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Abstract A popular optimization method of a black box objective function is
Efficient Global Optimization (EGO), also known as Sequential Model Based
Optimization, SMBO, with kriging and expected improvement. EGO is a se-
quential design of experiments aiming at gaining as much information as pos-
sible from as few experiments as feasible by a skillful choice of the factor
settings in a sequential way. In this paper we will introduce the standard proce-
dure and some of its variants. In particular, we will propose some new variants
like regression as a modeling alternative to kriging and two simple methods for
the handling of categorical variables, and we will discuss focus search for the
optimization of the infill criterion. Finally, we will give relevant examples for
the application of the method. Moreover, in our group, we implemented all the
described methods in the publicly available R package mlrMBO.

1 Introduction

The overall goal of this paper is global optimization of factor settings by min-
imizing an objective function. Exemplarily, such objective function may be
a measure of a product or property of an algorithm, such as stability, yield,
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or predictive power. Influencing factors may be ingredients, process settings,
or algorithm’s parameters. Typical challenges are that the evaluation of the
(black box) objective function is expensive (in money, storage, animal lives,
etc.) and/or time consuming and that many different factor settings have to be
studied to find the best settings. The solution studied in this paper is sequential
design of experiments in order to gain as much information as possible from
as few experiments as feasible by a skillful choice of the factor settings in a
sequential way.

Let the design matrix X consist of n settings in the rows for p factors (ingre-
dients/parameters) in the columns:

X =

x11 · · · x1p
...

. . .
...

xn1 · · · xnp

 .

Let the objective function f (x) be a real-valued black box function with values
f (xi) = yi for the ith setting xi = (xi1 . . .xip)

T of the p factors. Let the vector of
values of the objective be y = (y1 . . .yn)

T .
In classical design of experiments, an optimization design might be a bigger

response surface design like a central-composite (Myers et al, 2009) or a space
filling design (McKay et al, 1979; Cioppa and Lucas, 2007), or the like, directly
evaluated by experiments or simulations. The results would be evaluated by
means of a regression model, estimating the unknown parameters. Finally, opti-
mum factor levels would be determined regarding the estimated model (Myers
et al, 2009). Unfortunately, this procedure has at least two very important draw-
backs: the time for carrying-out the, typically, many experiments and the need
to repeat the whole procedure in case of a poor fit.

The iterative approach called Efficient Global Optimization (EGO) (Jones
et al, 1998) also starts with an initial design which is evaluated directly by
experiments or simulations. However, this design is typically a space filling
design, which is much smaller than the classical response surface designs. Then,
the experimental results are analyzed by means of an approximate (so-called
surrogate) model, which can be evaluated much faster than an experiment or a
simulation. A new design point is found by means of the optimization of a (so-
called infill) criterion evaluating the estimated approximate model. This new
design point is the next parameter setting directly evaluated by an experiment
or a simulation. This step of model estimation and generation of a new design
point is iterated until a stop criterion is fulfilled. The selection of surrogate
models and infill criteria will be discussed in detail in this paper.
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Example 1. Consider only one factor x (i.e., p = 1), x ∈ [0,7], and the true (in
practice unknown) objective function y = f (x) = sin(x)+ 2sin(2x)+ sin(3x).
The optimal factor value is x∗≈ 5.549. In the classical approach we typically as-
sume a quadratic regression model. Here, we even assume a higher order model,
namely of 8th (!) order, to improve the approximation: y = β0 +∑

8
k=1 βkxk + ε .

As a design we use 16 equidistant points (see Fig. 1). Then, the best evaluated
setting is x = 5.6875 (minimum of the design points) and the best predicted set-
ting x̂∗ ≈ 5.586 (calculated minimum of estimated red curve in Fig. 1). There-
fore, the predicted optimal argument is very close to the true optimal factor
value x∗ ≈ 5.549 (see above, minimum of true black curve in Fig. 1). The
question is: Can EGO produce even better results?
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Fig. 1 Example function with 16 equidistant de-
sign points (black dots), black line = true function,
red line = estimated function. Note, how near the
minima of the true and the estimated curves are.

The paper is structured as follows.
In Sect. 2, the EGO procedure will
be introduced. In Sect. 3, variations
of this procedure will be discussed.
Here, we will especially introduce
our new variations of the EGO pro-
cedure, namely regression as a mod-
eling alternative to kriging, focus
search for the optimization of the in-
fill criterion, and two simple methods
for the handling of categorical vari-
ables. Sect. 4 presents applications
to parameter tuning, onset detection,
and cutting optimization. The paper
finishes with a conclusion.

2 Efficient Global Optimization

In this section, the EGO procedure will be described in detail. See Fig. 2 for
an overview over the whole procedure. The steps of this procedure will be
discussed in the following subsections.
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1. Evaluate objective function f
on initial design Xn0 :

f
(
Xn0

)
= yn0

2. Estimate mean response
f̂n and uncertainty ŝ2

n
of surrogate function g

3. Optimize infill criterion:
xn+1 = argmax

x∈Ω

ein (x)

4. Evaluate f in xn+1:

yn+1 =

(
yn

f (xn+1)

)
5. Stop?

n = n0

n = n+1

no
yes

Fig. 2 Global optimization steps: On the left, an example is given (predetermined design points as
black dots, new design point as a red triangle); on the right, the steps are briefly described (see the
main text for a detailed explanation).

2.1 Initial Design

In step 1 of the EGO procedure, the initial design should be chosen small but
nevertheless covering the whole region of interest from the outset. Also, if pos-
sible, all factors should be considered which might improve the objective. From
now on, we assume that the region of interest Ω = Ω1× . . .×Ωp of the factor
vector x = (x1 . . .xp)

T is restricted by box constraints Ω j = [x j,lower,x j,upper]⊂
R.

In order to cover the whole region of interest to search for the best setting,
typically, a space-filling design like a Latin hypercube design is used (McKay
et al, 1979). A Latin Hypercube Design (LHD) is constructed so that each factor
has the same number of levels. For each level of each factor there is exactly
one design point. The idea is to divide the range of the p characteristics into
n0 equally probable intervals, taking the center as the design level. Then, n0
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Fig. 3 Sine example function with 6 random design points (left); Latin hypercube design with 4
points (right).

design points are placed to satisfy the Latin hypercube requirements. Typically,
the design is filled by a random permutation of levels factor by factor. Note that
the number of divisions, n0, is assumed equal for each factor. Also note that this
design does not require more design points for more factors. This independence
is one of the main advantages of this design. For the number n0 of initial design
points, typically n0 ∈ {5p,6p, . . . ,10p} is recommended.

Example 2 (Example 1 cont.). In the above example the region of interest
is Ω = [0,7]. Let the initial design include n0 = 6p = 6 points from a ran-
dom Latin hypercube with XT

6 = (5.13 3.38 1.29 3.62 6.33 0.72) and
yT

6 = (−4.32 1.42 2.97 2.65 0.63 6.45) (see Fig. 3 (left)).

Example 3. An LHD for p = 3 factors with n = 4 design points in Ω j =
{1,2,3,4} may look like this:

X4 =


xT

1
xT

2
xT

3
xT

4

=


1 1 2
2 4 3
4 2 4
3 3 1


(cp. Fig. 3 (right)). Obviously, each factor level appears once for each of the 3
factors.
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2.2 Surrogate Function

In step 2 of the EGO procedure, a reasonable approximation g(x) of the un-
known objective function is looked for. With this approximation we predict the
objective for each factor setting. In order to determine this approximation, we
consider an approximation model, also called surrogate model or meta model,
g(x). For fast evaluation, we assume that this model is of simple form.

We first concentrate on ordinary kriging (Cressie, 1988) with the surrogate
model g(x) = µ +Z(x). The constant µ can be interpreted as a global mean,
and Z(x) is a Gaussian process with E(Z(x)) = 0 and a stationary covariance
Cov(Z(x),Z(x′)) = σ2ρ(x− x′,ψ) with, e.g., the Matérn 3/2 kernel function
ρ(x−x′,ψ) = (1+

√
3 ||x−x′||

ψ
)exp(−

√
3 ||x−x′||

ψ
) (Matérn, 1986). The constant

σ2 can be interpreted as the global variance, ψ as a scaling parameter, and
the Matérn kernel as a correlation function. A Gaussian process is a statistical
model for observations in a continuous input space like time or space, where
every point is associated with a normally distributed random variable and every
finite collection of those random variables has a multivariate normal distribu-
tion. As a measure of the similarity between points, their covariance is used,
specified by a kernel function (we use the Matérn 3/2 kernel function). Predic-
tion is not just a point estimate, but also includes uncertainty information being
a one-dimensional Gaussian distribution itself (called the marginal distribution
at that point). For more information on Gaussian processes see, e.g., Adler and
Taylor (2007). Unknown parameters are µ,σ2, and ψ . To estimate these para-
meters, we only rely on the observations in the n points already evaluated by
the objective function: yn = (y1 . . .yn)

T .

Obviously, in ordinary kriging g = (g(x1) . . .g(xn))
T ∼N (1µ,σ2R(ψ)) is

valid with correlation matrix R(ψ) = (ρ(xi−x j,ψ))i, j=1,...,n, where 1∈Rn and
1T =(1 . . .1). Using normality and assuming interpolation, i.e., (g(x1) . . .g(xn))
= (y1 . . .yn), the likelihood function looks like:

L(µ,σ2,ψ) =
1√

(2π)nσ2ndet(R)
exp(− 1

2σ2 (y−1µ)T R−1(y−1µ)),

where det(R) is the determinant of R. Maximum likelihood estimation of the
unknown parameters (see, e.g., Mood (1950)) corresponds to:
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µ̂ = argmax
µ

L(µ,σ2,ψ) =
1T R−1yn

1T R−11
,

σ̂
2 = argmax

σ2
L(µ̂,σ2,ψ) =

1
n
(yn−1µ̂)T R−1(yn−1µ̂), and

ψ̂ = argmax
ψ

L(µ̂, σ̂2,ψ).

One problem is left, though, how to predict the objective function? The
surrogate prediction function is realized as a linear unbiased predictor, namely
E(g(x)|g(xi) = f (xi) = yi, i = 1, . . . ,n) = λ (x)T yn = ∑

n
i=1 λi(x)yi with

E(λ (x)T g) = λ (x)T 1µ = µ = E(g(x)), leading to λ̂ (x)T 1 = 1.
Optimal weights λ (x) are received by minimizing the prediction variance:

s2(x) = var(g(x)|g(xi) = yi, i = 1, . . . ,n)

= E((λ (x)T g−g(x))2|g(xi) = yi, i = 1, . . . ,n)

= σ
2(λ (x)T Rλ (x)−2λ (x)T r(x)+1) = min!

This yields λ̂ (x)= R̂−1
(

r̂(x)+1 1−1T R̂−1 r̂(x)
1T R̂−11

)
with r(x)= (ρ(xi−x;ψ))i=1,...,n.

This leads to the following expressions for the predictor and its variance:

f̂ (x) = λ̂ (x)T yn = µ̂ + r̂(x)T R̂−1(yn−1µ̂) and

ŝ2(x) = σ̂
2
(

1− r̂(x)T R̂−1r̂(x)+
(1− r̂(x)T R̂−11)2

1T R̂−11

)
.

Notice that kriging uses interpolation so that f̂ (xi) = yi and ŝ2(xi) = 0,
i = 1, . . . ,n. A graphical illustration of the kriging situation can be seen in
Fig. 4 showing the prediction f̂ (x) together with the grey uncertainty region
f̂ (x)± ŝ(x).

2.3 Next Design Point

In step 3, the surrogate function based prediction and its uncertainty are con-
structed to select the next point for the evaluation. This is realized by the opti-
mization of an infill criterion using information of the current model balancing
between regions of low mean prediction (exploitation) and of high standard
error (exploration). The most typical criterion for the choice of the next design
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Fig. 4 Surrogate function with design points; predicted uncertainty region in grey.

point is the maximization of the expected improvement conditionally on the
observations, as explained now.

Let f̂n(x) be the surrogate prediction and ŝ2
n(x) the prediction uncertainty

based on the first n evaluations of f . By construction, the estimated surrogate
function ĝ(x) follows a normal distribution: ĝ(x)∼N ( f̂n(x), ŝ2

n(x)). Let φg be
the corresponding probability density function and Φg the cumulative distribu-
tion function.

Let the actual best value be ymin = min
i=1,...,n

yi = min
i=1,...,n

f (xi). For a point x and

the estimated surrogate ĝ(x) an improvement is then given by:
In(x) = max(ymin− ĝ(x),0). Since In(x) is stochastic, consider the expected
improvement

ei(x) = E(In(x)) =
∫ +∞

−∞

max(ymin− y,0)φg(y)dy

= yminΦg(ymin)−E(ĝ(x)|ĝ(x)≤ ymin)Φg(ymin)

= (ymin− f̂n(x))Φ
(

ymin− f̂n(x)
ŝn(x)

)
+ ŝn(x)φ

(
ymin− f̂n(x)

ŝn(x)

)
,

if ŝn(x)> 0,and E(In(x)) = 0 otherwise,

where φ(y) and Φ(y) are the density function and the distribution function
of standard normal distribution. The next point for evaluation is then defined
as: xn+1 = argmaxx∈Ω E(In(x)). In order to identify this point, the expected
improvement has to be optimized numerically, by means of an Evolutionary
Algorithm (EA) (see, e.g., Simon (2013)), as originally, or, e.g., by the search
method introduced in Sect. 3.3.



Efficient Global Optimization: Motivation, Variations, and Applications 9

2.4 Iteration

In step 4 of the EGO procedure, the objective function is calculated in the new
design point. Then, the next iteration step is initiated.

Example 4 (Example 1 cont.). In our example, let us now look at the iterations
generating the next design points after the initial design of 6 random points. In
Figs. 5 and 6, iterations 1,2,7,10 are visualized. For each iteration the graphic
shows in the upper part the original function (solid line) and its approximation
f̂ (x) (dashed line) together with its uncertainty region ±ŝ(x) (grey) and in the
lower part the expected improvement ei(x). In iteration 1, corresponding to
the first new design point, a point near the present minimum is selected (red
triangle). This is also true for iteration 2. This exploitation of the same region
continues up to iteration 6, whereas in iteration 7 a point far off of this region
is selected, leading to an exploration for other minima. It is this property that
enables the method to leave local minima and find global ones. In iteration 10
the search is stopped since also the competing ’classical’ method was based on
a budget of overall 16 design points.

The true optimal setting is xopt ≈ 5.549. With the classical regression model
of order 8, the best evaluated setting was x = 5.688 with an absolute difference
to the optimum xopt of 0.139 and the best predicted setting is x = 5.586(0.036).

With our EGO model the best evaluated setting is x = 5.550(0.001) and the
best predicted setting is x = 5.515(0.034) which is even somewhat better than
for the ‘classical’ performance.

2.5 Stopping

Finally, we should discuss the problem ‘when to stop iteration?’. Typically, a
budget is pre-fixed, i.e., the number of iterations. This might lead to early or
late stopping, i.e., to stopping without convergence or to stopping far beyond
convergence.

Alternatives can be, e.g., based on expected improvement (Huang et al, 2006).
We might stop, if ei(x) is small after n iterations, i.e.,

max
x∈{x1,...xn}

ei(x)< ∆s,
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Fig. 5 Iteration steps 1 and 2 (exploitation); upper parts: objective f (x) (solid line), predicted objective
f̂ (x) (dashed line), design points (red dots = initial design, blue triangle = proposed point, green squares
= sequential design points after initial design), predicted uncertainty region in grey; lower parts: ei(x).

where ∆s = stopping tolerance, or if relative expected improvement is small,
e.g., if the magnitude of y is not known:

max
x∈{x1,...xn}

ei(x)

max{y1, . . . ,yn}−min{y1, . . . ,yn}
< ∆r,

where ∆r = relative stopping tolerance.
This is the first variation of the standard method we consider in this paper.

In the next section, we will discuss other variations.
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objective f (x) (solid line), predicted objective f̂ (x) (dashed line), design points (red dots = initial
design, blue triangle = proposed point, green squares = sequential design points after initial design),
predicted uncertainty region in grey; lower parts: ei(x).

3 Variations

Let us now consider variations of the EGO method, particularly for surrogate
modeling and the infill criterion. Moreover, details will be discussed on parts
of the method not even mentioned yet, namely on the optimization of the infill
criterion, and the handling of categorical features.

3.1 Surrogate Models

The choice of the correlation function is one decisive factor for a kriging model.
Alternatives to Matérn 3/2 detailed in Sect. 2.2 are, e.g., linear, exponential,
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Gaussian, and Matérn 5/2 correlations functions (Rasmussen and Williams,
2006, p. 79ff.). Note that these functions should be as flexible as possible to be
able to model any shape of the data.

There are also correlation functions with more than one unknown param-
eter, e.g., one scaling parameter ψ j for each influencing factor in a product
correlation rule: R(ψ1, . . . ,ψp) = ∏

p
j=1 R(ψ j) (Sasena, 2002), cp. Sect. 4.3.

Also, the ordinary kriging model is generalized, e.g., to the universal kriging
model, built by a polynomial instead of a constant trend:

g(x) =
k

∑
j=1

β jh j(x)+Z(x)

with arbitrary functions h j and corresponding coefficients β j (Sasena, 2002).
However, a constant term is generally sufficient because of the flexibility of the
correlation functions.

Another variation is the dropping of the interpolation property of kriging.
Instead, the kriging model is modeled to be noisy, leading to augmented kriging
(cp. Huang et al (2006)): g(x)= µ+Z(x)+ε with ε ∼ i.i.N (0,τ2) assumed to
be stochastically independent of Z(x). The overall covariance can then be writ-
ten as Cov(Z(xi)+εi,Z(x j)+ε j)=σ2ρ(xi−x j,ψ)+τ2I(i= j), i, j = 1, . . . ,n,
where I(cond) is the indicator function of condition cond. Such a model is used
in Sect. 4.3.

As a further modeling alternative, we propose the use of a classical quadratic
regression model instead of a kriging model. Then, variation is mainly modeled
explicitly as a function of x: g(xi) = β0 +∑

p
j=1 β jxi j +∑

p
j=1 ∑

p
k> j β jkxi jxik +

∑
p
j=1 β j jx2

i j + εi, εi ∼ i.i.N (0,σ2). The unknown coefficients β j,β jk,β j j,

j = 1, . . . , p,k > j, and σ2 are estimated by means of least squares. Predic-
tion is then given by f̂ (x) = β̂0 +∑

p
j=1 β̂ jx j +∑

p
j=1 ∑

p
k> j β̂ jkx jxk +∑

p
j=1 β̂ j jx2

j

and prediction variance by ŝ2(x) = σ̂2(1+xT (XT
n Xn)

−1x). Note that this leads
to smoothing, not to interpolation. Further note the relationship to the universal
kriging model (see above), where the h j(x) stand for the linear, interaction, and
quadratic terms. In universal kriging, for the model residuals a quite general
correlation matrix is assumed. In the regression model, the errors are assumed
independent, instead. This model is compared to the standard procedure in
Sect. 4.1.
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3.2 Infill Criteria

In case of the augmented kriging model the expected improvement criterion
is extended to the Augmented Expected Improvement aei(x) (cp. Huang et al
(2006)):

aei(x) =
[
(T − f̂n(x))Φ

(
T − f̂n(x)

ŝn(x)

)
+ ŝn(x)φ

(
T − f̂n(x)

ŝn(x)

)]
· (1− τ̂√

ŝn(x)2 + τ̂2
),where T = f̂n(x∗),

x∗ = argmin
x
( f̂n(x)+κ ŝn(x)),κ = 1, typically.

Note that τ2 is the variance of the error term ε in the augmented kriging model.
The term (1− τ̂√

ŝn(x)2+τ̂2
) is interpreted as a multiplicative penalty term for

the expected improvement caused by the extra error term ε in the augmented
model. For τ = 0, the penalty term is 1 (no penalty). The bigger τ is, the smaller
is the penalty term and the smaller is aei(x).

Besides the expected improvement, there are other proposals for infill criteria.
The most popular alternative is to minimize the lower confidence bound
lcb(x) = f̂n(x)−κ ŝn(x) with a fixed κ > 0 (Cox and John, 1997).

3.3 Search Methods

The optimization of the infill criterion is typically implemented as an approx-
imative search. In our group, we propose focus search as a global-local opti-
mization of the infill criterion to find the next point xn+1 to be evaluated by the
objective black box function f . Focus search will repeatedly start with a coarse
LHD with a sequence of refinements near the found optima. The search can be
implemented as shown in Algorithm 1.

3.4 Categorical Attributes

One of the disadvantages of standard kriging is its limitation to numerical
influential parameters. However, there are extensions to categorical attributes.
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Algorithm 1 Focus Search
Global search: Repeat for s = 1, . . . ,S (e.g., S = 10)

Local search: Repeat for j = 1, . . . ,J (e.g., J = 5)
(a) Sample LHD: D j ⊂Ω j(Ω 1 = Ω)
(b) Infill Criterion, e.g., lcb with κ = 1:

Candidate point x∗ j = argminx∈D j [ f̂ (x)− ŝ(x)]
(c) Reduce parameter space: Ω j+1 ⊂Ω j around x∗ j

Local candidates: D∗s = {x∗1, . . . ,x∗J} and xs = argminx∈D∗s [ f̂ (x)− ŝ(x)] best point

Global candidates: Let D∗ = {x1, . . . ,xS} be the global candidate set, then xn+1 :=
argminx∈D∗ [ f̂ (x)− ŝ(x)] is the best point to be evaluated next

In the literature, most of the time, extensions of the covariance function to
qualitative variables are proposed (see, e.g., Qian et al (2008)). In contrast, we
propose two very simple methods, indicated below:

Naïve kriging: Categorical attributes are handled as numerical ones by as-
signing an integer value to each level. This method is easy to implement, but
the order of the levels and the distance between levels are typically artificial.

Dummy kriging: Dummy variables are built for each categorical attribute,
e.g., for possible levels A,B,C of attribute x we take xA = I[x=A], xB = I[x=B],
xC = I[x=C]. This method is statistically more correct, but time consuming if
categorical attributes have a large number of levels.

For an application, where these two methods are compared, see Sect. 4.2.

4 Applications

4.1 Parameter Tuning
The first application will be parameter tuning for Support Vector Machine
(SVM) classification (Schölkopf and Smola, 2002).

To illustrate the method, we use 5 publicly available classification bench-
mark problems from OpenML (Vanschoren et al, 2014) (www.openml.org)
characterized in Table 1. We would like to compare kriging modeling with
regression modeling in EGO as well as ei and lcb as infill criteria. As the ob-
jective f (cost,γ,ε) we use the error rate of the nonlinear SVM classifier using
the Radial Basis Function (RBF) kernel (as provided in the library LIBSVM,
cp. Chang and Lin (2011)) with the p = 3 parameters cost, penalizing errors, γ

www.openml.org
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Table 1 Data sets used in SVM parameter tuning characterized by the number of observations (obs),
the number of variables (m), and the best accuracy reached with the focused grid search for the shown
parameter settings.

Dataset obs m Best Accuracy cost γ ε

spambase 4 601 58 0.059 1.38e+03 2.06e-04 1.28e-04
wilt 4 829 6 0.007 2.34e+03 2.19e-02 3.29e-04

ada_agnostic 4 562 49 0.182 1.56e+00 3.31e-05 1.98e-01
eeg-eye-state 14 980 15 0.095 2.37e+04 7.23e-01 8.73e-02

MagicTelescope 19 020 12 0.001 1.71e+04 5.52e-02 1.94e-04

in the RBF kernel, and ε in the loss function. In this way, optimal tuning of the
SVM parameters is realized.
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Fig. 7 Focused Grid Search for the 2 SVM para-
meters cost and γ . First, the focus is on the bottom
right corner (blue region). Then, the focus is shifted
somewhat to the left (light-blue region).

Since the ground truth is not avail-
able, we apply a somewhat naïve ap-
proach for generating a near opti-
mum of the objective being the ac-
curacy of the model. We use a Fo-
cused Grid Search over the 3 para-
meters cost,γ,ε . We consider cost ∈
2[−15,15], γ ∈ 2[−15,15], ε ∈ 2[−13,−1],
vary all parameters on a logarithmic
scale, and use 7 · 7 · 5 = 245 points,
equidistant in each dimension, as the
starting grid. We use J = 4 Focus
Search iterations (and S = 1, i.e., only
one fixed starting grid) (cp. Sect. 3.3)
leading to 980 function evaluations.
See Fig. 7 for an illustration.

The performance corresponding to
a found (cost,γ,ε) setting is assessed via a 2:1 train-test-split. The accuracy
of the optimum found by the Focused Grid Search is taken as the ground truth
for a comparison with the best accuracies found by the different versions of
the EGO procedure. The results of the Focused Grid Search can be found in
Table 1.

For the evaluation of the EGO procedures, we count the number of function
evaluations until EGO reaches the same performance as the grid search. We
start with a random LHS with 4p = 12 points (in order to make sure that all
parameters are estimable with quadratic regression), vary the infill criterion
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(ei and lcb) and the surrogate model (kriging and quadratic regression), and
consider 5 replications. We say that EGO failed if the solution was not reached
after 500 iterations since we expect that one EGO step is roughly a factor of
two slower than one pure function evaluation.

In Table 2, the iteration characteristics of EGO are reported for the different
data sets and method variants, namely the median of the iteration counts of
successful EGO runs and the number of successful EGO replications in brackets.
In Table 3, the differences of the best optimizations runs to the grid search
performance are reported.

Table 2 Median iteration counts of SVM parameter tuning (number of successful KM or QM replica-
tions), KM = Kriging Model, QM = Quadratic regression Model

Dataset ei + KM lcb + KM ei + QM lcb + QM
spambase 30 (5) 48 (5) - (0) - (0)

wilt 18 (5) 15 (5) 17 (5) 18 (5)
ada_agnostic 35 (1) 80 (3) - (0) - (0)
eeg-eye-state 45 (5) 43 (5) 84 (2) 260 (2)

MagicTelescope 29 (5) 39 (5) 16 (1) 15 (2)

Table 3 Differences of the best optimization results to the grid search optimum, KM = Kriging Model,
QM = Quadratic regression Model

Dataset Grid Search ei + KM lcb + KM ei + QM lcb + QM
spambase 0.059 -6.52e-04 -6.52e-04 +6.52e-04 +6.52e+04

wilt 0.007 -6.20e-04 -6.20e-04 -6.20e-04 -6.20e-04
ada_agnostic 0.182 0 -6.57e-04 +1.31e-03 +1.31e-03
eeg-eye-state 0.095 -1.60e-03 -4.00e-04 -2.00e-04 +2.00e-04

MagicTelescope 0.001 0 -1.58e-04 0 0

Overall, the results can be interpreted as follows. When comparing EGO and
Grid Search, EGO wins by a clear margin. If EGO is able to find the optimal
target function value, it is around 20 times faster. If EGO does not reach the
optimal target value, it is only slightly off-target.

When comparing ei and lcb, no real winner can be identified. There are only
small differences, each method is better in some cases. However, lcb could
be preferable since this criterion does not rely on the validity of the normal
distribution.

When comparing the results of regression and kriging, kriging is distinctly
superior. Regression fails very often (only 17 successful replications overall in
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contrast to 44 for kriging). Moreover, regression is not as flexible as kriging.
Only if the optimum of the quadratic model is near to the real optimum, the real
optimum is reliably found (e.g., for the data set “wilt”). Larger initial designs or
the concentration on the best or the newest observations might help regression.
This will be studied further.

Let us finish this discussion by a remark on parallel computing. Focused
Grid Search can use many nodes in parallel. However, EGO suffers from its
iterative behavior, i.e., its evaluation of the 500 points has to be realized one
after the other. Therefore, in real time Focused Grid Search was much faster
(not in computing time!). A possible way out of this problem is the development
of efficient Multi Point Proposals, where multiple proposal points are suggested
in parallel (cp. Bischl et al (2014)).

4.2 Onset Detection

The second application deals with the optimization of music onset detection.
In this study, a tone onset is the time point of the beginning of a musical note
played by a musical instrument. The ability of the detection of tone onsets
depends on the instrument playing the tone, e.g., the beginning of piano tones
can be much easier identified than the beginning of flute tones (see Fig. 8).
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Fig. 8 Time series of the same music piece played by piano (left) and flute (right); tone beginnings
are marked by vertical lines.

The onset detection algorithm we use in this study is specified in Algorithm 2
(cp. Fig. 9 (left)); for more details see Bauer et al (2016).
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Algorithm 2 Onset detection algorithm
Input: Audio data in WAVE format with sampling rate of 44.1 kHz

1: Windowing: Split signal into small windows (parameters: window size 512−4096 samples and
shift to next window (called hop size) (0−90% of the window size))

2: Pre-processing: Pre-process the data (parameters: windowing function (Hanning, Gauss, . . .),
spectral filter (yes /no), log-scale (yes /no), and log-parameter (1 – 20))

3: Detection function: Compute in each window an onset detection function (odf) (parameters: odf
function (amplitude increase, spectral flux, . . .) and exponential smoothing with a parameter in
[0,1])

4: Peak-picking: Threshold the smoothed odf (parameters: moving function (mean, median, . . .),
threshold multiplier (1 – 3), threshold additive term (0 – 10), and threshold time back (0 – 0.5
seconds))

5: Onset localization: Localize the tone onsets (parameters: onset time back (0 – 0.5 seconds), min.
distance between onsets (0 – 0.05 seconds), and onset shifting time (−0.01 – 0.02 seconds))

Output: F-value

As the objective, the F-measure F = 2c
2c+ f++ f− is used, where c = number

of correct detections, f+ = number of false positive detections, and f− = num-
ber of false negative detections. We use EGO to optimize F corresponding
to the 15 parameters, 10 numerical and 5 categorical, of the onset detection
in Algorithm 2, i.e., we optimize f (window size, . . . , onset shifting time) =
F(window size, . . . , onset shifting time).

We use the following EGO settings: kriging with the covariance function
Matérn 3/2 as the surrogate model, ei as the infill criterion, focus search with
S = 3, J = 5, and size of D j = 10’000 points as the infill optimizer, LHS with
5d = 75 points as the initial design, and 20d = 300 iterations. Note that 5
categorical parameters have to be optimized. Therefore, we will compare naïve
kriging and dummy kriging (cp. Sect. 3.4).

As the validation design, we use 321 hand labeled music data files in WAVE
format (IBM and Microsoft, 1991) as the learning data set, 2/3 data for training
and 1/3 for testing in the train-test-approach, and 30 replications (subsampling).
The idea is to find the best setting of the parameters in Algorithm 2 on the
training data and evaluate it on the test data. As the objective, F-values on the
test data are used.
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Fig. 9 Common onset detection procedure (left) (see Algorithm 2) (Bello et al, 2005); random search
compared to EGO with naïve kriging and dummy kriging (right).

The resulting distribution of F-values can be found in Fig. 9 (right). EGO
variants clearly dominate random search based on an LHS design of size 25d.
Naïve kriging shows slightly better results than dummy kriging.

4.3 Cutting Optimization

The goal of the third application is the optimization of a cutting process with a
diamond tipped drill core bit. We start with a single diamond scratch test, want-
ing to find settings of the process and production factors which minimize work
to reach a certain drilling depth. For this, we first optimize a simulation model
by means of parameter adjustment with EGO, and then optimize the process
and production factors using the optimal simulation output (cp. Herbrandt et al
(2016)).

In order to optimize a simulation model we first need to observe the real
process. For this, we carry out a block design with 60 trials each for the 5
materials cement, basalt, concrete, steel, and reinforced concrete. We base on
5 samples per material. We aim to achieve 80 µm total drilling depth. We
compare 4 feed speed ν f (mm/min) settings and 4 cutting speed νc (m/min)
settings. 12 drilling diameters (mm) per material sample are used, where the
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same speed settings (νc,ν f ) are treated in pairs of adjacent radii each. This
leads to minimum 2 replicates per setting (νc,ν f ) (cp. Fig. 10 for an example).
Overall, we use 5 blocks (samples) with 6 trials (radii) each and speed settings
from a full factorial design. The design is D-optimized, twice replicated in
(νc,ν f ). The outputs are the forces (Fx,Fy,Fz) in all 3 dimensions. The normal
force in Fig. 10 corresponds to Fz. The sampling rate is 200’000 Hz.
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Fig. 10 Time series of normal forces on cement for the speed combination νc = 193.5 m
min , ν f = 7 mm

min ;
red: radius = 20 mm, green: radius=21 mm

Let us now optimize a simulation model for the forces F(r,xxx) with 8 para-
meters xxx = (gz,gv,µc,σ

2
Y c,τ

2
c ,ψc, pc,qc) given as a weighted sum of removed

volumes v and characteristic material values z:

F(r,xxx) =
gz

r
z(µc,σ

2
Y c,τ

2
c ,ψc)v(pc,qc)+

gv

r
v(pc,qc)+ ε.

For the model of the removed volume v we assume that the cutting diamond
has the shape of a pyramid and the cutting line has the profile of a triangle.
The triangle size depends on the current observation, the cutting depth per
revolution, and the stochastic brittleness of the material simulated by a restricted
Beta(pc,qc)-distributed deviation from the perfect cutting profile. The removed
volume of one observation is the volume between two consecutive triangles.

For the model of the characteristic material values z we assume that forces
needed to remove material vary over the work piece. The characteristic mate-
rial values (e.g. hardness) of the triangle points are sampled from a Gaussian
random field Z(µc,σ

2
Y c,τ

2
c ,ψc). The material value of one observation is the

mean value of two consecutive triangles.
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As the objective function f (Fz (r,νc,ν f ) ,F (r,x)) for EGO optimization, we
use the mean deviation between modeled forces F (r,x) and observed forces
Fz (r,νc,ν f ) corresponding to the three characteristics slope, range, and spec-
trum (Herbrandt et al, 2016). For force modeling, we use the same radii r
as for the realization of observed forces. The objective is stochastic because
of the stochastic character of the force model. The unknown parameters are
x = (gz gv µc σ2

Y c τ2
c ψc pc qc)

T of the above force function. So we have p = 8
unknown parameters. The initial design is taken to be a random Latin hyper-
cube with n0 = 10p = 80 points, the number of iterations is set to be 720. This
leads to a total number of function evaluations of 100p = 800. As the surro-
gate function we use the augmented (noisy) kriging model (cp. Sect. 3.1), as
the infill criterion the augmented expected improvement (cp. Sect. 3.2). Please
compare the pseudocode in Algorithm 3. Please distinguish the Gaussian ran-
dom field Z(µc,σ

2
Y c,τ

2
c ,ψc) for the characteristic material values (see above)

from the Gaussian random field with parameters θ =
(
µ σ2 τ2 ψ1 . . . ψ8

)T

used in kriging. Model parameters are optimized individually for each of the
16 speed combinations (νc,ν f ) and each material (in our illustrations we take
cement).

Algorithm 3 Optimization of force model
Input: Observed normal forces Fz with speed settings

(
νc,ν f

)
Initial Design:

(a) Sample 80 parameter settings x1, . . . ,x80 ∈ R8 from a random Latin hypercube, xi =
(gzi gvi µci σ2

Y ci τ2
ci ψci pci qci)

T

(b) Evaluate objective function f in x1, . . . ,x80: f
(
Fz
(
r,νc,ν f

)
,F (r,xi)

)
= yi, i = 1, . . . ,80,

where f is the mean deviation between modeled and observed forces corresponding to the
three characteristics slope, range, and spectrum

EGO: Repeat for i = 80, . . . ,799

Surrogate Function:
(1) Estimate the augmented kriging parameters θ =

(
µ σ2 τ2 ψ1 . . . ψ8

)
(see Sect. 3.1),

where the ψ j are the Matérn parameters for the individual dimensions
(2) Determine the augmented kriging prediction f̂i

(
θ̂
)

conditional on y1, . . . ,yi

(3) Determine the augmented kriging uncertainty ŝ2
i
(
θ̂
)

conditional on y1, . . . ,yi
Infill Criterion: Maximize the augmented expected improvement aei(x) in Sect. 3.2 with the

focus search in Algorithm 1: xi+1 = argmaxx∈Ω aei(x)
Evaluation: Evaluate objective function f in xi+1

Output: Optimal force model parameters x? =
(
gz
∗ gv

∗ µc
∗ σ2

Y c
∗

τ2
c
∗

ψc
∗ p∗c q∗c

)T
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Looking at the optimization results, the best fit is achieved for (νc,ν f ) =
(270, 7), the worst fit for (νc,ν f ) = (270, 9.5) (cp. Table 4). The goodness of fit
depends on the similarity of ‘repetitions’. The iteration number corresponding
to the optimal parameter setting is typically lower than the budget of 800 iter-
ations. See Fig. 11 for an example, where near optimal settings were already
found very early, i.e., after less than 250 iterations. For each optimization we
obtain the values of the evaluated objective function y1, . . . ,y800 and the op-
timal parameter vector x∗ = (gz

∗ gv
∗ µc

∗ σ2
Y c
∗

τ2
c
∗

ψ∗ p∗c q∗c)
T . Since the best

model is stochastic, we only check how well an observed realization with this
speed combination fits into the area of simulated realizations. See Fig. 12 for
an example.

Table 4 Optimal values ymin of objective for the different combinations (νc,ν f ) and corresponding
iteration numbers nmin

νc 40.5 40.5 40.5 40.5 117 117 117 117 193.5 193.5 193.5 193.5 270 270 270 270
ν f 2 4.5 7 9.5 2 4.5 7 9.5 2 4.5 7 9.5 2 4.5 7 9.5

ymin 3.25 3.04 5.64 4.32 1.49 3.81 7.08 4.41 1.66 3.73 1.75 6.95 2.09 4.75 1.45 7.61
nmin 328 621 682 299 800 490 427 434 731 171 452 423 122 755 672 261
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Fig. 11 Optimization path for speed combination νc = 270 m
min and ν f = 7 mm

min ; the end of the initial
design is indicated by a vertical line; the minimum ymin is reached for iteration number nmin. The
lower part is a zoom-in of the upper part.

Based on the optimal force models we now would like to optimize the pro-
cess and production factors. We use the modeled forces to predict a speed-
combination with minimal work WA needed to drill a desired depth A (here:
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Fig. 12 Time series of 50 realizations of the force model with optimal parameter setting (blue) and
observed force (black) for the speed combination νc = 270 m

min and ν f = 7 mm
min on the radius 18 mm.

(a) (b)

Fig. 13 (a) Realizations of the force model (blue), observed force (black), expected modeled forces
F(s) (red line), and the resulting work WA (red hatched) to reach a total depth of A = 0.07 mm with(
νc,ν f ,r

)
=
(
270 m

min ,7
mm
min ,18 mm

)
; (b) Surface of the generalized linear model of the resulting

work, split by the radii r = 16 mm (yellow), ..., r = 27 mm (violet).

A = 0.07 mm): WA =
∫ sA

0 F(s)ds, where sA = sA(r) = total distance until reach-
ing depth A(mm), F(s) = expected modeled forces for distance s. For an exam-
ple, see Fig. 13(a).

The independent variables are νc,ν f ,r. We use a Generalized Linear Model
(GLM) (Nelder and Wedderburn, 1972) with Gamma distributed error, log link,
and with up to cubic terms and all interactions. We apply backwards variable
selection based on the Akaike Information Criterion (AIC) (Akaike, 1974).
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The resulting model fit is nearly perfect (goodness of fit: pseudo R2 = 0.998).
This model results in optimal speeds which are nearly the same for each ra-
dius: (νc,ν f )≈ (40.5,8.75). For the dependence of work on the speeds (νc,ν f )
please compare Fig. 13(b). The independence of optimal speeds (νc,ν f ) on the
radius r is what we hoped for. Too small values of ν f lead to higher friction
and lower material removal, i.e., to higher total work. Too high ν f values cause
higher total work due to very high material removal rates.

5 Conclusions

EGO is especially appropriate for the optimization of expensive black box func-
tions. If evaluation cost is low, cost of surrogate model estimation can exceed
the cost for objective function evaluation. EGO with kriging not only focuses on
finding the optimum but the exploration during this process also leads to a good
model fit over the whole parameter region. Variations are diverse, concerning,
e.g. the covariance structure, the infill criterion, the search structure, categori-
cal factors, noise, the regression model, etc. We introduced some new variants
like regression as a modeling alternative to kriging and two simple methods
for the handling of categorical variables, and we discussed focus search for the
optimization of the infill criterion. Applications are numerous. We looked at
parameter tuning and optimization in practice. The R package mlrMBO, devel-
oped in our group (Bischl et al, 2015), provides all the described methods and
further features like, e.g. optimization with more than one objective function.
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