysiloxane (PDMS) channel sealed by an upper glass slide and the sample 

substrate on the bottom. For the purposes of this experiment, the fluid cell geometry was 

inverted so that it could be placed on the stage of an inverted fluorescence microscope (Axio 

Observer.Z1 equipped with a 37 °C incubator) and observed with a 63x oil-immersion high-

numerical aperture objective. To do so, we used our home-made incubation set-up consisting 

of a screw-together metal housing that pressed a Teflon insert and a substrate glass coverslip 

together. Sealing was achieved by viton O-rings placed between the glass and the Teflon. A 

PDMS spacer with a thickness of 200 μm was placed on top of the substrate. The PDMS spacer 

contained a channel formed by impressing it with a polished micro-machined brass mold to 

form the channel with dimensions 150 μm high, 1500 μm wide, and 2500 μm long.  According 

to the calculations in ref. 181, the flow regime for the entire experiment can be considered 

laminar. The spacer was finally sealed with a PDMS top cover containing inlet and outlet fluid 

flow holes cut in the PDMS cover. This structure is shown in Figure 2-2. 

Screw-metallic cell (top)

PDMS spacer sheet (200 μm)

Sample

Glass coverslip

Rubber O-ring

Screw-metallic cell (bottom)

Teflon insert

 

Figure 2-2. Fluid cell design. The PDMS channel is embedded by a PDMS top cover and the substrate 
(sample). They are kept together in a chamber consisting of two aluminum rings (bottom and top), 
a rubber O-ring and a blank glass cover slip on which the channels system is placed.  

Through a six-way valve the tubing allow the connection of two fluidic cells to a pressurized 

liquid reservoir filled with HEPES buffer (pH 7.4) on the inlet and a syringe pump (PI, Physics 

Instruments GmbH & Co. Karlsruhe, Germany) on the outlet. The six-way valve also allows the 
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injection of the sample in the system and a channel switch enables to control the flow 

direction. Figure 2-3 describes the shear force apparatus.  

Flow Valve

Injection 
Valve

Gas
Valve

Fluid Cell #1

Fluid Cell #2

Bypass Line

6-way valve

Liquid 
Reservoir

Empty Gas 
bottle

Channel 
Switch

Waste 
Beaker

Outlet 
Valve

Syringe 
Pump

 

Figure 2-3. Shear Force Apparatus. 

Fluid flow is supplied by the liquid reservoir, and the flow rate is regulated by the syringe pump 

in incremental steps determined by computer software (Mikromove).  

Before sample injection the channel was flushed with HEPES buffer (pH 7.4).  

2.8.6 Detachment studies in the shear forces apparatus 

The shear force apparatus was mounted on the stage of the inverted fluorescence microscope. 

300 μl of PrP were gently injected into the apparatus using a syringe. Unstimulated and 

agonist-stimulated PrP samples were prepared for the detachment experiments. In the 

experiments with stimulated PrP, TRAP6 at the final concentration of 70 μM was added to PrP 

for 30 min at 37°C prior the injection.  

Stimulated or unstimulated PrP was incubated with the substrates in the shear force 

apparatus undisturbed for time periods of 10 minutes or 1 hour to allow platelets to adhere. 

Following the incubation, adhering platelets were immuno-stained with 5 μl PerCpCy5.5-

conjugated anti-CD41a for platelet identification, and 5 μl PE-conjugated anti-CD62P for the 

evaluation of platelet activation state. The staining was performed by injecting 300 μl of 

antibodies solution in HEPES buffer into the apparatus and incubating for 20 min at 37°C in 

the dark. Particular care was taken during the injection of the antibody solution to avoid 

moving or detachment of the platelets from the surface.  After the staining, images were 
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acquired using simultaneously the fluorescence channels for PerCpCy5.5-conjugated anti-

CD41a and for PE-conjugated anti-CD62P. Following the acquisition of images, the syringe 

pump was activated to induce detachment. The pump speed was increased every 5 seconds 

at predetermined exponential rates (α) to generate shear stresses from 0 to ∼5000 dyn/cm2 

so that the shear stress as function of time (τ(t)) was given by:  

 

Platelet detachment was recorded in a time series format acquired with an interval of 1850 

milliseconds, for a total duration of 4 minutes.  The interval time was calculated based in the 

exponential increase of the shear stress, so that a different value of the shear stress 

corresponds to every image. For platelet detachment, only the fluorescence channels for 

PerCpCy5.5-conjugated anti-CD41a was used to improve time resolution. Finally after 

detachment, a fluorescence image was acquired using both the fluorescence channels for the 

CD41a and CD62P. These experiments are referred to as dynamic experiments.  

2.8.7 Detachment studies under static condition 

Experiments in static condition were performed mounting the test surfaces in the teflon cells. 

Immediately after the glue has set, the surfaces were washed with HEPES Buffer to reduce the 

chances of contamination.  The volume of PrP was 500 μl, incubation periods were of 10 

minutes and 1 hour, and TRAP6 (70 μM final concentration) and PMA (10 μM final 

concentration) were used to stimulate platelets for 30 min at 37°C prior the incubation.  

After incubation, PrP was immunostained using 1 μl of PerCPCy5.5-conjugated ant-CD41a and 

1 μl of PE-conjugated anti-CD62P for 20 min at 37°C in the dark.  

To induce the detachment, the samples were washed by adding and withdrawing 250 μl of 

the HEPES Buffer for 10 times.  Particular care was taken not to touch the surface with the 

pipette tip, not to introduce bubbles, and not to dry the sample out.  

Considering a volumetric flow rate of 250 μl/sec, the shear stress acting on the bottom surface 

of the center of the well (the point of lowest shear stress) could be approximate to: 

τ = 0.526 dyn/cm2 

Fluorescence images using the fluorescence channels for CD41a and CD62P were acquired 

prior and after the detachment induced by the washing.  The experiments were performed at 

37°C in an Axio Observer.Z1 inverted fluorescence microscope.  

τ(t) = τ0eαt 
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2.8.8 Detachment studies: data analysis and statistics  

Platelet count, area and activation. Fluorescence images from static and dynamic experiments 

were analyzed using the Fiji Software. First, the multi-channel images were split into separate 

channels: one corresponds to the PerCpCy5.5-conijugated anti-CD41a fluorescence and one 

corresponds to PE-conjugated anti-CD62P.  

Platelet were counted manually to separate individual platelets and platelet aggregates.  For 

counting the platelets, the fluorescence channel for PerCpCy5.5-conijugated anti-CD41a was 

used. Regions of interest (ROIs) around the platelets were drawn using the free hand selection 

tool.  The ROIs were as well used for area calculation. For the evaluation of the activation, the 

fluorescence intensities of individual platelets in the channel for the PE-conjugated anti-

CD62P were calculated. The ROI data in the channels for PerCPCy5.5-conjugated anti-CD41a 

were used as mask and applied to the CD62P channel. Mean intensity levels of the platelets 

were extracted from these ROIs to fluorescence intensity per platelets. Background 

fluorescence was calculated manually drawing ROIs outside of the platelets in the same 

images. The intensity for each platelet in a given image was then background-subtracted, I = 

I(platelet) – I(background), and this value was taken to indicate activation level. 

Platelet detachment. For studying the detachment, platelet were counted in each 

fluorescence image of the time series as described above. This resulted in the detachment 

curves in which the fraction of platelets still adhering on the surface was plotted versus the 

applied shear stress (dyn/cm2).  The critical shear stress at which 50% of the platelets are 

detached from the surface is referred in the text as Detachment50 (Det50). Det50 was 

calculated from the detachment curves for each material.  

The statistical significance of the data was then evaluated using paired t-test.  Statistical 

significance was defined as p < 0.05. 

2.9 Methods for studying platelets at single platelet level 

2.9.1 Platelet isolation and purification 

Platelets were isolated from sodium-citrate anticoagulated whole blood by a three-step 

centrifugation. Identical protocols were used at Chalmers University and at KIT. This protocol 

has been previously used by us in other studies. 171,172,176 The first step involved centrifugation 

at 40 ×g, for 25 min at 37°C to separate platelet-rich plasma (PRP) from the cells. PRP layer 
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was collected into a 15 ml falcon tube and incubated with acid-citrate-dextrose (ACD, Sigma, 

Germany) in a ratio 1 : 6 by volume for 10 min at 37°C. To separate the platelets from the 

plasma, the samples were then centrifuged the second time for 20 min at 700 ×g at 22°C.  

Platelets were gently re-suspended in the citrate buffer and centrifuged for 10 min at 700g 

22°C to remove the residual proteins. Finally, the pellet of platelets was re-suspended in the 

HEPES isolation buffer at a platelet concentration of ~ 1 x 108 cells per ml.   

Blood cell count was performed in whole blood and in the purified platelet suspension (Table 

2-5). 

Donors 

Whole Blood Adjusted Platelet suspension 

RBC 

(1012/l) 

WBC 

(109/l) 

PLT 

(109/l) 

RBC 

(1012/l) 

WBC 

(109/l) 

PLT 

(109/l) 

01 4.20 6.3 315 0 0 122 

02 4.01 5.9 359 0 0 105 

03 4.43 4.8 202 0 0 145 

Table 2-5. Blood cell count in whole blood and in purified platelet suspension. 

2.9.2 Platelet characterization by flow cytometry 

Flow cytometry was performed to analyze the purity, basal activity, and response to agonists, 

of the purified platelets. At Chalmers, a Guava® easyCyte™ 8HT flow cytometer (Millipore, 

Darmstadt, Germany) was used. At KIT, the Attune® Acoustic Focusing Cytometer (Life 

Technologies, Darmstadt, Germany) was used. Sample volume was 25 µl. Platelets were 

identified by staining samples with PerCPCy5.5-conjugated anti-CD41a antibody. TRAP6 at a 

final concentration of 70 µM and CaIoP at a final concentration of 5 µM were used to stimulate 

the platelets for 30 minutes at 37°C. Activation was evaluated staining with the PE-conjugated 

anti-CD62P (P-selectin), PECy7-conjugated anti-CD63 antibodies and FITC – annexin A5. For 

the staining, samples were incubated for 30 min at 37°C in the dark. 1.5 µl of the relevant 

antibody solution was used. After incubation with the agonist and staining, samples were 

diluted to 600 μl in the Hepes Ca-containing buffer for the experiments performed at 

Chalmers, and to 2 ml for the experiments performed at KIT. Isotype-matched controls were 

run in parallel to all monoclonal antibodies. Forward scatter, side scatter, and fluorescence 
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data from 10,000 events were collected with all the detectors in the logarithmic mode. Data 

analysis was performed using Flow Jo software (Tree Star Inc, USA). 

2.9.3 Substrate preparation and characterization 

Surfaces used were 47 mm and 25 mm #1 glass slides (from Willco Wells, Amsterdam, the 

Netherlands and VWR, Darmstadt, Germany, respectively). 20 nm TiO2 coating was deposited 

by magnetron reactive sputtering as previously described178 either in a FHR MS 150 sputter 

instrument at the process lab MC2 at Chalmers University, or a Leybold dc-magnetron Z600 

sputtering unit at the Paul Scherrer Institute (PSI, Villigen, Switzerland). Prior to each 

experiment, surfaces were cleaned for 30 min in the 2% SDS solution, filtered through 0.2 μm 

pore diameter syringe filters. Following, surfaces were washed under a stream of Nano-pure 

water, and cleaned for 30 min in a UV-Ozone cleaner (pre-heated for 30 min immediately 

prior). The coatings were characterized by XPS to ascertain their quality and purity. 

2.9.4 Preparation of surface adhering platelets 

Freshly purified platelets were incubated with the freshly cleaned TiO2 or glass surfaces at a 

platelet concentration of 105 – 107 ml-1 for 10 minutes in a calcium-free HEPES buffer at 37°C. 

The surface-adherent platelets were gently washed with the same buffer. Care was taken not 

to touch the surface with the pipette tip, not to introduce bubbles and not to dry the sample 

out. Subsequently, these samples were either installed in the scanning laser confocal 

microscope at Chalmers or in an inverted fluorescence microscope at KIT for the microfluidic 

pipette studies, or used in the analysis of platelet activation directly by adding the relevant 

antibodies and CaIoP to the buffer above the platelets. These latter experiments are referred 

to as “bulk experiments”. 

2.9.5 Open volume microfluidic pipette 

The open volume microfluidic pipette was a gift from Prof. Aldo Jesorka, Chalmers University 

(Gothenburg, Sweden). The pipette is an open-volume microfluidic device that operates by 

generating a hydrodynamically confined, localized perfusion zone at its tip (HCV). It consists 

of a pen-shaped silicon polymer (poly(dimethyl siloxane), PDMS body, housing eight 

integrated wells for injection and collection of solution to and from the adhering cells. Detailed 
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descriptions of the multifunctional pipette geometry and functionality are in Chapter 5 in 

section 5.2.  

2.9.6 Open volume microfluidic pipette experiments and relevant controls 

Pipette wells were loaded with 30 µl of Ca-containing HEPES buffer containing the PE-

conjugated anti-CD62P antibody, Cy5-conjugated phospholipid binding protein Annexin A5, 

CaIoP solutions. Pressure balance was optimized to achieve an HCV of ~ 100 μm in diameter. 

The pipette was mounted on an XYZ manipulator an MH-3 micromanipulator (Narishige, 

Japan) that was attached to the microscope frame and can be operated independently of the 

microscope stage, on which the sample is mounted. Prior to each pipette experiment, the 

adhering platelets were stained with the PerCPCy5.5-conjugated anti-CD41a antibody (5 µl, 

30 min, in the dark, at 37°C). The pipette was then approached to the surface. An experimental 

cycle consisted of exposing the adhering platelets to the staining solution, to the calcium 

containing buffer alone, then to CaIoP, and then again to the staining solution. Images were 

recorded during the delivery of the staining as well as after. Staining solutions contained 5 μl 

of anti-CD62P antibody, 5 μl of annexin A5, or both, in a calcium-containing buffer. In a set of 

experiments, the adhering platelets inside the HCV were exposed to solutions containing 

increasing concentration of CaIoP.  0 μM, 5 μM, 10 μM and 20 μM CaIoP and 5 μM of annexin 

A5 were delivered to the platelets for the evaluation of the effects of CaIoP concentration on 

PS exposure. Different individual platelets or groups of platelets, depending on the number of 

platelets on the surface, were accessed by translating the microscope sample stage 

underneath the pipette. 

For the pipette and the bulk experiments, two microscopes were used. At Chalmers, a confocal 

microscope consisting of a Leica DM-IRB optical inverted microscope and a ThorLabs confocal 

scanner equipped with a 63x oil immersion objective with a NA of 1.25 and filter sets 

appropriate for the dye wavelength selected. At KIT, we used the Zeiss Observer Z1 inverted 

fluorescence microscope located in the laboratory of Dr. Cornelia Lee-Thedieck, equipped 

with the COLIBRY illumination system, a high-pressure Xenon lamp, an appropriate set of filter 

cubes, an AxioCam camera, and a Pecon environmental chamber with temperature control. 

All experiments were performed at 37°C. 
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2.9.7 Data analysis 

Image analysis. Fluorescence images were analyzed using the Fiji software. First, the multi – 

channel images were split into separate channels: one corresponding to the aCD41a 

fluorescence and one corresponding to aCD62P or PS fluorescence. Fluorescence intensities 

of individual platelets in each channel were calculated as follows.  

The channel for CD41a fluorescence was thresholded in order to obtain a binary image. The 

command “Analysis Particles” was then used to define regions of interest (ROIs) around the 

platelets. The ROI data from the binary image were used as a mask, applied to the CD62P and 

PS channels. Mean intensity levels of the platelets were extracted from these ROIs to 

fluorescence intensity per platelets. Background fluorescence was calculated manually using 

ROIs outside of the platelets in the same images, while background deriving from the surface 

itself was calculated in the channel for CD62P or PS in absence of anti-CD62P antibody or A5.  

The intensity for each platelet in a given image was then background-subtracted, I = I(platelet) 

– I(background), and this value was indicative of the level of CD62P or PS expression.  

The effect of CaIoP on the level of marker expression was determined by subtracting 

fluorescence intensities before and after the addition of CaIoP: ΔI = [I(after CaIoP) – I (before 

CaIoP)]. The resulting fluorescence intensity differences were finally plotted as histograms 

displaying the frequencies of cells with given intensities on linear and logarithmic scales.  

Dose – response curves. The dose – response curves show the effects of CaIoP concentration 

on PS expression. The frequency of PS expressing platelets for each CaIoP concentration was 

calculated for the adhering platelets (single platelets and bulk experiments) and for the 

platelets in solution.    

Adhering platelets: fluorescence intensities of adhering platelets at each CaIoP concentration 

were calculated as described in the section “image analysis” above. The frequency of PS+ 

platelets was obtained by dividing the number of platelets with Δ(Ia – Ib) >  0 by the total 

number of observed platelets.  

Platelets in solution: the fluorescence intensities were analyzed by flow cytometry. The 

frequency of PS expressing platelets was determined using the FlowJo software.  
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The estimation of the EC50 was done on the sigmoid fitted dose – response curve according 

the following equation:  

(A) Y = 
exp( 𝑠𝑙𝑜𝑝𝑒 ∗(𝑋−𝐼𝑃)) 

1+exp(𝑠𝑙𝑜𝑝𝑒 ∗(𝑋−𝐼𝑃))
∗ 𝑆𝑃 

Where IP is the inflection point and SP the saturation point.
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3. Material Hemocompatibility Testing: 

Quantifying Blood Responses 

3.1 Summary 

Blood-material interactions limit the performance of the biomedical devices. In the 

Introduction, I made a case for the need to develop in vitro testing strategies for biomaterials 

and to quantify the blood responses to the materials used in clinical practice. This part of the 

work addresses this need.  

The starting point for our investigation are the observations of Kusserow,134 who showed that 

both the reactions that occur at the material surface and in the solution phase have to be 

tested for to build an accurate, clinically relevant, picture of the blood-biomaterial 

interactions. He calls these “thrombotic” and “embolic” reactions. Transcending his focus on 

hemostasis and thrombosis caused by biomaterials, my aim is to develop a multi-parametric 

in vitro test to simultaneously quantify the propensity of materials to activate coagulatory and 

the inflammatory defense mechanisms. Therefore, I will refer to the two types of reactions as 

solution-phase and surface-phase instead of embolic and thrombotic, respectively. 

In the assay described in this chapter, whole human blood was used. It was exposed to the 

materials of interest using a custom-made system that we call “shear channels”. The system 

and its validation are presented in section 3.2. The inner surface of the shear channels was 

coated with the materials of interests. The surface chemical composition was characterized 

by XPS and results are presented in section 3.3.  

To test the solution- and surface- phase reactions of blood to biomaterials, I used a six-color 

flow cytometric and ELISA assays, augmented by cell count measurements before and after 

exposure of blood to the materials of interest. The flowchart in Figure 3-1 illustrates the steps 

in the test strategy. 



                                                               Material Hemocompatibility Testing: Quantifying Blood Responses 
 

51 
 

Flow 
Cytometry 
and ELISA

Blood Cell 
Count

Flow 
Cytometry 
and ELISA

Blood Cell 
Count 

Shear 
Channels: 

blood 
exposure to 

materials

Blood 
Collection

BASELINE BLOOD

BLOOD EXPOSED TO THE SHEAR CHANNELS  

Figure 3-1. Testing strategy. After blood collection, blood prior (baseline) and after the exposure to 
the shear channels was used for the cell count and the preparation of the flow cytometric and 
ELISA samples.   

The six-color flow cytometric assay was used to quantify platelet activation using CD62P as 

activation marker (expressed upon α-granule secretion), platelet-leukocyte interactions using 

the platelet-specific marker CD41a and the leukocyte-specific marker CD45, and leukocyte 

activation in the platelet-leukocyte aggregates using the activation marker CD11b before and 

after exposure of blood to the biomaterials. These events characterize solution-phase 

reactions of blood to biomaterials. Assay design and results are presented in section 3.6 and 

3.7. To characterize both the solution and surface-phase reactions of blood to biomaterials, I 

used a set of well-established ELISA assays for quantifying thrombin production, platelet 

activation using β-TG secretion as a marker, neutrophil activation using of PMN-elastase 

secretion as a marker, and complement activation using the formation of the soluble 

complement factor sC5b-9 as a marker 147. The results are presented in section 3.7. 

In a first phase, the experiments were conducted at University Hospital of Tubingen 

(Universitätsklinik Tuebingen), in collaboration with Dr. med. Andreas Straub. These 

measurements failed. In a second phase, I designed a new flow cytometric assay at KIT and 

the experiments were performed using this assay with the blood from one donor. Experiments 

with multiple (five) donors were then conducted at Helmholtz Zentrum Geesthacht (HZG) in 

Teltow, in collaboration with Prof. Friedrich Jung and Dr. Steffen Braune, because the donor 

pool at KIT was limited. Throughout the Chapter, I present the results of individual 

experiments both to show the donor-to-donor variation and to illustrate the effect of ageing 

of the surface coatings that we encountered during the experiments. The results of each 
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experiment are presented in the order they were performed so that the effect of ageing of 

the channel coatings could be examined. Table 3-1 lists the experiments and the relative 

measured parameters.  

Date 27Jan 03Feb 01Apr 
06 

Apr 
14 Jun 21 Jun 23 Jun 

28 
Jun 

29 
Jun 

02 
Aug 

 1 2 3 4 5 6 7 8 9 10 

TAT n.m. n.m. • • • • • • • • 

b-TG • • • • • • • • • • 

PMN-elastase n.m. n.m. • • • • • • • • 

sC5b9 n.m. n.m. • • • • • • • • 

Platelet 

(CD62P) 
• • • • • • • • • • 

PLT-LEU • • • • • • • • • • 

PLT-MON • • • • n.m. n.m. n.m. • • • 

PLT-MON 

(CD11b) 
• • • • n.m. n.m. n.m. • • • 

PLT-MON 

(CD62P) 
• • • • n.m. n.m. n.m. • • • 

PLT-NEU • • • • • • • • • • 

PLT-NEU 

(CD11b) 
• • • • • • • • • • 

PLT-NEU 

(CD62P) 
• • • • • • • • • • 

Table 3-1. Experiments and measured parameters. “n.m.” stands for “not measured”. PLT: Platelets.  
MON: monocytes. NEU: neutrophils. 

3.2 Shear Channel system 

To expose blood to the materials of interest, I used the so-called shear channels. This is a 

system introduced by prof. Grunze, consisting of closed-loop metallic analogues of the 

Chandler loop system. Figure 3-2 shows the Chandler loop (A) and the shear channel (B) setup.  

Further details of the shear channel setup can be found in Chapter 2 (Materials and Methods), 

on page 33. 
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Stent

PVC tube

Blood

Ports for filling and 
withdrawing the blood

Channel half filled with blood, 
embedded in sandwiched 

metal discs

A. B.

 

Figure 3-2. Chandler Loop (left) and Shear Channel (right) design. In both cases, experiments are 
performed at 37 °C.  

Briefly, the Chandler Loop system consists of a polyvinyl chloride (PVC) tube in which is 

inserted the stent material to be tested (Figure 3-2 A). It is partially filled with blood and 

rotated in a water-bath to mimic physiological or pathological shear stresses. The experiments 

are performed at 37°C. The Chandler loop system presents several disadvantages, well known 

in literature.145 On rotation, the stents in the loop repetitively come into contact with the 

air/blood interface. This induces artefacts due to the activation of platelets and leukocytes on 

the protein denatured due to the contact with the air. Also, the blood contact with two 

materials (PVC and the material of interest) causes artefacts: PVC significantly activates 

platelets, as shown in Figure 3-3. Here, we measured platelet activation caused by the PVC 

tube using the expression of the platelet activation marker CD62P by flow cytometry. This 

result is consistent with the literature.145  
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Figure 3-3. Platelet activation: CD62P expression in baseline blood and upon contact with PVC tube. 
I acquired these data at the laboratory of Prof. H. P. Wendel at the University Hospital Tubingen 
together with Dr. S. Krajewski and Dr. med. A. Straub. 
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The shear channel system overcomes these disadvantages. Firstly, here blood contacts only 

one material. This is possible because the entire inside of the channel is coated with the 

material of interest. Secondly, I chose not to rotate the shear channels but partially fill them 

with blood and shake the channels horizontally in a shaker/incubator at 37°C for 30 min. This 

avoids repeated passage of the air/water interface over the proteins adsorbed at the 

biomaterial surface. As we show below, this procedure enabled us to distinguish between 

different clinically used materials, and is therefore validated post hoc. Finally, the area of the 

blood-material contact is higher in the shear channels than in the Chandler loop system.  

3.3 Surface characterization of the coated shear channels 

The shear channels, identically polished, were coated with metallic titanium, cobalt-chromium 

(CoCr) alloy and stainless steel. The coating of each channel was characterized by XPS. Figure 

3-4 shows the composition of the coatings. 
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Figure 3-4. Surface Characterization of the coated shear channels by XPS: Survey Spectra. 

Targets used in the sputtering process were metallic Ti, L605 CoCr alloy, and 316 Ti stainless 

steel, respectively, for the three materials. Accordingly, in the case of Ti coating, Ti and oxygen 

are expected to be present in the Ti coating, because Ti rapidly oxidizes in air and its surfaces 

will be covered by a native oxide layer (see below). These are the elements found by XPS on 

the Ti coating, together with the adventitious carbon contamination (Figure 3-4). 

The L605 CoCr alloy consists predominantly (~ 50%) of Co, with Cr (~ 20%), W (~ 15%), and Ni 

(~ 10%) as the most significant additives. The elements found in the CoCr coating (Co, Cr, Ni, 

C; Figure 3-4) reflect this composition with the notable absence of W and the presence of the 

adventitious carbon.  
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316 Ti stainless steel target consists of Fe (62%), Cr (18%), Ni (14%), Mn (2%) and Mo (3%), 

with trace amounts of Ti, P, S, Si, and C. Of these, Fe, Cr, and traces of Mn are found in the 

coating, together with the carbon contamination (Figure 3-4). 

Detailed examination of the XPS spectra for the 2p regions of Ti, Co, Cr, and Fe, in these 

materials indicates, not surprisingly, that the surfaces are dominated by the oxides. In 

particular in the case of Ti (Figure 3-5), three peaks of the Ti2p 3/2 – Ti2p 1/2 doublet are 

visible:  

 

Figure 3-5: Expanded view of the Ti2p region of the XPS spectrum of the Ti coating with the assignment 
of the three peaks indicated above the spectrum. 

The Ti2p 1/2 of the oxide at ~ 464 eV, Ti2p 3/2 of the oxide mixed with Ti2p1/2 of the metal 

at ~ 459 eV, and Ti2p 3/2 of the metal at 454 eV.182 183 184,185 The visibility of the metallic 

titanium indicates that the oxide thickness is < 10 nm.  
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Figure 3-6: Detailed spectra of the Cr 2p (left) and Co2p (right) regions of the CoCr alloy coating. 
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The characteristic multiplet splitting of the Co and Cr 2p peaks indicates that in the CoCr alloy 

coating, these elements are also present in the form of the oxides, and that in both cases, the 

contributions of the metallic states are visible (Figure 3-6). The presence of CrIII and CoII 

oxidation states, in addition to the metal, is inferred from the peak binding energies and, in 

the case of Co, characteristic satellite pattern (CoII sat. marked in Figure 3-6). 
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Figure 3-7: Detailed spectrum of the Cr2p (left) and Fe2p (right) regions of the steel coating. 

Similarly, in the case of steel (Figure 3-7), Cr and Fe are present in the form of the CoIII oxide 

and, most likely, mixture of FeII and FeIII oxides. The contribution of the metallic species to the 

spectrum of Cr on steel is smaller than on CoCr, as the metal peak appears as a shoulder only 

(c.f. the left panels in Figure 3-6 and Figure 3-7). Metallic iron is visible in the spectrum of the 

Fe2p region (Figure 3-7, right panel), as expected. No Cl was detected on the steel coating by 

XPS (Figure 3-4), ruling out the contribution of the chlorinated iron species to the Fe2p region 

(they would appear at the same binding energies).  

3.4 Whole blood cell count analysis 

Before and after the incubation in the shear channels, whole cell counts in whole blood were 

characterized. Red blood cell, platelet, and white blood cell (total, monocyte, and neutrophil) 

counts are shown in Figure 3-8. Both the raw data and the data normalized to the baseline 

counts are shown. It is easier to detect trends in the normalized data. 
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Figure 3-8. Whole blood cell count analysis. RBC: red blood cells. PLT: Platelets.  WBC: White blood 
cells. MON: monocytes. NEU: neutrophils. Left column: raw data. Right column: data, normalized to 
the count before exposure to the material (baseline). Bar colors represent donors. Light blue bars 
(experiments 1 – 4 and 10, Table 3-1) were performed at KIT with the blood from one donor. The 
10th experiment is referred to as the “stability” experiment in the text. Other colors refer to the 
experiments performed in Teltow (experiments 5 – 9, Table 3-1). Results are shown in chronological 
order so that the effect of ageing of the channel coatings could be examined. The color coding of 
the donors and the abbreviations are used throughout the chapter.  
Statistical significance of the differences in the cell counts between baseline and materials were 

evaluated with a paired two-sample t-test. Statistically significant differences (p < 0.05) are indicated 

with the black asterisks and the corresponding brackets. Raw blood cell count data for all of the 

experiments is presented in Table 3-2. 

Examining Figure 3-8, one observes material-induced variations in the counts for all of the 

cells. For the most part, cell counts decrease, as would be expected for cell adsorption, 
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aggregation, and damage. Some instances of material-induced increase in cell counts are also 

observed with RBCs and WBCs, but not with the platelets. The effects of the materials on RBC 

counts were not statistically significant (p > 0.05 evaluated by the paired two-sample t-test), 

while the effects of the materials on the PLT, MON, and NEU counts were (p = 0.01, 7.4E-5, 

0.002 for the changes in the platelet counts; p = 0.0001, 6.3E-6, 0.004 for the changes in the 

monocyte counts; p = 0.02, 0.001, 0.04 for the changes in the neutrophil counts; in all cases, 

values for the baseline-Ti, baseline-CoCr, and baseline-steel comparison are listed in that 

order). In the case of the WBC counts, the changes induced by Ti and steel were significant (p 

= 0.02 and 0.002, respectively), but the changes induced by CoCr were not (p = 0.06). 

The most striking effect of materials is on the platelet counts. Platelet counts are seen to 

decrease systematically from the baseline level in each successive experiment for each of the 

materials. This effect is more significant than the variation between the donors, because it is 

visible for all the donors. We interpret this as evidence of the ageing (corrosion) of the shear 

channel coatings upon successive exposure to blood and washing procedures between the 

experiments that were performed over a period of 8 month.  A total of 10 experiments were 

performed, first four and the last one with the blood from the same donor (light blue bars in 

Figure 3-8). In each of the successive figure in this Chapter, we present the results in 

chronological order to highlight the effect of ageing, as we do in Figure 3-8.  

In Figure 3-9, the decrease in platelet count relative to the baseline values is shown for the 

three materials. Over time, all three materials lead to the same level of PLT reduction (~ × 

0.6), but for CoCr, this happens faster than for steel or for Ti. Also, in the case of CoCr, PLT 

reduction occurs already in the first experiment. 
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Figure 3-9: Fractional decrease in PLT counts (relative to the 

baseline level) for the three materials used in this study. The 

number of the experiment, in chronological order, is plotted 

on the x-axis. The corresponding data are shown in Table 3-

2. Error bars are standard deviations. 

In summary, blood contact with biomaterials resulted in significant reduction in the platelet, 

monocyte, and neutrophil counts. Significant ageing effects were observed, with platelet 

reduction getting progressively worse with every experiment. This effect was worse for CoCr 

than for other materials.  
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 # Cells Baseline Ti CoCr Steel 

1 

RBC × 109 /L 4.80 5.59 5.22 5.46 

PLT  × 109 /L 211 205 187.5 206 
WBC × 109 /L 4.2 3.6 3.1 3.4 

MON × 109 /L 0.25 0.24 0.19 0.18 
NEU × 109 /L 2.09 1.98 1.57 1.81 

2 

RBC × 109 /L 5.78 4.55 4.50 4.98 

PLT  × 109 /L 120 102.5 81.5 111 

WBC × 109 /L 4.0 4.2 4.3 3.7 
MON × 109 /L 0.31 0.19 0.17 0.15 

NEU × 109 /L 2.58 2.79 1.89 2.13 

3 

RBC × 109 /L 5.78 4.55 4.50 4.98 

PLT  × 109 /L 243 206 165 225 
WBC × 109 /L 4.0 4.2 4.3 3.7 

MON × 109 /L 0.30 0.22 0.28 0.20 
NEU × 109 /L 2.41 2.11 2.26 1.93 

4 

RBC × 109 /L 5.06 4.71 3.72 4.03 

PLT  × 109 /L 120 92.5 80 108 
WBC × 109 /L 5.3 4.2 4.3 5.2 

MON × 109 /L 0.46 0.23 0.25 0.28 
NEU × 109 /L 3.03 2.17 2.26 3.16 

5 

RBC × 109 /L 5.02 2.14 2.91 5.89 
PLT  × 109 /L 190 131 106 150 

WBC × 109 /L 3.9 4.6 5.9 2.7 
MON × 109 /L 0.41 0.33 0.19 0.59 

NEU × 109 /L 1.78 1.94 1.12 2.51 

6 

RBC × 109 /L 5.77 5.00 6.32 6.01 

PLT  × 109 /L 142 98 82.5 113.5 
WBC × 109 /L 3.8 2.4 2.9 3.4 

MON × 109 /L 0.36 0.18 0.24 0.17 
NEU × 109 /L 2.10 1.20 1.78 1.41 

7 

RBC × 109 /L 4.36 5.70 5.90 6.64 
PLT  × 109 /L 256 152 142 175 

WBC × 109 /L 8.2 5.7 4.4 5.7 
MON × 109 /L 0.56 0.31 0.32 0.36 

NEU × 109 /L 5.79 4.12 4.09 4.33 

8 

RBC × 109 /L 4.33 4.94 5.23 5.21 

PLT  × 109 /L 135 79 67 86 
WBC × 109 /L 7.8 6.0 5.1 5.4 

MON × 109 /L 0.62 0.37 0.34 0.27 
NEU × 109 /L 4.92 3.83 3.37 3.27 

9 

RBC × 109 /L 4.81 4.94 5.23 5.21 
PLT  × 109 /L 240 135 129 166 

WBC × 109 /L 6.4 6.0 5.1 5.4 

MON × 109 /L 0.56 0.37 0.34 0.27 

NEU × 109 /L 3.52 3.83 3.37 3.27 

1
0 

RBC × 109 /L 4.80 6.40 5.22 5.55 
PLT  × 109 /L 339 191 194 228 

WBC × 109 /L 4.6 3.8 4.1 3.7 
MON × 109 /L 0.37 0.25 0.24 0.18 

NEU × 109 /L 2.89 2.43 2.21 2.77 

Table 3-2. Raw blood cell count data. The experiment number 
corresponds to the experiment date shown in Table 3-1. 
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3.5 Quantitative evaluation of the coagulation cascade activation 

The most severe adverse reaction to foreign materials placed in the vascular system is 

thrombosis. Therefore, the most direct way to evaluate the effect of the material is to measure 

the levels of thrombin in whole blood in contact with the material. Here, thrombin levels were 

evaluated by quantifying the levels of thrombin-antithrombin complex (TAT) in the blood 

before (baseline) and after contact with the surfaces of different materials. The results are 

shown in Figure 3-10. 
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Figure 3-10. Thrombin generation evaluated by measuring thrombin-anti-thrombin III (TAT) complex 
in the blood. (A). TAT levels in ng/ml. (B). Time-fold variation of the TAT levels calculated by 
normalizing the data measured after contact with the shear channels to the baseline values. Error 
bars in (A) are standard deviations.  
Color coding of the donors is the same as in Figure 3-8: each color refers to a unique donor; light 
blue bars (experiments 3, 4 and 10,Table 3-1) reflect experiments performed at KIT with the blood 
from one donor; other colors refer to the experiments performed in Teltow (experiments 5 - 9,Table 
3-1). Results are shown in the order in which the experiments were performed so that the effect of 
ageing of the channel coatings could be examined.   
Gray horizontal regions are means calculated over all of the donors for each condition (baseline, Ti, 
CoCr, steel). The widths of these regions correspond to the standard errors of the mean.   
Brackets and symbols above the plots refer to the evaluation of the statistical significance: black – 
calculated for all of the donors; blue – calculated only for the KIT donor (light-blue bars); green – 
same as light blue, but without the last (10th) experiment to evaluate the effect of ageing. Asterisks 
refer to the statistical significance of the difference between baseline and the materials (p≤ 0.05 by 
paired t-test), while crosses refer to the statistical significance of the difference between the 
materials (p≤ 0.05 by the unpaired two-sample equal variance t-test). Further details are in the main 
text of the chapter. The color code for the donors and statistical significance evaluation remains the 
same throughout this chapter. 

It is evident from the results presented in Figure 3-10 that all three materials—titanium, CoCr, 

and steel—induce thrombin generation in whole blood after incubation. Compared with the 

TAT level of 7.1 ± 0.8 ng/ml in the blood before exposure to the materials (baseline), each of 

them led to a significant increase in the TAT concentration to 14 ± 2 ng/ml for Ti, 19 ± 3 ng/ml 
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for CoCr, and 23 ± 4 ng/ml for steel. These values are obtained by averaging the data over 8 

experiments (experiments 3 – 10, Table 3-1) with five donors. Each of these increases was 

statistically significant when compared to the baseline level (black asterisks in Figure 3-10; p-

values of 0.02, 0.001, and 0.04 for the differences between baseline and Ti, baseline and CoCr, 

and baseline and steel, respectively).  

When comparing thrombin generation between the three materials, only the difference 

between titanium and steel was statistically significant (black cross in Figure 3-10, p = 0.044). 

TAT level induced by the contact with CoCr was between those induced by Ti and steel, but 

the differences between Ti and CoCr and CoCr and steel were not statistically significant. We 

attribute this to the effects of the donor-to-donor variation and coating ageing. 

To evaluate the effect of the ageing of the coatings on the observations, the statistical 

significance of the measured differences in the TAT levels was evaluated considering only the 

experiments with the blood from one donor done at KIT (light-blue asterisk and cross in Figure 

3-10 A); in this case, they are the same as for all the donors (black asterisks and cross in Figure 

3-10A). However, when the results of the last (10th) experiment were excluded from the 

evaluation of the experiments done at KIT (green asterisk and crosses in Figure 3-10 B), the 

following differences emerged: on the one hand, the difference between the baseline and Ti 

was no longer statistically significant (p=0.1). This is most likely due to the insufficient number 

of measurements. On the other hand, the difference between Ti and CoCr was statistically 

significant (p=0.04). This reflects the effect of ageing on the CoCr coating.  

(Note that results of 10 experiments are shown in Figure 3-8, but of 8 in Figure 3-10. This is 

because TAT levels could not be measured in the first two experiments done at KIT; other 

parameters had been measured, as described below and in Table 3-1).  
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3.6 Quantitative evaluation of the material-induced platelet 

activation and inflammatory responses 

Thrombin production is an integral response to the biomaterial that draws on several 

mechanisms, of which platelet activation is arguably the most important. Inflammatory 

responses also contribute to the generation of thrombin, and are important in their own right. 

To evaluate these individual contributions in the solution phase, we developed a six-color flow 

cytometry assay that measures CD62P expression on the platelets, platelet-leukocyte 

aggregation, and activation of monocytes and neutrophils in the aggregates with the platelets. 

The contribution of the surface-phase reactions was evaluated using ELISA assays for platelet 

activation (β-TG secretion), neutrophil activation (PMN elastase) and complement activation 

(sC5b-9). Flow cytometry assay design is described first, and then its results are presented 

together with the ELISA results. 

3.6.1 The design of the six color flow cytometric assay for measuring platelet 

activation, platelet-leukocyte interactions, and activation of leukocytes in 

platelet-leukocyte aggregates in solution 

Flow cytometric assay for characterizing the solution-phase responses of platelets and 

leukocytes to the materials was developed and implemented at KIT. As a starting point, we 

used the six color assay established at University Hospital Tubingen.186  

In the six color flow cytometric assay the evaluation of platelet and leukocyte populations was 

based on their phenotypical characteristics revealed by immunostaing with a panel of six 

antibodies. This assay focused on the platelets. Thererfore, only CD41a+ events were recorded 

(PLTs and PLT-LEU aggregates). The forward light scatter (FSC) and the side light scatter (SSC) 

were set to capture the platelets and the platelet-leukocyte aggregates in the appropriate 

detector range, as shown Figure 3-11. Figure 3-11A depicts platelet and platelet-leukocyte 

populations in an unstimulated sample. Here, platelets appear at the bottom of the scatter 

plot, while platelet-leukocyte aggregates appear above and to the right, indicating larger size 

and greater complexity. Identification is confirmed with the antibody staining. Antibodies 

against CD41a for platelets, CD45 for leukocytes, CD66b for neutrophils and CD14 for 

monocytes were used (the complete panel of antibodies is presented in Table 3-3). Figure 3-
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11 B and C show platelet and leukocyte populations in samples stimulated with the agonists 

TRAP6 and PMA, respectively.  

Unstimulated TRAP PMAA. B. C.

 

Figure 3-11. Flow cytometry analysis of whole blood: Scatter plots. Colors represent populations of 
different cells identified through with antibodies against CD62P for the platelets, CD66b for the 
neutrophils, CD14 for the monocytes. A. unstimulated whole blood. B. TRAP6 stimulated whole 
blood. C. PMA stimulated whole blood. 

The agonists, TRAP6 and PMA, activate platelets (TRAP6, PMA) and leukocytes (PMA), causing 

changes to the scatter plots. In particular, in stimulated samples, platelet and platelet-

leukocyte populations assume a more elongates shape (Figure 3-11 B and C). Furthermore, in 

the TRAP6-stimulated samples (Figure 3-11 B) platelet-neutrophil (green) and platelet-

monocyte (blue) aggregates appear overlaid. On the contrary, in the PMA stimulated sample 

(Figure 3-11 C) the two types of aggregates are well separated in distinct populations. The 

difference between TRAP6- and PMA-stimulated samples is related to the different effects 

that these agonists have on platelets and leukocytes: TRAP6 is platelet-specific, while PMA is 

an agonist for leukocytes as well as platelets.56 

The changes in the scatter plots illustrate qualitative changes in the platelet and leukocyte 

populations caused by activation. In order to quantify these changes, I evaluated expression 

levels of the activation markers CD62P and CD11b on the platelets and different types of 

platelet-leukocyte aggregates according to the strategy shown in Figure 3-12. The different 

types of PLT-LEU aggregates were distinguished by the expression of the monocyte- and 

neutrophil- specific markers CD14 and CD66.  
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CD41a+ events ( Platelets; 10000 recorded)

 CD45+

 CD14+

 CD11b+

 CD62P+

 CD66b+

 CD11b+

 CD62P+

 CD62P+

Platelet/Leukocyte aggregates

Platelet/Monocyte aggregates

Platelet/ Active Monocyte aggregates

Active Platelet/ Active Monocyte aggregates

Platelet/Neutrophil aggregates

Platelet/Active Neutrophil aggregates

Active Platelet/Active Neutrophil aggregates

Active Platelet

 
Figure 3-12. Strategy to identify and evaluate the activation of platelets and leukocytes in the 
platelet population and platelet aggregates with different types of leukocytes (monocytes, 
CD14+; and neutrophils, CD66+).  

This strategy allowed me to quantitatively evaluate the effect of biomaterials. 

The first step towards implementing the strategy shown in Figure 3-12 was to define the 

volume of each antibody that was needed to reliably identify the relevant populations without 

saturating the photomultipliers of the flow cytometers or causing cell aggregation due to 

excessive amount of antibodies used.187 Thus, minimal antibody volumes needed to detect 

stained cells were determined by titrations, the results of which are shown in Figure 3-13. 

Here, the median fluorescence intensities (MFI) are plotted as a function of the antibody 

volume used. MFIs reflect the level of staining. 
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Figure 3-13. Titration assays. Whole blood samples were stained with increasing concentrations of 
anti-CD41a (A), anti-CD62P (B), anti-CD45 (C), anti-CD66b (D), anti-CD14 (E), anti-CD11b (F). 

The necessity to choose appropriate volumes of the antibodies has been extensively discussed 

in the flow cytometry literature. The Table 3-3 shows the panel of the six antibodies and the 

respective volumes used. 

Antibody against Volumes Target 

CD41a 2.5 μl Platelets 

CD62P 1.25 μl Activated platelets 

CD45 2.5 μl Leukocytes 

CD66b 2.5 μl Neutrophils 

CD14 2.5 μl Monocytes 

CD11b 2.5 μl Activated neutrophils, activated monocytes 

Table 3-3. Panel of the six antibodies used in the flow cytometry assay and the volumes 
used in the assay. 
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3.6.2 Platelet and leukocyte interaction and activation at the material surface 

Once the appropriate antibody volumes were chosen, the flow cytometric assay was used to 

evaluate and quantify platelet activation, platelet-leukocyte aggregation, and the activation 

of neutrophils and monocytes in the PLT-LEU aggregates in the blood samples collected before 

(baseline) and after the blood contact with the shear channels. TRAP6- and PMA-stimulated 

samples were used as positive controls for the evaluation of the activation state of platelets 

and leukocytes. Figure 3-14 A shows platelet and leukocyte populations in the baseline blood 

and Figure 3-14 B-D show these populations upon contact with the shear channels. The 

fluorescence signals were overlaid on the scatter plots in order to highlight different 

populations such single platelets (red), and platelet-leukocyte aggregates (turquoise). Within 

the population of the aggregates, platelet-monocyte aggregates (blue) and platelet-

neutrophils aggregates (green) are distinguished. 

Baseline Titanium

CoCr Steel

A. B.

C. D.

Platelets 
(CD41a+)

Neutrophils 
(CD66b+)

Monocytes 
(CD14+)

Leukocytes 
(CD45+)  

Figure 3-14. Scatter Plots depicting platelet population (red) and platelet-leukocyte aggregates 

(green) before (A) and after the blood interaction with different materials: titanium (B), CoCr (C) and 

steel (D).  

The overlaid fluorescence signals are commonly referred as to “back-gating”. The back-gating 

allows highlighting of the differences in the scatter plots between the baseline samples and 
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blood samples exposed to the shear channels coated with different materials. It can be seen 

in Figure 3-14 B that the contact with the titanium-coated shear channels does not induce a 

drastic change in the appearance of the scatter plot. This signifies that platelet and leukocyte 

populations are not significantly affected by this material. On the contrary, CoCr and Steel 

cause clearly evident changes in the morphology of the scatter plots (Figure 3-14 C, D). It is 

noteworthy that these changes are comparable with those caused by PMA (Figure 3-11 C). 

They therefore indicate activation. It is important to note that we observe qualitative 

differences between materials already at the stage of examining the scatter plots. Different 

materials cause different reactions in the blood.  

3.7 Quantitative evaluation of the solution and surface-phase events 

with the six-color flow cytometric assay and ELISA 

Having designed and validated the six-color flow cytometry assay, I had at my disposal the 

tools I needed to characterize the effect of the materials on platelets and leukocytes in the 

platelet-leukocyte aggregates. 

3.7.1 Quantitative evaluation of platelet activation and aggregation with 

leukocytes 

Platelet activation was quantified by measuring the expression of the platelet activation 

marker CD62P (also called P-selectin) and platelet-leukocyte aggregation by flow cytometry 

and the secretion of β-TG by ELISA.  The results are presented in Figure 3-15.  

Concerning platelet activation measured by evaluating CD62P expression (Figure 3-15 A, B), 

CoCr and steel induce a statistically significant increase in the level of expression of this marker 

as compared to the baseline level, while titanium does not (black asterisk and brackets in 

Figure 3-15 A; p = 0.021, 0.044, 0.39 for baseline-CoCr, baseline-steel, and baseline-Ti; here, 

results from all the donors are considered). This difference between the effect of Ti and of the 

other two materials is striking. It is more significant than the donor-to-donor variation. 

When the results of the experiments performed at KIT with the blood from one donor (light 

blue bars in Figure 3-15 A, B) are considered, an additional, statistically significant difference 

in the level of CD62P expression between Ti and CoCr and Ti and steel is revealed (blue cross, 

and the corresponding brackets, in Figure 3-15 A; p = 0.014 and 0.02 for baseline-CoCr and 
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baseline-steel, but 0.42 for baseline-Ti; p = 0.015 for Ti-CoCr and Ti-steel, but 0.4 for CoCr-

steel).  

When the results of the experiments performed at KIT with the blood from one donor are 

considered without the last “stability” experiment, the effects are the same (green asterisk, 

cross, and the corresponding brackets in Figure 3-15 B; p = 0.018 and 0.027 for the baseline-

CoCr and baseline-steel, respectively; 0.015 and 0.016 for the Ti-CoCr and Ti-steel, 

respectively, but 0.47 and 0.35 for baseline-Ti and CoCr-steel, respectively). Therefore, the 

effect of ageing on the activation of platelets as measured by CD62P expression levels is not 

apparent. On the other hand, the low CD62P expression observed in the three experiments 

conducted in Teltow (white, gray, and purple bars) is surprising.   
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Figure 3-15. Quantification of platelet activation and aggregation with leukocytes. A, C, E: raw data; 
B, D, F: data normalized by the baseline levels.  
(A), (B): Evaluation of platelet activation by measuring CD62P expression on platelets by flow 
cytometry. Activation level is calculated as the fraction of CD62P+ events out of the total CD41a+ 
events, normalized by the same fraction in the positive control (TRAP6-stimulated platelets).  
(C), (D): Evaluation of platelet activation by quantification of β-TG secretion by ELISA.  
(E), (F) Evaluation of platelet activation by measuring platelet-leukocyte aggregation by flow 
cytometry. In (E), the data are presented as frequency of CD45+ events out of the total CD41a+ 
events, normalized by the same frequency in the positive control (PMA-stimulated samples).  
Error bars are standard deviations. Gray horizontal bars are means calculated over all of the donors. 
Their widths correspond to the standard error of the mean in each case. The color of each bar 
represents a unique donor. E.g., light blue bars stem from experiments performed with the blood 
from one donor at KIT (experiments 1 – 4 and 10, Table 3-1), while bars of other colors stem from 
the experiments performed with the blood of different donors at Teltow (experiments 5 - 9, Table 
3-1). Experiments are presented in the order they were performed so that the effect of ageing of 
the channel coatings could be examined. 
Statistical significance of the differences between baseline and materials (asterisks) was evaluated 

with a paired two-sample t-test. Statistical significance of the difference between materials (crosses) 

was evaluated using an unpaired two-sample t-test assuming equal variance. The colors of the 

symbols, and the corresponding brackets (black, blue, green) refer to the evaluation of statistical 

significance for all of the donors (black), KIT donor only (blue), and KIT donor only without the last 

“stability” experiment.  
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When the activation of platelets is measured in terms of the β-TG secretion (Figure 3-15 C, D), 

the results are strikingly different. All three materials induce β-TG secretion. Statistically 

significant changes in the β-TG levels between baseline and Ti, CoCr, and steel are observed 

(black asterisks and the corresponding brackets in Figure 3-15 C; p = 1.2E-9, 1.4E-9, 5.0E-9, 

respectively, considering results for all the donors). Moreover, statistically significant 

difference in the β-TG levels was observed between CoCr and steel (black cross and the 

corresponding bracket in Figure 3-15 C; p = 0.02; p = 0.1, 0.26 for the differences between Ti-

CoCr and Ti-steel, respectively).  

Ageing of the coatings had a significant effect in the case of CoCr, and possibly, Ti. Indeed, 

when considering the results obtained using blood from one donor in the experiments 

performed at KIT (light blue bars in Figure 3-15C), one finds no statistically significant 

difference between the materials. On the contrary, when the last “stability” experiment is 

excluded from this analysis, statistically significant differences between Ti and CoCr and CoCr 

and steel emerge (green crosses and the corresponding bars in Figure 3-15D; p = 0.002 and 

0.015, respectively).  

The differences between baseline β-TG levels and the levels induced by the materials are 

statistically significant independently of how they are evaluated: for all the donors (black 

asterisk), KIT donor (blue asterisk), or KIT donor without the “stability” experiment (green 

asterisk and the corresponding brackets in Figure 3-15 D). 

Exposure of whole blood to all three materials also induced statistically significant levels of 

PLT-LEU aggregates, as indicated in Figure 3-15 E and F. This conclusion is valid when the 

statistical significance is valuated for all the donors (black asterisk and the corresponding 

brackets in Figure 3-15 E; p = 0.012, 0.004, 0.012 for baseline-Ti, baseline-CoCr, and baseline-

steel, respectively), KIT donor (blue asterisk, p = 0.022, 0.026, 0.048), or KIT donor without the 

last “stability” experiment (p = 0.06, 0.068, 0.026). Indeed, no effect of material aging was 

observed, but a statistically significant difference in the level of PLT-LEU aggregates between 

blood exposed to CoCr and steel emerged when evaluating experiments performed with the 

blood from one donor at KIT (blue cross and asterisk in Figure 3-15 E, p = 0.25).  
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3.7.2 Quantitative evaluation of platelet-monocyte and platelet-neutrophil 

aggregates. 

Within the platelet-leukocyte aggregates, the platelet interactions with monocytes and 

neutrophils were quantified separately. The results are shown in Figure 3-16. 
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Figure 3-16. Platelet aggregation with monocytes and neutrophils. (A), (B). Quantification of 
platelet-monocyte aggregates. (C), (D). Quantification of platelet-neutrophil aggregates.  
PLT-MON aggregates were identified as events positive for CD41a, CD45, and CD14; PLT-NEU 
aggregates were identified as events positive for CD41a, CD45, and CD66b. In (A) and (C), their levels 
are presented, normalized to the levels of these events in PMA-stimulated samples. In (B) and (D), 
the levels of the aggregates are further normalized by the baseline levels to indicate fold-changes.  
Error bars in (A) and (C) are standard deviations. Gray horizontal regions are means calculated over 
all of the donors; their widths correspond to the standard error of the mean in each condition.  
Different donors are indicated by the differently colored bars. The color code is the same as in the 
other figures of this chapter. The corresponding experiments appear in Table 3-1. Experiments are 
presented in the order they were performed so that the effect of ageing of the channel coatings 
could be examined. 
Statistical significance of the differences between the baseline and the materials was evaluated with 
the paired two-sample t-test (asterisks). That for the difference between the different materials—
with the unpaired two-sample equal-variance t-test (crosses). This was done for all of the donors 
(black symbols and the corresponding brackets), the KIT donor (light blue symbols/brackets) and the 
KIT donor without the last “stability” experiment (green symbols and brackets). 

None of the materials induced statistically significant change in the PLT-MON aggregates 

levels as compared to the baseline (Figure 3-16 A, B), but a statistically significant difference 
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between Ti and steel was observed when the results from the KIT donor were considered (blue 

cross and bracket in Figure 3-16 A). Ageing had a discernable effect on the CoCr coating, as 

evaluated from the PLT-MON aggregation. This was evident from the statistically significant 

difference in the PLT-MON levels between CoCr and steel that emerged when this difference 

was evaluated for the experiments performed with the blood from the KIT donor without 

considering the last “stability” experiment (green cross and brackets in Figure 3-16 B; p = 

0.048), but not when it was evaluated for the experiments performed with the blood from the 

KIT donor including the last “stability” experiment (p = 0.06). The difference between titanium 

and steel was statistically significant in both of these cases.  

The case of the PLT-NEU aggregates is quite different (Figure 3-16 C, D). Here, all of the 

materials induced statistically significant changes in the aggregate levels when the results of 

all the donors were evaluated (black asterisk and the corresponding brackets in Figure 3-16 C, 

p = 0.02, 0.002, 0.02 for the baseline-Ti, baseline-CoCr, and baseline-steel, respectively), or 

when the results for the experiments performed with the KIT donor were evaluated (blue 

asterisk in Figure 3-16 C, p = 0.018, 0.009, 0.02, respectively). In this case, the difference in the 

PLT-NEU aggregate levels between Ti and steel was also statistically significant (p = 0.04).  

Ageing had no significant effect on the PLT-NEU aggregation levels, since only loss of statistical 

significance was observed when the last “stability” experiment was excluded from the analysis 

(c.f. green and blue symbols in Figure 3-16 D).  

Surprisingly, much lower aggregate levels were detected in the experiments performed in 

Teltow than at KIT. 

Next, the activation states of the platelets and leukocytes in the PLT-MON and PLT-NEU 

aggregates were evaluated. The results are presented in Figure 3-17 and Figure 3-18 for the 

PLT-MON and PLT-NEU aggregates, respectively.  

CoCr and steel caused statistically significant increase in the CD62P expression level on the 

PLT-MON aggregates (Figure 3-17 A, B). This was observed independently of whether the 

statistical significance was evaluated for all the donors (black asterisk and brackets in Figure 

3-17 A; p = 0.006, 0.028, respectively), KIT donor (blue asterisk in Figure 3-17 A; p = 0.041, 

0.047, respectively), or for the KIT donor without the last “stability” experiment (green asterisk 

and brackets in Figure 3-17 B; p = 0.041, 0.047, respectively), indicating that ageing did not 

have a significant effect. On the contrary, Ti did not cause a statistically significant increase in 
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the CD62P expression on PLT-MON aggregates compared to the baseline levels (p = 0.058, 0.1, 

0.1 for all the donors, KIT donor, KIT donor without the last “stability” experiment). 
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Figure 3-17. The activation state of platelets and monocytes in the platelet-monocyte aggregates.  
(A), (B). Platelet activation in platelet-monocyte aggregates evaluated by quantifying the level of 
CD62P expression. (C), (D) Monocyte activation in platelet-monocyte aggregates evaluated by 
quantifying CD11b expression. In (A), the fraction of CD62P events in the 
CD41a+/CD45+/CD14+/CD11b+ population was normalized by that fraction in agonist-treated 
samples. In (C), the same was done for the fraction of the CD11+ events in the 
CD41a+/CD45+/CD14+/CD62P+ population. In (B) and (D), the data were further normalized to the 
baseline levels in order to obtain fold changes relative to the baseline levels. 
Error bars in (A) and (C) are standard deviations. Gray horizontal regions are means calculated over 
all of the donors; their widths correspond to the standard error of the mean in each condition.  
Different donors are indicated by the differently colored bars. The color code is the same as in the 
other figures of this chapter. The corresponding experiments appear in Table 3-1. Experiments are 
presented in the order they were performed so that the effect of ageing of the channel coatings 
could be examined. 
Statistical significance of the differences between the baseline and the materials was evaluated with 
the paired two-sample t-test (asterisks). That for the difference between the different materials—
with the unpaired two-sample equal-variance t-test (crosses). This was done for all of the donors 
(black symbols and the corresponding brackets), the KIT donor (light blue symbols/brackets) and the 
KIT donor without the last “stability” experiment (green symbols and brackets). 

Statistically significant difference in the CD62P expression level was also observed between 

titanium and steel (p = 0.0045, 0.043, 0.043, when evaluated for all the donors (black cross 

and the corresponding bracket in Figure 3-17 A), KIT donor (blue cross in Figure 3-17 A) or KIT 

donor without the stability experiment (green cross and bracket in Figure 3-17 B)). This, once 

again, indicates that ageing did not have a significant effect.  
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Considering monocyte activation in the PLT-MON aggregates, CoCr and steel, but not Ti, 

induced statistically significant changes in the CD11b expression as compared to the baseline 

levels (black asterisk and brackets in Figure 3-17 C; p = 0.011 and 0.027 for baseline/CoCr and 

baseline/steel vs. 0.29 for baseline/Ti when results from all the donors were evaluated); a 

statistically significant difference between titanium and steel was also observed (black cross 

and bracket in Figure 3-17 C, p = 0.031). In this case, ageing did have a significant effect: the 

differences between baseline and steel and CoCr and steel were statistically significant when 

evaluated for the results obtained with the KIT donor without the stability experiment (p = 

0.047 and 0.037, respectively; green asterisk and cross, and the corresponding brackets in 

Figure 3-17 D) but not significant when evaluated for the results obtained with the KIT donor 

including the stability experiment. In this case, it is the ageing of steel that appears to be 

relevant.  

The activation of platelets and neutrophils in PLT-NEU aggregates is presented in Figure 3-18. 

All three materials induce statistically significant CD62P and CD11b expression levels on PLT-

NEU aggregates (Figure 3-18 A - D), as well as PMN elastase release (Figure 3-18 E), as 

compared to the levels in the baseline samples, when these parameters are evaluated for all 

of the donors (black asterisks and brackets in Figure 3-18A, C, E; p = 0.029, 0.003, 0.011 for 

the differences in the CD62P expression levels between baseline and Ti, baseline and CoCr, 

and baseline and steel samples, respectively; p = 0.019, 0.004, and 0.016 for the differences 

in the CD11b expression levels; and p = 6.96E-9, 8.51E-4, 0.001 for the differences in the PMN 

elastase levels).  

When evaluated for all the donors, differences in the CD62P or CD11b expression levels on 

the different materials were not statistically significant. On the other hand, the differences in 

the PMN elastase levels induced by Ti and CoCr were statistically significant (black cross and 

bracket in Figure 3-18 E, p = 7E-4).  

Ageing did not have an effect on the CD62P or CD11b expression levels on the PLT-NEU 

aggregates, but it did have a significant effect on the PMN elastase levels: when the results 

for the KIT donor were evaluated with and without the stability experiment (blue vs. green 

asterisks, crosses, and the corresponding brackets in Figure 3-18 E),  the difference in PMN 

elastase between baseline and steel was significant in the latter case but not the former case, 

and so was the difference in the PMN elastase level between titanium and steel (p = 0.001 and 

0.042, respectively). This indicates that the ageing effect was relevant for steel.  
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Interestingly, PMN elastase levels were lower for CoCr than for Ti; this difference was 

statistically significant (black crosses and brackets in Figure 3-18 E; p = 7E-4). The level for steel 

was also lower than for Ti, but this difference was not statistically significant when evaluated 

for all of the donors (p = 0.134)—only when it was evaluated for KIT donor, with or without 

the stability experiment (blue and green symbols and brackets in Figure 3-18 E; p = 0.014 and 

0.001, respectively). These observations were not affected by the ageing of the coatings (c.f. 

blue and green symbols and brackets in Figure 3-18 E). 
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Figure 3-18. The activation state of platelets and neutrophils in the platelet-neutrophil aggregates. 
(A), (B). Flow cytometric evaluation of platelet activation in the PLT-NEU aggregates by quantifying 
CD62P expression. (C), (D). Flow cytometric evaluation of neutrophil activation in the PLT-NEU 
aggregates by quantifying CD11b expression. (E) Neutrophil activation evaluated by quantifying 
PMN elastase levels.  
In (A) and (C), the data are presented in terms of the fraction of CD62P+ or CD11b+ positive events 
on the CD41a/CD45+/CD66b+/CD11b+ or CD41a/CD45+/CD66b+/CD62P+ populations, normalized 
by the same  fraction in PMA-treated samples (positive controls). In (B) and (D), the same data are 
further normalized by the baseline levels to obtain fold-changes over the baseline.  
Error bars in (A), (C) and (D) are standard deviations. Gray horizontal regions are means calculated 
over all of the donors; their widths correspond to the standard error of the mean in each condition.  
Different donors are indicated by the differently colored bars. The color code is the same as in the 
other figures of this Chapter. The corresponding experiments appear in Table 3-1. Experiments are 
presented in the order they were performed so that the effect of ageing of the channel coatings 
could be examined. Statistical significance of the differences between the baseline and the materials 
was evaluated with the paired two-sample t-test (asterisks). That for the difference between the 
different materials—with the unpaired two-sample equal-variance t-test (crosses). This was done 
for all of the donors (black symbols and the corresponding brackets), the KIT donor (light blue 
symbols/brackets) and the KIT donor without the last “stability” experiment (green symbols and 
brackets). 
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3.7.3 Quantitative evaluation of complement activation 

Finally, the effects of the three materials on complement activation were evaluated. This was 

done by quantifying the formation of sC5b-9, the final complex of the complement cascade. 

Figure 3-19 shows the results of the quantification.  

 
Figure 3-19. Complement activation: levels of sC5b-9. (A). Plasmatic sC5b-9 levels in ng/ml. Error 
bars are standard deviations. (B). sC5b-9 levels normalized to the baseline values. The color code is 
the same as in Figure 3-9 on page 59: the color of each bar represents a unique donor and 
experiments are presented in the order they were performed. The corresponding experiments 
appear in Table 3-1. Gray horizontal bars are means calculated over all of the donors; their widths 
correspond to the standard error of the mean in each case.  Asterisks indicate statistically significant 
(p ≤ 0.05) baseline-material differences evaluated with the paired two-sample t-test; crosses—
statistically significant (p ≤ 0.05) differences between materials evaluated with the unpaired two-
sample equal variance t-test. Their colors, and those of the corresponding brackets, refer to the 
donors over which the statistical significance was evaluated: black, all donors; blue, KIT donor (light 
blue bars); green, KIT donor (light blue bars) without the last experiment to evaluate the effect of 
ageing. 

It is evident from the results shown in Figure 3-19 that contact with the three materials 

induces complement activation. The effect is statistically significant in the case of CoCr and 

steel (black asterisks in Figure 3-19A; p = 0.04 and 0.021, respectively) despite rather drastic 

variation between the donors, but the donor-to-donor variation obscures the differences 

between materials (p = 0.3, 0.4, 0.4 for the differences between Ti and CoCr, Ti and steel, CoCr 

and steel, respectively, evaluated for all the donors).  

Material ageing also has a significant effect on complement activation. This can be inferred 

from the analysis of the results of the experiments conducted with one donor (light blue bars 

in Figure 3-19). Here, only the baseline/CoCr and baseline/steel differences were found to be 

statistically significant (light blue asterisk in Figure 3-19 A, p = 0.038 and p = 0.050, 

respectively), but not baseline/Ti (p = 0.058) or differences between materials (p = 0.23, 0.26, 
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0.46 for the differences between Ti/CoCr, Ti/steel and CoCr/steel, respectively). On the other 

hand, when the results of experiments conducted with the blood from this donor are 

evaluated without the last (stability) experiment (green asterisk, cross, and the corresponding 

brackets in Figure 3-19 B), the changes between the baseline and all of the three materials 

become statistically significant (p = 0.011, 0.033, 0.032 for the difference between baseline 

and Ti, baseline and CoCr, and baseline and steel, respectively), and so do the differences 

between Ti and CoCr and Ti and steel (p = 0.015 and 0.019, respectively; for CoCr-steel, p = 

0.038), despite a smaller number of experiments. This indicates that material ageing effects 

on complement activation are significant for Ti and CoCr. Interestingly, ageing decreases the 

level of complement activation as measured with the sC5b-9 levels. Indeed, the levels of this 

molecule become very low in the experiments performed in Teltow and the last KIT stability 

experiment.  

3.8 Morphological effects of ageing of the shear channel coatings 

During the experiments with the shear channels, we noticed deterioration of the inner 

channel surfaces with each subsequent experiment. It was particularly noticeable with steel. 

We therefore acquired microscopy images of the coated channels. Figure 3-20 shows the state 

of the titanium, CoCr and steel coatings when the shear channels were freshly coated (Figure 

3-20 top) and after repetitive use of the shear channels in six experiments during 

approximately 8 months (Figure 3-20 bottom).  

The surfaces of the freshly coated shear channels show small defects, particularly visible on 

steel (Figure 3-20 E). After repetitive use, the surfaces exhibit white structures as well as pits 

channel surfaces. They are small but numerous for titanium and CoCr coatings (visible as white 

spots in Figure 3-20 B and D). On steel coating, the damage to the surface is far more 

significant. Larger scratches and pits are visible, and they exhibit an orange color, possibly 

reflecting the remaining blood (Figure 3-20 F).  
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Figure 3-20. State of the coatings. Top: freshly coated shear channels. Bottom: aged shear channels.  
Images of the titanium (A and B), CoCr (C and D) and steel (E and F) coated channels.  
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3.9 Summary of the statistically significant material-induced changes 

in the blood activation according to the assay parameters measured 

in the study 

Table 3-4 summarizes the significant differences in the measured parameters with respect to 

the baseline, between materials, and induced by the ageing of the coatings.  

 BASELINE MATERIAL DIFFERENCES AGEING 

PARAMETER/ 

MATERIAL 
Ti CoCr Steel Ti/Cr Ti/steel CoCr/steel Ti CoCr Steel 

PLT COUNTS – – – 
Not 

tested 
Not 

Tested 

Not 

Tested 
Yes Yes Yes 

TAT * * * ns * ns No Yes No 

PLT ACTIVATION 

CD62P ns * * ns ns ns No No No 

BTG SECRETION * * * ns ns * ? Yes No 

PLT-LEU * * * ns ns ns No No No 

PLT-MON ns ns ns ns ns ns No Yes ? 

PLT-NEU * * * ns ns ns No No No 

PLT ACTIVATION IN PLT-LEU AGGREGATES 

PLT-MON ns * * ns * ns No No No 

PLT-NEU * * * ns ns ns No No No 

INFLAMMATION 

MON ACTIVATION ns * * ns * ns No Yes No 

NEU ACTIVATION * * * ns ns ns No No No 

PMN ELASTASE 
RELEASE 

* * * * * ns No No Yes 

COMPLEMENT ns * * ns ns ns Yes No Yes 

Table 3-4. Material-induced blood activation: summary of the effects observed in this study. “*” stands for 
significant increase; “–” stands for significant decrease. “Yes” and “no” refer to the effects of the aging.  
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3.10 Discussion 

The work reported in this chapter pursued several goals. The first goal was to examine 

differences in the way different metallic materials activated the hemostatic and inflammatory 

defense systems when brought into contact with whole human blood ex vivo. To do this, I 

evaluated the activation of the coagulation, platelets, inflammation and complement. The 

second goal was to evaluate different parameters that were measured with respect to their 

sensitivity, both to the experimental variables such as material chemistry, and to the noise 

factors such as the variation in the results between experiments performed with the blood 

obtained from different donors.  

The third goal was to shed light on the mechanism by which materials activate these systems. 

Here, we note that we used a number of different assays to measure various activation 

responses; for example, platelet activation was evaluated by measuring β-TG release, CD62P 

expression, and platelet-leukocyte aggregation; inflammatory responses were measured by 

evaluating monocyte and neutrophil activation in PLT-LEU aggregates as well as by evaluating 

PMN-elastase release and compliment activation; while all of these parameters reflect 

platelet activation or inflammatory responses, there are mechanistic differences between 

them. We consider these differences in terms of the mechanism of blood-biomaterial 

interactions.  

When evaluating the experimental data that were finally obtained against these goals, we 

encountered a complication:  we found a time-dependent process, referred as to “ageing”, 

that manifested itself as a change in the measured parameters from one experiment to the 

next, and a decrease in sensitivity of the experiments to the differences between the 

materials. This, and other limitations of the assay, will also be addressed in this section. 

Finally, the in vitro hemocompatibility testing system we used—the shear channels that were 

shaken to prevent red blood cell sedimentation rather than rotated to induce shear—differs 

from the conventional approach of mimicking the physiological situation adopted by most 

authors, and I therefore comment on the general validity of our conclusions with respect to 

other studies and the physiological situation. I refer to our system as “quasi-static”, because 

shaking prevented RBC sedimentation, but did not induce shear typical of the dynamic 

systems (e.g, Chandler loop). 
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3.10.1 Differences between materials and the evaluation of the most 

sensitive assay parameters 

The first inescapable conclusion is that all materials activate all defense systems: titanium, 

CoCr, and steel all lead to thrombin generation, platelet activation, and inflammatory 

responses above the baseline levels. This conclusion is consistent across multiple donors and 

is independent of the way in which various activation parameters were evaluated. As such, it 

correlates with the clinical situation and validates our approach to measuring blood-

biomaterial interactions in the quasi-static shear channel system. This point is discussed in 

more detail further below.  

The second, and the most important, conclusion of this work is that there are differences in 

the way the three different materials—Ti, CoCr, steel—activate blood. These differences are 

manifested in several respects. Statistically significant differences in the level of thrombin 

production between titanium and steel were observed across multiple donors (Figure 3-10 

and Table 3-4). Perhaps the most striking example of the difference between materials is 

visible in the flow cytometry scatter plots shown in Figure 3-14: blood contact with titanium 

vs. that with steel or CoCr induces different patterns of platelet activation and aggregation. 

Unfortunately, this effect was only manifested in the experiments performed at KIT with the 

blood from one donor. On the other hand, when I quantitatively evaluated platelet activation 

by measuring CD62P expression, I found that titanium did not induce a significant increase in 

the CD62P expression, but CoCr and steel did. This difference between Ti and CoCr or steel 

was observed when the measurements performed with all of the donors were taken into 

account and is therefore robust (Figure 3-15 A and B).  

When evaluating the levels of CD62P expression induced by the three materials, no 

statistically significant differences were observed. At the first glance, this leads to a paradox: 

when evaluating baseline-material differences, Ti behaves differently from the two other 

materials, but when evaluating material-material differences, this conclusion is not confirmed. 

This situation arises from the fact that baseline-material differences are correlated (their 

statistical significance is evaluated with a paired t-test corresponding to the levels measured 

“before” and “after” the exposure of the material to blood), but material-material differences 

are independent, and are therefore more susceptible to the noise arising from donor-to-donor 

variation and other sources. Sources of the noise in my assay are discussed in section 3.10.3 

“Limitations of the study”. In what follows, I discuss both the significance of the baseline-
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material differences and material-material differences; the most robust assay parameters are 

the ones that are sensitive to both, but the baseline-material differences are assigned a 

greater significance due to the above argument (they are less susceptible to the noise). 

In my assay, platelet activation was evaluated in several different ways, and it is interesting to 

consider differences between them. In particular, platelet consumption is a parameter that 

has been considered useful for over 70 years of evaluating materials both in vivo and in vitro. 

Arguably, it is the only parameter that was shown to correlate between in vitro and in vivo 

experiments, reflecting both the degree of platelet adhesion to the materials and platelet 

aggregation in solution (thrombotic and embolic potentials of the material in the language of 

Kusserow,134).131,135 My observations confirm that this parameter is indeed sensitive: there is 

a consistent drop in the platelet counts upon exposure of blood to the materials for all 

experiments, all materials, and all donors; subtle differences between materials are also 

evident: CoCr appears worse (greater decrease) than titanium or steel for all experiments, 

while titanium is worse compared steel (Figure 3-9). Platelet consumption is sensitive to the 

ageing of the coatings, because it becomes worse with every subsequent experiment, 

revealing changing in the material composition.  

Platelet activation as measured by β-TG release turned out to be entirely insensitive to the 

difference between materials but somewhat sensitive to the effect of ageing (Figure 3-15 C, D 

and Table 3-4). β-TG level was high for all materials and all donors, and decreased with the 

ageing of the coatings.  At least in some of the studies reported in the literature the release of 

β-TG was always high on all materials without marked differences between them.131 

Significant differences in the release of β-TG were found in some cases, e.g., between 

materials with very high and very low thrombogenic propensities, such as Cu-coated and 

Parlyne C-coated stents (but these materials are not used in clinical practice).188,189 

Furthermore, in vivo results show that high levels of β-TG are observed in trauma patients, PCI 

and in perioperative myocardial infarction following CABG, and aspirin administration fails to 

lower β-TG levels.190-192 In one of these studies, it was noted that β-TG levels in trauma 

patients were invariably high even though the levels of other platelet activation markers, such 

as PF4, varied.191 The same study noted a correlation between β-TG level and inflammation. 

All together, these observations raise questions concerning the sensitivity of β-TG 

measurements to subtle differences between materials.  
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Platelet aggregation with leukocytes, monocytes and neutrophils is another interesting 

parameter to measure platelet activation. There has been some discussions in the literature 

that PLT-MON aggregates are more sensitive to PLT activation than parameters such as CD62P 

expression.193 194 However, not all authors agree. I would like to first note that in the baseline 

samples, the PLT-MON, and more generally, PLT-LEU aggregate levels, are much higher, than 

CD62P levels (Figure 3-15 and Figure 3-16). This is particularly evident in the case of the KIT 

donor, where the baseline activation is relatively high, on the order of 20 – 25% (light blue 

bars in Figure 3-15 E). In that regard, aggregate formation does appear to be more sensitive 

to platelet activation than CD62P expression level. 

Secondly, neither platelet-leukocyte nor platelet-monocyte aggregates reveal differences 

between materials (Figure 3-16 A, B and Table 3-4). The parameter that was sensitive to the 

differences between the materials is the activation of platelets in the aggregates with 

monocytes, both when baseline-material difference and material-material differences are 

considered (Figure 3-17 A and Table 3-4). Titanium is the only material not causing a significant 

increase in the level of PLT activation in the PLT-MON aggregates relative to the baseline level. 

A significant difference between Ti and CoCr was also noted. These conclusions are confirmed 

for all the donors. 

Platelet-neutrophil aggregate levels increase on all materials but do not reveal any differences 

between them (Figure 3-16 C and D). The same trend is observed for platelet activation in the 

aggregates with neutrophils (Figure 3-18 A). These conclusions are also confirmed across all 

of the donors. 

Further differences between materials were observed when evaluating inflammatory 

responses. These were evaluated in terms of PMN elastase release, complement activation, 

and the activation of monocytes and neutrophils in PLT-LEU aggregates. PMN-elastase release 

was higher on titanium than on CoCr or steel (Figure 3-18 E); this effect was consistent across 

multiple donors and independent from the ageing. However, the aging effects is visible on 

steel, on which the levels of PMN-elastase decrease over time. The evaluation of complement 

activation reveals that titanium does not induce a significant increase compared to the 

baseline, but CoCr and steel do. However, there are no differences between materials, 

partially due to donor-to-donor variation and partially due to aging effects that manifest 

themselves as a reduction in the measured levels of sC5b-9 for all materials. In the literature, 

an increase in PMN-elastase and complement is reported on different materials, polymeric 
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and metallic, without any marked differences.188,189 The same effects as for the complement 

are visible for monocyte activation in the aggregates with platelets: while titanium does not 

cause an increase, CoCr and steel do. Further, monocyte activation reveals significant 

differences between titanium and CoCr across the multiple donors. The effects of aging can 

also be observed on CoCr. On the contrary, the activation of neutrophils in the aggregates was 

significantly increased on all materials, but reveals no difference between materials. Notably, 

the activation levels of neutrophils in platelet-neutrophil aggregates were lower than of 

monocytes in the platelet-monocyte aggregates. Also, the effects of aging are not visible for 

neutrophil activation. The activation of monocytes in PLT-MON aggregates appears to be the 

most sensitive parameter in revealing differences between materials. This conclusion is 

supported by similar findings, when material hemocompatibility is tested under shear. 195 This 

supports the idea put forth in the literature that PLT-MON aggregates represent an important 

factor reflecting hemostatic-inflammatory axis connection in vivo.193   

In summary, my results highlight the different propensities of metallic materials in inducing 

hemostatic and inflammatory blood responses. Particularly, titanium appears to be the best 

material in respect to the activation of the coagulation and platelets as measured by CD62P 

expression and aggregation with leukocytes. However, it induces a high secretion of β-TG from 

platelets just like the other two materials, and high pro-inflammatory responses (as measured 

as PMN-elastase and sC5b-9 generation), higher than the other two materials. CoCr and steel 

appear to be similarly highly thrombogenic (more so, than the Ti) and pro-inflammatory (less 

so than the Ti).  

In the context of identifying the most sensitive parameter for revealing differences between 

materials, the activation of platelet-monocyte aggregates as measured by CD62P and CD11b 

expression appears to be the most sensitive parameters for the evaluation of material 

performance. Contrary to the other parameters measured, the activation of platelet-

monocyte aggregates was the only one able to reveal differences between materials, 

independently of the donor-to-donor variation and aging of the coating.  Supporting this 

conclusion, an increase in the level of the circulating platelet-leukocyte aggregates has been 

observed in different cardiovascular diseases, such as stable and unstable angina, myocardial 

infarction, and in patients undergoing percutaneous coronary interventions and heart valve 



                                                               Material Hemocompatibility Testing: Quantifying Blood Responses 
 

87 
 

replacement; in addition, platelet-leukocyte aggregate level is a predictive index of acute re-

occlusion following coronary angioplasty.193,196,197 

I expect that the assay parameters, such as PLT-MON aggregation and activation, reveal 

differences between material surface chemistry. Indeed, XPS analysis of the coatings (Figure 

3-4, Figure 3-5, Figure 3-6 and Figure 3-7) reveals that the materials are chemically different. 

The three coatings I used were prepared by sputtering on the identically polished Al channels. 

Therefore, the differences in roughness are expected to be minimal. Supporting this 

interpretation are several observations. Firstly, CoCr and steel coatings behaved similar in 

several tests but different from Ti. Indeed, steel and CoCr coatings are more similar to each 

other, both having the chromium oxide species on their surface, than to Ti, which only has 

TiO2 (c.f. Figure 3-5 with Figure 3-6 and Figure 3-7). Secondly, ageing in most cases led to the 

loss of the ability to distinguish between materials. This would be expected as effects of 

roughness and perhaps the appearance of the underlying Al of the channel base reduced the 

differences due to material chemistry.  

3.10.2 Blood-material interaction mechanisms 

I now turn to the discussion of the activation mechanisms on the different materials. To this 

end, I introduce the correlation plots, where the relationships between the different 

parameters are examined. For example, it is known that most of the thrombin that is produced 

during coagulation is produced at the platelet membranes. Therefore, it is interesting to 

examine the relationship between thrombin production and platelet activation. In Figure 3-

21, I plot the thrombin generation as a function of the various platelet activation and 

inflammatory response markers. Surprisingly, it turns out that thrombin generation is not 

correlated with platelet activation measured in terms of α-granules secretion (CD62P 

expression or β-TG release). What it does correlate with is platelet-leukocyte (R2=0.8), PLT-

MON (R2=0.8) and PLT-NEU aggregates levels (R2=0.9) (Figure 3-21 B-D). Thrombin production 

was also found to correlate with the activation of platelets and monocytes in PLT-MON 

aggregates (R2=0.9 and 0.8), and platelets and neutrophils in PLT-NEU aggregates (R2=0.9 and 

0.9) (Figure 3-21 E-H). We can conclude that thrombin production correlates not with the PLT 

activation alone (at least when it is measured by focusing on α-granule secretion), but with 

reactions that involve both platelet activation and cellular inflammatory responses. On the 

other hand, thrombin production did not show a clear correlation with PMN-elastase release 
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from granulocytes (but it is interesting that titanium stands apart from the trend that is 

apparent when the baseline, CoCr and steel data are considered, see Figure 3-21 J), while 

complement activation and thrombin production were anti-correlated (Figure 3-21 K), 

pointing to the complexity in the interplay between the different pathways and their 

measurement parameters. 
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Figure 3-21. Thrombin generation versus platelet activation and inflammatory responses. The 
generation of thrombin is plotted versus A. CD62P expression, B. platelet-leukocyte aggregates, C. 
platelet-monocyte aggregates, D. platelet-neutrophil aggregates, E. CD62P expression on platelets 
in the aggregates with monocytes, F. and in the aggregates with neutrophils, G. CD11b expression 
on monocytes and H. on neutrophils in the aggregates with platelets, I. secretion of β-TG, J. release 
of PMN-elastase and K, generation of sC5b-9.  

Similar correlations can be examined for the various ways of evaluating PLT activation (Figure 

3-22). The secretion of β-TG is not correlated with the expression of CD62P or the aggregation 

with leukocytes (Figure 3-22 A-H), because its release is always high.  
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Figure 3-22. Correlation between different ways to evaluate platelet activation. The secretion of β-
TG from activated platelets is plotted versus A. CD62P expression, B. platelet-leukocyte aggregates, 
C. platelet-monocyte aggregates, D. platelet-neutrophil aggregates, E. CD62P expression on 
platelets in the aggregates with monocytes, F. and in the aggregates with neutrophils, G. CD11b 
expression on monocytes and H. on neutrophils in the aggregates with platelets. 

The link between inflammation and platelet activation can be examined by evaluating the 

correlations between inflammatory factors—such as PMN elastase release or sC5b-9 

generation—and platelet activation factors (Figure 3-23 and Figure 3-24). For PMN-elastase 

release and complement activation, there is no correlation with the CD62P expression, 

platelet aggregation with monocyte and neutrophils, activation of the aggregates, or β-TG 

release (Figure 3-23 A-I, and Figure 3-24 A-I). Similarly to thrombin/PMN-elastase correlation, 

titanium stands apart from the trend visible for baseline, CoCr and steel in Figure 3-21 J. My 

measurements therefore do not reveal a correlation between inflammatory pathway 

activation and platelet activation as measured by the α-granule release. 
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Figure 3-23. PMN-elastase release versus platelet activation. The release of PMN-elastase from 

granulocytes is plotted versus A. CD62P expression, B. platelet-leukocyte aggregates, C. platelet-

monocyte aggregates, D. platelet-neutrophil aggregates, E. CD62P expression on platelets in the 

aggregates with monocytes, F. and in the aggregates with neutrophils, G. CD11b expression on 

monocytes and H. on neutrophils in the aggregates with platelets and I. secretion of β-TG. 

Finally, the two ways of evaluating the inflammation–PMN-elastase release and sC5b-9- do 

correlate with each other (R2=0.9) (Figure 3-24 J), as expected.  
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Figure 3-24. sC5b-9 generation versus platelet activation and PMN-elastase release. The generation 
of sC5b-9 is plotted versus A. CD62P expression, B. platelet-leukocyte aggregates, C. platelet-
monocyte aggregates, D. platelet-neutrophil aggregates, E. CD62P expression on platelets in the 
aggregates with monocytes, F. and in the aggregates with neutrophils, G. CD11b expression on 
monocytes and H. on neutrophils in the aggregates with platelets, I. secretion of β-TG and PMN-
elastase release. A-H were measured by flow cytometry. I-J were measured by ELISA assay. The full 
colored makers indicate the results with the freshly coated shear channels, while the open markers 
the results with the aged shear channels with the blood from one donor. The patterned markers 
indicate the results from multiple donor. 

 

The above correlation analysis can be looked at from two perspectives. On one hand, it 

emerges that α-granule secretion markers such as CD62P or β-TG are not the right ones to 

evaluate platelet activation in the context of biomaterial reactions, because they are not 

correlated to thrombin production or inflammation. Indeed, others have also remarked on the 

lack of correlation between CD62P expression, β-TG secretion, and coagulation.198 From this 

perspective, the most robust parameters characterizing blood activation by the materials are, 

once again, PLT-LEU aggregates, particularly PLT-MON aggregates and their activation as 

measured by the expression of CD62P and CD11b (Figure 3-21 C-H), because they correlate 

with the thrombin levels. 

On the other hand, the connection between coagulation, platelet activation, and 

inflammation evident at the level of platelet aggregation with leukocytes (monocytes and 

neutrophils) and in the degree of their activation points to a biological mechanism. Indeed, in 

the literature, this connection is explained by the fact that the aggregation of platelets with 

monocytes and neutrophils through CD62P induces TF expression on the leukocytes. The 
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aggregates expressing TF are therefore directly related to thrombin generation, since TF is an 

initiator of the coagulation cascade (Figure 1-5 on page 13 in the Introduction).197,199 

Furthermore, platelet-monocyte and platelet-neutrophil aggregates, but not neutrophils or 

monocytes alone, bind FXa and fibrinogen. The binding is dependent on the adhesion of 

platelets to these cells.200 

The anti-correlation between the thrombin generation and complement activation was 

surprising. This observation is against what is currently known about the interplay between 

the two systems: for example thrombin is known to cleave factor C3, C5 and C6 and so 

contributing to the amplification of the complement cascade. 45. Therefore, I cannot entirely 

explain the observed anti-correlation. Ageing of the coatings may have contributed to this 

observation, because it leads to the decrease in the levels of sC5b-9 measured in each 

subsequent experiment (Figure 3-19).  

3.10.3 Limitation of the study 

As any study, this one has several limitations. Firstly, I observed a consistent decrease in the 

parameters measured in Teltow (multiple donors) compared to those measures at KIT (one 

donor). In particular, the decrease is visible for CD62P expression (Figure 3-15 A), platelet 

aggregation with leukocytes (Figure 3-15 E), monocytes and neutrophils (Figure 3-16 A and C), 

activation of the platelet-leukocyte aggregates as measured by CD62P and CD11b expression 

(Figure 3-17 A, C for monocytes and Figure 3-18 A, C for neutrophils), and for the complement 

(Figure 3-19). The ageing process we describe in detail below is partially responsible for this. 

This is visible from Figure 3-15 A and B, which shows that CD62P expression levels decrease 

when blood from the same donor is allowed to contact aged vs. fresh shear channels. The 

decrease does not occur for the platelet-leukocyte aggregates (Figure 3-15 E and F).  

Therefore, ageing does not entirely explain the consisted decrease observed in the measured 

parameters. Another potential cause of this effect could be the differences in the starting 

activation levels (particularly evident for platelet-leukocyte aggregates-Figure 3-15 E and F). 

In the same vein, the differences in the starting activation levels do not appears for thrombin 

generation, β-TG secretion, PMN-elastase release and complement activation (Figure 3-15 C, 

Figure 3-18 E, and Figure 3-19) . The conclusions that are not affects by these problems are: 

thrombin generation, β-TG secretion, PMN-elastase release, CD62P and CD11b expression on 

platelet-monocyte aggregates.  
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The effect we call ageing represents another serious limitation of the study. Microscopy 

images of the channels show white structures and pits of different on Ti, CoCr and steel 

coatings (Figure 3-20 B, D and F). It appears that a combination of factors is responsible for 

this process. Firstly, the cleaning procedure (section 2.7.3 in the Materials and Methods) might 

not be sufficiently effective in removing traced of blood. The white structures might be traces 

of the clots consequent to blood exposure that are not removed by the washing (F. Jung, 

personal communication). More aggressive washing procedures were not possible to perform, 

as they tend to strip the sputtered coatings. The presence of pits is essentially an artifact of 

the procedure used to prepare the channels themselves, although it is noteworthy that the 

pits are more severe on the steel-coated shear channel (Figure 3-20 A, C and F). The pits may 

become damaged by the macrophages over time, explaining the visual deterioration we 

observed. Orange color also indicates that the washing procedure was not efficient. In 

retrospect, it would have been better to make the shear channels out of the different 

materials rather than coat the surfaces with the materials of interest, but the cost of such an 

approach was beyond the means of our laboratory. Another approach would be to re-polish 

and re-coat the channels before every experiment; this is also costly and prohibitively time 

consuming. This does, however, point to how careful one must be in designing 

hemocompatibility studies. 

The shear channel approach is also limiting in the sense that their surfaces cannot be easily 

analyzed either by the biological or physical methods due to the sheer size and weight of the 

channels. Finally, the small number of different materials tested could also can be considered 

a limitation. 

3.10.4 Experimental model 

Finally, I comment on the validity of our conclusion using the “quasi-static” shear channel 

model with respect to other studies and physiological conditions.  

The current dogma dominating the hemocompatibility field is that studies under flow are 

needed to evaluate blood-biomaterial interactions, because they mimic the physiological 

shear. The origin of the dogma is the regulation of platelet activation and adhesion under 

shear: different shear forces regulate the activation of vWF and of many platelet receptors 

(for example GPIb responds to high shear stress).201 Also, under flow platelets are 

concentrated near the vessel wall.202 Therefore, various in vitro circulation systems are widely 
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used in hemocompatibility studies. However, there are arguments against the dogma, as well. 

The question is not settled and below I discuss the different points of view. 

Two types of in vitro circulation systems have been used extensively: the modified Chandler 

loop (Figure 3-2 on page 53 in the Results section) and the roller pump closed-loop system.  

All of them include PVC tubing in which the material to be tested is inserted. The systems are 

rotated during the testing and the blood circulation through the tubing is implemented by air 

inside the system. The common drawbacks of these systems are: the blood contact with two 

materials and the presence of the air bubble. Both results in measurement artifacts. On 

rotation, the air bubble repetitively contacts the test material causing protein denaturation 

and damaged to the blood elements (platelet and leukocyte activation, detachment of the 

adhering blood cells). The rolled pump closed-loop system presents a further problem: the 

damaged of the blood elements caused by the pump.146 For this reason, this system is suitable 

only for short-time testing, being not sensitive to reveal differences between materials.  

Evolution of these model systems is the hemobile: a simple mechanical device which 

generates a semicircular movement. Additionally, it does not contain air bubble. In this way is 

attempted to reduce the damaged and activation of the blood elements. In the system is 

applied a pulsatile flow in a frequency similar to the arterial circulation. The hemobile was 

compared with the Chandler loop and the roller pump, showing promising results.145 

On the other hand, quasi static system models for testing material hemocompatibility are also 

used. The so called “screening chamber” represent an example. It consists of two stainless-

steel cover plates that are screwed together to fix the test surface. A PTFE spacer forms a 

cavity in which the blood is exposed to the test materials.  The system is shaken in an incubator 

to avoid red blood cell sedimentation.  

Comparison of the quasi static with the in vitro circulation model did not show any significant 

advantages of the in vitro circulation model over the quasi-static one. The advantage of the 

more realistic application of flowing blood in the perfusion setup is in certain cases interfered 

with by the increased activation of the blood, which may reduce the sensitivity of the testing. 

151  

The shear channel I use in this study is a quasi-static model: it is not rotated but the 

sedimentation of the red blood cells is avoided by agitation. It has been developed to 

overcome the drawbacks of the Chandler loop system. In the shear channels the blood 

contacts only one material (because the entire inside of the channel is coated with the 
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material of interest). The system still contain the air/blood interface, but now the interface 

does not encounter the entire surface of the material but is restricted to its small fraction as 

the interface oscillates during the agitation. In the Chandler loop, the passage of the air/blood 

interface across all of the material would be expected to lead to the denaturation of the 

surface adsorbed proteins and in this way contribute to the noise in the hemocompatibility 

measurements. Some amount of air is nevertheless required to decouple the fluid (blood) 

from the surface. Ratner pointed out repeatedly that the ability to evaluate material 

hemocompatibility comes down to a signal-to-noise problem. 131 Approaches to minimize the 

noise are therefore important, and our system represents an example of a noise minimization 

strategy; perhaps this contributed to our ability to distinguish between materials.  

In summary, there is universal agreement that red blood cell sedimentation has to be avoided, 

but beyond that, in my view, the jury is still out whether shear flow is actually needed for the 

testing. Indeed, my results with the quasi-static system show significant blood-biomaterial 

activation effects and the ability to distinguish between similar materials. Moreover, the 

results obtained are comparable with the in vitro and in vivo observations, among of them 

platelet count and the higher sensitivity of platelet-monocyte aggregates.131,193  

3.11 Conclusion 

In summary, taken together the results shows that this whole-blood quasi static test allows to 

distinguish between materials in inducing hemostatic and inflammatory responses. Titanium 

appears to be superior to CoCr and steel.  I found that the most sensitive parameters in 

revealing such differences was the activation of platelet-leukocyte aggregates. Platelet 

consumption appeared to be sensitive to the material properties, as the most sensitive in 

revealing the effects of the ageing coatings. On the contrary, platelet activation markers such 

as CD62P expression and β-TG secretion are not the right ones to distinguish between 

materials. These conclusions are supported by the correlation plots. They also reveal 

interesting insights in the activation mechanisms on the materials. In particular, the interplay 

between the coagulatory and inflammatory responses clearly emerges from the correlation 

of platelet-leukocyte aggregates with thrombin generation.  Finally, these results are 

comparable with other in vitro and in vivo observations.   
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4. Testing: a simple in vitro test for 

distinguishing between materials 

4.1 Summary  

In this Chapter, I present a simplified and rapid in vitro procedure for testing blood-biomaterial 

interactions. I use a microfluidic approach developed by Cho et al.181 in which the detachment 

of platelets from the surface is initiated by applying tangential flow at controlled shear rates. 

In this way, the strength of the platelet-surface interactions is probed by measuring the shear 

rate at which 50% of the adhering platelets detached (Det50), and the fraction of adhering 

platelets that remained on the surface after detachment. 

The assay is carried out in PrP. Four model surfaces are tested: glass, TiO2, glass functionalized 

with a hydrophobic Octadecyltrichlorosilane (OTS-glass), and glass functionalized with 

poly[bis(trifluoroethoxy)phosphazene] (PTFEP), a polymer that has recently generated some 

interest as a stent coating.203,204 Microfluidic approaches have primarily been used for 

studying platelet biology and function in hemostasis, thrombosis and other coagulation 

pathologies.147 These approaches have mainly been focused on the evaluation of platelet 

adhesion, aggregation, and thrombus formation under conditions mimicking the in vivo wall 

shear stress.147-149,205-207  On the other hand, the application of microfluidic approaches in the 

context of blood-material interactions has been limited, as I already remarked in the 

Introduction.208,209 The parameters typically evaluated in the blood-biomaterial interaction 

studies focusing on platelet adhesion and activation are platelet spreading and the expression 

of activation markers. This equally applies to microfluidic and regular studies. On the contrary, 

the stress needed to detach platelets from the surface has only been investigated in a few 

studies.210,211 These studies showed that platelet detachment from the protein-coated 

surfaces was mainly dependent on the adsorbed protein composition and on the degree of 

platelet spreading.  

As described extensively in the Introduction (section 1.9, page 18) the composition of the 

protein layer adsorbed at the biomaterial surface is related to the physicochemical properties 

of the material. Since the attachment strength depends on the adsorbed protein composition, 
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detachment parameters (Det50 and the remaining platelet fraction) may be suitable for 

distinguishing between materials with respect to their interactions with the platelets. 

Therefore the design of the assay presented in this Chapter is based on measuring Det50 and 

the remaining platelet fraction for platelets interacting with different materials under various 

conditions. The sensitivity of these parameters to differences between materials is examined, 

and correlated with the classical activation parameters such as platelet spreading and 

activation evaluated by measuring CD62P expression on the remaining platelets to establish 

biological context.  

At the molecular level, platelet adhesion is mediated by the classical adhesion receptors 

expressed on the platelet surface (e.g., GPIIb/IIIa-integrin αII/βIII- for the binding of fibrinogen 

and vWF, GPVI for the binding of collagen, or GPIb-IX-V for the binding of vWF).212,213 This is 

true at the sites of the vascular injury as well as in the case of platelets interacting with the 

biomaterial surfaces, where the adsorbed protein layers mediate platelet-surface 

interactions.214,215 The strength of these interactions depends on the degree and type of 

platelet activation. For example, platelets reversibly interact with the exposed vWF at the 

surface of activated ECs through GPIb-IX-V. This interaction activates the platelets, resulting 

in conformational changes of the platelet integrins, such as GPIIb/IIIa, that mediate 

irreversible adhesion of platelets at the injury site.56 Similarly, at the biomaterial surface, 

platelets become activated and adhere via the irreversible interactions between the activated 

platelet surface receptors and the proteins adsorbed at the material surface.216 This sets the 

biological context of the assay, through the dependence of the adhesion strength on the type 

and degree of platelet activation. In in my assay, platelet activation either occurs 

spontaneously (by the biomaterial) or is artificially induced (by pre-incubating PrP with a 

platelet agonist TRAP6).The experimental strategy is described in Figure 4-1. Following the 

preparation of PrP from whole blood, PrP was characterized for the initial platelet activation 

and functionality by flow cytometry. PrP was incubated on the testing material surface (glass 

slides, coated or appropriately modified). Incubation times were either 10 min or 1 hr, and 

either untreated PrP, or PrP pre-activated with TRAP6, a platelet agonist, was used, in separate 

experiments. Following the incubation, antibodies against CD41a and CD62P were added to 

the incubation chambers to stain for platelet identification and activation, respectively. 

Fluorescence images were recorded to characterize the initial state of the surface. Then the 

detachment parameters were measured.  
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Detachment was initiated in two different ways. In one case, referred to as dynamic 

measurements, the detachment experiment was started by turning on the flow. Flow rate was 

increased exponentially every 5 seconds, and platelet detachment was recorded. The shear 

rates varied between 1 and 10 dyn/cm2 (0.1 and 1 N/m2). In the other case, referred to as 

static measurements, the detachment was initiated with a hand-held pipette. The purpose of 

the static condition measurements was to further simplify the assay and avoid the use of bulky 

pumps and pressure chambers associated with the microfluidic experiments.  

Finally, the fraction, the area, and the level of fluorescence intensity due to the binding of the 

anti-CD62P antibody on the remaining platelets were evaluated. 

4.2 Surfaces  

The preparation and characterization of the surfaces used in this Chapter is described in detail 

in Chapter 2 (Materials and Methods) in section 2.8.4 at page 40. Briefly, unmodified glass, 

TiO2-coated glass, glass modified with OTS and glass coated with PTFEP were used. OTS-glass 

and PTFEP-coated glass are hydrophobic,203 while freshly cleaned unmodified and TiO2-coated 

glass surfaces are hydrophilic; this was judged visually based on the water droplets rolling off 

 

Figure 4-1. Experimental strategy. A. The overall experimental schematic. PrP was prepared from 
whole blood and the activation state of the platelets in PrP was analyzed by flow cytometry. It was 
incubated on the surfaces of interest. The incubation was followed by the antibody staining. 
Fluorescence images characterizing the state of the system were recorded, and then platelet 
detachment was initiated by turning on the flow under the dynamic conditions or rinsing under the 
static conditions. Under the dynamic conditions, fluorescence images were continuously recorded. 
Finally, the state after the detachment was recorded in both cases. B. and C. Schematic illustrations 
of the dynamic and static experiments, respectively. Platelets are shown as gray spheres.  
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from the hydrophobic surfaces but spreading on the hydrophilic surfaces. The modification of 

glass with OTS and coating of glass with PTFEP were performed by Dr. Kwan Cho and Dr. Alex 

Welle according to the procedure published previously. 203   

TiO2 and glass surfaces were freshly cleaned before each experiment. OTS-glass slides were 

prepared the night before. PTFEP-coated glass slides were prepared in batches, and stored for 

a period of less than one week in a desiccator.  

XPS spectra illustrating the cleaning of the unmodified glass slides and TiO2-coated glass slides, 

as well as PTEFP coating, are shown in the Appendix. They confirm the surface cleanliness and 

composition. 

4.3 Platelet characterization by flow cytometry 

PrP was prepared from heparinized whole blood by centrifugation. Prior to each experiment, 

PrP was characterized by flow cytometry for ascertain initial platelet activation and 

functionality (Figure 4-2). The activation level and of untreated (UNT) PrP and PrP treated with 

TRAP6 and PMA was measured with respect to the expression of CD62P (α-granule marker), 

CD63 (dense-granule marker) and PS.56,217 Only the PrP with an activation level < 5% for CD62P 

and < 20% for both CD63 and PS was used for the experiments.  

 

Figure 4-2. Platelet characterization by flow cytometry. The plot shows the initial activation levels 
and the response to the agonists of platelets in PrP. The results are present as averaged data of eight 
experiments performed with the blood from four different donors. Red bars: CD62P expression, 
yellow bars: CD63 expression, violet bars: PS exposure.  
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4.4 Dynamically initiated platelet detachment  

After PrP incubation on the material surface, I measured the detachment of platelets by 

exposing them to the flowing buffer at different shear stresses in a custom-designed 

microfluidic cell, mounted in the fluorescence microscope (Figure 4-3 A, fluorescence images 

illustrating platelet detachment). It is evident from the images that the number of platelets 

adhering on the surface decreases with the increasing shear stress. The fraction of platelets 

remaining at the surface at each shear stress was calculated (Figure 4-3 B). From these 

detachment curves, it is evident that there are differences between conditions in terms of the 

final number of remaining platelets as well as in terms of the stress at which platelets detach 

(c.f. TRAP6-treated and untreated platelets, for example). Det50 and the remaining platelet 

fractions, measured from such curves, averaged over six experiments with blood from four 

different donors, are shown in Figure 4-3 C and Figure 4-3 D for the different materials and 

experimental conditions.  
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Figure 4-3. Dynamic platelet detachment experiments. A (I-VI). Sequence of representative images 
illustrating the detachment of adhering platelets under increasing flow. Platelets are stained for 
CD41a (green) for identification. B. Representative detachment curves of untreated (blue) and 
TRAP6-treated (red) platelets after 10 min and 1 hour incubation. The plot shows the fraction of 
platelets remaining on the surface at each shear stress level. In (A) and (B) the results of one 
experiment are shown from a total of six experiments. C. Average fraction of remaining platelets on 
the surface after detachment and D. Det50, obtained by measuring the shear stress at which 50% of 
the platelets detached from the surface. The plots in (C) and (D) were obtained by averaging the 
results from six independent experiments conducted with the blood from five different donors.  
Filled bars: 1 hr incubation, open bars: 10 min incubation. Blue: untreated PrP, red: TRAP6-treated 
PrP.  Significant differences are calculated by unpaired two-sample equal-variance t-test and are 
indicated as “*”.Blue colored “*”: significant differences between materials for untreated PrP. Red 
colored “*”: significant differences between materials for TRAP6-treated PrP. 

From Figure 4-3 C it is evident that the fraction of remaining platelets depends on the material 

and the measurement conditions. More platelets remained attached to the hydrophobic 

surfaces (OTS-glass, PTFEP-glass) than to hydrophilic surfaces (glass, TiO2). This was true for 

both untreated PrP and TRAP6-treated PrP and for both incubation times. In the case of 
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untreated PrP incubated for 1 hr, the differences between hydrophobic and hydrophilic 

surfaces were statistically significant, while the differences within surface types (glass vs. TiO2 

or OTS-glass vs. PTFEP-glass) were not. In the case of TRAP6-treated PrP incubated for 1 hr, 

only the differences between PTFEP-glass and the hydrophilic surfaces (glass or TiO2) were 

statistically significant.  

It is interesting to note that in the case of PrP incubated on the surfaces for 10 minutes, the 

fraction of the platelets remaining on the surface after detachment was also different 

between glass and TiO2. This was true for untreated or TRAP6-treated PrP. However, the 

difference between OTS-glass and TiO2 was not significant in the case of PrP incubated on the 

surfaces for 10 minutes in untreated or TRAP6-treated PrP. The significant differences 

between materials are listed in Table 4-1. 

 UNTREATED TRAP6-TREATED 

 1 h 10 min 1h 10 min 

OTS/GLASS 0.01 0.03 ns Ns 

OTS/TIO2 0.007 ns ns Ns 

PTFEP/GLASS 0.01 0.006 0.02 0.0008 

PTFEP/ TIO2 0.008 0.03 0.04 0.01 

GLASS/ TIO2 ns 0.03 ns 0.04 

Table 4-1. Significant differences between materials in terms of the fraction of remaining platelets. 
The data presented in this table corresponds to Figure 4-3 C. Statistical significance was calculated 
by unpaired two-sample equal-variance t-test.  

For all of the surfaces and incubation times, more platelets remained attached if they have 

been pre-activated with TRAP6, however, the difference with the non-activated PrP are not 

statistically significant for the hydrophobic surfaces (PTFEP- or OTS-modified glass). 

Similarly, differences in the Det50 between materials and experimental conditions are visible 

in Figure 4-3 D. Det50 values were higher (stronger attachment of platelets) on the 

hydrophobic materials than on the hydrophilic materials under all of the measurement 

conditions. On the hydrophobic materials, in the case of PrP pre-treated with TRAP6, Det50 

values were higher than in the case of untreated PrP, but due to variability, these differences 

were not statistically significant.  
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Differences between Det50 values on glass and TiO2, or PTFEP-glass and OTS-glass, were not 

statistically significant under any measurement conditions. Moreover, the differences in 

Det50 values between OTS-glass and untreated glass were not statistically significant for 

untreated PrP incubated for 10 minutes or TRAP6-treated PrP; differences between OTS-glass 

and TiO2 were not significant for TRAP6-treated PrP. 

The significant differences between materials in Det50 are listed in Table 4-2.  

 UNTREATED TRAP6-TREATED 

 1 h 10 min 1h 10 min 

OTS/GLASS 0.004 ns ns ns 

OTS/ TIO2 0.009 0.04 ns ns 

PTFEP/GLASS 0.04 0.01 0.0004 0.002 

PTFEP/TIO2 0.04 0.003 0.0003 0.0006 

Table 4-2. Significant differences between materials in det50. The data presented in this table 
corresponds to Figure 4-3 D. Statistical significance was calculated by unpaired two-sample equal-
variance t-test. 

Paradoxically, larger Det50 values were obtained in the case of PrP incubated for 10 min than 

for 1 hr for pre-treated as well as untreated platelets; remaining platelet fractions were also 

some times greater for the 10 min incubation.  

4.5 Platelet detachment in the static system  

To further simplify the measurement procedure, I measured the detachment of platelets by 

rinsing the surface with the buffer using a hand-held pipette rather than employing 

microfluidics cells with flow. Figure 4-4 A shows representative fluorescence images of the 

adhering platelets before and after the rinsing on OTS-modified glass, PTFEP-modified glass, 

unmodified glass, and TiO2.  While differences between materials in terms of the fraction of 

platelets remaining on the surface can be observed in the fluorescence images, the results of 

the experiments varied too much for reliable conclusions to be drawn (Figure 4-4 B).  
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Figure 4-4. Static platelet detachment experiments. A. Images recorded before and after the platelet 
detachment induced by washing. The platelets are stained for CD41a for identification (green); 
staining was done after adhesion but before the washing. B. Fraction the platelets remaining on the 
surface after detachment. The plot shows results from 2 experiments, performed with blood from 
two different donors. Filled bars: 1h incubation, open bars: 10 min incubation. Blue: untreated PrP, 
red: TRAP6-treated PrP.   

4.6 Platelet activation: area and CD62P expression  

In this assay, I also examine the activation state of platelets adhering on the materials. Platelet 

activation was evaluated in terms of platelet spreading and expression of CD62P. The results 

of the static and dynamic experiments are presented together. 

4.6.1 Platelet spreading  

After platelet detachment, the spreading of the remaining platelets was evaluated. Figure 4-

5 A and C show representative fluorescence images of adhering platelet after detachment for 

the dynamic and static measurements, respectively. The fluorescence images in Figure 4-5 A 

and C show the adhering platelet on OTS-glass, PTFEP-glass, unmodified glass and TiO2 after 

detachment, in both dynamic and static conditions. In order to quantify the spreading, the 

area of the remaining platelets was measured. Averaged values of the area are presented in 

Figure 4-5 B and D for dynamic and static conditions, respectively. Six dynamic experiments 

were performed with the blood from four different donors; two static experiments were 

performed with the blood from two different donors. Note, that the number of platelets 

remaining on glass after detachment is very small. This is particularly true in the case of PrP 

incubated for the 10 minutes under dynamic condition, and for TRAP6-treated PrP incubated 
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for 10 min under the static condition. These results were therefore excluded from the 

statistical significance testing. 

 

Figure 4-5. Analysis of platelet activation: platelet spreading. Images from experiments performed 
under dynamic and static conditions are shown (A, C). A and C. Pictures showing the remaining 
adhering platelets (green) after flow and after washing, respectively. The images are representative 
of one experiment. B and D Area of adhering platelets after flow and after washing, respectively.  
The plot in B show results from 6 experiments, the plot in D shows results from 2 experiments. Filled 
bars: 1h incubation, open bars: 10 min incubation. Blue: untreated PrP, red: TRAP6-treated PrP.  
Significant differences are calculated by unpaired two-sample equal-variance t-test and are 
indicated as “*”. Blue colored “*”: significant differences between materials for untreated PrP. Red 
colored “*”: significant differences between materials for TRAP6-treated PrP. 

As visible in Figure 4-5 B and C, both under the dynamic and the static conditions, the effects 

of materials on platelet spreading are the same. This is reassuring. In particular, the spreading 

of platelets adhering on the OTS-modified glass is greater than on unmodified glass when 

untreated PrP is incubated for 1h or 10 min, or when TRAP6-treated PrP is incubated for 10 

min.  

For all conditions (untreated- and TRAP6-treated PrP) and incubation times, the spreading of 

platelets adhering on PTFEP-modified glass is significantly greater than on unmodified glass or 

0

20

40

60

80

100

OTS PTFEP Glass TiO2
1h Unt 10 min Unt 1h TRAP6 10 min TRAP6

0

20

40

60

80

100

OTS PTFEP Glass TiO2
1h Unt 10 min Unt 1h TRAP6 10 min TRAP6

1h

O
TS

10 min 1h 10 min

1h1h 10 min 10 min

P
TF

EP

1h1h 10 min 10 min

G
la

ss

1h1h 10 min 10 min

Ti
O

2

A.

B.

Untreated TRAP6 

A
re

a 
o

f 
re

m
ai

n
in

g 
P

LT
 (

m
m

2 )

***

10 min

1h 1h10 min 10 min

1h 1h10 min 10 min

1h 1h10 min 10 min

1h 1h10 min 10 min

Untreated TRAP6 

A
re

a 
o

f 
re

m
ai

n
in

g 
P

LT
 (

m
m

2 )

***

C.

D.
O

TS
P

TF
EP

G
la

ss
Ti

O
2

Dynamic condition Static condition

*
*

*

*

*
*

*
*

*
*

*

*

*
*

*
*



                                                                Testing: a simple in vitro test for distinguishing between materials 
 

106 
 

TiO2, but no significant differences between PTFEP- and OTS-modified glass are observed. 

Differences are also visible in the spreading of platelets adhering on unmodified glass and 

TiO2, when PrP is incubated for 1hr or 10 min. Surprisingly, pre-activation with TRAP6 does 

not influence the degree of platelet spreading. Statistical significance values are listed in Table 

4-3.  

 DYNAMIC STATIC 

 Untreated TRAP6-treated Untreated TRAP6-treated 

 1 h 10 min 1 h 10 min 1h 10 min 1h 10 min 

OTS/GLASS 0.04  ns 0.03 0.001 0.04 ns  

PTFEP/GLASS 0.002  0.0007 0.0002 0.001 0.001 0.003  

PTFEP/TIO2 0.03 0.008 0.02 0.01 0.02 0.007 0.0002 0.01 

GLASS/TIO2 0.007  0.01 0.001 0.04 0.001 0.01  

Table 4-3. Significant differences between materials in platelet spreading. The data presented in this 
table corresponds to Figure 4-5 B and D. Statistical significance was calculated by unpaired two-
sample equal-variance t-test. 

4.6.2 Platelet CD62P expression under dynamic and static conditions 

After detachment, the activation state of platelets adhering on the materials was also 

evaluated in terms of CD62P expression. Figure 4-6 A and C show fluorescence images of the 

adhering platelets on the test materials. The adhering platelets are false-colored green, while 

the red color indicates CD62P expression. It can be observed in the fluorescence images that 

under static condition the CD62P fluorescence intensities are higher than in dynamic 

experiments. Particularly evident are the differences for OTS- or PTFEP-modified glass 

between static and dynamic experiments. Indeed, these differences are reflected in Figure 4-

6 B and D (dynamic and static experiments, respectively), where the expression of CD62P is 

presented as geometric means of the fluorescence intensities. Averaged values of this 

parameter from six experiments for the dynamic conditions and two experiments for the static 

conditions are plotted.  Geometric mean was chosen because of the log-normal distribution 

of the CD62P intensities (detailed explained in Chapter 5). Also in this case, the number of 

platelets remaining on glass after detachment is very small. This is true in the case of PrP 

incubated for the 10 minutes under dynamic condition, and for TRAP6-treated PrP incubated 



                                                                Testing: a simple in vitro test for distinguishing between materials 
 

107 
 

for 10 min under the static condition. These results were therefore excluded from the 

statistical significance testing. 

 

Figure 4-6. Platelet Activation: CD62P expression. Images from experiments performed under 
dynamic and static conditions are shown (A, C). A and C. Images showing the CD62P expression (red) 
on the remaining adhering platelets (green) after flow and after washing, respectively. The images 
are representative of one experiment. B and D Geometric mean of CD62P florescence intensities.  
The plot in B show results from 6 experiments, the plot in D shows results from 2 experiments. Filled 
bars: 1h incubation, open bars: 10 min incubation. Blue: untreated PrP, red: TRAP6-treated PrP.  
Significant differences are calculated by unpaired two-sample equal-variance t-test and are 
indicated as “*”.Blue colored “*”: significant differences between materials for untreated PrP. Red 
colored “*”: significant differences between materials for TRAP6-treated PrP. 

From Figure 4-6 B and D it is evident that dynamic and static experiments do not lead to the 

same results. I describe the results obtained in the dynamic experiments first (Figure 4-6 B). 
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Trends are difficult to discern. CD62P expression on remaining platelets on TiO2 and OTS-

modified glass was independent of the incubation time or platelet pre-activation with TRAP6. 

There were also no significant differences between these two surfaces. On the other hand, 

CD62P expression in platelets that remain adhering on PTFEP is significantly lower than on 

TiO2, except for the case of the TRAP6-treated PrP incubated on the surface for 10 minutes 

prior to the detachment, where it is the same on both surfaces. CD62P expression in platelets 

remaining on unmodified glass is lower than that in platelets remaining on PTFEP-modified 

glass in the case of TRAP6-treated PrP incubated for 1 hr, but similar in other cases (no 

platelets remained on glass in the case of TRAP6-treated PrP incubated for 10 minutes). 

Significantly less CD62P was expressed in platelets remaining on glass than on TiO2 except in 

the case of TRAP6-activated PrP adhering for 1 hr.  

Under static conditions (Figure 4-6 B), CD62P expression on platelets remaining on the OTS- 

modified glass, PTFEP- modified glass, and TiO2 surfaces was similar to each other, but 

significantly different from glass. Table 4-4 lists the significant differences between materials 

in terms of CD62P expression.  

 DYNAMIC STATIC 

 Untreated TRAP6-treated Untreated TRAP6-treated 

 1 h 10 min 1 h 10 min 1h 10 min 1h 10 min 

OTS/GLASS ns  ns ns 0.02 0.04 0.0001  

PTFEP/GLASS ns  ns ns 0.02 0.05 0.0004  

PTFEP/TIO2 0.01 ns ns 0.04 ns ns 0.009 0.001 

GLASS/TIO2 0.01  ns 0.04 0.005 0.05 0.0006  

Table 4-4. Significant differences between materials in CD62P expression. Significant differences 
between materials in det50. The data presented in this table corresponds to Figure 4-6 B and D. 
Statistical significance was calculated by unpaired two-sample equal-variance t-test. 

No systematic effect of pre-activation with TRAP6 on the level of CD62P expression on 

platelets remaining on the different surfaces could be discerned under either static or dynamic 

conditions. In summary, the expression of CD62P distinguished TiO2 from glass, but is not 

reliable for discerning OTS-modified glass from PTFEP-modified glass, or TiO2.  
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4.7 Summary of the statistically significant material-induced 

changes in platelet detachment and activation according to the 

assay parameters measured in the study 

Table 4-5 summarizes the significant differences in the measured parameters between 

materials, with respect to dynamic and static experimental conditions.  

 DYNAMIC STATIC 

 Untreated TRAP6-treated Untreated TRAP6-treated 

 1h 10min 1h 10min 1h 10min 1h 10min 

FRACTION OF THE REMAINING PLATELETS 

OTS/PTFEP ns ns ns ns ns ns ns ns 

OTS/GLASS * * ns ns ns ns ns ns 

OTS/TIO2 * ns ns ns ns ns ns ns 

PTFEP/GLASS * * * * ns ns ns ns 

PTFEP/ TIO2 * * * * ns ns ns ns 

GLASS/ TIO2 ns * ns * ns ns ns ns 

DET50 

OTS/PTFEP ns ns ns ns     

OTS/GLASS * ns ns ns     

OTS/ TIO2 * * ns ns     

PTFEP/GLASS * * * *     

PTFEP/ TIO2 * * * *     

GLASS/ TIO2 ns ns ns ns     

SPREADING OF THE REMAINING PLATELETS 

OTS/PTFEP ns ns ns ns ns ns ns ns 

OTS/GLASS * – ns * * * ns – 

OTS/ TIO2 ns * * * * * * * 

PTFEP/GLASS * – * * * * * – 

PTFEP/ TIO2 * * * * * * * * 

GLASS/ TIO2 * – * * * * * – 

CD62P EXPRESSION ON THE REMAINING PLATELETS 

OTS/PTFEP ns ns ns ns ns ns ns ns 

OTS/GLASS ns – ns ns * * * – 

OTS/ TIO2 ns ns ns ns ns ns ns ns 

PTFEP/GLASS ns – ns ns * * * – 

PTFEP/ TIO2 * ns ns * ns ns * * 

GLASS/ TiO2 * – ns * * * * – 

Table 4-5. Summary of the significant differences between materials in the measured parameters. 
* stand for “significantly different”. “–“ refers to conditions where the number of the remaining 
platelets was too small for the significance of the results to be evaluated. 
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4.8 Discussion 

The work presented in this Chapter represents another approach to the design of a simple and 

robust in vitro hemocompatibility test. All the current in vitro testing approaches are complex, 

time consuming, and require large amounts of blood (the test described in Chapter 3 is one 

case in point, the Chandler Loop test is another145). Therefore, I used a microfluidic approach 

reported by Cho et al.181 which required 300 μl of PrP per test (9 ml of whole blood for 8 

experiments) instead of 6 ml of whole blood required for each shear channel test, so 18 ml of 

blood for one experiment, used in Chapter 3.  

Unlike all of the other existing approaches to testing material hemocompatibility, this 

approach focuses on platelet detachment. Specifically, platelets adsorbed to the surfaces from 

PrP incubated under static conditions for 10 min or 1 hr were subjected to shear stress in the 

range of 0 – 10 dyn/cm2. For comparison, the highest physiological wall shear stress in arterial 

vasculature is ~ 10 dyn/cm2, while pathological shear stresses reach 80 dyn/cm2.218 The 

fraction of platelets remaining at the surface at the end of an experimental run, and the shear 

stress at which 50% of platelets detached from the surface (Det50), were measured. These 

parameters have not been used to characterize material hemocompatibility previously, but 

they have been used to study phenomena such as bacteria-surface interactions in the biofilms 

and strength of attachment of diatoms to different surfaces.219,220 Sensitivity to surface 

properties has been reported.219  

I focused on evaluating the sensitivity of these parameters to the differences between 

different materials. Simultaneously I measured the extent of platelet spreading and activation 

(CD62P expression) in the remaining platelets to shed light on the biological context of the 

detachment parameters and biomaterial differences.  To further simplify testing, the fraction 

of the platelets remaining on the surface and platelet activation parameters were evaluated 

in a “static” system where platelet detachment was initiated using a hand-held micropipette. 

This was also correlated with the activation parameters. It has to be noted that this assay was 

not designed to mimic physiological conditions. Platelet adhesion to implant surfaces or 

wound sites in vivo occurs under flow, while I incubate PrP with the surfaces under static 

conditions to give them time to interact and undergo activation. Such static incubation has 

been used by others to study platelet interactions with various surface-adsorbed proteins by 
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analyzing platelet detachment process and correlating it with the surface properties of the 

polymeric substrates, platelet spreading, and GPIbα-vWF interaction.208-210 However, caution 

must be exercised when interpreting the absolute values of the detachment stresses I report 

here, because they may not be physiologically relevant: Boudot et al showed that platelet 

adhesion under static and dynamic adhesion were different, and that different shear stresses 

influence the strength of platelet adhesion differently (for example GPIb-IX-V promotes the 

adhesion at high shear stress, while at low shear stress the efficiency of GPIIb/IIIa is maximal). 

106,221,222  

In other words, my strategy for designing a hemocompatibility assay is, once again, not to 

mimic the physiological conditions—an approach that has not led to a successful 

hemocompatibility test strategy over the past 70 years—but to evaluate platelet activation 

and previously unexplored platelet-surface interaction parameters in a well-defined model 

system according to their ability to distinguish between materials. Other studies concerned 

themselves with the phenomenology of the platelet adhesion and detachment process to 

shed light on these important aspects of platelet physiology in hemostasis and thrombosis,147-

149,205-207,209 but this was not my goal at this point.  

4.8.1 Material screening: sensitivity of various parameters to the 

differences between materials  

The first question I would like to address is, which of the parameters measured is better in 

distinguishing between the different surfaces and under which conditions. Det50 and the 

remaining platelet fraction were both able to distinguish between classes of surfaces 

(hydrophilic/hydrophobic) in dynamic experiments with untreated PrP incubated for 1 hr 

(Figure 4-3C and D, Table 4-5). Of the two, Det50 was more robust (greater differences and 

smaller variability), because the remaining platelet fraction involves taking a ratio between 

the remaining and the starting platelet numbers. Neither of the two parameters (Det50 or 

remaining platelet fraction) was good at telling apart the surfaces within the classes (glass 

from TiO2 or PTFEP from OTS-glass), except in the case of PrP incubated for 10 minutes, 

treated or untreated with TRAP6, where the remaining platelet fraction was different for glass 

and TiO2.  

On the other hand, when untreated PrP was incubated on the surfaces for 10 min, Det50 

became less sensitive to the differences between the surfaces (e.g., not being able to 
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distinguish between OTS-glass and unmodified glass), while the remaining platelet fraction 

was insensitive to the difference between OTS-glass and TiO2 (while being sensitive to the 

differences between glass and TiO2).  Pre-treating PrP with TRAP6 in general diminished the 

sensitivity of these two parameters to the differences between materials in the dynamic 

experiments, with the exception of the TRAP6-treated PrP incubated on the surfaces for 10 

min that could distinguish between glass and TiO2, as mentioned above. This is most clearly 

visible in Table 4-5.  

The remaining platelet fraction measured in the static experiments was entirely insensitive to 

the differences between the surfaces. This is most likely because the application of the shear 

flow with a hand-held pipette failed to mimic the ramping conditions of the exponential 

increase in the shear rate used in the dynamic experiments, and too much variability in the 

remaining platelet fractions results. The detachment conditions were less controlled.   

In the static experiments, the degree of spreading of the remaining platelets turned out to be 

the most sensitive parameter Indeed, differences are observed not only between surfaces of 

different classes (hydrophobic/hydrophilic), but within the hydrophilic surfaces (TiO2 vs. 

glass), both in the case of untreated and TRAP6-treated PrP. Again, pre-treatment with TRAP6 

makes things somewhat worse (Table 4-5). Surprisingly, in the dynamics experiments, the 

interpretation of this parameter is more complex. Differences between glass and TiO2 are still 

evident in the case of PrP incubated for 1 hr (treated or untreated), but in some cases no 

differences between OTS and TiO2 or OTS and untreated glass are evident, which makes this 

parameter less reliable overall.  

CD62P expression levels on the remaining platelets proved rather disappointing in regards to 

their sensitivity to the differences between the surfaces. Moreover, quite different results 

were obtained in the static and the dynamic experiments, pointing to the sensitivity of this 

parameter to the details of the flow conditions. Nevertheless, CD62P expression levels in 

platelets remaining on glass and TiO2 were different, both in static and in the dynamic 

experiments, under several conditions (Table 4-5). Differences were evident between other 

surfaces under some conditions, but in no case between OTS and PTFEP or OTS and TiO2. 

None of the measured parameters revealed differences between the two hydrophobic 

surfaces, OTS and PTFEP, while every other pair of surfaces could be distinguished at least in 

some of the tests, in every case, more than one test (see Table 4-5). For example, glass and 

TiO2 could be distinguished from each other by measuring the area of the remaining platelets 



                                                                Testing: a simple in vitro test for distinguishing between materials 
 

113 
 

in static or dynamic experiments by incubating untreated or pre-treated PrP for 1 hr; fraction 

of the remaining platelets in the dynamic experiments by incubating untreated or pre-treated 

PrP for 10 min; or CD62P expression levels in static or dynamic experiments by incubating 

untreated PrP for 1 hr.  

I can therefore conclude that: 

 Glass, TiO2, and the two hydrophobic surfaces (OTS- and PTFEP-coated glass) interact with 

PrP differently.  

 A minimal combination of two parameters (Det50 and remaining platelet spreading), 

measured in the dynamic experiments with PrP incubated on the surfaces for 1 hr, is 

needed for maximal sensitivity that can be achieved with this assay (distinguishing 

between glass, TiO2, and the two hydrophobic materials).  

 Spreading of the remaining platelets measured in static experiments with untreated PrP 

incubated at the surfaces for 1 hr could also be used as a parameter for distinguishing 

between materials, but there are some concerns about how controlled the static 

experiments are. 

 To evaluate material hemocompatibility, a test based on these parameters should be 

designed and applied to a sufficiently large set of materials that have previously been 

examined in vivo (e.g., by Kusserow and Ratner134,135). It should be augmented by a 

thrombogenicity assay. 

 Using TRAP6-pretreated PrP or evaluating the level of CD62P expression on the remaining 

platelets is not useful for distinguishing between materials. 

4.8.2 What do the detachment measurements reveal about platelet-

biomaterial interactions? 

My measurements offer insight into the platelet-surface interactions and platelet activation 

at biomaterial surfaces. Very little, is known about the details of how biomaterial surfaces 

activate platelets. There is strong evidence that different surfaces do so differently. For 

example, several authors report differential GPIIb/IIIa activation and α-granule secretion in 

response to different surfaces and surfaces coated with different plasma proteins.131,169-172  

The differences in the platelet reactions to different surfaces are thought to reflect the 

differences in the properties of the adsorbed protein films (composition and 
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conformation).223,224 Consistent with these observations, I found differences between 

materials when probing the strength of platelet attachment to surfaces, the number, and the 

degree of spreading, of the platelets that remained attached to the surface after the 

detachment experiment. These can be better appreciated in the plots I introduce in Figure 4-

7, where the correlations between various parameters are examined.  

 

Figure 4-7. Correlations between detachment and activation parameters. A - D: Det50 vs. remaining 

platelet area for dynamic and static measurements performed with untreated and TRAP6-treated 

PrP, as indicated. E, F: dependence of the remaining platelet fraction on DET50 under dynamic 

conditions. G, H: Remaining platelet area for TRAP6-pretreated vs. untreated PrP in dynamic (G) and 

static (H) measurements. 

In particular, Det50 correlates with the area of the remaining platelets (their degree of 

spreading) both in the dynamic and static experiments with untreated or TRAP6-pretreated 

PrP, except in the case of 10 min incubation of pretreated PrP under static conditions (Figure 

4-7 A-D). The remaining platelet fraction correlates with Det50 for the dynamic experiments 

(Figure 4-7 E, F). Both of these are expected: in the first case, consider that the force that is 

needed to detach a platelet from a surface depends on the strength of the receptor-surface 

interactions and their number. To a first approximation, the number of the interactions is 

expected to scale with the area, assuming a uniform receptor distribution. A uniform 

distribution has indeed been observed for GPIIb/IIIa and GPIb-IX-V at the surfaces of activated 

platelets by electron microscopy.56 Therefore, platelets that are spread to a greater degree 
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are expected to be attached to the surface stronger and require higher shear rates to detach. 

Indeed, others have shown that platelets that are spread to a greater degree detach at higher 

shear rates. 210 

The correlation between remaining platelet fraction and Det50 (Figure 4-7 E, F) is a 

manifestation of the fact that more platelets remain on the surface if they are attached 

stronger, given that the shear stress at the end of a detachment experiment is the same in all 

cases. 

What is interesting is the effect of TRAP6 (Figure 4-7 G, H). Pre-treatment with TRAP6 does 

not affect the area of the remaining platelets, but it does affect Det50—the interaction 

strength. This effect is also visible in Figure 4-7 E and F. To understand this effect, I examine 

further the molecular details of the platelet-surface interaction.   

The interactions between the platelets and biomaterial surfaces are thought to be mediated 

by the proteins adsorbed at the biomaterial surface.45 At the molecular level, platelet surface 

adhesion receptors are responsible for the attachment of the platelets to the adsorbed 

proteins. Examples of these proteins include glycoproteins GPIIb/IIIa (integrin αII/βIII) for 

binding fibrinogen and vWF, GPVI for the binding collagen, and the GPIb-IX-V complex that 

binds to vWF (see Figure 1-4 on page 11 in the Introduction).56,212,213 These receptors bind to 

the specific sequences in the adsorbed proteins that become exposed when these proteins 

are adsorbed to biomaterial surfaces or at the sites of vascular injury. Initial interactions are 

reversible.225 However, depending on the conformation of the adsorbed proteins, platelets 

may become activated, entailing conformational changes in the adhesion receptors to their 

active forms, platelet spreading, and granule secretion. 216,225 The active forms of the surface 

adhesion receptors promote stable (irreversible) adhesion (in vivo, such irreversibly adhering 

and aggregated platelets are removed only during the clot lysis stage of the wound healing 

process).50,216  Subtle differences in the platelet responses to different proteins have been 

reported in the literature: for example collagen binding to GPIb induce TXA2 production and 

PS expression, while vWF binding to its receptor GPIb-IX-V leads to dense granule secretion 

(reviewed by Reviakine).69 

The activation of the platelet surface adhesion receptors may also be triggered by soluble 

agonists, such as TRAP6 used in this study. TRAP6 is a PAR1 receptor agonist, a partial analogue 

of thrombin that strongly activates platelets promoting granule secretion, spreading, and the 
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activation of the GPIIb/IIIa integrin receptor complex that mediates adhesion and 

aggregation.226 Soluble agonists activate platelets through G proteins coupled receptors 

(GPCRs) that in general involve different sets of pathways than integrin-mediated and other 

surface dependent activation pathways, and again, this may lead to different patterns or 

degrees of platelet activation.227 The effects of the two sets of pathways are in some cases 

synergistic, in other cases permissive.  

The fact that TRAP6 affects Det50 without affecting platelet area (Figure 4-7G, H) means that 

the assay is sensitive to the specific details of the platelet activation—whether it is triggered 

by the soluble or surface-adsorbed agonists. This is a specific effect, related to the different 

signaling pathways engaged by the soluble and surface-adsorbed agonists. The effect of 

soluble and surface agonists on the platelet adhesion strength appear to be synergistic 

(adhesion strength is higher in the case of TRAP6-preactivated platelets), while the spreading 

is controlled by the surface agonists only and is independent of the pre-treatment by TRAP6. 

4.8.3 What does the microfluidic assay reveal about 

hemocompatibility of the tested materials? 

Attempting to draw conclusions about which material is more or less hemocompatible based 

on these results is dangerous. Many investigators fell into this trap in the past, by equating 

hemocompatibility with the number of adhering platelets or the degree of their 

spreading.46,135 Drawing such conclusions should await the results of an extended test where 

the in vitro results are correlated with the vivo performance of different materials. However, 

some remarks can be made by comparing our results with the literature. For example, 

hydrophilic polymer surfaces (such as hydroxyethyl methacrylate—HEMA) have generally 

been shown to exhibit low platelet adhesion and easy detachment in the in vitro experiments. 

This is also our conclusion in the case of glass and TiO2, which are hydrophilic when freshly 

cleaned (Figure 4-3 B and C). However, the same hydrophilic polymer surfaces also showed 

high platelet consumption in the arterio-venous shunt experiments, and therefore poor 

hemocompatibility performance due to downstream emboli formation.228-230  

On the other hand, hydrophobic materials have a long history of good in vitro and in vivo 

performance, from the initial experiments showing that Vaseline and paraffin coating of glass 

extended blood clotting time performed in the late 1880s/early 1900s/to the much more 
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recent observations have with PTFE (Teflon)-coated stents.231-233  Similarly, the results 

obtained with the hydrophobic PTFEP in animal and human tests were also considered 

promising.234-237 Our results show that platelets adhere stronger to the hydrophobic materials 

(higher Det50 values and larger remaining platelet fractions), and similar observations have 

been reported by others.209 In particular in the case of PTFEP, Tur et al reported initial 

adhesion of platelets under flow that was not follow by detachment in an in vivo canine shunt 

systems (c.f. Figure 4A ref 238). Interesting is also not follows by growth of the thrombus.238 

It is possible, that increased platelet adhesion actually plays a protective role in some cases 

(the passivation discussed by several authors;131), but to prove that, an appropriate platelet 

activation parameter has to be evaluated concurrently. We attempted to do that by examining 

CD62P expression on the remaining platelets, but without success. It does not appear to be 

the relevant parameter.  

It should also be noted that our results are in contradiction with those of Welle et al who 

showed that more platelets adhered on glass than on PTFEP under static conditions.203 

However, those authors used citrate-anticoagulated PrP diluted in PBS instead of undiluted, 

heparin-anticoagulated PrP used in my study, and the results are therefore difficult to 

compare.  

Further concern is the ability of a short-time assay to predict long-term behavior of the 

materials. In particular, we observe a paradoxical result that the adhesion strength decreases 

with the PrP incubation time. Such observations also have been reported by others.209 The 

most likely origin of this observation is the effect of platelet-released proteases on the 

underlying protein layer, but the conformational changes in the adsorbed proteins of the type 

reported by Latour et al are also possible.107,153  

The approach to predicting clinical performance of materials I favor is through establishing 

the ranking of materials according to the parameters that are sensitive to material differences, 

and correlating this with their clinical performance. For example, I can rank materials 

according to the platelet adhesion strength, which decreases form hydrophobic to hydrophilic 

materials, and correlate that with the performance of the materials in animal and human 

tests. It appears to me that this approach would be superior to attempts of direct 

interpretation of physiological significance of the various parameters (e.g., equating lower 



                                                                Testing: a simple in vitro test for distinguishing between materials 
 

118 
 

platelet adhesion to improved hemocompatibility), as the latter are often flawed due to 

significant differences in the timescales involved and the overall complexity of the process.          

4.8.4 Limitation of the study 

This study has two main limitations: first, the number of the surfaces tested was limited to 

few model surfaces and, second, no other clinically relevant materials were tested.  

Furthermore, studies with platelet inhibitors, agonists other than TRAP6, and markers other 

than CD62P are needed to further understand activation mechanisms.  

4.8.5 Conclusion and outlook 

In summary, this in vitro test is capable of distinguishing hydrophilic (glass and TiO2) from 

hydrophobic (OTS- and PTFEP-coated glass) surfaces and glass and TiO2 from each other with 

respect to platelet adhesion strength (Det50) and the number of platelet remaining on the 

surfaces after the detachment runs. Pre-treatment of PrP with TRAP6 diminishes the 

sensitivity of the assay but reveals that it is sensitive to the particular details of platelet 

activation. This allows me to conclude that different surfaces act as agonists of different 

strength, activating platelets to a different degree, as revealed by the differences in the area 

of the remaining platelets. This difference was evident in experiments with the untreated as 

well as TRAP6 pre-treated PrP, consistent with the notion that soluble and surface agonists 

activate platelets via different pathways. Further comments on the mechanism of the platelet-

surface interactions require detailed inhibitor studies. Evaluating platelet activation by 

measuring the level of CD62P expression on the remaining platelets was not useful for 

distinguishing between materials. This work paves the way for a comprehensive test of 

clinically relevant materials.  
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5. A Method for Studying Platelet Activation 

at the Single Platelet Level 

5.1 Summary 

In this Chapter, I present an assay for studying platelet activation at the single platelet level. 

It is by now well-established that all materials activate blood components, and previous 

Chapters revealed a certain selectivity in the way different materials do so that has also been 

noted by other authors.131,169,171,172,239,240 This selectivity is particularly related to platelet 

activation at biomaterials. This idea is enunciated in a series of works from our group and 

articulated in a recent review.69 Joining these ideas leads to the notion that platelet activation 

at biomaterial surfaces could be directed towards wound healing and implant integration, in 

the spirit of the approach proposed in ref. 46. 

In vivo, platelets are the first cellular structures to interact with the implant. Their activation 

at the biomaterial surface leads to thrombus formation. This is quite different from what 

happens in the physiological, hemostatic conditions, where platelet activation leads to the 

formation of the clot and the consequent wound healing reactions. In order to direct platelet 

activation at the biomaterial surface towards the wound healing reactions, we need to 

understand how these reactions are triggered during the activation process of platelets. 

Secretion reactions are thought to play an important role in this process, because platelet 

granules contain cytokines, growth factors, and coagulation cascade mediators, with 

contradictory functions: pro- and anti-inflammatory, pro- and anti-angiogenic, etc.69,78,241-243 

These substances are secreted as a part of the activation process. Their secretion must be 

regulated, but until now, the regulation mechanisms have not been elucidated.161,244  

Current understanding of platelet activation and its regulation, presented in the Introduction 

(section 1.5.2.2), is based on assays performed on the populations containing between tens 

of thousands and millions of platelets. It is an “average” view. It is becoming clear, however, 

that this “average” picture is incomplete. For example, it fails to explain the regulation of the 

granule secretion process described above. Another unexplained aspect is the observation, 

both in vitro and in vivo, of platelet subpopulations with different patterns of activation 
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marker expression; such platelet subpopulations have been observed in vivo and in vitro, 

including in my own work and the other works from our group.131,148,175,176,245 These questions 

are a part of the broader challenge to understand how different, often redundant, platelet 

signalling pathways interact to elicit appropriate repertoire of responses under different 

physiological or pathological conditions. 69 Advances on these fronts that can take us past the 

“average” picture are expected to come from studies of single platelets.243 These advance are 

expected to come, in part, from single platelet studies addressing the regulation of secretion. 

The objective of the work described in this Chapter was to design and validate such an assay. 

A method for studying single platelets should have the capability to analyse both the 

expression of the surface activation markers and the secretion of substances by the individual 

platelets. It should also have dynamic capabilities, enabling researchers to resolve the effects 

of combined (parallel) and sequential stimuli applied to the same platelet. To the best of our 

knowledge, such a method does not yet exist. Therefore, the method I developed is based on 

a multifunctional pipette mounted on the stage of a fluorescence microscope.246 

5.2 The multifunctional pipette 

The pipette is an open-volume microfluidic device that operates by generating a 

hydrodynamically confined, localized perfusion zone around the target cell. It consists of a 

pen-shaped silicon polymer (poly(dimethyl siloxane), PDMS) body, housing the four reagent 

wells, two collection wells, and two auxiliary wells for collecting the waste during switching 

operations (see below). The pipette is shown in Figure 5-1 A. The tip of the pipette contains 

the mixing unit connected to the aspiration channel, and peripherally to it, two injection 

channels. It is formed by a 10 µm thin PDMS membrane (Figure 5-1 B). This defines the 

minimum distance between the aspiration channels and the surface.  
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Figure 5-1.  The view of the multifunctional pipette is shown in (A) and the schematic of its tip in (B). 
PDMS body is shown in gray; microfluidic channels are shown in white. The tip contains three 
channels, the central injection channel and two peripheral aspiration/collection channels. The 
injection channel is connected to the circular flow switching unit, which selects a single outflow 
solution from the four inflows. Wells are color-coded as shown in (B) on the right. The four wells in 
the front contain the solutions to be injected (in our case, the buffer, antibodies, and CaIoP); 
followed by two switching wells connected to the flow selection unit by means of channels running 
at the bottom of the pipette body (not shown). The last two wells are connected directly to the 
aspiration /collection channels. The HCV is formed at the apex of the tip through the application of 
appropriately balanced positive and negative pressures to the injection, and aspirations channels as 
indicated by the arrows in (B). Details are provided in ref. 247. The concept of recirculation is shown 
in (C), which is taken from Ainla et al.247 Simulation (top) and experimental (bottom) results are 
shown. The simulation results depict the view of the flow field from the top and the plot of the HCV 
diameter vs. the ratio of the outflow to the inflow. In the top view, the substrate concentration 
distribution is encoded with a color gradient (blue, 0% substrate; red, 100% substrate; the 
outflow/inflow ratio used in the simulation is 0.5). 
Orange arrow represents the distance from the channel outlet along the channel axis (x), and the 
white arrow depicts the diameter of the HCV. The size of the recirculation zone can be varied over 
1 order of magnitude by adjusting the ratio between the pressures driving the flows, as shown in 
the series of experimental images below the simulation results. 

Each of the reagent wells is connected through a dedicated to the mixing unit that leads to 

the injection channel (Figure 5-1 A). The collection wells are connected to the aspiration 

channels. The perfusion zone, referred to as the hydrodynamically confined volume (HCV), is 

generated by balancing the positive and negative flows through the central injection channel 

and peripheral aspiration channels located in the pipette tip (Figure 5-1 A). The flows are 

generated by applying positive pressures to the reagent wells and negative pressures to the 

collections wells. The pressures are balanced in such a way that the inflow rate is higher than 

the outflow rate, so that the fluid delivered through the injection channel is recirculated into 

the aspiration channels faster, than the solutes contained in it could diffuse outside of the 

HCV. This effectively isolates the HCV from the surrounding bath, as shown in Figure 5-1 C: 

there is a sharp fluorescence contrast between the HCV and the surrounding fluid. The size of 

the HCV is defined by the ration of the outflow to inflow rates (Figure 5-1 C), and optimal 
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ratios, the contrast can be maintained as long as there is fluid left in the wells (tens of minutes 

at a constant flow rate of 10 nl/sec). Figure 5-1 C shows both the results of a finite element 

method simulation and of actual experiments, both of which highlight the sharp definition of 

the HCV at appropriate flow rate ratios.   

The pipette itself, and some of its biophysical, cell-, and tissue culture applications, have been 

described previously,246-248 but this is the first quantitative evaluation of its performance. 

Others have used similar devices for applications such as whole cell lysis.249 

5.3 Assay design 

The multifunctional pipette works with surface-immobilized cells. Immobilizing platelets at 

surfaces is a problem, because they activate upon interaction with foreign materials.250,251 To 

partially circumvent this problem and validate the functionality of the pipette in regards to 

studying individual platelets, we relied on the recent finding from my group that purified 

platelets adhering on TiO2 in the absence of calcium do not spontaneously secrete α-granules, 

as judged from the lack of CD62P expression and diminished β-TG secretion, or express PS 

(Figure 5-2).171,172  
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Figure 5-2. Purified platelets adhering on TiO2. A, top. Platelets (CD41a, green fluorescence) adhering 
on TiO2 in absence of extracellular calcium do not express CD62P or PS. Bottom. Challenging them 
with CaIoP leads to CD62P and PS expression. B. β-TG secretion: according to CD62P and PS 
expression, the treatment with CaIoP increases the β-TG secretion. Statistical significance is 
calculated by paired t-test (p=0.001). (My results shown in subfigure (B) appear in Gupta et al.,171 
while the results appearing in (A) are unpublished but reproduce those presented in Gupta et al.171). 

Secretion and expression events in TiO2-adhering platelets could be triggered by treating them 

with calcium ionophore (CaIoP).171 This effect was shown to be surface-specific: identically 

prepared platelets adhering on glass under the same conditions did secrete α-granules and 
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expressed PS spontaneously.171,172 Hence, we approached individual platelets adhering on 

TiO2 with the pipette that was used to deliver appropriate combinations of antibodies against 

platelet surface activation marker CD62P, annexin A5 (A5) to detect PS,252and CaIoP to trigger 

activation. Platelet response was examined by fluorescence microscopy. The procedure is 

schematically shown in Figure 5-2 C – E.  

Pipette tipA.

B.

C.

 

Figure 5-3. Experimental Strategy. Experimental strategy: Platelets (gray semi-spheres) adhering on 
TiO2 (gray disk) in the absence of calcium are stained with a fluorescently labelled antibody against 
CD41a (aCD41a, green), a glycoprotein that is constitutively expressed on their surface, to aid 
identification. Individual platelets are approached with the pipette and exposed to a solution of 
fluorescently labelled anti-CD62P antibody in a calcium-containing buffer (A). Based on our previous 
results, no staining for CD62P is expected. The same platelet(s) are then exposed to the CaIoP 
solution in a calcium-containing buffer injected through the pipette (B), and then again with the 
aCD62P solution, at which point CD62P expression is expected (C). To monitor PS expression, we 
used fluorescently labelled A5 in a calcium-containing buffer instead of, or together with, anti-
CD62P. 

5.4 Platelet isolation, purification and analysis 

The platelets that we used were purified from citrate-anticoagulated whole human blood by 

centrifugation within 30 minutes after phlebotomy according to the protocol previously 

established in our group (see Materials and Methods for details).171,172,253,254 Prior to each 

experiment, freshly purified platelets were characterized by flow cytometry to determine 

their activation levels and response to agonists (Figure 5-4). Platelets were used in further 

experiments only if their activation levels were below 7 % in terms of CD62P and PS 

expression. 
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Figure 5-4. Platelet characterization by flow cytometry. A. Scatter plot showing the fraction of 
CD41a-positive events. 10,000 events were recorded. FSC and SSC refer to forward and side scatter, 
respectively. B. Activation level of untreated (UNT) platelets and platelets treated with TRAP6 or 
CaIoP with respect to the expression of CD62P, CD63, and PS. The plot shows average results from 
thirteen experiments performed with blood from eight different donors. 

5.5 Triggering α-granule secretion in individual platelets 

Figure 5-5 shows the results of two representative experiments employing the multifunctional 

pipette. The HCV, false-colored red to represent the anti-CD62P antibody fluorescence, is seen 

surrounding one (Figure 5-5 A) or two (Figure 5-5 B) platelets (green, stained with anti-CD41a). 

CaIoP treatment triggers CD62P expression in platelets confined to within the HCV (c.f. (Figure 

5-5 II and IV). Platelets adjacent to the HCV are not affected by the delivery of CaIoP (Figure 

5-5 III, IV). No aCD62P staining is observed without CaIoP treatment (Figure 5-5 I, II). In total, 

nine such experiments with platelets purified from blood of three different donors were 

performed. Fluorescence intensity data was collected on 1141 individual platelets and 

analyzed; the results of the analysis are shown in Figure 5-5 C. It can be seen that outside the 

HCV (blue bars), the distribution of fluorescence intensity changes (after – before the CaIoP 

treatment, ∆(Ia – Ib)) is approximately Gaussian, with a mean ± std. dev. of 5 ± 35; they are 

very similar to the background intensities (gray) and represent random noise. On the contrary, 

within the confines of the HCV (red bars), fluorescence intensity differences ∆(Ia – Ib) are 

distributed log-normally (inset). Log-normal distributions commonly arise in biological 

systems due to coupling between random factors and existence of a lower boundary, such as 

the ligand and antibody concentrations and intensities that cannot be smaller than ~ 

zero.255,256 These distributions appear “tailed” in linear coordinates but become symmetrical 

when transformed into logarithmic coordinates (c.f. main panels and insets in Figure 5-5 C and 

D). There are various ways of characterizing log-normal distributions. We follow Limpert et 
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al.255 by presenting the geometric mean and multiplicative standard deviation, 68 ×/ 2 in the 

case of ∆(Ia – Ib) due to anti-CD62P binding to the platelets within the HCV. 
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Figure 5-5. Sequences of fluorescence images illustrating the delivery of anti-CD62P and CaIoP to 
single platelets. Left: merged images from the green (CD41a) and the red (CD62P) channels. Right: 
images from the red (CD62P) channel. (I) Platelets adhering on TiO2 in the absence of extracellular 
calcium were stained for CD41a (green) and exposed to the HCV containing 2 mM Ca and anti-
CD62P. No CD62P staining appears (II), ruling out platelet activation due to the flow from the pipette. 
They are then exposed to the HCV containing 5 µM CaIoP + 2 mM calcium (not shown) and 
subsequently to the anti-CD62P antibody (III). CD62P staining is now visible on the target platelets 
(IV), while platelets outside the HCV visible in (III), highlighted by the dashed circles, are not stained. 
Each set of four images (A and B) is taken from a single experiment with blood collected from one 
donor. The donors in the two experiments shown in (A) and (B) were different. Scale bar: 10 µm. C 
and D. Distributions of fluorescence intensity differences, Δ(Ia – Ib), after and before CaIoP 
treatment, for the platelets adhering on TiO2 located outside (blue) and inside (red) of the HCV from 
the single platelet experiments (C) and from the bulk experiments (D). Background fluorescence 
intensities recorded before the addition of aCD62P are shown in gray. Insets show the same data 
plotted on the semi-log scale to highlight the log-normal distributions of the fluorescence intensities 
due to aCD62P binding. Black curves are Gaussian fits.  

For comparison, we also show the effect of CaIoP treatment of platelets adhering on TiO2 

(Figure 5-5 D) that was performed by adding the ionophore to the buffer above the adhering 

platelets; we refer to these as “bulk” experiments to distinguish them from the “single-
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platelet” experiments discussed above. Here, fluorescence intensity differences, ∆(Ia – Ib) ~ 

308 ×/ 4, are also distributed log-normally (inset). 
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5.6 Triggering PS expression in individual platelets 

We then used the same approach to study PS expression on the TiO2-adhering platelets (Figure 

5-6). These experiments followed the same protocol (Figure 5-4 C), but aCD62P was replaced 

with fluorescently labelled A5, and CaIoP concentration was varied between 0 and 20 µM.  
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Figure 5-6. A. The sequence of fluorescence images illustrating PS expression in TiO2-adhering 
platelets before (II) and after (III) the delivery of 10 µM CaIoP with the multifunctional pipette. Image 
I shows the CD41a expression (green), while the inset shows the HCV containing fluorescently 
labelled A5 (cyan) in a calcium-containing buffer. Calcium concentration was 2 mM. Some limited PS 
expression can be noted in II due to the residual activation of the purified platelets. Scale bar: 10 
µm. B. Distribution of fluorescence intensity differences, Δ(Ia – Ib), after and before the delivery of 
10 µM CaIoP with the multifunctional pipette, for the platelets located within the boundaries of 
inside the HCV. Background fluorescence intensities recorded in the absence of A5 are shown in 
gray. Top: data plotted on the linear scale fit to a Gaussian distribution with a mean ± std. dev. of 
890 ± 548. Bottom: data plotted on the logarithmic scale fit to a log-normal distribution, with the 
mean ± std. dev. of 608 ×/ 1. C. Same as (B), but for the “bulk” experiments. The data are plotted on 
the linear (left) and logarithmic (right) scale. Mean ± std. dev: 995 ± 470 (854 ×/ 1). The difference 
between Δ(Ia – Ib) for the single platelet experiments shown in (B) and for the bulk experiments 
shown in (C) was statistically significant: t(89) = 1.7, p = 0.03. In (B) and (C), the histograms contain 
data from 2 experiments performed with blood from 2 different donors. 

The results from a representative experiment are shown in Figure 5-6 A. Analysis of the 

experiments performed with platelets from several donors (Figure 5-6 B) shows a reproducible 

increase of fluorescence intensity of individual platelets due to the binding of A5 as a result of 
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CaIoP treatment, with ∆(Ia – Ib) ~ 608 ×/ 1. This situation mimics that found in the bulk 

experiments on TiO2 (Figure 5-6 C), where ∆(Ia – Ib) ~ 854 ×/ 1 was observed.  

5.7 Quantitative analysis of the multifunctional pipette 

performance 

To further characterize the performance of the pipette, we compared the effect of the CaIoP 

concentration on the expression of PS in the adhering platelets and in platelets in solution. 

The results of the experiments for the TiO2-adhering platelets approached with the pipette 

are shown in Figure 5-7.  

A. TiO2 : single platelets    

III.

VI.

II.

IV. V.

HCV

5 uM

0 uM

10 uM 20 uM

I.

CaIoP 0 uM CaIoP 5 uM CaIoP 10 uM CaIoP 20 uM

0

1

-200 2200

0

0.2

0.4

0 1 2 3 4

0

1

-200 2200

0

0.2

0.4

0 1 2 3 4

0

1

-200 2200

0

0.2

0.4

0 1 2 3 4

0

1

-200 2200

0

0.2

0.4

0 1 2 3 4

A5-Cy5 Intensity

Log (A5-Cy5 Intensity)

Fr
eq

u
en

cy

B. Fluorescence Intensity: single platelets    

Fr
e

q
u

e
n

cy

 
Figure 5-7. Effect of CaIoP concentrations on PS exposure. A. Sequence of fluorescence images 
illustrating the effect of CaIoP concentration on the PS expression in TiO2-adhering platelets located 
within the confines of the HCV. I: image from the CD41a (green) channel.  II: HCV containing A5 in a 
calcium-containing buffer. Ca concentration was 2 mM. III – IV: images from the PS (cyan) channel 
showing PS exposure after the delivery of CaIoP with the multifunctional pipette. CaIoP 
concentrations are indicated on the images. Note the two dashed circles highlighting platelets 
located outside the HCV that never express PS. Scale bar in I: 10 µm. B. Histograms of fluorescence 
intensity for TiO2-adhering platelets located inside the HCV exposed to increasing concentrations of 
CaIoP. The fluorescence intensities represent the binding of A5 to the exposed PS on the adhering 
platelets. Gray: background fluorescence intensity. Top: data plotted on the linear scale. Bottom: 
data plotted on the logarithmic scale. Statistical significance of the changes in platelet fluorescence 
intensities as a function of CaIoP concentrations was evaluated by a one-way ANOVA, F(3,472) = 
2.62, p = 4E–30 .  
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In the images (Figure 5-7 A), it can be seen that as the concentration of CaIoP delivered with 

the pipette increases, there is an increase in the number of PS+ platelets that bind A5. The 

increase is also visible in the average fluorescence intensity of these platelets (Figure 5-7 B). 

Untreated platelets (CaIoP 0 µM) present a minimal binding to A5, with a geometric mean ×/ 

std. dev. ~ 35 ×/ 2. The treatment with 5 µM CaIoP leads to a shift in the fluorescence intensity, 

with ∆(Ia – Ib) ~ 350 ×/ 2. A significant fraction of platelets still do not express PS. This is visible 

from the overlap with the background in the linear scale, and from the left tail in the 

logarithmic scale.  Further increase in the fluorescence intensity occurs after treatment with 

10 µM CaIoP, and 20 µM CaIoP, ∆(Ia – Ib) ~ 608 ×/ 1 and 685 ×/ 1, respectively. Figure 5-8 

shows the increase of fluorescence intensity on TiO2-adhering platelets treated with 

increasing CaIoP concentrations by its addition to the subphase (bulk). The increase is evident 

from the sequence of images and from the shift in the fluorescence intensity, indicative of the 

A5 binding to the exposed PS (Figure 5-8 A and B). Untreated platelet (0 µM CaIoP) minimally 

bind A5, with fluorescence intensity (∆(Ia – Ib)) ~ 98 ×/ 2. The treatment with increasing 

concentration of CaIoP leads to a shift in the fluorescence intensity:  199 ×/ 2 for 0.5 µM CaIoP; 

375 ×/ 1 for 1 µM CaIoP; 514 ×/ 1 for 2.5 µM CaIoP; 522 ×/ 1 for 5 µM CaIoP; 854 ×/ 1 for 10 

µM CaIoP. A decrease in fluorescence intensity is observed at 20 µM CaIoP: 504 ×/ 1. This can 

be ascribed to platelet damage caused by high CaIoP concentrations.257 
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Figure 5-8.Bulk experiments: effect of CaIoP concentrations on PS exposure on platelets in solution. 

A. Sequence of fluorescent images from the bulk experiments. Left column: individual images for 

CD41a staining. Right column: individual images for A5 staining (PS exposure). Each row corresponds 

to one CaIoP concentration. The scale bar is 10 µm. B. Histograms of fluorescence intensity for TiO2 

– adhering platelets treated with increasing CaIoP concentrations by its addition to the subphase. 

The histograms originate from two separate experiments with blood obtained from two different 

donors. Left column: data plotted in the linear scale. Right column: data plotted in the logarithmic 

scale. Gray: background fluorescence intensity. Statistical significance of the changes in platelet 

fluorescence intensities as a function of CaIoP concentrations was evaluated by a one-way ANOVA, 

F(6,623) = 2.11, p = 6E–71 in the case of the bulk experiments 

Similarly, the shifts in the fluorescence intensity are visible also for platelet in solution, where 

the expression of PS is evaluated by from the flow cytometry (Figure 5-9).  
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Figure 5-9. Effect of CaIoP concentrations on PS exposure on platelets in solution. Fluorescence 
histograms. Freshly isolated platelets were incubated with various concentrations of CaIoP and 
stained with A5 to detect the PS exposure. The binding of A5 to the PS exposing platelets was 
evaluated by Flow cytometry and analyzed using the FlowJo software. The shift of the fluorescence 
intensity is indicative of the exposure level of PS. White peak: background fluorescence recorded in 
absence of A5. Cyan peak: fluorescence originated from the binding of A5.   

Finally, the results of the single platelet experiments are compared with those of the bulk 

experiments (where CaIoP was added to the solution above the adhering platelets) and with 

those done with platelets in solution, where fluorescence intensities were analyzed by flow 

cytometry. The corresponding dose response curves, showing the fraction of PS+ platelets as 

a function of CaIoP concentration, are shown in Figure 5-10. 
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Figure 5-10. Dose-response curves showing the relationship between the fraction of PS+ cells and 
CaIoP concentration for the single platelet experiments (green), “bulk” experiments, where platelets 
adhering on TiO2 were treated with CaIoP by the addition of the reagent to the bulk solution (red), 
and for platelets in solution (blue). The latter experiments were analyzed by flow cytometry. 
Activated platelet fractions were obtained in each case following standard procedures used for 
analyzing flow cytometry data. EC50 values for each condition are indicated with crosses. 
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The dose-response curves can be characterized by two parameters: the CaIoP concentration 

where 50% of the platelets are activated (EC50), and the maximal activation level achieved at 

the plateau. The maximal activation levels from the bulk and the solution experiments are 

similar: 99 ± 2% and 91 ± 5%, respectively. The EC50s from the bulk and the solution 

experiments are also similar: 0.6 and 0.7 µM, respectively. On the other hand, in the single 

platelet experiment, the EC50 was 3 µM and the maximal activation level that is reached was 

~ 85%. Fluorescence intensities of platelets labelled with CD62P are similarly different 

between single platelet and bulk experiments (Figure 5-5). 

5.8 Discussion 

In this Chapter, I describe and validate a method for analyzing activation at the single platelet 

level. The approach is based on an open-volume microfluidic pipette that is used to deliver 

agonists and antibodies to the individual platelets. I test its performance on platelets adhering 

on TiO2 in the absence of extracellular calcium. Unlike platelets adhering on other substrates, 

these platelets do not spontaneously secrete α-granules or express PS upon adhesion.172 

Instead, the secretion and expression events characteristic of platelet activation can be 

triggered in the adhering platelets by adding CaIoP.  

5.8.1 Multifunctional pipette for single platelet assay 

The first conclusion that can be made is that the multifunctional pipette allows to selectively 

trigger α-granule secretion and PS expression in individual platelets, and to simultaneously 

analyze surface activation marker expression by immunofluorescence microscopy. However, 

the validation study shows differences in platelet PS expression when CaIoP is delivered with 

the pipette, added to the subphase (bulk experiment) or to the platelet in solution. They are 

reflected in the EC50 and the maximal PS expression (Figure 5-10). I ascribed these differences 

to the loss of the reagents due to the non-specific interactions with the PDMS surfaces of the 

pipette. In particular, I estimate that the effective CaIoP concentration in the HCV is ~ 4 – 6 

times lower than the nominal (based on the amount of CaIoP added to the solution).  
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5.8.2 Expression of CD62P and PS 

Some insight can be gained from the analysis of CD62P and PS expression on individual 

platelets stimulated with the pipette. I found that platelet response in terms of these two 

markers is quite different. Firstly, the CD62P fluorescence intensities are log-normal (appear 

symmetrical only in logarithmic coordinates), the fluorescence intensity distributions for PS 

appear symmetrical both in the linear and logarithmic coordinates and are therefore most 

likely normal.255,256 It is possible that this reflects differences in the mechanisms underlying PS 

expression (redistribution) and the expression of CD62P (granule transport) on the activated 

platelets: log-normal distributions commonly arise in biology because of random factor 

correlations contributing to the outcome. In this context, it would appear that CD62P 

expression is a more complex process (mechanistically) than PS expression. Secondly, CD62P 

expression requires a much lower CaIoP concentration than PS expression, and it is therefore 

insensitive to the CaIoP losses during injection. E.g., the delivery of 5 uM of CaIoP induces 

maximal expression of CD62P, 10 uM CaIoP is needed for maximal PS expression. In contrast, 

other studies report maximal calcium uptake and exposure of PS in washed platelets occurring 

at a CaIoP concentration between 1 and 3 µM.245,252 Furthermore, the maximal level of PS 

expression achieved with the pipette is still below that observed in the bulk (Figure 5-10) The 

different sensitivity of CD62P and PS expression to CaIoP stimulation is due to the different 

intracellular calcium thresholds associated with different platelet responses widely recognized 

in the literature.257-259 In particular, Rink et al report different Ca thresholds for platelet shape 

change (300 nM), aggregation (between 700-900 nM) and secretion events (micromolar 

range).260 These differences are also related to the type of agonists, underlying differences in 

the activation pathways: for example stimulation with thrombin induce an intracellular Ca rise 

to 200-300 nM sufficient for platelet shape change and aggregation.259 Similarly, the surface 

acts as an agonist and its effect might be synergic or antagonist with CaIoP.    
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5.9 Conclusion and Outlook 

To validate the multifunctional pipette approach to studying single platelets, we relied on a 

very particular model system: the selectively activated platelets adhering on titanium. In order 

for this approach to be of interest to platelet biologists, two further steps need to be made. 

The first is a surface immobilization protocol that does not activate platelets. We have recently 

developed such a protocol that relies on the passivating properties of the solid-supported lipid 

bilayers.261 The second step is the analysis of single platelet secretions collected with the 

pipette. By combining the immobilization, pipette, and analysis technology, we expect to bring 

forth a unique method for studying platelet secretions at the single platelet level. 
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6. Discussion 

The paradigm of blood-biomaterial interaction holds that protein adsorption is the first event 

occurring at the biomaterial interface and determines the later interactions with platelets and 

leukocytes and the activation of the coagulation, cellular inflammation, and complement.45,262  

Protein adsorption is a complex and dynamic process. The composition of the protein layers 

varies depending on the chemical and physical properties of the surface, but it also subject to 

changes over time according to the Vroman effect,224 and protease degradation. Furthermore, 

not only the composition, but also the conformation of the surface-adsorbed proteins is 

important in determining the interaction with the blood elements, and it also changes with 

time.109,153,203,263 

In this Thesis, the two in vitro tests for material hemocompatibility assess this paradigm at 

two different levels of complexity. The whole-blood quasi-static test gives insight in the role 

of platelets in the interaction between coagulation and the inflammation systems. The 

microfluidic assay, more simple and working in PrP, focuses instead on interactions between 

platelets and the proteins adsorbed at the surface. In both tests, the strategy takes a radical 

departure from the one used in the past, since neither of the two tests mimic physiological 

conditions. Taken together, the results that are obtained fit with the accepted blood-

biomaterial interaction paradigm that relates surface physico-chemical properties to the 

properties of the adsorbed protein layers which control platelet, and subsequent cellular 

responses. Indeed, it is observed in the microfluidic test that different materials act as agonist 

of different strength, and in the whole blood assays that different materials activate different 

coagulation/inflammation pathways to different extent.  

The concept of materials as agonists, that is supported both by the literature and my data, 

leads to the essentially new idea that selective platelet activation at biomaterial surfaces can 

be used to direct wound healing reactions and therefore implant integration. As a first step in 

this direction, I developed a single-platelet assay for understanding and controlling platelet 

activation at single platelet level. The assay focuses on the secretion reactions that are thought 

to be important in the selective platelet activation.  
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Finally, the behavior of titanium is worthy of a separate discussion. In all the three Chapters, 

titanium, was found to stand apart from the other materials, in different ways. When it is 

tested for the activation in the whole blood assay in Chapter 3, it appears superior to CoCr 

and steel; when it is tested for platelet-protein interactions in Chapter 4, it differs from 

hydrophobic materials but also from glass, although both TiO2 and glass are hydrophilic when 

treated with UV-Ozone, as we did in Chapter 4. Chapter 5 is based on selective platelet 

activation at the TiO2 surface, a phenomenon that is not observed on glass.  

Titanium also has a long and venerable history of being used as a biomaterial in heart valves, 

artificial joints, dental implants, extracorporeal devices, and VADs; Ti alloys are also used in 

stents. 264-268 Its success has always been associated with the particular properties of its oxide, 

but the reasons for it have never been elucidated, despite many decades of research.269,270  

On the other hand, reports in literature about titanium performance are discordant, 

particularly in respect to its thrombogenicity,271-274 and so my results invite a closer look at the 

surface properties of TiO2 with respect to its interactions with biological systems. 
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7. Conclusions 

The work presented in this Thesis addresses the problem of material hemocompatibility. All 

the materials used in clinical practice for CVDs treatment cause thrombotic and inflammatory 

complications, leading to heart attacks and strokes if they are not managed with the 

antiplatelet and anticoagulation therapy. The research in the field is stagnant: how to test 

material hemocompatibility in vitro is still an open question. Therefore, I developed two in 

vitro assays for material testing. In both tests a series of blood activation parameters were 

evaluated for their sensitivity in distinguishing between materials. Correlations between 

various parameters were used to elucidate the mechanism underlying blood-biomaterial 

interactions.  

Taken together, the most striking conclusion is that materials activate the blood responses in 

different ways. In the whole-blood quasi-static test, these differences are reflected in the 

extent to which different materials activate the thrombotic and the inflammatory responses. 

In particular, Ti appears to be less thrombogenic but more pro-inflammatory than CoCr and 

steel. Furthermore, this test identifies the activation of platelet-monocyte aggregates as the 

most sensitive parameter to distinguish between materials. On the other hand, the analysis 

of correlation between parameters highlighted the role of platelet-monocytes aggregates in 

the interactions between the thrombotic and inflammatory responses. The results with the 

quasi-static test also show that flow is not absolutely required for evaluating blood activation 

at biomaterial surfaces.  

 In the PrP-microfluidic test, the differences between materials are reflected in the platelet-

surface adhesion strength. This parameter varied between surfaces, most likely reflecting the 

differences in composition of the adsorbed proteins at different surfaces. In turn, this depends 

on the physicochemical properties of the surface. Different surfaces appear to act as agonists 

of different strength. If it were possible to tune platelet activation at biomaterials to induce 

regenerative, rather than pathological, responses, new approaches to implant integration 

could be developed. To explore this possibility, I developed and validated a single platelet 

microfluidic assay capable of analyzing platelet secretion, because platelets direct the wound 

healing through secretion of active substances upon activation.    
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Appendix 

Characterization of the TiO2, glass and PTFEP surfaces used in Chapter 

3 and Chapter 4 

Figure A-1 shows the surface characterization of TiO2 (A) and glass (B, C) surfaces by XPS. TiO2 

surface prepared by magnetron reactive sputtering as described in Section 2.8.4 in the 

Materials and Methods. XPS analysis reveals the expected elements: oxygen, titanium, and 

carbon. Carbon comes from adventitious surface contamination. No extraneous elements 

were found. The Ti 2p region (inset) is dominated by the oxide doublet appearing at 458.7 (2p 

3/2) and 464.5 eV for (2p 1/2). For comparison, the XPS spectrum of the metallic Ti with a 

native oxide appears in Section 3.3. No metallic titanium is visible. The energy of the 2p 3/2 

peak of is consistent with that of the oxide, 458.8 eV, and the difference between the 2p 1/3 

and 2p 3/2 peaks, 5.8 eV, is also consistent with what’s expected of the oxide (5.54 – 5.8 eV). 

Further information can be found in Gonbeau et al and Rossetti and al.184,185  

The XPS of the glass surfaces before and after cleaning are shown in Figure A- 1B and C. The 

O and Si peaks, typical of glass, appear. After the SDS/UV-Ozone cleaning procedure (Section 

2.8.4 Chapter 2), the C1s peak was reduced from 17 atom% of carbon before cleaning to < 4% 

after cleaning (Figure A- 1C). No nitrogen was observed on the surfaces, also ruling out protein 

contamination. The same cleaning procedure has been used on the titanium coatings.275-277 
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Figure A-1. XPS analysis of TiO2 glass surfaces. A. XPS spectrum of TiO2 and B of the glass surface 
before cleaning. C. An XPS spectrum of the glass surface subjected to the SDS-UV/Ozone cleaning 
procedure. 

Figure A-2 shows the surface characterization of PTFEP coating on glass by XPS. The two 

distinguishable C1s pick of the methylene and the CF3 group, typical of perfluorinated 

polymer, appear.203 From XPS measurements of bare and coated samples the thickness is 

estimated to be   5̴ nm. XPS analysis was performed by Dr.Alexei Nefedov (IFG, KIT). 
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Figure A-2. XPS analysis of PTFEP coating on glass.  
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